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Abstract

This paper investigates the propagation of instability through key asset markets of

the US financial system - equity, real estate, banking and treasury - between 1/3/2000

and 12/26/2014. For this purpose, we develop an identification method to uncover

characteristic financial market interrelations under distinguished scenarios of crises. It

refers to the logic behind narrative sign restrictions and allows to extract time varying

contemporaneous effects and volatility transmission from conventional reduced form

volatility models with dynamic correlations. We find the market value of banking

institutions to be highly sensitive to news originating in other markets, with those

originating in the real estate market being most important. Under stress, in turn, the

banking sector tends to dominate financial market (co)variation, where it exhibits a

marked feedback relation with both the real estate and the equity market.
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1 Introduction

Since the beginning of the new millennium, the US financial system has witnessed distin-

guished episodes of common turmoil and potential instability that originated from distinct

parts of the financial market. Some shocks, for instance, those associated with the early mil-

lennium burst of the equity bubble had limited systemic effects (Mishkin and White, 2002;

Reinhart and Rogoff, 2008; Aoki and Nikolov, 2015). Other ones, such as those implied by

the unwinding of financial imbalances in the suprime mortgage market after January 2007,

triggered self enforcing feedback mechanisms with other market constituents that almost led

to a meltdown of the US financial system (Aït-Sahalia et al., 2012; Hellwig, 2009).

The understanding of the characteristic transmission and amplification mechanisms be-

hind distinguished scenarios of financial turmoil is a core issue of research.1 Empirically dis-

entangling such mechanisms from the data, however, is difficult, especially when interest lies

on their economic identification. Given that financial systems exhibit strong contemporane-

ous interdependence and structural change, finding uncontroversial ‘conventional’ economic

restrictions appears hardly feasible.

In light of numerous empirical applications (e.g. Chan, Karolyi, and Stulz, 1992; Bekaert

and Harvey, 1995; Baele, 2005), reduced form multivariate GARCH (MGARCH) represen-

tations such as the distinct BEKK forms or the DCC (see Bauwens et al., 2006, for a review)

have proven successful in describing both conditional joint financial market comovement and

volatility dynamics. Structural interpretations of MGARCH-type models are typically based

upon ad-hoc decompositions of conditional covariance matrices (e.g. Hafner and Herwartz

2006; Henry et al. 2010; Jin et al. 2012), or data driven methods that require the system to

obey a particular ad-hoc dynamic structure (Rigobon and Sack, 2003; Caporale, Cipollini,

and Spagnolo, 2005; Weber, 2010; Dungey, Milunovich, and Thorp, 2010). Economic inter-

1See e.g. Mishkin and White (2002); Allen and Gale (2004); Caporale, Cipollini, and Spagnolo (2005);
Reinhart and Rogoff (2008); Shin (2008); Aikman et al. (2009); Brunnermeier and Pedersen (2008); Niin-
imäki (2009); Koetter and Poghosyan (2010); Gai and Kapadia (2010); Dimitriou, Kenourgios, and Simos
(2013); Bekaert, Ehrmann, Fratzscher, and Mehl (2014); Aoki and Nikolov (2015); Hau and Lai (2017).
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pretation of the derived relations can be obtained ex post via innovation accounting (Dungey,

Milunovich, and Thorp, 2010). Ideally, however, one would like to study the effect of those

shocks that, by identification, have a particular economic meaning, as it is done in SVAR

analysis (Sims, 1980; Bernanke, 1986; Sims, 1986; Blanchard and Quah, 1989; Faust, 1998;

Uhlig, 2005; Antolin-Diaz and Rubio Ramírez, 2017).2

In this study, we shed new light on the distinct financial transmission mechanisms that

have characterized the main episodes of US financial market turmoil between 1/3/2000 and

12/26/2014. For this purpose, we suggest an identification method which allows to ex-

tract time varying contemporaneous relations and variance transmission dynamics from any

reduced form multivariate volatility model with time varying correlations. Our method

is mainly related to the ‘identification via heteroscedasticity’ (IVH) approach in Rigobon

(2003), Rigobon and Sack (2003) and further developments on structural MGARCH models

such as Caporale, Cipollini, and Spagnolo (2005), Weber (2010) or Dungey, Milunovich, and

Thorp (2010). As a particular feature, it draws upon the logic behind narrative sign re-

strictions in SVAR analysis recently introduced in Antolin-Diaz and Rubio Ramírez (2017).

One main type of such restrictions establishes that the model implied variance decomposi-

tions conform with a consensual economic narrative on a handful of characteristic periods.

Exploiting that the squared entries of conditional correlation matrix decompositions reflect

transient, i.e. time local, one step ahead return variance decompositions, the global identi-

fication criterion is based upon spillover indices in the spirit of Diebold and Yilmaz (2009).

These indices summarize the extent to which news originating in given markets explain the

variance of the remaining markets’ returns. By identification, model implied time varying

patterns of market ‘dominance’ are jointly matched to conform with the sample’s charac-

teristic crisis episodes and their predominant market origins as well as possible. A market

is considered as locally dominant whenever it has the tendency to induce stronger overall

2In a related field of research, Diebold and Yilmaz (2009) use the structural VAR model toolkit to analyze
the transmission of realized volatilities, referring to standard (ad hoc) decomposition schemes.
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spillovers than any other market within a given time period.

While the aforementioned data driven approaches are based upon a similar intuition,

several differences are noteworthy. In our case, both the identification of market specific

innovations and their labelling are explicitly guided by normative (time) local economic

properties. In contrast to Rigobon and Sack (2003), contemporaneous effects are not re-

stricted to remain invariant over heterogeneous scenarios of volatility and crises. Moreover,

no further ad-hoc restrictions on structural dynamics are necessary to enable identification of

regime specific contemporaneous effects such as in Caporale, Cipollini, and Spagnolo (2005)

or Dungey, Milunovich, and Thorp (2010). Our identification scheme is not restricted to a

particular volatility model and can be easily applied to more sophisticated ones that allow

for cross equation variance dynamics. In this context, we discuss the implementation of

local variance impulse response functions (VIRFs, hereafter, Hafner and Herwartz, 2006) in

our framework. Drawing upon both local samples of (i) identified conditional covariance

decompositions, and (ii) identified structural shocks, these VIRFs allow to illustrate typical

volatility transmission dynamics associated with characteristic scenarios of interest.

To summarize some core findings of our empirical analysis, the market value of banking

institutions seems generally sensitive to shocks originating in other markets, but especially to

those originating in the real estate market. Under stress, in turn, banking institutions tend

to dominate financial (co)variation and exhibit a marked feedback relation with both the real

estate and the equity market. In addition to direct interbank counterparty risk (Allen and

Gale, 2000), therefore, indirect linkages operating via fire sales and balance sheet effects (Shin

2008, Gai and Kapadia 2010, Aikman et al. 2009) might contribute to the spread of bank

default risks quite substantially.3 The treasury market induces only minor spillovers, though

being of some importance for the real estate market. Alternative identification approaches

do not provide uncontroversial model implications.

3Of course, a rigorous comparison of direct vs. indirect effects requires an explicit consideration of intra-
banking dynamics in our model (and for its identification). This is an issue of future research.
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Subsequently, we introduce our approach to contemporaneous modeling to which we refer

as ‘Market Dominance Targeting’ (MDT, henceforth). Moreover, identified local VIRFs are

developed within this framework. In Section 3, we analyze (time) local transmission among

US key financial markets between 2000 and 2015, and discuss the performance of our method

in comparison with other approaches. Section 4 concludes. In Appendices A, B and C, we

provide details on episode selection, reduced form model estimates and structural stability,

respectively.

2 Analyzing financial transmission

Starting from a contemporaneous model nesting the one of Rigobon and Sack (2003) we

introduce our approach to contemporaneous financial return modelling. Moreover, we discuss

how episode specific average VIRFs can be derived from the structural model.

2.1 A local model for mean zero asset returns

To establish the link between MDT identification and IVH, consider the following contem-

poraneous model for an N -dimensional vector of zero-mean asset returns et,

Λtet = Ψ1/2
t ut, ut∼N(0, IN), t = 1, . . . , T, (1)

where the matrix Ψ1/2
t = diag(ψ11t, . . . , ψNNt) contains the conditional standard deviations

of uncorrelated innovations ut originating in markets i = 1, ..., N . The matrix Λt captures

the time varying contemporaneous effects among observed returns with a main diagonal

normalized to unity. By assuming time invariance of contemporaneous transmission, i.e.

Λt = Λ, and GARCH- or regime switching-type behavior for Ψt, model (1) nests Rigobon

and Sack (2003) and Rigobon (2003) as special cases. We will subsequently consider an
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equivalent so-called ‘B-model’ representation of the unrestricted model in (1),

et = Gtut, (2)

where Gt
!= Λ−1

t Ψ1/2
t summarizes the conditional ‘importance’ of market specific ‘news’, ut,

for the interrelated price adjustments among distinct (classes of) financial assets in et. Put

differently, the stylized model (2) provides a flexible framework to analyze time varying news

effects shaping interdependent and heteroscedastic financial systems. Specifying such news

effects, consider the following representation of (2)

et = ΓtΣ
1/2
t ut, (3)

where the diagonal matrix Σ1/2
t = diag(g11t, . . . , gNNt) comprises the standard deviations of

the system at time t. Hence, Σ1/2
t ut collects the market specific ‘own ’ parts of variation in

eit and Γt quantifies their systemic transmission, with a main diagonal normalized to unity.

Apparently, Gt in (2) is of key importance for the analysis of time varying interdependence.

If Gt could be identified, one could directly solve for the time varying parameters in (nor-

malized) Γt and the structural standard deviations Σ1/2
t in (3) or, in analogy, for Λt and

Ψ1/2
t in (1).4 While Gt cannot be estimated directly, its square, GtG

′
t = E(ete

′
t), can be

assessed by means of any suitable reduced form multivariate volatility model. For instance,

if the observed mean-zero returns exhibit MGARCH-type behaviour, one might consider a

BEKK-MGARCH model (Engle and Kroner, 1995):

Ht = GtG
′
t (4)

= CC ′ + A′et−1e
′
t−1A+B′Ht−1B. (5)

4With normalized Γt (or Λt), Gt = ΓtΣ
1/2
t (or Gt = Λ−1

t Ψ
1/2
t ) have N2 equations and N2 unknowns.
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In (4) and (5), Ht = E(ete
′
t | Ft−1) is the conditional (i.e. measurable with respect to the

process history Ft−1) covariance of et, where coefficient matrices C, A and B are of dimension

N ×N , and C is lower triangular. Associated estimates can be obtained by means of QML.5

Without external information, however, conditional covariance estimates Ht are hardly

useful for inference on the structural model (2). With R denoting a time invariant rotation

matrix such that RR′ = IN and R 6= IN , it follows from (4),

Ht = GtG
′
t = GtRR

′Gt = G̃tG̃
′
t, (6)

highlighting that any rotation GtR preserves the (observable/estimated) local covariance

structure in (4), but implies distinct local news effects in (2). Under the Gaussian assump-

tion, rotations of Gt are observationally equivalent since the normal distribution is fully

specified in terms of first and second order moments.

2.2 Identification of time varying instantaneous effects

To uncover the linear linkages among structural and reduced form innovations in systems of

financial returns, most of the available approaches have particular drawbacks. For instance,

available economic (theory guided) identification approaches (Sims, 1980; Bernanke, 1986;

Sims, 1986; Blanchard and Quah, 1989; Faust, 1998; Uhlig, 2005) might not be suitable, since

they throughout refer to first order models with time invariant innovation covariance struc-

ture. While, in principle, the Diebold and Yilmaz (2009) approach allows for an economic

identification in the class of VAR-based volatility models, a sufficient number of economic

restrictions is typically not available for higher dimensional systems or highly interdependent

macroeconomic/financial systems. For this reason, Diebold and Yilmaz (2009) employ ad-

5For a thorough discussion of conditions establishing consistency and asymptotic normality of the QML
estimator in MGARCH models see Jeantheau (2000), Comte and Lieberman (2003) and Hafner and Pre-
minger (2009).
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hoc Choleski decompositions for a small number of alternative variable orderings,6 but their

choice is not guided by economic reasoning. A further strand of literature to the SVAR (and

also MGARCH) field opts for data driven approaches to model identification (e.g. Rigobon,

2003; Rigobon and Sack, 2003; Weber, 2010; Dungey, Milunovich, and Thorp, 2010). These

do not identify shocks according to normative economic properties, but require the sys-

tem to obey a particular ad-hoc structure. Rigobon (2003), for instance, stresses that time

varying correlations indicate changes in the relative importance of financial market shocks.

Accordingly, he proposes an identification scheme exploiting nonproportional switches of

variances in the (diagonal) matrix Ψt in (1) over distinct regimes, while assuming time in-

variance of contemporaneous interactions Λt = Λ. Rather than considering regime specific

heteroscedasticity, Rigobon and Sack (2003) derive a structural MGARCH model grounding

on GARCH type volatility of implied structural shocks. Recently, narrative sign restrictions

(Antolin-Diaz and Rubio Ramírez, 2017) have been proposed to improve standard economic

VAR identification approaches. In Antolin-Diaz and Rubio Ramírez (2017), the narrative

sign restriction No.2, for instance, requires the absolute contribution of oil supply shocks

to unexpected movements in oil price growth to be larger than the absolute value of the

contribution of any other structural shock during local episodes of war escalation in oil pro-

ducing economies. Against this background, we next propose a novel identification scheme

for financial return processes that exploits such a reasoning in the context of MGARCH-type

modelling.

A stylized fact of financial market returns is that conditional (co)volatilities tend to

increase markedly during scenarios of crises. This is often attributed to the strong impact of

particular types of shocks that characterize such transitory episodes. A suitable model should

establish that, under an increased interest in the state of a struggling market i, associated

news uit trigger relatively ‘strong’ effects across the financial system. At the same time, the

6Studying all possible variable orderings for the Diebold and Yilmaz (2009) case, Klößner and Wagner
(2013) show that the associated inferential conclusions differ substantially.
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impact of similar sized news ujt that originate in other markets j 6= i should be ‘weaker’ in

comparison. Given that the representation in (2) formalizes these conditional news impacts

explicitly, alternative ‘parameterizations’ {G̃t}T
t=1 in (2) could be evaluated according to

their (historical) economic credibility.

Based upon this intuition, MDT relies on the attribution of distinguished non-overlapping

episodes of common turmoil to a specific market as a time local, dominant source of gen-

eral financial (co)variation. For each of i = 1, . . . , N markets under consideration, assume

that a sufficiently large set of characteristic time instances (‘episodes’ ) is available for which

news originating in market i was the most important (dominant) source of general financial

variation.7 Henceforth, these non-overlapping episodes are denoted as Ω1,Ω2, . . . ,ΩN . For

instance, for a sample comprising US asset returns on stocks, real estate trusts, banks and

treasury bonds, one might distinguish (i) the early millennium burst of the equity bubble,

(ii) the real estate crisis (first part of the great financial crisis), (iii) the banking crisis (second

part of the great financial crisis), and (iv) the period of debt ceiling disputes as such episodes.

Intuitively, the attribution of systemic turmoil to originate in particular markets should pro-

vide information i) for the identification of contemporaneous effects of market specific shocks,

and ii) characteristic ‘baseline’ scenarios of volatility transmission.8 All other time instances

that cannot be assigned to one of the ‘informative’ episodes Ω1,Ω2, . . . ,ΩN comprise Ω0, the

set of time instances characterized by ‘non-informative’ market conditions. A set of time

instances is considered as being not ‘non-informative’ if there exists no compelling argument

in favor of the relative dominance of one particular financial market constituent. The core

idea of MDT is to select the (full sample) decomposition sequence {G̃t}T
t=1 as defined in (6)

from a huge set of alternative candidate sequences. The MDT based decomposition scheme,

denoted {Ĝt}T
t=1, is chosen to match as close as possible all assumptions on market dominance

7The assumption that the number of episodes equals the system dimension is made for convenience in
this study. Applying the MDT approach, an analyst might focus on specific markets being agnostic with
respect to eventual dominance exhibited by other parts of a system of interest.

8See Sections 2.2 and 2.3 for a more detailed discussion of these issues.
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during the selected characteristic turmoil episodes Ωs, s = 1, . . . , N, jointly. Hence, while

economic identification in first order homoscedastic systems is mostly achieved by imposing

global restrictions on instantaneous effects, economic identification in MGARCH-type mod-

els (formalizing changing market conditions) is guided by local restrictions on such effects

applying in selected situations (subperiods). Clearly, this flexibility facilitates to put forth

credible identifying restrictions in highly interdependent financial systems.

Since GtG
′
t =

∑N
i=1 gt(., i)gt(., i)′, where gt(., i) is the i−th column of Gt, any identified

matrix Gt in (2) is ‘unique’ except for the column signs and the ordering of the columns. To

establish ‘sign uniqueness’ we follow the convention to assume that the diagonal elements

of Gt are positive.9 Turning to the column ordering, we assume without loss of generality

that the elements in the i-th column of Gt, denoted gt(., i), quantify the conditional effect

of news originating in market i (news uit, henceforth) on market returns ejt, j = 1, . . . , N ,

in time t. It is important to emphasize that, by this assumption, the diagonal elements

of Gt are considered as market specific effects of news uit on their ‘own’ reduced form

counterparts eit. The MDT implied sequence {Ĝt}T
t=1 shall imply that, within each turmoil

episode Ωs, the impact of news uit originating in market i = s tends to be more important

for the remaining markets’ return variations than it is the case for the impact of news

ujt, j 6= i. Subsequently, we derive a scale free summary measure of local market importance

to formalize such comparisons.

Consider an equivalent representation of (2),

et = V
1/2

t Qtut, (7)

where Vt is a diagonal matrix comprising the diagonal entries in estimated/observableHt such

that V −1/2
t HtV

−1/2
t is the reduced form conditional correlation matrix. Hence, Qt = V

−1/2
t Gt

9In the SVAR literature, the positivity of diagonal elements of covariance decomposition matrices has
been established by noticing that respective impulse response functions trace the effects of positive (rather
than negative) isolated unit shocks (see Lütkepohl, 2007, Chap. 9).
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is a decomposition of the correlation matrix. The identification problem reads as

Ht = GtG
′
t = V

1/2
t QtQ

′
tV

1/2
t = V

1/2
t QtRR

′Q′
tV

1/2
t = V

1/2
t Q̃tQ̃

′
tV

1/2
t = G̃tG̃

′
t. (8)

For given reduced form conditional variance estimates, hence, identification of Gt might refer

to conditional correlation decompositions without loss of generality.

Noting that (7) implies V −1/2
t et = Qtut, typical elements Qt(i, j) measure the impact of

news ujt on conditionally standardized returns of market i. More importantly, (Qt(i, j))
2

can be shown to be equal to the relative share of Et−1[e2
it] that can be traced back to news

ujt, where i, j = 1, . . . , N .10 Hence, for any given Gt, the squared entries of the associated Qt

quantify the associated ‘importance’ of identified news ujt for the joint variation of observed

financial returns et in terms of local one step-ahead variance shares. Thus, if investors’

decisions are predominantly influenced by news originating in market i during Ωs, s = i, one

would expect the sum of the squared elements in the ith column of Qt, denoted as qt(, i),

to be relatively large in magnitude for all t ∈ Ωi. The full sample MDT implied sequence

{Q̂t}T
t=1 (and, thus, {Ĝt}T

t=1) shall imply that, within each turmoil episode Ωs, the impact

of news originating in market i = s tends to be more important for the remaining markets’

return variations than it is the case for the impact of news originating from other markets

j, j 6= i. Put differently, the sum of the squared off-diagonal elements contained in the i-th

column of Qt should tend to be larger than the sum of the squared off-diagonal elements in

the j-th column. Noteworthy, Diebold and Yilmaz (2009) use ‘off-diagonal’ sums of forecast

error decompositions to summarize market specific spillover magnitudes.

To establish MDT as an identification criterion requires i) a parametric description of

a suitable and numerically tractable space of alternative decomposition schemes, and ii)

a criterion to assess local dominance of market i for the variation in the returns of other
10Referring to (2), Gt(i, j)

2/
∑4

k=1 Gt(i, k)2 is the share of Et−1[e2
it] attributed to news originating in

market j. As a consequence, Gt(i, j)
2/

∑4
k=1 Gt(i, k)2 = Gt(i,j)2/Vt(i,i)2

(1/Vt(i,i))2

∑
4

k=1
Gt(i,k)2

= Qt(i, j)
2.
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markets j, j 6= i. Next, we describe how these issues are addressed. For convenience, we will

throughout refer to correlation decompositionsQt. Hence, we implicitly determine associated

covariance decompositions Gt and their implied one-step ahead forecast error variance shares.

(i) Decomposition space

Let Q̃t denote a factor such that V −1/2
t HtV

−1/2
t = Q̃tQ̃

′
t.

11 Then, a space of candidate

decompositions obtains as Q = {{{Q̃tRθPφ}θ}φ}T
t=1 = {{Q̃t,m}M

m=1}T
t=1, where Rθ and

Pφ denote rotation and permutation matrices, respectively.12 Rotation matrices Rθ are

determined in a systematic way by means of the product of distinct forms of Givens

rotation matrices. For the exemplary case of N = 4 a representative rotation matrix

would read as

Rθ =




cos θ1 − sin θ1 0 0

sin θ1 cos θ1 0 0

0 0 1 0

0 0 0 1







1 0 0 0

0 cos θ2 − sin θ2 0

0 sin θ2 cos θ2 0

0 0 0 1







cos θ3 0 − sin θ3 0

0 1 0 0

sin θ3 0 cos θ3 0

0 0 0 1




×




cos θ4 0 0 − sin θ4

0 1 0 0

0 0 1 0

sin θ4 0 0 cos θ4







1 0 0 0

0 cos θ5 0 − sin θ5

0 0 1 0

0 sin θ5 0 cos θ5







1 0 0 0

0 1 0 0

0 0 cos θ6 − sin θ6

0 0 sin θ6 cos θ6




.

The angles θl collected in θ = (θ1, . . . , θ6)′, 0 ≤ θl < π/2, are varied along K equidistant

grid points, obtaining K6 distinct decomposition matrices Q̃tRθ. To enhance the set

of candidate decompositions, note that the columns of each candidate matrix Q̃tRθ

allow N!= 24 distinct permutations. Indexing the set of column permutation matrices

Pφ, φ = 1, 2, . . . , 24, we combine each rotation Q̃tRθ with each permutation Pφ to define

11Q̃t has to be chosen by the analyst. Without loss of generality, we use the eigenvalue decomposition of

the correlation matrices V
−1/2

t HtV
−1/2

t .
12Though permutations are also rotations, we opt for a different notation to enable a more ‘parsimonious’

structuring of the decomposition space Q. Hence, rather than choosing a grid between 0 and 2π, we choose a
grid between 0 and π/2 and apply permutation matrices. To establish sign uniqueness, columns of particular

rotations of Q̃t are multiplied with minus unity if their respective diagonal element is negative.
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Q. Let m = 1, 2, . . . ,M index the set of all combinations of θ and φ.13 Then, candidate

decompositions of V −1/2
t HtV

−1/2
t read as Q̃t,m with typical elements Q̃t,m(i, j).

(ii) Quantifying instantaneous transmission

Assume that in period t market i is considered as a dominant determinant of financial

market (co)movements. To decide if this fact is covered by a specific decomposition

scheme {Q̃t,m}T
t=1 consider the indicator

di,t,m = I




N∑

k=1,k 6=i

Q̃t,m(k, i)2 >
N∑

k=1,k 6=j

Q̃t,m(k, j)2, ∀j = 1, . . . , N, j 6= i


 . (9)

Accordingly, dominance of market i is indicated if the associated ‘spillover index’

(Diebold and Yilmaz, 2009) of market i, i.e. the off-diagonal sum of the squared

values in the i-th column of Q̃t,m, exceeds respective indices of the remaining markets

j, j 6= i. Note that, by this definition, an indication of dominance does not exclude

other markets to be influential sources of financial volatility.

By assumption, Ωs is the set of calendar dates (the time series support) for which

news originating in market s have played a dominant role for investors’ decisions.

Henceforth, the size of this set is denoted ωs.14 A candidate sequence of decomposition

matrices, {Q̃t,m}T
t=1, can be characterized in terms of frequency estimates attributing

market dominance to partitions of sample information. Define

dis(m) =
1
ωs

T∑

t∈Ωs

di,t,m, i = 1, . . . , N, s = 0, 1, . . . , N, (10)

to measure the frequency of dominance of market i attributed to time instances in Ωs.

Notice that in (10) the division by ωs accounts for the (likely) scenario that periods

of market turmoil (Ωs) differ in length. A unique decomposition scheme for the full

13In total, therefore, M = 24 ·K6 alternative decomposition sequences are available.
14In analogy, regular market conditions prevail in the set of time instances Ω0 having size ω0.
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sample is obtained by selecting the particular m̂ (i.e. the specific combination of Rθ

and Pφ) such that

{Q̂t}T
t=1 = {Q̃t,m̂}T

t=1, where m̂ = max
m

S =
N∏

i=1

dii(m). (11)

As outlined, MDT builds upon frequency estimates dii(m), i = 1, . . . , N, to evaluate domi-

nance of market i in times of turmoil Ωs, s = i.15 As such, the criterion in (11) is agnostic

with regard to other frequency characteristics as, e.g., dis, i 6= s, or di0 which are also implied

by {Q̂t}T
t=1. While the former statistics might quantify, e.g., the incidence of dominance of

the banking market during the real estate crisis, the latter type of statistics describe the

incidence of banking market dominance during normal times. If additional (more specific)

economic information on such local transmission characteristics is available, respective fre-

quencies might further be considered as arguments to enter the criterion in (11). All frequen-

cies that are left agnostically unspecified, however, provide important additional information

for both model evaluation and economic inference.

For identification, we have put a particular emphasis on aspects of cross market news

effect transmission. In this context, uncontroversial local economic restrictions can be formu-

lated most straightforwardly. However, a sequence of decompositions could also be evaluated

in terms of its implied reception patterns. The intensity of cross market news exposure expe-

rienced by market i in time t is quantified by the off-diagonal elements entailed in the i−th

row of matrices Q̂t (or Ĝt). Against this background, it is worth to note the specific charac-

teristics of (ad-hoc) decompositions commonly applied to obtain structural interpretations

of the MGARCH model.16 For instance, the symmetric eigenvalue decomposition implies

time local symmetry of transmission and reception. Such a symmetry condition might lack

15The MDT criterion has a multiplicative rather than an additive form to penalize models with very
heterogeneous (i.e. polar) frequencies being either close to one or zero.

16See e.g. Spargoli and Zagaglia (2008), Jin, Lin, and Tamvakis (2012), Henry, Olekalns, and Shields
(2010), Rahman and Serletis (2011), Olson, Vivian, and Wohar (2014)
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economic support, if it is possible to highlight particular markets as intense transmitters

or receivers of news effects during distinct time episodes. In turn, triangular decomposi-

tion schemes imply that a particular market is a-priori considered to be a mere transmitter

(recipient) of volatility with no volatility reception from (transmission to) other markets,

irrespective of the changing market conditions and shifting correlations. In contrast, rota-

tions according to the criterion in (11) allow to conform the structural model features with

available historical economic information on local market conditions.

2.3 Local average variance impulse response analysis

VIRFs are conveniently derived from the vec-form of the BEKK model in (5):

vec(Ht) = C̃ + Ãvec(et−1e
′
t−1) + B̃vec(Ht−1), (12)

where C̃ = (C ⊗ C)vec(IN), Ã = (A⊗ A)′, B̃ = (B ⊗B)′.

Concentrating on the distinct moments in vec(Ht), the half-vec analog of (12) is

vech(Ht) = C +Avech(et−1e
′
t−1) + Bvech(Ht−1), (13)

where A = LNÃL′
N and B = LN B̃L′

N and LN is the so-called elimination matrix.17 As

formalized in (2) and (4)-(5), the elements in ht = vech(Ht) depend on the structural in-

novations ut−1, and the covariance state Ht−1. For purposes of impulse response analysis

it has become a convention to depict the time paths of effects of isolated shocks occurring

in one variable and instance of time on a system’s dynamic patterns (see Lütkepohl, 2007,

17To describe the link between the vec- and the half-vec model, and for the derivation of VIRFs, some
elementary matrices turn out to be useful: The elimination matrix LN , the duplication matrix DN and its
generalized inverse D+

N . Let N∗ = N(N + 1)/2. With reference to a symmetric square N ×N matrix Z, the
N∗×N2 (N2×N∗) elimination (duplication) matrix LN (DN ) is defined by the property vech(Z) = LN vec(Z)
(vec(Z) = DN vech(Z)). Since D′

NDN is nonsingular, the Moore-Penrose inverse or generalized inverse of
DN is D+

N = (D′
NDN )−1D′

N . See Lütkepohl (1996).
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Chap. 9). To derive VIRFs from MGARCH processes, it is natural to assume that such

shocks occur in the innovation vector ut−1 (Hafner and Herwartz, 2006). Referring to model

parameters in (13) and time specific MDT-implied conditional variance decompositions (2),

VIRFs are determined recursively as

Vt+ν(u∗
t−1, Ĝt−1) = (A+ B)νAD+

N(Ĝt−1 ⊗ Ĝt−1)DNvech(u∗
t−1u

∗′

t−1 − IN), (14)

for ν = 0, 1, ... , where DN is the duplication matrix and D+
N denotes its generalized (Moore-

Penrose) inverse. Hence, VIRFs are defined as the path of volatilities that is expected in

the sequel of an artificial shock u∗
t−1 in comparison with a hypothetical benchmark ‘steady

state’ path of volatilities. For both paths, subsequent innovations u∗
t , u

∗
t+1, . . . are set to

zero according to their unconditional expectations. It is a particular feature of VIRFs that

they are derived conditional on the covariance state in the time of shock generation, Ht−1

(and, hence, Ĝt−1). Moreover, shock selection is highly arbitrary since no ‘natural’ specifi-

cation of an isolated stylized unit shock affecting a system of variances exists.18 To address

these problems, we next discuss a simulation-based approach to assess ‘mean’ (co)variance

responses to market specific innovations within characteristic episodes Ωs, s = 0, . . . , N .

As a starting point, we define potential choices of u∗
t−1 that might be suitable for studying

effects of market specific shocks on system (co)variances for a given instance of time. To

potentially (govern the) increase (of) the conditional variances across financial markets,

the market specific element of the shock vector, u∗
it−1, has to be of sufficient magnitude.

With regard to (co)volatility generation, moreover, negative shocks are of more interest by

assumption. Concerning the shock u∗
t−1, we obtain a representative set of suitable candidates

by means of resampling from a censored empirical distribution of MDT-implied empirical

shocks. Formally, let {u(i)∗
r }R

r=1 denote a set of R draws with replacement from the set

18Note that zero elements in the innovation vector might be seen as additional ‘negative’ shocks to the
considered system of variances.
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{ût ∈ {ût}T
t=1|ûit < κ}, where κ is the empirical α% quantile of the empirical structural

shocks ûit (here: α = 10%). Based on a sample of R (here: R = 500) variance shocks, we

obtain R distinct (shock specific) VIRFs conditional on the covariance structure in t− 1.

For studying variance responses to such shocks under distinct ‘characteristic’ scenarios,

all conditional covariances Ht (and thus, MDT-implied decompositions Ĝt−1) collected in

respective episodes Ω0 . . . ,ΩN are potentially informative. For instance, referring to the

subset of model implied conditional covariance matrix estimates from the burst of the equity

bubble is likely most informative for depicting news responses of financial (co)volatilities

applying under stress in the equity sector. Accordingly, we determine scenario specific VIRFs

by averaging over all VIRFs derived from combining all selected shocks and scenario specific

covariance decompositions. Formally, we consider the following local statistics of volatility

transmission originating in market i and period Ωs

V(is)
t+ν =

1
ωsR

∑

t−1∈Ωs

R∑

r=1

Vt+ν(u(i)∗
r , Ĝt−1), i = 1, . . . , N, s = 0, . . . , N. (15)

3 A structural view at financial turmoil in the US

Subsequently, we provide a structural analysis of scenarios of US financial turmoil between

2000 and 2015. Firstly, we define historical (characteristic) episodes Ω0, . . . ,ΩK and discuss

stylized properties of the data. Secondly, we provide BEKK estimates, some reduced form

model diagnostics and identification details. In the third place, we provide a comprehensive

analysis of the characteristic dependence patterns among equity, real estate, banking and

treasury markets by referring to instantaneous effects, respective one-step-ahead forecast

error variance decompositions and volatility transmission dynamics. In this context, we also

discuss how these characteristic patterns have changed over distinguished scenarios of US

financial turmoil between 2000 and 2015. Finally, we compare the economic implications of

MDT identification to those of alternative approaches.
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3.1 Data

Table 1 and Figure 1 provide descriptive information on the returns of the Dow Jones Indus-

trial Average, the Wilshire US REIT, the Datastream Americas Banks and the Datastream

US benchmark 10 year government bond indices between 1/3/2000 and 12/26/2014. All

indices are obtained from Datastream.19 For the analysis, all returns are mean adjusted and

standardized to have unit unconditional variance.20 Figure 1 and Table 1 illustrate that, in

Table 1: Descriptive statistics of returns, reduced form and structural innovations.

i Mean Min/Max Covariance Skew. Kurt. JB

Raw returns (rit)

1 0.01 -8.20/10.51 1.39 -0.07 11.43 11567∗

2 0.03 -22.02/17.38 1.53 3.86 -0.24 22.31 60167∗

3 0.01 -14.43/14.60 1.69 2.49 3.10 0.01 15.22 24347∗

4 0.00 -1.98/2.134 -0.12 -0.12 -0.17 0.09 -0.06 5.76 1037∗

Reduced form model disturbances (eit)

1 0.00 -6.98/ 8.92 1
2 0.00 -11.22/ 8.83 0.66 1
3 0.00 -8.20/ 8.29 0.82 0.72 1
4 0.00 -5.92/ 8.31 -0.35 -0.21 -0.32 1

Structural form model innovations based on MDT (uit)

1 -0.01 -5.28/7.14 1.00 0.09 4.86 571∗

2 0.02 -5.14/5.50 0.01 1.02 -0.00 4.71 477∗

3 -0.00 -8.22/5.25 -0.01 -0.01 1.02 -0.20 4.73 518∗

4 0.00 -4.18/4.45 0.00 -0.00 0.01 0.99 -0.07 3.78 104∗

Descriptive statistics for raw returns rit, reduced form model disturbances eit (i.e. unconditionally
standardized raw returns) and structural form model innovations uit obtained by means of the MDT
identification scheme. JB is short for the Jarque-Bera test and the asterisk denotes significance of
the corresponding test statistic at the 1% level.

comparison with returns on equity, the return variation in the real estate and the banking

market is rather large. In comparison, the variation of treasury market returns is small

in general, but shows a considerable persistence. Apart from pronounced patterns of het-

eroscedasticity, the data is characterized by its non-normality in general and excess kurtosis

in particular. Moreover, we observe strong positive correlations among equity-, real estate-

19The corresponding codes are: DJINDUS, WILDJRT, BANKSAM, BMUS10Y.
20Considering unconditionally standardized returns facilitates the comparison of VIRF dynamics.
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and banking index returns (0.66−0.82). In contrast, government bond index returns exhibit

moderate, negative correlations with the remaining index returns (−0.21 to − 0.35).

3.2 Selected episodes of market dominance

We subsequently summarize our stylized assumptions on local market dominance. A detailed

justification of these assumptions is provided in Appendix A. Four disjoint subperiods of US

financial market turmoil are of particular interest, namely (i) the early millennium burst

of the equity bubble, (ii) the real estate crisis (first part of the great financial crisis), (iii)

the banking crisis (second part of the great financial crisis), and (iv) the period of debt

ceiling disputes. We assume that news originating in the equity market (and, hence, the

firm sector) dominate investors’ decisions between 3/1/2000 until 4/1/2003. The set of all

time instances within this period is denoted Ω1. Moreover, we assume that during the period

from 2/1/2007 until 3/14/2008 (from 3/15/2008 until 6/1/2009), news originating in the real

estate (banking) sector have dominated the (co)variations in the financial system (Ω2 and Ω3,

henceforth). News on the treasury market are assumed to have played a dominant role on

financial (co)variations between 3/1/2011− 1/1/2012 and 5/1/2013− 11/1/2013, defined as

episode Ω4. To complete the structuring of the sample, all time instances between 3/1/2000-

12/26/2014 that are not included in one of these ‘informative’ (and non-overlapping) episodes

comprise Ω0, the set of time instances characterized by regular or normal market conditions.

3.3 BEKK estimates, identification details and evaluation

Full sample QML estimates of the BEKK model in (5), and a residual based check for

structural invariance are given in Appendices B and C.21 Selected out of a huge set of

decomposition processes Q and based upon a grid with K = 11 equidistant points,22 the

21Optimization is based on a procedure which iterates the Quasi-Newton, Nelder-Mead and Trust-region
algorithms (as implemented in Matlab 2011a) until they jointly fulfill the convergence criteria.

22Given the computational resources, K > 11 required a disproportional amount of computing time.
Results from finer resulutions are expected to be qualitatively identical.
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sequence of correlation decompositions {Q̂t}T
t=1 that optimizes the MDT criterion in (11) is

based upon initial eigenvalue decompositions rotated by means of the matrix

Rθ̂Pφ̂ =




.4935 −.0581 −.8627 .0932

−.5133 .4044 −.3909 −.6482

.4918 .8412 .2246 .0000

−.5011 .3540 −.2289 .7556




. (16)

The decomposition scheme implied by the rotation in (16) is of central importance for the

structural analysis, since it determines the interpretation of full sample reduced form condi-

tional covariance estimates. Hence, one should reassure that the local dominance assump-

tions have been met successfully. The upper part of Table 2 provides diagnostics dis(m̂) on

the success (i = s) and failure (i 6= s) of {Q̂t}T
t=1 in attributing dominance of news originating

in market i, i = 1, . . . , 4, to the associated turmoil episodes Ωs.

By construction, rotating the initial eigenvalue decompositions towards {Q̂t}T
t=1 achieves

a concentration of dominance indications for markets i = 1, . . . , 4 during the associated tur-

moil episodes Ωs, s = i. Respective frequencies range from d44(m̂)=25% (treasury market

dominance during the debt ceiling disputes Ω4) to d33(m̂)=67% (banking market dominance

during the banking crisis Ω3). On average, these frequencies are both large in magnitude

(dii(m̂)=50.17%) and sizeable in comparison with relative frequencies attributed to other,

non-dominant markets (dis(m̂)=16%, i 6= s, s 6= 0). Moreover, the model implied agnostic

dominance indications provide economic support for the identification scheme. We obtain

frequent indications of banking dominance during the real estate crisis Ω2 (d32(m̂) = 25%),

as well as of real estate dominance under turmoil in the banking market Ω3 (d23(m̂) = 16%).

During the period of treasury market dominance, Ω4, the banking sector remained an influen-

tial source of financial variation (d34(m̂) = 48%). Consider next the (relative) importance of

the examined financial markets under ‘regular conditions’ (Ω0). The housing sector seems to
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Table 2: Identification details

Identification ({Qt}Tt=1) i di1 di2 di3 di4 di0

1 .5031 .0925 .0095 .0695 .2614
Rotated eigenvalue 2 .3702 .5788 .1646 .1964 .4268

decomposition, Q̂t 3 .1193 .2466 .6741 .4843 .2845
4 .0075 .0822 .1519 .2508 .0273

1 .6584 .4966 .5570 .7372 .6882
Unrotated eigenvalue 2 0 0 .0759 .0544 .0152

decomposition, Q̃t 3 .3416 .5034 .3671 .2085 .2965
4 0 0 0 0 0

1 1 1 1 1 1
Lower triangular 2 0 0 0 0 0
Cholesky factor, Q▽

t 3 0 0 0 0 0
4 0 0 0 0 0

1 .5826 .0479 .0633 .0393 .0642
Rigobon and Sack 2 0 .1849 .3481 .0060 .0282
implied factor, Q⋆

t 3 .2000 .0582 .3291 .0181 .0129
4 .2174 .7089 .2595 .9366 .8947

Relative frequencies dis of time instances where, according to the selected decomposition of corre-
lation matrices, the distinguished market sectors i = 1, 2, 3, 4 show strongest on impact volatility
transmission during (turmoil) periods Ωs, s = 1, . . . , 4, according to (9). Ω0 corresponds to the
set of time instances that are not attributed to episodes of market turmoil. In the upper block,
frequencies in bold are those that enter and maximize the MDT criterion in (11). The remaining
frequencies dis in the upper block are left agnostic by the MDT criterion (see (10) for a definition).
Q⋆

t is defined as Q⋆
t = V ⋆−0.5

t G⋆
t , where G⋆

t = Λ−1diag(ψ1t, . . . , ψNt).

be of general importance, since it often appears to dominate other markets’ behaviour during

these time periods (d20(m̂) = 43%). Meanwhile, the treasury sector has rarely been a domi-

nating factor of financial market volatility during calm periods (d40(m̂) = 3%). Summarizing,

we conclude that the achieved identification appears economically reasonable according to

the considered criterion of market dominance.

3.4 Transmission characteristics among key financial markets

We subsequently discuss the characteristic roles of key financial markets for the financial

transmission mechanism. To analyse contemporaneous effects, firstly, we refer to scenario
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specific averages of matrices Γt and Σ1/2
t in (3), i.e.

Γ̄s =
1
ωs

∑

t∈Ωs

Γt ; Σ̄1/2
s =


 1
ωs

∑

t∈Ωs

Σt




1/2

, (17)

which are documented in Table 3. To assess their economic importance, secondly, we consider

one-step ahead forecast error variance decompositions,

λijs =
1
ωs

∑

t∈Ωs

λijt, with λijt =
Gt(i, j)2

∑4
k=1 Gt(i, k)2

= Qt(i, j)2, (18)

measuring the scenario specific average fraction of market i’s variation attributed to market

j, and documented in Table 4. To illustrate variance transmission, lastly, Figure 2 displays

scenario specific average VIRFs conditional on sizeable negative innovations u∗
t originating

in distinct markets.23

3.4.1 Equity market

Results documented in the left hand side panel of Table 3 (upper row in each block) indicate

that equity market returns positively respond to banking and real estate market news, while

the influence of treasury market news is negative. In comparison to the treasury or real estate

market, the equity market appears to be quite sensitive to news originating in other markets

(left hand side panel of Table 4), where especially the banking market seems important.

Depending on the scenario, up to 50.0% of equity return variation is associated with banking

market news, whereas e.g. only ≤ 15.4% (≤ 11.4%) of equity return variation is associated

with real estate (treasury) market news. VIRFS shown in the first column of Figure 2 further

underpin that the equity markets’ sensitivity to adverse ‘large’ banking market news had

been especially pronounced during the banking crisis, and, to a somewhat weaker extent,

during the burst of the equity bubble. The strong and positive dependence of stock returns

23Respective covariance responses are available upon request but not discussed here.
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to banking market news likely reflects that the expected performance of the private sector

is strongly subject to the capitalization and liquidity (and, hence, also the lending behavior)

of financial institutions.

3.4.2 Real estate sector

Further results shown in Table 3 (left hand side panel, second rows in each block) show

that real estate sector returns tend to negatively respond to equity market news (except

during the banking crisis) and treasury market news, while the influence of banking market

news is positive. In comparison with the banking or equity market, the real estate market

appears less sensitive to news originating in other markets (see Table 4). Especially the

treasury market (30.0 - 40.0%) and the banking sector (23.8 - 31.3%) are important external

determinants of real estate market returns on a day-to-day basis. Referring to the effects

of sizeable adverse news, VIRFs given in the second column of Figure 2 highlight that the

banking market is the strongest external source of real estate market turmoil.24 During the

banking crisis, the effects of own shocks and banking market shocks are extremely strong

and of similar magnitude. Apparently, news on the state of the capitalization and liquidity

of the banking sector (also governing its lending behavior) are important for the expected

performance of the real estate market. Moreover, banks hold real estate as collateral and

might be forced to sell it in case of adverse events (Shin 2008, Gai and Kapadia 2010,

Aikman et al. 2009). Regarding the sizeable influence of treasury market news on REITs,

one might consider a substitution relation dominated by the performance of treasury bonds.

Accordingly, treasury bonds would be substituted for REITs in response to adverse treasury

market news.
24Remember that variance decompositions are derived from all observations within Ωi, while VIRFs are

based upon observations falling below the 10% quantile of empirical shocks within Ωi.
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3.4.3 Banking sector

The banking market (see Table 3, left hand side, third rows in each block) positively responds

to news originating in the real estate and the equity market, and negatively to treasury

market news. First of all, banking sector variation appears highly sensitive to real estate

sector news (54.1 - 57.8%), while it further responds to equity market news quite strongly

(23.8 - 35.0%). This, in turn, implies a weak impact of own news, at least on a day-to-day

basis (≤ 9.1%). VIRFs shown in the third column of Figure 2 emphasize these marked

dependence characteristics, but further highlight a sizeable influence of ‘large’ own shocks.

Hence, the banking sector appears as a central catalyst of financial turmoil. Its market

capitalization strongly responds to real estate market news (as implied by the collateral value

hypothesis, Niinimäki 2009; Koetter and Poghosyan 2010) and, to a somewhat weaker extent,

to equity market news (associated with borrower net worth). As discussed before, it is further

diagnosed as a central determinant of equity and real estate market performance. Hence,

we find strong evidence for a financial amplification mechanism characterized by falling

asset prices to undermine banks, and struggling banks to induce plunging asset markets

(Krishnamurthy, 2010). Moreover, we find that, in addition to direct dependencies within the

banking system due to interbank claims (Allen and Gale, 2000), indirect linkages operating

via fire sales and balance sheet effects (Shin 2008, Gai and Kapadia 2010, Aikman et al.

2009) might substantially contribute to the spread of bank default risks. Furthermore,

model estimates underpin why (in contrast to the burst of the equity market bubble during

Ω1), the unwinding of imbalances in the real estate sector during Ω2 led to a systemic crisis.

Though the banking sector had been been subject to equity market shocks during Ω1, the

variation in the real estate sector remained almost unaffected (in absolute terms) by the

adverse developments in both markets (see Figure 2). During Ω2, in contrast, both real

estate markets and equity markets show an increased sensitivity to adverse banking market

news. This, in turn, implies a strengthening of the feedback mechanism.
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3.4.4 Treasury market

According to the results documented in Table 3 (left hand side, fourth rows in each block),

the treasury market positively reacts to banking and real estate market news, but negatively

to equity market news. Treasury market volatility mainly reflects own news (51.4 - 62.7%)

and equity market news (34.2 - 40.2%), which is also confirmed by VIRFs shown in the

fourth column of Figure 2. The negative dependence of treasury returns on equity market

news should reflect the ‘flight to quality’ phenomenon, where investors substitute safe assets

for risky ones (risky assets for safe assets) in response to increasing (decreasing) risk.

4 Implications of alternative approaches

Subsequently, we will discuss in how far structural evidence based upon ad-hoc decomposi-

tions (unrotated eigenvalue decomposition (G̃t), lower Cholesky factors (G▽

t )) and the model

of Rigobon and Sack (2003) (G⋆
t ) conforms with the stylized crisis chronology. The lower

panels of Table 2 provide respective dominance frequencies. In addition, Table 4 shows

average one-step ahead forecast error variance decompositions λijs) obtained by means of

i) unrotated eigenvalue decompositions {Q̃t}T
t=1 and ii) the approach of Rigobon and Sack

(2003). To economize on the discussion, we will focus on dominance frequencies and fore-

cast error variance decompositions. Instantaneous effects Γ̄s and associated volatilities are

sketched in the center and right hand side panel of Table 3 for completeness.

Results shown in Table 2 underpin that, by construction, triangular decompositions

favour/exclude particular patterns of market dominance. For instance, with lower trian-

gularity no market except the equity market shows up as a dominating market according to

the criterion in (9). As a consequence, one can hardly discriminate among volatility trans-

mitters over distinct periods of market turmoil by means of Cholesky factors, irrespective of

the ordering of variables. For space considerations, we do not provide further diagnostics on
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triangular decomposition schemes.

In contrast, the structural model based on the sequence of (unrotated) eigenvalue decom-

positions, {Qt}T
t=1 appears less restrictive in terms of the causality structure. With regard

to our empirical example, however, eigenvalue based decompositions {Qt}T
t=1 often appear

controversial economically. For instance, real estate market dominance is never indicated

during the first part of the financial crisis (d22(m̂) = 0), while both the equity and banking

sector appear as dominant markets (d12(m̂) ≈ d32(m̂) ≈ 50%). Moreover, the banking crisis

is predominantly associated with equity market dominance (d13(m̂) = 55.7%). According to

forecast error variance decompositions in Table 4, market specific volatility is mainly traced

back to own shocks (62.6 - 94.7%). Hence, the observed variation in standardized returns

of sector i reflects structural shocks hitting sector i almost in a one-to-one manner. Con-

sequently, instantaneous transmission and reception, identical by construction, are rather

weak. For instance, news on events in the banking sector would have explained only 0.4-

17.3% percent of variation in other markets during the banking crisis Ω3. Moreover, the

exposure of the banking sector to the real estate sector during the first part of the great

crisis (Ω2) would be diagnosed surprisingly small (11.4%). In general, instantaneous features

of the banking and the equity sector appear almost identical over time which is economi-

cally counterintuitive in light of their distinct roles within the financial system. In summary,

it appears that (symmetric) eigenvalue decompositions are characterized by a fundamental

weakness in separating particular effects of interest.

Finally, we consider patterns of market importance implied by QML-estimates of the

structural MGARCH model in Rigobon and Sack (2003). At first sight, respective forecast

error variance decompositions in the right hand side of Table 4 appear intuitive. Own news

effects of markets i = 1, . . . , 4 tend to be strongest during associated dominance episodes

Ωs, i = s, while the local total spillovers of market i tend be stronger in Ωs, s = i comparison

with those during Ωs, s 6= i. However, the structural model of Rigobon and Sack (2003)
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also bears some controversial economic implications. For instance, news originating in the

treasury market exert very strong cross market impacts. Especially during the real estate

crisis and normal times, cross market impacts of news originating in the treasury sector

throughout exceed respective cross market effects triggered by all other markets. Moreover,

central aspects of the great financial crisis lack indication. With regard to the real estate

crisis, for instance, the IVH approach predicts that only 9% (10%) of the variation in the

banking sector (equity market) is associated with news originating in the real estate market.

At the same time, only 3% of real estate variation is accounted to news in the banking

sector. During the banking crisis, moreover, only 7% of the variation in the banking market

is traced back to news originating in the real estate sector. Moreover, the variation in

the real estate sector is hardly affected by the news on struggling banking institutions and

associated fire sales (6%). Consequently, some dominance frequencies in Table 2 appear at

odds with economic intuition. The real estate crisis, for instance, is strongly characterized

by market dominance of the treasury sector (71%), rather than by real estate or banking

sector dominance (18% and 6%). Under regular market conditions, the IVH model attributes

market dominance to the treasury sector in 89% of all time instances which casts some doubts

on the model outcome and/or its interpretation.

5 Conclusions

We introduce a new structural view on MGARCH modelling to investigate contemporaneous

interaction and variance transmission dynamics among the US equity, real estate, banking

and treasury market during 1/3/2000 and 12/26/2014. Drawing upon recent contributions

to identification via heteroscedasticity and structural VAR analysis, the novel identifica-

tion scheme - market dominance targeting (MDT) - formalizes transmission in a way that

a structural MGARCH model is best in line with narrative economic information on his-

toric episodes of financial market turbulence and its presumed origin. MDT is a coherent
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framework i) to uncover the economic structure underlying financial transmission, and ii)

to illustrate the implied model dynamics by means of identified volatility impulse response

functions (VIRFs). In comparison to alternative approaches to structural MGARCH mod-

eling (ad-hoc decompositions, and the structural MGARCH model of Rigobon and Sack

2003), the MDT identified model offers very intuitive model implications and allows insights

on time varying patterns of instantaneous interactions and volatility transmission during the

era of financial market fragility. The structural BEKK model provides various insights into

the interplay of financial markets, illustrating the key importance of the banking sector for

financial stability. It is the most sensitive market with regard to shocks originating in other

markets in general and to shocks originating in the real estate sector in particular. In turn,

it is the dominant source of general (co)variation in the financial sector if it comes under

stress. The real estate market is the most important trigger of banking market volatility,

while being also strongly exposed to shocks originating in the banking market. The equity

market is of moderate importance for generating financial turmoil, while its impact under

stress in the banking sector still seems quite strong. The treasury sector is neither a dom-

inant transmitter nor a core recipient of volatility in comparison with the other markets.

However, it exerts some influence on real estate market volatilities. Though our evidence

points at a strong relevance of indirect linkages with regard to the spread of bank defaults,

a rigorous comparison of direct vs. indirect effects would require an explicit consideration

of intra banking sector linkages. Apparently, this would enlarge the cross section and might

require the combining of MDT with event based identification techniques. We regard this

as an issue of future research.
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Appendix A: Episode selection

As proposed in this work, the identification of instantaneous transmission among distinct

financial markets relies on the attribution of distinguished periods of common turmoil to a

specific market as a time local, dominant source of general (co)variation. In this section, we

summarize some consensual facts on the local dominance25 of particular markets as sources

of general financial (co)volatility during 2000/1 and 2014/12.26 Four disjoint subperiods

of US financial market fragility are of particular interest, (i) the early millennium burst of

the equity bubble, (ii) the real estate crisis (first part of the great financial crisis), (iii) the

banking crisis (second part of the great financial crisis), and (iv) the period of debt ceiling

disputes. To support the discussion, Figure 1 shows the time paths of index quotes, log

returns and monthly realized volatilities for the Dow Jones Industrial Average, the Wilshire

US REIT, the Datastream Americas Banks and the Datastream US benchmark 10 year

government bond indices.

The burst of the equity bubble (episode Ω1): After years of growth in equity value

reflecting the uprise of the so-called new economy (e.g. the internet or biotech sectors),

US stock markets faced a period of increased turmoil between 3/15/2000 and 4/1/2003.27

The 9/11 terrorist attacks spurred equity devaluation. After recovering from lows reached

after the 9/11 attacks, the so-called ‘stock market downturn’ of 2002 constituted another

characteristic part of this episode. Especially during 7/5/2002 and 10/9/2002, US stock

markets dropped strongly in value. For instance, from 7/5/2002 to 7/23/2002 (8/22/2002 to

10/9/2002) the Dow Jones dropped from 9379 to 7702 (9053 to 7286) points. Until 3/31/2003

the Dow Jones had recovered to about 9000 points, and market volatility declined in the af-

25The term ‘dominance’ is meant in a comparative sense. Hence, other markets might also exert an
important (though not dominant) impact on financial volatility.

26See, e.g., the home page of the Federal Reserve Bank of St. Louis for a chronology of crisis related events
(https://www.stlouisfed.org/financial-crisis/full-timeline).

27The peak of the Nasdaq 500 index on 3/10/2000 is often seen as the beginning of this development.
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termath. Hence, during the first episode of (relatively) high conditional (co)variances within

the US financial system displayed in Figure 1, risk relevant news originating in the equity

market should have been more important for investors’ decisions in comparison with news

originating in other markets. We therefore consider the period of equity market dominance

to prevail from 3/1/2000 until 4/1/2003. Subsequently, the set of all time instances within

this period is denoted Ω1.

The great financial crisis (Ω2 and Ω3): The great financial crisis, which took its course

between 8/1/2007 and 6/1/2009 (Hellwig, 2009; Aït-Sahalia et al. 2012), covers the burst of

the US real estate market bubble and a subsequent banking crisis with global effects. This

time period is characterized by the second sizeable volatility cluster displayed in Figure 1.

After a period of sustained US house price inflation, excessive subprime lending, and mispric-

ing of risks inherent in mortgage backed securities and collateralized debt obligations until

early 2006 (Nadauld and Sherlund, 2009), a strong deceleration of home prices initiated the

real estate market crisis in the beginning of 2007. This decline triggered mortgage delinquen-

cies and foreclosures, further amplifying the implosion of house prices and associated asset

backed securities. The strong increase of short term interest rates after August 8, 2007 made

the financial crisis apparent (Taylor, 2009). For a period ending with the collapse of the US

financial institution Bear Stearns, and its distress sale to JPMorgan Chase (3/16/2008), one

might presume that risk factors stemming from the real estate sector have been a primer

source of the volatility in other parts of the financial system. For instance, financial system

(co)variation could have been driven by influential events such as the first major subprime

related loss reported by HSBC in February 2007, the largest US house builder DR Horton’s

warning of huge losses in March 2007, or Bear Stearns’ announcement of the collapse of two

of its hedge funds in July 2007.

The more the banking sector was adversely affected by the implosion of the real estate

market, the stronger became its own impact on systemic risk and volatility. To maintain
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solvency, struggling banking institutions had to liquidate their financial assets, thereby am-

plifying the decline in house and stock prices. With the collapse of major financial insti-

tutions such as Bear Stearns (3/16/2008), IndyMac (7/11/2008), Fannie Mae and Freddie

Mac (9/7/2008), or Lehman Brothers (9/15/2008), risk factors stemming from the banking

sector might have come into a primary focus. For instance, owing to their important role in

the mortgage market, the takeover of Fannie Mae and Freddie Mac caused a market panic.28

Since the Lehman default, moreover, it has become apparent that the US government might

refuse to bail out banking institutions heading for insolvency. According to Aït-Sahalia et

al. (2012) , the government’s ad-hoc decisions to bail out particular banks, or to accept their

failure, were accompanied by a significant increase in interbank risk premia.

We therefore distinguish two further subperiods of relative market dominance. In the

first (second) time period, 2/1/2007 until 3/14/2008 (3/15/2008 until 6/1/2009), risk factors

stemming from the real estate (banking) sector are considered to dominate the (co)variations

in the financial system.29 Subsequently, we denote the sets of time instances within these

periods as Ω2 (real estate market dominance) and Ω3 (banking market dominance), respec-

tively.

The debt ceiling disputes (episode Ω4): During the periods of debt ceiling disputes,

risks originating from the treasury market gave rise to considerable financial market volatility

(McCarthy, 2012; Baker et al., 2013. Fostered by huge spendings on banking bailout pro-

grams the US federal government reached the debt ceiling in March 2011. The dispute on

raising the debt ceiling to prevent either a partial government shutdown or a default on the

debt continued through the first half of 2011 until the Budget Control Act was implemented

on 8/2/2011. After 7 decades of highest possible rating, Standard & Poor’s downgraded the

28http://www.nytimes.com/2008/07/11/business/11ripple.html?ex=1373515200&en=8ad220403fcfdf6e&ei=5124&
partner=permalink&exprod=permalink

29Targeting at a distinction between the ‘local’ US subprime crisis and the ‘global crisis’ , Aït-Sahalia et
al. (2012) split the crisis period into two similar sub-periods: 7/1/2007 to 9/14/2008 and 9/15/2008 to
3/31/2009.
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federal government’s credit rating from AAA to AA+ on 8/5/2011. The rating agencies Fitch

and Moody’s, moreover, changed their outlook to ‘negative’ on 7/2/2011 and 11/28/2011,

respectively. One might conjecture that these developments also contributed to the drop of

the Dow Jones Industrial Average by almost 2,000 points (-15%) in late July and August

2011. For instance, after the downgrade on 8/5/2011, the Dow Jones dropped by about 635

points (-5%) on 8/8/2011. As illustrated in Figure 1, the time period 3/1/2011− 1/1/2012

is also characterized by local peaks in realized monthly standard deviations of government

bond index returns. The debt ceiling was reached on 12/31/2012 again, and extraordinary

measures had to be taken. The government’s need to relax this limit gave rise to intense de-

bates in Congress in the mid of 2013. The debates ended in October 2013 when Republicans

backed down one day before the legal default as announced by the treasury department.30

Realized monthly standard deviations of government bond index returns increased markedly

during the period from 5/1/2013 until 11/1/2013 (see Figure 1). Hence, an increased focus

could have been put on the risks originating from the treasury market during the periods

3/1/2011−1/1/2012 and 5/1/2013−11/1/2013. Henceforth, the set of time instances within

these periods is denoted as Ω4.

Regular market conditions (Ω0): Representing distinct scenarios of financial fragility

each of the outlined turmoil episodes Ωs, s = 1, . . . , 4, is associated with risks stemming from

one particular market. These episodes should provide information i) for the identification of

contemporaneous effects of sizeable market specific shocks, and ii) for characteristic scenarios

under which sector specific volatility transmission takes place.31 To complete the structuring

of the era of financial fragility, all time instances between 3/1/2000-12/26/2014 that are not

included in one of these ‘informative’ (and non-overlapping) episodes comprise Ω0, the set

of time instances characterized by regular or normal market conditions. Due to the lack of

30http://www.nytimes.com/2013/10/17/us/congress-budget-debate.html?_r=0
31See Sections 2.2 and 2.3 for further discussion of these issues.
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economic arguments, eventual patterns of dominance characterizing Ω0 are left agnostically

unspecified. Hence, model implied patterns of market dominance during Ω0 can be used to

evaluate if the model accords with economic intuition.
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Appendix B: BEKK estimates

C =




0.0825

(63.45)

− − −

0.0347

(32.09)

0.0538

(41.51)

− −

0.0423

(41.26)

−0.0021

(−3.23)

−0.0272

(−23.22)

−

−0.0102

(−9.24)

0.0381

(39.55)

0.0003

(0.28)

0.0675

(41.80)




,

A =




0.2299

(19.66)

0.0220

(1.8628)

0.0035

(0.2537)

−0.0030

(−0.4233)

−0.0023

(−0.22)

0.2700

(27.1906)

0.0141

(1.2982)

−0.0005

(−0.0837)

0.0142

(1.41)

0.0095

(0.9082)

0.2228

(21.3066)

0.0012

(0.2084)

−0.0070

(−0.51)

0.0060

(0.4748)

−0.0022

(−0.1448)

0.1513

(20.6453)




,

B =




0.9675

(295.88)

−0.0057

(−1.64)

0.0006

(0.19)

−0.0005

(−0.29)

−0.0015

(−0.50)

0.9572

(330.80)

−0.0008

(−0.27)

−0.0014

(−0.96)

−0.0043

(−1.51)

−0.0014

(−0.50)

0.9734

(359.93)

−0.0001

(−0.08)

0.0007

(0.20)

−0.0072

(−2.26)

0.0008

(0.24)

0.9843

(601.97)




.

44



Appendix C: Structural homogeneity

The structural MGARCH model relies on an iid assumption for underlying model inno-

vations ut. Moreover, we determine VIRFs from averaging the effects of sizeable shocks

and covariance states that characterize distinguished periods of market turmoil. To un-

derpin structural stability, and to motivate the empirical approach to shock selection, it is

worthwhile to diagnose that the respective shocks are drawn from a homogeneous distribu-

tion across distinct episodes of market turmoil and regular market conditions. Full sample

and subsample diagnostics on the homogeneity of innovation distributions during the era of

fragility are documented in Table 5.

The estimated BEKK model captures the covariance dynamics of market returns con-

veniently over distinguished periods of market turmoil. Episode specific structural shocks

have means and correlation matrices close to zero and the identity matrix, respectively. Sub-

sample specific standard deviations of model innovations are somewhat larger during crisis

episodes (Ω1, . . . ,Ω4) in comparison with tranquil periods (Ω0). Among the former, the ex-

treme turmoil during the second part of the financial crisis (Ω3) reveals some unmodelled

return variation with standard errors of innovations up to 1.2. More importantly, however,

the identified BEKK specification is rather convenient to model market comovements un-

der turmoil. Among 24 (six correlation statistics for each of four subsamples) measures of

innovation correlation only 2 are nonzero with 5% significance.

Addressing distributional homogeneity of identified innovations, Table 5 further docu-

ments Kolmogorov-Smirnov statistics (Massey, 1951), measuring the distance between mar-

ket specific marginal innovation distributions under turmoil (Ωi) and during tranquil periods

(Ω0). While some distributional heterogeneity is already reflected by heterogeneous stan-

dard deviations, the KS test signifies such heterogeneity for only one market (real estate)
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with 1% significance. Assessing the heterogeneity of market specific innovations between

normal times and turmoil, respective p−values for the remaining markets are 4% (equity),

14% (banking) and 58% (treasury).

Having diagnosed that the identified BEKK specification obtains contemporaneously un-

correlated and (almost) homogeneously distributed structural innovations, one might ask

if rival identification schemes, ({Q̃t, Q
▽

t , Q
△

t }T
t=1), perform similarly. Evaluating KS statis-

tics for innovations retrieved from ad-hoc decompositions shows that (i) applying unrotated

eigenvalue decompositions obtains evidence for innovation heterogeneity for three markets

with 5% significance; (ii) applying a lower triangular Cholesky factor obtains significant

distributional heterogeneity for the equity and the real estate sector; and (iii) applying an

upper triangular Cholesky factor shifts innovation heterogeneity to shocks originating in the

treasury market (with 5% significance).
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Table 5: Residual diagnostics

mean corr/std dev. mean corr/std dev.

All -0.010 0.999 Ω2 -0.023 1.083
0.014 0.015 1.013 -0.113 0.058 1.130
0.001 -0.011 -0.005 0.013 0.063 0.018 0.005 1.022
-0.010 0.003 -0.002 0.011 0.996 0.084 -0.024 -0.047 -0.058 1.079

Ω0 0.008 0.951 Ω3 -0.020 1.136
0.055 -0.027 0.956 -0.061 -0.004 1.202
0.013 -0.027 0.021 0.952 -0.088 -0.083 -0.042 1.189
-0.033 0.024 -0.001 0.008 0.962 -0.019 0.144∗ -0.017 0.032 1.104

Ω1 -0.034 1.023 Ω4 -0.020 1.024
0.023 0.099∗ 1.004 -0.061 0.009 1.056
-0.055 0.070 -0.065 1.086 -0.088 -0.066 0.033 1.019
0.001 -0.054 0.053 0.062 1.007 -0.019 -0.078 -0.037 -0.049 0.997

s 0 1 2 3 4 0 1 2 3 4

KS MDT Eigenvalue decomposition

Q̂t 0.058
(0.04)

0.149
(0.00)

0.070
(0.14)

0.041
(0.58)

Q̃t 0.088
(0.00)

0.104
(0.01)

0.083
(0.05)

0.034
(0.82)

Lower Choleski Upper Choleski
Q▽

t 0.098
(0.00)

0.133
(0.00)

0.047
(0.58)

0.034
(0.81)

Q△

t 0.056
(0.05)

0.067
(0.18)

0.063
(0.23)

0.075
(0.04)

Means, standard deviations and correlation coefficients for structural shocks for distinct episodes
are given in the upper panel. Asterisks ‘∗’ indicate significance of correlation coefficients at the
5% level, according to the rule-of-thumb threshold 2/

√
ωi for correlations in (sub)samples Ωs, s =

0, . . . , 4. In the lower panels, Kolmogorov-Smirnov test statistics on the hypothesis F (uit|uit ∈ Ω0)
= F (uit|uit ∈ Ωs) s = 1, . . . , 4 are provided (p-values).
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