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Non-technical summary

Research Question

Financial crises have often arisen from within the financial system, and a good many times they
have an element of self-fulfilling prophecies. How does the possibility of such shocks in the
financial system influence asset prices and the structure of the banking sector? What are the
efficiency properties of economies if their financial systems are prone to such shocks?

Contribution

We study competitive economies in which banks provide liquidity insurance and are prone to
bank runs caused by coordination failures which are triggered by a sunspot. Compared with the
banking model of Diamond and Dybvig (1983), we allow banks to interact on secondary asset
markets. The introduction of such markets significantly alters the set of equilibria and their
efficiency properties.

Results

Except for very large sunspot probabilities, equilibria exist in which bank runs do not occur
and the first-best allocation obtains. Furthermore, interbank asset markets are a new source
of multiplicity of equilibrium. Such multiplicity arises as beliefs about asset prices influence
banks’ portfolio choices, which in turn determine equilibrium asset prices. Our findings suggest
an economy where the banking sector could provide efficient liquidity insurance despite asset
price volatility, might as well be in an equilibrium in which the efficient allocation is missed.
In this inefficient equilibrium, drops in asset prices may coincide with the failure of a signifi-
cant number of banks. Comparing multiple equilibria reveals that market liquidity and banks’
reserve holding are substitutes.



Nichttechnische Zusammenfassung

Fragestellung

Finanzkrisen gehen häufig aus dem Finanzsystem selbst hervor und weisen in vielen Fällen
Züge von sich selbst erfüllenden Erwartungen auf. Wie beeinflusst die Wahrscheinlichkeit von
Schocks, die aus dem Finanzsystem kommen, die Vermögenspreise und die Struktur des Ban-
kensektors? Welche Effizienzeigenschaften weisen Volkswirtschaften auf, wenn ihr Finanzsys-
tem anfällig für solche Schocks ist?

Beitrag

Wir untersuchen Wettbewerbsökonomien, in denen Banken ihren Kunden Einlagenverträge zur
Versicherung ihrer Liquiditätsrisiken anbieten. Wegen eines möglichen Koordinationsversa-
gens, das durch ein “Sunspot”-Ereignis ausgelöst wird, sind die Banken anfällig für Bank Runs.
Im Vergleich zum Bankenmodell von Diamond und Dybvig (1983) können Banken in unserem
Beitrag ihre Anlagen auf einem sekundären Interbankenmarkt handeln. Die Einführung dieses
Marktes verändert sowohl die Art der Gleichgewichte als auch deren Effizienzeigenschaften.

Ergebnisse

Außer wenn ein “Sunspot”-Ereignis sehr wahrscheinlich ist, existieren Gleichgewichte, in de-
nen kein Bank Run auftritt und die optimale Allokation erreicht wird. Zudem stellen die
Vermögensmärkte eine neue Ursache für multiple Gleichgewichte dar. Diese Multiplizität ent-
steht dadurch, dass Erwartungen über die Vermögenspreise die Portfolioentscheidungen von
Banken beeinflussen, welche wiederum die gleichgewichtigen Vermögenspreise bestimmen.
Unsere Ergebnisse deuten darauf hin, dass eine Volkswirtschaft, in der ein sicherer Banken-
sektor trotz volatiler Vermögenspreise die effiziente Liquiditätsversorgung bereitstellen könnte,
sich auch in einem Gleichgewicht befinden kann, in dem Banken nicht die optimale Liqui-
ditätsversorgung anbieten. Darüber hinaus können in einem solchen ineffizienten Gleichgewicht
niedrige Vermögenspreise zum Ausfall einer signifikanten Anzahl von Banken führen. Der Ver-
gleich multipler Gleichgewichte verdeutlicht, dass Marktliquidität und die Reservehaltung von
Banken Substitute darstellen.
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1 Introduction
In a financial crisis, a financial system suddenly fails to perform its function of allocating risks
and capital. Asset markets crash or freeze, frequently accompanied by the failure of a significant
number of financial intermediaries. From a historical perspective, such crises have often arisen
from within the financial system, which has therefore been considered an independent source of
shocks to the real economy and not merely a propagator (Schularick and Taylor, 2012). A good
many times, such financial crises have had an element of self-fulfilling prophecies, caused by
abrupt changes in expectations and triggered by incidents that might otherwise go unnoticed.
For example, to many observers, the market freeze that culminated in the 2007/08 financial
crisis was due to a sudden lack of trust (Spiegel, 2011).

How does the possibility of shocks from within the financial system influence asset prices
and the structure of the banking sector? What are the efficiency properties of economies if their
financial systems are prone to such shocks? Motivated by these questions, we adapt the banking
model of Diamond and Dybvig (1983). Banks serve as financial intermediaries that provide
liquidity insurance for consumers. Bank runs can occur because of coordination failures, i.e.
when a depositor withdraws her deposits from a bank only because she expects everyone else
to do so. Coordination failures are triggered by an extrinsic random variable that is unrelated
to the fundamentals, or sunspot for short. Banks are immune to coordination failures provided
the value of their portfolio of reserves and productive investments allows them to meet the
withdrawal demands of depositors independently of whether depositors run. A bank that is
immune to runs is run-proof, otherwise a bank is run-prone.

The standard approach in adaptations of the Diamond and Dybvig (1983) model is to con-
sider the value of productive investments exogenous and independent from the occurrence of a
sunspot. We introduce secondary interbank asset markets where banks can trade reserves for
long-term productive investments. That way, asset values become endogenous and potentially
state-dependent. In a bank run, a bank’s productive investments can not only be unwound and
liquidated but also sold, provided there is another bank that does not suffer from a run. Asset
prices determine the value of bank assets and thus how to structure run-proof balance sheets. In
equilibrium, consumers save with banks that offer the most attractive deposit contract, banks al-
locate deposits between productive investments and reserves in order to maximize their profits,
and asset markets clear. Although all banks face the same fundamentals, all assets are risk-
free and aggregate liquidity demand is stable, asset prices can depend on the extrinsic state and
banks may choose different portfolios in equilibrium.

Compared with the standard model, the endogeneity of the value of productive investments
significantly alters the set of equilibria. For one, it can eliminate coordination failures. We
show that except for very large sunspot probabilities, equilibria with trivial sunspots exist in
which asset prices depend on the extrinsic state while bank runs do not occur and the first-
best allocation obtains. The endogeneity of asset values is also a new source of multiplicity of
equilibrium, which arises as beliefs about asset prices influence banks’ portfolio choices, which
in turn determine equilibrium asset prices. A necessary condition for run-prone banks to exist
is that beliefs are such that asset prices in the extrinsic state, in which consumers contemplate
to run, will be lower than in the other state. For those prices, equilibria without run-proof banks
(risky banking sector) exist if the sunspot probability is very low. If the sunspot probability is
very high, only equilibria without run-prone banks (safe banking sector) exist. If the sunspot
probability is neither very high nor very low, equilibria may exist where some banks are run-
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prone and others are run-proof (mixed banking sector). Having a mixture of bank types is
what allows for an active asset market in equilibrium, where run-prone banks hold an illiquid
portfolio and will be the sellers of productive investments, while run-proof banks hold a liquid
portfolio and will be the buyers. Potentially, multiple equilibria with non-trivial sunspots and
different shares of run-prone banks also exist for intermediate sunspot probabilities.

The share that banks in safe banking sectors allocate to productive investments is (weakly)
larger than their efficient level. With risky banking sectors, productive investments are (strictly)
smaller than their efficient level. The reason for this seemingly counter-intuitive result lies in
the endogeneity of asset values. In the absence of run-proof banks there are no buyers of pro-
ductive investments. Therefore, asset markets are illiquid such that prices drop to the physical
liquidation value of assets in system-wide bank runs. In anticipation of a market freeze, holding
reserves is thus rather valuable in providing liquidity insurance. In equilibria without run-prone
banks, asset markets are rather liquid but banks offer (weakly) less liquidity insurance than if
coordination failures were not possible. Therefore, fewer reserves are needed for providing this
level of liquidity insurance.

Our findings have two important implications. First, an economy where the banking sector
could provide efficient liquidity insurance despite asset price volatility, might as well be in
an equilibrium in which the efficient allocation is missed and drops in asset prices may even
coincide with the failure of a significant number of banks. Second, market liquidity and banks’
reserve holding are substitutes.

The papers closest to ours are Cooper and Ross (1998), Ennis and Keister (2006) and Allen
and Gale (2004a,b). Cooper and Ross (1998) and Ennis and Keister (2006) allow for coordi-
nation failures but the value of productive investments is exogenous and does not depend on
whether bank runs occur. There is a unique threshold such that a bank is run-proof if and only
if the sunspot probability is above this threshold; otherwise a bank is run-prone. In equilibria
where banks are run-proof, banks hold more reserves and make less productive investments
than banks in equilibria where they are run-prone. Moreover, run-prone banks’ reserves ex-
actly meet the withdrawal demand in the state in which bank runs cannot occur. In our paper,
introducing a secondary interbank asset market implies a richer set of equilibrium outcomes,
including multiple equilibria. In equilibria with trivial sunspots, all banks provide the first-best
liquidity insurance. In equilibria in which all banks are run-proof, the banking sector holds
fewer reserves and makes more productive investments than in equilibria in which only run-
prone banks exist. In equilibria with at least some run-prone banks, their reserves never exceed
the withdrawal demands, and are indeed smaller if the banking sector is mixed.

Allen and Gale (2004a,b) analyze economies with interbank asset markets.1 There are no
coordination failures but aggregate risks to fundamentals. Shocks to fundamentals have dispro-
portionately large effects on banks and asset prices. However, if fundamentals become asymp-
totically deterministic, the equilibrium uniquely converges to one with trivial sunspots. In our
paper, equilibria with trivial sunspots also exist but the set of asset prices supporting such equi-
libria is more limited. Moreover, other equilibria exist in which banks do not provide optimal
liquidity insurance. Some of these equilibria feature real indeterminacy and others bank fail-
ures.

1Starting with Allen and Gale (2000), others consider interbank deposits. For example, Skeie (2008) studies
nominal contracts and Freixas, Martin, and Skeie (2011) explore the role of monetary policies in absence of
coordination failures.
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Starting with Jacklin (1987), trading opportunities for consumers are considered to hamper
efficient allocations in the Diamond and Dybvig (1983) framework. For example, in Jacklin
and Bhattacharya (1988) consumers can engage in asset markets, while in Farhi, Golosov, and
Tsyvinski (2009) they can unobservedly borrow from and lend to each other after observing
their type. To sharpen our focus on asset values, we turn off these trading opportunities by
building on two frictions. First, specific skills are necessary to collect the returns on productive
investments, and while banks develop such skills, they cannot pledge to use them on behalf of
others (as in Diamond and Rajan, 2001). Lacking such skills, consumers are not willing to buy
productive investments. Second, consumers cannot commit to repay loans. Since they live for
either two or three dates, penalties like future exclusion from credit markets (as in Kehoe and
Levine, 1993) are ineffective for enforcing loan repayments.

In this paper banks offer simple contracts and are not subject to a sequential service con-
straint. Simple deposit contracts are observed empirically, can be explained by contract in-
completeness (Diamond and Rajan, 2001), and experiments show that they make banks indeed
susceptible to coordination failures, with and without sequential service (Garratt and Keister,
2009; Arifovic, Jiang, and Xu, 2013; Arifovic and Jiang, 2014; Chakravarty, Fonseca, and Ka-
plan, 2014). There is an ongoing debate on whether coordination failures occur with optimal
contracts and sequential service (Green and Lin, 2003; Peck and Shell, 2003; Ennis and Keister,
2009; Sultanum, 2014; Andolfatto, Nosal, and Sultanum, 2017). At any rate, optimal contracts
are already quite complex if asset values are exogenous and independent from the extrinsic state
(Wallace, 1988). Interestingly, the existence of equilibria with trivial sunspots in our model does
not depend on a sequential service constraint though. Hence, with or without sequential service
there are asset prices for which the efficient allocation obtains. Finally, to understand equilibria
provided coordination failures are possible, we disregard public policy interventions aimed at
their mitigation (Matutes and Vives, 1996; Rochet and Vives, 2004).

The paper has the following structure. In section 2 we lay out the model. In section 3 we ex-
amine the properties of equilibrium banking sectors. In section 4 we discuss some implications
of our findings. Section 5 concludes with some remarks.

2 The model

2.1 Setup
There are three dates t ∈ {0,1,2}with a single good at every date and extrinsic risk at the second
date. At this date there are two possible states s ∈ {1,2}. With probability p ∈]0,1[ the state is
s = 1 and with probability 1−p the state is s = 2.

There are two constant-returns-to-scale technologies, storage and production. Storage of
the good is a short asset, denoted also as reserves. It can be used at dates t ∈ {0,1} and yields
a gross return of one per unit at the next date t + 1. Production of the good is a long asset,
also called productive investment. It has to be initiated at date t = 0 and can be physically
liquidated for some arbitrarily small gross return ε > 0 at the interim date t = 1. Provided it is
not liquidated, it yields a gross return of R > 1 per unit at the final date t = 2.

There is a continuum of identical consumers with mass one. A consumer has direct access to
storage, but does not have the skills to initiate productive investments or to collect their returns.
She is described by her endowment (1,0,0) and her consumption set X = R2

+. A consumer is
either impatient and values consumption at date t = 1 or patient and values consumption at date
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t = 2. At date t = 1 consumers learn their type, which is private information. Patience among
consumers is uncorrelated and the share of impatient consumers λ ∈]0,1[ is deterministic and
common knowledge. Let xt,s denote what a consumer gets at date t in state s. Then, her expected
utility is

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2). (1)

The Bernoulli utility function u is twice differentiable with u′ > 0, u′′ < 0, and limx→0 u′ (x) =
∞. Like in many varieties of the Diamond and Dybvig (1983) model, relative risk aversion
k(x) = −xu′′ (x)/u′ (x) is supposed to be larger than one. Consumers cannot commit to repay
loans such that there is no credit market on which consumers can borrow from or lend to each
other.

There is a continuum of identical banks with unit mass. A bank has access to storage at
dates t ∈ {0,1}, and possesses the skills to initiate productive investments at date t = 0 and
to collect their returns at date t = 2. Banks can also access a perfectly competitive interbank
market for productive investments at date t = 1. The asset price on that market in state s is
Ps. A bank offers deposit contracts in exchange for consumer endowments at date t = 0. Such
contracts specify the amount a consumer is entitled to withdraw. If she withdraws at date t = 1,
her claim on the bank is d, and if she withdraws at date t = 2, her claim is D. It is not possible
to write contracts with state-contingent claims, and without loss of generality, D can be set to
infinity. The market for deposits is perfectly competitive. A consumer chooses in which bank to
deposit her endowment, but she has to put all her endowments in the same bank. A bank attracts
a representative subset of consumers with a share of impatient consumers equal to λ , stores a
share y ∈ [0,1] of its deposits and invests a share 1− y in production. There is no asymmetric
information about how the bank allocates deposits at date t = 0.

There is a possibility of coordination failures. Impatient consumers always withdraw at date
t = 1. A patient consumer contemplates to withdraw at this date. If state s = 1 materializes, she
compares what she gets by withdrawing at date t = 1 with the payoff associated with holding
on until date t = 2, assuming all other patient consumers withdraw at date t = 1. If the former is
higher, everyone withdraws at t = 1. If the value of the bank’s assets at date t = 1 is lower than
what the bank owes to its consumers, it is split pro-rata among them and the bank ceases to exist.
If state s = 2 materializes, there is no such coordination failure, yet there can be a bank failure.
If a patient consumer expects that, even without other patient consumers withdrawing early, the
value of bank assets at date t = 2 will not allow the bank to pay at date t = 2 at least as much
as the promised payment to impatient consumers, she is better off by pretending to be impatient
and withdraws early. We abstract from a sequential service constraint, arguably an important
friction for deposit contracts. Since consumers are risk averse, equal sharing at both dates is
efficient. Although incentives for all patient consumers to withdraw early are weaker without a
sequential service constraint, early withdrawal nevertheless constitutes a Nash equilibrium with
equal sharing.

As standard, first-best consumption for patient and impatient consumers is
R(1− y∗)/(1−λ ) < R and y∗/λ > 1, respectively, and optimum storage y∗ satisfies

u′ (y∗/λ ) = Ru′
(

R(1−y∗)
1−λ

)
. (2)
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2.2 Bank behavior
Let x = (x1,1,x1,2,x2,1,x2,2) denote the bundle of consumption xt,s at date t in state s. Moreover,
let N(Ps) = max{Ps,ε} be the value of a unit of the long asset at date t = 1 in state s, and
M(Ps) = max{R/Ps,1} be the rate of return on a bank’s assets between dates t = 1 and t = 2 in
state s.

Banks can either take their chances, or they make provisions to prevent a possible bank run.
Accordingly, banks are either run-prone or run-proof. Given perfect competition for deposits, a
bank’s objective is to maximize expected utility (1) subject to its constraints. These constraints
are different for run-proof and run-prone banks. For a bank to be run-proof, the value of its
assets at date t = 1 must at least cover all outstanding deposits in state s = 1. It is not necessary
that the reserves of a run-proof bank cover all outstanding deposits. As long as depositors
expect that by selling or liquidating its assets, a bank will always be able to satisfy everyone’s
withdrawal demand at once and in full, patient consumers do not have an incentive to run. In
state s = 2, impatient consumers withdraw d. Patient consumers are willing to wait only if
they expect to get at least d at date t = 2, for otherwise they would be better off withdrawing
from the bank already at date t = 1. For the bank, which realizes a return M(Ps) on its asset
between dates t = 1 and t = 2, the present value of paying all patient consumers d at date t = 2
is (1−λ )M(Ps)

−1d. Therefore, for a bank to be run-proof, the value of its assets at date t = 1
needs to satisfy

d ≤ y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d ≤ y+N(P2)(1− y) .

(3)

The resource constraints on consumption with a run-proof bank are

x1,s ≤ d,

x2,s ≤ M(Ps)
y+N(Ps)(1− y)−λd

1−λ
.

(4)

The first line reflects that a run-proof bank always repays its deposits at date t = 1. The second
requires that consumption of patient consumers is at most the pro-rata share of the future value
of the bank’s assets net of its liabilities to impatient consumers. Provided the asset price in state
s = 1 satisfies P1 ≤ 1, a coefficient of relative risk aversion larger one has two implications.
First, as the first-best consumption for impatient consumers y∗/λ is larger one, it cannot be
offered by a run-proof bank. Second, a run-proof bank does not hold more reserves than needed
to deter consumers from running. Consumers are simply too risk averse to be interested in spec-
ulating on fire-sales, as this would only benefit patient consumers at the expense of impatient
consumers.2

As for a run-prone bank, there is a run caused by coordination failures in state s = 1 if the
value of the bank’s assets is not sufficient to fully pay all depositors the promised amount. There
is a bank failure in state s = 2 unrelated to coordination failures if bank assets do not generate a
sufficient return during the second period. A bank is thus run-prone if either

d > y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d ≤ y+N(P2)(1− y) .

(5)

2See Appendix A.
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or
d ≤ y+N(P1)(1− y) ,

λd +(1−λ )M(P2)
−1d > y+N(P2)(1− y) .

(6)

Note that a bank will not fail in both states. Otherwise the marginal rate of substitution between
early and late consumption would be one, regardless in which state the economy is. Since the
ex-ante marginal rate of transformation is R−1, this cannot be optimal.

Let θ denote the state in which a run on a run-prone bank occurs. If θ = 1 the run is due to a
coordination failure, if θ = 2 it is caused by asset returns being too low. In state s = θ , everyone
gets a pro-rata share of the value of a bank’s assets. In state s 6= θ , impatient consumers get
what the deposit contract entitles them to and patient consumers equally share the future value
of the bank’s assets net of its liabilities to impatient consumers. The budget constraints are thus

x1,s ≤
{

y+N(Ps)(1− y) if s = θ ,
d if s 6= θ ,

x2,s ≤


y+N(Ps)(1− y) if s = θ ,

M(Ps)
y+N(Ps)(1− y)−λd

1−λ
if s 6= θ .

(7)

2.3 Interbank asset markets
Asset prices are such that arbitrage opportunities do not exist. At date t = 0 banks have access
to two assets with identical costs: the productive investment with values (P1,P2) and reserves
with values (1,1), both at date t = 1. If P1,P2 ≥ 1 with P1 +P2 > 2, then all banks would invest
only in production at date t = 0. However consumers are better off with banks holding at least
some reserves at date t = 1. If P1,P2 ≤ 1 with P1 +P2 < 2, then all banks would hold only
reserves and would not invest in production at all at date t = 0. However, consumers can do so
on their own without using banks. Therefore, P1 < 1 < P2, P2 < 1 < P1 or P1 = P2 = 1. Prices
also satisfy P1,P2 ≥ ε and P1,P2 ≤ R. If Ps < ε , all banks would buy productive investments at
date t = 1, if only to liquidate them, hence there would be no bank selling. If Ps > R all banks
would sell productive investments at date t = 1, hence there would be no bank buying them.
Neither can be in equilibrium.

Let superscript R denote the solution to a run-prone bank’s problem and superscript S the
solution to a run-proof bank’s problem. Abusing terminology slightly, liquidity demand qD of a
run-prone bank of unit size (supply of investments) and liquidity supply qS of a run-proof bank
of unit size (demand for investments) are

qD
s=θ ∈

 [−Ps=θ (1− yR),Ps=θ (1− yR)] for Ps=θ = ε ,

{Ps=θ (1− yR)} for Ps=θ > ε ,
(8a)

qD
s 6=θ ∈

 {λdR− yR} for Ps 6=θ < R,

[λdR− yR ,Ps 6=θ (1− yR)] for Ps 6=θ = R,
(8b)
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and

qS
s ∈


[
yS −λdS ,yS +Ps(1− yS )−λdS

]
for Ps = ε ,

{yS −λdS } for ε < Ps < R,[
−Ps(1− yS ),yS −λdS

]
for Ps = R.

(9)

In state s = θ , bank runs occur and run-prone banks sell all their assets (1− yR) if the
asset price is larger than the liquidation value, else they are indifferent between selling and
liquidating. In state s 6= θ they possess reserves of yR and pay λdR to impatient consumers.
Hence, they sell assets if doing so is necessary to pay the promised amounts to their impatient
consumers. Provided storage exceeds promised payments, they either buy assets if Ps6=θ < R
or are indifferent between holding, buying or selling productive assets if Ps 6=θ = R. Regarding
run-proof banks, since patient consumers have no incentive to ever withdraw early, the actual
outflow in both states is λdS . Moreover, since the bank’s decision about yS and dS is made
at date t = 0, i.e. before the extrinsic risk is resolved, net reserves at date t = 1, yS − λdS ,
are state-independent if prices in both states satisfy ε < Ps < R. In principle, this amount can
be positive or negative. For Ps = R run-proof banks are indifferent between buying and selling
and for Ps = ε they are indifferent about liquidating their own productive assets in order to buy
productive assets from run-prone banks.

Let ρ be the share of consumers who put their endowments in run-prone banks, or the
share of run-prone banks for short. Then, QD

s and QS
s denote aggregate liquidity demand and

aggregate liquidity supply, respectively, with

QD
s = ρqD

s ,

QS
s = (1−ρ)qS

s .
(10)

3 Equilibrium banking sectors

3.1 Equilibrium concept and existence
It is convenient to simplify some notation. A consumption plan (xτ ,dτ ,yτ) for a consumer who
deposits her endowments with a bank of type τ ∈ {S ,R} is a consumption bundle xτ and a
bank portfolio (dτ ,yτ) satisfying the constraints (3) and (4) for τ = S , and either (5) or (6)
together with (7) for τ = R. Moreover, for given prices P = (P1,P2), let V τ (P) denote the
indirect utility offered to consumers by a bank of type τ .

Definition 1. For a given probability distribution of the extrinsic state, an equilibrium is a set
of consumption plans, asset prices and the share of run-prone banks(

(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ
)

with the following properties:

• Banks maximize expected utility: (yS ,dS ,xS ) is a solution to the consumer problem for
run-proof banks, and (yR ,dR ,xR) is a solution to the consumer problem for run-prone
banks.
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• The interbank market clears:

QD
s = QS

s for s = 1,2.

• Consumers are not better off by going to another operating bank:

V S (P) = V R (P) if ρ ∈]0,1[,

V S (P) ≥ V R (P) if ρ = 0,

V S (P) ≤ V R (P) if ρ = 1.

Our first result is that equilibria exist.

Theorem 1. There is an equilibrium for every probability distribution.

Proof: See Appendix B.1 �

An equilibrium always exists, although solving for it is difficult. However, key insights
arise from the solutions to the banks’ problems. No-arbitrage implies that prices are such that
N(Ps) = Ps and M(Ps) = R/Ps. Non-satiation implies that the budget constraints for run-proof
banks (4) and for run-prone banks (7) hold with equality. For a run-proof bank, for which the
first line in condition (3) is binding, replacing d by y+P1(1− y), the objective function can be
expressed solely in terms of y. As the problem is convex, its solution is unique and, if interior,
solves the first-order condition(

1
R

λ

1−λ
u′ (y+P1(1− y))+ p

P1
u′ ((y+P1(1− y))R/P1)

)
(1−P1)

−1−p
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
1−λ

)(
P2−1+ λ

1−λ
(P2−P1)

)
= 0.

(11)

As for a run-prone bank, we replace xt,s accordingly in the objective function, which is then
expressed in terms of y and d. Again, the problem is convex and the solution (dR ,yR) is thus
unique. Let Pr(s = θ) = p if θ = 1 and Pr(s = θ) = 1− p if θ = 2. The first-order conditions
then read

u′ (d)

u′
(

R
Ps 6=θ

y+Ps 6=θ (1−y)−λd
1−λ

) − R
Ps 6=θ

= 0, (12a)

u′ (y+Ps=θ (1− y))

u′
(

R
Ps 6=θ

y+Ps 6=θ (1−y)−λd
1−λ

) − Pr(s 6= θ)

Pr(s = θ)

Ps 6=θ −1
1−Ps=θ

R
Ps 6=θ

≤ 0, (12b)

with strict inequality in the second line if yR = 0. Finally, the solution to the unconstrained
optimization problem, that is ignoring conditions (3), (5) and (6), satisfies the following first-
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order conditions

u′ (d) = R
(

u′
(

R
P1

y+P1(1−y)−λd
(1−λ )

) p
P1

+u′
(

R
P2

y+P2(1−y)−λd
(1−λ )

) 1− p
P2

)
, (13a)

u′
(

R
P1

y+P1(1−y)−λd
(1−λ )

)
=−1− p

p
P1

1−P1

1−P2

P2
u′
(

R
P2

y+P2(1−y)−λd
(1−λ )

)
. (13b)

3.2 Equilibria with trivial sunspots
In accordance with Allen and Gale (2004a), equilibria with trivial sunspots are defined as fol-
lows.

Definition 2. Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium. It is an equilibrium

with trivial sunspots if asset prices differ across extrinsic states and the first-best allocation
obtains.

The first-best allocation requires that the consumption of patient and impatient con-
sumers does not depend on the extrinsic state. Suppose a bank can make an unconstrained
choice. According to the first-order condition (13b), consumption of patient consumers
is state-independent provided prices satisfy p/P1 + (1− p)/P2 = 1, or equivalently P2 =
(1− p)/(1− p/P1), which has two immediate effects. First, one unit invested in storage at
date t = 0 and used to buy productive investments at date t = 1 has the same expected return at
date t = 2 as one unit invested in production at date t = 0. Second, a bank’s liquidity supply is
zero as λdS = yS must hold. These effects together imply that for p/P1+(1− p)/P2=1, con-
dition (13a) is equivalent to u′

(
dS
)
= Ru′

(
R(1−λdS )/(1−λ )

)
, i.e. the first-best allocation

dS = y∗/λ obtains.
Only a run-proof bank can provide state-independent consumption for impatient consumers.

According to condition (3), however, a run-proof bank can implement the efficient allocation
only if y∗/λ ≤ y∗+P1(1− y∗), or equivalently if P1 ≥ (1/λ −1)(1/y∗−1)−1. We conclude:

Theorem 2. Let pT := (1−ε)/(1−ε
λ

1−λ

1−y∗
y∗ ). Equilibria with trivial sunspots exist if and only

if p≤ pT . In such equilibrium asset prices satisfy

• P1 ∈
[
(1/λ −1)(1/y∗−1)−1 ,R

]
, and

• P2 = (1− p)/(1− p/P1).

Proof: See Appendix B.2. �

Several interesting implications arise. First, the mere possibility of coordination failures
does not necessarily entail bank runs or that banks cannot provide efficient liquidity insur-
ance. Second, for asset prices as in Theorem 2, consumers have an incentive to not run on
their bank, with or without sequential service. Hence, sequential service is not necessarily
a binding constraint. Third, since pT is arbitrarily close to one as ε is arbitrarily close to
zero, there is a wide range of probability distributions for which equilibria with trivial sunspots
exist. Finally, while such equilibria also exist in economies where coordination failures are
ruled out (Allen and Gale, 2004a), in economies where coordination failures are possible as-
set prices not only have to satisfy the first condition P2 = (1− p)/(1− p/P1) but additionally
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P1 ≥ (1/λ −1)(1/y∗−1)−1. As relative risk aversion is greater one, we have y∗ > λ . There-
fore, equilibria where P1 ≤ 1 cannot be with trivial sunspots, and equilibria with stable asset
prices cannot support the efficient allocation.

This last implication means that in equilibria with trivial sunspots, consumers contemplate
to run in the extrinsic state in which the asset price is strictly larger than in the other state.
One would expect, however, that consumers consider to run particularly when the value of bank
assets is low. This bears the question whether other types of equilibria exist, of which there are
potentially three.

Definition 3. Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium in which P1 ≤ P2

obtains. It is an equilibrium with a safe banking sector if ρ = 0; with a risky banking sector
if ρ = 1; and with a mixed banking sector if ρ ∈]0,1[.

3.3 Safe banking sectors
We begin with equilibria with a safe banking sector and stable asset prices.

Theorem 3. There is a p̌ < 1 such that an equilibrium with a safe banking sector and stable asset
prices exists if and only if p≥ p̌. In such equilibrium

• banks’ reserves satisfy yS = λ ;

• consumers’ expected utility is strictly lower than the first-best expected utility.

Proof: See Appendix B.3 �

Arbitrage-free asset prices are equal across states only if P1 = P2 = 1. As structuring its
portfolio at t = 0 is then as good for any bank as structuring it at t = 1, an individual bank’s re-
serves are indeterminate. In aggregate, however, all run-proof banks together hold just sufficient
reserves to pay out all depositors at t = 1, i.e. λdS = yS . Also, trade of assets at t = 1 does
not affect the consumption for impatient or patient consumers. Impatient consumers always get
one unit of consumption and patient consumers always get R units.

Safe banking sectors may not only exist for P = (1,1). In any equilibrium without run-
prone banks there is no liquidity demand. Hence, qS = 0 must hold for ρ = 0. According to
equation (9), a necessary and sufficient condition thus is yS = λP1/(λP1 +1−λ ), implying
dS = P1/(λP1 +1−λ ). Let h be a correspondence such that for P1 ∈ [ε ,1]

h(P1) =
{

P2 ∈ [1,R]
∣∣∣P2 satisfy (11) and yS = λP1/(λP1 +1−λ )

}
. (14)

The solution to a run-proof bank’s optimization problem implies a liquidity supply of zero
provided P2 = h(P1). If h(P1) = /0 then P1 is incompatible with a zero-liquidity supply. For
h(P1) 6= /0, the correspondence h satisfies

h(P1) =
λP1 +(1−λ )

1− 1
1−p

1−P1
P1

(
λ

u′
(

P1
λP1+1−λ

)
u′
(

R
λP1+1−λ

) P1
R + p(1−λ )

) . (15)

Note that h is a continuous and monotonically decreasing function for P1 ∈ [h−1(R),1] with
h(1) = 1, h−1(R)> ε and limp→1 h−1(R) = 1. Liquidity supply is positive for all P1 < h−1(P2)
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and negative for all P1 > h−1(P2). This is because the first-order condition (11) implicitly defines
yS as a function of P2 for any given P1. Evaluated at yS = λP1/(λP1 +1−λ ), this function
satisfies dyS /dP2 < 0. For every P1 there is a unique P2 such that qS = 0. Therefore, yS >
λP1/(λP1 +1−λ ) and thus qS > 0 for all P1 < h−1(P2) (and vice versa).

Theorem 4. Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium with a safe banking

sector and stable asset prices. Provided V S (P) > V R (P) for P = (1,1), there are other equi-
libria with a safe banking sector and P1 < 1. In such equilibrium

• asset prices and consumption are indeterminate;

• banks’ reserves satisfy yS < λ ;

• banks’ reserves are the lower the lower the asset price P1 is.

Proof: See Appendix B.4 �

A sufficient condition for V S (1,1)>V R (1,1) is p > p̌. According to the Theorem, a con-
tinuum of prices, bank balance sheets and consumption allocations then exists that is supported
by a safe banking sector. Asset prices are indeterminate because if run-proof banks offer a
strictly better expected utility than run-prone banks for P= (1,1), asset prices can deviate some-
what from P = (1,1) and run-proof banks are still the better choice. This also applies to any
combination of asset prices in some neighborhood of P = (1,1) that satisfy the zero-liquidity
supply condition (14). Note, (yS ,dS ) being set at date t = 0 and no trade with run-prone banks
taking place at date t = 1, consumption does not depend on the extrinsic state. Consumption
depends, however, on asset prices and is thus also indeterminate. Impatient consumers get
P1/(λP1 +1−λ ) and patient consumers get R/(λP1 +1−λ ).

3.4 Risky banking sectors
Without run-proof banks, there is no supply of reserves at the interim date in both states. Hence,
for banking sectors to be risky, liquidity demand is necessarily zero in both states. In state s = 1,
liquidity demand is zero if and only if the asset price is not larger than the physical liquidation
value of assets: banks weakly prefer to liquidate production over selling. In state s= 2, liquidity
demand is zero if and only if the asset price is such that reserves held by a run-prone bank
exactly cover its total payout to impatient consumers. However, the optimal consumption plan
requires that the marginal rate of substitution between consumption when patient and when
impatient is equal to the rate of return on holding the long asset between date 1 and date 2;
see first-order condition (12a). No-arbitrage implies that this rate of return is bounded below
and consumption of patient consumers is thus bounded above for given reserves. Therefore, we
obtain the following result.

Lemma 1. Suppose
(
(yS ,dS ,xS ),(yR ,dR ,xR),P,ρ

)
is an equilibrium and let

p̂ :=
R−1

R−1+u′
(

λR
λR+1−λ

)
/u′
(

R
λR+1−λ

) .

Then the banking sector cannot be risky in equilibrium if p > p̂.
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Proof: See Appendix B.5 �

The upper bound p̂ on the sunspot probability is smaller than (R− 1)/R < 1 and depends
on the fundamentals of the economy. It is the lower the smaller the share of early consumers
λ is. The effects of the return on the long asset R on p̂ are generally not clear-cut. On the
one hand, for given prices a larger R increases the rate of return on holding the long asset
between date 1 and date 2. On the other hand, a larger R also changes the optimum consumption
profile for consumers in case of a run compared to what they get as late consumers in case
there is no run. If the coefficient of relative risk aversion is constant, k(x) = κ , we have p̂ =
(R− 1)/(R−1+λ−κ) and the net effect is clear since d p̂/dR > 0. Moreover, we also obtain
d p̂/dκ < 0.

Zero liquidity demand in both states is necessary but not sufficient for risky banking sectors
to exist. Run-prone banks must also offer deposit contracts which generate a higher expected
utility than deposit contracts offered by run-proof banks. This leads to our next main result.

Theorem 5. There is a p̄ > 0 with p̄ ≤ p̂ such that for all p ≤ p̄ an equilibrium with a risky
banking sector exists. In such equilibrium

• asset prices and consumption are determinate;

• banks’ reserves satisfy yR > y∗;

• consumers’ expected utility is strictly lower than the first-best expected utility.

Proof: See Appendix B.6 �

In an equilibrium with a risky banking sector, all banks survive in one state and none sur-
vives in the other state. If the extrinsic state with coordination failure materializes, all banks are
forced to give up their long assets. As there is no bank supplying any reserves, all banks have to
physically liquidate their assets. This is an equilibrium if coordination failures are sufficiently
unlikely. Then, prospects of buying assets at fire sale prices are slim while fending off a bank
run to be able to buy assets from distressed banks is costly because it requires a bank to hold
large reserves relative to what it promises to impatient consumers. With a risky banking sector,
the first-order conditions (12a) and (12b) read

0 = pu′(yR)+(1− p)
(

u′
(

yR

λ

)
−Ru′

(
R(1−yR)
(1−λ )

))
, (16a)

P2 = R
u′
(

R(1−yR)
(1−λ )

)
u′
(

yR

λ

) . (16b)

The first equation uniquely defines the reserves yR , and for given reserves the second equation
defines a unique P2. The consumption plan is the same as in the absence of an asset market.

3.5 Mixed banking sectors
If run-prone banks sell their assets in a bank run, no productive investment will ever go to waste.
If run-proof banks can buy additional productive investments, their excess reserves are not idle
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but available to run-prone banks without jeopardizing the stability of run-proof banks. There
are thus potentially gains from trading the extrinsic risk with each other. In an equilibrium
with a mixed banking sector, such trades take place. It arises as the result of an equilibrium in
mixed strategies. With probability ρ a consumer goes to a run-prone bank and with probability
1−ρ to a run-proof bank. Whether such an equilibrium exists depends on whether there are
feasible asset prices for which liquidity supply is positive, liquidity demand is positive and
state-independent, and both types of banks are equally good to consumers. State-independent
liquidity demand is required because liquidity supply is state-independent and markets have to
clear in all states.

According to the demand schedules (8a) and (8b), liquidity demand is state-independent if
and only if dR = (P1(1− yR)+ yR)/λ . Since P1 > 0 we conclude:

Corollary 1. A run-prone bank never holds reserves larger than the withdrawal demands in the
state in which no bank run occurs.

Moreover, for a run-prone bank, consumption by patient consumers is xR
2,2 =

R
P2

(P2−P1)(1−yR)
1−λ

according to the budget constraint (7). Consumption is thus positive only if P1 < P2. According
to conditions (5) and (6), this implies:

Corollary 2. If bank runs occur in equilibrium, then only because of coordination failures and
not because of returns on bank asset being too low.

To derive feasible prices that induce run-prone banks to find it optimal to set yR and dR

such that liquidity demand is state-independent, we define a correspondence f such that for
P1 ∈ [ε ,1]

f (P1) =


{
(yR ,P2) ∈]0,1]× [1,R]

∣∣∣(yR ,dR) satisfy (12a), (12b) and dR = yR+P1(1−yR)
λ

}
,

{
(yR ,P2) ∈ {0}× [1,R]

∣∣(yR ,dR) satisfy (12a) and dR = P1/λ
}

.
(17)

If f (P1) = /0, then P1 is incompatible with state-independent liquidity demand. For f (P1) 6= /0,
let (yR ,P2) denote a solution to equation (17). Then, (yR ,dR) is a solution to a run-prone
bank’s optimization problem and the implied liquidity demand is state-independent provided
yR = yR and dR =

(
P1(1−yR)+yR

)
/λ . There are potentially many solutions for a given P1.

As for the indifference of consumers between banks of different types, note first that ac-
cording to the Envelope theorem, indirect utilities V R(P) and V S (P) are characterized by

dV R (P)
dP2

= (1− p)u′
(

xR
2,2

) R
P2

qD
2

P2
∈


R++ if qD

2 > 0,
{0} if qD

2 = 0,
R− if qD

2 < 0,
(18a)

dV S (P)
dP2

=−(1− p)u′
(

xS
2,2

) R
P2

qS

P2
∈


R− if qS > 0,
{0} if qS = 0,
R++ if qS < 0,

(18b)

dV R (P)
dP1

= p(1− yR)u′
(

xR
1,1

)
> 0. (18c)
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The sign of dV S (P)/dP1 is not clear. Let g be a correspondence such that for P1 ∈ [ε ,1]

g(P1) =
{

P2 ∈ [1,R]
∣∣∣qD

2 > 0,qS > 0 and V R(P)−V S (P) = 0
}

. (19)

If P2 = g(P1), a consumer is indifferent between run-proof and run-prone banks. Provided
g(P1) = /0 for a given P1, there is no P2 such that run-prone and run-proof banks are equally
good from a consumers perspective. Either run-prone banks are strictly better than run-proof
banks or run-proof banks are strictly better than run-prone banks for this P1 regardless P2.

Provided g(P1) 6= /0, the above characteristics of the indirect utilities imply that the corre-
spondence g is an injective function and a consumer strictly prefers a run-prone bank over a
run-proof bank if and only if P2 > g(P1). A higher asset price in state s = 2 makes a run-prone
bank more attractive because it can offer more consumption to patient consumers while holding
fewer reserves. It makes a run-proof bank less attractive because its patient consumers get less
as the bank cannot buy as many long assets in state s = 2 in exchange for a given amount of
excess reserves.

Let φ be the projection of f , as defined in equation (17), on the P2-coordinate. Then, a
mixed banking sector is characterized by asset prices (P1,P2) and a share of run-prone banks ρ

for which P1 ∈]ε ,1], φ(P1) = g(P1) 6= /0, P2 = φ(P1) and

ρ =
yS −λdS(

yS −λdS
)
−
(
yR−λdR

) . (20)

Unfortunately, it is difficult to explicitly state the circumstances under which a mixed banking
sector exists. However, we are able specify two conditions that are sufficient to rule out a mixed
banking sector. Recall Theorem 3 which has established p ≥ p̌ as necessary and sufficient
condition for an equilibrium with run-proof banking sectors and stable asset prices. Satisfying
this condition does not exclude though that other equilibria with run-prone banks may also exist.

Theorem 6. There is a p̃ ∈ [p̌,1[ such that for all p > p̃, run-prone banks cannot coexist with
run-proof banks in equilibrium.

Proof: See Appendix B.7 �

Suppose there is scope for run-prone banks to exist for some p > p̌. A sufficient condition
that there is some larger probability p̃ above which no run-prone bank operates is that run-
prone banks do not exist if the sunspot probability converges to one. To begin with, risky
banking sectors do not exist then (see Lemma 1). Moreover, market clearing in both states
implies that the asset price in state s = 1 converges to one. Hence, given the (almost) certainty
of coordination failures, even if run-prone banks make productive investments, their returns are
(almost) never collected and the total asset value of run-prone banks is (almost) always equal
to one. Accordingly, run-prone banks do not provide any meaningful liquidity insurance and
the best they can do for consumers is just about as good as storage. Run-proof banks, however,
always collect the returns on the productive investments they make. They also offer at least
some liquidity insurance. Hence, only run-proof banks will exist in equilibrium.

Similarly, satisfying the conditions in Lemma 1 and Theorem 5 does not rule out other
equilibria in which run-proof banks exist.

Theorem 7. There is a p̆ ∈]0, p̄] such that for all p < p̆, run-proof banks cannot coexist with
run-prone banks in equilibrium.
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Proof: See Appendix B.8 �

Suppose there is scope for run-proof banks to exist for some p ≤ p̄. A sufficient condition
that there is some smaller probability p̆ below which no run-proof bank operates is that run-
proof banks never exist if the sunspot probability converges to zero. Clearly, safe banking
sectors cannot exist then. As for mixed banking sectors, state-independent liquidity demand by
run-prone banks holding at least some reserves themselves requires that P2 converges to one
regardless which P1 holds. Run-prone banks provide (almost) the first-best liquidity insurance.
Run-proof banks do not make any productive investments and thus cannot match the expected
utility offered by a run-prone bank. If run-prone banks would not hold any reserves, prices that
ensure state-independent liquidity demand also imply that run-prone banks offer an expected
utility higher than the first-best. Since all banks offering better contracts than in the first-best is
not feasible, only run-prone banks exist in equilibrium.

To sum up, mixed banking sectors require that run-prone and run-proof banks coexist in
equilibrium. Therefore, mixed banking sectors are feasible only for probability distributions of
the extrinsic state for which neither run-prone banks nor run-proof banks are ruled out, i.e. for
p ∈]p̆, p̃[.

3.6 Numerical examples
The following examples illustrate two features we cannot prove in general. One is that mixed
banking sectors may exist, the other that multiple equilibria potentially exist of which neither
features trivial sunspots. Let the Bernoulli utility function be u(x) = −x−1, i.e. relative risk
aversion is k(x) = 2, and the physical liquidation value be ε = 10−29.3 Liquidity demand is
state-independent for (yR ,P2) = f (P1) with f as defined in equation (17). The projection φ of
f on the P2-coordinate thus satisfies

φ
−1(P2) =


1− 1−p

p λ 2 (P2−1) if yR ∈]0,1[,

P2

(
1+ 1−λ

λ

(
P2
R

)0.5
)−1

if yR = 0.
(21)

Liquidity supply is zero for P2 = h(P1) with h as defined in equation (14), i.e.

h(P1) =
1−λ +λP1

1− 1
1−p

1−P1
P1

(λR/P1 +(1−λ ) p)
. (22)

The condition for indifference between bank types is P2 = g(P1) with g as defined in equation
(19). Instead of deriving g explicitly, we calculate and compare indirect utilities with run-
proof and run-prone banks, respectively, for prices satisfying P1 =min

{
φ−1(P2),h−1(P2)

}
. For

min
{

φ−1(P2),h−1(P2)
}
= φ−1(P2), price combinations for which indirect utilities are equal

constitute an equilibrium with a mixed banking sector. We then calculate dτ and yτ for τ ∈
{R,S }, and the implied individual liquidity demand and supply determine the share ρ of run-
prone banks according to equation (20).

3We chose an arbitrary, small value. It is strictly positive to rule out an infinite return on bank assets at t = 1.
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Example 1 For R = 5, λ = 0.7 and p = 0.17, a mixed banking sector is an equilibrium with
non-trivial sunspots.

ρ = 0.836239, P1 = 0.306249, P2 = 1.289987, V (P) =−0.767.

Example 2 For R = 5, λ = 0.4 and p = 0.13275, a safe as well as a risky banking sector are
equilibria with non-trivial sunspots.

ρ = 0, P1 = 1, P2 = 1, V (P) =−0.520;
ρ = 1, P1 = ε , P2 = 1.956688, V (P) =−0.603.

4 Comparing equilibria
For a given probability distribution, comparing equilibria from a set of multiple equilibria is
equivalent to comparing economies which are identical except for the endogenous characteris-
tics of their financial sectors. Accordingly, comparing equilibria is like conducting a controlled
experiment that allows to attribute any differences in real outcomes exclusively to differences
in financial stability.

The first immediate conclusion from our analysis is that while banks could be run-proof and
provide the efficient level of liquidity insurance, other equilibria potentially coexist in which
the allocation is inefficient and, occasionally, (some) banks may fail when asset prices drop. In
the first type of equilibrium, sunspots are trivial but asset prices are indeterminate. In equilibria
with safe banking sectors and non-trivial sunspots, asset prices are also indeterminate but so is
consumption. In equilibria with at least some run-prone banks, the allocation is inefficient but
asset prices and consumption are determinate.

In equilibria in which run-prone banks operate, expected utility for depositors of a run-proof
bank is equal to the expected utility for depositors of a run-prone bank if the share of run-prone
banks is ρ ∈]0,1[, or smaller if the share is ρ = 1. To compare any two equilibria with run-prone
banks, it thus suffices to look at the indirect expected utility for depositors of a run-prone bank
at prices for which liquidity demand is state-independent. For (yR ,P2) = f (P1), this indirect
utility is

V R(P) = pu
(
yR +P1(1−yR)

)
+(1− p)λu

(
yR+P1(1−yR)

λ

)
+(1− p)(1−λ )u

(
R
P2

P2−P1
1−λ

(1−yR)
)

.
(23)

We therefore conclude4

Corollary 3. Suppose relative risk aversion is non-increasing. Comparing any two equilibria
in which run-prone banks exist, expected utility is higher in the equilibrium in which the asset
price P1 is higher.

In equilibria with non-trivial sunspots, no run-prone banks exist and there is real indeter-
minacy of equilibria if the sunspot probability is above some threshold p̌. Comparing any two
such equilibria, it suffices to consider the expected indirect utility for price combinations for

4See Appendix D.
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which liquidity supply is zero. For P2 = h(P1), this indirect utility is

V S (P) = λu
(

P1

λP1 +1−λ

)
+(1−λ )u

(
R

λP1 +1−λ

)
. (24)

Theorem 4 thus leads to the following conclusion.

Corollary 4. Suppose that p > p̌ such that there are equilibria with safe banking sectors. Com-
paring any two equilibria in which no run-prone bank exists, expected utility is higher in the
equilibrium in which the asset price P1 is higher.

Given that equilibria differ in terms of expected utilities for consumers and with respect to
banks’ portfolio choices, a well chosen policy might be able to help consumers to select the
most desirable of them. Imposing simple liquidity ratios is a frequently suggested instrument
to regulate banks potentially suffering from liquidity problems. However, our analysis suggests
to exercise caution.

To back this claim, we consider three liquidity ratios. The first takes aggregate reserves rel-
ative to the total amount banks have promised to pay depositors, ȳ/d̄ with ȳ = ρyR +(1−ρ)yS

and d̄ = ρdR +(1−ρ)dS . This measure has the same value ȳ/d̄ = λ in all equilibria. This is
because run-proof banks do not speculate on fire sale prices. Therefore, in every equilibrium the
banking sector as a whole has just enough reserves to satisfy all impatient consumers provided
there is no bank run. This holds regardless which asset prices prevail and how many banks are
run-prone.

A simple aggregate reserve ratio, which measures total reserves relative to what banks raise
from depositors, ȳ = ρyR +(1−ρ)yS is also of only limited usefulness for regulators. This
time it is because the relationship between this measure and welfare is non-monotonic. Con-
sider an economy for which a risky banking sector as well as safe banking sectors constitute
equilibria, and where the safe banking sector provides higher expected utility (as in Example 2).
Then, an aggregate reserve ratio ȳ = λ (which holds with a safe banking sector and stable asset
prices) is associated with a higher expected utility for consumers than a ratio ȳ > y∗ > λ (which
holds with a risky banking sector). The former is also associated with a higher expected utility
than a ratio ȳ < λ (which holds with a safe banking sector and volatile prices when sunspots
are non-trivial). The problem of non-monotonicity is aggravated by the fact that equilibria with
trivial sunspots often also exist where liquidity insurance is efficient and the aggregate reserve
ratio is between the one associated with a risky banking sector and the one with a safe banking
sector.

The third liquidity ratio is taken from the new Basel Framework which stipulates that the
amount of available stable funding has to cover at least 100% of the required stable funding.
In the context of our model the required stable funding is given by the share of productive
investments, 1− ȳ. The amount of available stable funding are the funds expected to be normally
kept in the bank. It is given by what depositors are entitled to withdraw at the interim date
t = 1 but, provided there is no crisis, do not withdraw from the banking sector. Expressing
both in present value terms as of date t = 0, this liquidity ratio is given by d̄(1−λ )/(1− ȳ).
Since ȳ/d̄ = λ for all equilibria, this ratio is equivalent to (ȳ/(1− ȳ))((1−λ )/λ ), which is
strictly increasing in the amount of aggregate reserves held in the banking sector. It therefore
contains the same information as the simple aggregate reserve ratio. Moreover, this ratio is
larger than one if and only if aggregate reserves are larger than λ . Therefore, this ratio is
strictly larger than one with a risky banking sector and in equilibria with trivial sunspots, but at
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most one with a safe banking sector and non-trivial sunspots. Ratios larger than one are thus
not necessarily an indicator for a safe banking sector but for an economy that braces itself for a
rather wide-spread banking crisis.

5 Concluding remarks
Simultaneous asset market crashes and bank failures can be the result of coordination failures
among bank depositors triggered by sunspots. In equilibrium, run-prone banks which expose
themselves to such bank runs may exist. There are other types of equilibria in which at least
some run-proof banks exist. These banks hold portfolios that take away the incentives for
consumers to coordinate on bank runs. Consumption by at least some patient and impatient
consumers is stochastic if run-prone banks exist and the financial sector may provide too little
liquidity insurance when run-proof banks exist.

The possibility of multiple equilibria, which differ in terms of both, expected utilities and
banks’ reserve holdings, together with the finding that market liquidity and banks’ reserve hold-
ing are substitutes, lends itself to the issue of optimal liquidity regulation. However, we leave
it for further research to analyze whether minimum liquidity requirements can improve welfare
in economies like those considered in this paper.

We have considered a rather limited set of options for consumers to interact with banks. A
key feature in the world financial crisis has been that funds withdrawn from one bank were re-
deposited in another bank. This migration of deposits when banks get into distress is a channel
through which the available aggregate liquidity is distributed in times of systemic crises. As this
channel would work parallel to, and possibly interacts with, asset markets, the implications of
deposit migration on asset prices and the risk-taking behavior of banks in equilibrium remains
to be explored.
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Appendix

A Speculation on fire-sales
This appendix shows that for relative risk aversion k(x) =−xu′′ (x)/u′ (x)> 1, run-proof banks
do not speculate on buying assets from run-prone banks by holding more reserves than nec-
essary to deter consumers from running. In section 3.5 it has been shown that a necessary
condition for run-prone banks and thus a positive supply of productive assets to exist is that
prices satisfy P1 ≤ P2. For P1 ≤ P2, suppose the constraint (3) would never be binding. The
associated FOC are

u′ (d) = R
(

u′ (x2,1)
p

P1
+u′ (x2,2)

1−p
P2

)
,

u′ (x2,1) = −1−p
p

P1
1−P1

1−P2
P2

u′ (x2,2) .

with x2,1 =
R
P1

y+P1(1−y)−λd
(1−λ ) and x2,2 =

R
P2

y+P2(1−y)−λd
(1−λ ) . There is a d which maximizes expected

utility and satisfies d < y+P1 (1− y) if

u′ (y+P1 (1− y))< p R
P1

u′
(

R
P1
(y+P1 (1− y))

)
+(1− p) R

P2
u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
.

To show that this cannot be, we argue that

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
> u′ (y+P1 (1− y)) , (A1)

and
R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
> u′ (y+P1 (1− y)) , (A2)

cannot be true. Condition (A1) cannot hold for −u′′(x)
u′(x) x > 1 since

R
P1

u′
(

R
P1
(y+P1 (1− y))

)
= u′ (y+P1 (1− y))+ 1

y+P1(1−y)

∫ R
P1
(y+P1(1−y))

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

As regards condition (A2), consider first the differential equation

u′ (y+P1 (1− y)) = R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

Condition (A2) would hold if

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
R
P2

> R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )(y+P1(1−y)) u′

(
R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)
− 1

y+P1(1−y)

∫ R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.
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Rearranging terms gives

R
P2

u′
(

R
P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

)(
(P2−P1)(1−y)

(1−λ )

)
<
∫ R

P2

(1−λ )y+(P2−λP1)(1−y)
(1−λ )

y+P1(1−y)

[
u′ (x)+ xu′′ (x)

]
dx.

However, this cannot be for −u′′(x)
u′(x) x > 1 if P1 ≤ P2.

B Proofs
This appendix contains the formal proofs of our main results.

B.1 Proof of Theorem 1
In order for a bank to be run-proof it needs to be able to pay the relevant depositors at date t = 1,
i.e.

d ≤ y+N(P1)(1− y) for s = 1,

λd ≤ y+N(P2)(1− y) for s = 2,

and patient depositors are better off withdrawing their funds at date t = 2 than at date t = 1, i.e.

d ≤ M(P1)

1−λ
(y+N(P1)(1− y)−λd) for s = 1,

d ≤ M(P2)

1−λ
(y+N(P2)(1− y)−λd) for s = 2,

or equivalently

d ≤ M(P1)

1−λ +λM(P1)
(y+N(P1)(1− y)) for s = 1,

d ≤ M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y)) for s = 2.

It is easily seen that

y+N(P1)(1− y) ≤ M(P1)

1−λ +λM(P1)
(y+N(P1)(1− y)),

y+N(P2)(1− y) ≥ λM(P2)

1−λ +λM(P2)
(y+N(P2)(1− y)).

Let the correspondences B1,B2 : R++→ [0,1]×R+ be defined by

B1(P1) = {(y,d) | d ≤ y+N(P1)(1− y)},

B2(P2) =

{
(y,d) | d ≤ M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y))

}
.
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For the function b : R2
++→ R+ defined by

b(P1,P2) = max
y∈[0,1]

{
y+N(P1)(1− y),

M(P2)

1−λ +λM(P2)
(y+N(P2)(1− y))

}
,

consider the consumer problem

max
(y,d,x)

λ (pu(x1,1)+(1− p)u(x1,2))+(1−λ )(pu(x2,1)+(1− p)u(x2,2))

s.t.



x1,1 ≤ d

x2,1 ≤
M(P1)

1−λ
(y+N(P1)(1− y)−λd)

 for (y,d) ∈ B1(P1),

x1,1 ≤ y+N(P1)(1− y)

x2,1 ≤ y+N(P1)(1− y)

}
for (y,d) /∈ B1(P1),

x1,2 ≤ d

x2,2 ≤
M(P2)

1−λ
(y+N(P2)(1− y)−λd)

 for (y,d) ∈ B2(P2),

x1,2 ≤ y+N(P2)(1− y)

x2,2 ≤ y+N(P2)(1− y)

}
for (y,d) /∈ B2(P2),

y ∈ [0,1],

d ∈ [0,b(P1,P2)].

For all (P1,P2) ∈ R2
++ there is a solution because the set of alternatives is compact. According

to Berge’s maximum theorem the solution correspondence F :R2
++→ [0,1]×R+×R4

+ is upper
hemi-continuous with non-empty values because expected utility is a continuous function and
the set of alternatives is a continuous correspondence.

Let the correspondence G : R2
++→ R2 be defined as follows: for (y,d,x) ∈ F(P1,P2) with

(y,d) ∈ Bs(Ps),

Gs(P1,P2) =



{
y+ ε(1− y)−λd

Ps

}
for Ps < ε[

y−λd
Ps

,
y+ ε(1− y)−λd

Ps

]
for Ps = ε{

y−λd
Ps

}
for ε < Ps < R[

−(1− y),
y−λd

Ps

]
for Ps = R

{−(1− y)} for Ps > R
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for both s; and, for (y,d,x) ∈ F(P1,P2) with (y,d) /∈ Bs(Ps),

Gs(P1,P2) =


{0} for P1 < ε

[−(1− y),1− y] for P1 = ε

{−(1− y)} for P1 > ε .

Then G is upper hemi-continuous.
For (P1,P2) ∈ R2

++ and (y,d,x) ∈ F(P1,P2), if Ps < ε and (z1,z2) ∈ G(P1,P2), then zs ≥ 0.
For (P1,P2) ∈ R2

++ and (y,d,x) ∈ F(P1,P2), if Ps > R and (z1,z2) ∈ G(P1,P2), then zs ≤ 0.
Therefore prices are bounded from below by ε−δ and from above by R+δ for some δ ∈]0,ε[,
(P1,P2) ∈ [ε−δ ,R+δ ]2.

For A ⊂ R2 being the convex hull of the range of G with prices restricted to the set [ε −
δ ,R+δ ]2,

A = co{(z1,z2) ∈ R2 | ∃(P1,P2) ∈ [ε−δ ,R+δ ]2 : (z1,z2) ∈ G(P1,P2)}

let the correspondence H : A→ [ε−δ ,R+δ ]2 be defined by

H(z1,z2) = {(P1,P2)∈ [ε−δ ,R+δ ]2 | ∀(P′1,P′2)∈ [ε−δ ,R+δ ]2 : P1z1+P2z2 ≥ P′1z1+P′2z2 }.

Then H is upper hemi-continuous.
The correspondence (coG,H) : [ε − δ ,R+ δ ]2×A→ [ε − δ ,R+ δ ]2×A has a fixed point

according to Kakutani’s fixed point theorem, because [ε−δ ,R+δ ]2×A is convex and compact
and (coG,H) is convex valued and upper hemi-continuous. Suppose (P1,P2,z1,z2)∈ [ε−δ ,R+
δ ]2×A is a fixed point, so (z1,z2) ∈ coG(P1,P2) and (P1,P2) ∈ H(z1,z2). Suppose zs 6= 0, then
Hs(z1,z2) = ε−δ in case zs < 0 and Hs(z1,z2) = R+δ in case zs > 0. Suppose Ps = ε−δ , then
either zs = 0 or zs > 0 contradicting Ps = ε − δ , so zs = 0. If Ps = R+ δ , then either zs = 0 or
zs < 0 contradicting P1 = R+δ , so zs = 0. Therefore zs = 0 for both s.

For every (z1,z2) ∈ coG(P1,P2) there are at most three points (zi
1,zi

2)i with (zi
1,zi

2) ∈
G(P1,P2) for every i and at most three weights (wi)i with wi > 0 for every i and ∑i wi = 1
such that (z1,z2) = ∑i wi(zi

1,zi
2) according to Caratheodory’s theorem. Hence (P1,P2,z1,z2) is

an equilibrium.

B.2 Proof of Theorem 2
Because P2 ≥ ε , we have ε ≤ (1− p)/(1− p/P1). Together with P1 ≥ (1/λ −1)(1/y∗−1)−1,
there is thus an upper bound for p given by pT := (1− ε)/(1− ε

λ

1−λ

1−y∗
y∗ ). pT > 0 because

ε < 1. Run-prone banks have no incentive to enter the market because the allocation obtained by
run-proof banks is the solution to the unconstrained problem. Being subjected to the additional
constraints associated with a failure in one of the extrinsic states would imply that run-prone
banks offer less than the first-best expected utility.

B.3 Proof of Theorem 3
ρ = 0 requires qS = 0. Absence of asset price volatility requires P1 = P2 = 1. For run-proof
banks, the budget constraints (4) then imply xS

1,1 = xS
1,2 = dS = 1, xS

2,1 = xS
2,2 = R and yS = λ .
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For run-prone banks, P1 = P2 = 1 implies xR
1,1 = xR

2,1 = 1 while dR solves

u′(dR) = Ru′
(

R1−λdR

1−λ

)
,

implying xR
1,2 = dR = y∗/λ and xR

2,2 = R(1−λdR)/(1−λ ) = R(1− y∗)/(1−λ ). Let

X(p) = (1− p)λu
(

y∗
λ

)
+(1− p)(1−λ )u

(
R(1−y∗

1−λ

)
+ pu(1) ,

and p̌ be a solution to
λu(1)+(1−λ )u(R) = X(p).

Note that y∗ maximizes expected utility in absence of sunspots. Therefore, λu(1) +
(1−λ )u(R) < λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). u′ > 0 implies u(1) < λu(1) +
(1−λ )u(R). Since X ′ < 0, there is a unique p̌ < 1 such that V S (P)≥V R(P) for P = (1,1) if
and only if p≥ p̌.

B.4 Proof of Theorem 4
ρ = 0 requires P2 = h(P1). Continuity of h implies there exists a continuum of equilibrium
prices which support equilibria with safe banking sectors provided V S (1,1)>V R(1,1). In an
arbitrage-free equilibrium, P2≤ R. Hence, P1 is strictly bounded away from ε since h−1(R)> 0.

Indirect utility is given by

V S (P) = λu
(

P1

λP1 +1−λ

)
+(1−λ )u

(
R

λP1 +1−λ

)
,

With P2 = h(P1), applying the Envelope theorem yields

dV S (P)
dP1

= λu′
(

P1

λP1 +1−λ

)
1−λ

(λP1 +1−λ )2

−(1−λ )u′
(

R
λP1 +1−λ

)
λR

(λP1 +1−λ )2 .

Since k(x) > 1 implies y∗/λ > 1 and thus 1−λ

λ

y∗
1−y∗ > 1, it follows dV S (P)/dP1 > 0 for

all P1 ∈
[
h−1(R), 1−λ

λ

y∗
1−y∗

]
because u′(x) ≥ Ru′

(
R(1−λx)

1−λ

)
for all x ≤ y∗/λ (since k(x) >

1) and d
dP1

(u′( P1
λP1+1−λ

)− Ru′( R
λP1+1−λ

)) < 0 (since u′′ < 0) together imply u′( P1
λP1+1−λ

) ≥

Ru′( R
λP1+1−λ

) for all P1 ∈
[
h−1(R), 1−λ

λ

y∗
1−y∗

]
. Finally, according to Theorem 3, yS = λ for

P1 = 1. Since yS = λP1/(λP1 +1−λ ) with d
dP1

λP1/(λP1 +1−λ )> 0, we have yS < λ for
P1 < 1.

B.5 Proof of Lemma 1
ρ = 1 implies QS = 0. Accordingly, for equilibria with ρ = 1 it requires λdR − yR = 0 and
either 1− yR = 0 or P1 ≤ ε . We rule out 1− yR = 0 because state-independence of liquidity
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demand requires yR to solve

u′
(

yR+P1(1−yR)
λ

)
u′
(

R
P2

P2−P1
1−λ

(1− yR)
) − R

P2
= 0,

and concavity of u implies yR ≤ λR/(λR+1−λ ) < 1. Hence, an equilibrium exists only if
P1 ≤ ε and f (ε) 6= /0, i.e. there is some (yR ,P2) ∈ [0,λR/(λR+1−λ )]× [1,R] satisfying

u′
(
yR/λ

)
u′
(

R(1−yR)
1−λ

) =
R
P2

,

u′
(
yR
)

u′
(

R(1−yR)
1−λ

) =
R
P2

1− p
p

(P2−1) .

Let Y1 be the solution to the first equation for a given P2. Then, limP2→1Y1 = y∗, limP2→RY1 =
λR/(λR+(1−λ )) and dY1/dP2 > 0. Let Y2 be the solution to the second equation for a given
P2. Then, limP2→1Y2 = 1, limP2→RY2 = ỹ ∈ (0,1) and dY2/dP2 < 0 where ỹ is implicitly defined
by

u′ (ỹ)

u′
(

R(1−ỹ)
1−λ

) =
1− p

p
(R−1) .

Since y∗ < 1, there is no f (ε) ∈ [0,λR/(λR+1−λ )]× [1,R] if

u′
(

λR
λR+(1−λ )

)
u′
(

R
λR+(1−λ )

) >
1− p

p
(R−1) ,

or, equivalently, if p > p̂.

B.6 Proof of Theorem 5
According to Lemma 1, provided p≤ p̂ there is some (yR ,P2) ∈ [0,λR/(λR+1−λ )]× [1,R]
for which liquidity demand in either state is zero. By the implicit function theorem, (12a) and
(12b) imply for P1 = ε that limp→0 P2 = 1 and limp→0 yR = y∗. Therefore, for P1 = ε ,

lim
p→0

V R(P) = λu
(

y∗

λ

)
+(1−λ )u

(
R

1− y∗

1−λ

)
.

For P1 = ε and p→ 0 the first-order condition for run-proof banks becomes

u′(Y3)≤ Ru′
(

R
1−λY3

1−λ

)
,

which would hold with equality only if some Y3 ∈ (0,1) were a solution. However, since k(x)>
1, there is no Y3 ∈ (0,1) to meet the first-order condition with equality. Hence, Y3 = 1 which
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implies
lim
p→0

V S (P) = λu(1)+(1−λ )u(R).

k(x)> 1 further implies lim
p→0

V R(P)> lim
p→0

V S (P). Therefore, provided P1 = ε and qD
1 = qD

2 = 0,

either is V R(P) > V S (P) for all p ≤ p̂, or by the intermediate value theorem there is a p̄ ≤ p̂
such that V R(P)>V S (P) for all p < p̄. The equilibrium is locally isolated because for p < p̄
the solution to the bank’s problem, satisfying (16a) and (16b), is unique. (16a) implies yR > y∗

and thus V R(P)< λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )).

B.7 Proof of Theorem 6
qD

1 = qD
2 ≥ 0 and thus d = (y+P1(1− y))/λ hold in any equilibrium with ρ ∈]0,1]. For a given

P2 ∈ [1,R], a necessary condition is that there is a (P1,y)∈ [ε ,1]× [0,1] such that condition (12a)
is met. If there is such a pair, it satisfies dy/dP1 < 0. Note, if R < λ−1 there is no P2 ∈ [1,R]
such that liquidity demand is state-independent for P1 = 1. Condition (12b) reads

(1−P1)
u′ (y+P1(1− y))

u′
(

R
P2

y+P2(1−y)−λd
1−λ

) ≤ (P2−1)
1− p

p
R
P2

.

The right side converges to 0 if p→ 1. The marginal rate of substitution in condition (12b)
converges to u′ (1)/u′

(
R
P2

(P2−1)(1−y)
1−λ

)
> 0 if P1→ 1, where y is either zero or satisfies

u′ (1/λ )

u′
(

R
P2

(P2−P1)(1−y)
1−λ

) =
R
P2

.

Therefore, if p→ 1 then either P1 converges to 1 for a given P2 ∈ [1,R], or liquidity demand
cannot be state-independent.

As for liquidity supply, note that lim
p→1

h−1(P2) = 1 for all P2 ∈ [1,R]. Therefore, if p→ 1

and P1 → 1, qS ≥ 0 for all P2 ∈ [1,R]. Provided qD
1 = qD

2 ≥ 0 for p→ 1 and P1 → 1, V R(P)
converges to u(1) while V S (P) converges to λu(1)+(1−λ )u(R)> u(1). However, if liquidity
demand cannot be state-independent, run-prone banks cannot exist anyway whilst qS = 0.

Therefore, either there is no P ∈ [ε ,1]× [1,R] for which qS ≥ 0, qD
1 = qD

2 ≥ 0 and V S (P)≤
V R(P) for all p ≥ p̌. Or, if there is some p > p̌ for which some P ∈ [ε ,1]× [1,R] exists such
that qS ≥ 0, qD

1 = qD
2 ≥ 0 and V S (P) ≤ V R(P), then there is some p̃ ∈]p̌,1[ such that for all

p > p̃ there is no P for which qD
1 = qD

2 ≥ 0 and V S (P)≤V R(P) according to the intermediate
value theorem.

B.8 Proof of Theorem 7
Again, qD

1 = qD
2 ≥ 0 and thus d = (y+P1(1− y))/λ hold in any equilibrium with ρ ∈]0,1].

Condition (12b) reads

p
u′ (y+P1(1− y))

u′
(

R
P2

y+P2(1−y)−λd
1−λ

) ≤ (1− p)
P2−1
1−P1

R
P2

,
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with strict inequality only if y = 0. The left hand side converges to zero for p→ 0, whereas the
right hand side converges to P2−1

1−P1
R
P2

> 0. Hence, as long as yR > 0 such that above condition
holds with equality, it follows for a given P1 that P2→ 1.

Provided P2→ 1 and P1 ∈ [ε ,y∗[, condition (12a) implies xR
1,2 = y∗/λ , xR

2,2 = R(1−y∗)/(1−
λ ), yR = (y∗−P1)/(1−P1)> 0, and V R(P) = λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). For
P2→ 1 and P1 ∈ [ε ,y∗[, run-proof banks optimally store yS =max{1,(y∗/λ −P1)/(1−P1)}=
1 such that V S (P) = λu(1)+(1−λ )u(R)< λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )).

Concavity of u together with the budget constraints (7) imply that the left side in (12a) is a
continuous, monotone and decreasing function of yR and continuous, monotone and increasing
in P2. Hence, for yR = 0, there is at most one P2 satisfying (17). The projection φ1 of f on the P2-
coordinate provided yR = 0 is a bijective function φ1 : [φ−1

1 (1),min{1,λR}]× [1,min{R,φ1(1)}]
with

dP2

dP1
=

k2,2 +
(

P2
P1
−1
)

k1,1

k2,2 +
(

P2
P1
−1
) P2

P1
> 0,

where kt,s = k(xR
t,s) is relative risk aversion at xR

t,s. For ρ ∈]0,1[ it must be that V R(P) =V S (P).
However, according to (18a) and (18c), V R(P) > λu(y∗/λ ) + (1− λ )u(R(1− y∗)/(1− λ )).
Hence, V R(P)>V S (P). Therefore, ρ ∈]0,1[ cannot be an equilibrium.

Finally, according to Theorem 4, V S (P) ≤ λu(1) + (1− λ )u(R) < λu(y∗/λ ) + (1−
λ )u(R(1− y∗)/(1−λ )) for all P2 = h(P1). Since (i) φ−1(P2) ≤ h−1(P2) for φ−1(P2) 6= /0, (ii)
V R(P)≥ λu(y∗/λ )+(1−λ )u(R(1−y∗)/(1−λ )) for P1 = φ−1(P2), and (iii) dV R(P)/dP1 > 0
we have V R(P)> λu(y∗/λ )+(1−λ )u(R(1− y∗)/(1−λ )). Hence, ρ = 0 cannot be an equi-
librium.

C State-independent liquidity demand
This appendix shows that non-increasing relative risk aversion is a sufficient condition that all
combinations of asset prices for which liquidity demand is state-independent is described by a
continuous function that maps P1 onto P2. For any (yR ,P2), equation (17) defines P2 and yR

as implicit functions of P1 in some neighborhood of (yR ,P2) according to the general implicit
function theorem. Provided yR ∈]0,1[, each of these solutions satisfy

dP2

dP1
=−

(k1,1− k1,2)k2,2
P2−1
P2−P1

+ k1,2 + k2,2
yR+P1(1−yR)
(1−P1)(1−yR)

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

P2
P2−1 + k1,1

P2

1−P1

and

dyR

dP1
=−

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

1
P2−1 + k1,1 +

1
1−P1

(k1,1− k1,2)k2,2
P1

P2−P1
+ k1,2

1
P2−1 + k2,2

yR+P1(1−yR)
(1−P1)(1−yR)

P2
P2−1 + k1,1

1− yR

1−P1
.

For any P1, equation (12a) defines P2 as a monotone and increasing function of yR . Then, a
sufficient condition that there is at most one (yR ,P2) satisfying (17) and yR > 0 is that the left
side in (12b) is strictly monotone in yR while taking into account the relation between yR and
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P2 according to (12a). Let

Φ1 :=
(

k1,2
k2,2

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+

k1,1
k2,2

P2−1
P1

)
P2−P1
P2−1 ,

Φ2 :=
(

k1,2
k2,2

+
(

yR

1−yR +P1

)
1

1−P1

)
P2−P1
P2−1 .

This monotonicity holds if for all P1 either Φ1 > k1,2− k1,1 or Φ1 < k1,2− k1,1. The sign of
dP2/dP1 is positive if and only if Φ1 > k1,2− k1,1 > Φ2. Hence, with non-increasing risk aver-
sion, i.e. k1,1 ≥ k1,2, the projection φ2 of f on the P2-coordinate provided yR ∈]0,1[ is a bijec-
tive function φ2 : [max{ε ,φ−1

2 (R)},min{φ−1
1 (1),φ−1

2 (1)}]× [1,R] satisfying dφ2(P1)/dP1 < 0.
Hence, for P2 = φ2(P1) we have qD

1 = qD
2 and yR > 0. Similarly, the projection of f on yR

satisfies dyR/dP1 < 0 for k1,1 ≥ k1,2.
Continuity of the projection of f on P2 holds because (12a) implies that φ1(P1) = 1 for some

P1 ∈]0,1[, where φ1 is the projection of f on the P2-coordinate provided yR = 0 as defined in the
proof of Theorem 7. Moreover, (12a) and (12b) imply that φ2(P1)> 1 for all P1 ∈]0,1[. Hence,
there is a unique P1 ∈]0,1[ such that φ1(P1) = φ2(P1) and φ1(P1) ∈]1,R].

D Indirect utility and asset prices
This appendix derives the condition under which the indirect utility consumers get in equilibria
in which run-prone banks exist is strictly increasing in P1. Consider indirect utility as given in
equation (23). With (yR ,P2) = f (P1), applying the Envelope theorem yields

dV R(P)
dP1

=



( k2,2
1−P1

+
k1,1
P1

+
P2−1
1−P1

1
P1

)
(1−p)(1−yR)(P2−P1)u′(xR

2,2)

k2,2+
P2−P1

P1

for yR = 0,

(1−p)(1−yR)
(

k1,2+

(
k2,2

(
yR

1−yR +P1

)
1

1−P1
+k1,1

)
P2−1
1−P1

)
u′(xR

2,2)

(k1,1−k1,2)k2,2
P1

P2−P1
+k1,2

1
P2−1+k2,2

(
yR

1−yR +P1

)
1

1−P1

P2
P2−1+k1,1

for yR > 0.

For yR = 0 we have dV R(P)/dP1 > 0. For yR > 0 it is positive if and only if(
k1,2
k2,2

1
P1
+
(

yR

1−yR +P1

)
1

1−P1

P2
P1
+

k1,1
k2,2

P2−1
P1

)
P2−P1
P2−1 > k1,2− k1,1,

for which a sufficient condition is non-increasing relative risk aversion.
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