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Alternative measures of the explanatory power of
multivariate probit models with continuous or
ordinal responses

Martin Spiess® and Gerhard Tutz"

Abstract

In this paper R?-type measures of the explanatory power of multivariate
linear and categorical probit models proposed in the literature are reviewed
and their deficiencies are discussed. It is argued that a measure of the
explanatory power should take into account the components which are
explicitely modeled when a regression model is estimated while it should be
indifferent to components not explicitely modeled. Based on this view three
different measures for multivariate probit models are proposed. Results of
a simulation study are presented designed to compare two measures in
various situations and evaluate the BC, bootstrap technique for testing
the hypothesis that the corresponding measure is zero and to calculate
approximate confidence intervals. The BC, bootstrap technique turned
out to work quite well for a wide range of situations, but may lead to
misleading results if the true values of the corresponding measure is close
to zero.
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1 Introduction

For univariate linear regression models, the coefficient of determination is rou-
tinely printed out from most statistical software packages and can be interpreted
as a measure of the explanatory power of the estimated model. However, in con-
trast to the univariate case, where the concepts of total and ‘explained’ variation
are rather obvious, problems arise in the case of multivariate or panel models
with continuous or ordered categorical responses.

Based on Hooper’s R2 and a pseudo-R? measure, the sample variant of which
was proposed by McKelvey and Zavoina (1975) for univariate ordinal models,
Spiess and Keller (1999) proposed a pseudo-R3 measure to assess the explanatory
power in panel or multivariate probit models. This measure takes values between
zero and one. It is zero if all the regression parameters are zero and increases
if the values of the model parameters increase. In a simulation study, Spiess
(2001) found pseudo-R?. to have the desirable property of having larger values if
the modeled and estimated correlation structure is closer to the true correlation
structure. However, in this simulation study all the covariates were generated
independently over measurement points.

In the present paper it is shown that the above as well as some other measures
proposed in the literature for multivariate linear models are functions not only
of the systematic or covariate part of the model, the variance of the noise vari-
able and the correlations between noise variables of different measurement points
but also of the correlations between the covariates of the different measurement
points. The latter components generally are not modeled when a regression model
is estimated and are of no further interest. It is argued that a measure of the ex-
planatory power should take into account all the components explicitely modeled
when a regression model is estimated and at the same time should be indiffer-
ent to components not explicitely modeled. Based on this starting point three
different measures of the exaplanatory power for multivariate probit models are
proposed.

This paper is organized as follows. In Section 2 measures proposed in the
literature for multivariate linear models are reviewed. In Section 3 their deficien-
cies are shown and discussed. Alternative measures for linear models to overcome
these deficiencies are proposed in Section 4 and are generalized to multivariate
probit or panel models with continuous or ordered categorical responses in Sec-
tion 5. The results of a simulation study designed to compare two of the three
proposed measures and to evaluate the bias corrected and accelerated (BC,) boot-
strap technique (Efron and Tibshirani, 1993) as a means to test the hypothesis
that the true value of the corresponding measure is in fact zero or to calculate
approximate confidence intervals are given in Section 6. The paper ends with
some conluding remarks in Section 7. Finally, in the Appendix, the resampling
method which was used in the simulation study is described.



2 R? for linear multivariate models

First, the population case is considered. Let y = (y1,...,yr)" denote the (T' x 1)
dimensional response or dependent variable and x the (P x 1) dimensional vector
of random covariates where the first element is a degenerate random variable
which equals one. Define ¥, = E(yy') — E(y)E(y)’, £, = E(z2') — E(x)E(x)’
and 3., = E(zy’) — E(z)E(y)’. The multivariate linear model considered has
the form

y=Mz+e, (1)

where 1 = [T’z is the linear predictor determined by the (P xT') parameter matrix
IT and € represents the (T x 1) dimensional noise variable with € ~ N(0, ).
Moreover, it is assumed that = and € are independent.

Based on model (1), the matrix ¥, may be written as

Zy :H,ZxH+Eea (2)

where we assume that X, and X, are positive definite. Note that special cases
of model (1) are the ‘classical” multivariate regression model, where all the ele-
ments of II are unrestricted and the covariates are often assumed to be normally
distributed, a panel model where the regression parameters weighting the covari-
ates are restricted to be identical over all T equations and a special case of the
seemingly unrelated regressions (SUR) model, mainly used in econometrics. The
seemingly unrelated regressions model is given by a specification where the rows
of IT" consist of structural zeros in a way that, apart from the intercept, there are
no common covariates for the 7" different equations and for each of the seemingly
unrelated regressions one has the same number of observations. Furthermore,
model (1) can be considered as the reduced form of a structural equations model.

If T = 1, the well-known coefficient of determination, R?, is defined as the
proportion of the variation ‘explained’ by the systematic or covariate part of the
model and the total variation in the dependent variable given by the sum of
‘explained’ and variation in the noise variable. If ordinary least squares (OLS)

-2
or maximum likelihood (ML) estimation is used, its sample version, R, has the

~ 2 ~ 2
favorable property that 0 < R < 1. The extreme R = 0 results if and only
if the total variation in the dependent variable is equal to the residual variation

-2
and the extreme R = 1 results if and only if the variation ‘explained’ by the
covariate part of the model is equal to the total variation in the dependent vari-

~

able. Furthermore, R is monotonically related to the F-statistic for testing the
hypothesis that the regression parameters are zero, and RQ can be interpreted as
the squared multiple correlation coefficient which gives the maximal correlation
of the response variable and a linear combination of the covariates.

On the other hand, there are also some properties that suggest to interpret

~ 2 ~ 2
R with some caution. A first point is that R is sensitive to the definition of



the response. For example, the log transformation of the response will result in
-2
a different R. A further point is that a value that may be judged to be high

in one context may be considered to be low in another. Moreover, R will never
decrease if the number of covariates is increased, even if these additional variables
have no explanatory power.

-2
Sometimes R is interpreted as a measure of the ‘goodness-of-fit’. It should,

however, be kept in mind that RQ does not measure the goodness-of-fit of the dis-
tributional assumptions in some general sense. Rather it measures the reduction
in variation if the chosen linear model is used to predict the responses as com-
pared to using the general mean of the responses as prediction. Therefore, the
measures considered in this paper will be referred to as measures of explanatory
power instead.

In contrast to the univariate case, where the concepts of total and ‘explained’
variation are rather obvious, problems arise for 7 > 1. Then ¥, and II' 3, TII
are multivariate generalizations of the univariate concept of variance measures
and there are various possibilities of defining a scalar measure of the explanatory
power of a regression model. Two common measures of multivariate variation
are the generalized variance, i.e. the determinant of the corresponding covariance
matrix, and the total variation, i.e. the trace of the corresponding covariance
matrix. Both have been used to construct measures of the explanatory power.

Let us first consider measures which are based on the generalized variance and
their connection to correlation coefficients. Two measures which may be derived
directly from (2) are the squared vector correlation coefficient

s, 11
pe = M) _ |2, TS, 10|
p

and the measure

%l
1%y

=1-|5,'%

b

where the positive square root of ¢4 = Xy 126‘ is the so-called alienation co-
efficient (see e.g. Dhrymes, 1970; Hooper, 1959). Note that p% is a measure of
the ‘explained’ generalized variance of the mutually dependent response variables
and ¢% is a measure of the ‘unexplained’ generalized variance of the mutually de-
pendent response variables which is also called the coefficient of simultaneous
correlation. Unfortunately, in general pZ and ¢ do not sum to unity. In univari-
ate models both, p2 and p?%, equal R? and thus may be seen as generalizations
to the multivariate case.

Both measures can also be motivated by reference to canonical correlations.
To see that both are functions of the canonical correlations between y and x, note
that a determinant of a matrix can be written as the product of its eigenvalues,
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so that

T

T
v? and f‘:H 1—-1?), ie. pizl—H(l—l/f)

t=1 t=1 t=1

Il
1=

where it can be shown that v? and 1 — 1/? are the corresponding eigenvalues and
v? are the squared canonical correlations between the responses and the P — 1
covariates, ignoring of course the constant term (Hooper, 1959).

From these relations it follows, that p% and p% are equal to one if all the
canonical correlations are equal to one, representing complete dependence of y
and z. Conversely, p% is zero if all the canonical correlations are equal to zero,
representing complete independence of y and z. However, p% is zero if at least
one of the canonical correlations equals zero. Therefore, if P — 1 < T then
some of the eigenvalues vanish and p¢ is equal to zero (Hooper, 1959), no matter
how well in some other sense the covariate part ‘explains’ the variation in the
dependent variable. Furthermore, the coefficients pZ and ¢% tend to zero when T
is large since both are represented as the product of quantities of a monotonically
decreasing sequence between zero and one.

Therefore, instead of p% and pZ one may consider

{/%ZVW—’EQ;H‘ and 1—{/&:1_7\"/%,

which means taking the geometrical means of 1 — v and 12, respectively. Again,
however, W and {/a do not sum to unity (Hooper, 1959), which seems to be
a requirement at least in the population. Therefore, we will exclude p?%, 1— W,
pZ and {/pZ from the further discussion.

Another possibility within the framework of canonical correlations is to con-
sider the arithmetic mean of the squared canonical correlations rather than the
geometric mean. Thus Hooper! (1959) proposed to use what he called the squared
trace correlation which takes values between zero and one. The population ver-
sion is given by

T
P o= T 'Y 1}
t=1
= T 'tr(3; 'S, 1),

where tr(A) is the trace of matrix A. Note that p% may also be derived from
rewriting (2) in the form

Ip =%, 'S, [T+ X, 1%, (3)

!In fact, Hooper (1959) considers a model where all the variables are centered. However, the
results remain unchanged whether or not variables are centered (cf. Mardia, Kent and Bibby,
1995).



where I is the (T x T') identity matrix. By considering the trace on both sides
of the equation one obtains

1=T""tr(3) 'S, IT) + T~ (3,1 52).

Thus p? as an extension of R? to the multivariate case may be seen as the arith-
metic mean of components which reflect the ratio of explained to total variation.
Another advantage of p% over p% and pZ is that p% is unequal zero unless all the
canonical correlations are zero, which will only be the case if the y’s and z’s are
mutually independent. If T = 1 then p% is the square of the multiple correla-
tion of the dependent variable with the covariates. The derivation of p% in the
finite sample case is based on the use of unrestricted OLS regression parameter
estimators.

Another measure which uses the trace as a measure of variability is Glahn’s
(1969) squared composite correlation coefficient

S,
“ tr(Zy)
From (2) one obtains
tr(3,) = tr(Il' X, II) + tr(X,)
and

(IS, 1) tr(3)
sy Teey

so that the first term on the right can be interpreted as that portion of variation
‘explained’ by the covariate part of the model and the second term on the right
as the portion of variation in the noise variables. It is easily seen that 0 < p% < 1
and pZ increases if the portion of the variance in the noise variables decreases
and vice versa. Furthermore, if T = 1 then p% is identical to p% and both may
be interpreted as squared multiple correlations of the dependent variable and the
covariates. As for p?%, the derivation of the sample version of pZ, assumes that
the estimated residuals are uncorrelated with the covariates.

A measure proposed by McElroy (1977) within the framework of seemingly
unrelated regressions is Glahn’s (1969) p% applied to the standardized model (1),
ie.

S V2y = V2 452,
leading to the decomposition
oV2e, BoV? = oV B, T2 4 1

6



Taking the trace yields
tr(X7'Y,) = (7S, ) + T

and

tr(X T 2, 10) N T
tr(X713y) tr(X71%,)

The corresponding measure proposed by McElroy (1977) has the form

, (ST S, 1)
Pu = 1
tI‘(Ee Zy)

with values between zero and one. Note that p%, gives the portion of explained
variation in the transformed, not in the original . The properties of the sample
version of p3, are derived for the OLS estimator of the transformed model, which
is a generalized least squares estimator in the not transformed model. It can
be shown that this measure is monotonically related to a test statistic which
investigates that all the regression parameters apart from intercepts are zero.
Further, for T = 1, p% = p% = p3,.

Within the framework of structural equations systems, Carter and Nagar
(1977) proposed a measure which is quite similar to the one proposed by McElroy
(1977). In fact, the population versions of both measures are identical. The
population version of the measure proposed by Carter and Nagar (1977) can be
written as

,  (SOUTS, I (ST, )
PON = (B S, 1) + tr(ly)  te(o- IV S, 1) + T

Note that, in contrast to McElroy‘s measure, ¥_'II' 3, IT + Ir instead of ¥ '3,
is used in the denominator. Both measures are identical in the population case.
However, for the sample version, in contrast to McElroy (1977), Carter and Nagar
(1977) do not restrict the parameter estimators to be OLS or GLS estimators,
respectively, but consider consistent estimators of the parameters. Consequently,
in finite samples, pZ and p?, are not identical in general. For the sample ver-
sion of their measure and certain estimators Carter and Nagar (1977) derive its
asymptotic distribution to test the hypothesis that the population version is zero.

3 Deficiencies of the proposed measures

All of the above approaches have in common that, as in the univariate case, the
variation of the covariate part of model (1) is considered as the part that ‘explains’
in some sense the variation in y, whereas the variances of the noise variables are

7



considered as nuisance parameters. On the other hand, all the above measures
are functions not only of the covariate part and the variances but also of the
correlation matrix of the noise variables. This holds for the population versions as
well as for the finite sample versions. Therefore, the values of the measures may
change if the variances or correlations change, everything else being constant.
Whereas the interpretation of the variances in the noise variables as measures
of the unexplained part of the model seems clear, this is not the case for the
correlations of the noise variables.

There is, however, another problem arising in the multivariate case. Most
of the measures considered in the last section are functions of the off-diagonal
elements of 3, as well, where ¥, = II' 3, Il is the covariance matrix of the linear
predictor n = II'z. The exception is Glahn’s pZ. Of course, the diagonal elements
of ¥, are just the variances of 7, where ' = (n1,...,n7) and can be interpreted
as noted above. On the other hand, the off-diagonal elements lack a similar
interpretation.

As a consequence of the above discussion, before defining or evaluating a
measure of the explanatory power of a model, it has to be clarified how this
measure should or should not change as a function of the various components.
The answer to this question is closely linked to the problem of defining what
is meant by ‘explained’ variation and which components of the model ‘explain’
something and which do not. The latter seems to be a necessary requirement for
its interpretation with respect to the assessment of the chosen model.

To illustrate the foregoing discussion about the components of model (1) and
their contribution to the various measures, let us consider the case T" = 2. Let
IT = (Bj;) be a (P x2) matrix, x = (z1,...,2p)" a (P x 1) vector with E(z) = 0.

Let
n= (%)
be the (2 x 2) covariance matrix and define ¥, = IT' E(xz2’) IT = (a;,,,). Then
ap; = ZZﬁjlﬁmE(fﬁjxk), ajp = ZZﬁjlﬁsz(fﬁjxk),
Jj ok Jj k
Qoo = ZZﬁﬂﬁmE(fﬁjxk)
ik

and ag; = aqo. In this simple case, we obtain

pg _ 1 (a9 + 032)011 + (ann + 0%1)(122 — 2(a12 + 012)a12
2 (ag2 + 035) (@11 + o)) — (@12 + 012)? ’
9 a1 + a2

Pc =

2 2
a1 + ag9 + 011 + 059



and

2 2
2 039011 + 071022 — 2012012

Pvm = P?)N =

5 3 2 o 2
039011 + 071022 — 2012012 + 07105 — 07y

The measure pZ depends only on the diagonal elements of ¥, and X, whereas
P, pas and pZy depend also on the off-diagonal elements of ¥, and X..
For simplicity, let a1y = agy = 0%, = 02, = 1 then p = 015 is a correlation,

and one has

2 — (a2 + p)aiz

P =

H 4—(ap+p)?

1

2 —

Pc = 9
and
2 — 2pays

Py = Pon =

2 —2pap+1— p?

Figure 1: Variation of Hooper’s p% and McElroy’s p3; against aja (—.99 < ajp <
.99) for several values of p (p=—.9,0,.9).

Hooper’s p% McElroys’s p3,

0.2 B 0.2 B
p=-.9 p=-.9
p= O - p= 0O
= 9 e = 9 e
o P : ) o P
-0.8 -0.4 o 0.4 0.8 -0.8 -0.4 (0] 0.4 0.8
aio a2

It is evident from the above formulas and Figure 1 that p%, p3, and pZy
are not only functions of p and a2, but that generally the influence of, say, p
depends on the value of a5 and vice versa. Consequently, the interpretation of
the measures p%, p%; and pZy even in the population is not clear. Comparing
p3 and p3, or pZy it is evident that they behave quite differently to changes in
p and as.



To summarize, the values of p%, p3, and pZy depend on components of model
(1) whose contributions to a measure of the explanatory power of the model is
not clear. The exception is the measure proposed by Glahn (1969), pZ, which is
a function of only those components that are interpreted in univariate models as
the variation ‘explained’ by the model and ‘unexplained’ variation. Correlations
between the noise variables are ignored.

Now, turning to the sample versions, the above properties of course carry over.
As a consequence, everything else being constant, the values of p%, p3, and pZ
may change from one sample to the other if, e.g., the off-diagonal elements of f]y
do not change but those of &, and S, do. So, using p%, 2, and p% as descriptive
measures, comparisons over different samples may be problematic at least. Again,
P2, is robust with respect to changes in the corresponding off-diagonal elements.

On the other hand, with the exception of Carter and Nagars’ (1977) p2.y, all
the above measures and their properties are derived by using OLS-estimators,
or at least esimators for which the estimated residuals are uncorrelated with
the covariates, for the regression parameters either in the original or in a trans-
formed model. If other estimators, e.g. estimators that take into account a priori
restrictions, are used, then the finite sample orthogonality property of the cor-
responding measures break down. On the other hand, pZ suffers from the fact
that generally there is no neat finite sample interpretation.

Furthermore, p?%, and p% do not take into account whether or not a certain
correlation structure is modeled and estimated. For example, multivariate re-
gression models allow the noise variables in (1) to be correlated. At the same
time, however, for the general multivariate regression model given in (1) ordinary
least squares, generalized least squares and maximum likelihood estimation lead
to the same estimator for II, which does not depend on the covariance matrix
Y. of the noise variables (Mardia, Kent and Bibby, 1995, pp. 173-174). On the
other hand, p%, and pZ are functions — although considered as nuisance — of
the estimated correlation structure, but, as has been discussed for the population
versions, the effect of different correlation structures depends — everything else
being constant — on the off diagonal elements of ¥,.

4 Alternative measures

As argued above, when defining a measure of the explanatory power of model
(1) it should be clarified what is to be understood as the explanatory power in
terms of the components involved. Following the notion of a measure of the
explanatory power in univariate models, the role of the diagonal elements of
¥, and X, are clear: The larger the values of vecdiag(},), where vecdiag(A)
means extracting the diagonal elements of A into a column vector, the larger the
portion of variation ‘explained’ by the covariate part of the model and vice versa.
Correspondingly, the larger the values of vecdiag(3,) the larger the portion of
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variation ‘unexplained’ by the covariate part of the model and vice versa.

When model (1) is estimated using OLS, GLS or ML approaches, then pa-
rameters of the (conditional) mean of y|n and the (conditional) covariance matrix
of y|n are estimated and often some are subject to restrictions. To be more pre-
cise, we consider the case where the covariance matrix is estimated by restricting
the structure of the correlation matrix. The estimated parameters are the corre-
lation structure parameters and, if identifiable, variances of the noise variables,
where the latter can be interpreted as the ‘unexplained’ variation in the corre-
sponding y,’s. For example, the correlation matrix R, = V2%, V12, where
V' = Diag(3) and Diag(A) denotes a diagonal matrix with diagonal elements
identical to those of A, may be restricted to be an equicorrelation matrix without
fixing the correlation coefficient. If independence is assumed, then the correla-
tion structure parameter of the assumed equicorrelation matrix is restricted to
zero. On the other extreme, the structure of R, may be completely unrestricted,
leading to the estimation of T'(T — 1)/2 correlation coefficients.

The off-diagonal elements of ¥,, on the other hand, are not explicitely mod-
eled, although they enter implicitely if parameters are estimated. Furthermore,
all the covariates assumed to have a significant effect on g; should enter the
corresponding equation. Hence, following Glahn (1969), from X, only the corre-
sponding diagonal element is considered important.

Again following Glahn (1969), by variation in the y,’s we mean the varia-
tion reflected in the diagonal elements of ¥,. So, up to now, three important
components are identified, i.e. vecdiag(X,), vecdiag(X,) and vecdiag(X.). Note
that none of the above quantities capture any ‘cross equation’ dependencies. To
take into account the modeled correlation structure, which by the above argu-
ments is considered as part of the structure captured by the model to ‘explain’
the variation in the 1,’s, and at the same time define a measure for the explana-
tory power in accordance with the above principle of considering the variation
equation by equation, we use the squared multiple correlation of each tth noise
variable with all remaining 7'—1 noise variables which is given by Q?W =1—(rt)"4
where 7! is the tth diagonal element of R-'. Since € is normally distributed, the
multiple correlation coefficient is the correlation between ¢; and the (linear) re-
gression function of ¢; on the remaining ¢;’s and the squared multiple correlation
coefficient measures the fraction of reduction in the variation of ¢; obtained by
conditioning on all the remaining ¢;’s (e.g. Muirhead, 1982). Furthermore, it can
be shown that the squared multiple correlation coefficient is identical to the well
known coefficient of determination in the univariate linear regression model.

The choice of linear regression models of ¢; on the remaining €,’s equation by
equation is justified by the normality assumption of the noise variables. In that
case correlations equal to zero imply independence of the variables and gf‘t, = 0.

Further note that Q?It’ is maximal if R, is the ‘true’ correlation matrix.

However, instead of model (1), we consider a scaled version of it, and differing

11



from the measures proposed by McElroy (1977) and Carter and Nagar (1977),
we start with the decomposition of the covariance matrix of the scaled y,’s with
scaling matrix /2 where V = Diag(Z,), i.e.

vy, v = o2 VY2 4 R,

where the subscript € is suppressed. We then decompose, equation by equation,
the transformed variation in the noise variable which is equal to one within each
equation, into variation ‘explained’ by the correlation structure of the ¢th noise
variable and the T"— 1 remaining noise variables, i.e. gf|t,, and the ‘unexplained’
variation, i.e. 1 — gf‘t,. As the population version of a measure of the explanatory
power we define

, tr(VTII'S,I0) + tr(Ir — Diag(R™')™)

= tr(V-IITS,I) + T ’

where tr(I7 — Diag(R ') ™") = tr(Diag(e} /- - - . 07yp)) is the portion ‘explained’
by the correlation structure and tr(Diag(R~')~") is the portion ‘not explained’.
In decomposing the variation of the transformed %,’s into variation ‘explained’
and ‘unexplained’ by the model, we follow the idea behind Carter and Nagars’
(1977) measure. Note that p? is invariant with respect to changes of scale in any
of the y,’s. However, this measure may be simplified to yield

-2 2 2
pg _ Zt O, Oy T Zt Oy
1 —2.-9
Zt O—et Ont + T

and can be interpreted as the proportion of the variation ‘explained’ in all T’
equations to the total variation given by the sum over all 7" equations. Obviously,
0 < p? < 1 and, if besides the constant at least one covariate is included, p? = 0
iff I =0 and R = 1.

Similar measures can be defined, e.g. if one is interested in componentwise
contributions to an overall p?, then

(4)

—2 .2

2
p=T") —— 50 (5)

may be prefered, which is just the unweighted mean of the T" values of the corre-
sponding measure of the explanatory power.

To derive a measure for the explanatory power which is closer in spirit to
Hoopers’ (1959) measure, let

M = Diag(o, 202 ,...,0.%02)

€1 M’ »TE€r T NT
and
2 -1
O, Tty (My + Ry) ™ 'ryp

2
Uyt

2 _
Qyt [y —

b
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where for a (T'x T') matrix A, Ay is that part of A where the ¢th row and column
has been discarded and r,’f’t, is the vector of correlations of the tth noise variable
with the remaining 7" — 1 noise variables. The measure ta\ gy AN be interpreted
as the squared multiple correlation of y; with the remaining y,’s after having
removed the off diagonal elements of 3,, i.e. only allowing for the correlations
between the noise variables to ‘explain’ the dependence on the remaining response
variables. As a measure of the explanatory power we can define

p = T 'tr((M+R)"M)

2 2 -1 9

_ T—l <Uyt o Uyt 92 ) Jﬂt
- Z 2 2 Sytlyy 2
- o, o, o;,

02 g2

— Tfl -~ €t ’ 6
2 o+ D1 ) ©

e~ €t

where

2 2 -1
<0yt - Oyt 92 )
2 2 Cyilyy
o;, o;,

is the tth diagonal element of (M + R)™!. The measure p> may be preferred
over p? and p3 if it is intended to assign more weight to the covariate-part of the
model.

It can be shown that 0 < p3 < p2 < 1 and, if besides the constant at least one
covariate is included, that p2 = 0 iff both, IT = 0 and R = Iy, whereas p2 = 0 iff
IT = 0. Furthermore, if all correlations are zero, then p3 = p3.

Generally, larger values of vecdiag(%,) and Q?I y OT szm o respectively, lead to
larger values of p?, p2 and p3. Conversely, larger values of vecdiag(X,) lead to
smaller values. If T' =1, then p} = p3 = p3 = p% = p& = p3; = pon-

5 A generalization to multivariate probit mod-

els
Now consider an ordered categorical model where each observable scalar response
variable z; takes on a value k € {0,..., K'}. A threshold model is assumed, where
y'=Ma+e, ¥ =1 up) (7)
and

2=k = O <y; <O,

where the z,’s are observed variables but the y;’s are not, and the 6; are threshold
values, which are for ease of presentation assumed to be identical for all ¢ and
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6y = —oo and Ok, = +oo. Since not all threshold parameters and the intercept
are identifiable, a restriction on these parameters has to be chosen when this
model is estimated. However, the derivations that follow do not depend on a
particular choice of the restriction.

For univariate probit models with ordinal responses, where T' = 1, McKelvey
and Zavoina (1975) proposed a measure to assess the explanatory power, the
population version of which can be written as

~1,42
oo,

Pz = i
MzZ — )
o top+1

where the index ¢ is omitted.

Following Hoopers (1959) approach, Spiess and Keller (1999) proposed a gen-
eralization of McKelvey and Zavoina’s (1975) measure to multivariate probit
models with ordered categorical responses. For the general model, the popula-
tion version of their measure can be written as

P =T (VS V2 4 R (VI V), (®)

Comparing this measure with pZ, we see that the difference between the two is
that the off-diagonal elements are ignored in p2. In fact, p% ;- shares with Hooper’s
(1959) measure the disadvantage that it depends on correlations between covari-
ates and cross products of the regression parameters of the different measurement
points.

Although p%y is written as a function of V and o7, in the multivariate probit
model with ordinal responses it is not possible to estimate all variances and
regression parameters independently from each other. Therefore, instead of model
(7), we consider the transformed model

V2 = By + V2%, 9)

where B' = V~Y2II' leading to B'Y, B = V125, V12 which leaves the value
of p?%; unchanged.

Now, given the derivations in section 4, and the idea behind McKelvey and
Zavoinas’ (1975) and Spiess and Kellers’ (1999) measure, alternative measures
of the explanatory power in multivariate probit models may be defined. The
population versions we propose are exactly those given in section 4.

Given consistent estimators or correctly preassigned values of the regression
and correlation structure parameters, we define the finite sample versions, i.e.
the estimators of the corresponding population versions as

o 2 o 200 O

pl - ~9 ’ (10)
> 1 O + T
Ore + 074
2 —1 n; it
=T 11
:02 6’2*—|—1 ) ( )
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and
9

o2,

~9 -1 Tt

po= Ty —, (12)
t (0ﬂ2+1)(1_9yt\yt/)

respectively, where &727; is the #th diagonal element of B'S, B, @f‘t, is the estimated

squared multiple correlation given the estimated correlation matrix, Ee, of the

noise variables in the underlying linear model and g,,},,, is given by

A~ > - 71 A
9 o rt,t’(Mt’ + Ry )y

éy |y A ]
1Yy 2
O—n* 1

where 7} ,/, My and Ry are the estimates of the corresponding quantities described
in section 4.

It must be noted, however, that the proposed measures should be interpreted
with some caution. First, they share with the coefficient of determination the
limitations already discussed in section 2. Second, for a given sample, generally,
there is no orthogonal decomposition of the total variation into variation ‘ex-
plained” and not ‘explained’ by the model. This orthogonality only holds in the
limit.

6 A simulation study: Comparisons, tests and
confidence intervals

In this section we present results of a simulation study designed to compare two of
the proposed measures, namely p? and p3, and to evaluate the bias corrected and
accelerated (BC,) bootstrap technique (Efron and Tibshirani, 1993) as a means
to test hypotheses and to calculate confidence intervals.

Instead of the categorical multivariate model described in section 5, however,
we simulated and estimated a linear model since in order to calculate the proposed
measures and to make asymptotic statements, only the parameter estimates, their
estimated covariance matrix and their asymptotic distribution is necessary, where
it is assumed that the corresponding estimators are consistent.

The model simulated is

Yn = Xnﬁ + €5,

where y, is a (3 x 1)-vector of responses, X, is a (3 x 3)-matrix of two covariates
and a column of ones, €, ~ N(0,R) is a (3 x 1)-vector of noise variables dis-
tributed independently from the covariates. The first covariate was drawn using
a (pseudo) random number generator to simulate a uniformly distributed contin-
uous variable with variance equal one. The second was generated according to
the Gamma distribution with variance and mean 0.5. Note that this model is just
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a special case of the more general model (1). The simulated covariance matrix
was a correlation matrix which was either the identity matrix or a matrix R(7)
corresponding to a stationary autoregressive process of order one with parameter
v € {0.30.50.8}. N was set to 100 and the number of simulated data sets was
500 in each case considered.

The model was estimated using a variant of the iterative method described
in Spiess and Keller (1999) adapted to the linear case where all the parameters
are estimated simultaneously using the true values as starting values. However,
since the proposed measures are based on the transformed model

—1 _ —1 *
06 yn - X’I’LO—C /8 + 67’“

we estimated §* = /o, and the correlation structure parameter v. The latter
depends on the assumed correlation structure. Three different structures were
considered: Equicorrelation, AR(1) and an unrestricted structure. Two versions
of an equicorrelation matrix are considered: The identity matrix and a matrix
with off-diagonal elements not restricted to zero. If independence was assumed,
only B* was estimated. For the equicorrelation structure, one has ryy = v for
all t # ', for the AR(1) structure ryy = +1*=*| for all ¢+ # #'. In these cases 7
is a scalar. If an unrestricted structure is assumed, then 7 is a (3 x 1) vector
containing the off-diagonal elements.

Given consistent estimates of the interesting parameters, p? and p3 were cal-
culated. The first two tables show the results, i.e. the means p? and p?, for two
different values of the correlation structure parameter, v = 0.3 (Table 1) and
v = 0.8 (Table 2), given an AR(1) structure and various values for the regression
parameters. Models are estimated assuming independence, an equicorrelation,
an AR(1) and an unrestricted correlation structure.

Obviously, the values of p? exceed those of p? in all cases considered. Further,
the means of the estimated statistics over the simulated data sets, p? and p2,
respectively, are larger if the assumed correlation structure is closer to the truth:
The corresponding values are smallest if independence is assumed, they get larger
if an equicorrelation structure is assumed and are close to the true values if
an AR(1) or an unrestricted correlation structure is assumed. The differences
assuming an AR(1) structure and an unrestricted structure are rather negligible.
The differences in the means of the estimates are larger for medium values of p?
and p2, respectively. Furthermore, these differences are larger if p? is considered
as compared to p2, which is to be expected, since p? gives more weight to the
covariate part of the model. Comparing corresponding entries in Table 1 and 2 it
can be seen that the values of both measures increase if the value of 7 increases.
The general conclusions from these two tables are the same if a model with AR(1)
structure and v = .5 (not reported) is considered.

To test the hypothesis that the R-type measure under consideration is zero
or to calculate a confidence interval, the BC, bootstrap technique is considered.
In a first stage j = 1,...,J samples, generally 2000, are drawn with replacement
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Table 1: Mean values of estimated p? and p? (p° and p?) assuming an inde-
pendence (Ind), equicorrelation (Equi), AR(1) (AR(1)) or unrestricted (Free)
correlation structure over 500 simulated data sets. Simulated model: N = 100,
B* = (Bo 51 B2) with By = 0 and correlation structure AR(1) with v = .3.

o P
P P3
Bi B2 p¥ Ind Equi AR(1) Free p2> 1Ind Equi AR(1) Free

0 0 115 .004 .083 113 126 0  .004 .004 .004 .004
A5 =15 153 .043 124 153 165 .048 .043 .047 .049  .049
B35 —1 218 118 194 221 .232 129 118 .127 .130 .131
Do —.63 463 397 448 466 474 411 393 405 409 411
S =7 553 500 542 557 564 511 496 507 510 512
1 -1 705 672 699 709 713 .676 .667 .673 675 .675
2 -2 902 891 .900 .903 .905 .890 .889 .889  .889  .889

Table 2: Mean values of estimated p? and p2 (p° and p2) assuming an inde-
pendence (Ind), equicorrelation (Equi), AR(1) (AR(1)) or unrestricted (Free)
correlation structure over 500 simulated data sets. Simulated model: N = 100,
p* = (B B2 Ps)', with B1 =0, correlation structure AR(1) with v = .8.

=9 =9
P1 P3
B2 s p?  Ind Equi AR(1) Free p2 Ind Equi AR(1) Free

0 0 687 .004 636 .68 .690 0 .004 .004 .004 .004
A5 =15 700 .043 704 700 704 122 043 108 122 124
S —.63 810 .398 .782 811 814 555 .394 546 554 .54
o =7 842 502 819  .843  .845 .628 .498 .624  .628  .628

to calculate ﬁ%,j and ﬁg’j. Each bootstrap sample consists of N matrices X,,-
drawn independently with replacement from the original sample. Since, generally,
estimation of the multivariate probit model is expensive especially if categorical
responses are present, instead of sampling the corresponding response variables
and estimating the model parameters, parameter values were drawn from their
estimated asymptotic distribution. A description of the resampling method is
given in the Appendix. A description of the BC, technique is given in Efron and
Tibshirani (1993, pp. 184-186). Note, however, that the BC, method presupposes
that a normalizing transformation exists (Efron, 1987). See also Davison and
Hinkley (1997) or Hjorth (1994) for a discussion of the bootstrap technique.

To test the hypothesis that the R?-type measure under consideration is zero,
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one-sided confidence intervals are calculated, using the BC, technique. The true
regression parameter values were set to zero and the true correlation matrix was
set to the identity matrix. Note that in this case p? = p5 = 0. For J = 2000
bootstrap replications for each of 500 simulated data sets with N = 100 and
correctly assuming independence, using the BC, technique, the portion of values
larger than the calculated 95% quantile was .046 and for the 90% quantile was .084
for both measures. The results changed only slightly when J = 8000 bootstrap
replications were used.

Table 3: Non-Coverage of the true values of p? and p3: BC, technique over
500 simulated data sets and 2000 bootstrap replications each. Error rates in the
lower (19°,19°) and upper (1°, 13°) tails (intended error rate in each tail: .05)
and central confidence intervals (CI1, CI3) with intended coverage .9. Simulated
model: N = 100 with AR(1) and v = .3 and v = .5, respectively. Estimation:
AR(1).

/Y TS SR SR N & S N N A &
3 0 0 A15  .038 120 158 0

3 .05 .01 117 .042 .124 166 .003 .094 .166 .26
315 15 153 .048 106 .154 .048 .07 .042 112
B335 —1 219 .05 .096 .146 .129 .056 .056 .112
B35 =7 491 058 .046 .104 .443 .084 .056 .14
3 1 -1 705 .062 .04 .102 .676 .09 .052 .142
32 -2 902 .068 .046 .114 .89 .094 .052 .146
S0 0 3 036 .07 106 O

S 15 =3 371 036 .054 .09 .135 .07 .052 .122
DD —.63 575 058 .038 .096 .446 .08 .062 .142
S 15 -1 83 .06 .03 .09 .780 .078 .04 .118

In a next step, approximate 90% central confidence intervals were calculated.
The results for a model with various values of the regression parameters, an AR(1)
structure with v = .3 and v = .5, respectively, and assuming an AR(1) structure
are given in Table 3. The results in Table 3 suggest, that the error rates for the
approximate confidence intervals using the BC, technique are in an acceptable
range for most of the cases considered. However, there is a high error rate for
p3 if its value is close to zero (.003) in which case the distribution of p2 is highly
skewed to the right. The general result did not change if the number of bootstrap
replicates were raised up to 8000. If the error rates in the lower and upper tails
are considered, a similar picure emerges: For smaller true values of p? and p3
coverage rates tend to be less symmetrical. Again, in these cases distributions
are highly skewed.
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Table 4 shows the results if models were simulated with R = I and assuming
independence. Again, the general results are replicated for this model. With
respect to the error rates of the confidence intervals the BC, technique worked
quite well in most of the cases considered. However, for true values of p? and
p2 very close to zero the technique leads to very high error rates. Very similar
results were found for a model with a simulated AR(1) structure and v = .8.

Table 4: Non-Coverage of the true values of p? and pi: BC, technique over
500 simulated data sets and 2000 bootstrap replications each. Error rates in the
lower (19°, 19°) and upper (13°, 13°) tails (intended error rate in each tail: .05)
and central confidence intervals (CI1, CI3) with intended coverage .9. Simulated
model: N =100 with R = Iy. FEstimation: Independence.

v b b pi 1(1)5 151;5 CIlL  p3 135 125 CI3
0 .05 -1 .012 .044 .19 .234 .012 .078 .092 .17
0o .15 -3 .101 .05 .094 .144 .101 .072 .048 .12
0
0

S =3 153 .046 .082 128 .153 .068 .054 .122
8 —63 51 068 .044 .112 51 .08 .04 .12

7 Conclusions

In this paper R-type measures that have been proposed in the literature are re-
viewed and their deficiencies are discussed. Based on the notion that the values
of a measure of the explanatory power should change as a function only of those
parts of the model which are explicitely modeled, alternative measuers are pro-
posed which are functions of the variances of the linear predictors, the modeled
correlation structure parameters and the variances of the noise variables. Esti-
mates of these measures can easily be calculated given estimates of the model
parameters. The measures proposed differ with respect to whether the mean of
pointwise contributions or an overall contribution to the explanatory power of
the model is considered (p3 and p3 vs. p?) or with respect to the weight given
to the correlation structure versus the covariate part of the model (p? and p2
vs. p3). In contrast to previously proposed measures, they all have in common
that correlations between covariates over measurement points or, if panel models
are considered points in time, have no effect on the value of the corresponding
measure.

The results of the simulation study suggest that the two measures considered,
pr and p2, in fact reflect the explanatory power as defined above: The values of
both increase if the absolute true values of the regression parameters or the cor-
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relations increase. Furthermore, the estimated values increase if the modeled and
estimated correlation matrix comes closer to the true correlation matrix. The re-
sults of the simulation study further suggests, that the BC, bootstrap technique
which can easily be implemented given estimates of the model parameters, their
estimated covariance matrix and (asymptotic) distribution, leads to acceptable
results if the null hypothesis that the corresponding measure is zero is tested given
this null hypothesis is in fact true. However, more simulations would be helpful
to see e.g. whether this result also holds with differentially distributed covariates
or more measurement points. Furthermore, the BC, bootstrap technique worked
quite well for a wide range of possible values of the corresponding measure if
approximate confidence intervals are calculated. However, if the distributions of
the estimates are highly skewed as e.g. if the corresponding measure is close to
zero, then the technique may lead to unacceptable high error rates. At least in
these cases it seems worth to consider other bootstrap methods, in particular
double bootstrap techniques, as an alternative. However, the naive double boot-
strap seems to be too costly to be applied if simulations are to be run. Therefore,
given the non-standard resampling method used here and described in the Ap-
pendix, a technique should be developed to reduce the computational burden.
This technique should then be evaluated with the help of simulations.

Appendix

Description of the resampling scheme

As in most problems, the estimators considered, é, are assumed to be consistent
and asymptotically normally distributed. To account for the fact that the asymp-
totic covariance matrix is estimated, for the jth bootstrap sample, a value for the
covariance matrix, Z;f & is drawn from a Wishart distribution in the first step.
Then, noise variables are simulated from the normal distribution with expected
value zero and covariance matrix equal to the estimated correlation matrix R.

From the corresponding values a bootstrap correlation matrix, i}, is calculated.

3,07
of the estimator (3, the estimator of the

The bootstrap covariance matrix of the estimator é, 3* ., is then transformed

£ 99
parameters of the systematic part on ?he model, and the bootstrap correlations,
the off-diagonal elements of R;. Then, given the bootstrap correlations and this
bootstrap covariance matrix, parameters of the systematic part of the model are
simulated from the corresponding conditional distribution. If independence is as-
sumed, i.e. R = Iy, then the parameters of the systematic part may be simulated
simply by using the simulated covariance matrix of the first step. Bootstrap
versions of p? and p2 are then easily calculated using the bootstrap sample of
covariates.

to a bootstrap covariance matrix, Y
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More specifically parameters are drawn according to the following scheme:

1. Draw [ = 1,..., NT rowvectors w; of dimension K independently from
each other according to the N (0, X,) distribution, where K is the number of
estimated parameters, i.e. the dimension of B* plus the number of estimated
correlation structure parameters, and ¥, is the estimated covariance matrix
of these estimators. Calculate E;é = (NT)"Ywy, ..., wyr) (w1, ..., wNT)"

2. If it is not assumed that independence holds, then draw m = 1,..., N
rowvectors v, of dimension 7" independently from each other according
to the N(0, R) distribution, where R is the estimated correlation matrix,
depending on the assumed correlation structure. Calculate the (T'x T) jth
bootstrap sample correlation matrix R} of v,, m =1,..., N. Let r} be the
vector of lower triangular elements of ;.

3. If it is not assumed that independence holds, then calculate E;‘ﬁ = G’E* G
where G = %‘é, 0 = (f',v") and 9 = (F',r") where r is the Vector of
the lower triangular elements of R, the assumed model of the correlation
structure, and is a function of the correlation structure parameter 7. For
the Equicorrelation structure we have r = (v, ~, ), for the AR(1) structure
r = (v,7%,7) and for the unrestricted structure, with v = (71, v,73)’,
7 = (71, 72,73). In most cases, however, Z* will be singular. Let

Yia= (;ﬁﬁ z;”’) :
» 4,75 JsT

4. Draw f* according to the (conditional) N (5 + E* ﬁZ;‘T( —7), Ez\f) dis-

tribution, where 7 ist the vector of lower trlangular clements of R. The

matrix E*‘ is given by

* _ * L * R *i * .
EBV E 7/3 EjJABE]’r Ejngf

If independence is assumed, then draw S* according to the N(B, E;) distri-
bution.

5. Calculate p?* and p3*.
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