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Zusammenfassung 

Die Datierung konjunktureller Wendepunkte stellt nach wie vor ei-
ne wichtige Information tor wirtschaftspolitische Entscheidungen 
dar. Die vorliegende Studie ermittelt den osterreichischen Konjunk-
turverlauf tor die Zeit zwischen 197 6 und 2005 auf Basis von Oaten 
der vierteljahrlichen volkswirtschaftlichen Gesamtrechung Oster-
reichs, Deutschlands und des Euro-Raums. Drei unterschiedliche 
Filtermethoden kommen tor die Extraktion konjunktureller Schwan-
kungen zur Anwendung: Differenzen erster Ordnung, der Hodrick-
Prescott-Filter und der Baxter-King-Filter. Basierend auf diesen Er-
gebnissen wird der Konjunkturverlauf anhand zweier Verfahren 
ermittelt: der Ad-hoc-Bestimmung der Konjunkturkomponente und 
der Erstellung eines dynamischen Faktormodells, welches die ge-
meinsamen zyklischen Schwankungen in Osterreich, im Euro-Raum 
und in Deutschland berOcksichtigt. Die Datierung des Konjunktur-
zyklus erfolgt danach durch den Bry-Boschan-Algorythmus. Die Er-
gebnisse werden interpretiert und mit bereits bestehenden Studien 
Ober Konjunkturschwankungen im Euro-Raum und in Osterreich 
verglichen. 
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Abstract 

The dating of business cycle turning points is still an important basis 
for economic policy decisions. The present study sets out to trace 
the Austrian business cycle for the Austrian economy for the period 
between 1976 und 2005, using quarterly national accounts data of 
Austria, Germany and the euro area. Three different filtering 
methods are applied: first-order differences, the Hodrick-Prescott 
filter and the Baxter-King filter. To all of them, two different meth-
ods of determining the business cycle are applied: the ad-hoc 
identification of the cyclical component and a dynamic factor 
model, taking into account the common cyclical variations for 
Austria, the euro area and the German economy. Subsequently, 
the Bry-Boschan algorithm serves to identify peaks and troughs of 
the cycle. Finally, the results are interpreted and compared with 
those of earlier studies on the euro area and the Austrian business 
cycle. 
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1. Research motivation and overview 

The dating of business cycle turning points is still an important basis 
for economic policy decisions. Turning points mark the point of 
time at which booms end and recessions are overcome. Hence, 
they provide important information for initiating and terminating 
counter-cyclical policy action. Fiscal policy interventions suffer 
from recognition, legislation and execution time lags and also 
monetary actions take time to work their way through the econ-
omy. In order to reap the benefits of stabilisation policy1, it is nec-
essary to forecast turning points or at least to identify them timely. 
For both tasks, investigation into the history of turning points - with 
an exact dating scheme - is crucial, as it can serve as a bench-
mark for setting up real time based models. 

Regular revisions of the economic data set, changes in methodol-
ogy for measuring total economic output (like the introduction of 
the ESA regulation for European countries), the adoption of new 
statistical methods for price adjustments and further innovations 
make a regular update of business cycle analysis necessary also 
for past periods. Furthermore, economic research frequently brings 
forth new sophisticated methods for business cycle analysis, often 
supported by enhanced computational possibilities. 

Despite the fact that business cycle variations are mostly under-
stood to be a demand-based phenomenon there is merit in study-
ing them also on a sectoral basis. According to the classical defini-
tion of the business cycle by Burns - Mitchell (l 946), business cycles 
are a type of fluctuation found in aggregate economic activity. 
This does not necessarily mean that the object of observation has 

1 Examples for recent estimations of the costs of business cycle fluctuations are Reis 
(2005) and Del/as (2003). Barlevy (2004) gives a good overview about methods and 
empirical results. 
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to be an indicator of aggregate economic activity like GDP2• A 
comovement of such fluctuations in other economic time series -
whether interrelated or not -would also fulfil this criterion. 

Long - P/osser ( 1983) stressed the comovements of sectoral output 
fluctuations as being one of the important features of business cy-
cles. Hornstein (2000) found, that these sectoral links show up in 
several time series like gross output. value added and materials 
and energy use. Rebelo (2005) supplied evidence for the strong 
correlation between hours employed by industry and total hours 
employed by the private sector. This strong comovement in eco-
nomic time series like sectoral output3 probably induced Lucas 
( 1977) to argue that business cycles were driven by aggregate 
shocks and not by sector-specific ones. 

Despite the widely accepted view of the existence of only one 
business cycle driven by aggregated shocks, these variations can 
show up in sectoral time series with different amplitudes and with 
some lagging or leading characteristics. Indeed, the prominent 
NBER approach for detecting business cycles is based on sorting 
the different time series by their leading and lagging properties. 

Beside the view that supports the existence of only one business 
cycle, studies based on band pass filters and spectral analysis 
methods reveal several cycles, all of which represent frequencies 
qualifying them for being business cycles. Apart from this, there are 
also statistical reasons for observing business cycle movements at 
the detailed sectoral level. It is quite easy to understand that if a 

2 In fact, most studies on business cycles concentrate on GDP or industrial produc-
tion as reference series. 

3 The European System of National Accounts uses the term "sectors" only for subdi-
viding the economy by the sectors "government", "private households", "enterprises" 
and the "external sector". Nevertheless, the English literature uses the term sector for 
different branches which is followed in the underlying study, too. In the terminology 
of the European System of National Accounts these are described as "kind of ac-
tivities". 
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small open economy gets export impulses from different eco-
nomic areas (e.g. the US and Europe) these can show up in differ-
ent economic sectors and interfere with domestic, idiosyncratic 
cycles4 5 • Confounding both cycles by aggregating the underlying 
time series to a higher total (like the GDP) could hamper a proper 
identification of the business cycle and therefore give rise to mis-
leading conclusions about timing and size of fluctuations, and 
thereby to suboptimal or even wrong economic policy reactions. 

Observing business cycles at the sectoral level has the great ad-
vantage that it sheds light on economic transmission mechanisms, 
whereas for stabilisation policy purposes its benefits are not so 
clear. This is based on the notion that the business cycle is mainly 
driven by fluctuations in demand that can be smoothed by inter-
ventions targeting certain demand components6• Opposite to this, 
supply side measures are understood to aim at the trend compo-
nent only. Therefore classical stabilisation policy i.e. fiscal and 
monetary policy intends to act on output via demand aggre-
gates, but not on the long-run growth (trend) path. This view has 
somewhat changed today in that economic policy tries to gener-
ate demand by directly targeting the long term growth path7• Ex-
amples for this are investment premia, public spending for educa-
tion or subsidies for research and development. Looking at sec-
toral cycles, apart from giving an insight into transmission mecha-

4 An example can be the international business cycle interfering with a political 
one of the type mentioned by Nordhous ( 1975). 

5 The idea of the existence of several independent driving forces has been taken 
up methodologically by the dynamic common component modelling approach, 
where several common cyclical factors represent the business cycle. 

6 Prominent exceptions to this ore Real Business Cycle models, brought forward by 
Kydlond - Prescott ( 1982). Blanchard - Quoh ( 1989) criticise this as lumping to-
gether supply and demand shocks whereas only the latter refer to what econo-
mists usually regard as business cycles. For a good overview about the actual de-
velopment and the future relevance of the Real Business Cycle theory see Rebelo 
(2005). 

7 For the Austrian case see e.g. Aiginger (2005). 
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nisms, could guide economic policy by suggesting branch-specific 
measures, although these could be difficult to implement. 

The present study intends not only to date the Austrian business 
cycle, but also to give information about the leading and lagging 
properties for several economic branches. Furthermore, their inter-
relation with corresponding sectors for Germany and to the euro 
area as a whole will be analysed. This may give insight into the 
transmission mechanisms from the international business cycle to 
the Austrian economy. In order to check the robustness of results, 
several procedures for isolating and analysing the business cycle 
will be applied that have become popular in recent time. Addi-
tionally, the results of dating the Austrian business cycle are com-
pared with earlier studies8• Several contributions have recently 
been published which focus on the correlation between business 
cycles in different countries, but there is a lack of recent studies for 
Austria9 due to its small economic weight. Such analysis has been 
carried out for GDP as a whole 10 or for industrial production only, 
but not for different Austrian branches 11 • 

The focus of this study is on detecting business cycle comove-
ments between countries on a branch level and dating the re-
spective turning points. A timely identification of turning points at 

a Breuss ( 1984) and Hahn - Walterskirchen ( 1992) carried out the last thorough in-
vestigations of business cycles for Austria. Brandner - Neusser ( 1992) and Cheung -
Westermann ( 1999) investigated into the impact of the German business cycle on 
the Austrian industrial production. 

9 Exceptions are the rather new studies of Vijselaar -Albers (2001) and Artis -Krol-
zig - Toro (2004) where only industrial production is used for determining the Aus-
trian business cycle. 

10 According to Harding -Pagan (2002), the use of many series in the approach of 
Burns - Mitchell (1946) in order to gain a synthetic indicator of the business cycle 
only indicates, that " ... these were surrogates for a single series, GDP, as that was 
unavailable to them". 

11 ROnstler (1994) is an example for a sectoral study of the Austrian economy, but 
focuses more on the long-run impact of foreign shocks. 
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the margin is not the aim of this study, however. This would require 
the use of business survey data with leading properties and either 
detrending methods based on non-symmetrical filters or series 
forecasts based on real-time data in order to circumvent the end-
point problem of symmetrical filters. Furthermore, variables which 
can explain shocks to business cycle variations (for instance oil 
price and exchange rate variations) are not considered explicitly, 
as they are assumed to affect all countries observed in the same 
direction12 or they feed into the business cycle in the end. 

Diagram 1 gives an overview over the typical methodological 
steps to be taken in business cycle analysis. It presents a stylised 
flow of several procedures. However, this does not mean that 
these steps have to be followed consecutively, as some methods 
cover several of them at the same time. Following this sequence, 
the underlying study is organised accordingly. The first chapter 
presents the data and the procedures applied to prepare them 
for this study. The second deals with the various methods for ex-
tracting the business cycle frequencies from the underlying data. 
Related to this, a literature survey of the various methods with an 
examination of their theoretical properties and empirical problems 
is provided. As different methods can produce substantially differ-
ent results, not one single is chosen for this study but three different 
ones. In the next chapter several approaches for the identification 
of the business cycle from the transformed data are presented. 
Again, different methods are applied in order to check the ro-
bustness of results. The fourth chapter addresses the problem of 
dating and analysing the business cycle for Austria. In the following 
chapter, the findings on dating, together with some stylised facts, 
are compared with the results from other studies. The last chapter 
offers the conclusions. 

12 This assumption seems to be justified if the economies considered have similar 
structures, as it is plausible to assume. 
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Figure 1: Steps of business cycle analysis 

DATA 
(suspected lo carry 

business cycle variation, 
preferentially subannual) 

D 
business cycle variation 

extraction 
- indirect filtering (removing non-

business cycle variations) 
- direct filtering the BC variations 
- modelling the BC 

D 
Determination d reference series 

- multivariate: classical NBER approach, index 
models 

- univariate: ad hoc determination 

D 
Analysis of co-movement 

Observing lead and lag structures between the 
series using averages, medians, cross-correlations, 
coherences or dynamic correlation. 

D 
Dating the business cycle 

- NBER approach 
- Bry-Boschan algorithm 
- Parametric approaches (TAR. MS-AR, ... ) 

Source: Own illustration. 
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2. The data 

In order to study business cycles on a sectoral basis, only national 
accounts data broken down by sectors are used here. This is not 
at odds with the definition of Burns - Mitchel ( 1946) requiring the 
use of several time series of different origin for business cycle 
analysis. According to Harding - Pagan (2002), this requirement by 
Burns - Mitchel ( 1946) was due to a historical lack of economic 
data at frequency lower than a year, rather than a methodologi-
cal condition. 

The following quarterly time series are considered: 

• Real13 GDP as the most comprehensive measure of produc-
tion. This aggregate has been used in many studies on busi-
ness cycles. 

• Real gross value added (GVA) which is defined as GDP minus 
taxes on production (like VAT and excise duties) plus subsidies 
on production (mainly granted for agricultural production) 14• 

This aggregate should exhibit stronger cyclical variations than 
GDP as production taxes and subsidies are empirically not 
necessarily related to production 1s. 

• Real gross value added excluding agriculture and forestry 
(GVAex for short) should show cyclical variations even more 
clearly than real gross value added and GDP. This is because 
agriculture and forestry are less driven by business cycle de-

13 In this study, the word "real" refers to chained values with the year 2000 as the 
reference year. 

14 For time series of older vintage, GVA does not include indirectly measured finan-
cial intermediation services (FISIM), which is discussed below. 

15 This does not mean that they develop smoothly. But even if their infra-annual 
variability is higher than that of GDP, it is to be expected that this lies in part outside 
the business cycle frequency spectrum. 
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velopments than by weather conditions. Boehm ( 1998) pro-
vides clear empirical evidence for the better suitability of pro-
duction series adjusted for this primary sector component. 

• Real value added of manufacturing at market prices in a 
wider sense. This includes NACE16 C (mining and quarrying), 
NACE D (manufacturing) and NACE E (electricity, gas and 
water supply). As all these industries include goods producing 
activities, this is presumably the aggregate showing the larg-
est cyclical variations. For Austria, separate data were avail-
able for all three components. 

• Real value added at market prices for construction (NACE F). 

• The sum of real value added at market prices of wholesale 
and retail trade (NACE G), hotels and restaurants (NACE H) 
and transport and communication (NACE I). Despite the rela-
tive heterogeneity of these branches, their total is used, as 
quarterly data are only available at this level of aggregation. 

• The sum of real value added at market prices of financial in-
termediation services (NACE J) and real estate, renting and 
business activities (NACE K). Again, only their total is available. 
This aggregate is selected mainly because NACE K contains 
the production of business-related services, which is supposed 
to have risen in cyclical variation, recently. This assumption is 
based on the fact, that industry has outsourced a large num-
ber of services in the last decade and increasingly responds 
to cyclical bottlenecks in productive capacity by resorting to 
personnel service agencies instead of recruiting own staff. 
Consequently, it is to be expected that, while industrial output 
still shows substantial business cycle variations, value added 

16 NACE (Nomenclature d'Activites des Communautes Europeennes) is the harmo-
nised framework for classifying branches contributing to GDP in EU member states. 
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should develop somewhat more smoothly and volatility rising 
in NACE K, instead. 

All other economic activities like public administration, social ser-
vices (containing education and health services) and other com-
munity, social and personal services (including culture, sports, etc.) 
are not considered separately as the production of these services 
is not assumed to be subject to business cycle variations. Never-
theless, such production is included in GVA and GDP figures. 

According to the general view, the typical business cycle lasts 
from around 2 to 8 years 17• This calls for the use of economic time 
series covering some multiples of that time span in order to isolate 
cyclical frequencies and to identify a representative number of 
turning points for analytical purposes. Moreover, these series 
should be consistent so as to measure output over a long period in 
a similar way. Unfortunately, there have been several events 
which complicated the search for long and consistent time series, 
especially for euro area aggregates. 

The process of European integration - moving towards a common 
economic policy in the Union - required a harmonisation of the 
national accounts framework. Member States have been obliged 
to compile their GDP data according to the ESA95 regulation. 
Several further regulations have been passed, focussing particu-
larly on national accounts aggregates. This was necessary be-
cause gross national income constitutes the tax base of Member 
States' contributions to the Union budget. Furthermore, certain de-
velopment programmes are related to the income of regions or 
countries and the Stability and Growth Pact is explicitly linked to 
the development of real GDP. 

17 Burns -Mitchell (1946) defined it as phases between 6 and 32 quarters, Hording -
Pagon (2002) between 5 and 32 quarters and there are several studies which take 
a time span between 8 and 32 quarters as a reference. 
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The ESA95 itself - being the European version of the United Nations 
SNA93 - marks a massive change in the interpretation of what has 
to be recorded as output. Most prominently, computer software 
was included into output, whereas it was not covered by the defi-
nition of production before. 

More generally, national accounting is still far from being a static 
framework of recording production. Recently, all EU Member 
States had to change over from a fixed base year for price ad-
justment in national accounts to one of taking the previous year as 
the base18• The re-allocation of indirectly measured financial ser-
vices (FISIM) was a further big change. These services, provided 
mainly by banks, are implicitly paid for by the difference in interest 
rates between loans and deposits. Until recently, they were by 
convention treated entirely as intermediate consumption by en-
terprises and therefore not included in GDP. Nowadays, FISIM 
have to be split up into components of private, government and 
intermediate consumption, exports and imports. 

Revisions - introducing all the statistical innovations referred to -
undermined a backward calculation of national accounts data 
far enough for business cycle analysis. In order to generate longer 
time series, data sets had to be chained backward. 

For Germany, consistent seasonally adjusted national accounts 
time series on a quarterly, as well as on a yearly basis, only go 
back until 1991. In order to restore data for the period before re-
unification, seasonally unadjusted data covering only West-
Germany but describing a similar sectoral disaggregation have 
been used for chaining 19• Thereby, it is implicitly assumed, that the 

18 The result is a host of time series of two years' length. In order to construct longer 
time series, growth rates are calculated and chained up using a specific period as 
reference in order to get long time series in absolute values. Therefore, this method 
is called "chaining" or "chain-linking". 

19 These data have been downloaded form the Federal German Statistical Office 
website, see www.destatis.de. 
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cyclical variations for West Germany before 1991 exhibit the same 
turning points as for the new re-united German economy. 
Whereas this assumption seems warranted for the turning points, it 
is probably less so for the amplitudes of these variations. Since 
planned economies, like the former East Germany, are expected 
to show smaller cyclical variations, the coefficient of variation for 
the sum of both areas should be lower than the one produced by 
chaining. This has to be borne in mind for an appropriate interpre-
tation of business cycle variations. Nevertheless, data have been 
chained backward as has been done by Fagan - Henry - Mestre 
(200 l) for the whole euro area, after a seasonal adjustment pro-
cedure. 

Due to the German reunification, data for the whole euro area 
also dated back only until 199 l. Unlike for Germany, no data - nei-
ther annual nor quarterly - were available on a sectoral basis for 
the euro area. Only a seasonally-adjusted series for total GDP, 
made available by the Euro Area Business Cycle Network 
(EABCN) 20 and reaching from to beginning of 1970 till the fourth 
quarter of 2003, entered the data set. Using the latest euro area 
GDP data, this series has been extended until the second quarter 
of 2005. 

For Austria three data sets have been used to construct quarterly 
sectoral time series reaching back to the beginning of 197 6. The 
first are annual national accounts data starting 197 6, the second 
quarterly national accounts series reaching back to the first quar-
ter of 1988 which are consistent with the respective annual figures. 
For chaining back quarterly figures before 1988, national accounts 
data of an earlier vintage - showing a similar sectoral definition -
have been used as a third data set. In order to retain business cy-
cle variations of the annual time series, the process of chaining 
quarters took account of these annual totals. The method applied 

20 See www.eabcn.org. The method of construction of this series was published by 
Fagan -Henry -Mestre (2001). 
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is based on the Chow-Un approach21 , where the earlier quarters 
were taken as an indicator for distributing annual totals. With this 
method, sectoral quarterly time series summing up to annual totals 
have been produced. 

The restriction to only sectoral national accounts data does not 
provide insight into the sources of the business cycle phenome-
non, which lies outside this study. Instead, the focus is on transmis-
sion mechanisms between sectors i.e. their lead and lag structure, 
their cyclical variation and their dependence on euro area and 
German aggregates. Shocks which can potentially explain busi-
ness cycle variations (like changes in oil prices or exchange rates) 
are not considered as they are assumed to hit all observed regions 
or their effect will be transmitted by the cyclical variation from one 
region to the other over time 22. 

21 See Chow-Un (1971). 

22 Artis - Zhang ( 1999) found empirical evidence that there is a connection be-
tween exchange rates and the transmission of business cycles across national fron-
tiers. 
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3. Methods of extracting business cycle 
characteristics 

Before one can study the business cycle, the latter has to be ex-
tracted from the underlying time series. For that purpose, at least a 
vague idea of the nature of the business cycle is necessary. 

3.1 Defining the business cycle 

From studying the literature it becomes apparent, that there is no 
consensus about the nature and definition of the business cycle. 
This lack of a precise definition results first of all from the absence 
of a widely accepted theory of the business cycle phenomenon. 
The most prominent approaches relate to demand-side imbal-
ances caused by information asymmetries between economic 
agents or to supply-side shocks due to technical progress (real 
business cycle theories}. These problems make theory a poor 
guide for measuring business cycles. Secondly, the empirical ap-
proach for discriminating between competing theories is prob-
lematic, too. Looking at the behaviour of economic time series, 
one can see smooth up and down changes (especially if one 
imagines some kind of simple trend} without any regularities con-
cerning the length or amplitude of a cycle. As a consequence, 
there exists a plethora of statistical tools and methods for extract-
ing this kind of movements. 

3. 1. 1 The classical business cycle definition 

Despite a long tradition in business cycle analysis, starting from the 
middle of the last century by Burns -Mitchell (1946), their definition 
still forms the basis of one strand of business cycle studies: 

"Business cycles are a type of fluctuations found in the aggregate 
economic activity of nations that organise their work mainly in 
business enterprises: a cycle consists of expansions occurring at 
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about the same time in many economic activities, followed by 
similarly general recessions, contractions and revivals which merge 
into the expansion phase of the next cycle; this sequence of 
changes is recurrent but not periodic; in duration business cycles 
vary from more than one year to ten or twelve years; they are not 
divisible into shorter cycles of similar characters with amplitudes 
approximating their own." 

As such a definition is far too imprecise for being a working base 
for a study; it has been the subject of several refinements and ex-
tensions23. This definition, also called the classical definition of the 
business cycle, has been criticised not only for being imprecise 
concerning e.g. what constitutes the aggregate economic activ-
ity and the pattern of these movements24, but also for being 
"measurement without theory"25. In order to study the classical 
business cycle, several economic time series deemed representing 
the aggregate economic activity are analysed, with trended and 
stationary time series (e.g. interest rates) both being observed 
within the same framework. It is not required to separate stationary 
movements from a trend, only some prior adjustment for working 
days and seasonal variations is recommended. But, without break-
ing down changes in economic activity into trend growth and cy-
clical movements it may be difficult to interpret the cycle, with 
problematic consequences for economic policy interventions. 

Apart from shortcomings in the theoretical definition, this method 
does not distinguish between different sources of economic 
growth and has lost some of its popularity26. If this definition of 

23 Examples for this are Zarnowitz ( 1992), and Zarnowitz -Moore ( 1982). 

2, See Harding -Pagan (2003). 

2s See Koopmans ( 1947). 

26 Whereas business cycle analysis with level data lost its scientific importance in 
the last decades, there are some recent studies by Harding - Pagan (2002), Hess -
Iwata ( 1997) and Clements - Krolzig (2004) giving evidence for a kind of revival of 
such approaches. 
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business cycle is applied where the focus lies on developments in 
the level of time series, economies showing a strong trend growth 
will experience only few recessions. 

3. 1.2 The deviation cycle definition 

As business cycles seem to be recurrent but not periodic, as Burns 
- Mitchell ( 1946) pointed out, Mintz ( 1969) suggested separating 
the trend from time series in order to study them properly. This was 
quite in line with Lucas' ( 1977) suggestion of defining the business 
cycle as the deviations of aggregate real output from trend, 
which puts the definition on a more theoretical basis. The Solow 
( 1970) growth model, describing production as following a secular 
trend - mostly driven by technological progress - with demand-
driven imbalances causing temporary departures (the business 
cycle) from it, serves here as the theoretical framework. This is 
probably the definition most people have in mind, when they talk 
about the business cycle. 

If the business cycle is defined as departure from a trend it is 
called the "deviation cycle" or "growth cycle" approach. As the 
term "growth" usually refers to growth rates or first order differences 
in logs - which represents a special method for de-trending time 
series and therefore a kind of deviation cycle approach- the term 
"deviation cycle" will always be used hencef orth27• 

The choice of the appropriate definition of business cycles - clas-
sical or deviation cycle - may depend on the specific research 
topic. If the purpose is to give guidance for business cycle inter-
vention (as deviations from the steady state growth path imply 
welfare losses) then the deviation cycle is more appropriate. This is 
based on the fact, that the business cycle defined by the devia-

27 Sometimes "deviation cycles" and "growth cycles" are used as synonyms; in this 
case, calculating first differences for extracting the trend is labelled the "growth 
rate cycle" approach in order to distinguish between them. 
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tion concept shows a lead in time vis-a-vis the one interpreted in 
the classical way. Furthermore, it has to be kept in mind that ap-
plying the classical approach yields fewer and shorter contraction 
phases than the deviation method as documented in Harding -
Pagan (2002). This may lead to a substantially different business 
cycle stabilisation policy. Especially the lead property makes de-
viation cycle approaches more appropriate for economic policy 
issues. For all those reasons, the following analysis concentrates 
exclusively on the deviation cycle approach. 

3.2 Isolation of business cycle frequencies 

Following Zarnowitz ( 1992), economic time series measuring output 
may be represented in the following form2a 

(1) Y, = X, +C, +S, +e, 

where x, represents the trend component, c, the business cycle 
variation and s, other components like seasonal, working day or 
weather effects. e, represents an error term capturing all residuals 

like special events and measurement errors. In earlier approaches, 
all components have been modelled as being deterministic, 
whereas modern ones understand all or some of them as stochas-
tic processes29. 

28 Frequently this model is specified in logarithms where the underlying model is 
multiplicative r, = X, • c, • s, • e, . 

29 Examples for this kind of models are structural time series models following the 
approach of Harvey ( 1989) where the trend is modelled as a stochastic process. 
Also the method of using just growth rates (out of first order differencing process) 
which implies random walk behaviour of the trend component can be regarded 
as a stochastic approach. 
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Even the assumption of orthogonality of trend and cycle has been 
relaxed by some studies30, which is in line with Zarnowitz' ( 1992) 
consideration that trend and cycle are possibly influencing each 
other. 

As theory specifies neither the trend nor the business cycle pre-
cisely, there is a large dissent in business cycle research, how the 
business cycle can be extracted from the underlying time series. 
As a consequence, several methods for isolating the cyclical 
component have been proposed. 

Based on the component structure given in Figure 1, business cy-
cle extraction methods can be classified mainly by three none 
mutually exclusive characteristics 

• direct or indirect 

• univariate or multivariate 

• model-based or heuristic (filter) techniques 

Direct approaches try to extract directly only cyclical variations 
(according to a specified definition) out of one or more time se-
ries, without prior adjustment of other components like trend, sea-
sonality or noise. This class comprises univariate filter techniques 
like band-pass filters as well as models assuming a special structure 
for all components31 • The latter can be constructed in a multi- or 
univariate manner. 

Indirect approaches by contrast, first try to single out other infor-
mation not belonging to the business cycle in order to obtain the 
business cycle as the residual. As the data used here are already 
cleared for seasonal and working day effects, this is mainly a task 
of separating a trend from the series, eventually followed by some 

30 Dellos (2003) estimated a business cycle model where trend and cycle interact 
in a non-trivial way. 

31 See Harvey ( 1989). 
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smoothing procedure to get rid of high frequency noise variation. 
The subtraction of deterministic time trends, first order differencing, 
the Hodrick-Prescott filter, the Christiano-Fitzgerald filter and some 
ad-hoc moving averages belong to this class. In most cases, sev-
eral steps have to be combined in order to single out the business 
cycle. 

Model-based approaches estimate all or some components by 
assuming some specific structure for them. Further model-based 
approaches concentrate on time series models. As they do not as-
sume a specific structure, they can also be regarded as filter 
techniques. This goes for instance for the Beveridge-Nelson de-
composition where the economic time series is represented as a 
time series model which is factorised after identification in order to 
extract the business cycle. 

3.2.1 Outliers 

A proper identification of the business cycle requires a consistent 
data base, adjusted for disturbances caused by outliers. This goes 
for all approaches, whether they are model- or filter-based, direct 
or indirect methods. According to the decomposition possibilities 
outlined above, these outliers are contained in most cases in the 
error term et of ( 1 ) , together with other high frequency noise. 

For an initial cleaning of the underlying time series, three different 

types of outliers had been considered: 

• additive outliers 

• level shifts 

• transitory components. 

Additive outliers appear at one point in time and vanish thereafter 
without having any lasting effect on the further development of 
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the series. In a graphical representation of a time series they are 
marking a one-time spike in the plot32• 

Level shifts are innovations which mark a break in the time series, 
shifting the successive mean by a constant value. They appear as 
an upward or downward step in the time series. 

Transitory components are outliers lasting only for a limited time 
and vanishing thereafter. They are either fading out in successive 
time periods (decay) or they evolve slowly over time and vanish 
suddenly (ramp). 

Some of these outliers can be explained by variables outside this 
model. Ignored working day variables or weather conditions - in-
fluencing the economic output - are examples. Furthermore, 
every unusual strong movement in the history of a time series may 
appear as an outlier. In this special case here, this goes for sharp 
recessions, too. It is a difficult task to detect outliers and one has to 
define first of all what should be considered an outlier and by 
which value it has to be replaced. 

For the present study, outlier detection has been carried out by 
modelling all time series as seasonal ARIMA models with regression 
effects (sometimes also called Reg-SARIMA models for short), 
which took care of the varying number of working days of differ-
ent countries by regressing on them. Several steps of estimation 
are carried out in order to check whether an elimination of the 
significant outliers (in this study dummy variables with a t-value 
higher then 3.8) improves the following model33• A purely me-

32 It has to be borne in mind that in a first-order differenced time series an additive 
outlier marks a spike with a counter-reaction in the next period. If no counter-
reaction follows, it appears as a level shift in the original series. 

33 This procedure was assisted by the software package TRAMO developed by 
Gomez - Marava/1 ( 19921. It is widely used also in business cycle studies like for ex-
ample in Artis -Krolzig -Toro (2004), Artis -Marcellino -Proietti (2004) and Altissimo 
eta/. (2001}. 
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chanical detection procedure according to some statistical crite-
rion can substantially influence the result of a study. In order to 
avoid these pitfalls, outliers have been discussed with experts and 
considered in the light of economic history. 

3.2.2 Calendar effects 

Apart from the business cycle, the varying number of working days 
influences economic output, too. Therefore, time series have to be 
cleaned for this influence. As far as they have not already been 
derived from the data base in adjusted form, this adjustment was 
made by the same SARIMA model combined with a regression on 
working day information as it was used for seasonal adjustment. As 
not only the varying number of working days constitutes the cal-
endar effect, but also Easter and the leap year effectJ-', their influ-
ence had been considered, too. 

Apart from testing for a significant Easter and leap year effect, two 
specifications for modelling the working day effect have been 
applied. One tests for the significance of the varying number of 
working days in total and the other checks for all working days 
separately. Thus, the regression includes the number of Mondays, 
Tuesdays, and so on. The discrimination between the two specifi-
cations was done according to their t-values and auto-correlation 
properties of the residuals from the SARIMA model estimation. 

In most applications, as in this study, calendar effects are cleaned 
from the series under the assumption that they are independent 
from other components like the trend or the cycle. This orthogonal-
ity assumption can be challenged by considerations of possibly 
larger working day effects in times of high capacity utilisation. Dur-
ing recessions a large number of employees have to work part 
time and their productivity is probably quite low, so that an addi-

3' Other holidays like Christmas have not to be considered separately, as they oc-
cur always in the same quarter of the year. 
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tional working day due to specific calendar constellations will not 
yield the same value added as in a boom. As a consequence, the 
business cycle reaction of calendar effects shows up wrongly in 
the business cycle itself, if calendar effects are estimated as being 
orthogonal. But this should bias only the amplitude of the business 
cycle, but not interfere with the dating of the cycle. 

3.2.3 Seasonal variations 

These high frequency movements can interfere with the dating of 
the overall peaks and troughs. Sims (1993) and Hansen - Sargent 
( 1993) have shown that seasonal pre-filtering is essential in business 
cycle analysis in order to avoid a distortion of the business cycle 
pattern. 

Therefore, the largest part of studies is based on the analysis of 
seasonally adjusted time series, but there are also good arguments 
for considering unadjusted series as well. Cubadda ( 1999) found 
that in the case of existence of seasonal co-integration between 
analysed time series, the results for unadjusted and adjusted time 
series can be different. Despite the theoretically difficult economic 
implication of having a steady state trend showing seasonal varia-
tions, he argues in favour of using unadjusted time series and 
clearing them for seasonal variations within the same framework 
used for business cycle analysis. In a similar direction points the 
study by Joger - Kunst ( 1990) who showed that the process of sea-
sonal adjustment spuriously amplifies the persistence of variables. 

There are several approaches of clearing for seasonal variations 
which estimate the trend and the cycle within one framework, as 
proposed by Cubadda ( 1999)35• In unobserved components 

35 It has to be noted, that the application of band-pass filters for frequencies of the 
business cycle not only cancels out the trend component but also seasonal varia-
tions. It is unclear whether this is conforming to a separation process within one 
framework in the sense of Cubadda (1999). 
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models, this is done either by assuming a fixed trigonometric 
movement of seasonality36 or by regressing on dummy variables. In 
both cases, seasonality is modelled as being stable over the whole 
time span of the series, which seems to be a rather strong assump-
tion. So the advantage of isolating the seasonal variation within 
the same framework used for identification of the business cycle 
has to be weighed against the advantage of allowing for a flexi-
ble trend for seasonal variations. 

The most popular methods for univariate seasonal extraction are 
X-12 from the US-Census Bureau and TRAMO-SEATS developed by 
the Bank of Spain37• Both procedures allow - in contrast to unob-
served component models with a basic structure - a variation of 
the seasonal component over time. This captures the possibility of 
moving seasonal patterns due to technical progress or changing 
economic circumstances38 which could be very important for 
cleaning longer time series like the ones used for business cycle 
analysis. 

Weighing the pros and cons of the different approaches, it was 
decided to separate the seasonal component externally. This was 
done using the TRAMO-SEATS software. Fiorentini - Planas (2003) 
have shown that business cycle dating is not sensitive to the use of 
either X-12 or TR AMO-SEATS. This can be seen in Figure 2. 

Nevertheless, both approaches, the unobserved component 
model and the univariate time series model, assume orthogonality 
between seasonal variations and the business cycle, which should 
be borne in mind when interpreting the respective results. 

36 Artis - Marcellino - Proietti (2004) or Hahn - Walterskirchen ( 1992) are examples 
for this approach. 

37 See Gomez - Marava/1 ( 1992). 

38 Reasons for that could be new processing techniques in the construction sector 
stabilising output during winter periods or changing seasonal patterns in tourism. 
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3.2.4 The trend 

The deviation cycle approach requires a separation of the busi-
ness cycle fluctuations from the trend component of a series. 
There is no definition of the properties that such a trend should 
possibly have. There is consensus only about the residual part of 
time series after de-trending. Cyclical variations should be second 
order stationary. show some autocorrelation characteristics and 
are expected to have a cycle frequency of some years. Accord-
ing to several authorsJ9, this type of cycle is best mirrored in the 
capacity utilisation of enterprises, which varies auto-regressively 
without any trend. Therefore. the analysis of business cycles is in 
most cases based on figures showing these patterns of changing 
economic activity. 

As there is no consensus concerning the shape of the trend, there 
exists a plethora of approaches to de-trending. Unfortunately, ac-
cording to Canova ( 1998). these different methods of de-trending 
or direct business cycle extraction can give substantially different 
results for dating the business cycle. Considering this, various 
methods of de-trending will be used in the present study. The se-
lection of these techniques will be based on their popularity as 
well as their appropriateness for analysing the Austrian business 
cycle. 

In order to judge on the latter. a theoretical evaluation together 
with reported empirical features of the different approaches will 
be presented. 

3.2.4.1 Deterministic trend 

Due to its simplicity, this approach was historically very popular in 
business cycle analysis. A linear (or log-linear) trend - in most cases 
obtained by fitting a regression line - was deducted from the time 

39 See e.g. Tichy (1994) orBreuss (1984). 
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series. The residual is taken to represent the business cycle (and 
the remaining components). Instead of a linear trend, other poly-
nomial functions of time are possible. With the study of Nelson -
Plosser ( 1982), this approach has lost most of its popularity. For the 
U.S., they found that a large part of economic time series are al-
legedly difference stationary, where the trend cannot be re-
moved by linear de-trending. 

For this reason, this method is not state-of-the-art and should not 
be considered as an option further on in the present study. 

3.2.4.2 Phase-average trend 

This is a heuristic method of determining the trend of non-station-
ary time series, usually applied in the classical business cycle 
framework for estimating the amplitudes of business cycle varia-
tions of trended time series. Basically, it consists of the following 
steps40: After identifying the turning points in the trended time se-
ries, it is split up into segments between two consecutive turning 
points (called "phases"). For each of these segments the mean is 
calculated (this is the "phase-average"). In order to obtain the 
trend for the whole series, these averages are combined with a 
smoothing three-term moving average. As this method of trend 
extraction requires an ex-ante determination of the turning points, 
it is not suitable for this study41 • 

3.2.4.3 First-order differencing 

Here, de-trending is made by deducting the value at time t - 1 
from t in order to get stationary differences {if they are first-order 
difference stationary which is in most cases assumed or tested). If 

"° A detailed description of the full procedure can be found in Boschan - Ebanks 
(1978). 

41 Breuss ( 1984) has used this approach for isolating the Austrian business cycle. 
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this method is applied to a series for which the logarithm has been 
taken, the outcome can be interpreted as growth rates. 

Therefore the basic assumptions behind the method of applying 
first-order differences are that the trend component of the series 
corresponds to a random walk process without drift, that the cy-
clical component is stationary and that the two components are 
uncorrelated42• The original time series y, is assumed to have a unit 

root, which is entirely due to the trend component of the series43• 

This assumption of a random walk trend gives anything but a 
smooth profile of the trend component, which is for example the 
case in the Solow growth model. Every shock to this trend will 
never decay in impact in the future. Nevertheless, this assumption 
is still popular in empirical economics since the pioneering work of 
Nelson - Plosser ( 1982) who found unit roots in 13 out of 14 long-
term annual US macro series, including real GDP44• 

In the case of a time series model based on seasonally adjusted 
data, this behaviour can be represented as 

(2) y 1 =x1 +c1 +&1 

y, is our trended aggregate, c, the cycle to be extracted and e, 
some white noise process where e, ~ N(O,cre). The assumption of a 
random walk trend implies that x, = y, _ 1 which, entered into (2), 

gives 

42 See Canova ( 1998). 

43 There are also multivariate forms of this approach. Cheung - Westermann ( 1999) 
estimated the trend of industrial net production as the co-integration relation be-
tween Germany and Austria. Business cycle effects are captured by the residual 
short- run relationship not included in the error correction term. 

44 Since then, several authors (e.g. Rudebusch, 1993 and Diebold -Senhadji, 1996) 
have challenged these findings by showing that the testing procedure has not 
enough power against economically relevant trend-stationary alternatives. 
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(3) y,=Y,-1+c,+&, 

Simple arithmetics isolates the cycle as 

It can be seen, that the cyclical component includes the error 
term, which makes it very erratic and does not show up in the 
smoothness one would expect from a pure cyclical variation. Fur-
thermore, forming first-order differences does not correspond to a 
symmetric filter as it generates only differences to past values. This 
leads to a phase shift of the cyclical component and therefore 
yields a dating output different from the case of using symmetric 
filters. 

In order to look at the properties of this first-order difference 
method at the frequency domain, Figure 2 depicts the gain func-
tion when filtering data that are already seasonally adjusted. The 
grey shaded area marks the frequency band of the typical busi-
ness cycle between ,r/3 (which corresponds to cycles of 6 quarters 
length) and 1r/16 (corresponding to a length of 32 quarters). The 
bold red line reveals that the first-order difference filter indeed 
cancels out frequencies that are located close to zero and there-
fore can be regarded as variations of the trend component. But it 
also wipes out mistakenly some spectral mass of the business cycle 
frequencies in the shaded area. At ,r/2, which corresponds to cy-
cles of 4 quarters) there is no spectral mass at all, as the data have 
been seasonally adjusted beforehand. 

A remarkable property of this filter is that it superimposes all higher 
frequencies, raising the gain for very high frequencies above 1 . 
This explains the very erratic output of the filter as one can see 
from looking at growth rate series. 

Applying first-order differences to processes which are either trend 
stationary or show a higher degree of integration biases the out-
come for business cycle interpretation. In the first case, this would 
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correspond to over-differencing which biases the cyclicality to the 
high frequency spectrum, whereas in the second case under-
differencing shifts it to the low frequency area45• 

Due to these deficiencies, the first-order difference filter has lost 
most of his popularity in empirical studies on business cycles. If it is 
used at all, it is mostly to check for robustness of the output across 
several methods or to illustrate its deficiencies. Despite these un-
desired properties which limit the use of this filter for business cycle 
analysis, it will be considered in this study due to the popularity of 
growth-rate-based interpretations as a rule-of-thumb method46• 

3.2.4.4 Hodrick-Prescott filter 

The use of the business cycle filter proposed by Hodrick - Prescott 
( 1980) is very popular among business cycle researchers. It is a 
flexible tool that is capable of removing non-stationary compo-
nents that are integrated of order four or less47• Effectively, the 
trend implicitly fitted by the HP filter amounts to a process of curve 
fitting. It results from constructing a trend as smooth as possible, 
with penalizing all squared deviations from this trend from the 
original time series. The precise formula is 

(5) 
T 

min ~)(y,-g,)2 +J[(g,+1-g,)-(g,-g,_1)J2] J~O 
(g,Jf_ l/= 1 

where y, is the original trended time series and g, is the trend to 

be estimated and subtracted. J is acting as the signal-to-noise ra-
tion, being the weight for penalizing all deviations from trend, 
which has to be fixed by the user. If J = 0, there is no difference 
between the trend and the original series, if J approaches infinity 

' 5 See e.g. Ritschl -Uebele (2006). 

' 6 Like it is done by the CEPR Business Cycle Dating Committee. 

' 7 See Baxter -King (1995). 
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the trend component becomes linear. Typically a value of 1600 is 
chosen for applications using quarterly data48• The HP filter extracts 
a trend which can be stochastic but moves smoothly over time 
and is uncorrelated with the cyclical component49• A further 
property is its symmetry, so that no phase shift is introduced. In its 
ideal representation (its infinite sample version), it approximately 
places zero weight at the zero frequency (the trend) and close to 
unit weight at high frequency. This last property leads to a non-
trended output but which carries high-frequency information like 
the noise component e, . Figure 2 depicts the gain function of this 

filter. It wipes out rather clear-cut all frequencies lower than n/16 
(i.e. cycles longer than 32 quarters) and leaves all other frequen-
cies unchanged (again, the loss of spectral mass at n/2 is due to 
the preceding seasonal adjustment process). 

In order to overcome the disadvantage of residual high frequen-
cies, sometimes a kind of low-term moving average is applied af-
ter the HP filter for smoothing the output. Artis - Marcellino - Proi-
etti (2004) used a band-pass version of the HP filter. They com-
bined two HP filters - which both are virtual approximations of 
high-pass filters - in order to get a smoother output, corresponding 
to the business cycle frequency band. 

The trend resulting from the minimisation process of (5) can also be 
represented as a linear symmetric filter. Like all symmetric filters, 
the HP filter is - in its ideal presentation - subjected to the endpoint 
problem, which means that there is a loss of several observations 
at the beginning and the end of the series. There exists a trade-off 
relation concerning symmetric filters, i.e. the more observations 
one is willing to lose, the more exactly the filtering procedure 
works. In the case of the practically applied HP filter, there is no 
such obvious end point problem as there is a kind of built-in me-

48 It can be shown that J = 1600 corresponds to a cut-off of frequencies lower than 
32 quarters. See e.g. Prescott ( 1986) or Baxter -King ( 1995). 

49 See Canova (1998). 
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chanical forecast feature which allows de-trending even at the 
endpoints50. The HP filter calculates the trend component and 
identifies the cyclical component as the difference between the 
original series and the trend component51 • The end-point problem 
is therefore concentrated on changes in the trend component. 
This makes the HP filter very attractive for practical purposes, but 
the end-point problem is solved at the cost of the accuracy of the 
filter. Especially at the end points, the filter works imprecisely in that 
it shows a stronger leakage. This means that some frequencies be-
longing to the trend can pass, whereas fluctuations of cyclical na-
ture (especially those of low frequency order) are filtered out. 

Cogley - Nason ( 1995) and Canova ( 1998) pointed out that de-
spite the HP filter's ability to de-trend difference stationary time se-
ries, it distorts the frequency spectrum so that business cycle ex-
traction could be problematic. 

3.2.4.5 The Baxter-King filter 

Band-pass filters are understood as frequency filters, which give -
in their ideal representation - zero weight to the frequency band 
to be filtered out and unit weight to the rest52. Baxter -King (1995) 
proposed such a filter for business cycle filtering, which is an opti-
mal linear approximation to an ideal band-pass filter. They con-
structed a band-pass filter by starting from a low-pass filter, which 
allows all frequencies w (below or equal a certain threshold .Q?) to 
pass. This requires that all frequencies get a unit weight p if they 
are above this threshold and zero otherwise: 

50 See Baxter -King ( 1995). 

51 See Kranendonk - Bonenl<omp - Verbruggen (2004). 

52 In a wider sense, high-pass filters, which filter out all frequencies below a certain 
frequency threshold (e.g. the trend) as well as low-poss filters, which let pass only 
frequencies below a certain threshold, can be regarded as band-pass filters. But 
what is meant here are only the filters which capture the band between two 
thresholds not belonging to extreme ends. 
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With the help of these frequency weights p(m) it is possible to de-

rive the time series filter weights b{h) by applying the inverse Fourier 
transformation to the frequency response function 

The time series filter weights b(h) can be used for constructing the 
ideal low-pass filter in the time domain 

This ideal low-pass filter is symmetrical (as it goes from -oc to +oc} 
and is constructed as an infinite-order moving average. The 
weights in this moving average are b0 =[!!/tr, and bh = sin{hgj/h,r for 

h = 1, 2, ... 53• In practice, an approximation of this ideal filter will 
be enough, such that a shorter filter can be applied which solves 
the end point problem at the cost of a leakage. 

From this low-pass filter, a band-pass filter can be easily derived 
from two consecutive low-pass filters, one working at the lower 
boundary f!l and the other atm. The approximation to this ideal 
band-pass filter with the weighting scheme derived this way is 
called the Baxter-King filter or BK filter for short. Its weights are 
given by 

(9) b(L) = sin Liv -sinlm _1 _ 1f sin Liv -sinlm 
Ltr 2K + 1 l=-K Ltr 

53 For details the reader is referred to Baxter -King ( 1995). 
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with again f!l and m being the lower and upper boundaries and K 
representing the length of the filter. 

Figure 2: Gain function of stationary transformations 
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The upper and lower boundaries (usually cyclical components be-
tween 8 and 32 quarters)54 are captured, by filtering out all fre-
quencies above or below. Convenient properties of this BK filter 
are that the identification assumption requires no restriction con-
cerning the trend to be either deterministic or stochastic and it al-

54 In the frequency domain, this corresponds to a band between ,r;/16 (= 32 quar-
ters) and ,r;/4 (= 8 quarters). 
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lows for changes in the trend behaviour over time as long as the 
changes are not too frequentss. 

An advantage over the HP filter is that the BK filter cancels out 
higher frequencies above the cyclical variations, too, whereas the 
former - acting as a pure high-pass filter - still gives an erratic but 
de-trended output. This can be seen again in Figure 2. The BK filter 
cancels out lower frequencies dedicated to the trend frequencies 
below 1t/3. This allows the filter to be applied theoretically even to 
non-seasonally-adjusted series. 

A further advantage is that the loss of frequency information due 
to data aggregation seems to be less of a problem for band-pass 
filters than for the HP filter. Aadland (2005) has shown that aggre-
gated high-pass filtered data (e.g. by the HP filter) can lead to 
spurious cycles at the business cycle frequencies, if the disaggre-
gated data carried strong variations in the high frequency area. 
This is due to the so-called "aliasing"-problem which arises when 
high frequency data are observed at lower frequencies. 

As the BK filter is symmetric like the HP filter, it causes no phase shift. 
A convenient feature of the BK filter is its transparency. The user 
can explicitly fix the upper and lower level of the band to be fil-
tered; thereby defining what should be understood as the business 
cycle. Furthermore, the degree of approximation to the ideal 
band-pass version can be chosen. This can be done by sacrificing 
observations towards either end point in order to make the filter 
work more exactly, i.e. to reduce its leakage. The problem of 
leakage arises with the approximation of the filter. As it is not pos-
sible in practice to work with infinitely long time series, shorter filters 
have to be applied. This has two consequences: First, frequencies 
can pass which should be filtered out and some are mistakenly fil-
tered out which should pass; and second, frequencies are super-
imposed at the borders of the frequency band, which appears as 

55 See Canova (1998). 



33 

side-lobes. As Woitek (2001) pointed out, this could possibly lead to 
spurious results in business cycle analysis. But the leakage problem 
as well as the one of amplified side-lobes can both be reduced by 
using longer-term filters and sacrificing more observations at either 
end of the time series. 

Applying the BK filter, one has the possibility to individually select 
the trade-off between the accuracy of the filter and the end-point 
problem. Compared with this, the HP filter properties depicted in 
the gain function of Figure 2 are calculated by accepting a loss of 
two observations at either end of the time series. It can be seen, 
that the precision of the filtering process at rr/ 16 is not as exact as 
in the BK filter case. Furthermore, the part in the middle of the 
business cycle frequency band is superimposed (values above l) 
and there is some leakage at higher frequencies. 

Figure 3 shows how the precision of the filtering process changes if 
one is willing to sacrifice a higher number of observations at the 
start and the end of the series. Figure 3a shows the gain function 
obtained by a BK filter with a window length of 6 quarters, causing 
a loss of 3 quarters at either end. Compared with this, the 12-
quarter-window filter (resulting in a loss of 6 quarters at both ends 
like it is used in our calculations) cuts out more precisely the de-
sired frequencies, without strongly superimposing business cycle 
frequencies and with a lower leakage. But this precision is ob-
tained at the cost of losing the possibility of analysing the business 
cycle at the margin. As this is the period for which the dating is 
most important in order to take timely economic policy measures, 
this can be regarded as a drawback. 

To overcome this problem, some authors propose an extension of 
the time series by applying forecasting techniques. Fiorentini -
Planas (2003) propose an ARIMA forecast for that purpose. But all 
forecasts based on univariate time series methods (without includ-
ing external information like business survey data) may reduce the 
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end-point problem at the cost of risking forecasting errors of possi-
bly the same size56_ 

3.2.4.6 The Christiano-Fitzgerald filter 

A somewhat different band-pass filter has been proposed by 
Christiano - Fitzgerald (2003). It also represents an optimal ap-
proximation of an ideal band-pass filter, by imposing a somewhat 
different criterion of optimality. This criterion minimises the sum of 
the squared approximation errors which are weighted by their 
spectral density fx ( m} of the data being filtered57. 

(10) min J" IB(e-i"')-BP•f(e-i"')l 2 fx(w)dw 
·p,f . -,r Bi ,;=-f, ... ,p 

Furthermore, the filter length is allowed to vary over the time series 
and is not restricted to being symmetrical. Moving towards the 
start and the end of the time series the filter becomes more and 
more asymmetric, which allows circumventing the end-point prob-
lem. 

Christiano - Fitzgerald (2003) have shown that the length of the 
BK filter window not only determines the degree of approximation 
to the ideal band-pass filter, but influences especially its capability 
of filtering out long-term movements. The filter proposed by them 
can also be adjusted to filter a specific frequency band, but - in 
contrast to the BK filter - its length is a result of the optimisation 
process and cannot be altered by the applier. Therefore, it is not 
possible to define explicitly the business cycle with regard to a cer-
tain frequency band. 

56 In order to extend the HP filter, Kaiser - Morovo/1 ( 1999) proposed on IMA (2.2) 
time series model for forecasting. 

57 The weights are thus generated by a trigonometric function. 
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Empirical studies of economic time series for the Netherlands car-
ried out by Kranendonk - Bonenkamp - Verbruggen (2004) have 
shown a better performance with regard to revisions of the end-
point output than with the BK filter. Nevertheless, the use of asym-
metrical type filters suffers from phase shifts or they contain an im-
plicit forecast (based on past observations), respectively. Whether 
a thorough forecast combined with the BK filter yields a better per-
formance depends on the specific case. 

In the literature, modifications of this approach can be found, like 
in Altissimo et al. (2001) who applied a multivariate Christiano-
Fitzgerald filter in order to study business cycles for the euro area. 
Goldrian - Lehne ( 1999) proposed a further band-pass filter that is 
not based on a minimisation process, but on the common pattern 
of weight matrices, instead. 

3.2.4.7 The Beveridge-Nelson decomposition 

Instead of filtering time series for special frequency bands, 
Beveridge - Nelson ( 1981) proposed a time series model-based 
approach. The idea behind is that after fitting a time series model 
to the underlying data, its structure can be explored in order to 
separate the trend from the cycle. The fitting of an ARIMA model58 

implicitly models the trend as a stochastic process59• The stationary 
ARMA part is assumed to be (or at least contains) the business cy-
cle. 

In order to show some interesting properties of this approach, a 
simple example is set up. Assuming the underlying time series can 
be modelled by an ARIMA (0, 1, 1) process, the time series be-
comes stationary after forming first order differences. This can be 

58 In the case of not-seasonally adjusted data, a S-ARIMA model has to be applied. 

59 In most cases it will be of order one, which implicitly yields a random walk proc-
ess. 
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represented by a moving average process of order 1 and shows 
at the same time the cycle: 

{11) fl y1 = e1 + /3 e, _ 1 

where fly, is the (log) differenced time series, e, a white noise 

term and p represents the moving average parameter with /J < 1 . 

If this expression is solved recursively and the start values are as-
sumed Yo = e0 = o , the following expression emerges 

t t-1 

(12) y,=Le;+/JLe; 
i=l i=l 

or 
I 

{13) y,=(l+fJ)Le;-/Je, 
i=l 

In (13) the first term y, = (1 + /J )I e; is the trend part which - being a 

random walk process - is the sum of its past shocks, and p e, repre-

sents our stationary cyclical part. Equation (13) implies one inter-
esting feature of this kind of splitting the trend from the cycle: The 
secular as well as the cyclical component are both driven by the 
same shock at the particular point in time. This means, trend and 
cycle are perfectly correlated60• In order to make this somewhat 
clearer, we can transform (13) to 

showing that the trend as well as the cyclical component at time t 
both depend on shock e. This implication is in stark contrast to the 

60 See Canova (1998). p. 481. 
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usual assumption of orthogonality of trend and cycle. But it does 
not necessarily represent a deficiency, as it seems plausible some-
times to see both components influenced by one shock. Admit-
tedly, this means - as criticised by Blanchard - Quah (1989} -
lumping together supply side shocks, which affect the secular 
component, and demand-related shocks influencing the cycle. 

As the Beveridge-Nelson approach is based on ARIMA time series 
models, all problems linked to that sort of modelling are carried 
over to this trend-cycle separation approach. Foremost, applying 
this kind of modelling the problem is usually not to find a suitable 
model but to discriminate between the large amounts of feasible 
ones61 • The identification of the cycle therefore remains a some-
what arbitrary task and may be challenged in academic discus-
sions. Furthermore, ARIMA models became prominent on account 
of their good short-run forecasting properties, whereas they per-
form quite poorly for longer-term projections. As a consequence, 
one can extract quite different trends and cyclical components 
from a plethora of suitable models. 

3.2.4.8 Unobserved components models 

This type of approach intends to model all components explicitly. 
A special time series structure is modelled for the trend, the cycle, 
some regression effects like working days, (possibly the season) 
and even innovations like structural breaks or suspected outliers62• 

This method is thus very flexible and a wide variety of specifica-
tions is possible. Usually the trend is modelled as some kind of ran-
dom walk process, possibly allowing for a drift. A prominent repre-
sentative of this approach is Harvey (1989}, who proposed a so-

61 Christiano - Eichenbaum ( 1992) mentioned this problem for practical business 
cycle analysis. 

62 For instance, CaNa/ho - HaNey (2004) estimated a model for the euro area with 
a trend evolving stochastically in its slope and level with adding a serially corre-
lated stationary component representing the cycle. 
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called local linear trend where the level as well as the slope is rep-
resented by stochastic processes. Depending on restrictions of the 
variance of these shocks, deterministic as well as random walks 
(with or without drift) and smoothly evolving trends can result63. This 
flexibility makes it difficult to judge the appropriateness of unob-
served components models for business cycle analysis. In some 
more simple specifications they come close to the Beveridge-
Nelson decomposition method. 

Morley - Nelson - Zivot (2002) argue that in the unobserved com-
ponents framework the common (but not necessary) restriction 
that trend and cycle are uncorrelated leads to great differences 
in the cyclical output. Whereas the Beveridge-Nelson decomposi-
tion implies that a stochastic trend accounts for most of the varia-
tion in output, the cyclical variation is dominant in unobserved 
components models for their part. Lifting the restriction of trend 
and cycle being uncorrelated, the two approaches can yield 
identical decompositions. As Blanchard - Quah ( 1989) assigned 
supply shocks to the trend and demand shocks to the cycle, the 
assumption of uncorrelatedness in isolating the cycle can have 
decisively different consequences for economic policy. 

A possible advantage of modelling explicitly all components - as it 
is done in the unobserved components approach - is that this 
process can bear closer relation to economic theory than me-
chanical filtering procedures do. Whereas the purely statistical 
non-parametric procedures of detrending can be accused of 
practicing "measurement without theory", Canova ( 1998) accuses 
all economic-theory-based decompositions as, "at best, attempts 
to approximate unknown features of a series and therefore sub-
ject to specification errors". So, the explicit modelling strategy not 
only allows capturing theoretical aspects, but also contains sev-
eral subjective assumptions. 

63 Koopman et al. (2000) give an overview over how certain combinations of these 
restrictions affect the trend. 
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Figure 3a: Gain function of a BK filter with a length of 6 quarters 
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Figure 3b: Gain function of a BK filter with a length of 12 quarters 

0,941 

0,706 

(\/ \ 
I \ 

------·--
I 

0,471 

0,235 

0 

\ 

I \ 
I/ \ / ~ -----------\ / "" 

0 0,79 1,57 2,36 3,14 



40 

Furthermore, in practical work it sometimes turns out that the re-
sults obtained are not substantially different from less sophisticated 
approaches. For instance, Hahn - Walterskirchen ( 1992) pointed 
out that if the size of amplitudes is measured by simple variation 
coefficients of growth rates rather than through calculations by 
their model, results are largely the same. 
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4. Identifying the business cycle 

After extracting business cycle variations from the underlying time 
series, either directly by band-pass filters, by explicit modelling in 
an unobserved components model or indirectly by removing spe-
cial components, it has to be decided which of the results (or 
which combination of them) should represent the business cycle. 
According to Burns - Mitchell's 11946) definition, the business cycle 
is a type of fluctuation found in aggregate economic activity. As 
they refrained from clarifying what this aggregate economic ac-
tivity should be, several options are open. 

Nowadays, there are ready-made statistics available, which 
measure some sort of aggregated economic activities. These are 
weighted by their economic significance in monetary units. Exam-
ples are GNI, GDP, gross value added and several aggregates of 
specific sectors. This variety of aggregates poses the problem to 
determine which of them is best suited for studying the business 
cycle. This decision in favour of a certain time series can be made 
on the basis of theoretical considerations, which is called the ad-
hoc method in the present study. 

Another possibility is to construct a measure of such an "overall 
economic activity" out of several economic time series as a kind of 
index, with a special weighting scheme applied to the time series. 
Doing this, one has the possibility to include those series which are 
considered to carry a large content of business cycle information. 
Furthermore, the weights for their aggregation can be chosen 
freely. This is of great advantage if series are to be analysed which 
are not measured in monetary terms, like unemployment rates or 
interest rates. 
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4.1 Construction of composite economic indices 

4. 1. 1 The empirical NBER approach 

In order to isolate and date the business cycle Burns - Mitchell 
( 1946) constructed lagging, leading and coincident composite 
indices out of a large amount of monthly economic time series64• 

The reason for considering several economic time series was partly 
the lack of a series covering aggregated output on a sub-annual 
frequency (like quarterly GDP), and partly the fact that noisy 
components are reduced through aggregation. 

The following illustrates only the basic steps of the empirical NBER 
approach in order to give an impression of its properties. Good 
descriptions of the details are provided by Zarnowitz ( 1992) and 
Bry - Boschan ( 1971), to which the reader is referred. 

After a possibly necessary adjustment of all time series for seasonal 
variations, turning points of them have to be calculated (usually 
based on the method proposed by Bry -Boschan (1971) which will 
be explained in chapter 6.2). Following this, a reference chronol-
ogy for determining the leads and lags of each time series based 
on these turning points has to be set up. This has been done origi-
nally by clustering them into groups of leading, lagging and coin-
cident ones on a judgmental basis. Furthermore, synthetic 
up/down turning point indices (indicating the percentage of time 
series which show a peak or trough at a certain point in time) or 
diffusion indices (indicating the percentage of time series in ex-
pansion at a certain point in time) are developed. Taking GDP or 
industrial production as the reference chronology may serve the 

64 This method was developed historically at the NBER and still forms the basis of this 
kind of analysis, carried out by the Conference Board for the US economy or the 
OECD. Since then, several improvements have been made with every institution 
having its own special version. The present study only draws on the NBER basic ver-
sion and the reader is kindly referred to the special literature for variations. 
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same purpose, but in this case the method comes close to uni-
variate methods like the ones presented in chapter 4.2. 

Using this reference chronology, several statistics can be calcu-
lated in order to classify the series as leading, lagging or coinci-
dent. The most popular statistics in the time domain are cross-
correlations and means, medians and standard deviations of 
leads and lags. In the frequency domain the calculation of co-
herences is used frequently. Other possible measures - along with 
their properties - are discussed in chapter 5. As a result, all time se-
ries have to be classified into separate sets of leading, lagging 
and coincident economic time series. 

In order to construct one composite index for each class, a spe-
cific weight (ranging from O to 100) is given to each according to 
seven properties6s: 

• economic significance 

• statistical adequacy (the capability of the series to repre-
sent the economic variables) 

• timing at recessions an expansions 

• conformity with historical business cycles 

• smoothness 

• timeliness (timely availability of the data) 

• stability with regard to revisions 

Subsequently, a restriction allowing only the best-performing series 
(according to these criteria) to enter the composite indices has to 
be implemented. Again, there are different methods of aggrega-
tion in order to obtain only one indicator from several time series. 
Basically, standardisation methods accounting for the different 
variabilities of the time series, detrending steps (usually clearing for 

65 See Zarnowitz -Boschan (1975). 
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phase-average-trends as presented in 3.2.4.2.) and special heuris-
tic weighting schemes are employed66. 

It is easy to see that the whole process is rather time consuming 
and hard to track, apart from its high degree of arbitrariness. 
Koopmans (1947) criticised it fiercely for being "measurement 
without theory". For all these reasons, this method is not considered 
to be the right one for the present study and will not be pursued 
hereafter. 

4. 1.2 Index models 

In order to deal with the more or less arbitrary procedure of con-
structing business cycle indicators in the line of the empirical NBER 
approach, several more sophisticated multivariate time series ap-
proaches have been proposed. The concept behind using index 
(or factor) models is the estimation of a common driving force 
(considered to be the business cycle) in a multivariate manner67. 
This multivariate framework for analysing the business cycle can be 
understood as weighing all time series together in order to identify 
their common driving force. Weights for aggregating all time series 
can be determined such as to maximise the variability content of 
the aggregate in relation to the one of the whole data set. 

In the last few years, factor models have become more and more 
popular in several areas of macro economic analysis. They have 
been applied for constructing economic indicators68, in forecast-

66 Green - Beckman ( 1992) give a description of the method employed by the US 
Bureau of Economic Analysis (BEA) together with some critical remarks. 

67 The idea of extracting common factors for business cycle analysis goes back to 
Geweke (1977) and Sargent-Sims (1977). 

68 Goyer - Genet (2006) used this approach to derive a weighting scheme for the 
Joint Harmonized EU Programme of Business and Consumer Survey. 
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ing, in monetary policy analysis and for business cycle analysis69• 

Their big advantage is that they try to extract common dynamics 
from a large number of different time series without running out of 
degrees of freedom. Even if the number of time series observations 
is lower than the number of variables, this does not constitute a 
problem. By filtering out common dynamics, the time series are 
cleaned for idiosyncratic shocks and cycles at the same time. Fur-
thermore, this can be done without making prior assumptions 
about a special structure of the common or idiosyncratic dynam-
ics. However, the estimation and identification of the number of 
factors or components is not straightforward and may lead to less 
than robust results in some cases. 

In its simplest form, several time series are to be represented by 
one common factor and an idiosyncratic part for each of the se-
ries. Here p represents the number of time series, each ranging 
over the time domain 1, ... , T. The common factor F and an idio-
syncratic part u;, represent each of the p time series z;, which can 

be formalised as 

(15) z;,, =I; F, +u;,, i = l, ... ,p 

I; is the so-called loading of the factor showing the contribution of 
the factor to the common driving force F, represented in time se-

ries i. For identification the factor is supposed to be uncorrelated 
with the idiosyncratic parts u;,. and the u;.,-, are also uncorrelated 

among each other. This single common factor approach can eas-
ily be extended to the identification of more than one common 
factor7o_ 

69 Breitung - Eickmeier (2005) give a rather complete overview of applications of 
factor models in recent times. 

70 An example for this method is Pena -Box ( 1987). 
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A drawback of this static approach is that one of the basic f ea-
tures of the business cycle, its auto-regressive development, is not 
considered since it is assumed that the factors are identically and 
independently distributed. In order to overcome this drawback, 
Stock - Watson ( 1989, 1991) proposed a method whereby a single 
coincident common factor is allowed to move auto-regressively of 
order 2 and the idiosyncratic ones are represented by AR(]) proc-
esses. Again as in ( 15) 

( 16) Z;,, = A; F, + U;,, i = l, ... ,p 

but now a special auto-regressive structure is demanded for the 
factors 

and for the components specific to each time series 

(18) u;,, =pu;_,_ 1 +u;,, 

with &, and u;., assumed to be white noise terms mutually inde-

pendent in order to allow a proper identification of the common 
factors. This is usually done by writing all equations above in state 
space form (with ( 16) representing the measurement equation 
and ( 17) and (18) the respective transition equations) and gener-
ating maximum-likelihood estimators by the Kalman filter. 

This approach is capable of extracting a common dynamic factor 
- showing business cycle AR properties - from the whole set of ob-
served time series. It is also possible to capture more than one 
common factor, but in this case the identification of the first com-
mon factor influences the following. Thus the number of consid-
ered common factors is crucial for the output. A further possible 
drawback of this approach is "that it cannot be directly extended 
to analyse large data sets due to computational problems", as 
Gayer - Genet (2006) pointed out. 
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A different method of estimating factor models is the principal 
component approach. It was originally developed in order to re-
duce the variance of large data sets by singling out a common 
component that is capable of representing the largest part of the 
total variation, by constructing simple linear combinations of it. 
Each individual time series is represented by one or more common 
components and some idiosyncratic variation. In the static case, 
the idiosyncratic parts of all observed time series are either as-
sumed to be mutually uncorrelated (this is called the "strict factor 
model") or they are allowed to be weakly cross-correlated and 
heteroskedastic ("approximate factor models")71• A proper identifi-
cation of the common factors with relaxed assumptions - as it is 
done in the approximate factor model - requires that the number 
of time series considered exceeds the time dimension by far and 
theoretically goes to infinity. This allows for the existence of idio-
syncratic common movements between business sectors, as long 
as they are not too dominant. In the latter case they would enter 
into the common component. 

The dynamic version of this type of factor model approach seems 
to be ideal for business cycle analysis. It allows the common fac-
tors to move auto-regressively and the observed time series can 
be classified as leading, lagging or coincident according to the 
common component represented by them. Again, some weak 
cross-correlation between the idiosyncratic components is al-
lowed and the factors are required to be uncorrelated among 
each other. Forni et al. (2000) suggested a generalised dynamic 
factor model where the dynamic factors are identified in the fre-
quency domain. Instead of observing the cross-correlation matrix 
in order to identify the dynamic factors, they focus is on the spec-
tral density matrix. 

71 In the approximate factor model case, a weak correlation is allowed even be-
tween the factors and the idiosyncratic components. See Breitung - Eickmeier 
(2005). 
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This approach has the advantage that the identified common 
factors are invariant to their number being identified. The first 
common factor explains the maximum proportion of total varia-
tion of the p observed time series, with all further factors showing 
diminishing explanatory power, till the p th common component 
completes the total variance of the whole data set. Forni et al. 
(2004) suggest an information criterion for determining the number 
of factors to be extracted, which concentrates on the amount of 
common variance that can be explained by the factors. 

Again, each time series is represented as the sum of one or more 
common factors and its residual idiosyncratic component. In the 
dynamic formulation, the static factors common to all series can 
be loaded with lead and lag structures, but all are constructed as 
being mutually orthogonal at all leads and lags. For the idiosyn-
cratic components it can again be assumed that either they are 
orthogonal to all other idiosyncratic ones (strict factor model) or 
that some amount of correlation is allowed. 

Formally, this problem can be expressed72 

where as z, is the N x 1 vector of observed second-order stationary 
time series at time t. It is represented as the sum of the vector of 
common components y, and the idiosyncratic l;,i. The common 
term y, itself is constructed by a vector of q orthogonal common 
components x, loaded by time-shifted weights Cq (L), where L 
stands for the lag operator73. 

72 See Forni et al. (2000). 

73 Allowing for a dynamic structure in factor models - which shows up in leading 
and lagging properties of the loadings - leads to a loss of information at the begin-
ning and the end of the time series. As already mentioned, this endpoint problem is 
not a disadvantage for the present study, because no real time dating is intended. 
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Assuming orthogonality between the common and the idiosyn-
cratic parts allows - in the frequency domain - representing the 
total spectral density matrix ~(ro) as the sum of the one responsible 
for the common component and the one of the idiosyncratic part 

where ro is a certain frequency within the interval [-n and +n]. This 
enables the common part y, to be identified by analysing the ei-
genvalues of the matrix ~(ro). According to the method proposed 
by Forni et al. (2000), the eigen value solutions of the covariance 
matrix are ranked by their magnitude, whereby the largest corre-
sponds to the first principal component explaining the largest part 
of full data variation, the second principal component explains 
the second largest part of total variation and so on. As the com-
mon factor loadings appear with some lead or lag structure, the 
practical approach for solving this requires a fixing of the number 
of frequencies at which the spectral density matrix is to be evalu-
ated. Forni et al. (2000) recommended the number of frequencies 
to be observed within the interval [0,2n] as the rounded square 
root of the time series length divided by four. This should reasona-
bly settle the trade-off between the length of the time series and 
the quality of the identification output. 

The identification of each of the common components is sup-
ported by demanding that their variance at several leads and 
lags inherent in each of the time series is maximised if it is summed 
up over all time series 

II 

(21) max ~:>ar(rj,,) 
1(1...m) j= I 

with n being the number of observed time series and q is again 
one specific common component. The essential process of identi-
fying one or more common components consists of looking at the 
eigen values and eigen vectors of the spectral density matrix of 
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the vector containing the original, de-trended data z,, at certain 
frequencies? 4• 

This general dynamic factor model approach has the big advan-
tage that the analysis of leading and lagging features of all time 
series is not done as usual after determining the business cycle, but 
that instead it constitutes an essential part of the identification 
procedure itself. 

Unlike the dynamic factor model approach proposed by Stock -
Watson ( 1989, 1991), the business cycle is not modelled specifically 
by demanding some special auto-correlation of some specific or-
der for the factors. This potentially allows common variations that 
do not belong to the business cycle to be included in the com-
mon component, if the data used are not pre-filtered for high fre-
quency movements. An example would be a terrorist attack 
which influences economic growth for a short period and is possi-
bly felt in a large part of observed time series. Whereas this ap-
pears as a common shock - and therefore influences the estima-
tion of the common components - this cannot be regarded as a 
business cycle phenomenon. The same argument goes for other 
high-frequency common or idiosyncratic components like sea-
sonal or working day variations. 

In the context of the present study, the low number of time series 
could be a problem for the identification of the common factors. 
To obtain consistent estimates of the common factors, the number 
of series should be considerably higher than the number of obser-
vations and theoretically go to infinity. This allows idiosyncratic 
components to be separated from common variations. Recent re-
search by Boivin - Ng (2006) shows that under certain circum-
stances, the number of observed variables can be reduced with-
out losing explanatory power. The authors have shown that in real 
forecasting exercises 40 time series can yield better results than 

14 See Forni et al. (2000). 
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models based on 147 series75• This is especially the case if idiosyn-
cratic components are not cross-correlated as it is required in the 
strict factor model approach. In some cases, adding more time-
series (which are probably noisier) lowers the average variation of 
the common component while assigning more to the idiosyncratic 
parts76. The findings of Ink/oar -Jacobs - Romp (2003) are a further 
example that a higher number of series for studying business cy-
cles does not necessarily deliver better results. 

In the present study, time series have been carefully selected with 
regard to their theoretical content concerning business cycle in-
formation. Therefore, series belonging to the domain of public ser-
vices and agriculture and fores try have been discarded from this 
analysis. For theoretical reasons, they will not facilitate the identifi-
cation process, but instead bring some noisy information into the 
data base, hampering a proper identification. Therefore, a reduc-
tion of the number of time series will probably improve the out-
come. The pre-filtering of time series in order to isolate only busi-
ness cycle frequencies should improve the identification process 
of the common component further. Low-order cross correlation of 
idiosyncratic components is substantially reduced by adjusting for 
seasonal, working day and irregular variations. The before-
mentioned facts warrant the expectation that the restriction to 
somewhat more than 1 O time series can still produce meaningful 
results77 • 

75 A further example is Watson (2000) who found the gain from going beyond 50 
time series being only marginal. 

16 See Boivin -Ng (2006). 

77 The chapters that compare our results to ad-hoc methods and other studies 
confirm this expectation. 
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4.2 Univariate determination of the business cycle 

This encompasses all approaches where one reference series is 
chosen (eventually after some kind of aggregation process) with-
out recurring to its statistical properties but for its assumed theo-
retical suitability. Harding -Pagan (2002) emphasised that the use 
of several time series in the NBER approach to represent the busi-
ness cycle was motivated by a historical lack of aggregated pro-
duction data (like the quarterly GDP) rather than by methodologi-
cal considerations. Nowadays, where such time series are widely 
available, their use seems to be justified as a reference for the 
business cycle. 

First and foremost, GDP - as a compound measure of total pro-
duction of goods and services - is expected to carry business cy-
cle information. Without denying its suitability, this series includes 
by definition a lot of components expected to carry no business 
cycle variations like agriculture or public services. Theoretically, this 
should not be a problem if one is able to model or filter out pre-
cisely only business cycle frequencies. Unfortunately, in practical 
life the empirical toolbox is far from being that perfect as to distin-
guish precisely between different shocks and components influ-
encing the time path of a series. Theoretical guidance for the 
process of selecting the reference series can be of great value. 

As described in chapter 2, GDP contains some sectors whose out-
put can reasonably be expected to carry no business cycle infor-
mation. Agriculture is more dependent on weather conditions 
than on business conditions. Boehm ( 1998) gives clear empirical 
evidence for the better suitability of production series adjusted for 
this primary sector component. We follow this approach in order 
to avoid the danger that such variations inhibit a proper identifica-
tion process. Furthermore, taxes on production - like VAT and 
some excise duties - are at best coincident with regard to the cy-
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cle, if not lagging78, which distorts the exact dating of the business 
cycle. 

In view of such considerations, the gross value added in real terms 
excluding agriculture (GVAex) was chosen as the reference series, 
instead of GDP. This means that the business cycle frequencies 
discovered in this aggregate are assumed to be the most suitable 
measure of the business cycle for Austria, and dating results for all 
other series are interpreted in relation to this reference series. A 
large number of studies use the industrial production index as an 
ad-hoc basis for measuring the business cycle. Whereas this ap-
proach has the major advantage of offering long time series at a 
monthly frequency, this is not the kind of business cycle Burns -
Mitchell ( 1946) had in mind. According to their definition, the busi-
ness cycle shows up in aggregate economic activity and not only 
in industrial production. 

The univariate ad-hoc determination of the time series which car-
ries most of the business cycle variations is probably the most 
widely used approach. Studies based on modelling techniques 
rely heavily on this kind of business cycle determination. There are 
several studies using multivariate models in business cycle analy-
sis79, but they are only multivariate in looking at several countries to 
extract the business cycle by measuring common trends or com-
mon cycles directly. But for all of these countries, one type of time 
series is chosen ad-hoc as being most appropriate for business cy-
cle analysis. 

78 National accounts regulations and recommendations require the recording of 
tax revenues for GDP purposes not on a cash basis, but to adjust them at an ac-
crual basis. If this is done properly, such kind of taxes are at best coincident as a 
lead seems to be rather implausible for them. In practice however, lagged cash 
revenues are used which potentially shift included business cycle variations in time. 

79 Examples are the multivariate unobserved component model proposed by Artis 
-Marcellino - Proietti (2004) or Cheung - Westerman (1999), who estimated in a 
multivariate manner the common trend for the industrial production of Austria and 
Germany. 
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5. Analysing cyclical comovements 

After extracting the business cycle, an analysis about the leading 
and lagging properties of several economic time series is of great 
interest80• There exists a broad range of statistics in this respect, 
which can be classified according to their belonging to time or 
frequency domain statistics. It is worth mentioning that this kind of 
analysis already forms an implicit part of the dynamic common 
component approach and constitutes an essential part of the 
identification and extraction of the business cycle. 

5.1 Time domain statistics for analysing comovements 

To this class all sort of statistics belong, which exhibit comovements 
between time series at discrete points in time or for certain inter-
vals. They are mainly based on correlation statistics referring to 
second moments of time series. 

Calculating cross-correlations in order to detect potential leads 
and lags is the simplest form of identifying comovements between 
the business cycle and other series. They are constructed as 

(22) Cov(zb.i• zs.,-,) 
Pb.s (t') = -;:::===== 

Jvar(zb.,) Var(zs.,) 

with the subscript b denoting the business-cycle-carrying time se-
ries (i.e. the reference series). s = 1, ... , N counts for all other N time 
series and -r determines the different leads and lags for which 
cross-correlations are calculated. If -r = O the synchronised co-
movement is observed. The classification as leading or lagging is 
mainly based on the delay with which the highest cross-correlation 
is achieved. It can only be regarded as clear-cut, if the cross-

eo As the dating procedure of the business cycle is so prominent, this will be han-
dled separately in the next chapter together with some analysis on turning points. 
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correlation is significantly higher than for other leads and lags in 
close neighbourhood. 

5.2 Frequency domain statistics for analysing 
comovements 

Sometimes it is easier to interpret comovements not in the time 
domain, with discrete time data points, but in the frequency do-
main. This is especially the case in business cycle analysis where 
special frequencies or frequency bands are the focus of interest. 
These statistics can be derived by the Fourier transformation of 
time domain statistics. So is the cross-spectra the frequency- do-
main-equivalent of the cross correlation Pb.i (.), like the spectral 

density function is the equivalent of the auto-correlation function. 
The cross-spectra of two series for a certain frequency tu is defined 
as 

(23) 
I <X) 

Yb.s (w) = -2 LPb,s (r) e-iwr 
,r r=-oo 

with tu being a frequency within [-n;.n) and Pb., being the cross-

correlation as defined in (22). As can be seen in (23), the cross-
spectrum contains a complex part which does not cancel out be-
cause the cross-correlation function is not symmetric, i.e. 
Pb.s (,)*Pb.,(-,). Therefore, this statistic cannot be interpreted in 

order to determine leads and lags directly, but has to be trans-
formed into another statistic like the coherence, the phase spec-
tra or the mean delay. 
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5.2. 1 Coherence81 

The coherence measures the linear relatedness of two stationary 
processes. It can be regarded as the frequency-domain-equiva-
lent to the cross-correlation in the time domain. The output is de-
fined over the interval [O, 1t] and shows the correlation of the cycli-
cal (or at least stationary) component of the series at each fre-
quency. It is defined by the squared cross-spectrum, divided by 
the product of the spectral density functions of both series 

(24) co(m)= lrb,s (m)l2 

Yb.b (m) Ys,s (m) 

Applying this quadratic transformation ensures that values are real 
and symmetric. It can be interpreted as the frequency-domain-
counterpart to R2, the well known coefficient of determination, as 
it shows the proportion of variance of one series explained by the 
other for a given frequency m. 

But this transformation has a substantial disadvantage. Croux -
Forni - Reich/in ( 1999) stressed that this statistic "does not measure 
correlation at different frequencies, because it disregards the 
phase difference between variables"82• Thus, only the synchronised 
comovement of two time series, over some specified spectrum or 
at a certain frequency, can be observed. Whether these frequen-
cies are phase-aligned or not is of no influence to this measure. 
Related to our problem, the coherence assumes high values if 
both series show similar frequency gains, irrespective of whether 
one time series is leading or lagging. 

81 In the literature, this measure is sometimes called squared coherence. 

82 See Croux - Forni - Reich/in ( 1999), p. 4. 
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5.2.2 Phase spectra and mean delay 

In order to supplement the coherence with a statistic that informs 
about leading and lagging properties of time series, the phase 
spectrum can be calculated. This can be done by combining the 
real and the complex part of the cross-spectrum as defined in (23) 
and calculating the arcustangens of it in order to obtain the 
phase angle: 

where PH{ m) is the phase-delay-generating function multiplied by 
a scalar, and further 

(26) J!( ) 1 ~ Pb,s (r) .,, m = arctan - ~ 
2,r r=-<X> PH (m) r 

~(ffi) is the phase spectrum over all frequencies, indicating how 
large the lead (positive numbers) or lag (negative) is. Averaging 
over a specified frequency band yields the mean delay for this 
term. In this way one can look at the leading and lagging proper-
ties only for frequencies within the business cycle boundaries or for 
other frequencies in the focus of interest. 

5.2.3 Dynamic correlation 

Another way of overcoming the deficiency of the coherence of 
not accounting for phase shifts of frequencies has been proposed 
by Croux -Forni -Reich/in (1999). They recommended a measure 
that looks quite similar to its time-domain-equivalent, the cross-
correlation, shown in (22): 

(27) - ( ) Yb.s (m) Pb Ci) = ,r===== 
,s .Jrb,b (m)Y,,s (m) 
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but this time defined only for co within the interval [0, 1t). This meas-
ure is related to coherence - as it shows its real part - but instead 
of rendering values real by a quadratic transformation, the com-
plex term is cancelled out by summing negative and positive 
waves of the same frequency. This can be seen in a different rep-
resentation of 

(28) - ( )_Yb,,(m)+Yb_,(-m) 
Pb,s (u - 2 

This should not be a drawback as (co) and (-co) have the same pe-
riodicity, which is the focus of interest in business cycle analysis. 
Furthermore, the authors stressed that dynamic correlation ob-
served at a special frequency band is theoretically fully equivalent 
to static correlation applied to band-pass pre-filtered data ac-
cordingly. 

5.2.4 Cohesion 

In order to analyse the comovement of more than one time series, 
Cro ux - Forni - Reich/in ( 1999) proposed a multivariate version of 
the dynamic correlation index. It is constructed by weighing to-
gether all dynamic correlation coefficients as defined in (27) and 
is called cohesion by them 

(29) 
""· . W;W1•Ps-s·(m) h L..,,~J I J 

CO b (m) = "" 
L..,;~j W; Wj 

the p_, being again the dynamic correlation coefficients as de-

fined in (27) over all combinations of time series except their di-
agonal elements. The authors suggest choosing the weights ac-
cording to their economic significance (e.g. by their proportion of 
contributing to GDP). This statistic has the advantage of allowing 
to capture common comovements of the underlying set of time 
series at all frequencies at one glance. This makes it more appro-
priate for certain tasks than looking at cross-correlations because 
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high values of the latter neither imply nor are implied by co-
integration, common cycles or common features8J. A practical 
example of application of this statistic can be found in Croux -
Forni - Reich/in ( 1999) and in Partridge -Rickman (2005). 

83 See Croux -Forni -Reich/in (1999), p. 1. 



61 

6. Dating the business cycle 

Only part of the studies on business cycles restricts itself to co-
movement analysis. Especially if studies are motivated by cyclical 
policy intervention (rather than by the identification of structural 
similarities), the dating of the business cycle is most important. The 
process of dating can be described as looking for turning points in 
the business cycle84• There is a difference between the definition 
of turning points in the classical context of business cycle analysis -
where the object of study are the absolute levels of some time se-
ries - and the interpretation of cyclical deviation. Figure 4 shows a 
stylised example of an economic time series - like GDP - consisting 
of a deterministic trend plus a cyclical variation. 

Figure 4: Turning points in the classical and the cyclical deviations 
approach 

Trend 

A 

Production (Trend+Cycle) 

Source: Own illustration. 

ll-4 In business cycle analysis turning points are defined in a different way as in ge-
ometrics. Whereas the first mark local minima and maxima the latter is the point 
where a graph starts to change the sign of its curvature. 
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If the cycle is defined in the classical way, as depicted by the 
trended bold line in the upper part of Figure 4, then point A repre-
sents one of the upper turning points occurring at time t A as it con-
stitutes a local minimum. Following the deviations approach and 
observing only turning points of the extracted business cycle com-
ponent, point B marks the upper turning point at time ts. This point 
is derived by analysing only the stationary, bold line in the lower 
part of the figure, which should represent the business cycle ac-
cording to the deviations approach. It can easily be seen - as it is 
a well-known fact - that the turning points according to the cycli-
cal deviations approach (bold line in the lower part) lead the ones 
of the classical definition (bold line in the upper part)B5• 

If instead the focus of interest lies on growth rates (growth rate cy-
cle approach), the result is again different turning points. The dot-
ted line in the lower part of Figure 4 represents the growth rates of 
the series. When interpreting the business cycle as a sine function 
(like it is done here with the bold line in the lower part), growth 
rates follow a cosine function as this is its first derivative. This series 
of growth rates is illustrated by the dotted line in the lower part of 
Figure 4 (for graphical reasons it has been linearly transformed). It 
reaches its peaks earlier (e.g. at time tc) than the others86, which is 
in part due to its asymmetric construction. 

As for their importance, turning points have been given special 
names. In the classical approach, the lower turning points are 
called troughs, which are followed by a phase of recovery leading 
into a period of expansion whose end is marked by the upper turn-
ing point, the peak. Thereafter, a contraction takes place followed 

85 The length of the lead is related positively to trend growth and negatively to the 
amplitude of the series. The higher trend growth, the more it is capable of delaying 
the downward-sloping effect of the cycle on the whole series. 

86 If a high frequency error term is included, the leading property of growth rates 
cannot be exploited for an earlier indication of turning points. This is especially true 
as it has been shown that taking first-order differences superimpose high frequency 
error terms. 
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by a recession ending with the next trough. which completes the 
cycle. The nomenclature is somewhat different in the deviation 
cycle approach. The local peaks of the business cycle component 
- as shown in the lower part of Figure 4 - are often referred to as 
highs and the lower turning points are called lows. Phases be-
tween them are called expansions or contractions. 

Having this sequential pattern of the business cycle in mind, dating 
the turning points has to fulfil several conditions. Firstly, every dat-
ing procedure - arbitrary or mechanical - has to ensure that turn-
ing points alternate. It must not occur that the turning point follow-
ing a peak is again a peak. Secondly, the period between the 
turning points should not be too short in order to allow some eco-
nomically meaningful process of recovery or contraction. Further-
more. turning points should represent some local minima or 
maxima according to certain criteria. Several methods have been 
developed to this end. but only the most important shall be ex-
plained heres1. 

6.1 The expert approaches 

To this class belong all approaches which are mainly based on 
more or less subjective evaluations. rather than on a mechanical 
method. The most prominent approach in this area is the dating 
schedule set up by the NBER. Here, a Business Cycle Dating Com-
mittee publishes officially the turning points calendar for the US 
economy. According to the NBER. a recession is characterised by 
"a significant decline in economic activity spread across the 
economy. lasting more than a few months, normally visible in real 
GDP. real income. employment. industrial production. and whole-
sale-retail sales88.'' This gives insight into the database that forms 

87 Examples for alternative methods not reported here are proposed by Diebold -
Rudebush ( 1987), Wecker ( 1979), Hess - Iwata ( 1997) or Neftci ( 1982). 

88 See The Business Cycle Dating Committee (2003). 
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the backbone for the NBER dating procedure. The term "normally 
visible in real GDP" is not only a hint at the subjectivity of this ap-
proach, but has something to do with the availability of GDP, i.e. 
usually only at a quarterly frequency. 

Before this dating can be done, several steps to identify the cycle 
take place, which have already been described above. Despite 
its subjectivity, the dates resulting from this approach are not only 
the official ones, but serve as a benchmark for many innovative 
new dating methods. This is probably due to the fact, that this ap-
proach is adopted by experts who can take into account specific 
developments in the economy as well as in the underlying time se-
ries which could otherwise be misinterpreted if treated in a purely 
mechanical way. For the same reason, Breuss ( 1984) argues in fa-
vour of a re-evaluation of identified turning points by using exter-
nal knowledge about the characteristics of time series. In case of 
doubt whether a turning point is dated exactly, an ad-hoc inter-
vention should take places9• 

This was probably the reason why a similar procedure has recently 
been adopted for the euro area. With the formation of a currency 
union in 1999, demand for a business cycle dating calendar has 
emerged with a view to giving adequate guidance to economic 
policy. To this end, the Centre for Economic Policy Research 
(CEPR) has set up a committee similar to the one of the NBER for 
determining the dates of turning points. Its definition of a recession 
is quite close to that of the NBER, but accommodates for euro 
area characteristics. 

Unlike the NBER, the CEPR focuses on the spread between the EU 
Member States, whereas the former seems to focus more on sec-
tor differences. Furthermore, the CEPR refers to quarterly instead of 
monthly developments, which has to do with the fact that the 

89 The author cites as an example a higher-than-usual economic activity resulting 
from a front-loading of private expenditure in anticipation of a planned tax rise, 
which could wrongly be interpreted as an upper turning point. 
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most reliable economic information for the euro area is only avail-
able on a quarterly basis. 

Most interestingly, the CEPR concentrates on growth rates. The in-
terpretation of growth rates makes a dating procedure not only 
sensitive to superimposed error terms (making such dating a poor 
guide for policy interventions), but also mixes up trend and cycle 
movements. From a theoretical point of view, it makes a decisive 
difference whether slow growth results from a gradually sloping 
trend or a sharp fall in the business cycle. 

6.2 The Bry-Boschan routine 

The best-known methodical approach is the algorithm proposed 
by the NBER economists Bry - Boschan ( 1971). This non-parametric 
method can be applied to seasonally-adjusted trended as well as 
de-trended monthly time series and tracks quite well turning points 
for the US as set by the NBER Business Cycle Dating Committee. 

This approach starts with a possibly necessary de-trending proce-
dure and the removal of outliers according to some standard de-
viation criterion. Subsequently, a sequence of smoothing filters is 
applied, each followed by running the dating procedure. The 
smoothing process starts with the filter performing the highest de-
gree of smoothness and goes down consecutively till the original 
(unsmoothed) time series is dated. The final turning points are 
dated on the basis of the original series, but must be consistent 
with all earlier dates according to the smoothed series. The spe-
cific points are found by checking for local minima and maxima 
and imposing some criteria for the minimum length of phases and 
cycles between them. If two or more peaks (or troughs) follow 
each other, then only the highest (deepest) one enters the dating 
output. 

Disadvantages of the Bry-Boschan routine are that only the alter-
nation of turning point signs and the phase-length impose restric-
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tions for the identification of peaks and troughs. There is no possi-
bility to take into account the amplitude of cyclical variations and, 
as it is a purely deterministic approach, nor the uncertainty en-
countered when choosing dates for the turning points. 

As this procedure proposed by Bry - Boschan (l 971) was devel-
oped originally only for monthly data, some amendments have 
been proposed to use it analogically for quarterly series90• The ver-
sion used in this study is the one implemented in the BUSY software 
package developed by the Joint Research Centre of the Euro-
pean Commission (1993). There, de-trended time series are 
smoothed by a Spencer curve, which is a symmetric 2:x7 moving 
average filter with the following weights 

1 [74+67(L+L-1)+46(L2 +L-2)+2l(L3 +L-3)+ ] 
(30J v(L)= 320 3(L4 +L-4)-5(L5 +L-5)-6(L6 +L-6 )-3(L7 +L-7 ) 

In order to compensate the loss of seven data points on either end 
of the series, the series is extended by extrapolating the growth of 
the first and last four observations. This smoothed series is used, first 
of all, for replacing outliers in the uncorrected series, which are de-
tected by imposing that its standard deviation be a certain multi-
ple of the series total standard deviation, to be defined by the 
user. 

Following this, the series corrected for outliers is filtered by a 2 x 4 
term MA term in the quarterly time series case. The output of this 
filter and the one generated by the Spencer curve are both 
scanned for common turning points, which are characterised by 
local minima or maxima with intervals of five periods91 • Further-
more, a minimum phase length of 6 quarters is imposed, together 
with an alternation of the signs of the turning points. 

90 Harding -Pagan (2002) is an example in this respect. 

91 The size of the interval can be altered by the user. 
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An additional, less smoothed, series is calculated by further short-
ening to MA order according to a parameter called QCD (quar-
ters of cyclical dominance). This QCD yields the minimum delay for 
which the average of absolute deviations of growth in the 
Spencer cycle is larger than that in the irregular component. This 
series is again checked for common turning points with the series 
as calculated before, subject to the same requirements for cycle 
length and the alternation of signs. As this last short filter is able to 
move close to the end of the series - while for the longer filters syn-
thetic extrapolations had to be made - turning points found in the 
last or first two observations are dropped. 

Versions of the Bry-Boschan routine used for dating the quarterly 
US-GDP time series have been quite successful in tracking the turn-
ing points as published by the NBER92• 

6.3 Hidden Markovian-switching processes 

Studies resorting to the method proposed by Hamilton ( 1989) try to 
represent the business cycle component by a Markov-switching 
autoregressive model. Here, the series examined is to be repre-
sented by a stochastic process that can switch between a con-
tractive and an expansionary regime93• In its most general form, 
not only the mean µ is allowed to vary between both states, but 
also the AR parameters efJ of order p and the variance of the error 
term (with assumed zero mean) e, . 

(31} z, = µ,1 + f ;,, z,_; +e:1 

i=I 

92 Examples for this kind of studies ore King - Plosser (1994) and Harding - Pagan 
(2003). 

93 In Artis - Krolzig - Toro (2004) a third regime is considered for some countries, in 
order to capture the effect of a break in trend growth in the second half of the 
seventies. 
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with z being the analysed time series and s, = 1 if the economy is in 
expansion and s, = 2 if it is in contraction, implying that the mean is 
above or below the average mean of the total series 

(32) 
ifs,= 1 

ifs,= 2 

The probability of being in either state of the cycle evolves ac-
cording to a Markov chain defined by certain transition probabili-
ties for switching from one state to the other 

(33) prob (s, = i Is,_ 1 = }) = £;,j e(O, 1) Vi, j = 1,2 

Thus, the probability of being in expansion if the preceding period 
was also in expansion is (1-e1), or for a contraction following a 
contraction (1- s2 ), and the changes from one state to the other 

are s1 or s2 , respectively. 

The estimation of such Markov-switching models is quite compli-
cated, since a global nonlinear process is combined with an un-
observed component character. In practice, this is carried out 
with the Kalman filter technique in order to get Maximum-
Likelihood estimators. 

As a result, probabilities for each observation of being in either 
state are obtained, which can be transformed into a binary vari-
able indicating contraction or expansion periods. The advantage 
of this procedure, compared with the non-parametric ap-
proaches, is that for all points in time it can be inferred whether 
the economy is expanding or contracting94• Furthermore, the size 
of deviation plays a role in the identification process, so that minor 
ups and downs can be excluded from the dating calendar. The 
advantage of obtaining probabilities for turning points may be a 

9• Except for the very rare points where the probability for either regime is insignifi-
cant. 
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disadvantage at the same time. Usually, there remains a - hope-
fully small - number of time series points, for which it is inconclusive 
in which state the economy is. As they are located between ex-
pansions and contractions, such points become the focus of inter-
est. If they have to be identified, only a judgemental evaluation 
can help. 

6.4 Threshold autoregressive models 

Threshold autoregressive models {TAR} represent a further method 
of a model-based dating procedure. Here, different regimes {in 
the case of business cycle analysis there will again be two of them: 
contraction and expansion} are modelled, with a threshold r for 
their identification and with a certain threshold delay d to which 
the threshold refers. The structure is basically the same as in (31) 

(34) z, =µ,1 + f ¢,, z,_; +&: 1 

i=l 

but the process of determining the state is different, in that it de-
pends on a certain threshold {the threshold delay}, which has to 
be exceeded 

ifz,-d>r 
(35) 

ifz ,-d < r 

This approach is rather flexible, as for various regimes different 
auto-correlation behaviours can be modelled as well as separate 
error term variances. The TAR model is a piecewise linear model 
which shows non-linear global behaviour. As first steps, the thresh-
old delay d, the threshold r and the order of the AR polynoms for 
either state have to be estimated. After applying an identification 
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procedure95 of both processes, the turning points mark the dates 
of change from one state to the other. As in the case of the 
Markov-switching model, restrictions for the amplitude of devia-
tions can be formulated and - as it is a probabilistic approach -
probabilities for being in a contractive or expansionary state can 
be generated. However, this can also be seen as problematic, as 
outlined in the case of the Markov-switching model. 

95 A good presentation of this kind of approach is given by Tsay ( 1989). 
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7. Analysis of turning points 

Following the dating process, an analysis of the turning points gives 
further insight into the comovement of cycles. This can be done on 
the basis of the turning points themselves, by comparing their dis-
tance from one another or to the ones found in other time series96• 

Furthermore, it is of interest to look at the time series properties at 
these points in time, in order to get some insight into the strength of 
the cyclical variation. The following statistics should give greater 
insight into the duration of cycles and phases, their amplitudes, 
and whether they behave asymmetrically or co-move with other 
series. Eventually this can lead to a new dating of the whole busi-
ness cycle. 

7.1 Mean and average leads and lags 

When observing the dates of turning points of two different time 
series (one being regarded as the reference cycle), it is possible to 
calculate the distance between these turning points. As this dis-
tance can vary from cycle to cycle, some summary method is 
necessary to get an overview of their behaviour over the whole 
time span. For that purpose, the median conveys a more robust 
picture of such properties, as some exceptional data points can 
have a large influence on the mean97• Additionally, some thresh-
olds for minimum distances are necessary for the classification of 
coincident, leading and lagging properties, taking also account 
of counter-cyclical and unclassifiable relations. 

96 A practical application of this method is the construction of the OECD leading 
indicator. It should give an early signal of business cycle turning points by making 
use of leading turning points of other economic time series. 

97 It is recommended to use both moments together, as they can deliver important 
information about the distribution of the lead and lag structures. 
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The calculation of means of leads and lags can also be done in 
the frequency domain, looking at the cross-spectrum r( w) of both 
series b and s98• As this in general takes on complex values as 
shown in (23), it has to be transformed into polar coordinates 
which yield 

{36) Yb,s (a>)= lh., (w)jje-iPh(w) 

with the argument Ph(w) indicating the shift in the number of peri-

ods as a multiple of the frequency for which it is observed {the so 
called phase angle shift). Averaging over a certain frequency 
band that lies between the boundaries w" and w1 by 

(37) "' 11 Ph(w) 
f-w-dw 

"'I 

allows looking at leads and lags over this band. Positive values in-
dicate that the observed series z, is leading the reference series 
zh, with negative values indicating lags. 

7 .2 Contingency tables for turning points 

Artis -Krolzig -Toro (2004) proposed a further method of analysing 
business cycle comovements. With a binary variable indicating 
whether the economy is expanding or contracting {which can be 
derived from the turning points) they constructed 2 x 2 contin-
gency tables for each pair of series of the form of Table 1. 

98 See Joint Research Centre of the European Commission ( 1993). 



73 

Table 1: Contingency table for turning point analysis 

Serles Expansion Contraction SUBTOTAL 

Expansion n1,1 n1,o n1,_. 

Contraction no.1 no.o no ... 

Subtotal n_.,1 n_.,o N 

Source: own illustration. 

where n1, 1 (no.o) counts the number of periods when both series are 

in expansion ( contraction} over the whole time span, and n1,o and 

n0•1 how often they are in different phase. By calculating from this 

some kind of statistic like the Pearson's contingency coefficient 
one can measure the extent of synchronised comovement of the 
series. 

This Pearson contingency coefficient is defined by 

(38) 

with 

(39) 

Pearson= J %2 

z2+n 

Li Li (11 .. -£ .. )2 n. n . z 2 = '· 1 '· 1 and E . . = ,... ..., 
E ~, N 

i=O j=O i,j 

The same statistic can be used to determine a leading or lagging 
property, if one of the time series is shifted by a certain period. 
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7.3 The intrinsic lead and lag classification of dynamic 
factor models 

In 4.2.1, the index model approach has been presented, with spe-
cial focus on the dynamic factor model as proposed by Forni et al. 
(2000). This approach tries to capture the dynamics of the whole 
set of observed time series, by extracting several common com-
ponents. These components are identified not only by looking at 
simultaneous comovements, but also by their leading and lagging 
properties. Such a common component is shown with different in-
tensity in the different time series, as can be observed by the fac-
tor loadings necessary to explain the variance of a special series. 

In order to make use of the intrinsic lead and lag classification of 
the dynamic components model, the phase angle shifts of all se-
ries compared with (or in relation to) a reference series have to be 
calculated99. This is equivalent to the calculation of mean leads 
and lags in the frequency domain statistic as presented in 7. 1 . 

7.4 Concordance indicator 

A further indicator that offers some insight into the comovement of 
two series has been proposed by Harding - Pagan (2002). They 
constructed a statistic - called "concordance indicator" - which 
measures the fraction of time where both series are simultaneously 
in the same state. 

(40) 
Ij, = n-1 [# ~jt = 1,S,, = 1}] + n-1 ~ ~jl = o,s,, = o}] 

= n-1 {I sj, s,, + {1-s1,)(1-s,,)} 

99 This reference series can be the common component included in GDP, GVA or 
industrial production. 
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where Ij, is the concordance indicator between time seriesj and 

the reference series r, both of length n, and si, and s" being 1 if 

they are in expansion or 0 if in contraction. It is defined over the 
interval [ 1, 0] where 1 indicates total pro-cyclicality and 0 perfect 
counter-cyclicality. If both are exactly pro-cyclical this concor-
dance indicator is 1 and 0 if they are perfectly counter-cyclical. 

This indicator allows no classification of leading and lagging prop-
erties of turning points but just of their simultaneous behaviour, if 
the time series are not shifted in time. 

7.5 Standard deviation of the cycle 

There are also statistics which concentrate on the size of up- and 
downturns, as this can be important for economic policy purposes. 
The simplest statistic in this area is probably the standard deviation 
of the business cycle component. This measure is constructed as 

(41) O'= 
n 

with ji, being the mean of the observed series, n the number of 
observations and Yr1 the observation itself. 

Vijselaar - Albers (2001) used this kind of method to show the ex-
posure of several countries to the euro area cycle. They reported 
for three different periods the standard deviations of HP-filtered 
time-series for manufacturing production and GDP. This can be 
regarded as a simple but crude measure, as it is not clear whether 
these variations stem from a common or an idiosyncratic cycle, or 
even from a variation erroneously passing the filter. 
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7.6 Mean absolute deviation 

This measure is constructed similarly to the standard deviation 

(42) 

Instead of squaring all deviations from the mean (or trend, as in 
our application) to render them positive for summing up, the 
mean absolute deviation just cumulates absolute values of these 
deviations. The use of absolute deviations instead of squared ones 
should make this statistic more robust in that single large deviations 
are not weighted by squares. However, Dickerson - Gibson - Tsa-
kalatos ( 1998) found no substantial difference between squared 
and mean deviations in analysing demand components within the 
European Union. 

7.7 Triangle approximation 

Harding - Pagan (2002) proposed a method of estimating the se-
verity/strength of recessions/expansions. They argue that business 
cycle fluctuations are defined by their deviation from trend as well 
as by their duration. Therefore, they approximated the area of half 
of a lobe formed by a business cycle phase by a triangle: 

(43) Cr; = 0.5 (D; A;) 

with Cr; being the right-angled triangle approximating the area of 

half a phase of a business cycle representing the cumulative de-
viations from cyclical neutrality, and D; and A; the duration and 

amplitude of the i-th cycle. As the actual cumulative movements 
(c;) deviate in practice from the triangle approximation Cr;• a fur-

ther index measuring excess cumulated movements was pro-
posed by the authors 
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in order to remove the bias introduced by approximating the sum 
of rectangles (which should measure this area) by a triangle. This 
amended indicator should prove superior in providing some kind 
of cumulative information about the extent of business cycle fluc-
tuations, as amplitude and duration of the cycle are weighted to-
gether. Whether this indicator may give guidance to economic 
policy makers - as intended by the authors - is questionable, as it 
assigns equal weights to amplitude and duration. In practice, a 
severe but short recession probably calls for a different policy re-
action than a longer-lasting mild one. Furthermore. in order to 
serve as a guide for economic policy measures, this information 
would have to be forecast. 
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8. Results 

In this chapter, several methods of the tool box presented above 
are applied to various data sets, which are processed with differ-
ent filtering methods. This combination of methods, data and 
treatments will give some insight into the robustness of results for 
dating the Austrian business cycle. Apart from the extensive work-
load, a comparison of results across all theoretically possible com-
binations between data sets and methods would be more confus-
ing than enlightening. Therefore, we confine ourselves to the most 
common or most appropriate combinations, from a theoretical 
point of view. 

8.1 Isolation of business cycle frequencies 

As already mentioned in chapter 3, there exist several methods for 
isolating possible business cycle characteristics from time series. 
Some of them are indirect in that they try to wipe out all other in-
formation that should not be contained in the business cycle 
component, and others try to isolate the business cycle directly. 

It was decided to employ three methods for the present study: 

8. 1. 1 First-order differences 

This method was mainly selected for its popularity. Here, first-order 
differences to the preceding quarter of logged data were con-
structed, which give approximately growth rates, as it was pointed 
out in chapter 6.1. Such growth rates are very often used as a rule-
of-thumb for dating the business cycle and they are called growth 
rate cycles. 

Using this method for de-trending implicitly assumes that the trend 
is of stochastic nature and integrated of order 1 . As pointed out in 
the theoretical part, a violation of this ( 1) assumption can shift the 
true business cycle out of the observed frequency window. It the 
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true order of the process is zero (which means the trend is station-
ary), building first-order differences would mean an over-differenc-
ing of the series, which shifts the spectral mass into the high-
frequency area. If, however, the true process is integrated higher 
than order l (which is rather unlikely in the case of economic time 
series) it is shifted into the low-frequency direction. 

This first-order difference filter produces not only rather erratic 
trend behaviour, but - as can be seen in (3) - the cycle includes 
also an error term. In constructing growth rates this way, the miss-
ing-end-of-the-sample problem is solved at the cost of a phase 
shift and the error variance is superimposed. The latter becomes 
apparent in the rather erratic movement of this series displayed in 
Figure 5. 

8. 1.2 The HP filter 

The HP filter solves a lot of problems associated with de-trending 
reasonably well and is, for its easy application, probably the best 
practical choice. As it filters out deterministic as well as stochastic 
trends up to an integration of order four, no strong assumptions 
concerning the evolution of the trend have to be made implicitly. 
Due to its symmetry, no phase shift is introduced, and the end-
point problem is implicitly solved by a mechanical trend extrapola-
tion. High-frequency noise will remain, but is not superimposed as 
in the case of first-order differences. For all these reasons, the 
HP filter is still very popular in the literature and it is applied here, 
too. For our study, the smoothing parameter A is set at 1600, as it is 
most common in applications using quarterly data. According to 
Prescott ( 1986) and Baxter - King ( 1995) this corresponds to a filter 
that cancels out frequencies lower than 32 quarters, i.e. 8 years. 

8. 1.3 The BK filter 

From a theoretical point of view, band-pass filters like the one pro-
posed by Baxter - King ( 199 5) seem to be most suited for the kind 
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of business cycle studies where the most recent time margin is not 
in the focus of interest. They directly pay attention to the frequen-
cies which are regarded as the business cycle in the sense of Burns 
- Mitchell ( 1946). Applying a band-pass filter, a researcher explic-
itly determines what he or she regards as the business cycle. For 
the present study, a frequency window ranging from 6 to 32 quar-
ters is regarded as containing the business cycle. All cycles shorter 
than l ½ years and longer than 8 years are filtered out. Compared 
with the HP filter, the resulting time series carries less noise (due to 
the leakage problem discussed earlier, there still remains a small 
amount of high-frequency variation depending on the size of the 
filter) and also the problem of extracting spurious cycles - as put 
forward by Aaland (2005) - is reduced. Furthermore, as this filter is 
symmetric, no phase shift is introduced, but the end-of-sample 
problem remains. As the aim of this study is not to date the cycle in 
real time, but to present a robust dating of past cycles, 6 quarters 
at each end of the series are sacrificed in order to make the filter 
work very exactly and thereby to reduce the leakage problem. 

The band-pass filter proposed by Cristiano -Fitzgerald (2003) is not 
considered in this study. While this filter serves as a good alterna-
tive to the Baxter-King filter close to either end of the series, it will 
hardly offer an improvement within the series, and the weighting 
scheme is more transparent in the case of the Baxter-King filter. 
The Beveridge-Nelson decomposition has not been applied, due 
to its theoretical shortcomings. All shocks influence the trend and 
the cycle at the same time, which does not seem to be a plausi-
ble concept for the largest part of shocks. Furthermore, this 
method has low power in discriminating between different mod-
els; therefore this lack of robustness makes it a poor guide to 
check the robustness across different methods. Despite the fact 
that unobserved-components models of a specific structure show 
some interesting features, they are not considered here either. 
Again, the large number of possibilities to model the different 
economic time series components, allow no clear-cut statement 
about this approach in comparison with others. Results of this 
method depend more on the capabilities and personal judge-
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ments of the modeller than on the method itself. For this reason, 
only the methods mentioned bet ore are applied to extract busi-
ness cycle variations 100. 

Figure 5: Austrian real GDP filtered 

l.5 ~-----------------------

--Hodrick-Prescott 1600 -Boxier-King 6-32 · · · · · · · · First order difference 

-1,0 +--------'-------------------

-1.5 ~-----------------------

77 80 83 86 89 92 95 98 01 04 

Source: Own calculations. 

Figure 5 shows Austria's real GDP at chained 1995 prices, pre-
cleaned for seasonal and working day effects and filtered by first-
order differences, by the HP filter and by the Baxter-King filter. First-
order differences (fod) have been transformed linearly in order to 
make them graphically comparable with the standardised HP-
and BK-filtered series. As expected, the first-order-differenced data 
show the most erratic picture due to the implied superimposition of 
high-frequency error terms. Even the time shift of the first-order-
differenced data can be seen. It shows some kind of leading 
property. In 1979, 1981 and 1991, the spike in the first-order-
differenced series leads the peaks shown by HP- and BK-filtered 

100 Nevertheless, our results are compared with this kind of models in chapter 9. 
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data. In 1984 and 1993, this goes also for troughs. While this lead-
ing property would be ideal for forecasting business cycle 
changes, its erratic movement makes this series unsuitable for that 
task. 

If we compare BK- with HP-filtered data, the former appear to 
evolve more smoothly than the latter which also contain error 
terms of high variance. But there seems to be no systematic phase 
shift between the outputs of both methods. 

Figure 6: Baxter-King filtered GDP of Austria, Germany and the 
euro area 
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Figure 6 offers a first insight into possible business cycle comove-
ments between Austria, Germany and the rest of the euro area. 
Again, real GDP has been filtered by all three methods, but for 
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clarity only BK-filtered data are shown. All series have been cen-
tred by their mean and standardised by their variance 101 • 

Many of the ups and downs of the Austrian GDP (represented by 
the red line) are mirrored by either the German (blue line) or the 
euro area component (green line). The number of specific Aus-
trian cycles seems to be limited. A remarkable - nearly counter-
cyclical - movement can be observed in the first half of the eight-
ies, which could also be interpreted as a superimposed leading 
cycle. In general, no systematic leading or lagging property of the 
Austrian GDP in relation to the others can be observed; the pat-
tern seems to vary irregularly over time. 

As already mentioned, GDP seems to be too crude an indicator 
for business cycle analysis. Additionally, sectoral cycles have to be 
observed; therefore, all three types of filters - the first-order-
difference filter, the HP filter and the BK filter - have been applied 
to the following series for Austria and Germany, separately. Again, 
the time span ranges from 197 6 to 2005. 

• Manufacturing (NACE C+D+E), including mining and 
quarrying, electricity, gas and water supply 

• Construction (NACE F) 

• Wholesale and retail trade (NACE G), hotels and restau-
rants (NACE H), and transport and communication (NACE 
I) 

• Financial intermediation services (NACE J) and real es-
tate, renting and business activities (NACE K). 

101 The standardisation by their standard deviations has been done in order to plot 
them in one figure. With this standardisation, deviations from the mean cannot bee 
compared between time series. 
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• Gross value added (GV A) as the sum of all sectors, but 
excluding agriculture and forestry. 

• Real GDP 

As described in chapter 2, for the euro area only the GDP series 
was available, which for the purpose of the dynamic factor model 
was corrected for German and Austrian GDP, in order to avoid a 
bias. 

8.2 Determination of the reference business cycle 

After filtering all time series in order to extract the information con-
tent concerning their business cycle variations, the business cycle 
itself has to be determined. According to Burns - Mitchell ( 1946), 
the latter is a type of fluctuation found in aggregate economic 
activity, which would justify the use of GDP as the most compre-
hensive indicator of aggregate economic activity. But GDP in-
cludes also activities which are not influenced by business cycle 
movements. This is the case for agriculture and forestry, which are 
more dependent on weather conditions than on overall eco-
nomic dynamics 102• Furthermore, it comprises taxes less subsidies 
on production, which theoretically show at most a lagged co-
movement with the business cycle 1°3• 

For all these reasons, gross value added of all sectors without agri-
culture and forestry seems to be closest to the aggregate eco-
nomic activity in the sense of Burns - Mitchell ( 1946). Therefore, 
business cycle variations found in that series will represent the ref-

102 Theoretically, higher economic activity can lead to more slaughtering or more 
tree cuttings as a reaction to rising demand, but according to the national ac-
counts system this represents only a depletion of inventories and not production, 
the latter being measured by the growth in the number of trees and animals, in-
stead. 

103 This potential lagging property stems from the ESA 95 convention which requires 
most taxes to be recorded as lagged cash receipts in national accounts. 
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erence business cycle according to the ad-hoc method. The cy-
clical components of all other series are analysed in relation to 
that reference series in order to uncover their leading or lagging 
properties. 

Despite the fact that GV A less agriculture and forestry seems to be 
a sensible weighted and measured indicator of aggregate eco-
nomic activity, it does not mean that the driving force behind 
business cycle fluctuations can best be extracted by analysing 
that series. A different indicator that weighs together various eco-
nomic time series of different origin could be more capable of rep-
resenting the cyclical variations contained in different economic 
time series. Therefore, a second approach to determine the busi-
ness cycle has been followed by constructing a composite eco-
nomic indicator. 

As already mentioned in chapter 4, the construction of composite 
economic indices according to the empirical NBER approach 
does not seem to be feasible here. As this is basically a rather arbi-
trary method, an acceptable outcome depends on the contribu-
tions by many experts. Instead, a more formal approach is fol-
lowed in the present study by setting up a dynamic factor model 
in order to isolate the common driving force of all filtered series. 

Thus, two different methods have been chosen to identify the cy-
cle: one ad-hoc method, which determines the business cycle by 
the cyclical frequencies found in the gross value added excluding 
agriculture and forestry, and one multivariate approach, based 
on a composite index which has been constructed by setting up a 
dynamic factor model. 

8.2. 1. Ad-hoc selection of the business cycle reference series 

In order to get a first idea of the dynamics of the Austrian business 
cycle, represented by the filtered series of gross value added ex-
cluding agriculture and forestry (autGVAex), and a possible co-
movement with euro area GDP, the following graphs show BK-
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filtered and the HP-filtered series of both. In order to avoid obstruc-
tion, strongly fluctuating first-order differences are not presented. 

Despite the included dominant irregular component that has 
passed the HP filter, some common variability can be seen in Fig-
ure 7. The development of the filtered Austrian gross value added 
(again without agriculture and forestry), represented by the red 
line, seems to follow the green line of the euro area GDP if it de-
parts from the mean. This is strong evidence for a close link existing 
between both cycles. Only for the early eighties and before, some 
idiosyncratic extra cycles can be observed for Austria, but since 
the mid-eighties the comovement seems to have become closer. 

Figure 7: HP/600 filtered euro area GDP and Austrian GVAex 
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Figure 8 gives a still clearer picture, as the BK filter cleaned these-
ries for frequencies higher than 6 quarters and lower than 32 quar-
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ters 104, with the red line again representing Austria. A strong co-
movement of both cycles can again be observed, and the ampli-
tudes seem to have the same relative size. Once more, extra cy-
cles can be observed only at the beginning of the time series. 
Later on, some synchronisation seems to have taken place. Since 
the middle of the 1990s, both cycles show a highly synchronised 
pattern, and the amplitudes seem to have quite the same relative 
size. This can probably be linked to the accession of Austria to the 
EU. 

Figure 8: BK filtered euro area GDP and Austrian GVAex 

autGVAex: BKLX Transforll'lld Series 
eurGCPex: BKLX Transformad Series 
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Source: own calculations. 

10• In the literature, it is most common to set the lower boundary for business cycle 
frequencies either at eight or six quarters. Here, six quarters have been chosen to 
take account of the observation that cycles in recent times seem to be rather 
short. 
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Less clear-cut is, from visual inspection, the leading property of 
one of the series compared with the other. Concerning the length 
of the phases - i.e. the time span between peaks and following 
troughs - again visual inspection can not reveal any differences. 

In order to evaluate the leading or lagging properties of all other 
filtered time series with respect to the Austrian business cycle, 
some descriptive statistics have been calculated. Tables A 1 a to c 
in the annex show the cross-correlations, the coherences, the av-
erage spectra and the mean delay for all observed time series in 
relation to the reference series according to all three methods of 
cycle extraction. Cross-correlations are calculated as given by 
(22) in chapter 5. For four leads and lags, correlations have been 
calculated for the filtered time series with rmax showing the maxi-

mum cross-correlation. 

8.2.1.1 Robustness of cross-correlation statistics 

r0 shows the cross-correlation between a specific series and the 

reference series at zero lag, i.e. the coincident cross-correlation. 
The values can range from 1 (perfect cross-correlation at a spe-
cific lead or lag) to 0. By construction, they are symmetric and 
only defined for positive values. The column labelled tmax shows 

the lead (positive figures) or lag (negative figures) at which the 
highest cross-correlation has been observed. In most cases ,max is 

observed at lag zero, which indicates that this series is coincident 
with the reference series 1os. 

Not surprisingly, for all three filtering methods cross-correlations are 
higher the closer the definition of the series comes to the refer-
ence series. Gross value added (this time including agriculture and 

105 The reader is reminded of the fact that Croux - Forni - Reich/in ( 1999) had 
proven that simple static cross-correlation of band-pass filtered data is the same as 
dynamic correlation over the same frequency band. For this reason, dynamic cor-
relation is not presented in the following. 
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forestry), for instance, exceeds 0.95 for all methods, being lowest 
with first-order differences (0.95) and highest with BK-filtered data 
(0.99). Also GDP, which is very similarly defined as the reference se-
ries, shows a high coincident correlation, again with the lowest 
value of 0.77 in the first-order- difference case and the highest with 
BK-filtered data (0.87). Gross value added as well as GDP show a 
coincident cyclical pattern in all cases (indicated by tmax = OJ, 

which leads to the conclusion that the two series either exhibit the 
same cyclical pattern, or that the difference in definitions is not big 
enough to shift cross-correlations. 

Considering the results for the first-order differences and the 
HP filter, the largest part of the series is coincident with the Austrian 
reference series. This also holds for the production aggregates, 
euro area GDP, whether including Germany and Austria (eurGDP) 
or not (eurGDPex), and for German GDP and gross value added 
(with or without agriculture and net taxes on production). Only 
gerGHI, the German service sector covering trade, hotels, trans-
port and telecommunication, and gerJK comprising German fi-
nancial intermediation services and real estate, renting and busi-
ness activities are lagging the Austrian cycle. But it should be 
noted that these cross-correlations are quite low and therefore 
their lagging property should not be over-emphasised. 

Whereas the results of the HP and the first-order difference filter are 
quite similar, the BK filter gives a different picture. While euro area 
GDP including Austria and Germany is coincident with the Austrian 
cycle, the series excluding both countries shows a lead of one 
quarter. Obviously, the large weight of the German and Austrian 
economies taken together seems to bias the result in the direction 
of a comovement. Therefore, the focus should be only on the euro 
area GDP without both countries. Looking at the cross-correlation 
of this series, it is highest at a lead of one quarter (tmax = 1) but the 

coincident cross-correlation is at 0.63, which is only marginally 
lower than the one with a one-quarter lead of 0.65. Thus, over the 
whole time span, it cannot be firmly decided whether the euro 
area cycle leads the Austrian cycle or coincides with it. 
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Furthermore, both definitions of German gross value added are 
again found to be coincident, but GDP shows a lag of one period. 
This result is in line with theory, since net taxes on production should 
lag the cycle, although this should again not be over-emphasised 
because there is hardly any difference between the highest cross-
correlation tmn and the coincident one. In comparison with the 

HP- and first-order-difference-filtered data, the Austrian financial 
intermediation services and real estate, renting and business ac-
tivities (autJK) are found to have some lag, but again the differ-
ence between the maximum and the coincident cross-correlation 
is quite small, which goes for the German construction industry 
(gerF), too. 

In accordance with the HP and first-order-difference method, 
gerGHI and ger JK show a lag, which is one period less for the first 
series. Therefore, the results concerning the lead and lag structure 
of the observed time series seem to be quite similar between all 
methods, especially between the ones containing the irregular 
component, i.e. the HP and the first-order-difference filter. The 
BK filter shows that the picture is not as clear-cut as the other filters 
suggest. This might be a hint that part of the cross-correlation be-
tween the time series should not be attributed to the business cy-
cle but to higher-frequency dynamics, like special events or 
weather effects. Defining the business cycle by a narrower fre-
quency band, e.g. only cycles above 8 quarters, will probably 
show a more pronounced difference between the BK filter and 
the others. 

A check for robustness can be made not only for the leading and 
lagging properties of the time series, but also for the size of the 
cross-correlations. The higher the cross-correlation, the stronger is 
the cyclical comovement between them. This property is impor-
tant for economic policy decisions, as it signals whether such deci-
sions influence other sectors. Table 2 shows for each series the dif-
ferences between the maximum cross-correlations (rmax) - for all 

methods. 
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The sum over all differences in cross-correlations, given in the last 
row, shows that the overall difference between the BK and the HP 
method is rather small, whereas it is substantial compared with the 
first-order-difference case, especially with the BK method. This find-
ing contrasts with the results for the leading and lagging properties 
found similar between the first-order differences and the HP 
method. The superimposition of higher-frequency movements, as it 
results from the first-order-difference procedure, seems to reduce 
cross-correlations dramatically. Only for autF (the Austrian con-
struction sector) and autJK (financial intermediation services and 
real estate, renting and business activities), the cross-correlations 
calculated on the basis of first-order-difference-filtered data are 
higher than those of the other methods. It is quite plausible that for 
the construction sector the methods that include (or superimpose) 
higher frequency variations (like weather conditions) show a 
stronger cross-correlation with the reference series (which also in-
cludes these variations) than others. But it has to be borne in mind, 
that this comovement is not one of a business cycle nature and 
therefore beyond our scope of interest. 

As a result, looking only at the highest cross-correlations for differ-
ent lags, the methods including higher-frequency variations (like 
the HP filter or the first-order differences) give very similar results. 
BK-filtered data show a slightly different pattern, but the output 
shows highest cross-correlations that are not farer away than ± 1 
quarter compared with the other two methods. Focusing on the 
size of the highest cross-correlations, largest values can be found 
in the BK-filter case, followed by the HP-filter output, and the one 
based on first-order differences are smallest. Only for those sectors 
where systematic high-frequency variances (like weather or dis-
crete events) could play a role, the methods including this infor-
mation should show higher cross-correlations. 
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Table 2: Differences in cross-correlations' 

BK minus HP HP minus fod BK minus fod 

aufF --0.01 --0.06 --0.07 
autCDE 0.06 0.21 0.27 
autGDP 0.01 0.09 0.10 
autGHI 0.01 0.13 0.14 
autGVA 0.01 0.03 0.04 
autJK --0.03 --0.05 --0.08 
eurGDP 0.06 0.26 0.32 
eurGDPex 0.08 0.21 0.29 
gerCDE 0.03 0.26 0.29 
gerF 0.09 0. 17 0.26 
gerGDP 0.07 0.35 0.42 
gerGHI 0.07 0.30 0.37 
gerGVA 0.07 0.34 0.41 
gerGVAex 0.07 0.33 0.40 
gerJK 0.01 0.28 0.29 
Sum 0.60 2.85 3.45 

Source: Own calculations. - 1 For abbreviations used see the list of abbreviations on 
page B. 

8.2. 1.2 Coherence 

A statistic closely related to the cross-correlation is the coherence, 
given in the next column of Tables A la to c 106• Instead of showing 
the linear comovement in the time series domain, it is defined in 
the frequency domain using cross-spectra, as explained in chap-
ter 5, equation (23). The table shows the proportion of spectral 
mass within the frequency band between 6 and 32 quarters after 
smoothing the frequencies by a Bartlett spectral window of three 
quarters' length. This gives triangular weights w (n) for the frequen-
cies which are calculated according to 

106 As the cross-spectrum is also defined over complex values, only the modulus of 
the squared cross-spectra is taken instead. The root of the resulting squared coher-
ence is used here. 
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(45) w(n)=-- --- n---2 (N-1 I N-11) N-1 2 2 

with N being the length of the filter (e.g. in quarters) and n being 
an integer number with values 0 :s; n :s; N - 1 which is augmented 
successively. 

The values are ranging from numbers close to 1, indicating a 
strong comovement within the observed frequency range, to 0 in 
the case of no comovement. It is clear that time series which are 
closely defined to the reference series (Austrian GDP or GVA) 
show a higher coherence than others. It is therefore more informa-
tive to concentrate on the others. 

Compared across all three filtering methods, the Austrian manu-
facturing sector shows the largest coherence values, as expected 
on theoretical grounds. In the first-order-difference case, around 
50 percent of the variability observed between 6 and 32 quarters 
can be explained by co-moving variability. For HP- and BK-filtered 
data, this amount rises to approximately 75 percent. Such high lin-
ear comovement is somewhat biased by the fact that this sector is 
part of the reference series (autGVAex), but it is also consistent 
with theory which suggests that manufacturing is strongly subject 
to business cycle variations 107. 

Considering the rest of the Austrian sectors, the construction indus-
try's comovement at the business cycle frequencies with 
autGVAex is relatively high in the first-order-difference case, at 
0.32. The results of the HP- and BK-filtered data do not confirm this, 
with a value of 0.21 in both cases. Again, weather effects could 
play a substantial role. The Austrian sector with the lowest coher-
ence is the sector of financial intermediation services and real es-

•07 Indeed, many studies use manufacturing output or industrial production as ad-
hoc reference series for their business cycle analysis. Examples are Artis - Kro/zjg -
Toro (2004), Vijselaar -Albers (2001) or Brandner -Neusser (1992). 
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tote, renting and business activities (NACE J+K). This result is quite 
similar to the one in the time series domain. This is not surprising, as 
the coherence is based on a Fourier transformation of the cross-
correlation function and therefore its frequency domain equiva-
lent. 

Once again we find that total euro area GDP shows a stronger 
comovement with the Austrian business cycle than the series cor-
rected for Germany and Austria. All three filtering methods are 
capturing this bias effect. The German series most closely con-
nected to the Austrian reference series are gross value added with 
and without agriculture and the manufacturing sector (gerCDE). 
This result, which is quite in line with theory is robust across all 
methods and is mirrored in the time domain cross-correlation re-
sults. Interestingly, all three methods show that the comovement 
between the Austrian reference series and Germany's highest-
scoring series is not higher than between Austria and the euro 
area aggregate (corrected for Austria and Germany). This pro-
vides strong evidence for the existence of a European business 
cycle, which would be of great importance for a common eco-
nomic policy. 

8.2.1.3 The mean delay 

In order to examine the leading or lagging properties of several 
time series in the frequency domain, the mean delay - as defined 
in 5.2.2. - has been calculated and the results are given in Ta-
b/es A 1 a to c. In Table A 1 a, the first-order-difference case, none 
of the time series seem to lead or lag the reference series by more 
than one quarter. Only autJK - the Austrian sector covering finan-
cial services and real estate, renting and business activities - and 
gerGHI - the German trade, restaurant, transport and communi-
cation sector - seem to have a lag close to one quarter (-0.78 or 
-0.7 4, respectively). 

Whereas cross-correlations and their frequency domain equiva-
lent, the coherences, show a rather similar picture concerning 
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their coincident comovements, the different statistics informing 
about leads and lags of the various time series do not. While the 
mean delay would justify classifying autJK as lagging by one pe-
riod, the cross-correlation was highest for coincident data. GerGHI, 
for its part, would be classified as lagging by one quarter accord-
ing to the frequency-domain-based method, whereas rmax is high-

est at a three-quarters lag in the time domain108• The largest differ-
ence between both approaches in the first-order-difference case 
can be observed for the German financial, real estate, renting 
and business services (gerJK). Whereas the mean delay indicates 
a lead by one-fourth of a quarter (0.21), the cross-correlation sta-
tistics suggest a lag by one year ( ,max at minus four quarters). 

For the HP-filtered data case, differences are not that large be-
tween the information about leads and lags given by cross-
correlations and mean delays. None of the latter exceeds one or 
minus one quarter, and this is closely in line with the information 
provided by cross-correlations. Only in the case of gerGHI and 
ger JK, cross-correlations again suggests a lag of 3 or 4 quarters re-
spectively, compared with the reference series, whereas mean 
delay statistics indicate only a small lag of approximately half a 
quarter. 

The picture is similar for BK-filtered data. The signs of the period shift 
seem to be the same between the cross-correlation criteria and 
the mean delay. Every time cross-correlation suggests a lag, this is 
not contradicted by the mean. But the number of periods of leads 
and lags indicated by cross-correlations are again much higher 
than according to mean delays. The criterion of cross-correlation 
seems less than reliable. As in the HP-and BK-filtering cases ,max for 

ger JK is at a lag of four quarters, but the cross-correlation at 10 is 

only marginally different from that. 

108 Admittedly, the difference between the rm,. of 0.18 and r0 of 0.06 is quite small. 
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8.2.2 Determination of the business cycle by a dynamic 
factor model approach 

Instead of determining the business cycle by the cyclical variations 
found in Austrian gross value added (without agriculture and for-
estry} as outlined before, the business cycle is now specified by the 
common variation found in all observed time series. This approach 
has already been presented in chapter 4.1.2. In order to avoid a 
bias caused by including time series with a definition rather close 
to each other, some of them have been discarded from the data 
pool. 

Common variations are extracted out of the following series 

autf: the Austrian construction sector 

autCDE: the Austrian industrial sector (including mining and quar-
rying and electricity} 

autGHI: Austrian services in trade, restaurants, transport and com-
munication 

autJK: Austrian services in financial intermediation, real estate and 
business activities 

autGV Aex: Austrian gross value added excluding agriculture and 
forestry 

eurGDPex: euro area GDP excluding Austria and Germany 

gerCDE: the German industrial sector (including mining and quar-
rying and electricity} 

gerf: the German construction sector 

gerGHI: German services in trade, restaurants, transport and 
communication 
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gerGV Aex: German gross value added excluding agriculture and 
forestry 

ger JK: German services in financial intermediation, real estate and 
business activities 

It has to be stressed again that this is a rather small set of time se-
ries as index models have been developed to reduce the cross-
section dimension of time series while keeping their main variation 
characteristics. A justification for using such a small set has been 
given in chapter 4. 1 .2. and the results presented in the following 
will show that this method can work quite successfully despite this 
small data set. 

Using the method outlined in chapter 4.1 .2., two common factors 
have been extracted from the data set. These two factors to-
gether describe more than 60 percent of the total variation of the 
data set, which can be seen in Tables A 5 a to c. Additional fac-
tors would explain an even larger proportion, but would also raise 
the danger of reflecting idiosyncratic cycles. Tables A 5 a to c 
show the proportions of variation explained at different frequen-
cies of the data set for the first 7 eigen values. In the case at hand, 
the spectral density matrix is evaluated for 7 frequencies over the 
interval (0,1t) 109• It turns out that the two factors used describe very 
well the total variation of the data set for all three filtering methods 
and over all given frequencies. In the first-order-difference case, 
the proportion of variance explained by the first two factors (rep-
resented here by their eigen values) exceeds 50 percent and goes 
up to 60 percent with BK-filtered data. An additional third com-
mon factor would explain only around 1 0 percent more of the to-
tal variance, which seems too little for considering it as a business 
cycle variation. 

109 This high number of frequencies has been chosen in order to facilitate a proper 
classification of the time series as leading or lagging. 



99 

Not only the proportion of the total variation of the data set ex-
plained by the common factors, but also the proportion reflected 
in each time series is of interest. Table A 7 gives for all three filtering 
methods the proportion of variation explained by the two com-
mon factors reflected by the respective time series. In the case of 
first-order-differenced data (the FOO section of Table A 6), both 
common factors are able to explain more than 70 percent of the 
variance of the series autGV Aex, gerCDE and gerGVAex, which is 
quite in line with theory. However, the variation of euro area GDP 
excluding Austria and Germany is only explained to one-half 
(48 percent) by both factors. In all cases (except in the case of the 
Austrian financial intermediation, real estate and business service 
sector), the explanatory power of the common component in-
creases by moving from the first-order-difference data to HP- and 
BK-filtered ones, supporting the view that idiosyncratic cycles are 
primarily a high-frequency phenomenon. This result can also be 
obtained by looking at the average over all series given in the bot-
tom line or by forming averages over all frequencies up to the 
second eigen value of Tab/es A 5 a to c. In the BK-filtered data 
case, the common factors are capable of explaining nearly 
70 percent of the variation of the euro area GDP series ( again ex-
cluding Austria and Germany). Furthermore, the value for the Aus-
trian industrial production has improved considerably to nearly 
80 percent. The explanatory power of the two common factors is 
especially strong for those series responding typically to business 
cycle movements. This supports the view that the variance repre-
sented by the two common factors is close to something that can 
be considered as the business cycle. Furthermore, the exception-
ally low values for some series like the construction industry in Aus-
tria and Germany and financial intermediation, real estate and 
business activities are quite in line with theory which suggests that 
these sectors have a low connection to the business cycle. 

As the variation of the common factors represented in each of the 
series can be regarded as cleaning them by their idiosyncratic 
variations, the difference between looking at frequency-filtered 
series alone and series transformed by our dynamic factor model 
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can be regarded as sector- or country-specific idiosyncratic cycli-
cality. The series representing the common component can be 
processed further in most cases like just filtered ones. Table A 7 a to 
c show for different filtering techniques cross-correlations with the 
reference series, both represented only by their common compo-
nent variability. Again, the Austrian gross value added (without 
agriculture and forestry) serves as the reference series, but this 
time it is cleaned for all its idiosyncratic variation. 

In the first-order-difference case, it can be observed that the Aus-
trian construction industry - while exhibiting only a small part of 
common variation according to Table A 6 - shows a strong co-
movement with the reference series. Furthermore, nearly all series 
seem to be coincident with the reference cycle, which corre-
sponds to the picture we got from the analysis carried out with just 
filtered series as given in Table A 1 a. Only two series are not found 
to be coincident. The first is ger JK (the German sector of financial 
intermediation, real estate and business services) which shows a 
lag of 4 quarters in the case of observing only the common com-
ponent. This lag was somewhat shorter for the just filtered series (2 
quarters). The second is the German trade, restaurants and trans-
port and communication sector. Its common-component varia-
tion shows a leading behaviour of 2 quarters compared with the 
reference cycle, whereas it has been classified as lagging by 4 
quarters in the unprocessed case. All in all, for first-order-
differenced series, the common-components variations convey 
nearly the same picture of leads and lags. 

For HP-filtered data, Table A 7 b reveals that all series cleaned for 
their idiosyncratic movements show coincident behaviour with re-
gard to the business cycle represented by the cleaned reference 
series. For the uncleaned series, as shown in Table A 1 b, again the 
same picture emerges, but differences can be observed for 
gerGHI and ger JK, with both series classified as lagging according 
to their highest cross-correlations. 
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While results based on just filtered series were quite different for BK-
filtered data as compared with the HP and the first-order-
difference filter, they now look more similar to each other. In the 
present instance, nearly all series are classified as coincident ac-
cording to their highest cross-correlations with the reference series. 
Only for the Austrian sector of financial intermediation, real estate 
and business services, the highest cross-correlation is observed for 
a lead of 4 quarters. This result is not confirmed in the case of un-
cleaned series. There. this sector has been classified as lagging like 
the series gerGHI and ger JK. 

Figure 9: Common component and BK-filtered GVAex of Austria 
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Source: Own calculations. 

All in all, quite a similar picture seems to emerge when looking at 
leads or lags of series represented just by their common variation 
and the uncleaned series. Only in the case of the series gerGHI 
and ger JK, idiosyncratic cycles seem to matter. This result is also 
reflected in the case of BK-filtered data, which implies that this 
idiosyncratic variability has a frequency that lies within the band of 
business cycles (i.e. between 6 and 32 quarters). In that respect. 
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the dynamic factor approach revealed some important informa-
tion about sector-specific cyclical behaviour. 

In order to give some impression of the difference between just fil-
tered series and those filtered by the same technique, but further 
processed by the dynamic factor model, Figure 9 plots both series 
for autGVAex, with the thin line representing just filtered values 
and the bold one the common component represented in this 
time series. 

As can be observed the series just filtered for certain frequencies 
exhibits larger amplitudes and is not as smooth as the one repre-
sented by the common variance. 

Figure 1 O shows the same series, but for HP-filtered data. Again, 
the thin line marks the just filtered series and the bold one the 
common component. Again, the common component behaves 
more smoothly, but there seems to be no difference in amplitudes. 

In both cases it becomes apparent that there are dissimilarities be-
tween the just filtered series and the one representing only its 
common component content. Differences show up not only in the 
number of peaks and troughs (and therefore of cycles), but also 
with regard to the dates of turning points, implying differences in 
leads and lags. 

However, while in general the leads and lags according to the 
cross-correlation criterion deviate only modestly from the just fil-
tered data set, the leading and lagging behaviour is different for 
the series gerGHI and ger JK, which indicates that their idiosyn-
cratic cycles play an important role in their data generation proc-
ess. Again, this can be visualised by plotting them, as given in Fig-
ures 11 and 12. 
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Figure 10: Common component and BK-filtered GVAex of 
Germany 

3 ··1---+----lf----+----+--+--- --1---+---4--4-----+--l 
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Source: Own calculations. 

Figure 11: Common component and BK-filtered NACE G+H+I of 
Germany 

1- 1978 3 -19 7 8 1- 1981 3 -1983 1 - 1986 3 - 1988 1 - 1991 3 - 1993 1- 1996 3 - 1998 1-2001 3 -2003 

Source: Own calculations. 
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Figure 12: Common component and BK-filtered NACE J+K of 
Germany 

1 - 1978 3- 1978 1 -1981 3-1983 1- 1988 3-1988 1- 1991 3-1993 1 -1998 3- 1998 1- 2001 3 -2003 

Source: Own calculations. 

8.3 Doting the business cycle 

8.3. 1 Dating the business cycle in the ad-hoc selection 
framework 

Figures A 1 a to A 1 c show the filtered series according all three 
methods with turning points indicated by small triangles. These 
turning points have been identified by applying the Bry-Boschan 
routine to all series of the three data sets. As explained in chapter 
6.2., a sequence of different smoothing filters is applied, each time 
checking for changes in local maxima and minima. Here a 
Spencer curve - which is a symmetrical 2 x 7 moving average term 
with special weights - had been applied first, after running a pro-
cedure for detecting outliers (values deviating more than 3.5 
standard deviations from the mean). 
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Apart from requiring consecutive turning points to show alternat-
ing signs (so that a trough has to be followed by a peak), the 
minimum cycle length (the time between two peaks or troughs) 
has been set at 6 quarters and the one for the minimum phase 
length (the time between two consecutive turning points of differ-
ent signs) to 3 quarters. If there are two potential turning points of 
the same sign, only the lowest (in the case of troughs) or highest 
(in the case of peaks) is retained. 

A further problem arises as turning points following each other 
have to possess different signs. Therefore, identifying the first one 
can be very important for estimating all following ones. As the 
Spencer curve smoothes the series very strongly, the first turning 
point was identified after applying a 2 x 4 term moving average at 
the beginning of the series. 

Figures A 1 a to d show the resulting dates of the turning points for 
various series and different methods of cycle extraction as graphs. 
It can be observed that the number of turning points detected110 

varies considerably across the methods for business cycle extrac-
tion. The first-order-difference-filtered series shows the lowest num-
ber of turning points, namely 10, and their occurrence is concen-
trated at the beginning of the series. In the HP-filtered case, 11 
turning points have been identified which are spread more or less 
equally over the time span. The series with the BK-filtered data 
shows the largest number of turning points. 15 of them have been 
discovered, and again they are spread more or less equally over 
the entire time series. 

This picture seems to be stable for all different time series within the 
respective approach. Figure A 1 b shows the turning points of euro 
area GDP excluding Germany and Austria, and Figure A 1 c those 
of German gross value added excluding agriculture and forestry. 

110 A triangle pointing upwards marks a trough with its top pointing to the lowest 
point of the trough. Accordingly, triangles pointing downwards marl< peaks. 
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Again, calculations on the basis of first-order-differenced data 
show the smallest number of turning points and of BK-filtered data 
the highest. Only for gerGVAex, there are two more turning points 
in the first-order-difference case than for HP-filtered data. 

Whereas the result for leads and lags when analysing business cy-
cle movements on the basis of cross-correlations and mean devia-
tions seems to be rather robust over all business cycle extraction 
methods, things are markedly different for the dating procedure. 
This result is not unexpected as it seems plausible that the criteria 
for peaks and troughs requiring a cycle length of at least 6 quar-
ters and a phase length of at least 3 quarters are rather hard to ful-
fil for time series having a large or even superimposed high-
frequency variation. There are so many ups and downs in these 
series that a proper identification of peaks and troughs becomes 
a difficult task. Furthermore, it could be expected that for series 
with a large content of high-frequency variation, the identification 
of the first turning point is highly determinant for the identification 
of the others. Interestingly, the difference between HP- and BK-
filtered data is not only marginal, as it was in the case of cross-
correlations and mean delays. This time, BK-filtered data show sub-
stantially more turning points than HP-filtered ones. Again, high-
frequency variations in the HP-filtered data seem to be a problem 
for the identification of turning points, even if they are not super-
imposed as in the first-order-difference case. 

If one has to judge which result is most relevant for economic pol-
icy purposes, it seems to be clear that only those peaks and 
troughs that mark a turn in the medium (or at least not very short) 
term economic development are relevant. The fact that for time 
series including high-frequency variations the process of identifica-
tion is problematic or that some of the many ups and downs may 
accidentally be identified as turning points, make these time series 
a poor guide for economic policy issues. 

Figure A 1 d shows the turning points for BK-filtered data of the 
Austrian and German gross value added (excluding agriculture 
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and forestry) and the euro area excluding both countries. All series 
start with a peak before 1978 and show nearly the same number 
of turning points. AutGV Aex shows 15 turning points, against 14 for 
the two others. Table A 2 shows the exact dates of the reference 
cycle's (autGVAex) turning points and the leads and lags for the 
other series in relation to these. The last column shows the number 
of extra cycles, with unfinished ones (only one peak or trough 
more) counting as one. As the reference cycle shows 15 turning 
points and eurGDPex and gerGVAex only 14, they both show one 
cycle less which is indicated in the last column of the respective 
rows. 

According to this table, the Austrian business cycle (represented 
by the business cycle variations included in the gross value added 
without agriculture and forestry) recorded a peak in the second 
quarter of 1977. This was followed by a sharp slowdown reaching 
its nadir five periods later, in the third quarter of 1978. When look-
ing at the upper part of the graph in Figure A 1 d, it becomes ap-
parent that between these turning points there was a sharp drop 
in economic activity. This strong decline in economic activity had 
been identified as break in the time series and was therefore re-
garded as an outlier not to be classified as a turning point. 

Thereafter, a strong recovery took place reaching its climax at the 
end of 1979. The second oil price crisis at the end of 1979 led to a 
period of stagnation, making it hard to find the lowest point as this 
cycle was tub-shaped. The Bry-Boschan procedure dates its 
trough in the third quarter of 1982, which seems to mark the end of 
the stagnation. Only one year later, the Austrian business cycle 
rose to a peak again, starting a series of rather short cycles. One 
year later, in the third quarter of 1984, economic activity again fell 
to a trough, swiftly followed by a peak in the fourth quarter of 
1985. After overcoming the trough observed at the end of 1987, 
the Austrian economy started a long period of undisturbed up-
ward movement which lasted for more than four years and ended 
in the first quarter of 1992. The marked recession that followed this 
period reached its nadir in the third quarter of 1993. The cycle fol-
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lowing that recession peaked at the beginning of 1995. A mild re-
cession, with its trough located in the second quarter of 1997, 
dampened Austrian economic activity again. Thereafter, a further 
business cycle set in which lasted for more than three years and 
peaked in the third quarter of 2000. It gave way to an extraordi-
nary long stagnation of the Austrian economy. Over three years, 
activity was characterised by rather short cycles with frequencies 
above business cycle variations and a rather flat underlying trend. 
A trough in the third quarter of 2003 ended this sluggish perform-
ance and the economy re-gained momentum. For the time be-
ing, the dating procedure yields a further peak at the end of 2004, 
but this has to be taken with caution, as dates close to either end 
of the series are rather unreliable and this latest turning point is mir-
rored neither in euro area GDP (excluding Germany and Austria) 
nor in German gross value added (excluding agriculture and for-
estry). 

Over the time span between the first quarter of 197 6 and the sec-
ond quarter of 2005, the Austrian economy completed all in all 
seven business cycles (defined as the business cycle variations 
found in BK-filtered Austrian gross value added), according to the 
Bry-Boschan dating procedure. Turning points detected in euro 
area GDP are plotted in the middle part of Figure A 1 d and their 
leading or lagging properties in relation to the Austrian cycle are 
shown in the respective row of Table A 2. As regards leading and 
lagging properties of the business cycles of the euro area and 
Germany, no clear picture emerges. Encouraging is, however, the 
small number of extra cycles for most of the observed series. This 
suggests that idiosyncratic cycles are of only minor importance, 
which is highly beneficial when setting up a dynamic factor 
model. Only for the sector providing financial and real estate, rent-
ing and business services and the trade, restaurant, transport and 
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communication sector, idiosyncratic cycles seem to play a role in 
both countries 111. 

In order to check for leads and lags of the observed time series, 
not only cross-correlations and mean delays are informative, but 
this can be done on the basis of turning points, too. In this regard, 
it is very helpful to calculate indicators which can give an over-
view about such properties. This approach is not only promising 
when comparing the results with the ones based on cross-
correlations and coherences in view of their robustness, but has 
the additional advantage that leading and lagging features can 
also be analysed for peaks and troughs separately. Tables A 3 a to 
c show for all series their leading and lagging properties of turning 
points, further classified by peaks and troughs. As averages give 
equal weights to all values, even if they can be considered as out-
liers, also the median lag is reported. 

Table A 3 a shows this kind of statistics for the first-order-difference 
case. The turning points found in the first-order-differenced series 
of construction industry (autF) show an average lag of 0.6 quarters 
vis-a-vis those found in the reference series (autGVAex) with the 
same sign. Distinguishing between peaks and troughs, peaks show 
an average lag of 3.2 quarters and troughs a lead of 2 quarters 
compared with those of the reference series. As these averages 
can be strongly biased by a single outlier, it is deemed appropri-
ate to calculate a median statistic as well. Whereas the median 
lag of all turning points is two quarters, sign and size of medians 
broken down by peaks and troughs are similar to the case of av-
erages. A different pattern of leads and lags for peaks and troughs 
is difficult to explain on theoretical grounds. These differences are 
especially pronounced in the case of first-order-differenced and 

111 Interestingly, GDP of Austria and Germany, like the GDP of the rest of the Euro 
area (eurGDPex) show one cycle less than the reference series, but total Euro Area 
GDP two cycles less. which is not a consistent result. 
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HP-filtered series. Again, this could be a hint to the difficulties aris-
ing when using time series which carry high- frequency variations. 

In view of these deficiencies of first-order-differenced and HP-
filtered data, the analysis of turning point sequences concentrates 
in the following on BK-filtered ones only. Table A 3 c shows aver-
age and mean leads and lags for all peaks and troughs. Euro area 
GDP (excluding Germany and Austria) leads the Austrian refer-
ence cycle by half a quarter on average. This goes for peaks as 
well as for troughs. Looking at the median shift suggests that the 
euro area business cycle is coincident with the Austrian cycle, with 
half a quarter lag for peaks and half a quarter lead for troughs. 

The German business cycle - represented by the turning points 
found in gross value added excluding agriculture and forestry -
shows a somewhat stronger lead vis-a-vis the Austrian cycle than 
euro area GDP' 12• Over all turning points, there exists a lead of 1.08 
quarters, which is with 1.17 quarters insignificantly higher for 
troughs than for peaks 1 .00. This result is broadly reflected by the 
median statistic which notes for peaks and troughs a lead of 0.5 
quarters. 

In line with theoretical considerations, all series representing indus-
trial production (autCDE and gerCDE) lead the Austrian cycle, 
whereas German industrial production leads for peaks as well as 
for troughs by 0.83 quarters on average, or half a quarter in the 
median case. For Austrian industrial production, this lead is with 
0.43 quarters in the case of averages and 0.5 for medians some-
what shorter. On average, Austrian GDP lags the cycle for peaks 
by approximately half a quarter, whereas it leads the cycle for 
troughs by the same amount of time. This yields for all turning 
points roughly a coincident behaviour, which is reflected by the 
median statistic, too. 

112 This implies - without prejudice to causality - that the German cycle leads the 
European one. 
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This result leads to interesting conclusions concerning the compa-
rability of different studies on business cycles. If total production is 
regarded as the series representing the business cycle, then GDP 
as well as gross value added (in our case without agriculture and 
forestry) give similar results for the dates of turning points as de-
rived by the Bry-Boschan routine. In the case of an analysis focus-
ing on industrial production or a measure close to it, turning points 
are dated earlier. 

The largest part of all other components - contributing to Austrian 
total production - shows some leading or coincident properties 
according to the average and the median criteria. Only autJK 
(the sector covering financial, real estate, renting and business 
services) seems to lag clearly by one quarter, with the lag in the 
case of troughs being somewhat higher. 

For the German economy, not only the industrial sector (gerCDE) 
and gross value added (gerGVA and gerGV Aex) lead the Aus-
trian cycle, but also GDP as a whole seems to exhibit this property. 
While euro area aggregates (eurGDP and eurGDPex) show a short 
lead of approximately half a quarter in the case of averages, the 
median suggests a coincident pattern of turning points. 

If we compare our leading and lagging properties found by look-
ing at cross-correlations with those of turning points for first-order-
differenced data, we are faced with inconclusive and sometimes 
contradicting results. This unpleasant picture is broadly confirmed 
in the turning point analysis comparing average and median 
leads and lags in Table A 3 a. For HP-filtered data, the situation is 
somewhat better but still some puzzles arise, which make a serious 
interpretation difficult. Thus, Table A 1 b shows for the German sec-
tor of trade, restaurant and transport services (gerGHI) a consider-
able lag of this series, according to the maximum cross-correlation 
as well as the mean delay criterion. Turning point analysis, how-
ever, suggests a leading behaviour for averages and medians 
alike. 
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Due to these difficulties, only results based on BK-filtered data are 
analysed more closely in the following. The short leading property 
of the euro area business cycle (excluding Germany and Austria) 
for averages, as shown in Table A 3 c (for medians only coinci-
dence can be observed), is confirmed by cross-correlation and 
mean delay according to Table A 1 c. Looking at euro area GDP 
including both countries (which introduces a bias), both tables in-
dicate a shift towards a more coincident behaviour. A different 
picture is presented for the German economy. Whereas Ta-
ble A 1 c suggests a coincident behaviour of the German business 
cycle, represented by the series gerGVAex, with respect to the 
Austrian cycle, the turning point analysis in Table A 3 c indicates 
for averages and means a leading behaviour. In order to obtain a 
clearer picture of the German business cycle properties, the be-
haviour of German GDP has been observed. But looking at this se-
ries, differences become even more pronounced. Cross-correla-
tion and mean delay statistics suggest a lag of German GDP with 
respect to autGV Aex, while peaks and troughs are leading on av-
erage and for medians. Even the search for a possible change of 
the pattern over time was not successful. According to Table A 2, 
turning point dates for the first half of the series give no systemati-
cally different picture than for the second half. Therefore this ques-
tion remains unresolved for the case of an ad-hoc definition of the 
business cycle. 

The dates identified allow further the measuring of the length of 
cycles and phases of all series. This can be done either by simply 
dividing the total time span of the series of approximately 30 years 
by the number of cycles. For the cyclical variations included in the 
Austrian reference series autGVAex, this gives for seven cycles an 
average length of around four years for one complete business 
cycle. For a closer observation, Tables A 4 a to c show the aver-
age duration of cycles and phases, with cycles defined as the 
time span between two successive turning points with the same 
sign (two peaks or two troughs) and phases as the time span be-
tween different turning points (from peak to trough or trough to 
peak). Thus, two successive phases give a complete cycle. In or-
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der to capture possible asymmetries of the business cycle, spans 
are calculated for the time elapsed between peaks and troughs 
(P to T) and troughs and peaks (T to P), separately. 

Due to the reasons cited above, the focus lies again on the BK- fil-
tered data, the results of which are compared with HP- and first-
order-difference-filtered data. Table A 4 c shows for the reference 
time series (autGVAex) the time elapsed between two consecu-
tive peaks or troughs of around 15 quarters, i.e. approximately 
4 years. This result contrasts the ones of the HP- and first-order-
difference-filtered data, which is reproduced in Table A 4 band a, 
respectively. Both show a longer cycle length of roughly 20 quar-
ters or five years. Furthermore, they suggest an asymmetry of 
phases, with a time span of 12 to 13 quarters from a trough to a 
peak and 7 quarters from a peak to a trough. This stylised fact of 
longer phases of upswings than downswings is frequently reported 
in business cycle analysis, but is not confirmed in the BK-filter case. 

In order to check, whether this kind of asymmetry is linked to the 
method of extraction of business cycle variations, the averages of 
phase and cycle length over all series are reported in the last row 
of the tables. Looking at the results for first-order differences, no 
such asymmetry seems to exist. If anything, the time elapsing from 
a peak to a trough, i.e. close to 11 quarters, even seems to be 
somewhat longer, by around 1 quarter, than the upswing phase. 
However, for HP filtered data, the mentioned asymmetry seems to 
exist. Upswing phases, with more than 12 quarters, are longer than 
downswings, which last less than 1 O quarters. In the case of the BK 
filter, again no asymmetries emerge overall. 

8.3.1.1 Conclusions for the ad-hoc-determined reference 
business cycle 

The inclusion of variances higher than the frequency band of busi-
ness cycles in the first-order-difference and HP-filter case yields for 
both data sets quite similar leading and lagging properties ac-
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cording to the cross-correlation criteria. Compared with BK-filtered 
data, only for some series where short-lived shocks (like weather 
conditions for instance) play a more important role, differences 
can be observed. Concerning the highest cross-correlations ob-
served for various leads and lags, differences between the HP-
and the BK-filtered data are minor, whereas they are substantial 
when compared with the first-order-differenced data. 

Results of coherence estimates are quite in line with theory. Co-
movement with the reference series for Austria is largest for the in-
dustrial sector (autCDE) and smallest for financial intermediations 
services and real estate, renting and business activities (autJK). 
Furthermore, there is a high degree of comovement between the 
Austrian and the German business cycle, represented by the cy-
clical variation of gerG V Aex ( excluding agriculture and forestry), 
which is higher than compared with the euro area cycle 
(eurGDPex) and is consistent over all three filtering methods. 

The calculation of shifts according to the mean delay statistics 
displayed much shorter leads and lags than with the maximum 
cross-correlation criterion. However, the signs of the shifts seem to 
be rather similar in the case of HP- and BK-filtered data, but not 
with first-order-differenced data. 

The Bry-Boschan dating procedure provides different information 
for all three filtering methods. Not one single turning point (even if 
one allows for some minor shift) is the same for the first-order-
difference and the HP-filter case. Only the number of turning 
points was nearly the same in both cases, but much higher in the 
case of BK-filtered data. Interestingly, for both methods showing 
rather erratic movements in their filtered results, fewer turning 
points have been detected than for the BK-filtered data. The turn-
ing point detection criteria of the Bry-Boschan procedure proba-
bly discard a lot of possible points if they are not identified with 
certainty. 
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Detecting turning points with the Bry-Boschan procedure seems to 
be an arbitrary procedure in the case of remaining high-
frequency components. Therefore, the results based on BK-filtered 
data are most convincing, and some of them are mirrored in HP-
filtered data. This is especially the case for German gross value 
added (without agriculture and forestry). Focussing on these re-
sults, the most important time series show the same number of cy-
cles as the reference series, if we discard the last turning point of 
the reference series which is not reflected in other series. This rein-
forces the perception of a common business cycle driving the 
largest part of economic time series. Thus, seven cycles have been 
detected in the Austrian reference series, with a length of ap-
proximately 15 to 16 quarters. Phase lengths are reported to be 
symmetric. Mean and average distances of turning points suggest 
for the euro area business cycle anything between a small lead 
and coincident behaviour with respect to the Austrian cycle. The 
German business cycle, represented by business cycle variations 
contained in its gross value added (excluding agriculture and for-
estry), has been confirmed as leading by half a quarter according 
to mean and median distances. Industrial production of Germany 
shows the longest lead by one quarter, whereas Austrian industrial 
production leads by only half a quarter. Further robust results are a 
lead of the Austrian construction industry and a lag of Austrian fi-
nancial intermediation, real estate, renting and business services. 

8.3.2 Dating the business cycle in the dynamic factor 
model framework 

Results are conveyed by the dates of the turning points in Ta-
ble A 8. There, the dates are calculated by the Bry-Boschan rou-
tine, using the same settings and restrictions concerning phase, 
cycle length and the length of the Bartlett smoothing window as 
for the just cleaned series. For first-order differences, dates of turn-
ing points are the same for these two approaches till the first quar-
ter 1980. However, the subsequent cycle is dated differently. 
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Looking at the results of the just filtered series, the peak following 
the trough at the beginning of 1980 is dated at the fourth quarter 
of 1981 , with the following trough at the end of 1983. The equiva-
lent peak in the common component is dated at the fourth quar-
ter of 1982, with the following trough only at the end of 1986. No 
other filtering method confirms either of these turning points. For 
both approaches, HP-filtered data show the same date of the 
above-mentioned peak as a trough, whereas the subsequent cy-
cle is dated by both approaches the same way. Again differences 
exist at the end of the series. 

For reasons of space, observed leads and lags of turning points for 
all other series with respect to the reference series are not inter-
preted here. They can be deducted from Table A 8 and com-
pared with the results for just filtered series. Noteworthy seems only 
the fact that for turning point analysis based on common compo-
nents, the number of observed extra cycles seems to be higher 
than for just filtered series. Obviously, the cleaning for idiosyncratic 
cycles did not reduce the number of turning points, but makes the 
common cyclicality more visible, so that it becomes easier for the 
Bry-Boschan algorithm to locate them. 

Considering the case of BK-filtered data, the number of turning 
points found is the smallest. This is due to the fact, that it starts dat-
ing very late, at the beginning of 1980. Both other methods, the 
first-order differences and the BK filter, have already identified at 
least one complete cycle at that time. This interesting fact has al-
ready been observed for just filtered data in Table A 2. In the dy-
namic factor approach as well as for the just filtered data, the first 
turning point is a peak in the first quarter of 1980. The following 
trough is dated differently. In the case of just filtered data it is lo-
cated at the end of 1981, whereas for the common component it 
occurs one year later. The following phase is dated exactly the 
same way, whereas the subsequent one harmonises only with re-
spect to the year of occurrence. For the rest of the series, at least 
one turning point of a phase is reflected in both calendars. Again, 
plenty of differences can be found concerning the number of cy-
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des of each series with respect to the reference series, but this 
problem seems to be less severe than when using just filtered data. 

The largest difference concerning the number of dated cycles be-
tween the dynamic factor approach and just filtered data is for 
BK-transformed data. In the case of just filtered data, the refer-
ence series shows 15 turning points, whereas the common com-
ponent of this series reports only 12. Obviously, the dynamic factor 
approach discarded one-and-a-half idiosyncratic cycles from the 
reference series autGV Aex, but the dates of the remaining turning 
points are nearly the same. Such reduction of cycles when clear-
ing for idiosyncratic business cycle movements is also observed for 
the other BK-filtered series. 

The first turning point detected for both series of BK-filtered 
autGVAex is a peak in the second quarter of 1977, followed by a 
trough in the third (for just filtered series) or the second quarter (in 
the dynamic factor model approach) of 1978, respectively. For 
both approaches, the Bry-Boschan routine found the next peak in 
the fourth quarter of 1979 and a subsequent trough in the third or 
the fourth quarter of 1982, respectively. The next cycle, marked by 
a peak in the third quarter of 1983 and a trough in the third quar-
ter of 1984 for just BK-filtered data, was classified as an idiosyn-
cratic cycle by the dynamic factor model and therefore dis-
carded, hence not showing up in the calendar of this approach. 

The next peak for the common component hos been detected in 
the third quarter of 1985 and is doted one quarter earlier for just 
filtered series. The end of the ensuing recession marks a trough 
dated at the end of 1987 for both methods. For the dynamic fac-
tor model approach, the following peak is dated in the fourth 
quarter of 1991 one quarter earlier than for the just filtered series 
( 1 Q 1992). Again, both calendars match for the following trough 
that occurred in the third quarter of 1993. The subsequent recov-
ery ended around the turn of the year 1994-1995, with the com-
mon component dating it in the last quarter of 1994 and the just 
filtered series at 1 Q 1995. Apart from the different number of cy-
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cles, the trough following that peak is the only substantial differ-
ence between both calendars. Whereas for just filtered series it is 
dated at the second quarter of 1997, the dynamic factor model 
approach locates it in the first quarter of 1999. 

This is quite interesting, because usually the detection and exclu-
sion of idiosyncratic cycles should not interfere with the dates, but 
just vary in their number. Looking at Figure 8, this difference can be 
explained easily by observing the amplitudes of both series. The 
series reflects both turns, but for the just filtered series the first turn 
of the second quarter of 1997 is deeper (i.e. has a higher negative 
amplitude) than the second in the year 1999. In the case of the 
dynamic factor model approach, it is the other way round and 
the turn of 1997 had been regarded as too local as to be classified 
as a trough. Obviously, the amplitude of the turn of 1997 has been 
magnified by an idiosyncratic component occurring at the same 
time. 

For both approaches, the next peak was found at around the 
middle of 2000, where the common component dates it one quar-
ter earlier (in the second quarter) than the just filtered series. The 
date of the following trough shows the same shift by one quarter. 
The turning point found in the common component is dated at 
the second quarter of 2003 and for the just filtered series at the 
third quarter of that year. Whereas this turning point marks the end 
of the calendar for series processed by the dynamic factor model 
approach, just filtered data show an additional phase with a peak 
at the end of 2004. Again, the number of extra cycles differs be-
tween both approaches for nearly all series, albeit only slightly. 

In order to check the leading and lagging properties of the full set 
of time series in relation to the reference series, average and me-
dian leads and lags - separated by peaks and troughs - are pre-
sented in Tables A 9 a to c for the different filtering methods. The 
unclear picture that emerged for just filtered series in the case of 
observing first-order differences only improved slightly by clearing 
for their idiosyncratic cycles. Table A 9 a shows that there is a sub-
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stantial difference between looking at average and median leads 
and lags, respectively. This is pointing to an unstable pattern of 
leads and lags, where averages are driven by extreme values. In 
this respect, working with data transformed by a dynamic factor 
model did not lead to a clearer picture. 

Again, the use of HP-filtered data shows a more consistent picture 
for average and median leads and lags, which can probably be 
attributed to the lower content of high-frequency variation. But 
again, some ambiguous results emerged. When the results pre-
sented in Table A 9 b are compared with the leads and lags de-
tected according to the cross-correlation criteria of Table A 7 b, it 
becomes apparent that medians are more similar to those. Only 
for autJK, the Austrian sector of financial intermediation, real es-
tate and business services and eurGDPex, the euro area GDP (ex-
cluding Austria and Germany), turning point averages and medi-
ans are pointing to a leading behaviour, which is not confirmed if 
one looks only at the cross-correlations of their respective com-
mon components. 

In the case of BK-filtered data, the results for averages and medi-
ans shown in Table A 9 c seem to be quite similar to the leading 
and lagging properties according to cross-correlations in Ta-
ble A 7 c. The moments of all series are not far away from being 
coincident, as reflected by cross-correlations. Only for eurGDPex -
the euro area GDP without Austria and Germany-, an average 
lead of more than one quarter is calculated, but this result is not 
supported by its median shift that favours a coincident behaviour. 
If we clear the BK-filtered data for idiosyncratic cycles, resulting 
turning points seem to behave quite stable as the rounded aver-
age leads and lags coincide in all but the above-mentioned case 
with its medians. This was not as much the case for just filtered se-
ries, as can be seen in Table A 3 c. 

According to the results of the turning point analysis for common 
components with respect to the reference series based on BK-
filtered data, the Austrian construction industry (autF) shows on 
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average a small lead resulting from leads in the case of troughs, 
but not for peaks. Its median suggests a coincident behaviour with 
respect to the reference series autGVAex, but for troughs, again a 
lead of two quarters is observed. 

The Austrian industrial sector (autCDE) exhibits a coincident be-
haviour which is consistent between averages and medians. For 
the just filtered series shown in Table A 3 c, a small lead can be ob-
served. 

Whereas euro area GDP (again without Austria and Germany) 
shows on average a lead of two quarters, which goes for peaks as 
well as for troughs, no such lead can be observed for the German 
gross value added excluding agriculture and forestry (gerGVAex). 
This cannot be explained by the fact that in the case of the dy-
namic factor estimation all series enter into the determination of 
the business cycle, such that business cycle dates are shifted more 
to an international interpretation. It is true that now also interna-
tional series enter into the estimation procedure, but if they are 
observed for a large number of frequencies their leading and lag-
ging properties are already considered implicitly. 

Interestingly, autGHI and the German construction sector are 
identified as leading series, which goes for averages as well as for 
medians. This is not supported by theory, nor is it observed for just 
filtered series. The respective statistics are inconclusive, but the 
small lead of one quarter should not be over-emphasised. For the 
German trade, restaurant and transport and communication ser-
vices, a small lag of one quarter is reported, whereas the just fil-
tered results suggest a coincident behaviour. There again, no reli-
able conclusion can be drawn. 

Tables A 10 a to c show further statistics which are similar to those 
presented in the Tables A 4 a to c. For the reference series 
autGVAex it can be observed that the length of cycles and 
phases has been reduced substantially when compared with just 
filtered series. This is surprising, since the clearing for idiosyncratic 
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cycles should lead to a reduction of cycles and hence to longer 
cycles and phases. The reduction of variation probably allowed 
the Bry-Boschan routine to detect more turning points than in the 
case of just filtered series. This leads to a reduction of the length of 
cycles and phases, as can be seen in Table A 10 a. Now the cycle 
length is reduced to around 17 quarters, from around 23 quarters 
for just filtered series. However, this is not a general feature of the 
dynamic factor model output, as it is the other way round for the 
Austrian construction sector (autF) and for German manufacturing 
production (gerCDE). 

The same puzzle arises when focussing on symmetries of business 
cycle phases. Regarding the common component, cycle phases 
are now more symmetric for the reference series than they were 
for the just filtered series. The time span of downswings (from a 
peak to a trough) and upswings (from a trough to a peak) is now 
close to nine quarters for both phases, whereas it differed substan-
tially (7 quarters against 13 quarters) for the just filtered reference 
series. For other series like the Austrian construction sector (autf) 
and German manufacturing production (gerCDE), it is exactly the 
other way round: they now show more asymmetries in their cycli-
cal behaviour. 

Both facts point to a rather arbitrary dating of the cycle in the 
case of first-order differences. Transformation by the dynamic fac-
tor model leads to unsystematic changes of the properties of cy-
cles when dated with the Bry-Boschan procedure. Thus, first-order 
differences again turn out to be an inappropriate method for the 
extraction of the cycle. 

The same problem shows up for HP-filtered series, albeit at a 
smaller scale. Again, the high-frequency part included in these se-
ries leads to an unstable dating of turning points, which is reflected 
by the differences concerning the length of the cycle. Ta-
ble A 1 O b shows a change in the length when compared with the 
just filtered series given in Table A 4 b. Only for few series, the dates 
of the common components turning points show a similar cycle 
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length. This is the case for the reference series, the German manu-
facturing production gerCDE and the euro area GDP (eurGDPex). 
Again, no systematic change of the cycle length shows up when 
idiosyncratic parts of the series are extracted. 

For BK-filtered data, the extraction and dating of the common 
component did not lead to a substantial change in the length of 
cycles or phases. The reduced number of turning points in the 
common component of the reference series led to cycles becom-
ing longer by around 3 quarters. Especially the phases of downturn 
(from a peak to a trough) are extended (+3 quarters), whereas for 
upturns only one quarter was added. 

For the rest of the BK-filtered data, the picture hardly changed. In 
many cases, the cycle and phase lengths did not change at all. 
This leads to the conclusion that for the underlying data set idio-
syncratic cycles are mainly a phenomenon outside the business 
cycle frequency band. In that case, the extraction of idiosyncratic 
cycles does not lead to a change in the dating calendar, but 
rather the different amplitude of just filtered series and common 
components changes the pattern of local minima and maxima. 

8.3.2.1 Conclusions for the dynamic-factor-model-determined 
reference cycle approach 

Before comparing all findings with those of other studies on the 
Austrian business cycle, results from this chapter are summarised. 
As expected, the fact that the first-order-difference filter superim-
poses high-frequency variations leads to a rather erratic output of 
the filtered series. Visual inspection does not reveal any regularity 
of business cycle variations. Cross-correlation statistics between 
the reference series and all other series are lowest for first-order dif-
ference, as included superimposed high-frequency cycles seem 
to be of idiosyncratic nature. The same goes for cross-correlations 
of common components extracted by the dynamic factor model 
approach. As a consequence, all other statistics checking for 
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leads and lags of each series with respect to the reference series 
are of rather limited reliability. Compared with results of other ap-
proaches of filtering time series, they are not similar to any of them, 
whereas there is some similarity between HP- and BK-filtered data. 
Despite the fact that this erratic series shows a plethora of ups and 
downs, the criteria set in the Bry-Boschan procedure for identifying 
ups and downs as turning points are only rarely fulfilled such that 
surprisingly few turning points are detected. Nevertheless, such 
dating seems to be arbitrary, as a transformation by a dynamic 
factor model yields a completely different dating calendar. The 
unsystematic changes reflected by the statistics concerning the 
length of cycles and phases provide evidence that this dating is 
unreliable. Under these conditions, the extraction of a common 
component by a dynamic factor model approach is difficult, 
leading to only small explanatory power of the common compo-
nent (represented by two dynamic factors) for all series. 

For HP-filtered series, results are more promising. Cross-correlations 
for just filtered series are only marginally smaller than for BK-filtered 
series and give for all series the same picture of leads and lags 
according to the highest correlation criterion. For mean deviations 
calculated by (Bartlett window smoothed) cross-spectra, the pic-
ture differs somewhat, but not very much. For dynamic-factor-
model-transformed series, the results are again quite similar con-
cerning the cross-correlations for the respective series with the ref-
erence series. Only for autJK (the Austrian financial intermediation, 
real estate and business service sector), the cross-correlation of 
the common component suggests a lead of 4 quarters, whereas it 
shows a coincident behaviour for just filtered series. 

After the application of the Bry-Boschan dating procedure, the 
similarities between HP- and BK-filtered data vanish. There again, 
the high-frequency component outside the business cycle fre-
quency band included in HP-filtered series makes the detection of 
turning points a difficult and ambiguous task. Like in the case of 
first-order differences, only few spikes are able to pass the criteria 
for turning points. Therefore, the turning points given for the HP-
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filtered reference series differ from BK-filtered data. This automati-
cally leads to differences in statistics relying on the detected turn-
ing points. This concerns the calculation of leads and lags and sta-
tistics indicating the lengths of cycles and phases, as well as all 
their averages and medians. Compared with first-order-filtered 
data, the transformation of HP-filtered data by the dynamic factor 
model also changed the turning point calendar, but this time not 
as much. Obviously, the inclusion of non-superimposed high-
frequency data reduced this problem somewhat. 

The use of band-pass-BK-filtered data turned all series to highest 
cross-correlation among each other. If the business cycle is de-
fined as the common component reflected in the reference se-
ries, this result holds, too. This supports the view that the Austrian 
gross value added is capable of serving as a reference series. The 
fact that the highest cross-correlations are observed for BK-filtered 
data indicates that frequencies outside the business cycle band 
are cross-correlated to a lesser extent than frequencies within it. 
This is the case here, although cross-correlations only improve 
modestly compared with HP-filtered ones. 
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9. Comparing results with earlier studies on the 
Austrian business cycle 

In this chapter. the above findings are compared with those of 
earlier studies on the Austrian business cycle. Some of them relate 
to specific sectors, some others only to the business cycle of the 
whole Austrian economy. There are several studies on this topic, 
using different methods and reference series. Only few of them fo-
cus on an explicit dating of the Austrian business cycle and none 
of them applies such dating on a sectoral level. Therefore no ear-
lier study can be compared directly with the findings of the pre-
sent one. Even their time horizon often differs substantially. 

Despite this problem, the most relevant studies on the subject are 
compared with the results of this study in order to check the ro-
bustness of such dating or to give a more complete picture of the 
past. Some studies do not present explicit results for Austria, but 
only for the core of the euro area. An example is Darvas -Szapary 
(2005) who analysed the business cycle synchronisation in the 
enlarged EU and therefore set up a group of countries represent-
ing the core of the EU. They compared the business cycle varia-
tions of these core countries (Austria, Belgium. France Germany. 
Italy and the Netherlands) with those of several different groups of 
central and eastern European countries. The only aspect of their 
studies that is of interest in this context is that among the core 
countries there exists a very high degree of business cycle syn-
chronisation. This is reflected by high correlations, low volatility, 
small leads/lags. similar and high persistence and similar impulse-
response function 113• The following studies present more details. 
which makes it worth to compare each of them separately to the 
findings of our study. They are ordered according to the consid-
eration they give to business cycle variations in Austria and their 
detail of analysis qualifying them for a comparison. In section 9 .15 

113 See Darvas -Szap6ry (2005), p. 27. 



126 

a summary of all dating calendars (see Table 5) of the different 
studies is presented. 

9 .1 Comparing the results with the study by Altissimo 
et al. (2001) 

A rather new important study on the euro area business cycle is 
the one by Altissimo et al. (2001 J. They set up a dynamic factor 
model of 951 monthly time series starting from 1971 to the middle 
of 2001 in order to construct several business cycle indexes. The 
euro area business cycle is represented by the common compo-
nent included in euro area GDP, derived by a linear interpolation 
of quarterly figures in order to get a monthly series. Due to data 
limitations, only series for the largest euro area countries like Ger-
many, France, Italy, Spain, the Netherlands, Belgium, and - if 
available - for the euro area as a whole, were included. In a first 
step, the authors extracted business cycle frequencies out of the 
data set by employing a multivariate version of the band-pass fil-
ter as proposed by Christiano - Fitzgerald (2003). Using this filtered 
series, they set up a dynamic factor model, whereby the first four 
factors ordered by their eigen values were extracted, explaining 
55 percent of the total variation within the business cycle fre-
quency band. Given the high number of series used and their dif-
ferent origins, this 55 percent can be regarded as a relatively high 
proportion. 

The authors did not address the question of synchronisation of the 
cyclical variations within the euro area, but focused instead on 
leading and lagging properties of several groups of series, like in-
dicators of labour markets, monetary, financial and industrial con-
ditions. They found that 258 variables show a leading property, 404 
a coincident and 289 a lagging behaviour. Looking at specific 
countries, only Belgium and the Netherlands were classified as 
leading the euro area business cycle, whereas Spain and Italy lag 
the cycle. Their finding that the German cycle is coincident with 
the euro area has been confirmed only by the cross-correlation 
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criterion of our study114• In our study too, the ad-hoc method as 
well as the dynamic-factor-model approach show their highest 
correlation at zero lag for the gerGVAex as well as for eurGDPex 
when compared with the reference series ( autG V Aex). But if one 
looks at our leading and lagging properties after dating the series 
by the Bry-Boschan algorithm, the picture is not so clear. Only for 
our band-pass-filtered series in the ad-hoc scenario, both the 
German as well as the euro area business cycle show approxi-
mately the same lead (Table A 3 c) with respect to the Austrian 
cycle. This leads to the conclusion that both series are coincident 
with each other. In the dynamic factor model approach, the 
same can be observed only for first-order-differenced data (Ta-
ble A 9 a), where both series show a lag vis-a-vis the reference se-
ries. For HP- and BK-filtered data, the euro area business cycle 
leads the Austrian cycle, but is coincident with the German cycle 
(Table A 8 band c). 

For the euro area as a whole, Altissimo et al. (2001) found that in-
dustrial production is pro-cyclical with regard to the euro area 
business cycle. This is in line with the results found here for the 
manufacturing sector of Austria and Germany, represented by the 
variables autCDE and gerCDE. The cross-correlations presented in 
Tables A 1 a to c show - especially in the case of HP-filtered data -
a coincident behaviour to the reference series autGVAex, while 
using just first-order-differences yields a lag and for BK-filtered data 
some small lead. Also the phase and cycle lengths shown in Ta-
bles A 4 a to c suggest that for all three filtering methods there ex-
ists a very high degree of comovement with the reference series. 

As Altissimo et al. (2001) used a method quite similar to the dy-
namic factor model approach in our study, it is more appropriate 
to compare their results with our dynamic factor model outcome. 

11 • As German GDP is included in the euro area with its heavy weight, this finding 
by Altissimo et al. (200 I) can be regarded as being somewhat biased towards a 
coincident behaviour between Germany and the euro area. 
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In this case, the coincident behaviour of manufacturing produc-
tion with the common component reflected in autGV Aex is even 
more robust across all different filtering methods than it was in the 
case of using an ad-hoc definition of the business cycle. 

9 .2 Comparing the results with the study by Monch - Uhlig 
(2004) 

The results of the present study are only to a limited degree com-
parable with the study of Monch - Uhlig (2004). They constructed 
a monthly series of euro area GDP by interpolating quarterly data 
using a method proposed by Bernanke - Gert/er - Watson ( 1997). 
The interpolation has been done by regressing quarterly figures on 
monthly series of industrial production, retail sales, employment, 
etc. The authors tried to track the official NBER dating of the US 
cycle and the one set up by the CEPR for the euro area by apply-
ing the Bry-Boschan algorithm refined by an amplitude/phase-
length criterion. 

As this study concentrates entirely on the classical definition of the 
cycle as described in chapter 3, the number of turning points 
found in Mench - Uhlig (2004) is clearly lower than in the present 
study. Nevertheless, a comparison between their dates and ours 
can be informative. They only identified three complete cycles. 
The first starts with a peak in August of 197 4 and reaches a trough 
in April 1975. The next peak is dated at March 1980 and is followed 
by a trough two-and-one-half years later in July 1982. In February 
1992, the peak of the last cycle was reached and the last turning 
point was identified for January 1993. 

As time series used in this study start in 197 6, only two cycle dates 
of the study of Monch - Uhlig (2004) can be compared with ours. 
The peak of the euro area business cycle in March 1980 found by 
the authors is reflected in our HP- and BK-filter case for the univari-
ate ad-hoc approach. In both cases, a peak is dated in the first 
quarter of 1980. Interestingly, the dating of first-order-differenced 
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euro area shows a turning point with an opposite sign for the be-
ginning of 1980, underlining its inappropriateness. In the case of 
our dynamic factor model approach, again the just first-order-
diff erenced data show a trough instead of a peak for the first 
quarter of 1980. The common component represented in the HP-
filtered euro area GDP shows a corresponding turning point in the 
first quarter of 1980, while BK-filtered data show it one quarter ear-
lier, i.e. in the fourth quarter of 1979. 

The end of the second cycle is dated by Monch - Uhlig (2004) in 
the third quarter of 1982. In our ad-hoc approach, first-order-
differenced euro area GDP shows no turning points around that 
date. However, HP-filtered data show the trough following the 
peak of the first quarter of 1980 for the fourth quarter of 1982 and 
not the third, as suggested by Monch - Uhlig (2004}. The BK-filtered 
data show it one quarter later, namely in the first quarter of 1983. 
For the dynamic factor model approach, the results are quite simi-
lar: no turning points around 1982 for first-order-filtered data and 
the same date for the trough in the fourth quarter of 1982. The BK-
filtered data show now the same result as the HP series and date 
the trough in the fourth quarter of 1982, too. 

The last cycle dated by Monch - Uhlig (2004} starts with a peak in 
the first quarter of 1992 and a trough one year later. This is hardly 
supported by our data. Again, first-order-differenced data failed in 
both approaches to show any of these turning points. HP- and BK-
filtered euro area GDP series (again without Germany and Austria) 
show their troughs only in the second half of 1993 and the preced-
ing peaks already in 1990115• Only the common component re-
flected in HP-filtered euro area GDP shows a peak in the first quar-
ter of 1992, but the subsequent trough is dated not one, but nearly 
two years later. 

115 These different results cannot be explained by different definitions of euro area 
GDP in both studies, because our dating calendar for Germany shows approxi-
mately the same turning points as the one for our euro area. 
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9 .3 Comparing the results with the study by Cheung -
Westermann (1999) 

Cheung - Westermann ( 1999) have studied the long- and short-
run relations between the Austrian and the German monthly indus-
trial production. The long-run relation was modelled as a co-
integrated vector and the short-run dynamics as deviations from 
long-run comovements. 

The authors did not give a dating calendar from which a lead or 
lag relation could be deducted but instead interpret their esti-
mated error-correction model for doing so. They found that Ger-
man short-run variations (not only the ones in the business cycle 
frequency spectrum) lead the ones in Austria by up to two month. 
It is difficult to compare these findings with the ones presented 
here. First of all, some results of our study define the business cycle 
as a special range of frequencies and not only by non-trend 
components 116; second, the use of monthly data does not make 
clear how a leading effect on a monthly basis should show up in 
quarterly data. If a monthly series leads the other one perfectly by 
one month and all turning points are located in the same respec-
tive quarter, no lead on a quarterly basis emerges. But if all turning 
points of the leading monthly series are located in the last month 
of every quarter, this leading property can also be observed on a 
quarterly basis. Thus, our finding of no leading property of the 
German business cycle or the industrial production may well be 
compatible with the findings of Cheung - Westermann ( 1999). 

116 Fenz - Schneider (2006) observed the comovement between Austrian and 
German GDP, too. Again, high- frequency variations were not filtered out hence it 
is difficult to compare it with the present business cycle study. Such high-frequency 
comovements can also be due to common events not related to the business cy-
cle like weather conditions, etc. 
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9 .4 Comparing the results with the study by Brandner -
Neusser (1992) 

Brandner - Neusser ( 1992) focused on the method of HP-filtering 
several macro-economic series of Austria, Germany and the US. 
They compared their results with other filtering methods for trend 
extraction, like first-order differences and exponential smoothing. 
Their study did not provide a dating calendar, but only cross-
correlations are presented for a large set of series. Contrary to our 
study, Brandner - Neusser (1992) deduct the business cycle from 
quarterly GDP. Apart from the different vintages of time series in 
both studies, this could be a reason why cross-correlations calcu-
lated by them are somewhat lower than in the present study. 
Whereas they found a cross-correlation of 0.61 for HP-filtered GDP 
of Austria and Germany, our study gives 0.65 for just HP-filtered 
GV Aex series. This result improves further to 0.72 if the BK filter is 
applied. Obviously, the frequencies above the business cycle 
range, included in HP-filtered series, seem to distort the true inter-
ference of the business cycle of both countries. 

Concerning the leading or lagging properties of both countries' 
output, the authors found the highest cross-correlations for coinci-
dent series. This is quite in line with the present study and this result 
seems to be robust across several filtering methods 117 and is largely 
confirmed when looking at common components only118• 

117 It has to be mentioned that for BK-filtered data, the German GDP lags Austrian 
gross value added by one period, but this deviation does not correspond to the 
business cycle definition here which concentrates on gross value added only. 

118 Only some results suggest a small lead of the Austrian cycle vis-a-vis the Ger-
man. As Brandner - Neusser found that cross-correlations supporting also a small 
lead are not far away from their maximum for co-incident series, they favoured a 
leading property of Austria in their text version. 
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9 .5 Comparing the results with the study by Forni - Hallin 
- Lippi - Reichlin (2000) 

The study by Forni et al. (2000) is similar to the present one in that 
both use a dynamic factor model approach in order to identify 
the business cycle. The authors use a panel of 10 euro area coun-
tries, each represented by 21 macro-economic series like GDP, in-
vestment, consumption, unemployment, share prices, various 
monetary aggregates and price indicators, starting in 1986 and 
ending in 1999. Out of this data set they extracted three common 
factors in order to explain at least 50 percent of the total variance 
of the data set. As all financial and monetary variables contrib-
uted only very little to the explanation of total variance, the au-
thors excluded them as a first step from their further analysis. They 
found that the common component is strongly reflected by GDP, 
labour market variables and incoming orders of euro area core 
countries (including Austria). 

Forni et al. (2000) found that German GDP is not leading the euro 
area business cycle, represented by the common component in-
cluded in euro area GDP. This result is quite in line with our findings. 
Apart from the just HP-filtered series in our study, this result is robust 
across all filtering methods and approaches to identify the cycle 
according the highest cross-correlation criteria, as can be seen in 
Tables A 1 a to c and Tables A 7 a to c. 

As the authors use a very large data set, they added a lot of vari-
ance to the data set. Therefore it is clear that the common com-
ponent included in the Austrian GDP explains not as much 
(44 percent) of the total variance of the data set as in our study 
(83 percent). According to their study, Austria is less influenced by 
the euro area business cycle than most other countries (like 
France, Germany, Belgium, Finland, Spain and Italy) but more than 
the Netherlands. Probably, this can be explained by stronger eco-
nomic policy reactions in Austria in the past. Nevertheless, the Aus-
trian business cycle is found to be coincident with the euro area 
cycle, like with most of the core countries. 
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The limited length of the data set used by Forni et al. (2000) led to 
the detection of only a few turning points. The authors did not ap-
ply a mechanical identification procedure for turning points, but 
dated the cycle rather by visual inspection. They found an upper 
turning point (start of a contraction) in the first quarter of 1990. 
Compared with our results for the dynamic factor model ap-
proach, this is only weakly reflected in our BK-filtered data. For this 
cycle, the euro area shows a lead of 5 quarters vis-a-vis the Aus-
trian peak, dated in the fourth quarter of 1991 . Our date for the 
start of the euro area contraction would thus be one quarter ear-
lier than in Forni et al. (2000) in the fourth quarter of 1989. In the 
case of our just filtered series, both the HP and the BK filter dated a 
peak at exactly the same quarter in 1990. 

The following lower turning point in the study by Forni et al. (2000) is 
found for the first quarter of 1994. Again, we found a correspond-
ing turning point in the dynamic factor model case only for BK-
filtered data, but dated two quarters earlier in 3Q 1993. Interest-
ingly, again only the HP- and BK-filtered series show a correspond-
ing pattern. The HP-filtered series shows a trough in 3Q 1993, and 
the BK-filtered one in 4Q 1993. 

The second cycle discovered by Forni et al. (2000) is of rather small 
amplitude and starts with a peak in 1Q1995. This turning point is 
confirmed by our study across nearly all filtering methods and ap-
proaches to determine the business cycle. The BK-filtered data 
show for both approaches exactly the same date for this peak. 
The authors date the end of this cycle by the second quarter of 
1996. Our HP- and BK-filtered data date it three quarters later, first-
order differenced series just filtered as well as for the dynamic fac-
tor model locate this turning point in the first quarter of 1997. 
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9 .6 Comparing the results with the study by Breitung -
Eickmeier (2005) 

A further application of a dynamic factor model for extracting the 
business cycle of the European Monetary Union members (and 
several CEE countries) is the study conducted by Breitung - Eick-
meier (2005). They processed a data set of 208 time series sepa-
rated by blocks comprising the core EMU countries (Austria, Bel-
gium, France, Germany, Italy, The Netherlands and Spain), the re-
maining EMU countries (Finland, Greece, Ireland, Luxembourg and 
Portugal) and eight CEECs (Czech Republic, Estonia, Hungary, 
Lithuania, Latvia, Poland, Slovenia and the Slovak Republic), as 
well as some global variables. This sample covers only ten years 
ranging from the first quarter of 1993 till the end of 2003. Non-
stationary variables were transformed into first-order differences. 
Contrary to our approach, the authors applied a static factor 
component analysis and extracted 3 factors in order to capture 
the business cycle which represented 32 percent of the total varia-
tion of the data set. 

Similar to the study by Forni et al. (2000), these three factors were 
able to explain 60 percent of the variation of German GDP and 
around 40 percent of Austrian GDP. As the aim of the study was to 
explore how strong these common factors were reflected by the 
CEEC's GDP, no lead and lag structure or a dating calendar was 
given. 

9.7 Comparing the results with the study by Artis -
Marcellino - Proietti (2004) 

Artis - Marcellino - Proietti (2004) analysed the classical as well as 
the deviation business cycle of the countries that acceded to the 
EU in 2004 (excluding Estonia and Lithuania), 10 "old" EU Member 
States (including Austria) and the euro area as a whole. They used 
monthly series of industrial production starting 1980 at the earliest 
and ending in 2002 which they cleared for seasonal variations by 
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a basic structure model approach. In order to obtain stationary 
time series necessary for extracting business cycle fluctuations ac-
cording to the deviation cycle approach, they used two consecu-
tively applied HP filters 119• The following dating procedure was car-
ried out by a Markov-switching model. 

The results for the classical business cycle show that in that case 
the conventional wisdom of flatter business cycles in the core 
countries is not supported by the study of Artis - Marcellino - Proi-
etti (2004). The steepness as well as the duration of recessions is 
much higher than those found for Germany, Italy or the euro area 
as a whole. This leads to bigger losses of output during recessions 
than in other countries. 

The picture changes when one looks at the results for the devia-
tion cycle approach. For Austria, the authors report an average 
duration of recessions of around 17 months, which is slightly higher 
than for Italy (16 months), but considerably lower than for Ger-
many (20 months) or the whole euro area (23 months). When we 
compare these results with those of our study, it can be observed 
that the results concerning the length of recessions for first-order-
differenced autCDE {which comes closest to the definition of in-
dustrial production) are much higher, irrespective of whether we 
concentrate only on the common component included or not. 
The gap is reduced by looking at HP-filtered series and shows quite 
similar results for BK-filtered data. This is quite plausible, because 
Artis - Marcellino - Proietti (2004) employed some kind of band-
pass filter. Our HP-filtered series show a duration of economic 

119 As the HP-filter belongs to the class of high-pass filters, only low frequencies are 
filtered out. If two HP-filters with different smoothing properties are applied one af-
ter the other, they can work like a band-pass filter. Nevertheless this sort of band-
pass filtering works not as exactly as the Baxter-King filter. Especially higher fre-
quencies but still within the business cycle frequency band are erroneously filtered 
out, whereas high frequencies outside the band remain within the series. Therefore, 
the leakage of this filter is much higher than the Baxter-King filter applied in our 
study. 
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downturns (from a peak to a trough) for autCDE of somewhat be-
low 8 quarters, which corresponds some what with the 17 months 
reported in Artis - Marcellino - Proietti (2004). This result is robust if 
we look at the common component only reflected in this series, 
which shows an average duration of 7½ quarters. For Germany 
and the euro area, the results are difficult to compare, as our 
study focuses only on gross value added excluding agriculture 
and forestry or GDP, respectively. Nevertheless, in the case of our 
just BK-filtered data, both the results for Germany and the euro 
area show a duration of around 8 quarters and of 20 and 23 
months in the study by Artis -Marcellino -Proietti (2004) which cor-
responds quite well. The business cycle represented by the com-
mon component in the German GV Aex shows a duration of 7½ 
quarters for recessions, which is somewhat longer than the 
20 months reported in the reference study. For that approach, no 
euro area data including Austria and Germany have been used in 
order to avoid a bias, thereby inhibiting a comparison. 

Artis - Marcellino -Proietti (2004) also calculated cross-correlations 
between countries, but only for coincident behaviour ( at zero 
leads or lags) which can be compared with our study. Tables A 1 a 
to c show the cross-correlations calculated in our study, which 
show that at zero lags BK-filtered euro area GDP (including Ger-
many and Austria) is 0.73 and for German gross value added ex-
cluding agriculture and forestry 0.72 compared with the Austrian 
reference series. This is somewhat lower than the values presented 
in Artis - Marcellino - Proietti (2004), who calculated for their HP 
band-pass deviation cycles 0.84 and 0.75, respectively, but con-
centrated on industrial production only120, for which a higher co-
movement seems plausible. 

120 Artis - Marcellino - Proietti (2004) further calculated a so-called concordance 
indicator as proposed by Harding - Pagan (2003) which measures the fraction of 
time when two time series are in the same state (expansion or contraction). Inter-
estingly, they found that this concordance between the Austrian and German in-
dustrial production is small and insignificant, whereas it is large and significant 
compared with the euro area. This can be interpreted such that Austrian industrial 
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By applying the Markov-switching model, Artis - Marcellino - Proi-
etti (2004) provided a dating calendar for industrial production of 
all countries. Compared with our dating for the euro area by the 
deviation cycle approach they date the first trough in October 
1993, which is rather well reflected by our results. In Table A 2, only 
first-order differences fail to show this; the BK filter dates this trough 
one quarter earlier in 3Q 1993. Table A 7 shows that for the com-
mon component the match is even better. All filtering methods 
confirm this trough, but again the BK filter dates it one quarter ear-
lier. 

This trough is followed by a peak in the first quarter of 1995. For our 
just filtered series the results based on first-order-differences again 
fail to show that. HP-filtered data match only for euro area GDP 
without considering Austria and Germany. For the euro area as a 
whole, the peak is dated one quarter later in 2Ql995. In our BK-
filtered case, it is the other way round: the peak in euro area GDP 
as a whole is dated in 1Q1995 ( as it is shown by the authors with 
their band-pass filter), but with euro area GDP excluding Austria 
and Germany it is dated at 2Q1995. Using our dynamic factor 
model results, only euro area GDP excluding Austria and Germany 
is available. The first-order-differenced as well as the HP-filtered se-
ries date the corresponding peak at 2Q1995, whereas it is the 
same for our BK-filtered series. 

The next turning point of the reference study is obtained for No-
vember 1996. The series just transformed by HP filters show the 
same date only for eurGDPex, but for the total euro area it is 
dated one quarter later. This is also the case for our BK-filtered 
data; both euro area aggregates show their trough in the first 
quarter of 1997. In the case of our dynamic factor model. again 
only the HP- and the BK-filtered data show a corresponding trough 
in the first quarter of 1997. 

production is more closely linked to the Euro area business cycle than to the Ger-
man cycle alone. 
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The next turning point found by Artis - Marcellino - Proietti (2004) is 
located in the first quarter of 1998 and a following trough one year 
later in 1 Q 1999. This cycle does not show up in one of our filtering 
techniques and business cycle determination procedures. The rea-
son could be the small amplitude of both phases as reported by 
the authors. The last turning point of the reference study is a peak 
in the fourth quarter of 2000. This is reflected rather well by our se-
ries (except those filtered by first-order differences), but in most 
cases this turning point is dated one quarter earlier. 

Table 3: Business cycle turning points for Austria, Germany and the 
euro area 

Trough Peak Trough Peak Trough Peak Trough 

Austria 2Q1994 2Q1995 1Q1997 2Q1998 1Q1999 3Q2000 4Q2001 
Germany 3Q1993 4Q1994 1Q1996 1QJ998 1Q1999 4Q2000 

Euro area 4Q1993 1Q1995 4Q1996 1Q1998 1Ql999 4Q2000 

Source: Artis -Marcellino -Proietti (2004). 

For Germany, the authors found six turning points of the business 
cycle reflected by the industrial production index. Compared with 
our first-order-difference results as given in Table A 2, none of them 
matches. A little better is the situation for HP-filtered series. Looking 
at just filtered series or the ones transf armed by the dynamic factor 
model, some of the turning points found by Artis - Marcellino -
Proietti (2004) are mirrored in our calendar. 

The closest matches are achieved with our band-pass-filtered se-
ries, which are processed in a similar way as the double HP of the 
authors. In the case of our just filtered series, the trough in 1993 is 
dated in the same quarter for gerCDE, gerGVA, gerGVAex and 
the German GDP. This goes also for our dynamic factor model 
approach with BK-filtered series. The following peak located in the 
fourth quarter of 1994 for just BK-filtered data is dated one quarter 
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later in our study. The common component shows the peak for 
gerCDE one quarter and for gross value added 4 quarters later. 

The cycle showing a trough in 1 Q 1996 and a peak in 1 Q 1998 in the 
study of Artis - Marcellino - Proietti (2004) is not mirrored in our se-
ries. Only the just HP-filtered series dates the trough exactly but 
misses therefore the next peak and the subsequent trough. 
Probably this missing cycle can be explained by its low amplitude. 
The trough shown for Germany in the first quarter of 1999 is con-
firmed by our just HP-filtered series, but it is dated one quarter later 
for manufacturing (gerCDE) and gross value added excluding ag-
riculture and forestry (gerGVAex). In our dynamic factor model 
approach, only the BK-filtered series succeeded in dating this turn-
ing point in the same quarter. 

Most interesting for our study are the turning points found by Artis -
Marcellino - Proietti (2004) for Austria. In their study, the first trough 
is dated for the second quarter of 1994. This trough seems to be a 
false signal. None of our approaches confirms it, they date it rather 
around the one found by the authors for Germany and the euro 
area in the third or fourth quarter of 1993. The following peak of 
the reference study in 2Q 1995 is confirmed especially well in our 
BK-filtered data. The dynamic factor model dates the peak of BK-
filtered gross value added of the manufacturing sector (autCDE) 
one quarter earlier, the just BK filter approach dates it one quarter 
later. The next trough dated by Artis - Marcellino - Proietti (2004) 
for the first quarter of 1997 has been found only by our just BK-
filtered series· and the HP-filtered common component and is 
dated for the industrial sector at the same quarter. The following 
upper turning point in the second quarter of 1998 has not been in-
dicated by any of our series. 

The trough shown by the reference study for the first quarter of 
1999 is only reflected by the series which did not succeed in show-
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ing the trough in the first quarter of 1997121 • The next peak in the 
third quarter of 2000 is not shown in our first-order-differenced se-
ries. All other approaches confirm this turning point for the indus-
trial sector, but only the common component of BK-filtered series 
dated it for the same quarter. 

The last turning point found by Artis - Marcellino - Proietti (2004) is 
a trough at the end of 2001. As in the case of the first turning point, 
this seems to be a false signal. Again, none of our approaches 
confirm it, nor any results by the authors for Germany and the euro 
area. Apparently, the procedure for Austria has severe dating 
problems at either end of the series. 

Nevertheless, the turning points found in the reference study are 
very often mirrored by one of our procedures. But the authors use 
a different band-pass filter which creates a higher leakage prob-
lem than our BK filter which sacrifices 6 quarters on either end of 
the series in order to make the filter work very exactly. It can there-
fore be regarded as a kind of mixture between our HP- and BK-
filtering procedures. Thus, it is not surprising, that the turning points 
detected by the authors also seem to be a mixture of those found 
in our by HP- and BK-filtered series. 

9 .8 Comparing the results with the study by Vijselaar -
Albers (2001) 

In this study, the BK band-pass filter is applied to GDP and manu-
facturing production of the USA, the euro area as a whole as well 
separately for its Member States, Sweden and the UK. Simultane-
ous cross-correlations have been calculated by the authors with 
euro area industrial production as the reference series. The quar-
terly data cover the period between 1973 and 1996. In order to 
show the robustness of comovements, the authors additionally split 

121 This can be explained by the fact that all our procedures show one complete 
cycle less than the study by Artis -Marcellino -Proietti (2004). 
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the sample into two parts, one covering the period from 1979 to 
1986, the other from 1987 to 1996. For the whole sample, Vijselaar -
Albers (2001) found that euro area individual countries' manufac-
turing production shows a high synchronised comovement with 
the euro area as a whole. With regard to the size of coincident 
cross-correlations, Austria ranges third after France and the Neth-
erlands. In the first period, Austria ranges second after France. 

The authors further examined whether time-shifting of the data 
yields higher cross-correlations. With regard to manufacturing pro-
duction, Austria shows a one period lag vis-a-vis the euro area, 
while Germany leads it by one period. This result is consistent with 
ours only for just BK-filtered euro area GDP excluding Germany 
and Austria. Our results mainly show a lag of the German econ-
omy to the euro area business cycle of one quarter, whereas total 
euro area GDP eurGDP (including the lagging German cycle) is 
coincident with the Austrian cycle. 

Better comparable with our results are the ones given by Vijselaar 
-Albers (2001) for GDP series instead of industrial production. Over 
the whole sample period, Austrian BK-filtered GDP shows the high-
est simultaneous comovement with that of the euro area of all 
countries examined by the reference study. The comovement is 
especially strong in their second sub-sample covering the period 
between 1987 and 1996. Focussing on Austrian GDP over the 
whole sample period, no lead or lag can be observed, so that the 
Austrian business cycle shows a coincident behaviour with that of 
the euro area. This result is robust across both sub-samples. For the 
German business cycle, represented by BK-filtered GDP, the au-
thors found again a lead of one quarter. The lag of one quarter in 
the first period has changed to a two-period lead in the second 
period. Again, this property is not supported by our findings irre-
spective of the filtering method and whether we look at just fil-
tered series or their common component. 
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9. 9 Comparing the results with the study by Artis - Zhang 
(1999) 

Artis - Zhang ( 1999) studied the synchronisation of business cycles 
on the basis of OECD business cycle indicators available on a 
monthly basis. They used a sample of 19 countries. covering all 
euro area members. the USA and some other OECD countries. 
and ranging from 196 l to 1995. The series of Germany and the US 
were used as benchmark reference cycles. 

The authors calculated cross-correlations separately for the pre-
Exchange Rate Mechanism period of the European Monetary Sys-
tem (1961-1979) and the post-ERM period (after April 1979). They 
found that next to the Netherlands the Austrian economy showed 
the strongest synchronised cross-correlation with the German busi-
ness cycle. Their result is robust across both periods observed. 

Compared with our cross-correlation results. their results for the 
post-ERM period are most similar to those reflected by our BK-
filtered values for gross value added without agriculture and for-
estry, which act as references in our study. The authors obtained a 
simultaneous cross-correlation of 0.78 for that period. which is 
rather close to our BK-filtered data (0.72). If we control for idiosyn-
cratic cycles. as done with our dynamic factor model approach. 
the values surpass this cross-correlation substantially (apart from 
the first-order-differenced series). 

9 .10 Comparf ng the results with the study by Dickerson -
Gibson - Tsakalotos (1998) 

A further study about the closeness of correspondence of the 
business cycle within Europe is the one by Dickerson - Gibson -
Tsakalotos ( 1998). The authors analysed HP-filtered GDP series of 
euro area countries as well as some others. Their data set starts in 
1960 and ends in 1993 and covers GDP as well as some demand 
side aggregates like consumption and investment. 
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Based on the calculation of pair-wise cross-correlations of HP-
filtered series, they conducted a cluster analysis which suggested 
that Belgium, France, Germany, the Netherlands, Austria, Portugal 
and Greece have corresponding business cycle fluctuations. For 
GDP, their study shows a synchronised cross-correlation between 
Austria and Germany of 0.7 4, which is somewhat above the 0.65 
found for our only HP-filtered series. It is more in line with our results 
for BK-transformed data. 

9 .11 Comparing the results with the study by Artis - Krolzig 
- Toro (2004) 

The study carried out by Artis -Krolzig - Toro (2004) is rather exten-
sive and provides explicit dates of turning points for different EU 
countries. To this end, the authors used a panel of industrial pro-
duction and GDP figures starting with the beginning of 1970 and 
ending 1996. The business cycle was identified by means of a ba-
sic structure model based on first-order-differenced data, as a unit 
root was found in the series. Nevertheless, the authors concen-
trated on the classical definition of the business cycle. In this 
model, there are two states of the economy incorporated. One is 
called "recession" and the other "expansion". Alternating between 
both states, with transition probabilities modelled by a Markovian-
switching model, the economy is either in the strong-growth re-
gime (expansion") or otherwise in a recession 122• In order to cap-
ture the comovements of the business cycle states between Euro-
pean countries, Artis - Krolzig - Toro (2004) calculated a contin-
gency table which shows the frequencies of two series being in 
the same state. In contrast to the vast majority of other studies, 
they found the highest comovement between France and Austria 
and Belgium and France. The simultaneous cross-correlation be-
tween Austria and Germany of the smoothed probabilities of be-

122 For some countries, the authors modelled a third state in order to capture a 
structural break in the series. 
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ing in a recession is 0.61 over the whole sample period, which is 
somewhat smaller than the cross-correlation of our filtered series. 

The authors reported that for Austria the average growth during a 
recession is -0.5 percent (compared with the previous month) and 
0.11 percent for expansions. This would imply a fall in industrial 
production at an annualised growth rate of -5.8 percent during 
recessions and a rise of 1.3 percent in expansions. For Germany, 
an average growth rate during recessions of -0.44 percent is re-
ported, which would imply that these fluctuations are lower than in 
Austria. The asymmetry of growth rates for expansions and reces-
sions can be assigned to the authors' classical definition of the 
business cycle. As a consequence expansions also include trend 
growth biasing their growth rates downwards. Furthermore, the 
average time of being in a recession is rather short, with 2 quarters 
(7 .5 months). 

In order to arrive at explicit dates for the European business cycle, 
a multivariate Markov-switching model was set up considering in-
dustrial production and GDP, based on the same set of individual 
countries. For both variables the authors found only three cycles 
over the whole time span. Again, this is a consequence of the au-
thors' resorting to the classical definition of the business cycle. The 
first cycle they found in GDP series starts with a peak in the first 
quarter of 1974 and has a trough in the second quarter of 1975. As 
this cycle is outside our time range, it can not be compared with 
the present study. The next peak is dated at 1 Q 1980 and is re-
flected by entire HP- and BK-filtered series: only our dynamic factor 
model approach dates it one quarter earlier for BK-filtered series. 
The following trough for the European business cycle, as reported 
by Artis - Krolzig - Toro (2004) is in 4Q 1982. This time, all our meth-
ods - again apart from the ones based on first-order differences -
date this turning point for exactly the same quarter. The next turn-
ing point found by the authors is a peak in 2Q 1992. Again, our fist-
order differences give a false signal, whereas the just HP- and BK-
filtered series date this peak one quarter earlier in 1 Q 1992, and the 
same goes for the dynamic factor model results based on HP-
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filtered series. The common component reflected in our BK-filtered 
euro area GDP fails to indicate this turning point123• 

The last trough found by Artis - Krolzig - Toro (2004) for European 
GDP is in 2Q 1993. Both calendars for our HP-filtered series date this 
trough two quarters later, whereas both approaches based on BK-
filtered series date it only one quarter later in 3Q 1993. First-order 
differences again show no meaningful results. 

It is difficult to compare the turning points for the Austrian business 
cycle with those found by Artis -Krolzig -Toro (2004). For individual 
countries, they give no dating calendars but instead plot the 
probabilities for industrial production of being in either state of the 
business cycle. Thus, the only possibility to date them approxi-
mately is by visual inspection when results are compared to our 
findings for manufacturing production autCDE. 

The first cycle for Austria shows a trough around the end of 197 4 
and a peak at the beginning of 197 6. These are both located out-
side our sample period. The first turning point that can be com-
pared to ours is a trough at the beginning of 1982. This turning 
point is reflected only by our just HP-filtered series which dates it at 
the last quarter of 1981. Apart from the first-order-differenced se-
ries (which again fail to give a comparable result), all other meth-
ods employed date this trough more towards the end of 1982. 

The following peak identified by the authors for the Austrian busi-
ness cycle is around the end of 1983. Whereas our BK-filtered series 
confirm this date, both procedures based on HP filters identify it 
one quarter later in 1 Q 1984. The ensuing contraction ends with a 
trough located around the beginning of 1986. This turning point is 
not reflected by our results. It is rather located in 1987 in most of 
our series, but for that period the authors show a peak instead. The 

123 It has to be kept in mind that our definition of euro area in the case of the dy-
namic factor model does not comprise Austria and Germany. 
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last cycle matches very well with our findings. The trough in 1993 
can be found in nearly all of our time series, and it is well docu-
mented by many other studies. According to Artis - Krolzig - Toro 
(2004), the last cycle ends with a peak in the middle of 1994. Apart 
from our badly performing fist-order- differenced series, the Bry-
Boschan routine used in our study tends to date it later, at the end 
of 1994. 

9 .12 Comparing the results with the dating calendar of the 
CEPR 

As there is no official dating of business cycle turning points for the 
euro area, like the one carried out by the National Bureau of Eco-
nomic Research (NBER) for th~ US, the Centre for Economic Policy 
Research (CEPR) has formed an eight-member committee to set 
dates for the euro area. This committee has set up a chronology of 
recessions and expansions for the 11 original euro area member 
countries from 1970 to 1998 and for the current euro area as a 
whole since 1999. 

It has chosen a definition of the business cycle similar to the NBER, 
but some adaptations have been made. It defines" ... a recession 
as a significant decline in the level of economic activity, spread 
across the economy of the euro area, usually visible in two or more 
consecutive quarters of negative growth in GDP, employment 
and other measures of aggregate economic activity for the euro 
area as a whole, and reflecting similar developments in most 
countries. A recession begins just after the economy reaches a 
peak of activity and ends when the economy reaches its trough. 
Between trough and peak, the economy is formally in an expan-
sion: between peak and trough it is in a recession. In both cases, 
growth rates may be low124." Whereas this definition explains the 
nature of troughs, it provides no rule for the detection of peaks. 

124 See CEPR (2003). 
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The main differences between the approach of the NBER and the 
CEPR are that the latter uses quarterly data instead of monthly se-
ries. Furthermore, the business cycle reflected in individual coun-
tries plays a role in the dating procedure, too, which is not the 
case for the US. Seasonally adjusted GDP data seem to play the 
most important role for the CEPR method, without being the only 
ones. 

This imprecise definition of the business cycle, as in the case of the 
NBER, leaves large room for individual interpretation. A concentra-
tion on growth rates alone (growth rate cycles) would imply that 
no distinction is made between trend or cycle growth rates. This 
reveals the adherence to the classical business cycle definition, if 
growth rates are not adjusted by their mean. But the CEPR stresses 
that looking at growth rates is not a fixed rule in its dating proce-
dure. Nevertheless, focusing on growth rate cycles contains all the 
problems described in the theoretical chapter above, with the 
great disadvantage that the irregular component is superimposed 
making a reasonable dating nearly impossible. This danger is 
somewhat reduced by the criterion of two consecutive quarters of 
negative growth, but still there is no distinction between trend and 
business cycle growth. 

As it became apparent in our calculations on the basis of first-
order-differenced series, fewer turning points have been detected 
than with other filtering methods. Here, the reason was that the 
Bry-Boschan dating algorithm recognises only turning points if 
there is no other contradictory information in close neighbour-
hood. In the case of the CEPR method, the inclusion of trend 
growth rates shifts growth rates into the positive area, which re-
duces considerably the number of turning points. In this way, the 
concept comes closer to the classical definition of the business 
cycle. It is therefore not surprising that the CEPR found only three 
complete cycles between 1970 and 2003. 

The first peak is dated at the third quarter of 197 4, with a following 
trough in 1Q1975. This cycle is outside the period analysed in the 
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present study and therefore cannot be compared with our find-
ings. The next cycle starts with a peak in 1 Q 1980, for which our first-
order-differenced series wrongly show a trough. All our other 
methods and approaches date this peak at the same quarter as 
the CEPR. Only the dynamic factor model with BK-filtered data 
shows it one quarter earlier in 4Q 1979. The CEPR dates the next 
turning point for the third quarter of 1982. This trough is reflected by 
all our series. but it is dated one quarter later in 4Q 1982. Again, re-
sults based on first-order-differenced data fail to show any rea-
sonable result. 

According to the CEPR, the next cyclical peak is located in the first 
quarter of 1992. With first-order-differenced data again being un-
able to track this. all our other approaches confirm this date. Only 
our dynamic factor model result for BK-filtered data of euro area 
GDP (excluding Germany and Austria) dates it again earlier, this 
time for six quarters. 

The last turning point found in the CEPR calendar is a trough in the 
third quarter of 1993. Again. first-order differences failed. Both ap-
proaches based on BK-filtered data confirm this turning point and 
both based on HP-filtered data date this trough one quarter later 
in 4Q1993. 

Interestingly, all turning points identified by the CEPR are reflected 
in our series, despite its focus on GDP growth rates. Obviously, the 
dating mechanism of the CEPR is able to locate the most con-
spicuous turning points. but fails to date smaller cycles. This can be 
seen as a direct consequence of the inclusion of trend growth 
which shifts growth rates upward beyond their cyclical behaviour. 
It is of interest whether this unequivocal set but rather scarce num-
ber of turning points is the result of the rule of two quarters of 
negative growth rates or whether it is obtained by the business cy-
cle dating committee of the CEPR on the basis of external infor-
mation. In order to check this, we compare our turning point dates 
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for the euro area with those gathered solely on the basis of the 
rule of using two quarters of negative growth rates 125. 

According to Table 4, euro area GDP since 1976 exhibited four pe-
riods of quarter-to-quarter negative growth rates based on sea-
sonally adjusted series. The first recession starts in the second quar-
ter of 1977 with a growth rate only slightly below stagnation, which 
is probably the reason, why this is not reflected by the CEPR dating 
calendar. Compared with the present study, this turning point 
shows up only in our two series of first-order differences, with a turn-
ing point two quarters later in 4Q 1977. All our other approaches do 
not mirror that trough. In 2Q 1980, growth rates were negative for 
three consecutive quarters. Again, only our first-order differences 
show this trough, but date it one quarter earlier in 1 Q 1980. Con-
trary to this, the CEPR as well as all our other approaches show a 
peak instead in 1 Q 1980 or at the end of 1979, respectively. 

The next episode of negative growth rates started 2Q 1982, with a 
rate close to stagnation. The CEPR dates this trough in 3Q 1982 and 
all our approaches - apart from first-order differences, which fail 
again - date this by 4Q 1982. When using the growth rate concept 
for locating turning points, this method should show some leading 
property, which can actually be observed in this case. Observing 
the next and last trough, represented by the series of five consecu-
tive quarters of negative growth starting in 2Q 1992, this property 
becomes apparent, too. Our dating based on BK-filtered series, as 
well as the CEPR dating committee dates this in 3Q 1993, our HP-
filtered series in 4Q 1993. 

Obviously, the CEPR does not strictly adhere to the negative 
growth rate rule for dating troughs. It probably uses additional in-
formation leading to a slight shift in the dates of the turning points 
into the past. Furthermore, different vintages of the GDP growth 

125 A similar dating calendar, but for Austrian GDP, can be found in Scheiblecker 
(2002). 
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data set can also lead to different dates. This has not necessarily 
to do with revisions of GDP itself, but with the seasonal adjustment 
procedure. As this is usually done by an unobserved components 
model or some other filtering procedure (like X12-ARIMA), past 
values could be slightly revised with every new observation forth-
coming. Such marginal revisions can easily change turning point 
locations, like for two of the troughs in Table 4, if growth rates are 
close to zero. 

Table 4: Business cycle turning points for Austria, Germany and the 
euro area 

Eurl 2 GDP growth 
In Percent 

Quarters 
2Q1977 ---0.01 
3Q1977 ---0.05 
2Q1980 ---0.60 
3Q1980 ---0. 19 
4Q1980 ---0.02 
2Q1982 ---0.01 
3Q1982 ---0.66 
4Q1982 ---0.02 
2Q1992 ---0.87 
3Q1992 ---0.40 
4Q1992 ---0.26 
1Q1993 ---0.39 
2Q1993 ---0.05 

Source: Own calculations. 

Apart from this shift in turning points, the use of the rule of two 
negative growth rates (first-order differences of logged data like in 
our study) for dating troughs seems to be superior to using them in 
combination with the Bry-Boschan routine like in our study. Never-
theless, this rule concentrates more on the classical cycle showing 
much fewer troughs than concepts drawing explicitly on deviation 
cycles. 
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9 .13 Comparing the results with the study by Breuss (1984) 

There are several studies focussing especially on Austrian business 
cycle behaviour, but covering periods which are outside our time 
series domain. Examples are Tichy ( 1972) and Deist/er - Schleicher 
( 197 4), with the latter study using spectral analysis methods. An-
other study conducted by Breuss ( 1984) covers at least some part 
of the time period of our analysis. In his study, the author used a 
large variety of different economic time series in order to classify 
them by their leading, lagging and coincident behaviour in the 
business cycle. Among these series, also quarterly GDP and indus-
trial production are analysed, which makes it suitable for a com-
parison with our findings. While in this study quarterly GDP covers 
the period between 1964 and 1984, the industrial production series 
reaches back to 1955 and serves as the reference series for de-
termining the leads and lags. 

The study by Breuss (1984) focuses on the deviation cycle as well 
as on the classical definition in order to compare the results. Unlike 
the present analysis, the author extracted the trend by using the 
"Phase-average-trend-procedure" developed by the NBER. As ex-
plained in detail in chapter 3, this method extracts a kind of local 
linear trend. Like in our study, the Bry-Boschan routine serves as the 
dating algorithm. 

Largely in line with theoretical considerations, the author detected 
far fewer turning points for the classical approach than when using 
the deviation cycle concept. This is true especially for the first half 
of his sample, where the Austrian economy enjoyed high trend 
growth due to a catching-up process. For our comparison, we 
only focus on the deviation cycle concept used by Breuss ( 1984) 
and carry out this exercise only for the period overlapping in both 
studies. 

The first peak identified by Breuss ( 1984) is dated in the last quarter 
of 197 6. This turning point of the Austrian business cycle is reflected 
by our quarterly gross value added series (excluding agriculture 



152 

and forestry) only for first-order differences. While our HP-filtered se-
ries fail to show this cycle, the BK-filtered ones date it two quarters 
later in 2Q 1977. The following trough in the first quarter of 1978 is 
again not mirrored by our HP-filtered series: while first-order differ-
ences date this one quarter earlier, our BK-filtered dates it one 
quarter later in 2Q 1978. 

The next and last cycle shown in the overlapping period of both 
studies is a peak dated by Breuss ( 1984) at the beginning of 1980. 
Whereas our first-order-differenced series show a trough for exactly 
the same quarter, this time the HP-filtered data confirm this peak 
for the same date. Both of our approaches based on BK-filtered 
data date the corresponding peak one quarter earlier. Breuss 
( 1984) dated the following trough in the first quarter of 1983. This 
matches best with our dynamic factor model approaches for HP-
and BK-filtered data, but both date it one quarter earlier, i.e. in the 
last quarter of the previous year. In the case of just filtered series, 
only the BK-filtered series show this turning point, but it is dated two 
quarters earlier in 3Q 1982. All our other approaches fail to show 
this trough. 

It is difficult to judge which of our approaches are best compara-
ble with the results of Breuss (1984). Apart from the small number of 
common turning points, they are matched by different ap-
proaches. If a statement is possible at all, a slightly closer matching 
to our BK-filtered series can be observed. This finding is supported 
by the fact that the length of cycles from peak to peak as well as 
trough to trough calculated by Breuss ( 1984) of 16 quarters each is 
quite close to the results for our BK-filtered data given in Ta-
ble A 4 c with 15.5 and 16 quarters, respectively. For first-order dif-
ferences and HP-filtered data, the average is around 20 quarters. 
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9 .14 Comparing the results with the study by Hahn -
Walferskirchen (1992) 

The last study with which we want to compare our results is the 
one by Hahn - Walterskirchen ( 1992) for the Austrian, German and 
US business cycle. They used quarterly data starting from 1960 till 
1992 for industrial production, GDP as well as its demand side ag-
gregates for all three countries. De-trending was done with a basic 
structural model using a stochastic random-walk trend with vari-
able drift and clearing for seasonal variations at the same time. 
The residual cyclical component was dated by determination of 
local minima and maxima. As no mechanical dating rule was 
used, this was done by visual inspection. 

Again, we compare the turning points published by Hahn - Wal-
terskirchen ( 1992) only for the period overlapping with ours. For 
Austria, the authors dated the first peak in the second quarter of 
1977, which corresponds exactly with our findings for BK-filtered 
time series. All other approaches failed to show this turning point. 
The subsequent trough in the third quarter of 1978 is again mirrored 
only by our BK-filtering method. While the just BK-filtered GV Aex se-
ries dates it in the same quarter, the dynamic factor model ap-
proach found it one quarter earlier in 2Q 1978. 

The next cycle starts with a peak at the beginning of 1980. Our first-
order-differenced series fail again to show this turning point, 
whereas both approaches using HP-filtered data matched ex-
actly. For the BK-filtered series, this peak is dated one quarter ear-
lier at the end of 1979. The authors dated the following trough in 
the last quarter of 1982. This is fully confirmed by our dynamic fac-
tor model approach based on HP- and BK-filtered data (first-order 
differences fail to show this). With our just filtered data only the 
BK filter shows a matching turning point, but dates this trough one 
quarter earlier in 3Q 1982. 

According to Hahn - Walterskirchen (1992), the next cycle's peak 
was reached in 2Q 1985, which again is reflected best by our BK-
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filtered data. While the dynamic factor model approach dates it 
one quarter later in 3Q 1985, the just BK-filtered gross value added 
(without agriculture and forestry) dates it two quarters later at the 
end of the year. The following trough found by Hahn - Walter-
skirchen ( 1992) is located at the beginning of 1987 and is not con-
firmed by our data. Only the unreliable results based on first-order 
differences in the case of the dynamic factor model show this 
trough one quarter earlier. Most of our other methods date it ap-
proximately one year later. The last peak found in the reference 
study was in the second quarter of 1990. Again, the largest part of 
our results dates it later, this time with a lag of one-and-a-half year. 
Altogether, the turning points identified by Hahn - Walterskirchen 
( 1992) seem to match best, if at all, with our BK-filtered data. This is 
probably due to the fact that both procedures clean for the high 
frequency irregular component. 

Apart from dating the time series, the authors examined the co-
movement of the business cycle with that of Germany and the US. 
Looking at time series cross-correlations, they found some lagging 
property of the Austrian business cycle vis-a-vis the German cycle 
by one or two quarters. This effect was somewhat reduced when 
focussing on turning point analysis. In this case, both cycles exhibit 
a coincident pattern. In our calculations, no leading or lagging 
property of the Austrian economy based on cross-correlations 
could be observed. Nevertheless, theoretical considerations would 
suggest a positive shift of comovement in the last decade, as the 
Austrian economy advanced to an important producer of car 
parts supplied to the German automotive industry. From that per-
spective, a change from a previously lagging to a more coinci-
dent pattern of total gross value added seems plausible. 

9 .15 Comparison of the results of different dating 
procedures 

Based on the results of the present study and the business cycle 
turning points reported in the literature mentioned above, Table 5 
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presents an overview over different dating calendars for the Aus-
trian and the euro area business cycle. 

9. 15. 1 Turning point dates of the Austrian business cycle 

For the first tier of the period starting from 1964, only the studies by 
Breuss (1984) and Hahn - Walterskirchen (1992) provide informa-
tion about possible turning point dates of the Austrian business cy-
cle 126. Both studies show the same number of cycles between 1964 
and 1983 with quite similar dates. The largest difference between 
dates identified is 2 quarters at most for troughs as well as for 
peaks. 

Concerning the present study, both methods using BK-filtered data 
seem to match best the findings by Breuss (1984) and Hahn -Wal-
terskirchen ( 1992) for the overlapping period. This picture changes 
somewhat after 1985, for which period Hahn - Walterskirchen 
( 1992) report quite different turning points till the end of their sam-
ple period 1991 . A possible reason could be that these kinds of 
studies all have the problem of drawing reliable conclusions for the 
end of the sample period, because revisions affect especially last 
observations. Indeed, in the meantime several major revisions 
have taken place, so that GDP is nowadays defined in a different 
way than 15 years ago127_ 

The dating of the Austrian business cycle by Artis - Krolzig - Toro 
(2004) is decisively different from other studies and results are 
sometimes even in contradiction to the others. According to the 
majority of studies, the business cycle marked a peak around the 

126 The study by Breuss gives dates starting from 1951 onwards for certain definitions 
of the business cycle. For technical reasons (constraints to printing), the first period 
is not shown here. 

127 Apart from the innovations discussed in chapter 2, one further example is soft-
ware production which was not covered by the definition of production several 
years ago. 
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change of the year 1985-1986 and a trough two years later. Artis -
Krolzig - Toro (2004) found turning points with opposite signs in the 
respective periods, however. The authors used a different defini-
tion of the business cycle by focussing on the classical cycle. This 
obviously seems to matter a lot. For economic policy, this would 
require a different stance. 

The results by Artis -Krolzig - Toro (2004) deviate not so much from 
our findings, but show more cycles. One reason could be that our 
criteria for identifying turning points are more restrictive than their 
Markov-switching model approach. 

9. 15.2 Turning point dates of the euro area business cycle 

In order to date the euro area business cycle, only our results 
based on just HP- and BK-filtered data can be compared with 
those of other studies, as our dynamic factor model approach 
does not consider the euro area as a whole, but Austria, Germany 
and the rest of the euro area separately. In chapter 3, this ap-
proach was justified by avoiding a bias towards a common cycli-
cality which could result from the large economic weight of Ger-
many in the euro area aggregate. 

The studies defining the business cycle in the classical way show 
fewer cycles than the others, but between them the respective re-
sults correspond quite well. Only for rather strong recessions and 
booms our HP- and BK-filtered results match with their findings. This 
is true for the peak at the beginning of 1980 and the troughs in 
1982 and 1993. 

The turning point dates of the CEPR seem to lead ours by some 
quarters in most cases. Furthermore, the authors found an extra 
cycle between 1997 and 1999, which was not recognised by our 
Bry-Boschan routine. On the other hand, the studies by Forni et al. 
(2000) and Artis - Kro/zig - Toro (2004) show results quite similar to 
ours, but with leads and lags varying somewhat over time. 
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Table 5: Overview over different dating calendars for Austria and 
the euro area 

1966 1967 1968 1969 1970 
12341234123412341 234 

Austria 

~~~~, 1·1·1 11111 1:1 1111111 1·1·1 I 

~~~'™' 111111111111111111111 
1971 1972 1973 1974 1975 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
Austria 

~~~~, I 1·11·11111111 1:1 11.11 1:1 I 
Euro area 

[~:~,-, 111111111111 I.I l·I I 1:1 11 

Austria 
HP filter 
BK filter 
HP Dynamic Factor model 
BK Dynamic Factor model 
Breuss (1984) 
Hahn - Walter:skrchen 11992) 
Ar1is -Marcellino -Proietti (2004) 
Artis -Krollig -Toro (2004) 

ElHo area 

1976 1977 1978 1979 1980 
1234123412341234 I 234 

... 
... ,, ... 

... 
... ,, ... 
... ,, ... 
... ,, ... 

... 

[~:~,-, 111 1·1 11 1·1 1111111 1:1 111 
.6. ... peak, T ... trough. 
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Continuation Table 5: Overview over different dating calendars for 
Austria and the euro area 

1981 1982 1983 1984 1985 
12341 3 • 1234123 • 123 • 

Austria 

t~~~. 111 Ill lll·I Ill 11·111 l:1·1 

~~~~- I I I I I I l·lll I I l:11111.111 
1986 1987 1988 1989 1990 

12341234123 • 12341 34 
Austria 

~~~~. IJI I 1.1 I IJl.11111111·11 I 

~f ~~·-· 1·1 111:11111111.111 1:1 111 
Austria 
HP filler 
BK filler 
HP Dynamic Factor model 
BK Dynamic Faclor model 
Breuss ( 1984) 
Hahn - Walterski"chen ( 1992) 
Artis -Marcellino -Proietti (2004) 
Artis -Krolzig -Toro (2004) 

& ... peak. Y ... trough. 

1991 1992 1993 1994 1995 
123412341234123 • 1 34 

• ,. • • ,. • • ,. • • ,. • 
,. • ,. 
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Continuation Table 5: Overview over different dating calendars for 
Austria and the euro area 

Auslria 
HP filler 
BK filler 
HP Dynamic Factor model 
BK Dynamic Factor model 
l!reuss (198") 
Hahn - Walterskrchen ( 1992) 
Mis -Marcellino -Proieffi (2004) 
Mis -Kro/zig -Toro (2004) 

Euro area 
HP filter 
BK filter 
MOnch -Uhlig (2004) 
fomi et al. (2000) 
Mis -Marcellino -ProieHi (2004) 
Mis - Krolzig - Toro (2004) 
CEPR (2003) 

Austria 
HP filter 
BK filter 
HP Dynamic Factor model 
BK Dynamic Factor model 
l!reuss ( 198" J 
Hahn - Wa/terskrchen ( 1992) 
Artis -Marcellino -ProieHi (2004) 
Artis - Krolzig - Toro (2004) 

Evro area 
HP filter 
BK filter 
Mc5nch -Uhlig (2004) 
fomi et al. (2000) 
Mis -Marcellino -Proietti (2004) 
Mis -Kro/zig -Toro (2004) 
CEPR (2003) 

.a. ... peak, Y ... trough. 

1996 1997 1998 1999 2000 
12341234123412341234 

I I I I IXI 11 I.I I 1~1 I I I I Ill 

11·1 Ill I IJI I IJI I I I.I Ill 
1 1 , IT~ , • 1 1 , IT; , 4 1 1 , m , 41 l , m , • 11 , m , 41 

111 I.I 11 !'I l·lll I Ill I I I I 

1·1111111111:1111111111 
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10. Concluding remarks 

The location of business cycle turning points is still an important 
task for economic policy decisions. They mark the points for initiat-
ing and terminating economic policy interventions targeted to 
smooth business cycle variations over time. 

Approximately every ten years, the Austrian Institute of Economic 
Research publishes results on turning points relating specifically to 
the Austrian business cycle. Whereas business cycle theory ad-
vances only gradually over time, the methodical tool box for the 
extraction and evaluation of such cycles proceeds very fast. As 
national economies have become more and more integrated 
over time, the analysis of business cycles has to take such interrela-
tions into account. Furthermore, the responsibility for monetary pol-
icy in the euro area has been delegated by its member states to 
the ECB, which justifies an approach to business cycles in an inter-
national context. In order to capture these interdependencies, the 
present study also includes Germany - Austria's largest trading 
partner - as well as the euro area as a whole. 

It makes an important difference whether turning point analysis is 
carried out in real time or in retrospect. Whereas the former is im-
portant for economic policy decisions to be taken early enough to 
smooth the cycle, the latter is a precondition for developing a real 
time dating procedure. Furthermore, there is a trade-off between 
dating turning points at the recent time margin and the precision 
of their location in the past. This advises in favour of a separation 
of. both procedures and the present study concentrates entirely 
on establishing a dating calendar for the past. In order to achieve 
reliable results, several observations at the beginning and the end 
of the time series were sacrificed. 

To shed light on the transmission mechanism of business cycle 
variations, data disaggregated by sectors have been used for this 
study. According to Burns - Mitchell ( 1946), business cycle varia-
tions show up in different sectors of the economy. This feature had 
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been brought to bear in our study, by defining the international 
business cycle according to a multivariate approach using infor-
mation by sectors. 

The present study starts with an overview on the specific steps to 
be taken for dating the business cycle. It discusses various theo-
retical concepts establishing the base for different approaches for 
extracting cyclical variations. Filter techniques in the time as well 
as in the frequency domain are presented beside model-based 
approaches with or without assuming a specific structure. Their 
theoretical properties, shortcomings and implications, as docu-
mented by various empirical and theoretical studies, are exam-
ined. 

Based on this information, it was decided to concentrate on three 
filtering methods in order to clean for a trend or to extract directly 
periodic variations of business cycle nature: the first-order-differ-
ence filter, the Hodrick-Prescott filter and the Baxter-King band-
pass filter. 

In a next step, several approaches to determine the business cy-
cle were presented. On the basis of these considerations, the uni-
variate, popular and rather good comparable method of ad-hoc 
declaration of special cycles included in gross value added with-
out agriculture and forestry as well as a multivariate interpretation 
derived by a dynamic factor model has been chosen for the pre-
sent study. For dating the outcome, only the Bry-Boschan routine 
was used. Thus, a comparison of three filtering methods alterna-
tively combined with the ad-hoc method of selection of the busi-
ness cycle and a multivariate determination has been retained. All 
of these respective outputs have been dated by the Bry-Boschan 
routine, so that we obtained six dating calendars for the Austrian 
business cycle, including as well all other series considered. 

The least reliable results are those based on data transformed by 
first-order differences. This method cleans only for stochastic trends 
of order one, which is a rather specific kind of trend. Furthermore, 
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it has been shown that this type of filter does not only leave the 
rather erratically moving high frequencies above the business cy-
cle spectrum inside but superimposes them, instead. Despite this, it 
has been shown that the impact of this superimposition on the de-
tection of lead and lag structures between time series is only mar-
ginal. Results of cross-correlations and coherence statistics are just 
reduced in their size (and significance) compared with the other 
filtering methods. Only for those series where these high-frequency 
components themselves possibly show some cross-correlation, 
overall cross-correlations shifted upward. This was the case for 
construction, where weather conditions interfere with the produc-
tion of several sectors. 

Differences between HP- and BK-filtered data concerning cross-
correlations and coherences were quite small. The HP filter is able 
to cancel out trends of deterministic or stochastic nature up to an 
order of four and leaves high-frequency variations above the 
business cycle spectrum inside, but without superimposing them. 
The minor difference between comovements of HP- and BK-
filtered data mirrors the dominance of business cycle variations in 
most of our time series, so that the inclusion of high-frequency 
parts disturbs this picture only to a minor extent. 

From a theoretical point of view, the BK filter captures best the 
idea of the business cycle concept. The researcher can make ex-
plicit what he or she defines as business cycle variations. For the 
present study, a frequency band retaining all cycles between two 
and eight years' length has been used. In order to filter out these 
frequencies rather sharply, we allowed six observations on either 
end of all time series to be sacrificed. In doing so, the problem of 
leakage (i.e. keeping frequencies outside the desired band 
wrongly inside and filtering correct ones out) has been reduced 
significantly. 
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Based on this method superior to the others, we found that cross-
correlation 128 and coherence statistics give support for a broadly 
coincident behaviour of the whole set of time series. The German 
GDP seems to lag the Austrian gross value added ( excluding agri-
culture and forestry), whereas the German gross value added is 
found to be coincident. This small lag of German GDP makes for a 
synchronised comovement of total euro area GDP, whereas it 
shows a lead when Germany and Austria are excluded from it. 
However, none of the results are significant for well-founded 
statements to be made. Interestingly, none of the series covering 
manufacturing leads the cycle, whereas the sector of financial in-
termediation and rental services (NACE J+K) of both countries 
show a lag, which is not in conflict with theory. 

Whereas the picture of leading and lagging properties based on 
cross-correlations and coherences seems to be rather stable 
across different filtering methods, the Bry-Boschan procedure for 
detecting turning points reacts rather sensitively in this respect. For 
series where local minima and maxima are in close neighbour-
hood, the criteria used by this dating algorithm are getting arbi-
trary. In our study, this is the case for the series including high-
frequency variations: the HP-filtered series and especially the first-
order-differenced data. In these cases it appears that the first turn-
ing point detected in such a series is crucial for dating the others. 

As an alternative to our ad-hoc determination of the series which 
carries the reference business cycle information, we set up a dy-
namic factor model. The idea behind this procedure is to find one 
or more common factors reflected by a large part of our observed 
time series - possibly shifted by different leads or lags - in order to 
represent a large part of the total variation of the whole data set. 
These common factors can be regarded as the main driving force 
behind all economic time series. Therefore they can be regarded 

12a Cross-correlations based on band-passed filtered data correspond lo the con-
cept of dynamic correlation developed by Croux - Forni - Reich/in ( 1999). 
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as business cycle variations. This method was originally developed 
to reduce the complexity of large data sets but all of them cover-
ing only a short time span. Recent research on this topic129 has 
shown that a reduction in the number of time series used does not 
necessarily lower the quality of the output, but that a reasonably 
selective approach eliminating series with a high content of idio-
syncratic behaviour can indeed improve the results. 

In the present study, only economic data deemed to react to the 
business cycle have been used to set up the dynamic factor 
model. Furthermore, all series describing similar aggregates have 
been cancelled, leaving only one of them inside. This should avoid 
a bias of the common component towards special variations ap-
pearing in several time series. As an example, only gross value 
added excluding agriculture and forestry of one country has been 
included, but not total gross value added or GDP, too. In order to 
avoid a bias towards the German business cycle, only series for 
Austria, Germany and the euro area adjusted for both countries 
have been considered. 

We extracted two dynamic factors on the basis of their eigen val-
ues ordered by size. With these two factors, we were able to ex-
plain more than 60 percent of the total variation of the data set. 
Again, results for BK-filtered data were highest (close to 70 per-
cent), suggesting that idiosyncratic variability is an issue more im-
portant for higher frequency components. Apart from this, the pat-
tern of highly synchronised co-moving series across all observed 
frequencies was confirmed by our dynamic factor model results. 
Only the financial intermediation and real estate service sector 
shows a considerable lead of four quarters vis-a-vis the Austrian 
business cycle. 

Generally, dating the common component included in each of 
the time series reduces the number of cycles detected by the Bry-

129 See e.g. Boivin -Ng (2006) ortnklaar-Jacobs -Romp (2003). 
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Boschan routine, as compared with just filtered series. This is quite 
in line with theory, as the dynamic factor model is used for clean-
ing idiosyncratic cycles. Only in the case of first-order-differenced 
series, the number of cycles detected increases. This can be ex-
plained by the fact that the large number of ups and downs of just 
first-order-filtered time series is reduced by the dynamic factor 
model by idiosyncratic ones. This reduction led to a lower number 
of local minima and maxima, making it easier for the Bry-Boschan 
routine to locate them. 

Therefore, the BK-filter approach seems to be for theoretical as 
well as for practical reasons, the superior preparation for dating a 
cycle. Comparing the dating calendars for the Austrian business 
cycle of just BK-filtered series with the ones represented by their 
common component, one can observe that the number of cycles 
is lower in the latter case. A short- lived cycle reflected in just fil-
tered Austrian gross value added (without agriculture and forestry) 
starting with a trough in 3Q 1983 and a following peak one year 
later has been recognised as of idiosyncratic nature and was 
therefore filtered out. The absence of this cycle for that period is 
confirmed by all studies compared with in chapter 9. They neither 
show this cycle for the euro area nor for Austria 130• 

There is only one further significant difference between just BK-
filtered series and the ones transformed by the dynamic factor 
model, namely a trough following the peak around the change of 
the year 1994-1995. Whereas this is dated in the first case in the 
second quarter of 1997, it is located in the first quarter of 1999 by 
the common component approach. To check this again, results 
are compared with other studies. Unfortunately, only one of the 
studies presented in chapter 9 can be compared for this time 
span. Artis - Marcellino - Proietti (2004) confirm both troughs and 

130 Only three studies provide a comparable dating calendar: Artis - Krolzig - Toro 
(2004), Hahn -Walterskirchen (1992) and the dating calendar for the euro area by 
the CEPR. 
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locate a peak in-between in the second quarter of 1998. Obvi-
ously, this peak is too low to be captured by our Bry-Boschan rou-
tine, hence it was ignored. 

In Figure 9 these differences in the dating calendars are illustrated 
graphically. Both series show spikes of negative amplitude in the 
second quarter of 1997 and the first quarter of 1999. Looking at the 
thin line (representing just BK-filtered data), the trough in 2Q 1997 is 
deeper than the one observed in 1 Q 1999. For the bold line repre-
senting the common component based on BK-filtered data, it is 
the other way round. Obviously, part of the amplitude in 2Q 1997 
has been considered as idiosyncratic. Since the Bry-Boschan rou-
tine considers within a close neighbourhood only the turning point 
with the largest amplitude, we get different dates for the troughs. 
The peak detected by Artis -Marcellino - Proietti (2004) in 2Q 1998 
is too close to the high peak in 2000, which is the reason for the 
Bry-Boschan routine considering it only as an intermediate turn, al-
though it can be observed in both of our series in Figure 9. 

If we define the business cycle as a domestic phenomenon, but 
accept influences from the international business cycle, then the 
dating calendar based on just BK-filtered series is the best choice. 
For those who regard the business cycle more as an international 
phenomenon, the dynamic factor model output is superior. If the 
settings prepared for our Bry-Boschan algorithm were to allow 
shorter cycles, also the peak described in Artis - Marcellino - Proi-
etti (2004) would enter our calendars. Hence it depends on the 
preferences of the analyst or the economic policymaker, which 
calendar is most appropriate. 

In general, the turning points in our study based on BK-filtered data 
largely correspond to the ones found when using more advanced 
business cycle extraction methods. Concerning the dates located 
by our Bry-Boschan routine, it became apparent that studies 
based on Markov-switching model show rather similar results. 
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Figure A 1 a: Bry-Boschan turning points for Austrian gross value 
added excluding agriculture and forestry 

mioE 
flrlt-oder difference 

4 I .0 00 ~t----t---t----+------t-- ! 
41 .000 l----l---1----!----+---+---+----+----+---/-F·l-~~--+--l 
44 .ODD -t----t---t----+----+---+---+---+----+-~~,--+---+----< 

4 2 .000 

40.000------+---+ ~ 
31.0 00 .... .,.r:!.._1----!----+---+---l 
31.000 •····----1-- j ./ ,-
34.000..:; ........ ·········•·•·················l··•··········•··········j···············:,lf/'· ··········~~-:·. _ _,_ __ -+ __ -+ __ -t_--t 

32 .000 ··1---+---+---+----i····~/,_-+-_--+---+---+---+---11----l 
30 .000 ·1---+---+-----.oi'· ..... ~ . .---/1 2,.000 ... v 
21 ,QQQ ·! •·i,17• A•'-f~--f---lc---!-,I ---+---+---+---+---lf----t---1 

1•1178 3-1171 2·1111 1-1114 4-1111 3-1111 2-1112 1-1815 4-1117 3-2000 2-2003 

HP Mered data 

4 ,11 •·······--<---+ ····················I······················• i ·---t---;,---t-----<~~-·················· .-£. ...... 
4 ,II 1----l---+----+----+---+---1---1----+---,,9----+--l 
•.•• +---+---+----+---+---l---1----+----1···;.····~··---/-+----,1----1 
4,82 •·············ll··················•···················•·······················l····················•·····················t······ ······t-·····•=-rl----i---t ..... I 
•.• 1---1---+---+---l-i--+---+--_,/ .. • L..--+---l---1-----l 

4,51: ········---········ ············ ·-··· ············l····-··················ll······················'I············,,-,···, ... -.,,-6····f---l---······1····················<1···············• 

:::: .·······• i / 

4.52 i ····7"'-C-........• , ___ t----+----t-----t-----t---t 
• .• t-----+--+---f-·-··_·· -···.· .. J± ... r. -=-t----t---t---t----t---t---t 

...... 
• ,411 ,,..........T" 

/V I .. ........ + .. -. .... .?.::::c_---t_...,--::;cif········ I 

: ~:_: ·• r < ___ -... · ---1----+ 1, __ --t---1----+----+----+----+--

1-1871 3-11711 2-1111 1-11,'4 4-1111 3.11,, 2-11,2 1•1115 4-1117 3-2000 2·2003 

IK ftHered data 

4,91 .: ............... .,, / .... , .. ~-········ 

4 ,I 4 ,t---+---+----t----+---+---r---+----t····:c···~···' /_-+---1,----t 
/ 

4,92 ·•····--+----·1·· ........ , •...................•... •·····--+-----+-----1 _,--
•.• l---l---+---+--+---+---l---,../-~✓---+---4---1---l 

4 ,51 +·················+···················1---+---··· +----+--~/'""· ,_·,..'--+----+---+---1'----l 
4,51 i····················t·········· ---+.-✓~-'········ 

: :: ; :=====:=====:=====:======:==./=:,..: .... :~~====:======:=====:=====:======:=---i 
•.• i----r------i-----i------,:::1:,-----+---+---+---t---,1----t-----t 

4 .4 I ············c,· JP",-'--+"'---+--1--1----l----t----t----+---l 
4,41 ~·. ~ ~············1---1----+----+----+---+---l---l 

:~:_: !1r ... ••1,•7-•••-•··-····_-+---+---l---l---+----+----+---+---l---l 

1-1171 3•1171 2•1111 1•1114 4-1111 3•1111 2•1112 1•1115 4•1117 l-200D 2-2003 

Source: Own calculations. 



180 

Figure A 1 b: Bry-Boschan turning points for euro area GDP 
excluding Germany and Austria 
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Figure A 1 c: Bry-Boschan turning points for German gross value 
added excluding agriculture and forestry 
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Figure A I d: Bry-Boschan turning points for different regions of 
BK filtered data 
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5,41 ··v~·--~- ---ar---• ----+----t---t----+----+----1---+---I .... -·--~ 
5,42 ·, ;,•"'----+----+---f----+----+---4---l----t----+--1----l 

1·1171 3-1171 2-1111 1-1114 4-1111 3-1111 2-1112 t-1115 4-1117 3-2D00 2-2003 

Source: Own calculations. 



Table A 1 a: Bivariate statistics with the Reference Series: Austrian gross value added excluding agriculture 

Serles 
Characteristics Coherence 

Transf. Freq. 6 Obs· 32Obs 
aufF DLX 4 0.32 

autCDE DLX 4 0.52 
autGDP DLX 4 0.69 
autGHI DLX 4 0.45 
autGVA DLX 4 0.96 

autJK DLX 4 0.05 
eurGDP DLX 4 0.31 

eurGDPex DLX 4 0.24 
gerCDE DLX 4 0.27 

gerF DLX 4 0.14 
gerGDP DLX 4 0.17 
gerGHI DLX 4 0.04 
gerGVA DLX 4 0.26 

gerGVAex DLX 4 0.26 
gerJK DLX 4 0.05 

111 The+(-/ sign refers to a lead (log/ wi/h respect to /he reference series. 
Source: Own calculations. 

Average Mean Delay Cross-correlation 

6 Obs· 32Obs 6 Obs· 32 Obs ro ,_ 
0.15 0.04 0.53 0.53 
0.14 0.24 0.58 0.58 
0.19 0.09 0.77 0.77 
0.18 0.09 0.57 0.57 
0.16 0.02 0.95 0.95 
0.24 -0.78 0.24 0.24 
0.2 0.03 0.41 0.41 

0.18 0.1 0.36 0.36 
0.18 0.17 0.39 0.39 
0.15 0.26 0.25 0.25 
0.2 -0.12 0.25 0.25 

0.14 -0.74 0.06 0.18 
0.18 0.03 0.31 0.31 
0.18 0.06 0.32 0.32 
0.23 0.21 0.08 0.25 

,_ 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
-3 
0 
0 
-4 

(1) 

CX) w 



Table A 1 b: Bivariate statistics with the Reference Series: Austrian gross value added excluding agriculture 

Serles 
Characteristics Coherence 

Transt. Freq. & Obs· 32Obs 
aufF HPLX 4 0.21 

autCDE HPLX 4 0.72 
autGDP HPLX 4 0.79 
autGHI HPLX 4 0.54 
autGVA HPLX 4 0.99 

au!JK HPLX 4 0.04 
eurGDP HPLX 4 0.51 

eurGDPex HPLX 4 0.38 
gerCDE HPLX 4 0.48 

gerF HPLX 4 0.21 
gerGDP HPLX 4 0.44 
gerGHI HPLX 4 0.22 
gerGVA HPLX 4 0.51 

gerGVAex HPLX 4 0.5 
gerJK HPLX 4 0.21 

111 The +/-) sign refers to a leod /lag) with respect to the reference series. 
Source: Own calculations. 

Average Spectrum Mean Delay Cross-correlation 

& Obs· 32 Obs & Obs· 32 Obs 'o ,_ 
0.28 0.02 0.47 0.47 
0.31 0.09 0.79 0.79 
0.33 0.11 0.86 0.86 
0.32 0.13 0.7 0.7 
0.31 0.02 0.98 0.98 
0.35 -0.11 0.19 0.19 
0.34 0.09 0.67 0.67 
0.33 0.24 0.57 0.57 
0.33 0.12 0.65 0.65 
0.3 0.13 0.42 0.42 

0.34 -0.16 0.6 0.6 
0.31 -0.4 0.39 0.48 
0.33 -0.08 0.65 0.65 
0.33 -0.06 0.65 0.65 
0.34 -0.31 0.39 0.53 

, .... 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
-3 
0 
0 
-4 

(t) 

(X) .,,._ 



Table A 1 c: Bivariate statistics with the Reference Series: Austrian gross value added excluding agriculture 

Serles 
Characteristics Coherence 

Transt. Freq. 6 Obs-32 Obs 
aufF BKLX 4 0.21 

autCDE BKLX 4 0.74 
autGDP BKLX 4 0.79 
autGHI BKLX 4 0.52 
autGVA BKLX 4 0.99 

autJK BKLX 4 0.02 
eurGDP BKLX 4 0.56 

eurGDPex BKLX 4 0.42 
gerCDE BKLX 4 0.48 

gerF BKLX 4 0.26 
gerGDP BKLX 4 0.45 
gerGHI BKLX 4 0.22 
gerGVA BKLX 4 0.54 

gerGVAex BKLX 4 0.53 
gerJK BKLX 4 0.2 

1'1 The+(•) sign refers too /eod (lag) with respect to the reference series. 
Source: Own calculations. 

Average Mean Delay Cross-correlation ~- _.._,,_ 

6 Obs· 32 Obs 6 Obs· 32Obs ro ,_ 
0.34 0 0.46 0.46 
0.35 0.06 0.85 0.85 
0.36 0.15 0.87 0.87 
0.36 0.19 0.71 0.71 
0.35 0.03 0.99 0.99 
0.36 -0.38 0.13 0.16 
0.36 0.12 0.73 0.73 
0.36 0.29 0.63 0.65 
0.36 0.11 0.68 0.68 
0.35 0.26 0.49 0.51 
0.36 -0.16 0.66 0.67 
0.36 -0.43 0.44 0.55 
0.36 -0.08 0.72 0.72 
0.36 -0.05 0.72 0.72 
0.36 -0.29 0.42 0.54 

r_ 
0 
0 
0 
0 
0 
-1 
0 
1 
0 
1 

-1 
-2 
0 
0 
-4 

(1) 

():) 
0, 



Table A 2 a: Doling of fuming points 

FOD 

Peak Trough Peak Trough Peak Trough Peak Trough 
Reference 

Serles Q4-1976 Q4-1977 Q4-1978 Ql-1980 Q4-1981 Q4-1983 QJ-1989 Q4-1992 
ou!F 0 0 0 5 4 7 6 -15 

ou!CDE 0 5 14 1 -1 
ou!GDP -2 0 0 0 0 0 0 
ou!GHI - -1 4 0 2 0 
ou!GVA 0 0 0 0 0 0 1 0 

ou!JK 0 4 - - 0 -4 -4 1 
eurGDP - - 1 0 - -14 -3 

eurGDPex - - 1 0 - -10 -9 
oerCDE - 0 1 2 7 12 -4 0 

gerf -3 -1 6 8 4 -3 0 
oerGDP - - - 7 -6 5 0 
oerGHI 3 - 7 -7 -5 0 
gerGVA -3 1 7 -6 5 0 

oerGVAex - -3 1 7 -6 5 0 
oerJK - -2 - -5 5 4 

Note: +(-J denotes o log /lead} with respect to the reference series. 
lemarlc Positive (negative) ftgl.l'es give the tagging fleodingJ quarten of the specific series compared to to the refe,ence series tUT1ing point dates 
in the first ftne jin bold 5etters). A minus indicates a missing cycle. 

Source: Own calculations. 

Peak Trough 

QJ-1997 Q4-1998 

6 -7 
6 
7 -2 
-2 -2 
0 9 
1 0 

-2 -
9 -1 
0 -1 
5 5 
7 -3 
1 
7 -3 
7 -3 
-8 17 

I ol extra 
cycles 

2 
0 
2 
0 
3 
2 
-1 
-1 
2 
0 
-1 
I 
1 
1 

-1 

~ 

°' 



Table A 2 b: Dating or turning points 

HP 

P.ak Trouah Peak Trouah Peak Trouah Peak Trouah 
Reference 

t.rres Ql-1980 QC-1981 Q2-1986 Q2-1988 Q2-1992 QC-1993 Ql-1995 Q2-1997 
aulF 2 4 -3 -5 -2 -3 -2 -6 

autCDE 0 4 0 -I -9 0 3 7 
autGDP 0 0 -3 -3 -I 0 
autGHI -2 0 0 -1 0 - - -6 
autGVA 0 0 -3 0 0 0 

autJK -9 -6 -5 -9 0 4 -1 
eurGDP 0 4 - -1 0 1 -1 

eurGDPex 0 4 -9 -5 -9 0 0 -2 
gerCDE -1 4 -2 -1 -5 -2 11 8 

ae<F 0 3 2 -1 -9 -10 1 6 
ae<GDP 0 4 -3 -2 -5 0 - 8 
ae<GHI -5 4 -3 -3 0 -1 -5 
ae<GVA -1 4 -3 -1 -5 0 -1 -5 

ge,GVAex -1 4 -3 -1 -5 0 8 
aerJK -1 12 1 4 -5 5 

Note: +[.} denotes a log (lead} with respect to the refe,ence series. 
a.mark: Positive (negative) figures give the k>gging (leading) quarters of the specific se,ies compoted to to the reference series turning point dotes 
in the fifst line lin bok:l '8tters). A minus indico1es o missing cycle. 

Source: Own calculations. 

Peak Trouah 

Q4-2000 Q4-2002 

0 0 
-2 2 
0 0 
6 4 
0 0 
0 5 
1 2 
1 4 
1 2 
-3 1 
-2 2 
4 5 
1 2 
1 2 
4 2 

Peak 

Ql-2004 

1 

0 

-
-2 

. 

-

I of extra 
cycles 

1 
0 
-1 
-2 
-1 
-1 
-2 
-1 
-1 
2 
-1 
-1 
0 
-1 
-2 co 

'-I 



Table A 2 c: Doting ot fuming points 

ll 

Peak Trauah Peak 
lelerence Q2-1977 Q3-1978 Q4-1979 "-'es 

cuff I I I 
autCDE -1 -1 l 
autGDP 0 
autGHI -1 
autGVA 0 -1 0 

autJK 2 6 
eUIGOP -2 -3 l 

eurGOPex -2 -3 l 
-DE -1 -1 0 
~ -2 -2 -1 

aerGOP l 
nerGHI 5 -7 

aerGVA -2 -2 0 
laerGVAex -2 -2 0 

oerJIC -5 0 

Trouah 

Q3-1912 

0 
-1 
-<I 
-1 

l 
2 
l 
0 
l 
l 
l 
I 

Not.: +I-} denofe:s o log f~od) with ,e,spect to lhe reference series. 

Peak Tr11u11h Peak 

Q3-1983 Q3-1914 Q4-1985 

0 -1 
l l l 
0 0 0 
0 l ' 0 l 0 
-5 

l 
2 2 l 

-1 
2 5 5 

-1 

' 0 
-1 

2 ' 
lemartc PositNe lnegaliw) rV,lfM s;jve the logging (leadngl (f..Q'len of the specific series C01'1'1XHd lo 
to the reference series tl..lringpoinl doles in the fnl line (in bold lellen). A IT'inus indcotes o rT'iulng cycle. 

Source: Own calculations. 

Trouah Peak Trauah Peak trouah Peak trou11h Peak talexha 
Q4-1987 Ql-1992 Q3-1993 Ql-1995 Q2-1997 Q3-2000 Q3-2003 Q4-2004 cycles 

-S -1 -3 -1 l -1 s -<I 0 
-1 -6 0 2 -1 -1 -1 -1 
-1 0 0 s 0 0 -1 -1 -1 
0 0 0 -2 -7 -1 0 -1 
0 0 0 0 0 0 0 0 0 
-2 l l ' l 0 2 -2 
-2 0 0 0 -1 0 0 -2 
.;i -8 0 l -1 0 0 -1 
0 -<I 0 0 -<I l -1 -1 
l l -1 -2 6 -3 -2 .;i l 
0 -<I 0 0 -<I l -1 -1 -1 
0 -<I l 0 -3 5 0 -2 
0 0 0 0 -5 l -1 -1 
0 -<I 0 0 -5 I -1 -1 
7 -3 6 5 0 -3 -1 -2 

~ 
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Table A 3 a: Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

FOD 

Average Lag at 
w.r., 

Reference Peaks Troughs All 
C:arlao 

aufF 3.2 -2 0.6 
autCDE 4 4.33 4.17 
autGDP 1.75 1.4 1.56 
autGHI 1.33 -0.75 0.14 
autGVA 0.2 1.8 1 

autJK -0.75 0.25 -0.25 
eurGDP -5 -1.5 -3.6 

eurGDPex 0 -3.33 -1.67 
aerCDE 1 2.6 1.89 

aerF -2.75 2.4 0.11 
aerGDP 6.33 -3 1.67 
aerGHI 1.5 -3.5 -0.17 
aerGVA 5 -3 1 

qerGVAex 5 -3 1 
aerJK -1.67 5.33 1.83 

Nole: +/-) denotes a lag /lead) with respect to the reference series. 
Source: Own calculations. 

Median Laa at 

Peaks Troughs 

2 -3.5 
3 -0.5 
0 0 
0 -0.5 
0 0 
0 0.5 
-8 -1.5 

-4.5 -5 
0.5 0 
-2 2 
6 -4.5 
2 -3.5 
6 -3 
6 -3 
-5 -0.5 

Table A 3 b: Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

HP 

Average Lag at 
w.r., 

Reference Peaks Troughs All 
C:arlao 

aufF -1 -2 -1.5 
autCDE -1.6 2.4 0.4 
autGDP -0.6 -0.75 -0.67 
autGHI 1 -0.75 0.13 
autGVA -0.6 0 -0.33 
autJK -3.5 -1.4 -2.33 

eurGDP 0.25 1.25 0.75 
eurGDPex -3.4 0.2 -1.6 

qerCDE 0.8 2.2 1.5 
aerF -1.83 -0.2 -1.09 

aerGDP -2.5 2.4 0.22 
aerGHI -1.25 0.2 -0.44 
aerGVA -1.8 0 -0.9 

qerGVAex -2 2.6 0.56 
aerJK -0.25 5.75 2.75 

Nole: +/-) denotes a lag (lead) with respect to the reference series. 
Source: Own calculations. 

Median Lag at 

Peaks Troughs 

-2 -4 
-1 1 

-0.5 0 
0 -0.5 
0 0 

-4.5 -3 
0.5 1 
-4.5 -1 
-1.5 0.5 
-1 0 

-2.5 1 
-2 -1.5 
-2 -0.5 
-2 1 
0 4.5 

All 

2 
3 
0 

-0.5 
0 
0 

-2.5 
-0.5 

0 
-0.5 
2.5 
0.5 
0.5 
0.5 
1 

All 

-2 
0 
0 
0 
0 
-3 
0.5 
0 
0 

-0.5 
-1 
-2 
-1 

-0.5 
3 
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Table A 3 c: Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

BK 

Averaae Laa at 
w.r.t 

Reference Peaks Troughs All 
........ c 
aufF -0.86 -0.17 -0.54 

autCDE -0.43 -0.43 -0.43 
autGDP 0.57 -0.5 0.08 
autGHI 0 -1.67 -0.83 
autGVA 0 -0.14 -0.07 

autJK 0.4 1.6 1 
eurGDP 0 -0.83 -0.42 

eurGDPex -0.71 -0.43 -0.57 
gerCDE -0.83 -0.83 -0.83 

qerF -0.38 1 0.27 
aerGDP -0.67 -0.8 -0.73 
aerGHI 2 -1.33 0.18 
gerGVA -0.17 -1.17 -0.67 

aerGVAex -1 -1.17 -1.08 
aerJK 0.6 1.5 1.09 

Nole: +/-/ denotes a lag /lead/ with respect to the reference series. 
Source: Own calculations. 

Median Laa at 

Peaks Troughs 

-1 0.5 
0 -1 
0 -0.5 

-0.5 0 
0 0 

0.5 1 
0 -0.5 

0.5 -0.5 
-0.5 -0.5 
-1.5 -0.5 
-0.5 -0.5 

2 0 
0 -0.5 

-0.5 -0.5 
-1.5 1 

All 

-1 
-0.5 

0 
0 
0 
1 
0 
0 

-0.5 
-1 

-0.5 
0 
0 

-0.5 
0 
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Table A 4 a: Analysis of cycles with respect to the reference cycle 
of the Austrian gross value added excluding agriculture 

FOO 

Phases and cvcles averaae duraffon</TH< TR> 
Pto T l'to P Tto P TtoT 

Reference 
7 20 13.25 20.25 

Serles 
cuff 9.43 16.5 7 16.5 

autCDE 11.5 20 11.6 23.75 
autGDP 7.5 15.83 8.71 15 
autGHI 8.75 20.75 12.6 22.5 
autGVA 8 14 6.86 14.67 
autJK 7.29 14.5 7.67 14 

eurGDP 14.5 23.33 12.67 30 
eurGDPex 11.5 27 16.67 30 

aerCDE 8.5 15.5 7.43 14.67 
aerF 14.25 23.75 9.4 22.25 

aerGDP 12.67 20.33 7.5 20.33 
aerGHI 10.5 15.4 7.6 15.8 
aerGVA 12.4 19.2 7.67 19.8 

aerGVAex 12.4 19.2 7.67 19.8 
aerJK 16.25 22.33 11.33 26.67 

Average 10.78 19.23 9.73 20.37 

Source: Own calculations. 

Table A 4 b: Analysis of cycles with respect to the reference cycle 
of the Austrian gross value added excluding agriculture 

HP 

Phases and cvcles averaae duratlon</TH< TR> 
l'to T P to P Tto P TtoT 

Reference 
7.6 18.8 12 20.25 Serles 

aufF 6.14 14.5 9.5 15.17 
autCDE 10.33 17.8 8.6 19.4 
autGDP 7.75 24 17 27.33 
autGHI 9 29.67 20.33 28.67 
autGVA 8.25 23.75 16.25 27.33 

autJK 12.2 22.25 9.8 21.2 
eurGDP 8.5 27.33 19.67 26.67 

eurGDPex 11.2 20.25 9.75 20.25 
gerCDE 9 20.5 12.25 19.75 

aerF 8.14 14.57 7.29 15.83 
aerGDP9 .6 19.5 11.25 19.75 
aerGHI 11.6 22.25 10.4 21.2 
aerGVA 8.67 16.2 8.4 15.6 

aerGVAex 9.4 20.5 11.75 19.75 
aerJK 13.25 28.67 13 25.5 

Average 9.41 21.28 12.33 21.48 

Source: Own calculations. 
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Table A 4 c: Analysis of cycles with respect to the reference cycle 
of the Austrian gross value added excluding agriculture 

BK 

Phases and cvcles averaae duratlon</TH< TR> 
Pto T P to P TtoP TtoT 

Reference 
7.86 14.86 7.86 15.83 Serles 

aufF 7.13 14.14 7.43 14 
autCDE 7.86 14.67 8.33 15.83 
autGDP 7 15.67 9.5 16 
autGHI 5.14 14.5 10 13.83 
autGVA 7.71 14.86 8 16 

au!JK 10 17.4 8.33 17.5 
eurGDP 7.67 18.2 12.2 19.8 

eurGDPex 8.14 15 8.33 16.33 
oerCDE 8 15 8.17 15.83 

oerF 8.25 12.75 5.38 13.43 
oerGDP 8.17 15.5 8.17 15.6 
oerGHI 9.67 17.8 8.17 17 
oerGVA 7 15.17 9.5 16 

oerGVAex 7.71 15.17 8.67 16 
oerJK 10.17 16.8 7.17 16.5 

Average 7.97 15.47 8.45 15.97 

Source: Own calculations. 



Table A 5 a: Proportion of power 

First-order differences 

Eigenvalue 
# 

0 21'1/15 
1 0.49 0.442 
2 0.643 0.612 
3 0.778 0.729 
4 0.845 0.832 
5 0.896 0.895 
6 0.931 0.93 
7 0.957 0.957 

Source: Own calculations. 

2 • 21'1/15 
0.389 
0 .573 
0.707 
0.787 
0.852 
0.902 
0.939 

Frequency 
3 • 21'1/15 4 • 21'1/15 5 • 21'1/15 

0.332 0.358 0.318 
0.568 0.556 0 .521 
0 .671 0 .658 0 .65 
0.756 0.751 0.748 
0.823 0.816 0.828 
0.881 0.871 0.877 
0.923 0.911 0.919 

6 • 21'1/15 
0.273 
0.497 
0.65 
0.76 

0.841 
0.884 
0.923 

,.21'1/15 
0.306 
0.517 
0.66 

0.755 
0.83 
0.883 
0.925 

-0 
(,.) 



Table A 5 b: Proportion of power 

HP 

Elgen value 
# 

0 21'1/15 2 • 2Pi/15 
1 0.546 0.535 0.498 
2 0.659 0.654 0.638 
3 0.743 0.749 0.749 
4 0.821 0.827 0.832 
5 0.888 0.891 0.893 
6 0.931 0.931 0.93 
7 0.961 0.961 0.958 

Source: Own calculations. 

frequency 

3 • 2Pi/15 4 • 2Pi/15 5 • 2Pi/15 
0.428 0.369 0.402 
0.608 0.573 0.564 
0.72 0.668 0.669 

0 .805 0.751 0.748 
0.87 0.822 0.817 

0.909 0.879 0.873 
0.944 0.92 0.921 

6 • 21'1/15 
0.41 

0.549 
0.66 
0.747 
0 .825 
0.88 

0.924 

P2Pi/15 
0.349 
0.52 
0.64 

0.745 
0.826 
0.878 
0.92 

'° .i:,.. 



Table A 5 c: Proportion of power 

BK 

Elgen value 
• 

0 2Pl/15 2 • 2Pl/15 
1 0.566 0.532 0.462 
2 0.679 0.669 0.634 
3 0.765 0.772 0.761 
4 0.841 0.856 0.859 
5 0.897 0.915 0.919 
6 0.937 0.948 0.95 
7 0.966 0.971 0.968 

Source: Own calculations. 

Frequency 
3 • 2Pi/15 4 • 2Pi/15 5 • 2Pl/15 

0.464 0.577 0.454 
0.653 0.699 0.597 
0.762 0.802 0.718 
0.839 0.876 0.832 
0.894 0.927 0.891 
0.935 0.952 0.931 
0.963 0.973 0.961 

6 • 2Pl/15 
0.57 
0 .69 

0.783 
0.867 
0.917 
0 .947 
0.971 

7 • 2Pl/15 
0.513 
0.649 
0.762 
0.847 
0.903 
0.942 
0.966 

"° <..r, 



Table A 6 : Ratio common component variance over series variance 

FOD HP 

Serie Name Ratio Value Serie Name Ratio Value 
autGVAex 0.779 autGVAex 0.811 

aufF 0.471 aufF 0.491 
autCDE 0.501 autCDE 0.704 
autGHI 0.494 autGHI 0.581 
autJK 0.312 autJK 0.525 

eurGDPex 0.480 eurGDPex 0.574 
gerCDE 0.746 aerCDE 0.780 

aerF 0.334 aerF 0.346 
aerGHI 0.663 aerGHI 0.686 

aerGVAex 0.868 aerGVAex 0.894 
aerJK 0.510 aerJK 0.536 

Average 0.560 Avera_g_e 0.630 

Source: Own calculations. 

IIK 

Serie Name 
autGVAex 

aufF 
autCDE 
autGHI 
aulJK 

eurGDPex 
gerCDE 

gerF 
gerGHI 

aerGVAex 
aerJK 

Avera_g_e 

Ratio Value 
0.833 
0.547 
0.792 
0.629 
0.338 
0.669 
0.797 
0.456 
0.700 
0.898 
0.637 

0.663 '° 0-



Table A 7 a: Correlation between common ports of series and reference series 

FOD 

Serie Name r)Lags 
.4 .3 -2 -1 0 1 2 

oulGVAex -0.028 ·0.079 0.029 -0.038 1 -0.038 0.029 
oufF -0.222 0.016 -0.158 -0.107 0.821 0.035 -0.175 

outCDE 0.12 -0.202 0.099 -0.044 0.839 0.1 0.173 
outGHI -0.124 0.015 -0.067 0.105 0.839 0.205 0.12 
outJK 0.001 0.134 0.228 0.033 0.494 -0.28 -0.126 

eurGDPex 0.074 -0.091 0.092 0.214 0.723 0.092 -0.036 
gerCDE 0.05 0.013 -0.012 0.18 0.531 0.129 0.14 

gerF -0.086 -0.003 0.124 0.057 0.557 0.134 0.052 
gerGHI -0.001 0.202 0.113 0.165 0.168 0.072 0.171 

gerGVAex 0.035 0.061 0.092 0.184 0.426 0.173 0.158 
gerJK 0.174 0.068 0.149 0.141 0.126 0.204 0.304 

(•) High cross-correlations at positive lags indicates a leading behaviour of the variable with respect to the reference series. 
Source: Own calculations. 

3 
-0.079 
0.077 
-0.19 

-0.072 
-0.031 
0.087 
0.061 
0.238 
0.099 
0.106 
0.083 

4 
-0.028 
-0.088 
0.017 
-0.065 
-0.095 
0.112 
-0.019 
-0.08 
-0.041 
-0.048 
0.031 '() 

-....i 



Table A 7 b: Correlation between common parts of series and reference series 

HP 

Serie Name (*)Lags 

-4 -3 -2 -1 0 1 2 
autGVAex 0.005 0.037 0.204 0.507 1 0.507 0.204 

aufF -0.033 -0.117 -0.092 0.13 0.661 0.221 -0.005 
autCDE 0.003 0.039 0.228 0.527 0.965 0.593 0.274 
autGHI -0.001 0.038 0.177 0.503 0.962 0.619 0.311 
autJK 0.056 0.08 0.108 0.102 0.134 -0.004 0.021 

eurGDPex 0.011 0.075 0.271 0.564 0.887 0.574 0.312 
gerCDE 0.013 0.099 0.276 0.548 0.868 0.581 0.313 

gerF -0.071 0.007 0.202 0.45 0.84 0.508 0.235 
gerGHI -0.Qll 0.183 0.399 0.594 0.721 0.471 0.278 

gerGVAex 0.003 0.132 0.334 0.582 0.845 0.56 0.292 
gerJK 0.007 0.198 0.367 0.537 0.671 0.508 0.293 

('I High cross-correlations at positive logs indicates a leading behaviour of the variable with respect to the reference series. 

Source: Own calculations. 

3 
0.037 
-0.031 
0.058 
0.081 
0.062 
0.14 
0.106 
0.078 
0.107 
0.089 
0.072 

4 
0.005 
0.006 
0.006 
-0.008 
0.041 
0.005 
-0.005 
-0.018 
0.004 
-0.011 
-0.034 '° CP 



Table A 7 c : Correlolion between common ports of series and reference series 

BK 

Serie Name (•)Lags 
.4 .3 ·2 · 1 0 1 2 

oulGVAex ·0.028 0.108 0.388 0.738 1 0.738 0.388 
oufF ·0.124 ·0.097 0.079 0.365 0.589 0.425 0.164 

ou!CDE -0.025 0.112 0.378 0.706 0.965 0.743 0.431 
ou!GHI -0.031 0.067 0.299 0.619 0.928 0.778 0.517 
ou!JK 0.016 0.061 0.099 0.075 -0.039 -0.124 -0.103 

eurGDPex 0,018 0.141 0.363 0.634 0.868 0.711 0.478 
gerCDE 0.045 0.181 0.408 0.676 0.89 0.706 0.449 

gerF -0.037 0.055 0.256 0.539 0.836 0.711 0.474 
gerGHI 0.2 0.387 0.576 0.717 0.778 0.562 0.367 

gerGVAex 0.119 0.276 0.494 0.728 0.907 0.698 0.437 
gerJK 0.251 0.375 0.477 0.567 0.661 0.534 0.379 

('J High cross-correlolions al posilive logs indicates a leading behaviour of the variable with respect to the reference series. 
Source: Own calculations. 

3 4 
0.108 ·0.028 
-0.028 -0.08 
0.162 0.011 
0.264 0.086 
0.011 0.13 
0.258 0.105 
0.214 0.06 
0.214 0.027 
0.213 0.105 
0.201 0.044 
0.209 0.059 -0 

-0 



Table A a a: Dynamic Factor Turning paint analysis: leads and lags with respect to the reference series 
Austrian gross value addled excluding agriculture 

FOD 
Peak Trouah Peak Trouah Peak Trouah Peak Trouah 

Reference 
Serles 

Q4-1976 Q4-1977 Q4-1971 Ql-1910 Q4-1912 Q4-1916 Q3-1989 Q4-1992 
aufF 0 0 5 0 9 7 ·2 

autCDE 0 4 0 -4 -1 
autGHI 0 0 1 0 -2 0 ·2 
autJK 0 2 . 4 0 -4 3 

eurGDPex 0 . 0 10 0 -4 0 
aerCDE . -2 1 0 -6 10 -5 0 

• erF -3 -3 0 -7 -11 3 -3 
aerGHI -2 1 0 . -3 0 

aerGVAex -3 1 0 -6 5 0 
aerJK -2 2 5 . 

Note: +I-I denotes o Jag (l«ldl with resped to the reference S&nes. 

Peak 
Q4-1993 

0 

0 
3 
0 
2 
0 

Rernartc: Positive fnegottve) figures give the lagglng {leading) quorteJs of the specific series compared to to the reference series Mnlng point dates 
i"I the first lne [In bold letters). A nwlus Indicates a msslng cvcle. 

Source: Own calculations. 

Trouah Peak Trouah f of extra 
Ql-1995 Ql-1999 Ql-2001 cycles 

0 -1 
0 14 -3 

0 1 5 2 
3 2 0 

1 2 1 0 
3 1 0 0 
-1 1 7 0 

1 7 -3 
1 7 -2 

-2 -1 7 -3 

~ 
0 



Table A 8 b: Dynamic Factor Turning point analysis: leads and logs with respect lo the reference series 
Austrian gross value added excluding agriculture 

HP 
Peak Trouah Peak Trounh Peak Trounh Peak Trouah 

Reference 
Serles Ql-1980 Q4-1982 Q2-1986 Ql-1988 Ql-1992 Ql-1993 Q4-1994 Ql-1999 
aulF -9 0 4 . 0 9 

oulCDE 0 0 0 3 0 -8 
autGHI -2 0 -3 0 -2 0 0 0 
outJK -7 -12 -4 -6 3 3 1 

eurGDPex 0 0 -9 0 3 2 -8 
aerCDE 0 0 0 0 -4 3 2 -8 

aerf 0 0 0 6 0 0 0 
aerGHI 0 0 0 -2 -4 3 2 1 

aerGVAex 0 0 0 0 -4 3 2 -8 
aerJK 0 0 0 0 -4 8 6 -1 

Note: +(•} denotes a log (lead} with respect to the reference series. 

Peak 
Q4-2000 

-11 
0 
0 
1 
-2 
1 

-3 
1 · 
1 
4 

l•mark: Positive (negative) figt.Kes give the logging (leading) qua1ers or the specific series compaed to to the reference series h.ming point dates 
in the rnt ine (in bok:l letters). A minus Indicates a missing cycle. 

Source: Own calculations. 

Trouah # of extra 
Q4-2003 cycles 

. -1 
-2 -I 
0 1 
-2 1 
-2 0 
-2 0 
-2 1 
-2 2 
-2 0 
0 0 

~ 



Table A a c: Dynamic Factor Turning point analysis: leads and logs with respect to the reference series 
Austrian gross value added excluding agriculture 

ll 
Peak Trouah Peak Trouah Peak Trouah Peak Trouah 

Reference 
Serles Q2-1977 Q2-1971 QC-1979 QC-1982 Ql-1915 Q4-1987 Q4-1991 Ql-1993 
aufF 0 1 0 -1 7 0 -3 

outCDE 0 0 0 0 0 -1 1 0 
autGHI -l -l 0 -1 1 l 0 -l 
ou!JK 4 .5 2 -4 -2 .5 2 

eurGDPex -l 0 0 0 -7 -l .5 0 
aerCDE -l -1 0 0 0 0 .4 0 

oerF -1 0 1 -1 2 -2 1 -1 
aerGHI 1 1 2 0 -4 1 

aerGVAex -l -1 0 0 2 0 .3 0 
aerJK -1 -1 0 .4 4 3 ·2 7 

Note: +(.J denotes o lag (leodJ wffh respect to tM reference series. 

Peak 
Q4-1994 

0 
1 

·2 
3 
1 
3 
· 1 
3 
4 
. 

lemark: PodNve fnegattveJ figures give the lagglng (leodlng) qvarteB of the specific series co"1)0fed to to the reference series turning poJnt dotes 
n the fnt lne (In bold lettenJ. A minus lnctleates o nisslng cycte. 

Source: Own calculations. 

Trouah Peak Trouah f of extra 
Ql-1999 Q2-2000 Q2-2003 cycles 

-l -8 1 
0 1 0 1 

-1 l 2 
1 4 •l 0 

-8 l 0 l 
0 2 0 1 
-l -l ·6 4 
0 2 1 0 
0 2 l 1 
2 -8 2 1 

~ 



Table A 9 a: Dynamic Factor Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

FOO 

Averaae Laa at 
w.r.t 

Reference p T All ~--·-· 
aufF 1.75 2.4 2.11 

autCDE 0 3.25 1.86 
autGHI 0.2 0.33 0.27 
autJK 1.2 1.75 1.44 

eurGDPex 1.6 0.4 1 
gerCDE -1.4 1.83 0.36 

gerF -1.2 -1.83 -1.55 
gerGHI -0.33 1.25 0.57 

gerGVAex 0.25 1 0.63 
aerJK 0.67 2.33 1.5 

Nole: +/-} denotes a log /lead} with respect to the reference series. 
Source: Own calcualtions. 

Median Laa at 

p T All 

0 0 0 
-2 0 0 
0 0 0 

1.5 2 2 
0 0 0 
-2 0 0 

-1.5 -2 -2 
-1 0 0 
1 0 0.5 

-1.5 0 0.5 ~ w 



Table A 9 b: Dynamic Factor Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

HP 

Averaae Lnn at 
w.r.t 

Reference p T All 
<-•-· 
aufF -5.33 3 -1.17 

autC0E 0 -1.75 -0.88 
autGHI -1.4 0 -0.7 
autJK -2.25 -2.8 -2.56 

eurGDPex -1.8 -1.75 -1.78 
aerCDE -0.2 -1.4 -0.8 

aerF -0.6 1 0.11 
gerGHI -0.2 0 -0.l 

gerGVAex -0.2 -1.4 -0.8 
gerJK 1.2 1.4 1.3 

Nole: +/•/ denotes o log /lead/ with respect to the reference series. 
Source: Own calcualtions. 

Median Laa at 

p T All 

-10 0 0 
0 -1 0 
-2 0 0 

-2.5 -3 -3 
-1 -1 -1 
0 -1 0 
0 0 0 
0 -1 0 
0 -1 0 
0 0 0 ~ 



Table A 9 c: Dynamic Factor Analysis of turning point sequences with respect to the reference series 
Austrian gross value added excluding agriculture 

BK 

Averaae Laa at 
w.r.t 

Reference p T All 
Carla• 

aufF 1 -2.75 -0.5 
autCDE 0.5 -0.17 0.17 
autGHI -0.5 -0.2 -0.36 
autJK 0.4 -0.5 -0.09 

eurGDPex -1.83 -1.5 -1.67 
aerCDE 0 -0.17 -0.08 

aerF 0.17 -1.83 -0.83 
aerGHI 0.8 0.6 0.7 

gerGVAex 0.67 0 0.33 
gerJK -1.4 1.5 0.18 

Note: +(-} denotes o log neod} with respect to the rererence series. 

Source: Own calcuallions. 

Median Laa at 

p T All 

0 -2 0 
0.5 0 0 
-0.5 -1 -1 
-0.5 0 0 
-0.5 0 0 

0 0 0 
0 -1 -1 

1.5 0.5 1 
1 0 0 

-1.5 2 -0.5 ~ 
0, 
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Table A 10 a: Dynamic Factor Analysis of cycles with respect to the reference series 
Austrian gross value added excluding agriculture 

FOO 

Phases and cvcles averaae duratlon</TH< TR> 
Pto T Pto P TtoP Ttol 

Reference 8.5 17 9.2 17.8 Serles 
cuff 17 24.75 7.6 22.5 

autCDE 22 38 13.67 35 
autGHI 7.29 13.57 6.75 13.14 
autJK 9.67 17.6 8.2 17.8 

eurGDPex 8.83 17.4 9 16.2 
aerCDE 5.5 15.4 10.33 15 

aerF 8.17 16.2 9 16.33 
aerGHI 11.33 40 22.67 33.33 

qerGVAex 7.5 26.33 18.25 25 
gerJK 13.33 40.5 29 44 

Source: Own calculations. 

Table A 10 b: Dynamic Factor Analysis of cycles with respect to the reference series 
Austrian gross value added excluding agriculture 

HP 

Phases and cvcles averaae duratlon<JTH< TR> 
P tot Pto P TtoP Ttol 

Reference 10.2 20 11 20.25 Serles 
cuff 18.67 35.33 17.33 36.5 

autCDE 9.25 27 18.67 26.67 
autGHI 8.33 16.2 9.4 16 
autJK 9.5 17.4 8.6 18 

eurGDPex 8.2 19.5 13 19.75 
aerCDE 9 20.25 12 19.75 

qerF 8.33 17.6 11 19.4 
qerGHI 7.43 13.17 6.83 12.83 

gerGVAex 9 20.25 12 19.75 
aerJK 10.4 21 10.75 20.25 

Source: Own calculations. 
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Table A 10 c: Dynamic Factor Analysis of cycles with respect to the reference series 
Austrian gross value added excluding agriculture 

BK 

Phases and cvcles averaae duratlon</TH< TR> 
Pto T Pto P Tto P Ttol 

Reference 10.17 17.6 8.6 19.2 Serles 
auff 6.71 14.33 8.17 14.33 

autCDE 7.57 14.67 8.5 15.83 
autGHI 7.57 14.86 8.14 16.17 
autJK 9.67 17.6 7.67 16.5 

eurGDPex 10.5 17.5 7.83 19.2 
aerCDE 8 15 8.17 16 

aerF 5.89 11.22 6.22 10.88 
aerGHI 8.67 15.8 8.4 15.6 

aerGVAex 7.57 15 8.83 16.17 
aerJK 7.29 16 9.33 16.33 

Source: Own calculations. 
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