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This special issue deals with problems related to unit roots and structural change, and the interplay
between the two. The research agenda dealing with these topics have proven to be of importance for
devising procedures that are reliable for inference and forecasting. Several important contributions
have been made. Still, there is scope for improvements and analyses of the properties of existing
procedures. This special issue provides contributions that follow up on what has been done and/or
offer new perspectives on such issues and related ones. Both theoretical and applied papers are
included. I briefly outline the papers, grouping them by themes.

Structural Change—Theory. Cheol-Keun Cho and Timothy J. Vogelsang consider testing for
structural change when serial correlation may be present in the errors of the regression, in which
case a common practice is to use a heteroscedasticity and autocorrelation robust Wald test. Following
important work by Vogelsang and co-authors (e.g., Kiefer and Vogelsang (2015)), a fixed-bandwidth
theory is developed to provide better approximations for the test statistics. It is shown to improve
upon the standard asymptotic distribution theory, whereby the bandwidth is negligible compared
to the sample size; e.g., Andrews (1993), Bai and Perron (1998, 2003). Jingjing Yang considers the
consistency of trend break point estimators when the number of breaks is underspecified. As shown
in Bai (1997) and Bai and Perron (1998), with stationary variables, if a one-break model is estimated
when multiple breaks exist, then the estimate of the break fraction converges to one of the true break
fractions (the one that minimizes the overall sum of squared residuals). Interestingly, she shows this
to not be the case when considering breaks in a linear trend function. This result suggests that the
application of the Kejriwal and Perron (2010) extension of the Perron and Yabu (2009) test should be
applied with caution. Aparna Sengupta considers the problem of testing for a structural break in the
spatial lag parameter in a panel model (spatial autoregressive). She proposes a likelihood ratio test
and derives its limit distribution when both the number of individual units N and the number of time
periods T is large or N is fixed and T is large. A break date estimator is also proposed.

Unit Root and Trend Break—Theory. Ricardo Quineche and Gabriel Rodríguez provide
interesting further finite sample simulation results about the tests proposed by Perron and Rodriguez
(2003), who extended the work of Perron (1989, 1997), Zivot and Andrews (1992), and Vogelsang and
Perron (1998), among others. They show that the MGLS versions suggested by Ng and Perron (2001)
suffer from severe size distortions when using the so-called “infimum method” to select the break date
(i.e., minimizing the t-statistic of the sum of the autoregressive coefficients) and common methods
to select the autoregressive lag order. This occurs whether a break is present or not. On the other
hand, when using the “supremum method” (i.e., minimizing the sum of squared residuals from the
trend-break regression), this problem only holds when no break is present. These results point to the
usefulness of the methods advocated by Kim and Perron (2009) and Carrión-i-Silvestre et al. (2009).

Fractional integration—Theory. Seong Yeon Chang and Pierre Perron consider testing
procedures for the null hypothesis of a unit root process against the alternative of a fractional process,
called a fractional unit root test. They extend the Lagrange Multiplier (LM) tests of Robinson
(1994) and Tanaka (1999) to allow for a slope change in trend with or without a concurrent level
shift under both the null and alternative hypotheses. Building on the work of Chang and Perron
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(2016) and Perron and Zhu (2005), they show that the limit distribution of the proposed LM tests is
standard normal when using the Kim and Perron (2009) method to estimate the break date. However,
unlike in that paper, there is no need to perform a pre-test for a change in slope. Man Wang and

Ngai Hang Chan consider testing for the equality of integration orders amongst a set of variables.
This is useful as a prior step to test for fractional cointegration. They extend the work of Hualde (2013)
and propose a one-step residual-based test that overcomes computational issues. The test statistic has
an asymptotic standard normal distribution under the null hypothesis.

Structural Change—Empirical Studies. María Dolores Gadea, Ana Gómez-Loscos and

Antonio Montañés investigate changes in the relationship between oil prices and the US economy
from a long-term perspective. First, they show that neither series have structural breaks in mean,
though they have different volatility periods. Using a VAR method, a rolling estimation of causality and
long-term impacts, and the Qu and Perron (2007) methodology, they find no significant effect between
changes in oil prices and GDP growth when considering the full period. However, a significant
relationship is present in some subperiods. Using a time-varying VAR model, they show the that
the impact of oil price shocks on GDP growth has declined over time and that the negative effect on
GDP growth is greater when large oil price increases occur. Jesús Clemente, María Dolores Gadea,

Antonio Montañés, and Marcelo Reyes reconsider the common unit root/co-integration approach to
test for the Fisher effect for the G7 countries. Using Pesaran’s (2007) panel unit root test, they argue
that nominal interest and inflation rates are better represented as stationary variables. Then, using the
Bai–Perron procedure (1998, 2003), they show the existence of structural changes in the Fisher equation.
Once the breaks are accounted for, they find very limited evidence for the Fisher effect.

I think these papers offer an interesting and useful array of contributions under the broad topic
of unit roots and structural breaks. Thanks are due to the Editor Marc Paolella, the assitant editors
Michele Cardani and Lu Liao, as well as the numerous referees who provided useful comments and
advice.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: This paper addresses tests for structural change in a weakly dependent time series
regression. The cases of full structural change and partial structural change are considered.
Heteroskedasticity-autocorrelation (HAC) robust Wald tests based on nonparametric covariance
matrix estimators are explored. Fixed-b theory is developed for the HAC estimators which allows
fixed-b approximations for the test statistics. For the case of the break date being known, the fixed-b
limits of the statistics depend on the break fraction and the bandwidth tuning parameter as well as on
the kernel. When the break date is unknown, supremum, mean and exponential Wald statistics are
commonly used for testing the presence of the structural break. Fixed-b limits of these statistics are
obtained and critical values are tabulated. A simulation study compares the finite sample properties
of existing tests and proposed tests.

Keywords: HAC estimator; kernel; bandwidth; partial structural change; break point

JEL Classification: C10; C22

1. Introduction

This paper focuses on fixed-b inference of heteroskedasticity and autocorrelation (HAC) robust
Wald statistics for testing for a structural break in a time series regression. We focus on kernel-based
nonparametric HAC estimators which are commonly used to estimate the asymptotic variance.
HAC estimators allow for arbitrary structure of the serial correlation and heteroskedasticity of weakly
dependent time series and are consistent estimators of the long run variance under the assumption
that the bandwidth (M) is growing at a certain rate slower than the sample size (T). Under consistency
assumptions, the Wald statistics converge to the usual chi-square distributions. However, because
the critical values from the chi-square distribution are based on a consistency approximation for the
HAC estimator, the chi-square limit does not reflect the often substantial finite sample randomness of
the HAC estimator. Furthermore, the chi-square approximation does not capture the impact of the
choice of the kernel or the bandwidth on the Wald statistics. The sensitivity of the statistics to the
finite sample bias and variability of the HAC estimator is well known in the literature; Kiefer and
Vogelsang (2005) [1] among others have illustrated by simulation that the traditional inference with a
HAC estimator can have poor finite sample properties.

Departing from the traditional approach, Kiefer and Vogelsang [1–3] obtain an alternative
asymptotic approximation by assuming that the ratio of the bandwidth to the sample size, b = M/T,
is held constant as the sample size increases. Under this alternative nesting of the bandwidth, they
obtain pivotal asymptotic distributions for the test statistics which depend on the choice of kernel and
bandwidth tuning parameter. Simulation results indicate that the resulting fixed-b approximation has

Econometrics 2017, 5, 2 4 www.mdpi.com/journal/econometrics
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less size distortions in finite samples than the traditional approach, especially when the bandwidth is
not small.

Theoretical explanations for the finite sample properties of the fixed-b approach include the studies
by Hashimzade and Vogelsang (2008) [4], Jansson (2004) [5], Sun, Phillips and Jin (2008, hereafter
SPJ) [6], Gonçalves and Vogelsang (2011) [7] and Sun (2013) [8]. Hashimzade and Vogelsang (2008)
[4] provides an explanation for the better performance of the fixed-b asymptotics by analyzing the
bias and variance of the HAC estimator. Gonçalves and Vogelsang (2011) [7] provides a theoretical
treatment of the asymptotic equivalence between the naive bootstrap distribution and the fixed-b limit.
Higher order theory is used by Jansson (2004) [5], SPJ (2008) [6] and Sun (2013) [8] to show that the
error in rejection probability using the fixed-b approximation is more accurate than the traditional
approximation. In a Gaussian location model, Jansson (2004) [5] proves that for the Bartlett kernel with
bandwidth equal to sample size (i.e., b = 1), the error in rejection probability of fixed-b inference is
O(T−1 log T) which is smaller than the usual rate of O(T−1/2). The results in SPJ (2008) [6] complement
Jansson’s result by extending the analysis for a larger class of kernels and focusing on smaller values
of bandwidth ratio b. In particular, they find that the error in rejection probability of the fixed-b
approximation is O(T−1) around b = 0. They also show that for positively autocorrelated series, which
is typical for economic time series, the fixed-b approximation has smaller error than the chi-square or
standard normal approximation, even when b is assumed to decrease to zero although the stochastic
orders are same.

In this paper, fixed-b asymptotics is applied to testing for structural change in a weakly dependent
time series regression. The structural change literature is now enormous and no attempt will be
made here to summarize the relevant literature. Some key references include Andrews (1993) [9],
Andrews and Ploberger (1994) [10], and Bai and Perron (1998) [11]. Andrews (1993) [9] treats the
issue of testing for a structural break in the generalized method of moments framework when the
one-time break date is unknown and Andrews and Ploberger (1994) [10] derive asymptotically optimal
tests. Bai and Perron (1998) [11] considers multiple structural change occurring at unknown dates and
covers the issues of estimation of break dates, testing for the presence of structural change and testing
for the number of breaks. For a comprehensive survey of the recent structural break literature see
Perron (2006) [12], Banerjee and Urga (2005) [13], and Aue and Horváth (2013) [14]. The fixed-b
analysis can be extended to the case of multiple breaks but the simulation of critical values will be
computationally intensive. Therefore, we leave the case of multiple breaks for future research and we
consider the case of a single break in this paper.

For testing the presence of break, the robust version of the Wald statistic is considered in this
paper and a HAC estimator is used to construct the test statistic. The ways of constructing HAC
estimators in the context of structural change tests are well described in Bai and Perron (2003) [15]
and Bai and Perron (1998) [11]. We focus mainly on the HAC estimator documented in Bai and
Perron (2003) (Section 4.1, [15]) in which the usual “Newey-West-Andrews” approach is applied
directly to the regression with regime dummies. Under the assumption of a fixed bandwidth ratio
(fixed-b assumption), the asymptotic limit of the test statistic is a nonstandard distribution but it is
pivotal. As in standard fixed-b theory, the impact of choice of bandwidth on the limiting distribution is
substantial. In particular, the bandwidth interplays with the hypothesized break fraction so that the
limit of the test statistic depends on both of them. For the unknown break date case, three existing
test statistics (Sup-, Mean-, Exp-Wald) are considered and their fixed-b critical values are tabulated.
The finite sample performance is examined by simulation experiments with comparisons made to
existing tests. For practitioners, we include results using a data-dependent bandwidth rule based
on Andrews (1991) [16]. This data-dependent bandwidth is calculated from the regression using the
break fraction that yields the minimum sum of squared residuals (Bai and Perron, 1998 [11]). One can
calculate a bandwidth ratio

(
b∗ = M∗

T

)
with this data-dependent bandwidth (M∗) and proceed to

apply the fixed-b critical values corresponding to this specific value of b∗.

5
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The remainder of this paper is organized as follows. In Section 2, the basic setup of the full/partial
structural-change model is presented and preliminary results are provided. Section 3 derives the
fixed-b limit of the Wald statistic and the fixed-b critical values, for the case of unknown break dates,
are tabulated in Section 4. Section 5 compares empirical null rejection probabilities and provides the
size-adjusted power for tests based on the b∗ data-dependent bandwidth ratio. Section 6 concludes.
Proofs and definitions are collected in Appendix A.

2. Setup and Preliminary Results

Consider a weakly dependent time series regression model with a structural break given by

yt = w′
tβ + ut,

w′
t =
(

x′1t, x′2t
)

, β′ =
(

β′
1, β′

2
)

,
x1t = xt · 1(t ≤ [λT]), x2t = xt · 1(t ≥ [λT] + 1),

(1)

where xt is p × 1 regressor vector, λ ∈ (0, 1) is a break point, and 1( · ) is the indicator function.
Define νt = xtut and vt = wtut. Recalling that [x] denotes the integer part of a real number, x,
notice that x2t = 0 for t = 1, 2, ..., [λT] and x1t = 0 for t = [λT] + 1, ..., T. For the time being, the
potential break point (fraction) λ is assumed to be known in order to develop the asymptotic theory
for a test statistic and characterize its asymptotic limit. We will relax this assumption to deal with the
empirically relevant case of an unknown break date. The regression model (1) implies that coefficients
of all explanatory variables are subject to potential structural change and this model is labeled the ‘full’
structural change model.

We are interested in testing the presence of a structural change in the regression parameters.
Consider the null hypothesis of the form

H0 : Rβ = 0, (2)

where
R

(l×2p)
= (R1, − R1) ,

and R1 is an l × p matrix with l ≤ p. Under the null hypothesis, we are testing that one or more linear
relationships on the regression parameter(s) do not experience structural change before and after the
break point. Tests of the null hypothesis of no structural change about a subset of the slope parameters
are special cases. For example, we can test the null hypothesis that the slope parameter on the first
regressor did not change by setting R1 = (1, 0, . . . , 0). We can test the null hypothesis that none of the
regression parameters have structural change by setting R1 = Ip. We focus on the OLS estimator of β

given by β̂ =
(

β̂′
1, β̂′

2

)′
=
(

∑T
t=1 wtw′

t

)−1 (
∑T

t=1 wtyt

)
.

In order to establish the asymptotic limits of the HAC estimators and the Wald statistics,
two assumptions are sufficient. These assumptions imply that there is no heterogeneity in the
regressors across the segments and the covariance structure of the errors is assumed to be the same
across segments as well.

Assumption 1. T−1 ∑
[rT]
t=1 xtx′t

p→ rQ, uniformly in r ∈ [0, 1], and Q−1 exists.

Assumption 2. T−1/2 ∑
[rT]
t=1 xtut = T−1/2 ∑

[rT]
t=1 νt ⇒ ΛWp(r), r ∈ [0, 1], where ΛΛ′ = Σ, Wp(r) is a p× 1

standard Wiener process, and ⇒ denotes weak convergence.

6
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For later use, we define a l × l nonsingular matrix A such that R1Q−1ΛΛ′Q−1R′
1 = AA′ and

R1Q−1ΛWp(r)
d
= AWl(r), where Wl(r) is l × 1 standard Wiener process. For a more detailed discussion

about the regularity conditions under which Assumptions 1 and 2 hold, refer to Kiefer and Vogelsang
(2002) [3] and see Davidson (1994) [17], Phillips and Durlauf (1986) [18], Phillips and Solo (1992) [19],
and Wooldridge and White (1988) [20] for more details.

The matrix Q is the second moment matrix of xt and is typically estimated using the quantity
Q̂ = 1

T ∑T
t=1 xtx′t. The matrix Σ ≡ ΛΛ′ is the asymptotic variance of T−1/2 ∑T

t=1 νt, which is,
for a covariance stationary series, given by

Σ = Γ0 +
∞

∑
j=1

(Γj + Γ′
j) with Γj = E(ν′tνt−j).

Consider the non-structural change regression equation where β1 = β2 and this coefficient parameter
is estimated by OLS (β̂). In this particular setup, the long run variance, Σ, is commonly estimated by
the kernel-based nonparametric HAC estimator given by

Σ̂ = T−1
T

∑
t=1

T

∑
s=1

K
( |t − s|

M

)
ν̂tν̂

′
s = Γ̂0 +

T−1

∑
j=1

K
(

j
M

)(
Γ̂j + Γ̂′

j

)
,

where Γ̂j = T−1 ∑T
t=j+1 ν̂tν̂

′
t−j, ν̂t = xtût = xt

(
yt − x′t β̂

)
, M is a bandwidth, and K(·) is a kernel

weighting function.
Under some regularity conditions (see Andrews (1991) [16], DeJong and Davidson (2000) [21],

Hansen (1992) [22], Jansson (2002) [23] or Newey and West (1987) [24]), Σ̂ is a consistent estimator of Σ,

i.e., Σ̂
p→ Σ. These regularity conditions include the necessary condition that M/T → 0 as M, T → ∞.

This asymptotics is called “traditional” asymptotics throughout this paper.
In contrast to the traditional approach, fixed-b asymptotics assumes M = bT where b is held

constant as T increases. Assumptions 1 and 2 are the only regularity conditions required to obtain a
fixed-b limit for Σ̂. Under the fixed-b approach, for b ∈ (0, 1], Kiefer and Vogelsang (2005) [1] show that

Σ̂ ⇒ ΛP(b, W̃p)Λ′, (3)

where W̃p(r) = Wp(r)− rWp(1) is a p-vector of standard Brownian bridges and the form of the random
matrix P(b, W̃p) depends on the kernel. Following Kiefer and Vogelsang (2005) [1], we consider three
classes of kernels which give three forms of P. Let Hp(r) denote a generic vector of stochastic processes.
Hp(r)′ denotes its transpose. P(b, Hp) is defined in Appendix A.

Getting back to our structural change regression model, fixed-b results depend on the limiting
behavior of the following partial sum process given by

Ŝt =
t

∑
j=1

wjûj =
t

∑
j=1

wj

(
yj − x′1j β̂1 − x′2j β̂2

)
=

t

∑
j=1

wj

(
uj − x′1j

(
β̂1 − β1

)
− x′2j

(
β̂2 − β2

))
.

(4)

Under Assumptions 1 and 2, the limiting behavior of β̂ and the partial sum process Ŝt are given
as follows.

7



Econometrics 2017, 5, 2

Proposition 1. Let λ ∈ (0, 1) be given. Suppose the data generation process is given by (1) and let [rT] denote
the integer part of rT where r ∈ [0, 1]. Then, under Assumptions 1 and 2 as T → ∞,

√
T(β̂ − β) =

⎛⎝√T
(

β̂1 − β1

)
√

T
(

β̂2 − β2

)⎞⎠ d→
(

(λQ)−1 ΛWp(λ)

((1 − λ)Q)−1 Λ
(
Wp(1)− Wp(λ)

)) ,

and

T−1/2Ŝ[rT] ⇒
(

Λ 0

0 Λ

)
Fp (r, λ) ≡

(
Λ 0

0 Λ

)(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
,

where
F(1)

p (r, λ) =
(

Wp(r)− r
λ

Wp(λ)
)
· 1(r ≤ λ),

and

F(2)
p (r, λ) =

(
Wp(r)− Wp(λ)− r − λ

1 − λ

(
Wp(1)− Wp(λ)

)) · 1(r > λ).

See Appendix A for the proof.
It is easily seen that the asymptotic distributions of β̂1 and β̂2 are Gaussian and are independent

of each other. Hence the asymptotic covariance of β̂1 and β̂2 is zero. The asymptotic variance of√
T(β̂ − β) is given by Q−1

λ ΩQ−1
λ , where

Qλ ≡
(

λQ 0

0 (1 − λ)Q

)
and Ω ≡

(
λΣ 0

0 (1 − λ)Σ

)
. (5)

In order to test the null hypothesis (2), HAC robust Wald statistics are considered. These statistics are
robust to heteroskedasticity and autocorrelation in the vector process, νt = xtut. The generic form of
the robust Wald statistic is given by

Wald = T
(

Rβ̂
)′ (

RQ̂−1
λ Ω̂Q̂−1

λ R′
)−1 (

Rβ̂
)

, (6)

where

Q̂λ =

(
T−1 ∑

[λT]
t=1 xtx′t 0

0 T−1 ∑T
t=[λT]+1 xtx′t

)
,

and Ω̂ is a HAC robust estimator of Ω.
We consider a particular way of constructing the HAC estimator. This estimator is the same one

as in Bai and Perron (2003) [15]. Denoted by Ω̂(F), it is constructed using the residuals directly from
the dummy regression (1):

Ω̂(F) = T−1
T

∑
t=1

T

∑
s=1

K
( |t − s|

M

)
v̂tv̂′s, (7)

where v̂t = wtût =
(

x′1tût, x′2tût

)′
2p×1

. We denote the components of v̂t as v̂(1)t = x1tût = xtût1

(t ≤ [λT]) and v̂(2)t = x2tût = xtût1(t ≥ [λT] + 1). Notice that Ω̂(F) is the variance estimator one
would be using if the usual “Newey-West-Andrews” approach is applied directly to the dummy
regression (1).

8
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Using v̂′t = (v̂(1)′t , v̂(2)′t ) we can write Ω̂(F) as

Ω̂(F) =

(
Ω̂(F)

11 Ω̂(F)
12

Ω̂(F)
21 Ω̂(F)

22

)

=

⎛⎝T−1 ∑T
t=1 ∑T

s=1 K
( |t−s|

M

)
v̂(1)t v̂(1)′s T−1 ∑T

t=1 ∑T
s=1 K

( |t−s|
M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=1 ∑T

s=1 K
( |t−s|

M

)
v̂(2)t v̂(1)′s T−1 ∑T

t=1 ∑T
s=1 K

( |t−s|
M

)
v̂(2)t v̂(2)′s

⎞⎠

=

⎛⎜⎜⎝
T−1 ∑

[λT]
t=1 ∑

[λT]
s=1 K

( |t−s|
M

)
v̂(1)t v̂(1)′s T−1 ∑

[λT]
t=1 ∑T

s=[λT]+1 K
( |t−s|

M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=[λT]+1 ∑

[λT]
s=1 K

( |t−s|
M

)
v̂(2)t v̂(1)′s T−1 ∑T

t=[λT]+1 ∑T
s=[λT]+1 K

( |t−s|
M

)
v̂(2)t v̂(2)′s

⎞⎟⎟⎠ (8)

=

⎛⎜⎝ T−1[λT]Σ̂(1) T−1 ∑
[λT]
t=1 ∑T

s=[λT]+1 K
( |t−s|

M

)
v̂(1)t v̂(2)′s

T−1 ∑T
t=[λT]+1 ∑

[λT]
s=1 K

( |t−s|
M

)
v̂(2)t v̂(1)′s T−1(T − [λT])Σ̂(2)

⎞⎟⎠
Three important observations are in order. First, the main component of the two diagonal blocks

are within regime HAC estimators of Σ , the long run variance of {νt} . However, one should see that
the “effective” bandwidth ratio being applied to Σ̂(1) is not b

(
= M

T

)
but M

λT = bT
λT = b

λ , which is

bigger than b since 0 < λ < 1. Similarly, the effective bandwidth ratio for Σ̂(2) is M
(1−λ)T = b

1−λ .
As documented in fixed-b literature (e.g., Kiefer and Vogelsang (2005) [1]), the bias in HAC estimators
not accounted by traditional inference increases as the bandwidth ratio gets bigger. So, when the HAC
estimator is constructed as in (8), traditional inference might be often exposed to size distortion—more
than expected—due to this mechanism of determining effective bandwidths. The second issue is
that the above estimator has non-zero off-diagonal blocks. So, the methodology based on partial
samples such as in Andrews (1993) [9] does not exactly cover this case because the off-diagonal blocks
in Andrews (1993) [9] are assumed to be zero, matching the zero asymptotic covariance of the OLS
estimators of the slope coefficients between pre- and post-regimes. It is presumable that the influence
of having non-zero off diagonal terms might be small since the off-diagonal blocks converge to zero
under the traditional assumption M

T → 0 as sample size grows (see a proof in Cho (2014) [25] for the
Bartlett kernel) but it might still negatively affect the performance of tests in finite samples and we
need to develop an alternative asymptotic theory to explicitly reflect the presence of these components.
Third, there is another issue when a researcher uses a data-dependent bandwidth as in Andrews (1991)
[16]. For a given hypothesized break fraction, a data-dependent bandwidth can be calculated based on

the pooled series of
{

v̂(1)t

}[λT]

t=1
and
{

v̂(2)t

}T

t=[λT]+1
. This method would result in an optimal bandwidth

which minimizes the MSE in estimating Σ but the presence of non-zero off-diagonal terms are not
taken into account in this procedure. Moreover, when the break date is treated as unknown, a sequence
of data-dependent bandwidth across potential break dates will be generated. In this case, the fixed-b
limits are not useful approximations because the sequence of the data-dependent bandwidth is random
by nature so the limiting distributions of corresponding test statistics cannot be characterized by a
single particular value of b.

Denote by Wald(F)(Tb), the Wald statistic given by (6) using the break date Tb with Ω̂(F) used for Ω̂.
Tests for a potential structural break with an unknown break date are well studied in Andrews (1993) [9],
Andrews and Ploberger (1994) [10], and Bai and Perron (1998) [11]. Andrews (1993) [9] considers
several tests based on the supremum across breakpoints of Wald and Largrange multiplier statistics
and shows that they are asymptotically equivalent. Andrews and Ploberger (1994) [10] derives tests
that maximize average power across potential breakpoints.

As argued by Andrews (1993) [9] and Andrews and Ploberger (1994) [10], break dates close to
the end points of the sample cannot be used and so some trimming is needed. To that end, define
Ξ∗ = [εT, T − εT] with 0 < ε < 1 to be the set of admissible break dates. The tuning parameter, ε,

9
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denotes the amount of trimming of potential break dates. We consider the three statistics following
Andrews (1993) [9]1 and Andrews and Ploberger (1994) [10]2 defined as

SupW(F) ≡ sup
Tb∈Ξ∗

Wald(F)(Tb), (9)

MeanW(F) ≡ 1
T ∑

Tb∈Ξ∗
Wald(F)(Tb), (10)

ExpW(F) ≡ log

(
1
T ∑

Tb∈Ξ∗
exp
[

1
2

Wald(F)(Tb)

])
. (11)

The next section provides asymptotic results for the robust Wald statistics under the
fixed-b asymptotics.

3. Asymptotic Results

3.1. Asymptotic Results under the Fixed-b Approach

We now provide fixed-b limits for the HAC estimators and the test statistics in the full structural
change model (1). The fixed-b limits presented in the next Lemma and Corollary approximate the
diagonal blocks of Ω̂(F) by random matrices. Also, it is shown that the fixed-b approach gives a
non-zero limit for the off-diagonal blocks, which further distinguishes fixed-b asymptotics from
traditional asymptotics.

Lemma 1. Let b ∈ (0, 1] be given and suppose M = bT. Then under Assumptions 1 and 2, as T → ∞,

Ω̂(F) ⇒
(

Λ 0

0 Λ

)
× P
(
b, Fp (r, λ)

)×(Λ′ 0

0 Λ′

)
, (12)

where

Fp (r, λ) =

(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
, (13)

F(1)
p (r, λ) =

(
Wp(r)− r

λ
Wp(λ)

)
1 (0 ≤ r ≤ λ) , (14)

F(2)
p (r, λ) =

(
Wp(r)− Wp(λ)− r − λ

1 − λ

(
Wp(1)− Wp(λ)

))
1 (λ < r ≤ 1) , (15)

and P
(
b, Fp (r, λ)

)
is defined by (A1)–(A3) with Hp(r) = Fp (r, λ).

See Appendix A for the proof.
Next, Corollary presents alternative representations for P

(
b, Fp (r, λ)

)
for three classes of kernels.

The definitions of these classes of kernels (Classes 1, 2 and 3) are given in Appendix A. Three popular
kernels—the Quadratic Spectral, Bartlett and Parzen kernels—belong to Classes 1, 2 and 3, respectively.
See Cho (2014) [25] for the proof of this Corollary.

1 We used the critical values provided in Andrews (2003) [26] for traditional inference.
2 The definitions for the mean and exponential statistics are slightly different in the divisor of the summation. For traditional

inference, we adjusted the critical values in Andrews and Ploberger (1994) [10] to our definitions of the statistics.

10
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Corollary 1.

P
(
b, Fp (r, λ)

)
=

⎛⎝ P
(

b, F(1)
p (r, λ)

)
C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)

C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)′

P
(

b, F(2)
p (r, λ)

)
⎞⎠ , (16)

where
C
(

b, F(1)
p (r, λ) , F(2)

p (r, λ)
)

=

⎧⎪⎪⎨⎪⎪⎩
− ∫ 1

0

∫ 1
0

1
b2 K′′

( |r−s|
b

)
F(1)

p (r, λ) F(2)
p (s, λ)′ drds,

1
b

∫ 1−b
0 F(1)

p (r, λ) F(2)
p (r + b, λ)′ dr,

− ∫ ∫|r−s|<b
1
b2 K′′

( |r−s|
b

)
F(1)

p (r, λ) F(2)
p (s, λ)′ drds + K′_(1)

b

∫ 1−b
0 F(1)

p (r, λ) F(2)
p (r + b, λ)′ dr,

for Classes 1,2 and 3 kernels respectively.

The expression for P
(
b, Fp (r, λ)

)
in this Corollary makes it easier to compare the fixed-b limit of

Ω̂(F) with the standard fixed-b limit (see (3)) appearing in a non-structural change setting. Since each
diagonal block of Ω̂(F) is basically a HAC estimator (up to a scale factor; see (8)) based on one of
the pre- or post- break data, its limit should take the same form as (3), which is verified in this
Corollary. So, each diagonal component of P

(
b, Fp (r, λ)

)
serves to reflect the randomness and

bandwidth/kernel-dependence of the associated HAC estimator. Second, unlike the traditional
approach, the fixed-b limit of the off-diagonal component is non-zero. This implies that the fixed-b
approach is able to take account of the covariance between β̂1 and β̂2 which is generally non-zero in
finite samples. The limits of the Wald statistics can be derived by using Lemma 1 and the result is
presented in the next Theorem.

Theorem 1. Let b ∈ (0, 1] be given. Suppose M = bT. Then under Assumptions 1 and 2, as T → ∞,

Wald(F) ⇒
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)′

×
(

P

(
b,

1
λ

F(1)
l (r, λ)− 1

1 − λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)
(17)

See Appendix A for the proof.
The next Corollary provides an alternative representation for the limit given in (17). The proof for

this Corollary is given in Cho (2014) [25].

Corollary 2. For a given value of λ ∈ (0, 1), the fixed-b limit of Wald(F) has the same distribution as

1
λ(1 − λ)

Wl(1)′
(

1
λ

P

(
b
λ

, W̃l(r)
)
+

1
1 − λ

P

(
b

1 − λ
, W̃∗

l (r)
)
+ CP (λ, b) + CP (λ, b)′

)−1
Wl(1), (18)

where

CP (λ, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
λ
√

1−λ
∫ 1

0
∫ 1

0 K′′
( |λt−(1−λ)s−λ|

b

)
W̃l(t)W̃∗

l (s)
′dtds

b2 for Class-1 kernels,∫ 1−b
0 W̃l(

r
λ )W̃

∗
l (

r+b−λ
1−λ )

′
1(λ−b<r≤λ)dr

b
√

λ
√

1−λ
for Class-2 kernels,

√
λ
√

1−λ
∫ 1

0
∫ 1

0 K′′
( |λt−(1−λ)s−λ|

b

)
W̃l(t)W̃∗

l (s)
′1(|λt−(1−λ)s−λ|<b)dtds

b2

−
∫ 1−b

0 K′
_(1)W̃l(

r
λ )W̃

∗
l (

r+b−λ
1−λ )

′
1(λ−b<r≤λ)dr

b
√

λ
√

1−λ
for Class-3 kernels,

and W̃l(r) and W̃∗
l (r) are l × 1 Brownian Bridge processes which are independent of each other and of Wl(1).
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The limit in (18) shows how the components of Ω̂(F) affect the distribution of Wald(F).
As mentioned earlier, the random matrix P

(
b
λ , W̃l(r)

)
reflects the random nature of Ω̂(F)

11 which

is part of the estimator of the asymptotic variance of β̂1. Notice that the effective bandwidth for Ω̂(F)
11

turns out to be b
λ not b. Thus, we implicitly use the bandwidth ratio b

λ for Ω̂(F)
11 when we use a full

sample bandwidth ratio b for constructing Ω̂(F). The second component, P
(

b
1−λ , W̃∗

l (r)
)

, is related to

Ω̂(F)
22 (and β̂2) in exactly the same fashion. Finally, the third component, CP (λ, b), captures the impact

of finite sample covariance between β̂1 and β̂2 on structural change inference.
Now consider the unknown break date case and let Wald(F)

∞ (λ) denote the limit of Wald(F)(Tb),
where the form of Wald(F)

∞ (λ) depends on whether traditional or fixed-b asymptotic theory is being
used. In the case of fixed-b theory, Wald(F)

∞ (λ) is given in (17). Under the traditional assumption that
the bandwidth ratio goes to zero as T grows,

Wald(F) ⇒ λ(1 − λ)

(
1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)′

×
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)
The asymptotic limits of Sup-, Mean-, and Exp-Wald statistics immediately follow from the

continuous mapping theorem given by

SupW(F) d→ sup
λ∈(ε,1−ε)

Wald(F)
∞ (λ),

MeanW(F) d→
∫ 1−ε

ε
Wald(F)

∞ (λ)dλ,

ExpW(F) d→ log
(∫ 1−ε

ε
exp
[

1
2

Wald(F)
∞ (λ)

]
dλ

)
.

3.2. Extension to the Partial Structural Change Model

This section derives the fixed-b limit of Wald(F) in the partial structural change model. The main
result of this section is that the limit is the same as the limit for the full structural change model.
The regression model with partial structural change is given by

yt = z′tα + x′1tβ1 + x′2tβ2 + ut (19)

= z′tα + X′
tβ + ut,

where xt is p × 1 and zt is q × 1 vector and

x1t = xt1(t ≤ [λT]), x2t = xt1(t ≥ [λT] + 1),

X′
t = (x′1t x′2t), and β′ = (β′

1 β′
2).

The coefficients on the xt regressors are unrestricted in terms of a structural change whereas the
coefficients on the zt regressors are assumed to not have structural change. Denote

y = (y1,y2, . . . , yT)
′ , X = (X1, X2, . . . XT)

′,
Z = (z1, z2, . . . , zT)

′, u = (u1, u2, . . . , uT)
′.

The parameters (α, β) are estimated by OLS and the OLS residual vector can be written as

û = ỹ − X̃β̂ = u − X̃
(

β̂ − β
)
− PZu,

12
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where
ỹ = (I − PZ) y, X̃ = (I − PZ) X, and PZ = Z(Z′Z)−1Z′.

The residual for an individual observation is given by

ût = ut − X̃′
t

(
β̂ − β

)
− z′t
(
Z′Z
)−1 Z′u. (20)

Also, note that

X̃t = Xt − X′Z(Z′Z)−1zt =

⎛⎜⎜⎝
X̃(1)

t
p×1

X̃(2)
t

p×1

⎞⎟⎟⎠ .

The following assumptions replace Assumptions 1 and 2:

Assumption 3. T−1/2 ∑
[rT]
t=1

(
xtut

ztut

)
⇒ ΛWp+q(r) ≡

(
Λ1

Λ2

)
Wp+q(r), where Λ1 is a p × (p + q) matrix,

Λ2 is a q × (p + q) matrix, and Wp+q(r) is a (p + q)× 1 vector of independent Wiener process.

Assumption 4. p lim 1
T ∑

[rT]
t=1 ztz′t = rQZZ, p lim 1

T ∑
[rT]
t=1 xtx′t = rQxx, and p lim 1

T ∑
[rT]
t=1 xtz′t = rQxZ

uniformly in r ∈ [0, 1], and Q−1
ZZ and Q−1

xx exist.

We continue to focus on tests of the null hypothesis of no structural change in the xt slope
parameters of the form

H0 : Rβ = r

with

R
l×2p

=

(
R1
l×p

, −R1
l×p

)
and r = 0. (21)

Recall that the OLS estimator, β̂ =
(

β̂′
1, β̂′

2

)′
can be rewritten as

β̂ =

(
T

∑
t=1

X̃tX̃′
t

)−1( T

∑
t=1

X̃tỹt

)
. (22)

Proposition 2. Under Assumptions 3 and 4, as T → ∞

T1/2
(

β̂ − β
)

d→ Q−1
X̃X̃

(
Λ1Wp+q(λ)− λQxZQ−1

ZZΛ2Wp+q(1)
Λ1
(
Wp+q(1)− Wp+q(λ)

)− (1 − λ)QxZQ−1
ZZΛ2Wp+q(1)

)
,

and √
T
(

Rβ̂ − r
)
⇒ R1Q−1

xx Λ1

(
1
λ

Wp+q(λ)− 1
1 − λ

(
Wp+q(1)− Wp+q(λ)

))
, (23)

where QX̃X̃ = p lim
(

T−1 ∑T
t=1 X̃tX̃′

t

)
.

See Appendix A for the proof.
As seen from the above proposition, β̂1 and β̂2 are not asymptotically independent in the partial

structural change regression model. This is true because we are projecting out the variation of
explanatory variables zt so that β̂1 and β̂2 depend on the entire series of xt and zt. The dichotomy
that β̂1 is dependent only on the pre-break data and that β̂2 depends only on the post-break data
no longer holds in the partial structural change model. The dependence manifests in the common
term, QxZQ−1

ZZΛ2Wp+q(1), in Proposition 2. However, this term cancels out in (23) when the restriction

13
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matrix takes the form of (21). As a result, and also as suggested by Equation (23), in principle we need
to estimate only Λ1Λ′

1 for testing for partial structural change. Because Ω̂(F), extended for the case of
partial structural change, does not impose any restrictions on the asymptotic correlation between β̂1

and β̂2, Wald(F) continues to allow asymptotically pivotal fixed-b tests for partial structural change.
While not obvious at first glance, Wald(F) has the same fixed-b limit in the partial structural change
case as it does in the full structural change case.

The Wald statistic for testing for partial structural change is given by

Wald = T
(

Rβ̂
)′ (

RQ̂−1
X̃X̃

Ω̂Q̂−1
X̃X̃

R′
)−1 (

Rβ̂
)

, (24)

where Q̂X̃X̃ = T−1 ∑T
t=1 X̃tX̃′

t. For constructing Wald(F), we use the HAC estimator Ω̂(F) which is

computed using
{

X̃tût

}T

t=1
:

Ω̂(F) = T−1
T

∑
t=1

T

∑
s=1

K
( |t − s|

M

)
ξ̂t ξ̂

′
s, (25)

where ξ̂t = X̃tût. By the Frisch-Waugh-Lovell Theorem, this is the straightforward extension of Wald(F)

to the case of partial structural change.
The next Lemma provides the limit of the scaled partial sum process of ξ̂t premultiplied by

an appropriate term.

Lemma 2. Let Ŝξ
t = ∑t

j=1 ξ̂ j. Under Assumptions 3 and 4, as T → ∞,

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1 − λ
F(2)

p+q (r, λ)

)
,

where
F(1)

p+q (r, λ) =
(

Wp+q(r)− r
λ

Wp+q(λ)
)

1 (0 ≤ r ≤ λ) ,

F(2)
p+q (r, λ) =

(
Wp+q(r)− Wp+q(λ)− r − λ

1 − λ

(
Wp+q(1)− Wp+q(λ)

))
1 (λ < r ≤ 1) .

See Appendix A for the proof.
As Lemma 2 shows, the partial sums of the inputs to Ω̂(F) are asymptotically proportional to

the same nuisance parameters as
√

T
(

Rβ̂ − r
)

. This is the key condition for a pivotal fixed-b limit.

The next Theorem provides the fixed-b limit of Wald(F).

Theorem 2. Let b ∈ (0, 1] be given. Suppose M = bT. Then, under Assumptions 3 and 4, Wald(F) weakly
converges to the same limit in (17), i.e., as T → ∞,

Wald(F) ⇒
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)′

×
(

P

(
b,

1
λ

F(1)
l (r, λ)− 1

1 − λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)
.

See Appendix A for the proof.
According to Theorem 2, the limit of Wald(F) in the partial structural change model is the same as

in the full structural change model.
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4. Critical Values

While the fixed-b limiting distributions are nonstandard, asymptotic critical values are easily
obtained via simulations. We approximate the Wiener processes in the limiting distributions using
scaled partial sums of 1000 i.i.d. N(0, 1) random variables. Critical values are tabulated based on
50,000 replications3.

In Table 1, fixed-b critical values for SupW(F), MeanW(F), and ExpW(F) are provided for l = 2,
ε = 0.05, 0.1, 0.2 and for b ∈ {0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, ..., 0.9, 1}. Critical values over the entire
grid of 0.02-increment of b are available upon request.

Table 1. (a) Fixed-b 95% Critical Values of Sup-/Mean-/Exp-W(F), Bartlett kernel, l = 2; (b) Fixed-b
95% Critical Values of Sup-/Mean-/Exp-W(F), QS kernel, l =2.

(a)

b
ε = 0.05 ε = 0.1 ε = 0.2

SupW MeanW ExpW SupW MeanW ExpW SupW MeanW ExpW

0.02 30.293 4.861 9.588 18.230 4.235 5.051 13.542 3.263 3.539
0.04 48.447 5.9489 18.194 26.034 4.974 8.173 16.313 3.688 4.654
0.06 61.976 7.0183 24.816 33.172 5.729 11.483 19.496 4.162 5.967
0.08 73.862 8.001 r30.656 39.957 r6.496 14.695 22.812 4.617 7.364
0.1 84.848 8.973 36.109 46.263 7.278 17.653 26.323 5.146 8.998
0.2 138.92 14.018 63.068 76.971 11.323 32.706 46.122 8.052 18.156
0.3 193.94 19.113 90.408 109.11 15.596 48.657 67.262 11.216 28.446
0.4 254.14 24.443 120.71 142.31 20.009 65.120 89.241 14.464 39.161
0.5 313.06 29.999 149.85 176.51 24.565 82.037 111.18 17.912 49.818
0.6 374.36 35.304 180.46 212.05 29.202 99.596 134.00 21.386 61.205
0.7 433.71 40.902 210.22 245.66 33.625 116.32 153.93 24.666 70.991
0.8 491.83 46.205 239.08 279.65 38.016 133.32 173.96 27.702 81.134
0.9 549.63 51.450 268.05 311.37 42.238 149.22 192.52 30.670 90.145
1 608.99 57.142 297.78 344.26 46.623 165.51 212.76 33.936 100.36

(b)

b
ε = 0.05 ε = 0.1 ε = 0.2

SupW MeanW ExpW SupW MeanW ExpW SupW MeanW ExpW

0.02 64.848 5.678 26.200 24.831 4.641 7.548 15.051 3.458 4.111
0.04 122.00 8.102 54.483 46.350 6.059 17.433 20.670 4.205 6.401
0.06 161.74 10.617 74.329 68.158 7.630 28.148 28.305 5.060 9.666
0.08 207.65 13.202 97.163 91.258 9.461 39.595 38.905 6.143 14.409
0.1 257.31 16.139 122.02 118.67 11.671 53.066 52.759 7.491 20.987
0.2 832.93 40.501 409.56 452.33 30.155 219.29 240.65 19.924 113.55
0.3 3339.8 99.975 1663.0 2055.3 77.012 1020.8 1144.7 51.677 565.45
0.4 13,932 239.82 6959.4 8975.9 185.18 4481.1 4771.4 124.22 2378.8
0.5 47,253 537.89 23,620 31,752 411.53 15,869 16,684 276.98 8334.9
0.6 136211 1115.4 68,099 91,828 850.69 45,907 49,492 580.43 24,740
0.7 328,737 2170.5 164,361 224,463 1674.7 112,225 128,234 1140.0 64,110
0.8 719,812 3982.4 359,899 488,008 3100.4 243,997 283,267 2099.3 141,627
0.9 1,444,833 7015.5 722,409 970,172 5395.5 485,079 565,285 3626.6 282,635
1 2,647,520 11566 1,323,754 1,829,406 9072.3 914,696 1,062,685 5951.4 531,336

3 For the case of a known break date, the 95% critical values for l = 2 are available for selected values of b and λ in Cho and
Vogelsang (2014) [27]. The critical values display two main patterns. First, for each given λ the critical values increase
as the bandwidth gets bigger. This can be expected given the well known downward bias induced into HAC estimators
from estimation error. The fixed-b approximation captures this downward bias and reflects it through larger critical values.
Second, for a given value of the bandwidth, the critical values display a V-shaped pattern as a function of λ. As the break
point moves closer to zero or one, the critical values increase and the minimum critical values occur at λ = 0.5.
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5. Finite Sample Properties

In this section, we report the results of a finite sample simulation study that illustrates the
performance of fixed-b critical values relative to traditional critical values. The data generating process
(DGP) is given by (1) with x′t = [1, qt] where qt is a scalar time series, β′

1 = [βc
1, βs

1], and β′
2 = [βc

2, βs
2].

We use the break point λ = 0.4. The regressor qt and the regression error ut are generated as
qt = θqt−1 + εt and ut = ρut−1 + ηt + ϕηt−1, where εt and ηt are independent of each other with
εt, ηt ∼ i.i.d. N(0, 1). We use the parameter values: θ ∈ {0.5, 0.8, 0.9}, and (ρ, ϕ) ∈ {(0, 0), (0.5, 0.5),
(0.9, 0.9)} (see Table 2):

Table 2. Parameter values for simulations

DGP θ ρ ϕ qt ut ν1t = qtut

A 0.5 0 0 AR(1) IID White Noise
B 0.8 0.5 0.5 AR(1) ARMA(1,1) Serially Correlated
C 0.9 0.9 0.9 AR(1) ARMA(1,1) Serially Correlated

The value of θ measures the persistence of the time varying regressor qt. The parameters ρ

and ϕ jointly determine the serial correlation structure of the error term ut. Bigger values of these
three parameters lead to higher persistence of the series ν1t ≡ qtut except for specification A where
bigger values of θ would not increase persistence in ν1t. We set βc

1 = 0, βs
1 = 0 and βc

2 = δ, βs
2 = δ.

Under the null hypothesis of no structural change, δ = 0, whereas for δ = 0 there is structural change
in both the intercept and slope parameters. We report results for sample sizes T = 100, 200, 500,
and 1000 and the number of replications is 2500. The nominal level of all tests is 5%. We compute the
Sup/Mean/Exp-W(F) statistics for testing the joint null hypothesis of no structural change in both
the intercept and slope parameters. The frequency of rejections for the case of δ = 0 measures the
empirical type-I error.4

We report empirical rejection frequencies for traditional inference and for fixed-b inference.
In traditional inference, we select the bandwidth following Andrews (1991) [16] for each hypothesized
break date using the AR(1) plug-in formula. For fixed-b inference, we report results for different
values of b to show how the null rejection probability varies with the choice of b. We also give results
for another test in which a single data-dependent bandwidth ratio, denoted by b∗, is used across all
hypothetical break dates and a fixed-b critical value is applied. The data-dependent bandwidth ratio,
b∗, is computed as follows. We find the break date which minimizes the sum of squared residuals;
we use that break date to select Andrews (1991) [16] data-dependent bandwidth (M∗) with the AR(1)
plug-in formula and calculate the implied bandwidth ratio (b∗ = M∗/T); we implement the test using
the fixed-b critical values for b∗.

The rationale behind b∗ is as follows. If a different bandwidth is used for each potential break point
within the trimming range, then the fixed-b limits of the sup/mean/exp statistics will be functions of
those bandwidth ratios and tabulation of fixed-b critical values will be computationally prohibitive. To provide
practitioners with a data-dependent bandwidth approach that can be implemented with fixed-b critical
values, we need a single data-dependent bandwidth to be used for all potential break points in which
case the tabulated critical values can be used. Given the nice properties of the least squares estimator
of the break point under the alternative of structural change (see Bai and Perron (1998) [11]), it is
natural to use the least squares estimator of the break point to generate residuals needed to implement
the Andrews (1991) [16] plug-in formula. Under the null of no structural change, any break point,
including the least squares break point, will generate useful residuals for the Andrews (1991) [16]
plug-in formula. Crainiceanu and Vogelsang (2007) [28] also considered using the least squares
estimator of the break point to deal with the nonmonotonic power of the CUSUM test.

4 Cho and Vogelsang (2014) [27] also contains results for the known break date case along with a local power analysis.
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Table 3 provides empirical null rejection frequencies for the traditional tests. For each hypothetical
break date, the HAC estimator is constructed using the data-dependent bandwidth. For DGP A with
zero persistence, all tests using ε = 0.05 are subject to severe size distortions when the sample size
is 100. Having more data or using more trimming helps reduce the size distortions. The null rejections
decrease towards the 5% nominal level for all statistics when T is 500 and ε = 0.2. Under the DGP B,
as the sample size increases from 100 to 500, the null rejection probabilities drop to 0.194 from 0.594
for the supremum test with ε = 0.2 and the QS kernel being used. The T = 500 rejection rate is still
far from the nominal level. Size distortions get worse under more persistent data (DGP C). The mean
test, which has the least size distortion of the three statistics, only attains a null rejection of 0.368 with
the larger trimming value and T = 500. While traditional inference provides tests with reasonable size
under DGPs with zero or mild persistence, as the DGP becomes more persistent, over-rejections can
be substantial.

Table 3. Empirical Null Rejection Probabilities, traditional Sup/Mean/Exp-W(F) tests with 5%
Nominal Size, H0: No Structural Change (δ = 0).

DGP T

SupW(F) MeanW(F) ExpW(F)

ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.699 0.742 0.164 0.171 0.278 0.306 0.115 0.121 0.676 0.728 0.176 0.186
200 0.368 0.408 0.090 0.095 0.111 0.124 0.069 0.072 0.322 0.356 0.094 0.102
500 0.165 0.177 0.066 0.068 0.070 0.072 0.060 0.060 0.132 0.146 0.070 0.070

B
100 0.967 0.980 0.588 0.594 0.855 0.898 0.440 0.428 0.972 0.981 0.604 0.609
200 0.918 0.940 0.392 0.371 0.622 0.653 0.261 0.238 0.906 0.930 0.400 0.371
500 0.745 0.750 0.218 0.194 0.315 0.297 0.152 0.134 0.688 0.699 0.217 0.196

C
100 0.992 0.993 0.910 0.918 0.982 0.984 0.853 0.866 0.995 0.995 0.924 0.930
200 0.980 0.984 0.800 0.804 0.946 0.952 0.679 0.672 0.987 0.988 0.819 0.814
500 0.949 0.955 0.540 0.509 0.784 0.780 0.405 0.368 0.949 0.952 0.548 0.514

Tables 4–6 present simulation results for fixed-b inference. A single bandwidth ratio, b, is applied
across all hypothetical break dates in constructing HAC estimators. We report results for b = 0.02, 0.1,
0.5, and 1. These tables also contain the null rejection probability when the traditional critical values in
Andrews (1993) [9] or Andrews and Ploberger (1994) [10] are used. The traditional critical values are
not designed to work well with relatively large bandwidths and this can be clearly seen in the tables.
In general, as the bandwidth ratio gets bigger, the tendency to over-reject becomes more and more
pronounced because using more lags generates a systematic downward bias in the HAC estimator and
pushes up the value of test statistic. The traditional critical values do not take this impact of lag-choice
into account. Because the effective bandwidths play important roles for the behavior of the HAC
estimator (8), the impact of using large values of b is greater than for HAC estimators in non-structural
change settings.

For fixed-b inference, several patterns stand out in Table 4 for the supremum test. Rejections using
fixed-b critical values are similar to the rejections in traditional inference when a small bandwidth
ratio is used. However, as the bandwidth increases, rejections using fixed-b critical values
systematically decrease towards the nominal level of 0.05. Under DGP B, the null rejections decrease
as 0.131→0.096→0.083→0.086 over the range of b with T = 500 and the Bartlett kernel and ε = 0.2
being used. Even under DGP C, the null rejections approach the nominal level as b increases for all
sample sizes when the QS kernel and the trimming value of 0.2 are used.

Table 7 gives null rejection probabilities when using the data-dependent bandwidth ratio b∗.
Columns on the left give rejections using fixed-b critical values whereas columns on the right
give rejections using traditional critical values. Patterns in Table 7 are similar to patterns in
Tables 4–6. Over-rejections are often large when traditional critical values are used. Over-rejections
are systematically smaller when fixed-b critical values are used and b∗ works reasonably well if the
sample size is large enough relative to the strength of the persistence in the data. This is particularly
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true when the QS kernel is used with 0.2 trimming for the mean statistic and 0.05 trimming for the
supremum and exponential statistics.

Table 4. Empirical Null Rejection Probabilities, SupW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. kernel
b = 0.02 b = 0.1 b = 0.5 b = 1

T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.331 0.146 0.093 0.277 0.132 0.084 0.250 0.131 0.083 0.253 0.131 0.081

QS 0.184 0.094 0.084 0.212 0.118 0.077 0.036 0.028 0.046 0.012 0.016 0.026

A93 Bartlett 0.721 0.555 0.472 0.954 0.930 0.904 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.810 0.735 0.696 0.995 0.993 0.992 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.104 0.072 0.062 0.094 0.064 0.062 0.081 0.057 0.052 0.080 0.056 0.055

QS 0.099 0.072 0.062 0.071 0.051 0.056 0.019 0.024 0.042 0.009 0.015 0.028

A93 Bartlett 0.163 0.124 0.111 0.447 0.397 0.381 0.923 0.912 0.908 0.994 0.990 0.992
QS 0.201 0.161 0.146 0.649 0.610 0.608 0.999 0.998 0.999 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.665 0.420 0.247 0.351 0.268 0.170 0.302 0.243 0.144 0.309 0.238 0.149

QS 0.308 0.184 0.109 0.161 0.137 0.089 0.034 0.039 0.037 0.020 0.018 0.032

A93 Bartlett 0.947 0.855 0.697 0.985 0.975 0.956 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.947 0.874 0.774 0.994 0.993 0.992 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.493 0.274 0.131 0.255 0.160 0.096 0.213 0.132 0.083 0.209 0.131 0.087

QS 0.376 0.189 0.090 0.128 0.081 0.070 0.034 0.036 0.041 0.018 0.020 0.030

A93 Bartlett 0.604 0.382 0.216 0.674 0.543 0.447 0.966 0.949 0.926 0.999 0.997 0.994
QS 0.539 0.333 0.205 0.757 0.686 0.620 0.999 1.00 0.999 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.934 0.824 0.591 0.346 0.257 0.212 0.307 0.216 0.176 0.296 0.209 0.174

QS 0.586 0.365 0.195 0.092 0.064 0.059 0.036 0.030 0.041 0.026 0.024 0.038

A93 Bartlett 0.998 0.991 0.945 0.990 0.980 0.971 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.996 0.986 0.926 0.988 0.987 0.980 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.942 0.843 0.512 0.596 0.413 0.204 0.488 0.340 0.180 0.494 0.335 0.174

QS 0.886 0.731 0.354 0.304 0.176 0.098 0.064 0.050 0.050 0.032 0.036 0.044

A93 Bartlett 0.967 0.902 0.632 0.900 0.809 0.630 0.994 0.982 0.956 1.00 0.999 0.997
QS 0.947 0.846 0.532 0.904 0.835 0.698 1.00 1.00 0.998 1.00 1.00 1.00

Note: A93 are critical values from Andrews (2003) [26].

Table 5. Empirical Null Rejection Probabilities, MeanW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. Kernel
b = 0.02 b = 0.1 b = 0.5 b = 1

T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.162 0.077 0.064 0.190 0.090 0.064 0.216 0.100 0.065 0.217 0.100 0.067

QS 0.148 0.085 0.066 0.226 0.108 0.070 0.120 0.075 0.057 0.097 0.062 0.055

AP94 Bartlett 0.290 0.174 0.134 0.759 0.623 0.570 0.999 0.998 0.995 1.00 1.00 1.00
QS 0.376 0.265 0.216 0.952 0.908 0.877 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.084 0.057 0.056 0.086 0.055 0.061 0.089 0.059 0.060 0.087 0.060 0.060

QS 0.082 0.056 0.060 0.081 0.050 0.055 0.065 0.053 0.051 0.055 0.050 0.050

AP94 Bartlett 0.120 0.087 0.084 0.291 0.248 0.231 0.850 0.828 0.818 0.982 0.974 0.971
QS 0.132 0.106 0.100 0.449 0.403 0.390 0.998 0.996 0.998 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.664 0.358 0.160 0.445 0.270 0.128 0.462 0.275 0.148 0.455 0.276 0.141

QS 0.530 0.242 0.110 0.291 0.178 0.103 0.155 0.112 0.078 0.121 0.088 0.073

AP94 Bartlett 0.806 0.534 0.291 0.926 0.834 0.694 1.00 1.00 0.999 1.00 1.00 1.00
QS 0.783 0.512 0.318 0.973 0.946 0.908 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.420 0.207 0.109 0.216 0.132 0.081 0.224 0.135 0.082 0.229 0.137 0.086

QS 0.324 0.148 0.085 0.154 0.102 0.070 0.114 0.084 0.065 0.089 0.072 0.065

AP94 Bartlett 0.488 0.270 0.152 0.521 0.386 0.295 0.938 0.889 0.848 0.996 0.992 0.982
QS 0.428 0.219 0.137 0.603 0.483 0.417 0.998 0.998 0.998 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.985 0.927 0.653 0.723 0.546 0.324 0.668 0.494 0.316 0.664 0.492 0.304

QS 0.948 0.827 0.451 0.407 0.247 0.145 0.207 0.137 0.099 0.174 0.127 0.091

AP94 Bartlett 0.996 0.966 0.788 0.979 0.955 0.868 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.992 0.949 0.734 0.981 0.968 0.928 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.916 0.776 0.429 0.586 0.396 0.206 0.552 0.384 0.204 0.547 0.375 0.204

QS 0.854 0.661 0.318 0.409 0.257 0.124 0.223 0.144 0.105 0.171 0.114 0.084

AP94 Bartlett 0.943 0.822 0.502 0.838 0.686 0.469 0.988 0.967 0.918 0.999 0.998 0.992
QS 0.909 0.753 0.408 0.843 0.705 0.529 1.00 1.00 0.999 1.00 1.00 1.00

Note: AP94 are critical values from Andrews and Ploberger (1994) [10] with an adjustment.

18



Econometrics 2017, 5, 2

Table 6. Empirical Null Rejection Probabilities, ExpW(F) test with 5% nominal size, M = bT, H0: No
Structural Change (δ = 0), T = 100, 200, 500.

DGP ε c.v. Kernel
b = 0.02 b = 0.1 b = 0.5 b = 1

T = 100 200 500 T = 100 200 500 T = 100 200 500 T = 100 200 500

A

0.05
fixed-b Bartlett 0.368 0.162 0.094 0.291 0.140 0.086 0.256 0.133 0.083 0.254 0.132 0.082

QS 0.198 0.100 0.086 0.217 0.120 0.078 0.036 0.028 0.046 0.012 0.016 0.026

AP94 Bartlett 0.712 0.504 0.404 0.956 0.920 0.888 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.802 0.693 0.640 0.996 0.992 0.987 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.108 0.068 0.062 0.104 0.068 0.060 0.086 0.060 0.055 0.082 0.058 0.055

QS 0.104 0.072 0.064 0.080 0.055 0.055 0.019 0.024 0.042 0.009 0.015 0.028

AP94 Bartlett 0.179 0.131 0.115 0.454 0.390 0.367 0.929 0.909 0.906 0.996 0.991 0.992
QS 0.210 0.167 0.142 0.646 0.605 0.591 0.999 0.999 1.00 1.00 1.00 1.00

B

0.05
fixed-b Bartlett 0.708 0.456 0.260 0.372 0.282 0.172 0.309 0.246 0.144 0.313 0.241 0.150

QS 0.333 0.194 0.113 0.165 0.140 0.090 0.034 0.039 0.037 0.020 0.018 0.032

AP94 Bartlett 0.954 0.836 0.647 0.986 0.974 0.946 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.952 0.855 0.734 0.996 0.992 0.993 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.518 0.281 0.132 0.275 0.169 0.096 0.219 0.136 0.085 0.214 0.133 0.087

QS 0.398 0.195 0.094 0.139 0.088 0.072 0.034 0.036 0.041 0.018 0.020 0.030

AP94 Bartlett 0.627 0.384 0.211 0.689 0.554 0.446 0.970 0.956 0.925 1.00 0.998 0.997
QS 0.564 0.332 0.202 0.763 0.687 0.610 0.999 1.00 0.999 1.00 1.00 1.00

C

0.05
fixed-b Bartlett 0.958 0.870 0.634 0.370 0.277 0.220 0.313 0.219 0.177 0.301 0.210 0.174

QS 0.624 0.387 0.204 0.095 0.066 0.060 0.036 0.030 0.041 0.026 0.024 0.038

AP94 Bartlett 0.999 0.992 0.942 0.993 0.988 0.970 1.00 1.00 1.00 1.00 1.00 1.00
QS 0.998 0.986 0.924 0.993 0.989 0.985 1.00 1.00 1.00 1.00 1.00 1.00

0.2
fixed-b Bartlett 0.951 0.853 0.517 0.617 0.437 0.218 0.502 0.348 0.183 0.498 0.342 0.177

QS 0.902 0.751 0.372 0.327 0.190 0.102 0.064 0.050 0.050 0.032 0.036 0.044

AP94 Bartlett 0.971 0.907 0.641 0.918 0.829 0.637 0.996 0.985 0.961 1.00 1.00 0.998
QS 0.954 0.854 0.532 0.919 0.845 0.710 1.00 1.00 0.999 1.00 1.00 1.00

Note: AP94 are critical values from Andrews and Ploberger (1994) [10] with an adjustment.

We now examine the power of the tests when using b∗. We report size-adjusted power for T = 200
in Figures 1–6. Recall the break point under the alternative is λ = 0.4. Odd (even) numbered figures
give results with 0.05 (0.2) trimming. Results are given for the three DGPs used for the tables. First note
that more trimming leads to higher power in all cases as one would expect. Second, the mean statistic
tends to have the highest power regardless of the DGP or kernel. This is not surprising given the
power optimality properties of the mean statistic derived by Andrews and Ploberger (1994) [10] using
traditional asymptotics. Third, for a given kernel, the supremum and exponential statistics have almost
the same power across DGPs and trimming. This is somewhat surprising given that under traditional
asymptotics, the exponential statistic is in the class of power optimal tests but the supremum statistic is
not. This finding could be driven by values of b∗ being far away from zero in which case the traditional
asymptotics might not be accurately reflecting finite sample power. Finally, the Bartlett kernel tends to
give tests with higher power than the QS kernel; a similar finding was made by Kiefer and Vogelsang
(2005) [1] in models without structural change.

The size and power results for the statistics implemented with b∗ point to the typical size-power
tradeoff when using HAC variance estimators. Configurations that give the least size distortions
also tend to have low power. As long as the data is not too persistent relative to the sample size,
a reasonable approach for practice that balances size distortions and power is to use the mean statistic
with 0.2 trimming implemented with the QS kernel with b∗ and fixed-b critical values.

6. Summary and Conclusions

In this paper, fixed-b asymptotics is applied to the problem of testing for the presence of a
structural break in a weakly dependent time series regression. The Wald(F) statistic is the Wald statistic
that one obtains when structural change is expressed in terms of dummy variables interacted with
regressors as in Bai and Perron (1998, 2003) [11,15]. We derived the fixed-b limit of the statistic. In
both the full structural change and partial structural change model, the Wald statistic has the same
pivotal fixed-b limit. We tabulated fixed-b critical values for Sup/Mean/Exp-Wald(F) statistics which
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are commonly used for testing parameter instability when the break point is unknown. In a simulation
study, we examined the finite sample properties of traditional and fixed-b inference. With persistent
data, traditional inference suffers from substantial size distortions. Using fixed-b critical values
markedly improves over-rejection problem. A reasonable approach for practice that balances size
distortions and power is to use the mean statistic with 0.2 trimming implemented with the QS kernel,
b∗ and fixed-b critical values.

Table 7. Empirical Null Rejection Probabilities, Sup/Mean/Exp-W(F) test using bandwidth ratio b∗

with 5% nominal size, H0 : No Structural Change (δ = 0), T = 100, 200, 500, 1000.

SupW(F) Fixed-b c.v. Andrews (1993) [9] c.v.

DGP T
ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.318 0.182 0.103 0.099 0.773 0.830 0.189 0.221
200 0.147 0.094 0.073 0.072 0.558 0.735 0.126 0.161
500 0.089 0.081 0.062 0.062 0.479 0.701 0.111 0.146

B
100 0.384 0.164 0.287 0.177 0.972 0.985 0.612 0.627
200 0.302 0.135 0.187 0.134 0.931 0.962 0.416 0.415
500 0.206 0.102 0.110 0.088 0.826 0.801 0.249 0.218

C

100 0.328 0.083 0.574 0.289 0.992 0.991 0.915 0.924
200 0.278 0.070 0.428 0.219 0.982 0.985 0.806 0.814
500 0.267 0.082 0.250 0.158 0.954 0.965 0.556 0.548

1000 0.254 0.072 0.188 0.120 0.900 0.928 0.375 0.368

MeanW(F) Fixed-b c.v. Andrews and Ploberger (1994) [10] c.v.

DGP T
ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.172 0.154 0.086 0.082 0.348 0.417 0.132 0.142
200 0.077 0.085 0.058 0.056 0.176 0.265 0.088 0.106
500 0.064 0.066 0.056 0.060 0.134 0.216 0.084 0.100

B
100 0.465 0.312 0.237 0.168 0.869 0.912 0.454 0.456
200 0.278 0.190 0.145 0.110 0.667 0.717 0.277 0.269
500 0.142 0.108 0.090 0.085 0.408 0.349 0.171 0.143

C

100 0.701 0.382 0.566 0.401 0.982 0.983 0.853 0.875
200 0.555 0.293 0.408 0.283 0.948 0.956 0.688 0.688
500 0.374 0.203 0.232 0.171 0.804 0.812 0.415 0.391

1000 0.258 0.133 0.155 0.104 0.574 0.619 0.257 0.238

ExpW(F) Fixed-b c.v. Andrews and Ploberger (1994) [10] c.v.

DGP T
ε = 0.05 ε = 0.2 ε = 0.05 ε = 0.2

Bartlett QS Bartlett QS Bartlett QS Bartlett QS

A
100 0.331 0.196 0.095 0.107 0.761 0.820 0.203 0.230
200 0.161 0.100 0.068 0.072 0.506 0.593 0.132 0.167
500 0.093 0.083 0.062 0.064 0.404 0.640 0.115 0.142

B
100 0.402 0.170 0.296 0.195 0.976 0.988 0.626 0.638
200 0.278 0.143 0.167 0.142 0.923 0.956 0.427 0.423
500 0.135 0.104 0.068 0.093 0.788 0.762 0.251 0.215

C

100 0.348 0.087 0.601 0.308 0.995 0.994 0.929 0.935
200 0.298 0.072 0.449 0.241 0.987 0.990 0.826 0.829
500 0.277 0.083 0.263 0.169 0.955 0.961 0.563 0.556

1000 0.186 0.072 0.134 0.121 0.881 0.912 0.378 0.369
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Figure 1. Size adjusted power, DGP A, ε = 0.05, T = 200.
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Figure 2. Size adjusted power, DGP A, ε = 0.2, T = 200.
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Figure 3. Size adjusted power, DGP B, ε = 0.05, T = 200.
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Figure 4. Size adjusted power, DGP B, ε = 0.2, T = 200.
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Figure 5. Size adjusted power, DGP C, ε = 0.05, T = 200.
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Figure 6. Size adjusted power, DGP C, ε = 0.2, T = 200.
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Appendix A. Definitions and Proofs

Definitions

Case 1. Suppose K(x) is twice continuously differentiable everywhere (Class 1) such as the Quadratic Spectral
kernel (QS), then

P
(
b, Hp

) ≡ −
∫ 1

0

∫ 1

0

1
b2 K′′

(
r − s

b

)
Hp(r)Hp(s)′drds, (A1)

where K′′ (·) is the second derivative of the kernel K(·).

Case 2. Suppose K(x) is the Bartlett kernel (Class 2), then

P
(
b, Hp

) ≡ 2
b

∫ 1

0
Hp(r)Hp(r)′dr − 1

b

∫ 1−b

0

(
Hp(r)Hp(r + b)′ + Hp(r + b)Hp(r)′

)
dr. (A2)

Case 3. Suppose K(x) is continuous, K(x) = 0 for |x| ≥ 1, and K(x) is twice continuously differentiable
everywhere except for |x| = 1 (Class 3) (e.g., Parzen kernel), then

P
(
b, Hp

) ≡ −
∫ ∫

|r−s|<b

1
b2 K′′

( |r − s|
b

)
Hp(r)Hp(s)′drds (A3)

+
K′_(1)

b

∫ 1−b

0

(
Hp(r + b)Hp(r)′ + Hp(r)Hp(r + b)′

)
dr,

where K′_(1) = limh↓0 [(K(1)− K(1 − h)) /h] , i.e., K′_(1) is the derivative of K(x) from the left at x = 1.

The following expression is a general representation of the HAC estimators:

Ω̂ = T−1
T

∑
t=1

T

∑
s=1

K
( |t − s|

M

)
v̂tv̂′s.

This representation can be rewritten in terms of the partial sum processes Ŝt = ∑t
j=1 v̂j following

Kiefer and Vogelsang (2005) [1] and Hashimzade and Vogelsang (2008) [4] as follows. Let M = bT.
Then, for the kernels in Class 1, we have

Ω̂ = T−2
T−1

∑
t=1

T−1

∑
s=1

T−1/2Ŝt

(
T2Δ2

t,s

)
T−1/2Ŝ′

s, (A4)

where

Δ2
t,s ≡ (Kt,s − Kt,s+1)− (Kt+1,s − Kt+1,s+1) with Kt,s = K

( |t − s|
bT

)
.

For the Class 2 kernel (Bartlett), we have

Ω̂ =
2

bT

T−1

∑
t=1

(
T−1ŜtŜ′

t

)
− 1

bT

T−M−1

∑
t=1

(
T−1Ŝt+bTŜ′

t + T−1ŜtŜ′
t+bT

)
. (A5)

For the kernels in Class 3, we have

Ω̂ = T−2 ∑ ∑
|t−s|<bT

T−1Ŝt

(
T2Δ2

t,s

)
Ŝ′

s +
1

bT

T−bT

∑
s=1

T−1/2ŜsT−1/2Ŝ′
s+bT

(
K(1)− K(1 − 1

bT )
1

bT

)

− 1
bT

T−bT

∑
s=1

T−1/2ŜsT−1/2Ŝ′
s+bT

(
K(−1 + 1

bT )− K(−1)
1

bT

)
.

(A6)
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Proof of Proposition 1. The limit of the fî follows immediately under Assumptions 1 and 2. Also,
plugging the limits of β̂1 and β̂2 into Equation (4) yields, for r ≤ λ,

T−1/2Ŝ[rT] ⇒
(

Λ 0

0 Λ

)((
Wp(r)− r

λ Wp(λ)
)

0

)
,

and for r > λ,

T−1/2Ŝ[rT] ⇒
(

Λ 0

0 Λ

)(
0(

Wp(r)− Wp(λ)− r−λ
1−λ

(
Wp(1)− Wp(λ)

))) .

Thus, we can rewrite this result by using indicator functions as

T−1/2Ŝ[rT] ⇒
(

Λ 0

0 Λ

)
Fp (r, λ) ≡

(
Λ 0

0 Λ

)(
F(1)

p (r, λ)

F(2)
p (r, λ)

)
,

where

F(1)
p (r, λ) =

(
Wp(r)− r

λ Wp(λ)
) · 1(r ≤ λ) and F(2)

p (r, λ) =
(

Wp(r)− Wp(λ)− r−λ
1−λ

(
Wp(1)− Wp(λ)

)) · 1(r > λ).

Proof of Lemma 1. Plugging the limit of the partial sum process in Proposition 1 into the HAC
estimators in (A4)–(A6), the desired result follows from direct application of the continuous mapping
theorem to obtain the desired result in (12).

Proof of Theorem 1. Recall that

Wald(F) = T
(

Rβ̂
)′ (

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′
)−1 (

Rβ̂
)

.

Using R = (R1, − R1) it follows that

T1/2
(

Rβ̂
) H0= R1

(
T1/2

(
β̂1 − β1

)
− T1/2

(
β̂2 − β2

))
⇒

R1Q−1Λ
(

1
λ

Wp (λ)− 1
1 − λ

(
Wp (1)− Wp (λ)

))
.

Using Assumption 1 and Lemma 1,

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′ ⇒
(

1
λ

R1Q−1Λ,
−1

1 − λ
R1Q−1Λ

)
×P
(
b, Fp (r, λ)

)×( 1
λ

R1Q−1Λ,
−1

1 − λ
R1Q−1Λ

)′
.

By writing P
(
b, Fp (r, λ)

)
in the form (A1)–(A3) using Fp (r, λ)′ =

(
F(1)

p (r, λ)′ , F(2)
p (r, λ)′

)
, we obtain,

after some algebra, the following expression for the above limit:

R1Q−1ΛP

(
b,

1
λ

F(1)
p (r, λ)− 1

1 − λ
F(2)

p (r, λ)

)
Λ′Q−1R′

1.

Now apply the transformation: R1Q−1ΛWp(r)
d
= AWl(r) with R1Q−1ΛΛ′Q−1R′

1 = AA′,
and conclude

RQ̂−1
λ Ω̂(F)Q̂−1

λ R′ ⇒ AP

(
b,

1
λ

F(1)
l (r, λ)− 1

1 − λ
F(2)

l (r, λ)

)
A′,
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yielding the desired result:

Wald(F) ⇒
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)′

×
(

P

(
b,

1
λ

F(1)
l (r, λ)− 1

1 − λ
F(2)

l (r, λ)

))−1
×
(

1
λ

Wl(λ)− 1
1 − λ

(Wl(1)− Wl(λ))

)
.

Proof of Proposition 2. Standard algebra gives

β̂ =
(

∑T
t=1 X̃tX̃′

t

)−1 (
∑T

t=1 X̃tỹt

)
=
(

∑T
t=1 X̃tX̃′

t

)−1 (
∑T

t=1 X̃tX̃′
tβ + ∑T

t=1 X̃tut − ∑T
t=1 X̃tz′t(Z′Z)−1Z′u

)
=
(

∑T
t=1 X̃tX̃′

t

)−1 (
∑T

t=1 X̃tX̃′
tβ + ∑T

t=1 X̃tut

)
,

and it immediately follows that

T1/2
(

β̂ − β
)
=
(

T−1 ∑T
t=1 X̃tX̃′

t

)−1 (
T−1/2 ∑T

t=1 X̃tut

)
=
(

T−1 ∑T
t=1
(
Xt − X′Z(Z′Z)−1zt

) (
X′

t − z′t(Z′Z)−1Z′X
))−1

×
(

T−1/2 ∑T
t=1
(
Xt − X′Z(Z′Z)−1zt

)
ut

)
.

Under Assumptions 3 and 4, it follows in a straightforward manner that

√
T(β̂ − β) ⇒ Q−1

X̃X̃

(
Λ1Wp+q(λ)− λQxZQ−1

ZZΛ2Wp+q(1)
Λ1
(
Wp+q(1)− Wp+q(λ)

)− (1 − λ)QxZQ−1
ZZΛ2Wp+q(1)

)
(A7)

In order to derive the limit of
√

T(Rβ̂ − r), the following standard results are useful:

QXZ ≡ p lim

(
T−1

T

∑
t=1

Xtz′t

)
=

(
λQxZ

(1 − λ)QxZ

)
2p×q

,

QXX ≡ p lim

(
T−1

T

∑
t=1

XtX′
t

)
=

(
λQxx 0

0 (1 − λ)Qxx

)
2p×2p

,

QX̃X̃ = p lim

(
T−1

T

∑
t=1

X̃tX̃′
t

)
= QXX − QXZQ−1

ZZQ′
XZ.

Also, well known matrix algebra properties (see e.g., Schott (1997) [29]), we can write

Q−1
X̃X̃

= Q−1
XX + Q−1

XXQXZ

(
QZZ − Q′

XZQ−1
XXQXZ

)−1
Q′

XZQ−1
XX , (A8)

and using (A8), one can further show that

Q−1
X̃X̃

=

(
1
λ Q−1

xx + P P
P 1

1−λ Q−1
xx + P

)
, (A9)

where
P = Q−1

xx QxZ

(
QZZ − Q′

xZQ−1
xx QxZ

)−1
Q′

xZQ−1
xx .

Now plug (A9) into (A7) to conclude that√
T(Rβ̂ − r)

H0=
√

TR
(

β̂ − β
)
⇒ R1Q−1

xx Λ1

(
1
λ Wp+q(λ) +

1
1−λ

(
Wp+q(λ)− Wp+q(1)

))
.
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The following lemma is used in the proof of Lemma A1.

Lemma A1. Let K = QxZQ−1
ZZQ′

xZ. Then it holds that Q−1
xx KP = P − Q−1

xx KQ−1
xx .

Proof of Lemma 3. One can easily show

QX̃X̃ =

(
λQxx 0

0 (1 − λ)Qxx

)
−
(

λ2QxZQ−1
ZZQ′

xZ λ(1 − λ)QxZQ−1
ZZQ′

xZ
λ(1 − λ)QxZQ−1

ZZQ′
xZ (1 − λ)2QxZQ−1

ZZQ′
xZ

)
.

The desired result comes from the identity QX̃X̃Q−1
X̃X̃

= I by substituting Equation (A9) for Q−1
X̃X̃

.

Proof of Lemma 2. First note that implicit in the proof of Proposition 2 is the result that p lim Q̂−1
X̃X̃

=

Q−1
X̃X̃

. For R = (R1, − R1), it follows that

p lim RQ̂−1
X̃X̃

= R1

(
1
λ

Q−1
xx , − 1

1 − λ
Q−1

xx

)
(A10)

using (A9). The scaled partial sum process is given by

T−1/2Ŝξ
[rT] = T−1/2

[rT]

∑
t=1

X̃tût

= T−1/2
[rT]

∑
t=1

X̃tut − T−1
[rT]

∑
t=1

X̃tX̃′
t
√

T(β̂ − β)− T−1
[rT]

∑
t=1

X̃tz′t
(

Z′Z
T

)−1 (
T−1/2Z′u

)
. (A11)

For 0 ≤ r < λ, the first term in (A11) satisfies

T−1/2
[rT]

∑
t=1

X̃tut ⇒
(

Λ1Wp+q(r)− λQxZQ−1
ZZΛ2Wp+q(r)

−(1 − λ)QxZQ−1
ZZΛ2Wp+q(r)

)
. (A12)

Hence with R = (R1, − R1) , from (A10) and (A12), it follows that

RQ̂−1
X̃X̃

T−1/2
[rT]

∑
t=1

X̃tut

⇒ R1

(
1
λ

Q−1
xx , − 1

1 − λ
Q−1

xx

)(
Λ1Wp+q(r)− λQxZQ−1

ZZΛ2Wp+q(r)
−(1 − λ)QxZQ−1

ZZΛ2Wp+q(r)

)
=

1
λ

R1Q−1
xx Λ1Wp+q(r).

For the first part of the second term in (A11), it follows that

T−1
[rT]

∑
t=1

X̃tX̃′
t ⇒
(

rQxx 0p×p

0p×p 0p×p

)
−
(

rλQxZQ−1
ZZQ′

xZ r(1 − λ)QxZQ−1
ZZQ′

xZ
0p×p 0p×p

)

−
(

rλQxZQ−1
ZZQ′

xZ 0p×p

r(1 − λ)QxZQ−1
ZZQ′

xZ 0p×p

)
+ r

(
λ2QxZQ−1

ZZQ′
xZ λ(1 − λ)QxZQ−1

ZZQ′
xZ

λ(1 − λ)QxZQ−1
ZZQ′

xZ (1 − λ)2QxZQ−1
ZZQ′

xZ

)

=

(
rQxx + (rλ2 − 2rλ)K −r(1 − λ)2K

−r(1 − λ)2K r(1 − λ)2K

)
,

where K = QxZQ−1
ZZQ′

xZ. Hence with R = (R1, − R1) ,

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tX̃′
t ⇒ R1

(
1
λ

Q−1
xx , − 1

1 − λ
Q−1

xx

)
×
(

rQxx + (rλ2 − 2rλ)K −r(1 − λ)2K
−r(1 − λ)2K r(1 − λ)2K

)
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= rR1

(
1
λ

I − Q−1
xx K,

λ − 1
λ

Q−1
xx K
)

,

which combined with (A7) and Lemma 3 immediately yields

RQ̂−1
X̃X̃

(
T−1

[rT]

∑
t=1

X̃tX̃′
t

)√
T(β̂ − β)

⇒ rR1

(
1
λ

I − Q−1
xx K,

λ − 1
λ

Q−1
xx K
)
×
(

1
λ Q−1

xx + P P
P 1

1−λ Q−1
xx + P

)

×
(

Λ1Wp+q(λ)− λQxZQ−1
ZZΛ2Wp+q(1)

Λ1
(
Wp+q(1)− Wp+q(λ)

)− (1 − λ)QxZQ−1
ZZΛ2Wp+q(1)

)

= rR1

(
1

λ2 Q−1
xx , 0p×p

)
×
(

Λ1Wp+q(λ)− λQxZQ−1
ZZΛ2Wp+q(1)

Λ1
(
Wp+q(1)− Wp+q(λ)

)− (1 − λ)QxZQ−1
ZZΛ2Wp+q(1)

)
=

r
λ2 R1Q−1

xx Λ1Wp+q(λ)− r
λ

R1Q−1
xx QxZQ−1

ZZΛ2Wp+q(1).

Finally, premultiplying the third term in (A11) by RQ̂−1
X̃X̃

gives

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tz′t
(

Z′Z
T

)−1 (
T−1/2Z′u

)
= RQ̂−1

X̃X̃
T−1

[rT]

∑
t=1

(
Xt − X′Z(Z′Z)−1zt

)
z′t
(

Z′Z
T

)−1 (
T−1/2Z′u

)
⇒ R1

(
1
λ

Q−1
xx , − 1

1 − λ
Q−1

xx

)
×
(

r(1 − λ)QxZ
−r(1 − λ)QxZ

)
Q−1

ZZΛ2Wp+q(1)

=
r
λ

R1Q−1
xx QxZQ−1

ZZΛ2Wp+q(1).

Combining the results for the three terms gives

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1
1
λ Wp+q(r)− R1Q−1

xx Λ1
r

λ2 Wp+q(λ)

+R1Q−1
xx QxZQ−1

ZZΛ2
r
λ Wp+q(1)− R1Q−1

xx QxZQ−1
ZZΛ2

r
λ Wp+q(1)

= R1Q−1
xx Λ1

(
1
λ Wp+q(r)− r

λ2 Wp+q(λ)
)
= R1Q−1

xx Λ1
1
λ F(1)

p+q (r, λ) .

(A13)

Similar results can be obtained for λ ≤ r ≤ 1 :

RQ̂−1
X̃X̃

T−1/2
[rT]

∑
t=1

X̃tut ⇒ R1Q−1
xx Λ1

(
1
λ

Wp+q(λ)− 1
1 − λ

(
Wp+q(r)− Wp+q(λ)

))
,

RQ̂−1
X̃X̃

(
T−1 ∑

[rT]
t=1 X̃tX̃′

t

)√
T(β̂ − β)

⇒ R1Q−1
xx Λ1

(
1
λ Wp+q(λ) +

r−λ
(1−λ)2 Wp+q(λ)− r−λ

(1−λ)2 Wp+q(1)
)
− R1Q−1

xx QxZQ−1
ZZΛ2

1−r
1−λ Wp+q(1),

and

RQ̂−1
X̃X̃

T−1
[rT]

∑
t=1

X̃tz′t
(

Z′Z
T

)−1 (
T−1/2Z′u

)
⇒ 1 − r

1 − λ
R1Q−1

xx QxZQ−1
ZZΛ2Wp+q(1).
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Now combining the results for the three terms gives RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ −R1Q−1

xx Λ1 · 1
1−λ F(2)

p+q(r, λ).
Thus, we obtain for r ∈ [0, 1],

RQ̂−1
X̃X̃

T−1/2Ŝξ
[rT] ⇒ R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1 − λ
F(2)

p+q (r, λ)

)
.

Proof of Theorem 2. To save space, the proof for this Theorem is provided only for the case of the
Bartlett kernel with M = T (i.e., b = 1). However, the proof given here is applicable to other kernels
and different values of b. Note that with b = 1, the HAC estimator can be rewritten as (see Kiefer and
Vogelsang (2002a) [2]) Ω̂(F)

b=1 = 2
T ∑T−1

t=1 T−1/2Ŝξ
t T−1/2Ŝξ′

t . With this HAC estimator, the term within the
inverse in (24) is given by

2
T

T−1

∑
t=1

⎧⎨⎩R

(
T−1

T

∑
s=1

X̃sX̃′
s

)−1

T−1/2Ŝξ
t T−1/2Ŝξ′

t

(
T−1

T

∑
s=1

X̃sX̃′
s

)−1

R′
⎫⎬⎭

⇒ P

(
1, R1Q−1

xx Λ1

(
1
λ

F(1)
p+q (r, λ)− 1

1 − λ
F(2)

p+q (r, λ)

))
where the limit is obtained directly from Lemma A1 and the continuous mapping theorem. The result
for (24) can be obtained by using similar arguments as those used in Theorem 1 where we use

the transformation: R1Q−1
xx Λ1Wp+q(r)

d
= Ξ · Wl(r), 0 ≤ r ≤ 1 for a p.d. matrix Ξ

l×l
satisfying

ΞΞ′ = R1Q−1
xx Λ1Λ′

1Q−1
xx R′

1.
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Abstract: This paper discusses the consistency of trend break point estimators when the number of
breaks is underspecified. The consistency of break point estimators in a simple location model with
level shifts has been well documented by researchers under various settings, including extensions
such as allowing a time trend in the model. Despite the consistency of break point estimators of level
shifts, there are few papers on the consistency of trend shift break point estimators in the presence
of an underspecified break number. The simulation study and asymptotic analysis in this paper
show that the trend shift break point estimator does not converge to the true break points when the
break number is underspecified. In the case of two trend shifts, the inconsistency problem worsens
if the magnitudes of the breaks are similar and the breaks are either both positive or both negative.
The limiting distribution for the trend break point estimator is developed and closely approximates
the finite sample performance.

Keywords: deterministic trend; linear trend; multiple trend shifts; underspecified break number;
Pitman drift; limiting distribution

JEL Classification: C22; C13

1. Introduction

A time series can have multiple breaks. For example, U. S. Treasury bill rates can be observed
to have multiple level changes over time, while the Grilli and Yang primary commodity price index
shows multiple trend shifts. It is common that the number of breaks is unknown and misspecified.
Bai (1995, 1997) [1,2] and Chong (1994, 1995) [3,4] study the consequences of underspecifying the
number of break points in linear structural break models. They point out that when the number
of breaks in a mean shift model is underspecified, the break point estimator is still consistent for
a subset of the true break points. Their discussion covers the mean shift model with and without trend.
Bai (1997) [2] shows that the mean break point estimator by sequential estimation is not only consistent
but also converges at the same rate as with simultaneous estimation. Bai and Perron (1998) [5] extend
the estimation of a single unknown break to multiple unknown breaks under both fixed and shrinking
shift magnitudes. Based on the consistency property of the mean shift break point estimator, they
propose a sequential procedure for multi-break estimates without estimating the multiple breaks
simultaneously. Dynamic programming is introduced by Bai and Perron (2003) [6] to deal with the
computational burden in multiple break point estimation. Kejriwal and Perron (2010) [7] extend the
work of Perron and Yabu (2009) [8,9] to propose a sequential test of the multiple-trend-shift model
robust to persistence in noise.

Although trending components are considered by researchers in the mean shift model, there is
little discussion of the consistency of multiple trend shift break point estimators when the number of
breaks is underspecified. Consistency analysis is important both for break point estimation and for
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structural breaks in the linear regression model. The main motivation of this paper is to address the
gap in the literature concerning the consistency of trend shift break point estimators when the break
number is underspecified.

The second motivation of this paper is to explore how to approximate the finite sample
distributions of the break point estimator for a multiple break model. Specifically, asymptotics of
the break point estimator in a trend shift model are provided for the case of an underspecified break
number by employing Pitman drifts. The accuracy of the asymptotic approximation to the finite
sample distribution is examined. This work follows Yang (2012) [10] who has shown that the finite
sample distribution of the single break point estimator is not normal, but depends on the break dates
and magnitudes.

In this paper, finite sample simulations are used to illustrate the potential inconsistency of the
break point estimator in the trend shift model with an underspecified break number. Then, the limits
of the break point estimator under fixed break magnitudes are provided. Both the simulation results
and the expression of the limits show that for the trend shift model, the break point estimator can be
inconsistent for any of the true break points, while for the mean shift model, the break point estimator
converges to one of the true breaks. Then, extending Yang’s (2012) work [10] on the single break point
estimator, new asymptotics are provided for the break point estimators under local alternatives.

As will be shown in this paper, the mean shift model leads to a consistent break point estimator
while the trend shift model does not. Taking first differences of the trend shift model is shown by
Yang (2010) [11] to provide a solution to the inconsistency problem. When the break magnitudes are
sufficiently large, the first-difference break point estimator has much higher peaks in the density at the
true breaks than the levels break point estimator. When the break magnitudes are small, the densities
of the two break point estimators depend on the break magnitudes and locations and the strength of
the serial correlation. A detailed analysis of the first-difference estimator is omitted in this paper but
can be found in Yang (2010) [11] and Yang (2012) [10].

The paper is organized as follows. Section 2 describes the general settings of the mean shift
and trend shift models, assumptions, and break point estimators. Section 3 introduces finite sample
simulations to demonstrate the consistency properties of different break point estimators. Section 4
derives the expression of the limits of the single break point estimator when the break sizes are fixed
and the data sequences have two breaks under I(0) errors. Both mean shift and trend shift break
point estimators are discussed. Section 5 establishes the asymptotic distributions of the break point
estimators assuming the breaks are Pitman drifts, which approximate the finite sample distributions
accurately. Sections 4 and 5 relate the mean shift results to those of Bai (1997) [2]. The last section
concludes the paper. Proofs are provided in the Appendix.

2. The Models, Assumptions, and Break Point Estimators

In this section, I define a mean shift and a trend shift model with multiple breaks. For simplicity,
I only include the case where a single break model is estimated while the number of breaks is two.
The results can be extended to models with more than two breaks.

Let us start with a mean shift model with two breaks:

yt = μ + δ1DUt(λ
c
1) + δ2DUt(λ

c
2) + ut, (1)

where

DUt(λ
c
i )

.
=

{
0, t ≤ Tc

b,i
1, t > Tc

b,i
, i = 1, 2;

λc
1 and λc

2 are the true break fractions with Tc
b,1 = λc

1T and Tc
b,2 = λc

2T; Tc
b,i denotes the time of a break.

T is the sample length; δ1 and δ2 are the break magnitudes. For convenience of discussion, we define
the relative break magnitude ratio ν

.
= δ2/δ1.
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When model (1) is underspecified, the estimated model is given by

yt = μ + δDUt(λ) + ut, (2)

where

DUt(λ)
.
=

{
0, t ≤ Tb
1, t > Tb

;

λ is the underspecified single break fraction with Tb = λT.
For comparison, the trend shift model with two breaks is

yt = μ + βt + δ1DTt(λ
c
1) + δ2DTt(λ

c
2) + ut, (3)

where DTt(λc
i )

.
= (t − Tc

b,i) · DUt(λc
i ), i = 1, 2.

If model (3) is misspecified with only one break, the estimated model is

yt = μ + βt + δDTt(λ) + ut, (4)

where DTt(λ)
.
= (t − Tb) · DUt(λ).

It is assumed that the error ut is I(0), namely

ut = d(L)et, (5)

where

d(L) =
∞

∑
i=0

diLi,
∞

∑
i=0

i|di| < ∞, d(1)2 > 0;

L is the lag operator; {et} is a martingale difference sequence with supt E(e4
t ) < ∞,

E(et|et−1, et−2, · · · ) = 0, and E(e2
t |et−1, et−2, · · · ) = σ2

e .
The break point estimators are obtained by minimizing the sum of squared residuals (SSR) over

the trimming set Λ .
= {λ∗, · · · , 1 − λ∗}, namely

λ̂MS = arg min
λ∈Λ∗{SSRMS(λ)},

λ̂TS = arg min
λ∈Λ∗{SSRTS(λ)},

where

SSRMS(λ)
.
=

T

∑
t=1

[yt − μ̂MS − δ̂MSDUt(λ̂)]
2, (6)

SSRTS(λ)
.
=

T

∑
t=1

[yt − μ̂TS − β̂TSt − δ̂TSDTt(λ̂)]
2, (7)

with μ̂MS and δ̂MS the OLS estimators from model (2) with no restrictions imposed, whereas μ̂TS, β̂TS,
and δ̂TS are the OLS estimators from model (4) with no restrictions imposed.
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3. Illustration of the Inconsistency Problem of the Trend Shift Break Point Estimator

In this section a simple simulation is used to illustrate the consistency/inconsistency of λ̂MS
and λ̂TS in the presence of an underspecified break number. The data are generated based on
models (1) and (3) with two breaks, where T = 100, 250, 500, 1000, {λc

1, λc
2} = {1/3, 2/3}, ν = −2, −1,

1, 2 (we set δ1 = 1 without loss of generality), and ut is an i.i.d. N(0, 1) process. Equations (6) and
(7) are used to estimate λ̂MS and λ̂TS separately in each replication. While trimming is not necessary,
to ensure the invertibility of the regression matrix I use 2% trimming, i.e., λ∗ = 0.02. The replications
N = 20,000, 10,000, 5000, 2500 are used for T = 100, 250, 500, 1000 respectively.

Figure 1a,b plots the histograms of λ̂MS with i.i.d. errors. In all cases with the increase of T,
the distribution of λ̂MS has shorter tails and, when T = 1000, concentrates at the two break points
or one of them depending on the relative break magnitude ratios. Interestingly, when |ν| = 1 and
T = 100, the density of λ̂MS is bimodal, which can be explained by Yang (2012) [10] through the
behavior of the mean shift break point estimator, where the break point estimates concentrate around
the end points in the no break model.

Figure 1c,d plots the histograms of λ̂TS. When ν = −2, the density peaks at a point greater than
2/3. When ν = −1, λ̂TS has two equal peaks at λ = 0.2 and 0.8. When ν = 1, the histogram of λ̂TS has
only one peak at λ = 0.5, and with the increase of T the break date estimates are more concentrated.
When ν = 2, the histogram of λ̂TS peaks at a point between 1/3 and 2/3. This shows that when the
number of breaks is underspecified, the trend shift break point estimator does not converge to either
of the true break points, and that the limit of the break point estimator λ̂TS depends on the break
magnitudes and locations.

Empirical data also shows that the break point estimators behave differently when the break
number is underspecified in mean shift model and trend shift model. Using the US ex-post real interest
rate in Figure 2 as an example of mean shifts (the three-month treasury bill rate between the first
quarter of 1961 and the third quarter of 1986 deflated by the CPI inflation rate taken from the Citibase
data bank), Bai and Perron (1998) [5] detect three mean shifts in years 1965, 1972, and 1980 while a
single mean shift point estimator detects one of the real breaks in 1980. Using the extended Grilli
and Yang commodity price index as an example of trend shifts (Copper during 1900–2003), Harvey,
Leybourne, and Taylor (2009) [12] identify two breaks in 1945 and 1971, while a single trend shift
estimator identifies one in 1930, which is not close to the HLT dates.

Both the finite sample histograms and empirical data suggest an interesting pattern: when the
break number is underspecified, the mean shift break point estimator converges to a subset of the true
break points, while the trend shift counterpart does not converge to either of the true break points and
its limit depends on the break dates and magnitudes.
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(a)

Figure 1. Cont.
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(b)

Figure 1. Cont.

35



Econometrics 2017, 5, 4

(c)

Figure 1. Cont.
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(d)

Figure 1. Histograms of the single break point estimator λ̂MS or λ̂TS when {λc
1, λc

2} = {1/3, 2/3} and
δ1 = 1 always. From top to bottom on each page: T = 100, 250, 500, 1000. (a) Histograms of λ̂MS when
ν = −2(δ2 = −2),−1(δ2 = −1); (b) Histograms of λ̂MS when ν = 1(δ2 = 1), 2(δ2 = 2); (c) Histograms
of λ̂TS when ν = −2(δ2 = −2),−1(δ2 = −1); (d) Histograms of λ̂TS when ν = 1(δ2 = 1), 2(δ2 = 2).
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(a)

(b)

Figure 2. Single break point estimate (dotted line) while multiple mean shifts or trend shifts exist
(dashed line). (a) US ex-post real interest rate during Q1 1961–Q3 1986; (b) Primary commodity price
index (Copper) relative to the price of manufacture during 1900–2003.

4. Limits of the Break Point Estimators when the Break Magnitudes are Fixed

Similar to the discussion in Bai (1997) [2] for the mean shift results, the limits of the single trend
break point estimator λ̂TS are derived in this section when the break sizes are fixed and the data
sequences have two trend breaks.

Theorem 1. Assume there are two break fractions λc
1 and λc

2 with fixed break magnitudes in models (1) and (3)
while the break number is underspecified as one.

1. For the mean shift model (1), under assumption (5) with fixed break magnitudes δ1 = δ∗1 and δ2 = δ∗2 , the
break point estimator λ̂MS converges to one of the true breaks:

(λ̂MS − arg max
λ∈Λ

|G2MS(λ, λc
1) + ν · G2MS(λ, λc

2)|) = Op(T−1/2), (8)

where ν = δ∗2 /δ∗1 and

G2MS(λ, λc)
.
=

Ψ(λ, λc)√
λ(1 − λ)

,

Ψ(λ, λc)
.
=

{
(1 − λc)λ, if λ ≤ λc

(1 − λ)λc, if λ > λc .
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Essentially

(
λ̂MS − λc

1
)
= Op(T−1/2), i f

λc
1

λc
2

δ2
1 ≥ (1 − λc

2)

(1 − λc
1)

δ2
2;
(
λ̂MS − λc

2
)
= Op(T−1/2), otherwise. (9)

2. For the trend shift model (3), under assumption (5) with fixed break magnitudes δ1 = δ∗1 and δ2 = δ∗2 , the
break point estimator λ̂TS has the following limit:

(λ̂TS − arg max
λ∈Λ

|G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)|) = Op(T−3/2), (10)

where ν = δ∗2 /δ∗1 and

G2TS(λ, λc)
.
=

∫ 1
0 F(r, λ)F(r, λc)dr√∫ 1

0 F(r, λ)2dr
,

F(r, λ)
.
=

{
λ3 − 2λ2 + λ − (2λ3 − 3λ2 + 1)r, if r ≤ λ

λ3 − 2λ2 − (2λ3 − 3λ2)r, if r > λ
.

The limit of λ̂MS is either λc
1 or λc

2 as shown in Figure 3, which is consistent with the results in
Bai (1997) [2] using a different theoretical framework. Not surprisingly, G2MS(λ, λc

i ) is maximized at
λc

i and λ̂MS converges to one of the true break points.

Mean Shifts Trend Shifts

Figure 3. G2MS(λ, λc) and G2TS(λ, λc) with λc = 0.5.

The limit of λ̂TS has different patterns. It is still true that G2TS(λ, λc
i ) achieves a maximum at

λ = λc
i as shown in Figure 3. What makes it different from the mean shift case is when we sum up the

two G2TS terms, the function smooths out through the two peaks at each λc
i . Hence, when the number

of trend breaks is two while assumed to be one, |G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)| peaks neither at λc
1

nor at λc
2. Figure 4 plots |G2(λ, λc

1) + ν · G2(λ, λc
2)| with ν = ±1 and λc

1 = 1/4 and λc
2 = 3/4. In both

cases |G2(λ, λc
1) + ν · G2(λ, λc

2)| peaks at neither of the true break points. Certainly, if |ν| is smaller
than 1, λ̂TS will be closer to λc

1; and if |ν| is bigger than 1, λ̂TS will be closer to λc
2. This clearly explains

the reason for the inconsistency of the trend shift break point estimator when the break number is
underspecified.
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Mean Shifts

Trend Shifts

Figure 4. |G2MS(λ, λc
1) + ν · G2MS(λ, λc

2)| for mean shift model and |G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)|
for trend shift model, where ν = 1 and −1, {λc

1, λc
2} = {1/4, 3/4}.

Figure 5 plots the λ’s where |G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)| is maximized along ν when
{λc

1, λc
2} = {1/3, 2/3} and {1/4, 3/4}. When ν = 0, |G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)| is maximized at

λc
1. When |ν| goes to ∞, the limit of the break point estimator will be the true break λc

2. Other than
these practically uninteresting cases, the limits of arg max{|G2TS(λ, λc

1) + ν · G2TS(λ, λc
2)|} will not be

the true break points. Take {λc
1, λc

2} = {1/3, 2/3} as an example. When ν < −1, the limiting point
is greater than 2/3. When −1 < ν < 0, the limiting point is less than 1/3. In both cases, the limiting
points are beyond the range of the two true breaks. When ν > 0, the limiting points are between the
true breaks. When ν = 1, the limiting point is at λ = 0.5, the trend shift break point estimator is far
away from the true breaks. As ν goes away from 1, the limit of the trend shift break point estimator
gets closer to one of the true breaks. The limits tell us the magnitude of the discrepancy between the
spurious break and true breaks. Numerically when |ν| > 4.3 or |ν| < 1

4.3 , the limits of the spurious
break point will be between ±2.5% of the true breaks. This threshold can be extended to other cases
with different break locations.
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Figure 5. Limits of λ̂TS in Theorem 1 when {λc
1, λc

2} = {1/3, 2/3} and {1/4, 3/4} along ν =−10, · · · , 10.

We summarize the findings on the consistency/inconsistency of λ̂MS and λ̂TS under
assumption (5) as follows:

1. For the mean shift model with two breaks, if the break magnitudes are not zero, the single break
point estimator λ̂MS is consistent for either λ1 or λ2:

lim
T→∞

λ̂MS → λc
1 or λc

2.

2. For the trend shift model1 with two breaks, if the break magnitudes are not zero, the single break
point estimator λ̂TS is inconsistent for either λ1 or λ2:

lim
T→∞

λ̂TS → λc
1 and lim

T→∞
λ̂TS → λc

2.

The limit depends on λc
1, λc

2, and ν:

lim
T→∞

λ̂TS = arg max
λ∈Λ

|G2TS(λ, λc
1) + ν · G2TS(λ, λc

2)|.

5. Limiting Distributions of λ̂MS and λ̂TS by Employing Pitman Drifts

As shown in the literature, asymptotic results derived under Pitman drifts often closely
approximate the finite sample behavior of the test statistics or estimators involved. In the following,
the limiting distributions of λ̂TS and λ̂MS are developed under Pitman drifts.

Theorem 2. Assume there are two break points λc
1 and λc

2 in the linear model while the break number is
underspecified as one.

1 If DUt’s are included together with DTt’s in model (3), under the condition of fixed break magnitudes, the trend shifts will
dominate the mean shifts in the (in)consistency of the break point estimator, following the results in Theorem 1. If [t · DUt]’s
are included in model (3), the slope change will force a large level shift. Under this condition, the consistency property of
mean shifts will be dominant and the inconsistency problem in break point estimator will not persist anymore.
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1. For the mean shift model (1), under assumptions (5) and δ1 = T−1/2δ∗1 and δ2 = T−1/2δ∗2 , where δ∗1 and
δ∗2 are constant scalars, the break point estimator λ̂MS has the following limiting distribution:

λ̂MS ⇒ arg max
λ∈Λ

{ [(λW(1)− W(λ)) + M1Ψ(λ, λc
1) + M2Ψ(λ, λc

2)]
2

λ(1 − λ)
}, (11)

where M1
.
=

δ∗1
d(1) , M2

.
=

δ∗2
d(1) , and

Ψ(λ, λc)
.
=

{
(1 − λc)λ, if λ ≤ λc

(1 − λ)λc, if λ > λc .

2. For the trend shift model (3), under assumptions (5) and δ1 = T−3/2δ∗1 and δ2 = T−3/2δ∗2 , where δ∗1 and
δ∗2 are constant scalars, the break point estimator λ̂TS has the following limiting distributions:

λ̂TS ⇒ arg max
λ∈Λ

{[
∫ 1

0
F(r, λ)dW(r) + M1

∫ 1

0
F(r, λ)F(r, λc

1)dr +

M2

∫ 1

0
F(r, λ)F(r, λc

2)dr]2
∫ 1

0
F(r, λ)2dr}, (12)

where M1
.
=

δ∗1
d(1) ≡ δ1T3/2

d(1) , M2
.
=

δ∗2
d(1) ≡ δ2T3/2

d(1) , ν = M2/M1 ≡ δ2/δ1, and F(r, λ) is defined in
Theorem 1.

The asymptotics in Theorem 2 are an extension of work by Yang (2012) [10] from the single-break
case to the multiple-break case. To understand the effect of M1, λc

1, M2, and λc
2 on the limiting

distributions, I decompose the part inside the arg min in Equations (11) and (12) into three parts, where

GMS(λ, λc
1, λc

2)
.
= G1MS(λ) + M1 · G2MS(λ, λc

1) + M2 · G2MS(λ, λc
2)

.
=

(λW(1)− W(λ))√
λ(1 − λ)

+ M1 ·
Ψ(λ, λc

1)√
λ(1 − λ)

+ M2 · Ψ(λ, λc
2)√

λ(1 − λ)
; (13)

GTS(λ, λc)
.
= G1TS(λ) + M1 · G2TS(λ, λc

1) + M2 · G2TS(λ, λc
2)

.
=

∫ 1
0 F(r, λ)dW(r)√∫ 1

0 F(r, λ)2dr
+

M1 ·
∫ 1

0 F(r, λ)F(r, λc
1)dr√∫ 1

0 F(r, λ)2dr
+ M2 ·

∫ 1
0 F(r, λ)F(r, λc

2)dr√∫ 1
0 F(r, λ)2dr

. (14)

For the asymptotic distribution of λ̂MS, with the form of G1MS(λ) + M1 · G2MS(λ, λc
1) + M2 ·

G2MS(λ, λc
2) in the limiting distributions, Theorem 2 provides a bridge between the asymptotics under

the null of no breaks and the asymptotics under local alternatives of up to two breaks.
The asymptotics are continuous at {M1, M2} = {0, 0}, i.e., M1 and M2 could be as small as

possible in the asymptotics. When M1 and M2 are small, the random component G1MS dominates GMS
and the distribution is close to the case of no breaks. For a small M, λ̂TS concentrates more around the
middle range exhibiting a bell shape, while λ̂MS concentrates more around the boundaries exhibiting
a U shape. The detailed explanation is given in Yang (2012) [10]. For a moderate M, the limiting
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distribution of λ̂MS exhibits a shape of W, resulting from the mixed effects of G1MS and G2MS in the
asymptotics. If T → ∞, both M1 and M2 increase to ∞,

lim
T→∞

λ̂MS,TS → arg max
λ∈Λ

|G2MS,TS(λ, λc
1) + ν · G2MS,TS(λ, λc

2)|.

The limiting distributions in Theorem 2 are nonstandard. M1, M2, λc
1 and λc

2 show up in the
approximations, and capture the effects of M’s and λc’s on the asymptotics. Besides other deterministic
variables in Theorem 2, the main random variables in the asymptotic distributions are functions of
a Wiener process. The Wiener process in the asymptotic distributions was approximated by using
standard normal i.i.d. random deviates. Integrals were approximated by normalized partial sums of
1000 steps using 10,000 replications.

Figure 6 plots the finite sample distributions of λ̂MS and λ̂TS with T = 100 and asymptotic
distributions for μ = β = 0, {λc

1, λc
2} = {1/3, 2/3}. Errors are i.i.d. N(0, 1). The left panels of

Figure 6 are for λ̂MS and the right panels are for λ̂TS. From the top to the bottom are the cases of
{δ1, δ2} = {1, 1}, {5, 5}, {1,−1}, and {5,−5}. The pdfs of λ̂MS and λ̂TS are plotted in separated figures
with the same scales to show the performance comparison in the presence of an underspecified break
number. Kernel smoothing is used to obtain the pdf based on the simulations. Figure 6 compares
the asymptotic limits given by Theorem 2 to finite sample distributions. The two lines in each panel
are near-identical, which shows that the asymptotics does a good job of approximating finite sample
distributions of the break point estimators.

Figure 6. Cont.
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Figure 6. The asymptotic distributions and the finite sample distributions of λ̂TS and λ̂MS when
T = 100, {λc

1, λc
2} = {1/3, 2/3}, and ut is an i.i.d. N(0, 1) process. The left: the distributions of

λ̂MS; the right: the distributions of λ̂TS. From the top to the bottom: {δ1, δ2} = {1, 1}, {5, 5}, {1,−1},
and {5,−5}.

6. Conclusions

This paper analyzes the consistency of trend shift break point estimators when the number of
breaks is underspecifed. The limit of the trend shift break point estimator for fixed break sizes is
shown to be dependent on the break magnitudes and locations. In general, the trend shift break
point estimator does not consistently estimate one of the true break points. Using the Pitman drift
assumption, the limiting distribution of the trend shift break point estimator is shown to closely
resemble the finite sample distributions.
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Appendix A.

Appendix A.1. Proof of Theorem 1

Theorem 1 can be proved simply by following the steps provided in the proof of Theorem 2 below.
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Appendix A.2. Proof of Theorem 2

Appendix A.2.1. Asymptotic Distribution of λ̂MS

Let SSR0
MS be the SSR under the assumption of no breaks. Following Equation (6), we obtain

SSR0
MS − SSRMS(λ) = [

T

∑
t=1

D̃Ut(λ)
2]δ̂2

MS.

The OLS estimator of δ from (2) is given by

δ̂MS = [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

[D̃Ut(λ)ỹt],

where {D̃Ut(λ)} and {ỹt} are the residuals from the OLS regressions of {DUt(λ)} and {yt} on [1]′,

D̃Ut(λ) = DUt(λ)−
T

∑
t=1

DUt/T = DUt(λ)− D̄U(λ).

When the DGP is given by (1), simple algebra gives

δ̂MS = [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)[D̃Ut(λ
c
1)δ1 + D̃Ut(λ

c
2)δ2 + ut]

= [
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)[D̃Ut(λ
c
1)δ1 + D̃Ut(λ

c
2)δ2]

+[
T

∑
t=1

D̃U2
t (λ)]

−1
T

∑
t=1

D̃Ut(λ)ut.

Multiplying both sides of the above equation by T1/2, we have

T1/2δ̂MS = [T−1
T

∑
t=1

D̃U2
t (λ)]

−1[T−1
T

∑
t=1

D̃Ut(λ)(D̃Ut(λ
c
1)δ

∗
1 + D̃Ut(λ

c
2)δ

∗
2 )] +

[T−1
T

∑
t=1

D̃U2
t (λ)]

−1[T−1/2
T

∑
t=1

D̃Ut(λ)ut].

Using

[T−1
T

∑
t=1

D̃U2
t (λ)] ⇒

∫ 1

0
[I(r > λ)− (1 − λ)]2dr = λ(1 − λ),

and

[T−1
T

∑
t=1

D̃Ut(λ)D̃Ut(λ
c)] ⇒

∫ 1

0
[I(r > λ)− (1 − λ)][I(r > λc)− (1 − λc)]dr

=

{
(1 − λc)λ, if λ ≤ λc

(1 − λ)λc, if λ > λc ,
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and

T−1/2[
T

∑
t=1

D̃Ut(λ)ut] ⇒ d(1)
∫ 1

0
[I(r > λ)− (1 − λ)]dW(r)

= d(1)[λW(1)− W(λ)],

we obtain

T1/2δ̂MS ⇒ δ∗1
λ(1 − λ)

Ψ(λ, λc
1) +

δ∗2
λ(1 − λ)

Ψ(λ, λc
2) +

d(1)
λ(1 − λ)

[λW(1)− W(λ)],

where

Ψ(λ, λc) =

{
(1 − λc)λ, if λ ≤ λc

(1 − λ)λc, if λ > λc .

From this result, it immediately follows that

SSR0
MS − SSRMS(λ)

⇒ 1√
λ(1 − λ)

[d(1)(λW(1)− W(λ)) + δ∗1 Ψ(λ, λc
1) + δ∗2 Ψ(λ, λc

2)]
2.

Applying the CMT theorem gives

λ̂MS = arg max
λ∈Λ

{SSR0
MS − SSRMS(λ))

⇒ arg max
λ∈Λ

{ [(λW(1)− W(λ)) + M1Ψ(λ, λc
1) + M2Ψ(λ, λc

2)]
2

λ(1 − λ)
},

where M1 =
δ∗1

d(1) and M2 =
δ∗2

d(1) .
It is straightforward to show that M1G2(λ, λc

1) + M2G2(λ, λc
2) is maximized at either λc

1 or λc
2.

The first derivative of G2MS w.r.t. λ is given by:

G2′MS(λ, λc) =

⎧⎨⎩
(1−λc)λ

2(1−λ)
√

λ(1−λ)
, if λ ≤ λc

(1−λ)λc

2(1−λ)
√

λ(1−λ)
, if λ > λc

.

Assume λc
1 < λc

2, then it follows that

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1 − λc
1)λ

2(1 − λ)
√

λ(1 − λ)
+ M2

(1 − λc
2)λ

2(1 − λ)
√

λ(1 − λ)
,

when λ ≤ λc
1;

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1 − λ)λc
1

2(1 − λ)
√

λ(1 − λ)
+ M2

(1 − λc
2)λ

2(1 − λ)
√

λ(1 − λ)
,

when λc
1 ≤ λ ≤ λc

2;

and

[M1G2(λ, λc
1) + M2G2(λ, λc

2)]
′ = M1

(1 − λ)λc
1

2(1 − λ)
√

λ(1 − λ)
+ M2

(1 − λ)λc
2

2(1 − λ)
√

λ(1 − λ)
,

when λ ≥ λc
2.
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Through simple algebra, one can show that the peak values of [M1G2(λ, λc
1) + M2G2(λ, λc

2)] will be
obtained at either λc

1 or λc
2.

Appendix A.2.2. Asymptotic Distribution of λ̂TS

Let SSR0
TS be the SSR under the assumption of no breaks. From Equation (7), we have the standard

result that

SSR0
TS − SSRTS(λ) = [

T

∑
t=1

D̃Tt(λ)D̃Tt(λ)]δ̂
2
TS,

where

δ̂TS =
T

∑
t=1

D̃Tt(λ)D̃Tt(λ)]
−1

T

∑
t=1

D̃Tt(λ)ỹt.

{D̃Tt(λ)} and {ỹt} are the residuals from the OLS regressions of {DTt(λ)} and {yt} on [1 t]′.

When the DGP is given by (3), simple algebra gives

T3/2δ̂TS

=

[
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1

]−1 [
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c
1)T

−1(T3/2δ1) +

T−1
T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c
2)T

−1(T3/2δ2)

]
+

[
T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1

]−1 [
T−1/2

T

∑
t=1

T−1D̃Tt(λ)ut

]
.

Using

T−1D̃Tt(λ) ⇒ F(r, λ)
.
= (r − λ)1(r > λ) + (λ3 − 2λ2 + λ)− (2λ3 − 3λ2 + 1)r,

and

T−1
T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ
c)T−1 ⇒

∫ 1

0
F(r, λ)F(r, λc)dr,

and

T−1/2
T

∑
t=1

T−1D̃Tt(λ)ut ⇒ d(1)
∫ 1

0
F(r, λ)dW(r),

we obtain

T3/2δ̂TS

⇒ [
∫ 1

0
F(r, λ)2dr]−1[δ∗1

∫ 1

0
F(r, λ)F(r, λc

1)dr + δ∗2
∫ 1

0
F(r, λ)F(r, λc

2)dr] +

[
∫ 1

0
F(r, λ)2dr]−1[d(1)

∫ 1

0
F(r, λ)dW(r)]

=
[δ∗1
∫ 1

0 F(r, λ)F(r, λc
1)dr + δ∗2

∫ 1
0 F(r, λ)F(r, λc

2)dr] + d(1)
∫ 1

0 F(r, λ)dW(r)∫ 1
0 F(r, λ)2dr

.
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From this results, it immediately follows that

[SSR0
TS − SSRTS(λ)]

= [T3/2δ̂TS]
2[T−1

T

∑
t=1

T−1D̃Tt(λ)D̃Tt(λ)T−1]

⇒
[
d(1)
∫ 1

0 F(r, λ)dW(r) + δ∗1
∫ 1

0 F(r, λ)F(r, λc
1)dr + δ∗2

∫ 1
0 F(r, λ)F(r, λc

2)dr
]2

∫ 1
0 F(r, λ)2dr

.

Furthermore, using the CMT we obtain the limit of the break point estimator as

λ̂TS

= arg max
λ∈Λ

{SSR0
TS − SSRTS(λ)}

⇒ arg max
λ∈Λ

{
⎡⎣∫ 1

0 F(r, λ)dW(r)√∫ 1
0 F(r, λ)2dr

+

M1
∫ 1

0 F(r, λ)F(r, λc
1)dr + M2

∫ 1
0 F(r, λ)F(r, λc

2)dr√∫ 1
0 F(r, λ)2dr

⎤⎦2

},

where M1
.
= δ∗

d(1) ≡ δ1T3/2

d(1) and M2
.
= δ∗

d(1) ≡ δ2T3/2

d(1) .

Please refer to Yang (2012) [10] for more details about λ̂TS and λ̂MS.
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Abstract: We consider the problem of testing for a structural break in the spatial lag parameter in
a panel model (spatial autoregressive). We propose a likelihood ratio test of the null hypothesis
of no break against the alternative hypothesis of a single break. The limiting distribution of the
test is derived under the null when both the number of individual units N and the number of time
periods T is large or N is fixed and T is large. The asymptotic critical values of the test statistic can be
obtained analytically. We also propose a break-date estimator that can be employed to determine the
location of the break point following evidence against the null hypothesis. We present Monte Carlo
evidence to show that the proposed procedure performs well in finite samples. Finally, we consider
an empirical application of the test on budget spillovers and interdependence in fiscal policy within
the U.S. states.

Keywords: panel model; structural change; spatial econometrics; spatio-temporal; U.S. state budget

JEL Classification: C01; C22; C23; H72

1. Introduction

Spatial dependence represents a situation where values observed at one location or region depend
on the values of neighboring observations at nearby locations. One may ask two questions: first,
does this dependence stay the same over time; and second, what might cause the dependence to
change? This paper answers the first question by proposing a likelihood ratio test of the null hypothesis
of no change against the alternative hypothesis of a one-time change. In case there is evidence against
the null hypothesis, the paper consequently proposes a break-date estimator. The second question has
been reflected upon through an empirical application of budget spillovers in the U.S. states.

In the setup of spatial panel models with N individual units (geographic locations, such as
countries and zip codes, or network units, like firms and individuals) observed over T number of
periods, where the outcome of each unit depends on its “neighbor’s” outcome, there exists a problem
of endogeneity. Hence, such models are estimated using maximum likelihood or the generalized
method of moments. Similar to the univariate time series case, in this paper a sup LR test is proposed,
and the asymptotics are derived for large T cases.

In comparison to the vast literature on the change point for univariate series, the corresponding
literature for panel data is quite small. One of the most popular and early tests in the univariate
literature is the popular F test of Chow (1960) [1], which has been modified for cases of unknown and
multiple break dates in Andrews (1993) [2], Andrews and Ploberger (1994) [3], and Bai and Perron
(1998) [4], among others. Bai (1997) [5], Bai et al. (1998) [6], and Qu and Perron (2007) [7] have extended
the single equation break models to multiple ones. They show that using multiple system improves
the estimation precision of the break dates and the power of the tests. Perron (2006) [8] provides a
survey of the literature.

Econometrics 2017, 5, 12 50 www.mdpi.com/journal/econometrics
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In the panel data literature, Bai (2010) [9] establishes the consistency of the estimated common
break point, achievable even if there is a single observation in a regime. The paper proposes a new
framework for developing the limiting distribution for the estimated break point and lays down steps
to construct confidence intervals. The least squares method is used for estimating breaks in means.
Feng et al. (2009) [10] study a multiple regression model in a panel setting where a break occurs at an
unknown common date. They establish the consistency and rate of convergence both for a fixed time
horizon and large panels. In Feng et al. (2009) [10], the limiting distribution is derived without the
assumption of shrinking magnitude of break. Liao (2008) [11] uses the Bayesian method for estimation
and inference about structural breaks in a panel.

Han and Park (1989) [12] develop a multivariate CUSUM test in order to test for a structural break
in panel data, and they apply the test to U.S. manufacturing goods trade data. Kao (2000) [13] proposes
two classes of test statistics for detecting a break at an unknown date in panel data models with the
time trend. The first is a fluctuation test, while the second is based on the mean and exponential Wald
statistics of Andrews and Ploberger (1994) [3] and the maximum Wald statistic of Andrews (1993) [2].
De Wachter and Tzavalis (2012) [14] develop a break detecting testing procedure for the AR(p) linear
panel data with exogenous or pre-determined regressors. The method accommodates structural break
in the slope parameters, as well as fixed effects, and no assumption is imposed on the homogeneity of
cross-sectional fixed effects. Pauwels et al. (2012) [15] provide a structural break test for heterogeneous
panel data models, where the break affects some, but not all cross-section units in the panel. The test is
robust to auto-correlated errors. The test statistic is based on comparing pre- and post-break sample
statistics as in Chow (1960) [1].

A higher availability of geocoded socio-economic datasets has led to a vast expansion of the
study of spatial interaction between economics agents. Moreover, the recursive relationship between
agents in a network can be modeled using spatial econometric methods. Spatial dependence represents
the transmission of developments across “neighboring” agents. Elhorst (2010) [16] provides detailed
methodologies for estimating spatial panels and to compare competing models. The above tests in the
panel literature do not explicitly consider the endogeneity problem in the model, which arises from
the spatial dependence. We consider a spatial autoregressive model and provide a test for a break
in the spatial lag parameter. To test for a change in the spatial dependence parameter, we propose
a sup LR test similar to Bai (1999) [17]. Yu et al. (2008) [18] and Lee and Yu (2010) [19] provide the
asymptotic properties of quasi-maximum likelihood estimators for spatial autoregressive panel data
models with fixed effects. The results from Yu et al. (2008) [18] are used to derive the limit distribution
of the sup LR test for large T. An estimator for the break date is proposed that can be employed
once evidence against no break in the spatial lag parameter is obtained. The performance of this
estimator, as well as the proposed test statistic in small samples is evaluated via a Monte Carlo study.
Wied (2013) [20] develops a CUSUM-type test for time-varying parameters in a spatial autoregressive
model for stock returns.

Case et al. (1993) [21] show that a state’s budget expenditure depends on the spending of similar1

states. Therefore, a rise in a “neighboring” state’s expenditure results in an increase in the state’s own
expenditure. As an empirical application, we apply the likelihood ratio test to the budget dependence
of U.S. states over time. The data consist of annual observations for the continental United States
during the period 1960–2011. States that are economically similar are defined as neighbors. The test
result shows that the null hypothesis of no break in the spatial dependence parameter is rejected, and
the break date is estimated as 1982. The budget spillover is more pronounced post-break. Details of
the results and intuitions on why there might be a break are discussed.

1 Case et al. (1993) [21] defines similar states in three different ways: (1) similar in location, (2) similar in income and (3) similar
in racial composition.
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The paper is organized as follows: in Section 2, the spatial lag model is presented and discussed.
Section 3 provides motivating examples where the test can be applied. We propose a sup LR test,
which is described in Section 4. The limiting distribution of the test is stated in Section 5. The outline
of the proof is also provided in this section (details are in the Appendix A). In the event of a rejection
of the null hypothesis, we propose a break date estimator in Section 6. The finite sample properties of
the test and the estimator are discussed in Section 7. Finally, we apply the test to budget spillovers in
U.S. states, in Section 8. It shows that there was a change in the budget dependence between similar
income states. In Section 9, we provide the conclusion and possible next steps in research.

2. Spatial Lag Model

Let us consider a simple pooled linear regression model

yit = xitβ + εit, (1)

where i is an index of cross-sectional dimension, with i = 1,..., N, and t is an index for the time dimension,
with t = 1,..., T. We discuss all of the results using “time” as the second dimension; however, for
a general spatial lag model, the second dimension could very well reflect another cross-sectional
characteristic, such as the industry sector or the number of classes or groups. yit is an observation on
the dependent variable at i and t, xit a 1 × K vector of observations on the (exogenous) explanatory
variables including the intercept, β a matching K × 1 vector of regression coefficients and εit an error
term. In stacked form, the simple pooled regression can be written as

y = xβ + ε, (2)

with y a NT × 1 vector, X a NT × K matrix and ε a NT × 1 vector. In general, spatial dependence is
present whenever the correlation across cross-sectional units is non-zero, and the pattern of non-zero
correlations conforms to a specified neighbor relation. When the spatial correlation pertains to the
dependent variable, it is known as a spatial lag model. The neighbor relation is expressed by means of
a spatial weight matrix.

A spatial weights matrix W is a N × N positive matrix in which the rows and columns correspond
to the cross-sectional observations. An element wij of the matrix expresses the prior strength of
the interaction between location i (in the row of the matrix) and location j (column). This can be
interpreted as the presence and strength of a link between nodes (the observations) in a network
representation that matches the spatial weights’ structure. In the simplest case, the weights matrix
is binary, with wij = 1 when i and j are neighbors and wij = 0 when they are not. The choice of the
weights is typically driven by geographic criteria, such as contiguity (sharing a common border) or
distance. However, generalizations that incorporate notions of “economic” distance are increasingly
being used, as well. By convention, the diagonal elements wii = 0. For computational simplicity and
to aid the interpretation of the spatial variables, the weights are almost always standardized, such that
the elements in each row sum to one, or ws

ij = wij/ ∑j wij. Using the subscript to designate the matrix
dimension, with WN as the weights for the cross-sectional dimension and the observations stacked, the
full NT × NT weights matrix becomes: WNT = IT ⊗ WN , with IT an identity matrix of dimension T.

Unlike the time series case, where “neighboring” observations are directly incorporated into a
model specification through a shift operator (example t − 1), in the spatial literature, the neighboring
observations are included in the model specification by applying a spatial lag operator (W) to the
dependent variable. A spatial lag operator constructs a new variable, which consists of the weighted
average of the neighboring observations, with the weights as specified in W. The spatial lag model
or mixed regressive spatial autoregressive model includes a spatially-lagged dependent variable as
an explanatory variable in the regression specification. The word “spatial lag” is used to specify the
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inclusion of the neighboring observations. Similar to the time series “lag operator”, Wy emphasizes
the first-order location lag in the dependent variable. The spatial lag model can be written as

y = ρ(IT ⊗ WN)y + Xβ + ε (3)

where ρ is the spatial autoregressive parameter and the parameter of interest in this paper.

2.1. Endogeneity Problem

The problem in the estimation of the model (3) is that, unlike the time series case, the spatial
lag term is endogenous. This is the result of the two-directionality of the neighbor relation in
space (“I am my neighbor’s neighbor”), in contrast to the one-directionality in time dependence.
Rewriting equation (3) in a reduced form:

y = [IT ⊗ (IN − ρWN)
−1]Xβ + [IT ⊗ (IN − ρWN)

−1]ε (4)

indicating that the joint determination of the values of the dependent variable in the spatial system is a
function of the explanatory variables and error terms at all locations in the system. The presence of
the spatially lagged errors in the reduced form illustrates the joint dependence of WNyt and εt in each
cross-section. In model estimation, the simultaneity is usually accounted for through instrumentation
(IV and GMM estimation) or by specifying a complete distributional model (maximum likelihood
estimation). In this paper, we use maximum likelihood estimation.

2.2. Maximum Likelihood Estimation

Assuming a Gaussian distribution for the error term, with ε ∼ N(0, σ2
ε INT), the log-likelihood can

be written as:
lnL = −NT

2
ln2πσ2

ε + Tln|IN − ρWN | − 1
2σ2

ε
ε′ε (5)

where ε = y − ρ(IT ⊗ WN)y − Xβ and |IT ⊗ (IN − ρWN)| = Tln|IN − ρWN | is the Jacobian of the
spatial transformation. To avoid singularity or explosive processes, the parameter space P for the true
spatial autoregressive parameter ρ is compact, and ρ0 is in the interior of P.

Lee (2004) [22] discusses the asymptotic properties of the maximum likelihood estimators for the
cross-section case. Yu et al. (2008) [18] and Lee and Yu (2010) [19] derive the properties for the spatial
panel model with fixed effects. We use the properties of the maximum likelihood estimators to derive
the asymptotic distribution of the test statistic.

3. Motivation

We consider the following model in a spatial lag model:

yit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xitβ + ρ1

N
∑

j=1
wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N
∑

j=1
wijyjt + εit for t = ko + 1, ..., T

(6)

ρ1 = ρ2 means there is a change at an unknown date k0. We propose a sup LR test of the null hypothesis
of ρ1 = ρ2 against the alternative hypothesis of a change: ρ1 = ρ2. The test detects a structural break in
the spatial dependence parameter. Following are some empirical models where the test can be applied,
providing motivation for the test.

53



Econometrics 2017, 5, 12

3.1. Sectoral Output

Acemoglu et al. (2012) [23] look into the intersectoral input-output linkages in the U.S. and shows
how microeconomic idiosyncratic fluctuations lead to aggregate fluctuations. Defining the sectoral
production function as,

xi = zilα
i

n

∏
j=1

x
βwij
ij (7)

where xi is the output of sector i, li is the amount of labor hired by the sector, α ∈ (0,1) is the share of
labor, xij is the amount of commodity j used in the production of good i and zi is the idiosyncratic
productivity shock to sector i. The exponent wij ≥ 0 designates the share of good j in the total
intermediate input use of firms in sector i. In particular, wij = 0 if sector i does not use good j as input
for production.

Acemoglu et al. (2012) [23] assume that the input shares of all sectors add up to one, so ∑j wij = 1.
With the assumption of market clearing, equation (7) can be rewritten (taking the log on both sides) as
equation (3). In this case, labor will be an exogenous variable, and β1 = β2 would mean changes in the
Cobb-Douglas parameter over time.

3.2. Cigarette Sales

Baltagi and Li (2004) [24] estimate a demand model for cigarettes based on a panel from 46 U.S.
states and defining W based on the neighboring states:

log(Cit) = β1log(Pit) + β2log(Yit) + ρ
N

∑
j=1

wijlog(Cjt) + εit (8)

where Cit is real per capita sales of cigarettes by persons of smoking age (14 years and older). This is
measured in packs of cigarettes per capita. Pit is the average retail price of a pack of cigarettes measured
in real terms. Yit is real per capita disposable income. The spatial autocorrelation parameter shows the
dependence of cigarette sales in the neighboring states. The tax policy on per packet cigarette differs
by states, and this leads to substantial cross-state sales. However, over time, tax per packet has become
more homogeneous, and hence, one could expect the parameter ρ to change over time. By testing the
hypothesis that ρ1 = ρ2 against the alternative hypothesis of ρ1 = ρ2, we can check if the dependence
on neighboring states has changed over time.

3.3. Budget Spillovers

Case et al. (1993) [21] showed that the U.S. states’ budget expenditure depends on the spending
of similar states:

Git = Xitβ + ρ
N

∑
j=1

wijGjt + εit (9)

where Git is the per capita real government expenditure of state i in year t, Xit includes relevant
control variables, income and demographic and wij > 0 if a state is the “neighbor” of another state.
Case et al. (1993) [21] define “neighbor” in three different ways in the paper: (1) neighbors in location;
(2) states having similar income and (3) states having similar racial composition. They found that if
the neighboring state increases its budget spending by a dollar, then the state increases its budget
expenditure by 70 cents. Policies have changed over the years, and one might be interested in testing if
the spillover effect remains the same.
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3.4. Other Network Motivations

In many of the network studies, the impact of the network is usually estimated by including Wy
in the model, where W is the weighting matrix defining the network and y is the variable of concern.
For example, a weighted average of the math test scores of students sitting beside student i determines
student i’s test score.

With increasing network data availability, we could have repeated samples from such network
experiments and then be curious to know how the impact of the network changes over time.
Our structural break test could be used in this respect.

4. Test

In this section, we describe the test statistic. The spatial lag model is given by:

yit = xitβt + ρt

N

∑
j=1

wijyjt + εit (10)

where εit ∼ N(0, σ2
εit). We want to test the null hypothesis:

H0 : ρ1 = .... = ρT and β1 = ... = βT and σ2
εi1 = ... = σ2

εiT
against the alternative
H1 : β1 = ... = βT and σ2

εi1 = ... = σ2
εiT , but there is an integer k0, 1 < k0 < T,

such that ρ1 = .... = ρk0 = ρk0+1 = .... = ρT .

Rewriting the panel model with a change point at k0 in the parameter ρ,

yit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xitβ + ρ1

N
∑

j=1
wijyjt + εit for t = 1, ..., ko,

xitβ + ρ2
N
∑

j=1
wijyjt + εit for t = ko + 1, ..., T

(11)

where ρ1 = ρ2 means there is a change at an unknown date k0. The problem can be described as testing
ρ1 = ρ2 against ρ1 = ρ2.

Let us write twice the likelihood ratio as

2Λk = 2(lnLk(ρ̂k, β̂k, σ̂2
k ) + lnL∗

k (ρ̂
∗
k , β̂k, σ̂2

k )− lnLT(ρ̂T , β̂T , σ̂2
T)), (12)

where

• lnLk(ρ̂k, β̂k, σ̂2
k ) is the log-likelihood defined for the sample that includes the observations t = 1, .., k

• lnL∗
k (ρ̂

∗
k , β̂k, σ̂2

k ) is the log-likelihood defined for the sample that includes the observations
t = k + 1, ..., T

• lnLT(ρ̂T , β̂T , σ̂2
T) is the log-likelihood defined for the sample that includes the observations

t = 1, ..., T

As k0 is unknown, we use a maximally selected likelihood ratio and reject H0 if

Zt = max
[Tu]≤k≤[T(1−u)]

2Λk (13)

is large, where 0 < u < 1/2, typically a small number is the trimming and [.] denotes the largest integer
that is less than or equal to the argument. Therefore, the suggested test is to calculate the difference
between the log-likelihood under an alternative hypothesis and the log-likelihood under null for every
[Tu] < k < [T(1 − u)], and then, the test statistic is the maximum difference between them.
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5. Limiting Distribution

In this section, we derive the asymptotic distribution of the test statistic. However, before that we
specify the assumptions.

5.1. Assumptions

Assumptions on WN :

Assumption 1. wij ≥ 0, i = j for the off-diagonal elements of the spatial weight matrix WN and its diagonal
elements satisfy wn,ii = 0 for i = 1,..,N.

Assumption 2. WN is uniformly bounded in both row and column sums.

Assumption 3. |IT ⊗ (IN − ρWN)| is invertible for all ρ ∈ P; moreover, P is compact, and ρ0 is in the
interior of P.

Assumptions on X and ε:

Assumption 4. εit are iid across i and t with ε ∼ N(0, σ2
ε INT) and E|εit|4+η < ∞ for some η > 0.

Assumption 5. The matrices 1
Nj ∑N

i=1 ∑
j
t=1 XitX′

it and 1
Nj ∑N

i=1 ∑T
t=j+1 XitX′

it have minimum eigenvalues
bounded away from zero in probability for large j. Furthermore, it is assumed that E||X4

it|| < ∞.

Assumption on N and T:

Assumption 6. N is a non-decreasing function of T and T → ∞

The following assumption is made to establish the theoretical result of the paper.

Assumption 7. Let GN = WN [IN − ρNWN ]
−1 and 1√

N
(GN XNtβ0)

′ = HNt then HNt ⇒ H∗ and
1

NT (GN XNtβ0)
′(GN XNtβ0) ⇒ H∗′ H∗.

Assumption 1 is a standard normalization assumption in spatial econometrics, while
Assumption 2 is also used in Lee (2004) [22] and Yu et al. (2008) [18]. Assumption 3 guarantees that
Model (4) is valid. Furthermore, compactness is a condition for the theoretical analysis. In empirical
applications, where WN is row-normalized, one just searches over (−1,1). Assumption 4 provides
regularity assumptions for εit. The normality assumption on errors is used to construct the likelihood
function. However, the limit result does not depend on it. The result only needs quasi-maximum
likelihood estimation (QMLE). Assumption 5 makes sure that the regressors are asymptotically
stationary. Assumption 6 allows two cases: (i) N → ∞ as T → ∞, such that N

T → k < ∞, for
k ≥ 0, and (ii) N is fixed as T → ∞.

Theorem 1. Let =⇒ denote weak convergence in the distribution under the Skorokhod topology. Under
Assumptions 1–6 and H0, the limiting distribution of Zt is:

Zt =⇒ sup
s∈(u,1−u)

B2
1(s)

s(1 − s)
(14)

where B1(s), is a standard Brownian bridge and u, the trimming parameter, is a small positive number.
For a known break k0:

Zt
D−→ χ2(1) (15)
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Proof of Theorem 1. To prove the result, we first take a Taylor approximation of 2Λk around the
true parameter ρ0. It is found that the approximations involve partial sums of Gaussian random
vectors that are independently and identically distributed. Using results from the maximum likelihood
estimation of the spatial panel model, we obtain uniform convergence to Wiener processes. As a
next step, the partials sums are manipulated to obtain a Brownian bridge distribution. For a fixed k,
it is then easy to show that the asymptotic distribution is chi-square. The detailed proof is provided
in the Appendix A.

The intuition as to why the asymptotic distribution from the univariate time series test
(Cörgö and Horváth (1997) [25]) is still valid in this case is because the spatial dependence is contained
in time; the dependent variable of unit i only depends on the contemporaneous dependent variable
of the neighboring units. Therefore, the endogeneity does not spread over time, and hence, the
distribution is similar to the one found in the univariate time series case.

There is an explicit form of the distribution function of the limit random variable. The critical
values are provided in Kiefer (1959) [26] (p. 438). Some of the relevant critical values are for size = 10%,
1.4978; for size = 5%, 1.8444 and for size = 1%, it is 2.649 for a 5% trimming.

6. Estimation

Following evidence against the null hypothesis, it is important to determine the location of the
break date. The proposed estimator of the break date is the one that maximizes the likelihood under
the alternative hypothesis,

k̂ = arg max
k

lnLA (16)

where lnLA is the log likelihood under the alternative defined as: lnLA = lnLk + lnL∗
k where

lnLk = −Nk
2

ln2πσ2
ε + kln|IN − ρWN | − 1

2σ2
ε

N

∑
i=1

k

∑
t=1

εitεit

lnL∗
k = −N(T − k)

2
ln2πσ2

ε + (T − k)ln|IN − ρWN | − 1
2σ2

ε

N

∑
i=1

T

∑
t=k+1

εitεit

where lnLk is the log-likelihood defined for t = 1, · · · , k and lnL∗
k is the log-likelihood for the sample

that includes the observations t = k + 1, · · · , T.
The asymptotic properties of the estimator, including the consistency, rate of convergence and limit

distribution, are currently under investigation. Simulation evidence, presented is Section 7, shows that
the estimator performs very well in small samples in terms of bias and root mean squared error.
The root mean squared error is shown to decrease as the sample size increases, thereby suggesting that
the estimator is indeed consistent.

7. Monte Carlo Results

To evaluate the finite sample performance of the LR test and the performance of the estimator,
this section reports the results of a limited set of sampling experiments. All results reported are for
1000 simulations. We consider the data generating process:

yit =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 + xit + 0.6

N
∑

j=1
wijyjt + εit pre-break

1 + xit + ρ2
N
∑

j=1
wijyjt + εit post-break

(17)

where xit from N(0, 1) and εit from N(0, 1.3).

57



Econometrics 2017, 5, 12

We first look into the power of the proposed test. Let ρ1 = 0.6, and the actual break date is
k0 = T/2 in each of the cases. We find that the test has high power even with N and T = 50, as seen in
Table 1. The power increases with increases in N and/or T (see Table 2).

Table 1. Power of the test: I.

N T Rho2 Frequency of Rejection

50 50 0.7 0.957
50 50 0.65 0.337
50 50 0.55 0.263
50 50 0.5 0.807
50 50 −0.6 1

Table 2. Power of the test: II.

N T Rho2 Frequency of Rejection

50 100 0.65 0.657
50 100 0.55 0.551
50 200 0.65 0.932
50 200 0.55 0.881

100 50 0.65 0.515
100 50 0.55 0.401
100 100 0.65 0.852
100 100 0.55 0.741
100 200 0.65 0.989
100 200 0.55 0.971

Next, we look into graphical comparisons between empirical and asymptotic distributions of the
test presented in Figure 1. The continuous lines are the asymptotic distributions, and the dotted lines
are the empirical CDF. It is found that even with a small T, there is no size distortion, and the empirical
distribution matches closely the asymptotic distribution. As T increases, the two distributions overlap.

For a known break date, the asymptotic distribution is chi-square with one degree of freedom.
The graphical comparison presented in Figure 2 shows that even with N = 50, T = 50, with a known
break date, the empirical distribution is very close to the asymptotic chi-square distribution.

(a) N = 50, T = 50

Figure 1. Cont.
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(b) N = 200, T = 200

(c) N = 50, T = 500

(d) N = 500, T = 500

Figure 1. Emprical versus Asymptotic Distribution of the test.
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Figure 2. CDF plot for empirical distribution with a known break.

Next, we compare the performance of the break-date estimator (see Table 3). The bias is almost
negligible. The root mean square decreases with increases in N. With increases in T, the standard
deviation does not go down. This is a well-known result in the univariate time series literature: only
the break fraction can be consistently estimated, not the break date.

Furthermore, we make a quick comparison with the ordinary least squares residuals-based
method (see Table 4), with the estimator defined by

k̂ = arg min
1≤k≤T

SSR(k) (18)

Here, SSR(k) is the sum of squared residuals of the model under the alternative assuming a break
at date k. The bias is comparable in the two cases, but the standard deviation and root mean square are
higher for the OLS residual-based estimate of break date.

Table 3. Estimator performance: likelihood method.

Rho1 Rho2 N T Break Date Bias SD RMSE

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 50 100 50 0.08 1.16 1.16
0.6 0.7 50 200 100 0.11 1.1 1.1

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 100 50 25 0.04 0.67 0.67
0.6 0.7 200 50 25 0.01 0.23 0.23

0.6 0.7 50 50 25 0.1 1.01 1.01
0.6 0.7 100 100 50 0.06 0.52 0.53

0.6 0.65 50 50 25 0.35 5.77 5.78
0.6 0.55 50 50 25 0.16 6.99 6.99
0.6 −0.6 50 50 25 0 0 0

Looking at the tables closely, an interesting pattern is observed: there is an asymmetry in the
behavior of the estimator and the power of the test. When ρ2 = 0.55, the power of the test is lower
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compared to that when ρ2 = 0.65. Similarly, the break date estimator has a lower standard deviation
and root mean square when the post-break parameter is increasing (ρ2 = 0.65) as compared to a
comparable reduction in the post-break parameter (ρ2 = 0.55). An explanation for such behavior could
be that, when the post-break parameter is increasing (ρ2 = 0.65), there is a higher signal of spatial
dependence. This leads to reduction in the variance and makes it easier to assess whether a break
is present and locate it. However, when the post-break parameter is comparably lower (ρ2 = 0.55),
the signal is lower, giving rise to more variation and making it more difficult to assess whether a break
is present and to locate it.

Table 4. Estimator performance: OLS residuals.

Rho1 Rho2 N T Break Date Bias SD RMSE

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 50 100 50 −0.31 2.01 2.03
0.6 0.7 50 200 100 −0.36 1.85 1.88

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 100 50 25 -0.14 1.17 1.18
0.6 0.7 200 50 25 −0.09 0.49 0.5

0.6 0.7 50 50 25 −0.2 2.53 2.54
0.6 0.7 100 100 50 −0.22 1.09 1.11

0.6 0.65 50 50 25 −0.51 8.95 8.96
0.6 0.55 50 50 25 −0.03 9.8 9.8
0.6 −0.6 50 50 25 0 0 0

The proposed likelihood-based estimator performs well in a finite sample. As N increases, the root
mean square error decreases, suggesting that the estimator is consistent.

8. Budget Spillovers

Case et al. (1993) [21] showed how a U.S. state’s budget expenditure depends on the spending of
similar states. Quoting Arkansas state Senator Doug Brandon (1989) 2 describing his state’s budgetary
policy as

“We do everything everyone else does.”

The proposed sup LR test is used to check the hypothesis that a state’s dependence on another’s
budget remained the same in the U.S. or has changed over time. The data consists of an annual panel
of U.S. states from 1960–2011. All dollar figures are calculated on a per capita basis and deflated using
the GDP deflator (the base year being 2009). The dependent variable is the government expenditure
of state i in the year t (Git). The budget expenditure is the sum of the direct spending of state and
local governments. The variables included in Xit other than the intercept are: the real per-capita
personal income (Y), income squared (Y2), real per capita total intergovernmental federal revenue to
state and local governments (F), population density (Popden), proportion of the population at least
65 years old (Pop65), proportion of the population between five and 14 years old (Pop5to14) and
proportion of the population that is black (Popblack). The income and revenue are the resources the
state government can use. The square of the income picks up possible non-linear effects of changing
resources. The population density captures the possibility that there are potential congestion effects
and scale economies in the provision of state and local government services. States with different age
and racial structures may have different demands for publicly-provided goods. Hence, demographic
variables are included.

2 Applebome, P. (1989), “Governors in the South Seek to Lift Their States”, New York Times, 12 Feb, L26.
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The model can be written as:

Git = Xitβ + ρ
N

∑
j=1

wijGjt + εit (19)

where X includes all of the control variables. We consider T = 52 from 1960–2011 and N = 49 states
in the U.S. Case et al. (1993) [21] use three different ways to define the weight matrix. We define the
elements of the weight matrix as wij = (1/|Yi − Yj|)/Si, where Yk is the mean income over the sample
period and Si is the sum ∑j 1/|Yi − Yj|. According to this definition of the weight matrix, rich states
are neighbors to rich states, and poor states are neighbors to poor states. The full model (1960–2011)
estimation results are presented in Table 5.

Table 5. Full model estimate.

Coefficient Asymptotic t-Stat p-Value

Intercept 0.6974 0.2143 0.8303
Pop65 −0.4042 -4.8989 0

Pop5to14 −0.0589 −0.5739 0.566
Popblack −0.0562 −4.3041 0
Popden −0.0003 −2.2139 0.0268

F 1.7352 58.2555 0
Y 0.1301 14.289 0
Y2 0 1.622 0.1048

W × G 0.122 7.3024 0

All of the test results are based on tests with size 5%. We reject the null hypothesis of no break,
implying evidence for a break. The break date is estimated at 1982. The pre-break budget spillover
coefficient is estimated as 0.0229, while the post-break budget spillover coefficient is estimated as
0.1056. As to why there might be a break, there could be two reasons: (1) in 1981, Ronald Reagan
became the president of the United States and advocated many different policies across the U.S. states
(also known as Reagonomics); (2) the number of Democratic governors in the U.S. started decreasing
post-1983, suggesting synchronized Republican economic policies in different states.

To differentiate between trend behaviors and fluctuations, a Hodrick-Prescott filter is applied
on all of the dollar value variables to closely look into idiosyncratic budget spillovers in the U.S.
states. We reject the null hypothesis of no break. The break date is then estimated to be in 1977. The
pre-break ρ coefficient is 0.5718, and the post-break ρ coefficient is 0.3746. Firstly, this suggests that the
idiosyncrasy in budget expenditure for a state depends on “similarly”-situated states. Secondly, the
dependence goes down post-break. This can be attributed to more power given to the governors in the
1980s. For the federal government (central planner), the budget policies for each state will be similar;
compared to individual governors in each state who will adjust the budget expenditures for their states
based on individual needs. Therefore, overall, even though the spillovers increase (capturing overall
trend in the economy), the budget spillovers in the case of idiosyncracies reduce over time.

9. Conclusions

We consider the problem of structural break in the spatial dependence parameter in a panel model
and provide a likelihood ratio test.

We first describe the spatial panel model and the interpretation of the spatial lag or spatial
autoregressive parameter. Next we motivate the problem of structural break in such parameter.
The sup LR test statistic is proposed, and under large T, the limiting distribution is derived. The test is
easy to implement, and the critical values can be analytically obtained.

In case there is evidence to reject the null hypothesis, we propose a break date estimator based
on the argument that maximizes the likelihood ratio. The finite sample properties of the test and the
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break-date estimator are provided. The Monte Carlo simulations show that the test has good power
even in small samples. The estimator of the break date shows negligible bias, and the root mean square
decreases with increases in N, suggesting a consistent break-date estimator for a panel model.

We then consider the problem of budget spillovers across the U.S. states and the change in the
spatial dependence over time. The test rejects the null hypothesis of no break in budget spillovers
for (1) the spillover in the overall budget expenditure of the U.S. states and (2) the spillover in the
fluctuations of budget expenditure. The overall trend of spatial dependence in budget expenditure
is found to have increased post-break, but the idiosyncrasies in budget expenditure are less spatially
dependent post-break.

The following extensions to the paper are being considered: (1) the asymptotic limit distribution
of the test statistic for large N; (2) proving the consistency of the break date estimator and deriving the
limiting distribution; and (3) extending the test to multiple structural breaks.
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MLE Maximum likelihood estimation
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QMLE Quasi-maximum likelihood estimation
RMSE Root mean square error

Appendix A. Proof of Theorem

Let θ = (ρ, β, σ2
ε ). Then,

lnLT(θ) = −NT
2

ln2πσ2
ε + Tln|IN − ρWN | − 1

2σ2
ε

N

∑
i=1

T

∑
t=1

ε′itεit

lnLk(θ) = −Nk
2

ln2πσ2
ε + kln|IN − ρWN | − 1

2σ2
ε

N

∑
i=1

k

∑
t=1

ε′itεit

lnL∗
k (θ) = −N(T − k)

2
ln2πσ2

ε + (T − k)ln|IN − ρWN | − 1
2σ2

ε

N

∑
i=1

T

∑
t=k+1

ε′itεit

Denoting lnLT(θ) = Lc, lnLk(θ) = L1 and lnL∗
k (θ) = L2; furthermore, defining ρ̂k as the MLE

estimate for the pre-break regime under the alternative, ρ̂∗k as the MLE estimate for the post-break
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regime under the alternative and ρ̂T as the MLE estimate under the null. Taking a Taylor expansion of
2[L1 + L2 − Lc] around the true value ρ0 and denoting that by Rk

Rk = 2[L1(ρ0) + L2(ρ0)− Lc(ρ0)

+ L′
1(ρ0)(ρ̂k − ρ0) +

L′′
1 (ρ0)

2
(ρ̂k − ρ0)

2

+ L′
2(ρ0)(ρ̂

∗
k − ρ0) +

L′′
2 (ρ0)

2
(ρ̂∗k − ρ0)

2

− L′
c(ρ0)(ρ̂T − ρ0) +

L′′
c (ρ0)

2
(ρ̂T − ρ0)

2] + op(1)

Now, L1(ρ0) + L2(ρ0) = Lc(ρ0). Therefore, Rk can be rewritten as:

Rk = [2L′
1(ρ0)(ρ̂k − ρ0) + L′′

1 (ρ0)(ρ̂k − ρ0)
2

+ 2L′
2(ρ0)(ρ̂

∗
k − ρ0) + L′′

2 (ρ0)(ρ̂
∗
k − ρ0)

2

− 2L′
c(ρ0)(ρ̂T − ρ0) + L′′

c (ρ0)(ρ̂T − ρ0)
2] + op(1)

From Lee (2004) [22] and Yu et al. (2008) [18] under Assumptions 1–6

√
NT(ρ̂T − ρ0) =

[− 1
NT

L′′
c (ρ0)

]−1 1√
NT

L′
c(ρ0) + op(1)

√
Nk(ρ̂k − ρ0) =

[− 1
Nk

L′′
1 (ρ0)

]−1 1√
Nk

L′
1(ρ0) + op(1)√

N(T − k)(ρ̂∗k − ρ0) =
[− 1

N(T − k)
L′′

2 (ρ0)
]−1 1√

N(T − k)
L′

2(ρ0) + op(1)

Using these relationships and rearranging the terms, Rk can be rewritten as:

Rk =
1√
Nk

L′
1(ρ0)

[− 1
Nk

L′′
1 (ρ0)

]−1 1√
Nk

L′
1(ρ0)

+
1√

N(T − k)
L′

2(ρ0)
[− 1

N(T − k)
L′′

2 (ρ0)
]−1 1√

N(T − k)
L′

2(ρ0)

− 1√
NT

L′
c(ρ0)

[− 1
NT

L′′
c (ρ0)

]−1 1√
NT

L′
c(ρ0) + op(1)

Let GN = WN [IN − ρNWN ]
−1, then

− 1
NT

L′′
c (ρ0) =

1
σ2

ε0

T

∑
t=1

(
(WNYNt)WNYNt + tr(G2

N)
)
+ op(1)

where WNYNt = GN XNtβ0 + GNεNt.
Let, 1√

N
(GN XNtβ0)

′ = HNt. Then, by Assumption 7, HNt ⇒ H∗ and

− 1
NT L′′

c (ρ0) =
1

NT (GN XNtβ0)
′(GN XNtβ0) ⇒ H∗′ H∗.

Furthermore,

1√
NT

L′
c(ρ0) =

1
σ2

ε0

√
NT

T

∑
t=1

[
(GN XNtβ0)

′εNt
]
+

1
σ2

ε0

√
NT

T

∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0
trGN

]
+ op(1)
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1√
NT

T

∑
t=1

[
ε′NtG

′
NεNt − σ2

ε0
trGN

]
= op(1)

1√
NT

T

∑
t=1

[
(GN XNtβ0)

′εNt
]
= Op(1)

Now, 1√
T ∑T

t=1
[ 1√

N
(GN XNtβ0)

′εNt
]
= T−1/2 ∑T

t=1 HNtεNt. As T → ∞, by the FCLT, we get:

1√
T

T

∑
t=1

HNtεNt ⇒ H∗W(1)

where W(t) is a standard Wiener process. Thus, if we let lim
T→∞

k
T = λ, then by the FCLT,

1√
k

k

∑
t=1

HNtεNt ⇒ H∗W(λ)√
λ

1√
T − k

T

∑
t=k+1

HNtεNt ⇒ H∗(W(1)− W(λ))√
1 − λ

Hence, we get:

Rk ⇒ H∗W(λ)(H∗)−1
√

λ

H∗W(λ)(H∗)−1
√

λ

+
H∗(W(1)− W(λ))(H∗)−1

√
1 − λ

H∗(W(1)− W(λ))(H∗)−1
√

1 − λ

− H∗W(1)(H∗)−1H∗W(1)(H∗)−1

Let

R(λ) ≡ 1
λ
[W(λ)]2 +

1
1 − λ

[W(1)− W(λ)]2 − [W(1)]2 =
[λW(1)− W(λ)]2

λ(1 − λ)

Rearranging the terms, we get:

sup
λ∈(u,1−u)

Rk ⇒ sup
λ∈(u,1−u)

R(λ)

or sup
λ∈(u,1−u)

Rk ⇒ sup
λ∈(u,1−u)

B2
1(λ)

λ(1 − λ)

where B1(λ) = [λW(1)− W(λ)] is a Brownian bridge.
For known k0, λ0 = k0

T , the limit distribution of R(λ0) is χ2
1.
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Abstract: This is a simulation-based warning note for practitioners who use the MGLS unit root tests
in the context of structural change using different selection lag length criteria. With T = 100, we find
severe oversize problems when using some criteria, while other criteria produce an undersizing
behavior. In view of this dilemma, we do not recommend using these tests. While such behavior
tends to disappear when T = 250, it is important to note that most empirical applications use smaller
sample sizes such as T = 100 or T = 150. The ADFGLS test does not present an oversizing or
undersizing problem. The only disadvantage of the ADFGLS test arises in the presence of MA(1)
negative correlation, in which case the MGLS tests are preferable, but in all other cases they are very
undersized. When there is a break in the series, selecting the breakpoint using the Supremum method
greatly improves the results relative to the Infimum method.

Keywords: unit root tests; structural change; truncation lag; GLS detrending; information criteria;
sequential general to specific t-sig method

JEL Classification: C22; C52

1. Introduction

Testing for the presence of a unit root in a time series (i.e., whether or not a structural change can
be identified) is now a common starting point in advanced models frequently used in macroeconomics
and finance. Recent efficient unit root tests are the ADFGLS and the PGLS

T tests proposed by
Elliott et al. (1996), and the MGLS tests proposed by Ng and Perron (2001).1 All these (GLS-based) tests
have been extended to the unit root with one unknown structural change as suggested by Perron

1 For excellent surveys, see Stock (1994), Maddala and Kim (1998), Phillips and Xiao (1998), Haldrup and Jansson (2006),
Perron (2006), and Choi (2015).
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and Rodríguez (2003), who show that these tests enjoy the same efficiency characteristics. MGLS tests
have become increasingly popular in the literature. For example, Haldrup and Jansson (2006) argue
that practitioners should abandon the use of ADF tests altogether in favor of MGLS tests because of
their excellent size properties and nearly optimal power properties. However, this note arrives at
the opposite conclusion, suggesting that the choice of the most suitable testing method should be
carefully assessed.

Currently, it is widely accepted that the selection of the lag length (denoted by k) has important
implications for the (size and power) behavior of the different unit root tests. See, for instance,
Schwert (1989), Ng and Perron (1995), Agiakloglou and Newbold (1992), Agiakloglou and Newbold (1996),
Elliott et al. (1996), Ng and Perron (2001), Del Barrio Castro et al. (2011), and Fossati (2012). The consensus is
to use data-dependent methods. These rules include AIC (Akaike Information Criterion), BIC (Bayesian
Information Criterion), Modified AIC (MAIC), Modified BIC (MBIC), and the t-sig method, which are
briefly explained below.

Recently, we performed a routine empirical application of the MGLS tests and obtained strange
results. For example, applying the MZGLS

α̂ and the AIC method to the labor market of the Spanish
region of Cantabria,2 we obtained an unemployment rate of −3’140,463, a huge (explosive) negative
value with k = 9. Using the t-sig procedure , we obtained −50’078,041 with k = 10, which is even more
impressive. A straightforward interpretation implies an overwhelming rejection of the null hypothesis,
given any of the asymptotic or finite critical values tabulated in Perron and Rodríguez (2003). However,
it is clear that the magnitude of this value is counter-intuitive and inadmissible, because its magnitude
is very far from standard values. In contrast, other rules yield opposite results (very small values in
absolute value). When applied to other three time series (unemployment rates in the Spanish regions of
Galicia and Murcia, and to Peru’s monetary policy rate), similar results are obtained.3 In consequence,
we consider that it is worth analyzing the source of the poor behavior of the MGLS tests in the cases
mentioned above. Hence, we perform extensive finite sample simulations for the MGLS tests using
different lag-length criteria, where the size performance is our primary interest.

This note (to our best knowledge) represents the first simulation-based attempt to study the
size and the eccentric behavior of the MGLS unit root tests in the context of structural change.
We do not pretend to perform an exhaustive analysis of each rule. Rather, this document is only
a simulation-based note of caution for users of these unit root tests.4

This note is structured as follows. In Section 2, the GLS approach with structural break, the test
statistics, the rules used to select k, and the two methods to select the break date are briefly reviewed.
In Section 3 we present simulation evidence about the size of the MZGLS

α̂ test linking the results with
an explosive behavior of the test. Section 4 provides some conclusions.

2. DGP, GLS Detrending, MGLS Tests with Structural Change, Rules for Selecting the Lag Length,
and Methods for Selecting the Breakpoint

2.1. The DGP

Following Perron and Rodríguez (2003), the data generating process (DGP) is:

yt = dt + ut, (1)

ut = αut−1 + vt,

2 Quartely data covering the period Q3 1976–Q2 2012 (T = 144 observations).
3 The sample size for Galicia and Murcia are the same as for Cantabria. For Peru’s monetary policy rate, the data are monthly

for February 2002–August 2010 (T = 92 observations).
4 We recognize the limitations of this note, which is only based on simulations. We agree with a Referee that formal proofs are

needed in the spirit of Del Barrio Castro et al. (2013). Hence, further work in the direction of a formal treatment will be
addressed in a future research project.
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for t = 0, 1, 2, ..., T, where vt = ∑∞
j=0 γjet−j, γ(L) = ∑∞

j=0 γjLj, that is, vt is an unobserved stationary
zero-mean process, where ∑∞

j=0 j|γj| < ∞ and et is a martingale difference sequence. We assume that
u0 = 0 throughout, although the results generally hold for the weaker requirement that E(u2

0) < ∞
(even as T → ∞). The process et has a non-normalized spectral density at frequency zero given by
σ2 = σ2

ε γ(1)2 , where σ2 = limT→∞ T−1 ∑∞
i=0 E(e2

t ).
In the first equation of (1), dt = ψ′zt, where zt is a set of deterministic components. Perron and

Rodríguez (2003) consider two models in the context of an unknown structural break: (i) Model I,
where there is a single structural change in the slope, that is, zt = {1, t, 1(t > TB)(t − TB)} where 1(.)
is the indicator function and TB is the time of change and can be expressed as a fraction of the whole
sample as TB = δT for some δ ∈ (0, 1); and (ii) Model II, which includes a single structural change in
intercept and slope, that is, zt = {1, 1(t > TB), t, 1(t > TB)(t − TB)}.5

2.2. GLS Detrending and MGLS Statistics

The class of MOLS tests are due to Stock (1999) and further analyzed by Perron and Ng (1996).
These tests are shown to have far less size distortions in the presence of important negative serial
correlation. The MGLS tests are constructed using ỹt = yt − ψ̂GLS′zt, where ψ̂GLS = (zα′

t zα
t )

−1(zα′
t yα

t ),
with yα

t ≡ [y1, (1 − αL)yt], and zα
t ≡ [z1, (1 − αL)zt], for t = 2, 3, 4....., T, and for a chosen α = 1 + c/T

and where zt has been defined in Section 2.1. We also use the PGLS
T test, as defined in Perron and

Rodríguez (2003). Hence, defining S(ρ, δ) = ∑T
t=1(y

ρ
t −ψ̂GLS′zρ

t )
2

for ρ = α, 1, the MGLS and the
PGLS

T are:

MZGLS
α̂

(δ) =
T−1ỹ2

T − s2

2T−2 ∑T
t=1 ỹ2

t−1

, MSBGLS(δ) =

[
T−2 ∑T

t=1 ỹ2
t

s2

]1/2

,

MZGLS
tα̂

(δ) =
T−1ỹ2

T − s2

[4s2T−2 ∑T
t=1 ỹ2

t−1]
1/2

, MPGLS
T,μ (δ) =

c2T−2 ∑T
t=1 ỹ2

t−1 − cT−1ỹ2
T

s2 ,

MPGLS
T,τ (δ) =

c2T−2 ∑T
t=1 ỹ2

t−1 + (1 − c)T−1ỹ2
T

s2 , PGLS
T (δ) =

S(α, δ)− αS(1, δ)

s2 .

Following Perron and Rodríguez (2003), we use c = −22.5.6 The statistics are modified versions
of the Zα̂ test of Phillips and Perron (1988), Bhargava (1986)’s R1 statistic, and the Ztα̂

test proposed
by Phillips and Perron (1988), respectively. The term s2 is an autoregressive estimate of (2π times)
the spectral density at frequency zero of ut, suggested by Perron and Ng (1998), and defined by
s2 = s2

ek/[1 − b̂(1)]2, where s2
ek = (T − kmax)−1 ∑T

t=k+1 ê2
tk, b̂(1) = ∑k

j=1 b̂j, with b̂j and {êtk} obtained
from the autoregression:

Δỹt = α0ỹt−1 + ∑k
j=1 bjΔỹt−j + etk. (2)

Another test is the so-called ADFGLS(δ) test, which is the t-statistic for testing the null hypothesis
that α0 = 0 in (2).

2.3. Rules for Selecting the Lag Length (k)

In the derivation of the asymptotic distributions of the different unit root tests, the theoretical
conditions provide little practical guidance for choosing k. The literature suggests to use
data-dependent rules like the AIC and the BIC where k is chosen by minimizing: ICk = ln σ̂2

k +
kCT

T−kmax
,

where σ̂2
k = (T − kmax)−1 ∑T

t=k+1 ê2
tk, CT

T−kmax
is the penalty attached to an additional regressor, and

5 See Rodríguez (2007) for the crash model proposed by Perron (1989).
6 Following Elliott et al. (1996) and Ng and Perron (2001), the parameter c is selected in such a way that 50% of the Gaussian

power envelope is attained.
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T − kmax is the number of observations effectively available.7 The AIC and the BIC are obtained when
CT = 2 and CT = ln(T − kmax), respectively. Another procedure is the sequential t-sig procedure
described in Campbell and Perron (1991).8 Selecting a value for kmax, the lag k is selected in a
general to specific recursive procedure based on a two-tailed t-statistic on the coefficient associated
with the last lag in (2). This approach is denoted by t-sig(10). In a more recent contribution, Ng
and Perron (2001) proposed a class of Modified Information Criteria (MIC) that selects k satisfying:
arg min MICk = ln σ̂2

k + CT [τ̂T(k)+k]
T−kmax

, with τ̂T(k) = (σ̂2
k )

−1α̂2
0 ∑T

t=kmax+1
ỹ2

t−1. The modified Akaike
(MAIC) is obtained when CT = 2, and the modified BIC (MBIC) is obtained when CT = ln(T − kmax).
Recently, in order to improve finite (size and power) sample performance, Perron and Qu (2007) have
proposed a hybrid approach consisting of two steps: (i) OLS detrended data are used to select k using
AIC, BIC, MAIC or MBIC; and (ii) estimating (2) using GLS detrended data to construct s2. In the
simulations, we consider this hybrid approach and the methods used are classified as AICOLS, BICOLS,
MAICOLS and MBICOLS, respectively.

2.4. Selecting the Breakpoint

Given that the break date (δ) is considered to be unknown, we follow Perron and Rodríguez (2003)
using two methods for selecting the break date. The first is to define the break date as the point that
minimizes the statistic tα̂0 in (2). This procedure is known as the Infimum method; see Zivot and
Andrews (1992) and Perron and Rodríguez (2003) for further details. The second method is based on
the maximum absolute value of the t-statistic associated with the dummy variable of the break in the
slope. This procedure is known as the Supremum method, which is equivalent to minimizing the SSR;
see Perron (1997) and Perron and Rodríguez (2003) for further details.

3. Finite Sample Simulations

3.1. Setup

The DGP is yt = αyt−1 + ut with three scenarios for the autocorrelation of ut: (i) the i.i.d.
case: ut = et; (ii) the AR(1) case: ut = φut−1 + et; and (iii) the MA(1) case: ut = et + θet−1.
For all cases, et ∼ i.i.d. N(0, 1), 1000 replications, T = 100 and 250, φ = −0.8,−0.4, 0.4, 0.8 and
θ = −0.8,−0.5, 0.3, 0.8 and α = 1 (null hypothesis). We performed extensive simulations for all MGLS

tests, using both models and both ways to select the break point. We present a selected set of results.
We have selected the MZGLS

α̂
test as the representative test for the entire family of the MGLS tests.

Furthermore, the Infimum method is used to select the break date and results are only reported for
Model I. All other results or Tables are available upon request.9

3.2. The Problem of Size

Table 1 shows the size of the MZGLS
α̂ test for T = 100 and for the different criteria for selecting k.

The kmax = int[10 × ( T
100 )

1/4], that is, kmax = 10. For the i.i.d. case, the results indicate that the
test constructed using BIC and BICOLS have a size around 3.0%, suggesting an undersized test.
Testing based on all MAIC (OLS and GLS versions) seems to be extremely conservative (with an
exact size of 0.0%). On the other side, testing constructed with AIC, AICOLS and the t-sig(10) present
values implying an extremely oversized test (22%, 27% and 63%, respectively). This same result

7 Note that in all experiments we use T − kmax as the available number of observations, which is fixed, as suggested by Ng
and Perron (2005).

8 See also Hall (1994) and Ng and Perron (1995).
9 We are agree with the Editor that our scenario is the worst possible scenario because we are using the Infimum method

jointly (in some cases) with the t-sig(10) rule. However, this worst scenario is widely used in typical empirical applications.
Furthermore, it is a regular or natural option in many statistical packages used by practitioners. Minimizing SSR
(or Supremum) is better, as we mention later.
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appears when we use some fixed values of k (k = 5, 6, ..., 10), where sizes go from 43% to 82%. Indeed,
the size is greater when the selected k is higher. For the AR(1) case, very similar results are found.
In the MA(1) case, we observe the standard result that the test is oversized. In fact, when θ = −0.80,
all selection criteria yield an oversized test. Even when using MAIC and MBIC, the sizes are 23% and
24%, respectively.

Table 1. Size of the MZGLS
α̂ Test, Model I, T = 100.

i.i.d.
AR(1) Case MA(1) Case

φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.22 0.17 0.23 0.30 0.49 0.73 0.30 0.30 0.66
BIC 0.03 0.01 0.07 0.09 0.19 0.90 0.41 0.09 0.40
MAIC 0.00 0.00 0.00 0.01 0.10 0.23 0.04 0.01 0.06
MBIC 0.00 0.00 0.00 0.00 0.10 0.24 0.04 0.00 0.00
AICOLS 0.27 0.21 0.27 0.33 0.53 0.80 0.36 0.33 0.70
BICOLS 0.03 0.01 0.09 0.09 0.20 0.93 0.45 0.10 0.42
MAICOLS 0.00 0.00 0.00 0.01 0.11 0.32 0.04 0.00 0.05
MBICOLS 0.00 0.00 0.00 0.00 0.09 0.33 0.04 0.00 0.00
t − sig(10) 0.63 0.54 0.60 0.67 0.82 0.64 0.57 0.66 0.76
k = 5 0.43 0.23 0.36 0.46 0.64 0.42 0.30 0.45 0.58
k = 6 0.53 0.36 0.48 0.57 0.71 0.44 0.40 0.55 0.46
k = 7 0.64 0.48 0.60 0.67 0.79 0.49 0.51 0.65 0.71
k = 8 0.70 0.57 0.65 0.73 0.84 0.51 0.58 0.71 0.68
k = 9 0.77 0.66 0.75 0.80 0.89 0.55 0.67 0.79 0.81
k = 10 0.82 0.73 0.81 0.82 0.91 0.62 0.73 0.83 0.80

In Table 2, the results are presented for T = 250, where kmax = 13. The values of the distortions
decrease, meaning that the explosiveness (oversizing) problem decreases. For the i.i.d. case, the tests
constructed with BIC and BICOLS yield 2.6% and 2.7%, respectively which are very similar when
T = 100. With MIC and MICOLS, the test has sizes of 1.7% and 1.6%, respectively which are better
than for T = 100, but are still very undersized. Tests using the AIC, AICOLS and t-sig(10) have sizes
of 9%, 11.2%, and 37.9%, respectively, which are smaller than the values for T = 100, but they still
indicate an oversized test, in particular the t-sig(10) criterion. With a fixed k (k = 5, 6, ..., 13), sizes are
greater when k is higher, although smaller compared with T = 100.

Table 2. Size of the MZGLS
α̂ Test, Model I, T = 250.

i.i.d.
AR(1) Case MA(1) Case

φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.091 0.054 0.102 0.129 0.197 0.345 0.154 0.155 0.373
BIC 0.026 0.002 0.024 0.053 0.077 0.697 0.246 0.087 0.203
MAIC 0.017 0.000 0.008 0.033 0.056 0.038 0.025 0.040 0.089
MBIC 0.015 0.000 0.012 0.008 0.058 0.046 0.029 0.003 0.007
AICOLS 0.112 0.074 0.124 0.155 0.217 0.445 0.173 0.173 0.390
BICOLS 0.027 0.001 0.026 0.053 0.078 0.802 0.259 0.088 0.211
MAICOLS 0.016 0.000 0.010 0.035 0.057 0.057 0.028 0.041 0.077
MBICOLS 0.015 0.000 0.013 0.006 0.060 0.059 0.029 0.001 0.005
t − sig(10) 0.379 0.266 0.345 0.395 0.514 0.233 0.312 0.392 0.467
k = 5 0.161 0.051 0.122 0.188 0.229 0.229 0.075 0.173 0.259
k = 6 0.204 0.081 0.173 0.223 0.261 0.143 0.110 0.202 0.136
k = 7 0.244 0.126 0.216 0.251 0.320 0.152 0.159 0.244 0.315
k = 8 0.283 0.168 0.265 0.293 0.359 0.152 0.202 0.278 0.221
k = 9 0.304 0.204 0.284 0.333 0.421 0.140 0.219 0.317 0.371
k = 10 0.357 0.243 0.329 0.381 0.461 0.162 0.258 0.363 0.335
k = 11 0.407 0.287 0.378 0.424 0.507 0.157 0.302 0.419 0.459
k = 12 0.459 0.343 0.431 0.479 0.540 0.173 0.354 0.452 0.447
k = 13 0.496 0.406 0.462 0.533 0.602 0.191 0.416 0.517 0.537
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If we increase kmax, the size of the test for higher k values increases considerably. We may
emphasize this issue comparing with the same class of test, but without a structural change, that is, with
some of the results obtained by Ng and Perron (2001). If we observe Table II.B of Ng and Perron (2001),
the MZGLS

α̂ for θ = −0.80 using k = 10 yields a size of 18% with T = 100. In our case, for the same
values, we have a size of 62%. With T = 250, Ng and Perron (2001) obtain 3.6%, a size close to the
nominal size (5%). However, in our case, for this sample we have a size of 19% (Table 2, k = 13). In fact,
our simulations suggest that we need T = 350 in order to obtain a size close to 5% when θ = −0.80.
The results are surely due to the higher number of deterministic components in our models compared
with Ng and Perron (2001). However, our conclusion is that practitioners interested in applying the
MZGLS

α̂ need a non-trivial number of observations.
A further comparison with Ng and Perron (2001) is possible if we select k using different criteria.

Again, in the MA(1) case, where θ = −0.80 and T = 100, the test constructed with MAIC and MBIC
yields sizes of 23% and 24%, respectively. The OLS versions of these criteria yield 32% and 33%,
respectively (see Table 1). However, in the case shown in Table VI.A of Ng and Perron (2001), sizes of
5.9% are obtained using MIC and 12.3% using MICOLS (T = 100). In Table 2, for T = 250, the tests
constructed with MAIC and MBIC yield sizes of 3.8% and 4.6%, respectively. In the case of Ng and
Perron (2001), MIC and MICOLS yield 1.2% and 1.6%, respectively.

3.3. Some Additional Results10

Two values are used in the construction of s2: s2
ek and b̂(1). Available simulations show that

the reason why s2 → ∞ is b̂(1) → 1. That is, when a higher k is selected, it is possible to incur in
overparameterization in (2) and b̂(1) → 1. If s2 tends to +∞, then the MZGLS

α̂
and MZGLS

tα̂
statistics

tend to −∞ and MSBGLS and PGLS
T converge in probability to zero.

Additional simulations show a link between the excessive size of the test and a high probability
of selecting higher values of k. Following Ng and Perron (1995), we examine the number of times
that k = i is selected by each rule for i = 0, 1, 2, ..., 10 and T = 100. In the i.i.d. case, the results show
that AIC, BIC, MAIC and MBIC have probabilities to select k = 1 of 56.2%, 93.2%, 74.4%, and 81.6%,
respectively. The t-sig(10) criterion has probabilities of selecting lag lengths that are equally distributed
for all values of k. For instance, the recursive t-sig(10) has a probability of around 53% of selecting k ≥ 7.
Until now, a basic conclusion is that the AIC, AICOLS, and t-sig(10) methods are not recommended,
as they have high probabilities of selecting higher values of k, which are associated with the size
distortions observed in Tables 1 and 2.

When we calculate the mean value for MZGLS
α (in the i.i.d. case), explosive negative values

are obtained for k ≥ 5 in AIC, AICOLS, BICOLS and t-sig(10). In contrast, reduced values of the
test (in absolute value) are given by MAIC, MBIC, MAICOLS and MBICOLS. We also examine the
number of times that the MZGLS

α̂ test is smaller than a threshold. We consider six possible values:
−500,−1000,−5000,−10, 000,−50, 000,−100, 000, and the i.i.d. case. For all thresholds considered,
we find that the number of explosive values of MZGLS

α̂ increases as the value of k is larger. For example,
for k = 7, the probability of getting a value of MZGLS

α̂ ≺ −1000 is 13.4%; and the probabilities for
k = 9 and k = 10 are 31% and 40.2%, respectively. Furthermore, the probabilities of finding values of
MZGLS

α̂ ≺ −100, 000 are 18% and 22.7% for k = 9 and k = 10, respectively.
All previous results are less severe when T = 250. Among other things, the probabilities of

finding elevated k values are lower. In this regard, the oversizing problem is attenuated (see Table 2).
Moreover, when a break is included in the simulations, the improvement is greater when T = 250.
However, explosive negative values are still observed when the lag is selected with AIC, AICOLS,
and t-sig (10).

10 We present a summary of the Tables from the Working Paper version of this Note (see Quineche and Rodríguez (2015)).
All other tables are available upon request.
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3.4. The ADFGLSStatistic

While the MZGLS
α̂ test (and the entire family of the MGLS tests) shows either oversizing or

undersizing problems, depending on the criteria used to choose k, the ADFGLS statistic works well.
In the available Tables, we find that the mean value for ADFGLS is not explosive irrespective of the
selection criterion used. There are some slightly large negative values when θ = −0.8, but it is a
standard result in the literature.

Table 3 shows the exact size of the ADFGLS statistic when T = 100. For the i.i.d. case, the tests
constructed with MAIC and MAICOLS yield sizes of 3.1% and 3.4%, respectively; that is, they are
slightly undersized, but closer to 5%. A similar observation is valid for MBIC and MBICOLS.
Other information criteria, like AIC, AICOLS and t-sig(10), generate oversized tests; but the values are
much smaller compared with Table 1 for the MZGLS

α̂ test. For example, for the t-sig (10) procedure,
Table 1 (i.i.d. case) shows that the statistic MZGLS

α̂ has a size of 63%, which is poor. However, this value
is reduced to 14.6% in the case of the ADFGLS test (Table 3). In general, the values in all scenarios are
smaller compared with Table 1 for MZGLS

α̂ . The only difference (as expected) arises when θ = −0.80.
In this case, the MZGLS

α̂ test has sizes of 23% and 24% for the MAIC and MBIC, respectively, while for
the ADFGLS test the values are 31.5% and 32.6%, respectively.

Table 3. Size (5%) of ADF Test, Model I, T = 100.

AR(1) Case MA(1) Casei.i.d.
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.136 0.117 0.149 0.128 0.167 0.826 0.362 0.145 0.147
BIC 0.072 0.069 0.173 0.069 0.089 0.976 0.568 0.095 0.151
MAIC 0.031 0.024 0.039 0.008 0.042 0.315 0.106 0.005 0.004
MBIC 0.034 0.025 0.040 0.000 0.034 0.326 0.109 0.004 0.000
AICOLS 0.145 0.130 0.163 0.132 0.177 0.881 0.402 0.152 0.152
BICOLS 0.076 0.070 0.196 0.070 0.092 0.985 0.633 0.097 0.155
MAICOLS 0.033 0.030 0.042 0.008 0.042 0.435 0.123 0.006 0.003
MBICOLS 0.038 0.030 0.043 0.000 0.031 0.444 0.127 0.004 0.000
t − sig(10) 0.146 0.129 0.154 0.141 0.193 0.516 0.256 0.148 0.136
k = 5 0.058 0.056 0.052 0.061 0.058 0.243 0.063 0.056 0.094
k = 6 0.054 0.052 0.053 0.054 0.068 0.148 0.054 0.055 0.029
k = 7 0.053 0.055 0.061 0.047 0.059 0.122 0.057 0.052 0.060
k = 8 0.041 0.037 0.036 0.039 0.063 0.097 0.039 0.037 0.035
k = 9 0.049 0.031 0.037 0.049 0.071 0.075 0.034 0.045 0.060
k = 10 0.047 0.038 0.047 0.054 0.069 0.059 0.043 0.050 0.036

Table 4 shows the exact size of the ADFGLS test when T = 250. Again, the size distortions are
clearly smaller compared to those of the MZGLS

α̂ test (Table 2). As in Table 3, the results using the
MZGLS

α̂ test are better when θ = −0.80. In Table 4, the ADFGLS test yields 11.5% and 12.8% when
MAIC and MBIC are used, respectively. In the case of the MZGLS

α̂ test, the values are 3.8% and 4.6%,
respectively. Furthermore, our calculations show that the ADFGLS test will have a size closer to 5% for
θ = −0.80 when T = 350. This sample size is even more prohibitive for most empirical applications.

A comparison of Tables 1 and 2 against Tables 3 and 4 suggests that it is recommendable to use the
ADFGLS test, except when practitioners are sure that they face a strong MA(1) negative correlation.
In this case, practitioners should use T = 350 or T = 250 for ADFGLS or MZGLS

α̂ , respectively.
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Table 4. Size (5%) of ADF Test, Model I, T = 250.

AR(1) Case MA(1) Casei.i.d.
φ = −0.8 φ = −0.4 φ = 0.4 φ = 0.8 θ = −0.8 θ = −0.5 θ = 0.3 θ = 0.8

AIC 0.088 0.078 0.075 0.089 0.098 0.527 0.190 0.102 0.102
BIC 0.054 0.049 0.052 0.061 0.059 0.831 0.351 0.092 0.095
MAIC 0.032 0.028 0.027 0.033 0.041 0.115 0.054 0.036 0.011
MBIC 0.036 0.030 0.031 0.007 0.044 0.128 0.062 0.003 0.004
AICOLS 0.097 0.085 0.084 0.096 0.107 0.612 0.205 0.106 0.111
BICOLS 0.054 0.050 0.053 0.061 0.059 0.900 0.373 0.093 0.099
MAICOLS 0.034 0.029 0.029 0.035 0.041 0.156 0.064 0.037 0.011
MBICOLS 0.039 0.033 0.033 0.006 0.047 0.162 0.069 0.003 0.004
t − sig(10) 0.092 0.091 0.095 0.100 0.107 0.309 0.153 0.104 0.104
k = 5 0.054 0.054 0.052 0.059 0.068 0.501 0.059 0.061 0.099
k = 6 0.052 0.054 0.055 0.052 0.058 0.361 0.050 0.057 0.036
k = 7 0.058 0.052 0.055 0.056 0.056 0.275 0.056 0.055 0.083
k = 8 0.059 0.056 0.055 0.058 0.054 0.214 0.063 0.057 0.042
k = 9 0.056 0.055 0.054 0.053 0.058 0.171 0.051 0.049 0.064
k = 10 0.046 0.056 0.052 0.046 0.066 0.136 0.053 0.048 0.036
k = 11 0.044 0.050 0.050 0.050 0.061 0.117 0.049 0.043 0.061
k = 12 0.044 0.047 0.052 0.058 0.064 0.117 0.049 0.043 0.061
k = 13 0.053 0.053 0.050 0.056 0.054 0.089 0.055 0.054 0.052

3.5. The Supremum Method and a Single Breakpoint

The results change favorably when the Supremum method is used to select the breakpoint.
Several simulations have been performed under the setup of Section 3.1 for Model I:
zt = β1 + β2t + β31(t > TB)(t − TB) with two scenarios: (i) β3 = 0, that is, no break; and
(ii) β3 = 0.5, 1.0, 1.5 with δ = 0.50 × T. Similar experiments have been performed for Model II.
In the first case, the MZGLS

α̂ test still has explosive values, although less frequently; and the values are
negative but of a smaller magnitude (in absolute value) than when using the Infimum method. In the
second case, the results show considerable improvement, especially when T = 250. The explosive
values of the MZGLS

α̂ test practically disappear for the MIC and MICOLS rules, although the cost is to
have small values (in absolute value), which produce a conservative test. On the other hand, the rules
AIC, AICOLS, and t-sig(10) continue to present an MZGLS

α̂ test with explosive values which, however,
are very small compared to the previous cases, and occur only when a higher k is selected.

The best results with the Supremum method are important, since this method is recommended
in the literature to select the break date. For instance, Vogelsang and Perron (1998) argue that this
method is to be preferred, since it allows a consistent estimate of the breaking point, a matter that the
Infimum method cannot do.

The evidence suggests that, in the empirical applications, the Supremum method should be used
to select the breakpoint along with the MIC and MICOLS rules, although the potential cost is to have a
conservative test. The evidence suggests avoiding the use of rules such as AIC, AICOLS, and t-sig(10)
to select k, as well as the use of the Infimum method to select the breakpoint.

4. Conclusions

This note aims to examine the performance of the size of the MGLS statistics to test for the presence
of a unit root using different lag length selection criteria in the context of an unknown structural change.
In particular, we have focused on the size performance of the MZGLS

α̂ test. Overall, the results show
that there is a strong relationship between the explosive negative values of the MZGLS

α̂ test and the
values of the selected k. Using the Infimum method to select the break point jointly with some rule,
such as AIC, AICOLS or t-sig(10), produces the worst scenario, in the sense that the test yields explosive
negative values, which generates severe oversizing problems. On the opposite side, using other criteria
for k implies conservative tests. These issues seem to improve when T = 250 (relative to T = 100) or
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more, which creates sample size difficulties for most macroeconomic applications, especially in Latin
American countries.

The results indicate that ADFGLS should be used, because it does does not result in explosiveness.
Although for other reasons, this recommendation is in the same vein as Harvey et al. (2013).
The advantage of the MZGLS

α̂ test is that it is intrinsically conservative. So, if we obtain a good
size when θ = −0.80, this is achieved at the cost of having an undersized test in the other cases,
including the i.i.d. case. Our results are in line with those obtained in Del Barrio Castro et al. (2011),
Del Barrio Castro et al. (2013), and Del Barrio Castro et al. (2015)11.

The results change for the better when using the Supremum method (minimizing the SSR) to
select the breakpoint. However, this result only occurs when there is a break in the series. With this
method, the test values are reduced (in absolute value) and no explosiveness is observed. Furthermore,
the advantage is that the method offers a consistent breakpoint estimator which is currently suggested
in the literature. Although a possible undersizing problem is addressed, then a possible best scenario
is to use the Supremum method together with rules for selecting k such as MIC. This potential need to
perform a pre-testing to see the existence of a break is similar to what is proposed by Kim and Perron
(2009) when there is only one break and the proposal of Carrión-i-Silvestre et al. (2009) when there are
multiple breaks.
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1. Introduction

Non-stationarity in economic time series is a pervasive feature. In order to carry proper inference,
it is important to find the exact features that lead to this non-stationarity. A unit root process is
a well-known example of non-stationary processes, and testing for a unit root against stationarity has
been a topic of substantial interest from both theoretical and empirical perspectives. Perron (1989) [1],
however, showed that the Dickey and Fuller (1979) [2] type unit root test is biased in favor of a
non-rejection of the unit root null hypothesis when the process is trend stationary with a structural
change in slope. Perron (1989, 1990) [1,3] proposed testing procedures in which a structural break
is allowed under both the null and alternative hypotheses. Later, Christiano (1992) [4] and Zivot
and Andrews (1992) [5] criticized the assumption that the date of the structural break is known a
priori. In succeeding research, Zivot and Andrews (1992) [5], Perron (1997) [6], and Vogelsang and
Perron (1998) [7] treated the break date as unknown and proposed testing procedures for a unit
root. In much work, especially that of Zivot and Andrews (1992) [5], it was common to allow for
a structural break only under the alternative hypothesis, not under the null hypothesis of a unit
root. This is very restrictive, and can lead to misleading results. Recent advances in testing for and
estimating a structural break in a trend function have made possible the development of unit root
tests that allow for a change in trend under both the null and alternative hypotheses. Perron and Zhu
(2005) [8] established the consistency, rate of convergence, and limiting distribution of the parameter
estimates when there is a break in a trend function with or without a concurrent level shift. Perron
and Yabu (2009) [9] suggested a testing procedure for structural changes in the trend function of a
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time series without any prior knowledge of whether the noise component is stationary or has an
autoregressive unit root. Building on this work, Kim and Perron (2009) [10] proposed unit root testing
procedures which allow for a structural change under both the null and alternative hypotheses; see also
Carrion-i-Silvestre et al. (2009) [11] for an extension to the case with multiple changes.

Fractional processes with the order of integration d ≥ 0.5 are also non-stationary. Standard unit
root tests often reject the null hypothesis when the true process is fractionally integrated with
d ∈ (0.5, 1). This can lead to the misleading conclusion that the process of interest is stationary.
This motivated researchers to introduce unit root tests which are powerful against the alternative
hypothesis of a fractional process. Robinson (1991) [12] derived a Lagrange Multiplier (LM) test
for fractional white noise disturbances in a linear regression, while Robinson (1994) [13] proposed
tests for unit root, and actually any real values of d in both the frequency and the time domain.
Tanaka (1999) [14] suggested an LM test in the time domain, and showed that it is locally best
invariant and uniformly most powerful. Dolado et al. (2002) [15] introduced a Wald-type unit root test
against the alternative of fractional integration. This test is based on the Dickey and Fuller (1979) [2]
type test using an auxiliary regression with a consistent estimate of the integration order. Lobato
and Velasco (2007) [16] established a Wald-type test which is more efficient and is asymptotically
equivalent to the LM test. Recently, Cho et al. (2015) [17] suggested combining the test of Kwiatkowski
et al. (1992) [18] and a unit root test to test the null of integer integration, i.e., I(0) or I(1) against
the alternative of fractional integration, i.e., I(d), d ∈ (0, 1). In this line of work, the process of
interest has been limited to either a random walk or a purely fractional process. Lobato and Velasco
(2007) [16] considered short-run dynamics in the process. Dolado et al. (2008) [19] extended the work
of Dolado et al. (2002) [15] and Lobato and Velasco (2007) [16] to incorporate some deterministic
components; for instance, a constant and a linear trend function.

Our main contribution is to extend the LM test for a fractional unit root to allow for a structural
change in a trend function under both the null and alternative hypotheses. This extension has some
advantages, as follows: (i) it imposes a symmetric treatment of the nature of the deterministic trend
under both the null and alternative hypotheses; (ii) it does not require long memory to be distinguished
from structural change;1 (iii) the power of fractional unit root tests can be substantially improved when
a break is actually present. We consider linear trend models in which a structural change in slope
occurs with or without a concurrent level shift.

The rest of this paper is organized as follows. In Section 2, we first introduce fractional processes
and the Lagrange Multiplier test of Tanaka (1999) [14] along with preliminary results to be used
subsequently. In Section 3, the LM tests are generalized to allow for a structural break in trend
under both the null and alternative hypotheses. Extensions to processes with short-run dynamics are
discussed in Section 4. The results of simulation experiments about the size and power of the tests are
presented in Section 5. As an empirical application, we test for a fractional unit root in the Consumer
Price Indices (CPIs) of the G7 countries in Section 6. Concluding remarks are provided in Section 7.
All mathematical proofs are relegated to the Appendix A.

2. Lagrange Multiplier Test

For an integer d = 1, 2, . . ., the operator Δd = (1 − L)d denotes the differencing operator with the
usual lag operator L; i.e., LXt ≡ Xt−1, ΔXt = Xt − Xt−1, Δ2Xt = (1− 2L+ L2)Xt = Xt − 2Xt−1 + Xt−2,

1 Given that unit root and long memory processes share similar features, distinguishing between long memory processes
and short memory processes with structural changes has been an important topic in econometrics and financial economics.
Along the lines of Perron (1989) [1], it is well known that short memory processes with level shifts exhibit properties that
lead standard tools to conclude that long memory is present (e.g., Diebold and Inoue (2001) [20], Granger and Hyung
(2004) [21], Lu and Perron (2010) [22], Perron and Qu (2010) [23], Qu and Perron (2013) [24], Xu and Perron (2014) [25], and
Varneskov and Perron (2016) [26], among many others). On the other hand, it has been also documented that long memory
processes induce a rejection of the null hypothesis of no structural change when using conventional structural change tests
(see Wright (1998) [27] and Krämer and Sibbertsen (2002) [28]).

78



Econometrics 2017, 5, 5

and so on. For a non-integer real number d > −1, the difference operator Δd = (1 − L)d is defined by
means of the binomial expansion

Δd =
∞

∑
k=0

(
d
k

)
(−L)k =

∞

∑
k=0

πk(d)Lk,

where (
d
k

)
≡ d!

k!(d − k)!
=

d × (d − 1)× · · · × (d − k + 1)
k × (k − 1)× · · · × 2 × 1

,

πk(d) ≡ (−1)k
(

d
k

)
=

k

∏
s=1

s − 1 − d
s

=
Γ(k − d)

Γ(k + 1)Γ(−d)
,

with Γ(·) the gamma function, so that πk(d) = (k−d−1
k ) and π0(d) = 1. Recall that x! ≡ Γ(x + 1),

x = 0, 1, . . ., and for k = 1, 2, · · · , 0 < x < 1, Γ(x − k) is defined as Γ(x) = (x − 1)Γ(x − 1) = · · · =
(x − 1) · · · (x − k)Γ(x − k). To define a fractional process, we use the notation of Robinson (2005) [29].
Let {ηt, t = 0,±1, . . .} be a short-memory zero-mean covariance stationary process, with spectral
density that is bounded and bounded away from zero. For d ∈ (−0.5, 0.5),

ζt = Δ−dηt, t = 0,±1, . . . , (1)

is covariance stationary and invertible. The truncated version of ζt is defined as

ζ#
t = ζt1t≥1, t = 0,±1, . . . , (2)

where 1A is the indicator function for the event A. For an integer m ≥ 0,

ut = Δ−mζ#
t , t = 0,±1, . . . (3)

is called a type I I(m + d) process. Let D[0, 1] be the space of functions on [0, 1] which are right

continuous and have left limits, equipped with the Skorohod topology. Let
p→ denote convergence in

probability and d→ convergence in distribution. Denote by [a] the integer part of a ∈ R. The order of
integration is d0 = d + m, with d ∈ (−0.5, 0.5) and m ∈ {0, 1}.2

Remark 1. Marinucci and Robinson (1999) [30] defined type I and type II fractional Brownian motions with
d ∈ (−0.5, 0.5) on D[0, 1], respectively, as follows:

BI(t) =
1

Γ(d + 1)

{ ∫ 0

−∞
[(t − s)d − (−s)d]dB(s) +

∫ t

0
(t − s)dB(s)

}
,

BII(t) =
1

Γ(d + 1)

{ ∫ t

0
(t − s)dB(s)

}
,

where B(·) denotes the standard Brownian motion. Furthermore, Robinson (2005) [29] and Davidson and
Hashimzade (2009) [31] pointed out that asymptotic results vary depending on the definition of fractional
Brownian motions considered, which requires one to design simulation experiments in accordance with the
particular type used.

Now we consider a fractional unit root test. Under the null hypothesis, {ut} is a unit root process;
that is, H0 : d0 = 1 (i.e., d = 0 and m = 1). The alternative hypothesis can be either one-sided

2 The restriction that d0 = 0.5 is standard in the long memory literature. Tanaka (1999) [14] showed that the case with d0 = 0.5
needs to be treated separately from the case with d0 = 0.5.
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(H1 : d0 > 1 or H1 : d0 < 1) or two-sided (H1 : d0 = 1). Robinson (1994) [13] and Tanaka (1999)
[14] considered the Lagrange Multiplier test in the frequency and time domain. It is well known that
the LM test is locally best invariant. Further, Tanaka (1999) [14] showed that the LM test is locally
uniformly most powerful invariant because it achieves the power envelope of all the invariant tests
against local alternatives. The test statistic suggested in Tanaka (1999) [14] is

LM =
√

T

√
6

π2

T−1

∑
k=1

1
k

ρk,

where ρk = (∑T
j=k+1 Δuj−kΔuj)/ ∑T

j=1(Δuj)
2 is the kth order autocorrelation of the residuals Δut.

Local alternatives to the null hypothesis are often considered in the literature, with the integration
order defined as d0 = 1 + δT−1/2 with δ fixed, often referred to as Pitman drifts. We state the limiting
distribution of the LM test under local alternatives, as it will be relevant for subsequent derivations.

Lemma 1 (Theorem 3.1 in Tanaka (1999) [14]). Under the assumption that ut is generated by (3) with

d0 = 1 + δT−1/2 and δ fixed, it holds that, as T → ∞, LM d→ N (δ
√

π2/6, 1).

3. Deterministic Components Allowing for a Structural Change

In this section, we extend the LM test for a fractional unit root to allow for a structural change in
trend with or without a concurrent level shift. We consider the time series of interest yt as consisting of
a deterministic component ( ft) and fractionally integrated errors. The data-generating process (DGP)
is specified as

yt = ft + ut.

For ut, we impose E(ut) = 0 and the following assumption.

Assumption 1. ut is a type I I(m + d) process which is defined in (1)–(3). Moreover, the short-memory
zero-mean covariance stationary process ηt is assumed to be independent and identically distributed (i.i.d.) with
zero mean and finite variance.

The i.i.d. assumption on the short-memory process ηt will be relaxed later to allow for short-run
dynamics. The unit root null hypothesis corresponds to the case with m = 1 and d = 0, which implies
that ut is a weighted sum of ηt.

3.1. Change in Mean

We first consider the case where yt experiences a level shift at an unknown time Tb. The DGP is
specified as

yt = μ1 + μbCt + ut, μb = 0, (4)

where Ct is a dummy variable for a level shift defined by:

Ct =

{
0 if t ≤ Tb,
1 if t > Tb,

where Tb = [Tλb] is the true break date with the corresponding true break fraction λb ∈ (0, 1).

Theorem 1 (Change in Mean). Under Assumption 1, suppose that the process {yt} is generated under the
null hypothesis of (4). Consider the Lagrange Multiplier test LMM defined by:

LMM =
√

T

√
6

π2
∑T

t=1 (− log ΔΔyt)Δyt

∑T
t=1 (Δyt)

2 .
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Under the null hypothesis H0 : d0 = 1, it holds that as T → ∞, LMM
d→ N (0, 1).

Theorem 1 implies that Tanaka’s (1999) [14] LM test is robust to the presence of a level shift.
In the following subsection, we consider the LM test in the context of trending series.

3.2. Slope and Intercept Change in Trending Series

We now introduce a deterministic time trend in the models. We follow the notation in Kim
and Perron (2009) [10] (henceforth KP) from which we will use some relevant results. The DGPs are
specified as

1. Model A0: (Deterministic time trend without a structural change)

yt = μ1 + β1t + ut, (5)

2. Model A1: (Level shift)
yt = μ1 + μbCt + β1t + ut, (6)

3. Model A2: (Joint broken trend)

yt = μ1 + β1t + βbBt + ut, (7)

where Bt is a dummy variable for a slope change in trend given by

Bt =

{
0 if t ≤ Tb,
t − Tb if t > Tb,

4. Model A3: (Locally disjoint broken trend)

yt = μ1 + μbCt + β1t + βbBt + ut.

Following KP, we can rewrite Models A1–A3 as follows:

yt = z(Tb)
′
tφ + ut = z′t,1φ1 + z(Tb)

′
t,2φ2 + ut,

where zt,1 = (1, t)′, φ1 = (μ1, β1)
′,

z(Tb)t,2 =

⎧⎪⎨⎪⎩
Ct

Bt

(Ct, Bt)′
, φ2 =

⎧⎪⎨⎪⎩
μb for Model A1
βb for Model A2
(μb, βb)

′ for Model A3.

In matrix notation, the models defined previously can be specified as Y = ZTb φ + U, where
Y = [y1, . . . , yT ]

′, ZTb = [z(Tb)1, . . . , z(Tb)T ]
′, φ = (φ′

1, φ′
2)

′, and U = [u1, . . . , uT ]
′.

Consider first Model A0, where no structural change is allowed. By taking first differences, we can
rewrite (5) as follows:

Δyt = β1 + Δut = β1 + Δ1−d0 ηt1t≥1. (8)

The ordinary least squares (OLS) estimate of β1 is β̂1 = T−1 ∑T
t=1 Δyt, which is consistent under both

H0 and H1.3 We define Δ̃yt = Δyt − β̂1, the OLS residuals from the regression model (8).

3 Under H0, β̂1 is a T1/2-consistent estimator of the slope coefficient β1. Hosking (1996) [32] considered a stationary ARFIMA
(p, d, q) process {yt} and showed the weak convergence of the sample mean for d ∈ (−0.5, 0.5). It is not difficult to
generalize the result to the case where d ∈ (0.5, 1), for which β̂1 is a T3/2−d-consistent estimator.
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Theorem 2 (Linear Trend). Under Assumption 1, suppose that the process {yt} is generated under the null
hypothesis of (5). Consider the Lagrange Multiplier test LMT defined by:

LMT =
√

T

√
6

π2

∑T
t=1

(
− log ΔΔ̃yt

)
Δ̃yt

∑T
t=1

(
Δ̃yt

)2 .

Under the null hypothesis H0 : d0 = 1, it holds that as T → ∞, LMT
d→ N (0, 1).

In what follows, the aim is to devise Lagrange Multiplier tests allowing for a slope change in
trend with or without a concurrent level shift. The following assumption is essential to that effect.

Assumption 2. βb = 0 and λb ∈ (π, 1 − π) for some π ∈ (0, 1/2).

Assumption 2 ensures that there is a single slope change in trend, and that the pre- and post-break
samples are not asymptotically negligible, which is a standard assumption needed to derive useful
asymptotic results. Model A1 (level shift only) will be revisited later.

The break date can be estimated by using a global least-squares criterion:

T̂b = arg min
T1∈Λ

Y′(I − PT1)Y,

where PT1 is the matrix that projects on the range space of ZT1 ; i.e., PT1 = ZT1(Z′
T1

ZT1)
−1Z′

T1
and

Λ = [πT, (1 − π)T], 0 < π < 1/2. Note that ZT1 is the same as ZTb , except Tb is replaced with a
generic break date T1. Perron and Zhu (2005) [8] (henceforth, PZ) established the consistency, rate of
convergence, and limiting distribution of parameter estimates when the error is an I(1) process. With
ZT̂b

constructed using the estimate T̂b, the OLS estimate of φ is φ̂ = (Z′̂
Tb

ZT̂b
)−1Z′̂

Tb
Y, and the resulting

sum of squared residuals is, for an estimated break fraction λ̂s = T̂b/T (the subscript s refers to the
fact that we consider a static regression; a dynamic regression with lagged dependent variables will be
considered later):

S(λ̂s) =
T

∑
t=1

û2
t =

T

∑
t=1

(
yt − z(T̂b)

′
tφ̂
)2

= Y′(I − PT̂b
)Y,

where PT̂b
is the projection matrix associated with XT̂b

. The rate of convergence of λ̂s for Models A2
and A3 is λ̂s − λb = Op(T−1/2) with I(1) errors (see Theorem 3 in PZ). Chang and Perron (2016) [33]
derived the consistency and rate of convergence of λ̂s when the noise component is a fractional
process with the differencing parameter d0 ∈ (−0.5, 0.5)∪ (0.5, 1.5). Specifically, for Models A2 and A3,
λ̂s − λb = Op(T−1/2+d) if m = 1 and d ∈ (−0.5, 0.5). With the consistent estimates (λ̂s, μ̂1, μ̂b, β̂1, β̂b),
we can construct the detrended process {ỹt}, and the Lagrange Multiplier test statistic LMT,λ̂s

is
given by

LMT,λ̂s
=

√
T

√
6

π2
∑T

t=1 (− log ΔΔỹt)Δỹt

∑T
t=1 (Δỹt)

2 .

The convergence rate of the estimate λ̂s is not fast enough to guarantee that LMT,λ̂s
has

the standard normal limit under H0. KP faced a similar issue in dealing with unit root tests.
They introduced a heuristic explanation of the issue involved, which we briefly review. Let λ̂ = T̂b/T
denote an estimate of the break fraction such that λ̂ − λb = Op(T−κ) for some κ ≥ 0. The detrended
series {ỹt} is given by

Ỹ = M̂zY = M̂zZ(Tb)φ + M̂zU = M̂zZ(Tb)2φ2 + M̂zU, (9)
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where Z(Tb) and Z(Tb)2 are matrices stacking {z(Tb)
′
t} and {z(Tb)

′
t,2}, respectively, and the idempotent

matrix M̂z = I − P̂z = I − Z(T̂b)[Z(T̂b)
′Z(T̂b)]

−Z(T̂b)
′. It is obvious that M̂zZ(Tb)2φ2 = 0 only if the

true break date is used in M̂z. In finite samples, λ̂ = λb in general; thereby, M̂zZ(Tb)2φ2 will not be
zero. It turns out that a fast rate of convergence for the estimate of the break date is needed for the effect
of M̂zZ(Tb)2φ2 on the Lagrange Multiplier test to become negligible asymptotically. The following

proposition provides a sufficient condition under which LMT,λ̂
d→ N (0, 1) under H0.

Proposition 1. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3, and

that Assumptions 1 and 2 hold. Then, it holds that, as T → ∞, LMT,λ̂
d→ N (0, 1) if λ̂ − λb = op(T−1/2).

Proposition 1 implies that the estimate of the break fraction should converge at a rate faster than
T1/2. As shown above, λ̂s does not satisfy this condition. Hence, we need to consider alternative
ways to accelerate the rate of convergence of the estimate of the break fraction. KP suggested two
possible approaches. The first is based on minimizing the sum of squared residuals (SSR) of a dynamic
regression model. This method is similar to that in Hatanaka and Yamada (1999) [34]. The relevant
dynamic regressions are specified as follows:

yt = αyt−1 + ν1D(Tb)t + ν21t≥Tb + z(Tb)
′
tφ + ut, (Model A2)

yt = αyt−1 + νD(Tb)t + z(Tb)
′
tφ + ut, (Models A1 and A3) (10)

where D(Tb)t = 1 for t = Tb + 1 and 0 otherwise. Under the null hypothesis, we obtain an estimate of
the break fraction λ̂d which has a faster rate of convergence, such that λ̂d − λb = Op(T−1) for Models
A2 and A3 (see Proposition 1 in KP). Let LMT,λ̂d

denote the Lagrange Multiplier test statistic with

λ̂d replacing λ̂s. It is worth noting that, as discussed by Hatanaka and Yamada (1999) [34] and KP,
the estimate λ̂d has a negative bias in finite samples, especially for Model A3. As we shall see, this will
affect the finite sample properties of the tests.

The second approach is to use a trimmed data set using a window whose length depends on the
sample size and which contains the estimated break date. The trimmed series then consists of the
original one with the data points in the window excluded. KP showed that the rate of convergence
of λ̂s can be increased with the trimmed data set. Suppose that the estimate of the break fraction
satisfies λ̂ − λb = Op(T−a) for some 0 < a < 1, and the trimming window has length 2w(T) with
w(T) ≡ c1Tδ, c1 > 0, and −1 < −a < δ < 0. With this specification, the length of the window is
negligible in the limit compared to the sample size T, but is still large enough to include the true break
date asymptotically. Following KP’s suggestion, one proceeds as follows:

• Estimate the break fraction λ̂s from the original data set and form a window that ranges from
Tl ≡ T(λ̂s − w(T)) to Th ≡ T(λ̂s + w(T)).

• A trimmed data set is constructed by removing the original data from Tl + 1 to Th and then
shifting down the data after the window by D(T) = yTh − yTl . After the trimming and connecting
procedures, we now have a new series {y∗t }, for t = 1, . . . , T∗(≡ T − 2w(T)T), defined by:

y∗t =

{
yt if t ≤ Tl ,
yt+Th−Tl − D(T) if t > Tl .

• Test the null hypothesis H0 : d0 = 1 using Tl as the break date (i.e., λ̂tr = Tl/T∗). The Lagrange
Multiplier test statistic is then given by

LMT,λ̂tr
=

√
T

√
6

π2
∑T

t=1 (− log ΔΔỹ∗t )Δỹ∗t
∑T

t=1 (Δỹ∗t )
2 ,
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where ỹ∗t is the detrended version of y∗t using the estimate of the break date Tl (or break
fraction λ̂tr).

Remark 2. If the window contains either end of the data, then the process {y∗t } turns out to be Model A0
(no structural break), and the statistic in Theorem 2 should be applied to the trimmed data {y∗t }.

The trimmed process {y∗t } will satisfy the properties of Model A2 regardless of the specification
of the original data {yt}, which implies that we can use a common limit distribution. The following
proposition states the limiting distribution of the Lagrange Multiplier test based on the trimmed data,
which is the same as would be obtained if the break date was known in Model A2.

Proposition 2. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3, and

that Assumptions 1 and 2 hold. Then, it holds that as T → ∞, LMT,λ̂tr

d→ N (0, 1).

As shown in KP, under the null hypothesis of a unit root, the estimate of the break fraction
λ̂tr = Tl/T∗ converges in probability to the true break fraction at some rate greater than T. Hence, the
sufficient condition in Proposition 1 is satisfied, so that the proof of Proposition 2 is trivial and omitted.

In concluding this section, we consider the case where there is a change in mean; that is, μb = 0,
as in Models A1 and A3. In Model A1, we assume that there is a level shift only; that is, μb = 0
and βb = 0. Under the null hypothesis, a stochastic trend generated by the I(1) error process tends
to dominate a level shift. Hence, we cannot estimate the break fraction λb consistently, because the
magnitude of the level shift is asymptotically negligible. In finite samples, we can ignore the level shift
if the magnitude of the break is small. Then, Model A1 can be treated as Model A0, and we can follow
the testing procedure pertaining to Theorem 2. However, a loss of power is inevitable if a large change
in mean is ignored.

On the other hand, the level shift can be specified as an increasing function of the sample size;
i.e., μb = c2T1/2+α for some c2 > 0 and α > 0. As addressed in Harvey et al. (2001) [35], PZ, and KP,
this specification provides better approximations of the properties of the tests in finite samples when
the level shifts are not very small. The models with μb = c2T1/2+α are labeled as Models A1b and
A3b, respectively.

Proposition 3. Suppose that the process {yt} is generated under the null hypothesis of Model A1b or A3b.
Then, LMT,λ̂ diverges as T → ∞.

Although the rate of convergence of the estimate of the break fraction is faster than in the case of
a change in slope (see Proposition 7 in KP), Proposition 3 states that the LM tests cannot obtain the
standard normal limiting distribution. Hence, the LM test LMT,λ̂, using the critical values from the
standard normal distribution, suffers from some liberal size distortions, even when |μb| is large.4

3.3. Using a Pre-Test for a Break in Slope

The results of Theorem 2 and Proposition 2 show that the limit distribution of the test is the same
whether there is a break in slope introduced as a regressor or not, even when the DGP specifies that no
break is present. Hence, unlike the case of testing for a unit root as in KP, theoretically there is no need
to carry a pre-test to improve the power of the test. However, Chang and Perron (2016) [33] considered
Models A2 and A3 with fractionally integrated errors and showed that the so-called spurious break
issue occurs with the order of fractional integration d0 ∈ (0, 0.5) ∪ (0.5, 1.5). This extended the results
on Nunes et al. (1995) [36], who considered the unit root case. This means that under both the null

4 Simulation results related to this issue are available upon request.
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and alternative hypotheses, if a break in slope is not present and one is allowed in the regression,
the fitted model will with large probability suggests the presence of a break. This could have an effect
on both the size and power of the test. On one hand, the slope change regressor may induce added
liberal size distortions in finite samples because of the overfit. On the other hand, since when no break
exists in the DGP it is a superfluous regressor, power maybe be reduced. Hence, it may be the case
that in finite samples it is beneficial to use a pre-test for a change in slope and try to choose between
models (5) and (7). Since a test for a change in mean will be inconsistent, there is no point in trying to
distinguish between models (5) and (6) or between model (4) and the corresponding one without the
change in mean.

Iacone et al. (2013) [37] suggested a sup-Wald type test (SW) for Model A2. In particular, it is
robust to any order of fractional integration d0 located in an interval [0, 1.5) excluding the boundary
case 0.5. More precisely, given their recommended choice for the bandwidth when constructing the
local Whittle estimate of d0, their test is consistent for values of d0 in the interval [0, 1.32], though we
believe the proof can be modified to allow the interval [0, 1.5). It follows the generalized least squares
approach to construct the test statistic for a structural change in trend by taking d0-differences from
the data. To make the test feasible, the fully extended local whittle (FELW) estimator d̂FELW of Abadir
(2007) [38] is considered. While the FELW estimator is constructed under the null hypothesis of no
structural change, Iacone et al. (2013) [37] showed that it also satisfies the necessary condition for
consistency, even with a local break in trend. Since the true break date is unknown a priori, the final
statistic SW uses the sup functional of Andrews (1993) [39] across all admissible break dates. This
test is asymptotically size controlled for all d0’s in the prescribed range. Using this pre-test, we can
then define the alternative estimate of the break fraction λ̃ = λ̂ · 1SW>τ , where τ is the critical value
for the SW test with a nominal size p%. Given that SW is a consistent test, plimT→∞ λ̃ = λb if λ̂ is a
consistent estimate of λb. If there is no break in the DGP, we can expect that p% of the estimates λ̃’s
are nonzero. In order to obtain a consistent estimate of λb under the null of no structural break, we
assume that the critical value τ is a function of the sample size T. Since SW = Op(T�), � > 0 with a
local break, let τ = cT�−ε for 0 < ε < �. This specification introduced in KP is useful because it does
not have any effect on the consistency of the test SW and does guarantee that plimT→∞ λ̃ = 0 when
no break is present. Hence, based on the consistency of λ̃, it is recommended to use LMT if λ̃ = 0
and LMT,λ̂ if λ̃ = 0. The LM test statistics with the pre-test are denoted by LMp

T,λ̂s
, LMp

T,λ̂d
, and

LMp
T,λ̂tr

. Whether using a pre-test is beneficial will be assessed later via simulation experiments about
the size and power of the tests.

4. Short-Run Dynamics

We now relax Assumption 1 to introduce short-run dynamics in the noise component. A zero-mean
short-memory covariance stationary process ηt can be represented as a one-sided moving average:
ηt = ∑∞

j=0 ψjεt−j, t = 0,±1, . . . , where ψ0 = 1, ∑∞
j=0 ψ2

j < ∞, ψ(1) ≡ ∑∞
j=0 ψj, and {εt, t = 0,±1, . . .}

are i.i.d. random variables with mean zero. A special case of interest is an autoregressive moving
average (ARMA(p, q)) process given by φ(L)ηt = θ(L)εt. In order to implement the Lagrange
Multiplier test, we first estimate the parameters Ψ = (φ1, . . . , φp, θ1, . . . , θq) consistently. Then, under
the null hypothesis, we can construct ε̂t = φ̂(L)θ̂(L)−1(1 − L)d0 ût, where ût is the OLS residuals from
the model considered, whereas φ̂(L) and θ̂(L) are estimated from φ(L)(1 − L)d0 ût = θ(L)εt, using
d0 = 1. With short-run dynamics in the noise component, we consider the following test statistic:

ˆLM =
√

T
T−1

∑
k=1

1
k

ρ̂k,

where ρ̂k is the kth order autocorrelation of residuals ε̂1, . . . , ε̂T . Tanaka (1999) [14] derived an important
result related to this statistic when no break is present.
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Lemma 2 (Theorem 3.3 in Tanaka (1999) [14]). Under local alternatives—that is, d0 = 1 + δT−1/2 with δ

fixed—it holds that as T → ∞, ˆLM d→ N (δω2, ω2), where

ω2 =
π2

6
− (κ1, . . . , κp, ξ1, . . . , ξq)Φ−1(κ1, . . . , κp, ξ1, . . . , ξq)

′,

κi =
∞

∑
j=1

1
j

gj−i, ξi = −
∞

∑
j=i

1
j

hj−i,

with gj and hj the coefficients of Lj in the expansion of 1/φ(L) and 1/θ(L), respectively, and Φ the Fisher
information matrix for φ and θ.

Remark 3. Note that ω2 < π2/6; hence comparing Lemmas 1 and 2, the LM test has lower local asymptotic
power in the presence of short-run dynamics of any kind. As will be shown via simulations, the loss in power
can be substantial. It remains, nevertheless, inevitable.

With the maximum likelihood estimate ω̂, we show that ˆLM/ω̂
d→ N (0, 1) as T → ∞ under the

null hypothesis. In particular, when p = 1 or q = 1, it is easy to compute ω̂. Since vj = ςvj−1 + εj in
both cases, gj = ςj,

κ1 =
∞

∑
j=1

1
j

ςj−1 = −1
ς

log(1 − ς), and Φ−1 = 1 − ς2.

Hence, we have

ω2 =
π2

6
− 1 − ς2

ς2 (log(1 − ς))2,

and ω̂ can be computed using ς̂. All these results remain valid for all trending models with a break
considered. The relevant correction needed is a simple scaling by ω̂ so that the test becomes
LM∗

T,λ̂ ≡ LMT,λ̂/ω̂.

Proposition 4. Suppose that the process {yt} is generated under the null hypothesis of Model A2 or A3,
and that Assumptions 1 and 2 hold with ηt being an ARMA(p,q) process. Then, it holds that as T → ∞,

LM∗
T,λ̂

d→ N (0, 1) if λ̂ − λb = op(T−1/2) and ω̂ − ω = op(1).

The sufficient conditions in Proposition 4 follow from Lemma 2 and Proposition 1, hence the proof
is omitted. The finite sample performance of LM∗

T,λ̂ with λ̂ ∈ {λ̂s, λ̂d, λ̂tr} allowing for a structural
break under both the null and alternative hypotheses will be examined in the next section.

5. Simulation Experiments

In this section, we present results from simulation experiments to illustrate the various theoretical
results. Throughout the simulations, the true break fraction is set to λb = 0.5.5 The DGP is specified as
yt = ft + ut where

ft =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ1 + β1t for Model A0,
μbCt for Model A1,
βbBt for Model A2,
μbCt + βbBt for Model A3,

5 Unreported simulation results with λb = {0.3, 0.7} are qualitatively similar to those with λb = 0.5.
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and ut = Δ−1ζ#
t = Δ−1ηt1t≥1, t = 0,±1,±2, . . ., where ηt is a short-memory zero-mean covariance

stationary process that will be specified below. We set some parameters as follows: μ1 = 1.72, β1 = 0.03,
μb = 1, and βb = 1. The configurations are the same as those in PZ, chosen to obtain distributions that
easily reveal the main features of interest. In all cases, the results are obtained via 10,000 replications.
Additionally, 5% nominal size tests are considered.

First, to illustrate the effect of a structural break on the power of the fractional unit root test,
we consider two different models when a structural change in slope is allowed in the DGP: (i) Model
A0 (which ignores a relevant slope change); and (ii) Model A2 (which is well specified). The results
are provided in Table 1. It is clear that the power of LMT is much lower than that of LMT,λ̂d

, which
supports the fact that a structural break in the DGP should be allowed when testing for a fractional
unit root.

Table 1. The effect of a structural break in trend on the Lagrange multiplier (LM) tests.

T = 150

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

LMT 0.767 0.617 0.458 0.290 0.187 0.117 0.070 0.044 0.029 0.020 0.004
LMT,λ̂d

1 1 0.997 0.986 0.949 0.858 0.703 0.485 0.303 0.169 0.036

Note: 5% nominal size tests are used. The data-generating process (DGP) is specified by yt = βbBt + ut and
ut = Δ−m(Δ−dηt)1t≥1 with ηt ∼ i.i.d.N (0, 1) where d0 = m + d, d ∈ [−0.5, 0), and m = 1. The values of
model parameters are set to λ0 = 0.5, βb = 0.5. The test LMT , designed for Model A1, ignores a structural
break in the DGP, while the test LMT,λ̂d

, designed for Model A2, is well specified with the estimate of the
break date obtained from the dynamic regression (10).

Tables 2–5 present the rejection probabilities of the tests LMT and LMT,λ̂ at the 5% significance
level when ηt ∼ i.i.d.N (0, 1). In Table 2, no structural change is allowed in the DGP (Model A0);
i.e., yt = μ1 + β1t + ut. The size of LMT is well controlled, which is 0.05 and 0.06 with sample sizes
T = 150, 500, respectively. Table 3 reports the results for Model A1. The break fraction is not estimated
consistently, because the level shift is negligible compared to the stochastic trend induced by the I(1)
errors. Hence, LMT,λ̂s

and LMT,λ̂d
suffer from severe size distortion, while LMT maintains size

close to the nominal level 5%. Table 4 presents the results pertaining to Model A2. We also consider
the test based on trimmed data, LMT,λ̂tr

. The test LMT,λ̂d
is size-controlled, while the others show

minor size distortion. However, the power of LMT,λ̂d
is always lower than that of the other two tests.

Table 5 presents the results pertaining to Model A3. Here, we set μb = 0 to consider the effect of
an irrelevant level shift. Notice that LMT,λ̂s

exhibits liberal size distortion and LMT,λ̂d
also shows

considerable size distortion. As noted by Chang and Perron (2016) [33], the estimate of the break
date shows a pattern of bi-modality when an irrelevant level shift is introduced. This phenomenon is
referred to the “contamination” effect, because the irrelevant level shift can make the estimate of the
true break date less precise. By construction, the contamination effect is marginal on LMT,λ̂tr

, whose
exact size is 6.7% when T = 500.

Table 2. Rejection probabilities of the LMT test for Model A0.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

1 1 1 0.997 0.983 0.924 0.778 0.544 0.307 0.154 0.051

T = 500

1 1 1 1 1 1 0.997 0.920 0.608 0.260 0.056

Note: 5% nominal size tests are used. The DGP is defined by yt = μ1 + β1t + ut, and ut = Δ−m(Δ−dηt)1t≥1
with ηt ∼ i.i.d.N (0, 1) where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
μ1 = 1.72, β1 = 0.03.
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Table 3. Rejection probabilities of the LMT,λ̂ and LMT tests for Model A1.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.989 0.990 0.969 0.897 0.765 0.589 0.410 0.255

LMT,λ̂d
1 1 1 0.997 0.988 0.946 0.839 0.655 0.445 0.263 0.134

LMT 1 1 1 0.997 0.981 0.927 0.772 0.541 0.309 0.151 0.052

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.999 0.970 0.802 0.494 0.252

LMT,λ̂d
1 1 1 1 1 1 0.996 0.932 0.674 0.330 0.118

LMT 1 1 1 1 1 1 0.997 0.925 0.616 0.250 0.055

Note: 5% nominal size tests are used. The DGP is defined by yt = μbCt + ut, and ut = Δ−m(Δ−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, μb = 1.

Table 4. Rejection probabilities of the LMT,λ̂ tests for Model A2.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.998 0.987 0.936 0.820 0.610 0.387 0.211 0.077

LMT,λ̂d
0.998 0.994 0.982 0.951 0.882 0.765 0.606 0.409 0.246 0.130 0.039

LMT,λ̂tr
1 0.999 0.999 0.997 0.981 0.922 0.794 0.587 0.369 0.205 0.072

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.995 0.904 0.567 0.229 0.063

LMT,λ̂d
1 1 1 1 0.997 0.974 0.893 0.717 0.426 0.165 0.048

LMT,λ̂tr
1 1 1 1 1 1 0.997 0.917 0.591 0.244 0.071

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut, and ut = Δ−m(Δ−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, βb = 1.

Table 5. Rejection probabilities of the LMT,λ̂ tests for Model A3.

d0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LMT,λ̂s
1 1 1 0.998 0.990 0.953 0.857 0.679 0.480 0.305 0.175

LMT,λ̂d
1 1 0.999 0.995 0.977 0.921 0.806 0.616 0.419 0.258 0.128

LMT,λ̂tr
1 1 1 0.996 0.981 0.926 0.798 0.587 0.380 0.218 0.083

T = 500

LMT,λ̂s
1 1 1 1 1 1 0.995 0.924 0.659 0.350 0.156

LMT,λ̂d
1 1 1 1 0.999 0.996 0.974 0.851 0.561 0.259 0.101

LMT,λ̂tr
1 1 1 1 1 0.999 0.993 0.899 0.571 0.233 0.067

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut, and ut = Δ−m(Δ−dηt)1t≥1 with
ηt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0], and m = 1. The values of model parameters are set to
λ0 = 0.5, βb = 1.

In Tables 6–8, we provide simulation results when the errors have short-run dynamics; i.e.,
(1 − ρL)ηt = εt, εt ∼ i.i.d.N (0, 1). We set the value of the autoregressive (AR) parameter at
ρ ∈ {−0.5, 0, 0.3, 0.6, 0.8}. When ρ = 0, we can compare the loss of power caused by allowing
for dynamics when none is present. The other parameters remain unchanged. Table 6 reports the size
and power of the Lagrange multiplier tests pertaining to Model A1, LMT . It is well size-controlled
with less persistent AR parameters ρ ∈ {0, 0.3}, but it is very conservative with a higher AR coefficient
ρ ∈ {0.6, 0.8}, while it shows liberal size distortions with ρ = −0.5. We find some interesting features
in terms of power. First, power is higher when the AR parameter ρ is negative (in part due to the liberal
size distortions). Second, as ρ becomes positive and large, power shrinks considerably. In particular,
the loss of power is substantial when the AR parameter ρ increases from 0.6 to 0.8. This implies that
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a sufficiently large time span is needed to distinguish fractional integration from weak dependence.
Comparing Table 3 with Table 6, for the ρ = 0 case, it is obvious that power is substantially lower
when an irrelevant AR parameter is introduced. This result suggests that selecting the number of lags
in the noise component is crucial to obtain good power. Lastly, with a persistent AR parameter ρ = 0.8,
the LM tests have non-monotonic power; that is, power does not increase when the order of integration
d0 moves away from the null of a unit root. As also discussed in Lobato and Velasco (2007) [16], it is
difficult to distinguish fractional integration from a highly persistent stationary short-memory process.
Table 7 reports the results pertaining to Model A2. They show similar patterns as for Model A1.
It is noticeable that LM∗

T,λ̂d
performs well in terms of size across all cases, while its power is always

lower than that of the other tests. Table 8 presents the results for Model A3. LM∗
T,λ̂d

has size distortion,
even with negative and less persistent AR parameters. This happens because when using the dynamic
regression to estimate the break fraction, the estimate λ̂d is negatively biased for Model A3. Among
the three LM statistics, LM∗

T,λ̂tr
based on the trimmed data performs well in finite samples. The size

of LM∗
T,λ̂tr

is well controlled across various values of ρ, while LM∗
T,λ̂s

and LM∗
T,λ̂d

show liberal size
distortions. Moreover, the power loss of LM∗

T,λ̂tr
is minor relative to the other tests. Hence, LMT,λ̂tr

and LM∗
T,λ̂tr

are the recommended tests in practice.

Table 6. Rejection probabilities of LM∗
T,λ̂ and LMT for Model A1 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗
T,λ̂s

1 0.999 0.997 0.987 0.965 0.894 0.776 0.618 0.449 0.305 0.187
−0.5 LM∗

T,λ̂d
1 0.999 0.997 0.986 0.962 0.891 0.769 0.598 0.429 0.277 0.168

LMT 1 0.999 0.994 0.974 0.928 0.813 0.639 0.442 0.259 0.137 0.059

LM∗
T,λ̂s

0.993 0.986 0.967 0.927 0.862 0.774 0.656 0.528 0.424 0.329 0.244
0 LM∗

T,λ̂d
0.991 0.981 0.955 0.904 0.824 0.711 0.582 0.435 0.321 0.224 0.143

LMT 0.986 0.969 0.930 0.851 0.728 0.572 0.411 0.267 0.163 0.102 0.046

LM∗
T,λ̂s

0.946 0.899 0.839 0.767 0.671 0.553 0.450 0.365 0.272 0.215 0.158
0.3 LM∗

T,λ̂d
0.922 0.863 0.788 0.683 0.573 0.441 0.337 0.245 0.168 0.115 0.069

LMT 0.894 0.811 0.707 0.576 0.445 0.303 0.209 0.133 0.077 0.054 0.026

LM∗
T,λ̂s

0.558 0.484 0.385 0.296 0.234 0.163 0.127 0.091 0.061 0.048 0.029
0.6 LM∗

T,λ̂d
0.456 0.370 0.274 0.197 0.144 0.086 0.060 0.039 0.024 0.020 0.010

LMT 0.361 0.277 0.184 0.121 0.079 0.042 0.029 0.018 0.013 0.013 0.007

LM∗
T,λ̂s

0.096 0.074 0.049 0.035 0.025 0.017 0.014 0.010 0.012 0.011 0.008
0.8 LM∗

T,λ̂d
0.044 0.033 0.019 0.013 0.014 0.012 0.015 0.022 0.024 0.027 0.036

LMT 0.019 0.016 0.011 0.012 0.018 0.026 0.033 0.041 0.042 0.038 0.026

T = 500

LM∗
T,λ̂s

1 1 1 1 1 0.999 0.979 0.856 0.581 0.305 0.129
−0.5 LM∗

T,λ̂d
1 1 1 1 1 0.999 0.974 0.829 0.537 0.262 0.100

LMT 1 1 1 1 1 1 0.980 0.830 0.502 0.215 0.066

LM∗
T,λ̂s

1 1 1 1 0.999 0.992 0.936 0.781 0.576 0.403 0.263
0 LM∗

T,λ̂d
1 1 1 1 0.999 0.985 0.894 0.695 0.451 0.273 0.143

LMT 1 1 1 1 0.999 0.979 0.858 0.595 0.330 0.168 0.058

LM∗
T,λ̂s

1 1 1 0.998 0.979 0.920 0.777 0.575 0.394 0.257 0.155
0.3 LM∗

T,λ̂d
1 1 1 0.996 0.967 0.869 0.684 0.447 0.261 0.162 0.074

LMT 1 1 1 0.995 0.957 0.837 0.611 0.376 0.205 0.124 0.051

LM∗
T,λ̂s

0.984 0.956 0.880 0.736 0.559 0.348 0.195 0.114 0.056 0.033 0.016
0.6 LM∗

T,λ̂d
0.977 0.935 0.844 0.673 0.487 0.297 0.171 0.105 0.065 0.045 0.023

LMT 0.974 0.927 0.833 0.670 0.497 0.316 0.199 0.135 0.083 0.058 0.028

LM∗
T,λ̂s

0.249 0.148 0.075 0.040 0.024 0.015 0.008 0.007 0.005 0.006 0.004
0.8 LM∗

T,λ̂d
0.202 0.133 0.084 0.067 0.066 0.069 0.084 0.091 0.101 0.107 0.103

LMT 0.217 0.159 0.126 0.120 0.142 0.157 0.171 0.163 0.134 0.102 0.043

Note: 5% nominal size tests are used. The DGP is defined by yt = μbCt + ut and ut = Δ−m(Δ−dηt)1t≥1 with
(1 − ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set μb = 1.
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Table 7. Rejection probabilities of LM∗
T,λ̂ for Model A2 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗
T,λ̂s

1 0.999 0.996 0.985 0.949 0.861 0.713 0.515 0.354 0.215 0.100
−0.5 LM∗

T,λ̂d
0.993 0.982 0.955 0.908 0.816 0.680 0.521 0.350 0.233 0.136 0.054

LM∗
T,λ̂tr

1 0.996 0.990 0.969 0.926 0.822 0.671 0.478 0.335 0.203 0.098

LM∗
T,λ̂s

0.991 0.978 0.943 0.885 0.795 0.652 0.507 0.364 0.268 0.189 0.097
0 LM∗

T,λ̂d
0.912 0.851 0.779 0.668 0.562 0.425 0.311 0.205 0.153 0.104 0.046

LM∗
T,λ̂tr

0.988 0.965 0.931 0.868 0.774 0.645 0.496 0.373 0.280 0.205 0.113

LM∗
T,λ̂s

0.907 0.848 0.761 0.662 0.533 0.429 0.319 0.239 0.170 0.129 0.071
0.3 LM∗

T,λ̂d
0.691 0.602 0.502 0.409 0.311 0.230 0.163 0.115 0.076 0.056 0.027

LM∗
T,λ̂tr

0.868 0.792 0.696 0.594 0.467 0.369 0.271 0.198 0.141 0.109 0.055

LM∗
T,λ̂s

0.436 0.360 0.282 0.215 0.157 0.119 0.083 0.061 0.050 0.038 0.027
0.6 LM∗

T,λ̂d
0.230 0.176 0.130 0.092 0.058 0.044 0.028 0.020 0.019 0.016 0.012

LM∗
T,λ̂tr

0.421 0.344 0.269 0.211 0.156 0.118 0.082 0.062 0.054 0.043 0.030

LM∗
T,λ̂s

0.057 0.040 0.038 0.038 0.044 0.053 0.061 0.063 0.058 0.044 0.028
0.8 LM∗

T,λ̂d
0.022 0.012 0.013 0.017 0.025 0.032 0.044 0.047 0.044 0.034 0.023

LM∗
T,λ̂tr

0.040 0.026 0.024 0.025 0.034 0.039 0.049 0.053 0.051 0.038 0.024

T = 500

LM∗
T,λ̂s

1 1 1 1 1 0.999 0.963 0.785 0.445 0.197 0.068
−0.5 LM∗

T,λ̂d
1 1 1 1 0.993 0.952 0.824 0.594 0.311 0.129 0.039

LM∗
T,λ̂tr

1 1 1 1 1 1 0.975 0.825 0.490 0.221 0.081

LM∗
T,λ̂s

1 1 1 1 0.998 0.969 0.831 0.575 0.329 0.169 0.076
0 LM∗

T,λ̂d
1 1 0.993 0.968 0.907 0.793 0.617 0.408 0.225 0.108 0.050

LM∗
T,λ̂tr

1 1 1 1 0.998 0.978 0.865 0.617 0.362 0.190 0.099

LM∗
T,λ̂s

1 1 0.999 0.994 0.950 0.826 0.614 0.382 0.233 0.145 0.081
0.3 LM∗

T,λ̂d
0.993 0.974 0.929 0.846 0.746 0.613 0.427 0.255 0.149 0.081 0.049

LM∗
T,λ̂tr

1 1 0.999 0.994 0.957 0.836 0.625 0.391 0.236 0.145 0.079

LM∗
T,λ̂s

0.975 0.930 0.828 0.687 0.521 0.366 0.257 0.178 0.125 0.099 0.065
0.6 LM∗

T,λ̂d
0.788 0.709 0.596 0.475 0.340 0.222 0.144 0.091 0.060 0.040 0.030

LM∗
T,λ̂tr

0.976 0.933 0.834 0.690 0.514 0.353 0.240 0.161 0.113 0.090 0.067

LM∗
T,λ̂s

0.245 0.187 0.161 0.169 0.191 0.218 0.238 0.226 0.176 0.122 0.067
0.8 LM∗

T,λ̂d
0.143 0.104 0.087 0.085 0.084 0.092 0.101 0.117 0.103 0.082 0.048

LM∗
T,λ̂tr

0.235 0.165 0.130 0.124 0.127 0.142 0.161 0.190 0.191 0.199 0.226

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut and ut = Δ−m(Δ−dηt)1t≥1 with
(1 − ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set βb = 1.
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Table 8. Rejection probabilities of LM∗
T,λ̂ for Model A3 with short-run dynamics.

d0

ρ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

T = 150

LM∗
T,λ̂s

1 0.999 0.996 0.986 0.952 0.880 0.749 0.561 0.403 0.272 0.149
−0.5 LM∗

T,λ̂d
1 0.999 0.996 0.983 0.946 0.871 0.738 0.549 0.390 0.258 0.139

LM∗
T,λ̂tr

1 0.996 0.989 0.970 0.925 0.832 0.686 0.491 0.339 0.219 0.096

LM∗
T,λ̂s

0.992 0.980 0.946 0.897 0.813 0.697 0.569 0.441 0.344 0.262 0.183
0 LM∗

T,λ̂d
0.991 0.973 0.939 0.881 0.786 0.670 0.537 0.401 0.303 0.229 0.149

LM∗
T,λ̂tr

0.983 0.963 0.919 0.848 0.740 0.609 0.473 0.343 0.250 0.184 0.095

LM∗
T,λ̂s

0.919 0.868 0.785 0.695 0.587 0.488 0.377 0.302 0.230 0.183 0.137
0.3 LM∗

T,λ̂d
0.899 0.835 0.747 0.646 0.518 0.425 0.307 0.236 0.167 0.121 0.083

LM∗
T,λ̂tr

0.877 0.809 0.710 0.607 0.483 0.381 0.274 0.208 0.158 0.119 0.069

LM∗
T,λ̂s

0.481 0.396 0.318 0.251 0.191 0.150 0.115 0.086 0.072 0.055 0.039
0.6 LM∗

T,λ̂d
0.407 0.317 0.241 0.173 0.125 0.088 0.063 0.046 0.032 0.026 0.016

LM∗
T,λ̂tr

0.385 0.298 0.242 0.175 0.127 0.092 0.071 0.051 0.042 0.032 0.021

LM∗
T,λ̂s

0.082 0.059 0.052 0.039 0.036 0.033 0.032 0.033 0.027 0.024 0.019
0.8 LM∗

T,λ̂d
0.045 0.028 0.023 0.015 0.014 0.014 0.016 0.019 0.024 0.026 0.030

LM∗
T,λ̂tr

0.040 0.030 0.030 0.026 0.031 0.042 0.044 0.050 0.044 0.039 0.026

T = 500

LM∗
T,λ̂s

1 1 1 1 1 0.999 0.970 0.807 0.501 0.243 0.103
−0.5 LM∗

T,λ̂d
1 1 1 1 1 0.993 0.936 0.741 0.434 0.199 0.079

LM∗
T,λ̂tr

1 1 1 1 1 0.999 0.972 0.801 0.476 0.212 0.073

LM∗
T,λ̂s

1 1 1 1 0.999 0.979 0.876 0.674 0.439 0.286 0.164
0 LM∗

T,λ̂d
1 1 1 1 0.991 0.953 0.829 0.622 0.379 0.226 0.124

LM∗
T,λ̂tr

1 1 1 1 0.998 0.970 0.835 0.591 0.326 0.177 0.077

LM∗
T,λ̂s

1 1 0.999 0.995 0.962 0.859 0.673 0.468 0.307 0.192 0.123
0.3 LM∗

T,λ̂d
1 1 0.997 0.978 0.925 0.792 0.580 0.372 0.215 0.124 0.076

LM∗
T,λ̂tr

1 1 0.999 0.992 0.945 0.812 0.590 0.371 0.222 0.131 0.078

LM∗
T,λ̂s

0.978 0.935 0.843 0.697 0.521 0.348 0.220 0.140 0.091 0.070 0.050
0.6 LM∗

T,λ̂d
0.942 0.864 0.739 0.572 0.393 0.240 0.138 0.080 0.050 0.035 0.025

LM∗
T,λ̂tr

0.971 0.917 0.818 0.667 0.493 0.343 0.231 0.162 0.108 0.087 0.063

LM∗
T,λ̂s

0.232 0.153 0.114 0.097 0.095 0.099 0.105 0.093 0.071 0.052 0.052
0.8 LM∗

T,λ̂d
0.162 0.101 0.067 0.049 0.041 0.039 0.039 0.047 0.057 0.071 0.067

LM∗
T,λ̂tr

0.225 0.173 0.144 0.145 0.154 0.176 0.203 0.190 0.155 0.105 0.055

Note: 5% nominal size tests are used. The DGP is defined by yt = βbBt + ut and ut = Δ−m(Δ−dηt)1t≥1 with
(1 − ρL)ηt = εt and εt ∼ i.i.d.N (0, 1), where d0 = m + d, d ∈ [−0.5, 0]. We set βb = 1.

The Size and Power When a Pre-Test Is Used

In Figures 1–4, we present the size and power of the LM tests as the slope change parameter
(βb) changes in Models A2 and A3 with and without the use of a pre-test. As a pre-test, we use the
SW test of Iacone et al. (2013) [37] at the nominal 5% level. We only consider the version of the
LM statistics based on the trimmed estimate of the break fraction, denoted LMT,λ̂tr

and LMp
T,λ̂tr

when no short-run dynamics is allowed, and by LM∗
T,λ̂tr

and LM∗p
T,λ̂tr

when an AR(1) structure is
allowed. To assess the extent of the differences in the size distortion and power, we also report the
infeasible LM test based on the true value of break fraction, denoted LMT,λb and LM∗

T,λb
. The

results are presented in Figure 1 for Model A2 (no short-run dynamics), Figure 2 for Model A2, and in
Figures 3 and 4 for Models A2 and A3 with short-run dynamics of the form (1 − 0.3L)ηt = εt,
εt ∼ i.i.d.N (0, 1). For LMp

T,λ̂tr
and LM∗p

T,λ̂tr
, the trimming window contains six observations (the

simulation results are not sensitive to the length of the window). The magnitude of break in the slope
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of the trend βb varies from −4 to 4 in increments of 0.2. We set μb = 0 for Model A3. The sample sizes
are T = 150, 300, and the number of replications is 10,000 for each value of the parameters. One-sided
tests against the alternative hypothesis H1 : d0 < 1 are constructed at the nominal 5% level. For power,
d0 is set to 0.8.

−4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

β
b

S
iz

e 
(%

)

(a) d
0
=1, T=150

−4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

β
b

P
ow

er
 (

%
)

(b) d
0
=0.8, T=150

−4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

β
b

S
iz

e 
(%

)

(c) d
0
=1, T=300

−4 −2 0 2 4
0

10

20

30

40

50

60

70

80

90

100

β
b

P
ow

er
 (

%
)

(d) d
0
=0.8, T=300

Figure 1. Null rejection probabilities in Model A2, λb = 0.5 [− + − : LMT,λ̂tr
, − ∗ − : LMp

T,λ̂tr
,

−�− : LMT,λb
]

The results for Model A2 (presented in Figure 1) show first that the version without the pre-test
exhibits some liberal size distortions when βb is near 0, which reduce when T increases, though remain
noticeable even with T = 300. On the other hand, the version with the pre-test exhibits conservative
size-distortions when βb is near but not equal to 0, which again reduce but remain noticeable when
T = 300. The most drastic differences occur when considering the power of the tests. The power of the
version without the pre-test is slightly below but near to the power of the version with the true break
fraction when T = 150 for all values of βb. When T = 300, the power functions are nearly the same.
Things are very different when the version with the pre-test is used. When βb is near but not equal
to zero, the power reduces drastically, creating pronounced power valleys. This reduction in power
alleviates somewhat when T = 300, but remains important. This is due to the fact that for low values
of βb, the SW test of Iacone et al. (2013) [37] is not powerful enough, so a change in slope regressor is
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not included. Yet, the magnitude of the change in slope is large enough to induce a considerable loss
in power. This is akin to the problem faced by the Kim and Perron (2009) [10] test in the context of
testing for a unit root.

The results for Model A3 (presented in Figure 2) show a similar picture. This is also the case when
considering the tests LM∗

T,λ̂tr
and LM∗p

T,λ̂tr
with serial correlation in the DGP (Figures 3 and 4), though

here the size distortions of both tests are somewhat higher, liberal for LM∗
T,λ̂tr

, and conservative for

LM∗p
T,λ̂tr

. The power losses of LM∗p
T,λ̂tr

is severe, especially when T = 150.
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Figure 2. Null rejection probabilities in Model A3, λb = 0.5 [− + − : LMT,λ̂tr
, − ∗ − : LMp

T,λ̂tr
,

−�− : LMT,λb
]
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Figure 3. Null rejection probabilities in Model A2, where (1 − 0.3L)ηt = εt, λb = 0.5 [−+− : LMT,λ̂tr
,

− ∗− : LM∗p
T,λ̂tr

, −�− : LMT,λb
].

Based on the simulation results, it is recommended to use the LMT,λ̂tr
or LM∗

T,λ̂tr
tests without

the pre-test. In our view, the reduction in power when using a pre-test considerably outweighs the
differences in size distortions. The SW test of Iacone et al. (2013) [37] is nevertheless still useful to
assess the presence of large breaks.
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Figure 4. Null rejection probabilities in Model A3, where (1 − 0.3L)ηt = εt, λb = 0.5 [−+− : LMT,λ̂tr
,

− ∗− : LM∗p
T,λ̂tr

, −�− : LMT,λb
].

6. An Empirical Application

We analyze the aggregate price indices of the G7 countries. Monthly seasonally-adjusted CPI
series were obtained from the OECD Main Economic Indicators. All series are analyzed with a
logarithm transformation and are plotted in Figure 5, where the vertical line is the break date estimated
by minimizing the sum of squared residuals from Model A2.

95



Econometrics 2017, 5, 5

1986May
2.5

3

3.5

4

4.5

5

Lo
g(

cp
i)

(a) Canada

1985Nov
2

2.5

3

3.5

4

4.5

5

Lo
g(

cp
i)

(b) France

1982Oct
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Lo
g(

cp
i)

(c) Germany

1986Jul
1.5

2

2.5

3

3.5

4

4.5

5

Lo
g(

cp
i)

(d) Italy

1980Nov
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Lo
g(

cp
i)

(e) Japan

1983Nov
2

2.5

3

3.5

4

4.5

5

Lo
g(

cp
i)

(f) United Kingdom

1984Jun
2.5

3

3.5

4

4.5

5

Lo
g(

cp
i)

(g) United States

Figure 5. (log) CPI for the G7 Countries.
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The results are presented in Table 9. We only consider Model A2, and use the test for a slope
change of Iacone et al. (2013) [37]. Based on the simulation results, we recommend using the LM
tests with λ̂tr. We present results with and without short-run dynamics. When dynamics is allowed,
an AR(1) specification is used. The time span is from January 1969 to December 2007 (T = 468). First,
the augmented Dickey-Fuller type test (ADF) cannot reject the null of a unit root against the alternative
of trend stationarity for all G7 countries. On the other hand, the SW test of Iacone et al. (2013) [37]
detects a change in the slope of the trend. Allowing for a structural change in trend, the fractional unit
root tests LMT,λ̂tr

and LM∗
T,λ̂tr

lead to a rejection of the unit root in favor of fractional integration.
Specifically, the test results state that the order of fractional integration is greater than unity for all G7
countries. We apply the two-step feasible exact local Whittle estimator d̂ELW of Shimotsu (2010) [40]
to the residuals from the fitted trend equipped with the estimate of the break date T̂b. This result is
compatible with that in Gil-Alana (2008) [41], where he estimated the order of fractional integration
for the U.S. CPI and found that the confidence intervals were located above unity. Hassler and Wolters
(1995) [42] considered the inflation rates for various countries, and found that the order of fractional
integration was located in an interval (0, 0.5); that is, the inflation rate is a long-memory process.

Table 9. Empirical results for the logarithmic price indices of the G7 countries.

ADF SW Break Date d̂ELW LMT ,λ̂tr
LM∗

T ,λ̂tr

Canada −0.16 (4) 19.40 *** 1986 May [0.45] 1.30 9.44 *** 9.37 *** 〈0.13〉
France −1.47 (6) 28.19 *** 1985 Nov [0.43] 1.69 34.65 *** 7.54 *** 〈0.62〉
Germany −1.59 (1) 10.78 ** 1982 Oct [0.35] 1.32 18.98 *** 8.01 *** 〈0.41〉
Italy −0.61 (7) 16.37 *** 1986 Jul [0.45] 1.54 29.55 *** 11.64 *** 〈0.52〉
Japan −2.50 (11) 18.86 *** 1980 Nov [0.31] 1.65 18.93 *** 8.73 *** 〈0.42〉
U.K. −1.47 (7) 16.50 *** 1983 Nov [0.38] 1.51 9.46 *** 4.39 *** 〈0.5〉
U.S.A. −0.44 (2) 15.75 ** 1984 Jun [0.40] 1.29 12.71*** 3.48 *** 〈0.38〉

Note: (1) The numbers in parentheses are the values of the autoregressive order selected by the Bayesian
information criterion when constructing the ADF test; (2) the numbers in brackets [·] denote the estimated
break fractions; (3) the numbers in 〈·〉 are the estimates of the AR coefficient in the noise component. *, **, and
*** denote a statistic significant at the 10%, 5%, and 1% level, respectively.

7. Conclusions

We established testing procedures for a fractional unit root, allowing for a structural change under
both the null and alternative hypotheses. Following Robinson (1994) [13], Tanaka (1999) [14] derived
a Lagrange multiplier test in the time domain, and Dolado et al. (2002, 2008) [15,19] and Lobato
and Velasco (2007) [16] considered Wald-type tests for a unit root null hypothesis against fractional
integration. Although Dolado et al. (2008) [19] introduced deterministic components, the case with a
structural break in trend has not been considered in the literature. In contrast to the large amount of
work related to testing the null hypothesis of long-memory against the alternative of stationarity with
level shifts, and vice versa, work related to a fractional unit root test allowing for a structural break in
trend is more scarce. To the best of our knowledge, this paper is the first that addresses testing for a
fractional process allowing a structural break under both the null and alternative hypotheses.

Fractional unit root tests allowing for a structural break under both the null and alternative
hypotheses have some desirable features: (i) given that economic variables are often subject to structural
changes, our approach imposes a symmetric treatment of the change under both the null and alternative
hypotheses; (ii) it is not required to distinguish long memory from structural change; (iii) the power of
fractional unit root tests can be substantially improved when a break is actually present. Under some
conditions, the proposed LM test statistics have the standard normal limit under the null hypothesis.
Simulation experiments confirmed that the tests have good size and power. Hence, we believe that our
procedures offer useful complements to existing tests and should be used in practical applications.

An extension of practical interest is to allow I(d0) processes under the null hypothesis, where
I(1) processes are included as a special case. The sufficient condition for the LM test statistic to have
the standard normal limit may be different from that in Proposition 1. Recently, Chang and Perron
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(2016) [33] extended PZ’s analysis to cover the more general case of fractionally integrated errors for
values of d0 in the interval (−0.5, 1.5) excluding the boundary case 0.5. In particular, they established
the rate of the convergence of λ̂s from the static regression [33] (Theorem 2). It is also important to
examine the performance of λ̂d and λ̂tr under the null of I(d0) processes. Such investigations, and
others, are the object of the ongoing subject.
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Appendix A

Proof of Theorem A1. The DGP is specified by (4), that is, for t = 1, . . . , T,

yt = μ1 + μbCt + ut, μb = 0.

Under H0, take first differences of yt and define D(Tb)t = 1 if t = Tb + 1 and 0 otherwise. Then,

T−1 ∑T
t=1(Δyt)2 = T−1 ∑T

t=1(μbD(Tb)t + ηt)2

= T−1
(

∑T
t=1 η2

t + 2 ∑T
t=1 μbD(Tb)tηt + ∑T

t=1 μ2
bD(Tb)

2
t

)
= T−1

(
∑T

t=1 η2
t + 2μbηTb+1 + μ2

b

)
= T−1 ∑T

t=1 η2
t + op(1)

and

T−1
T

∑
j=2

(− log ΔΔyj
)

Δyj = T−1
T

∑
j=2

(
j−1

∑
k=1

1
k
(μbD(Tb)j−k + ηj−k)

)
(μbD(Tb)j + ηj)

= T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

μbD(Tb)j−k +
j−1

∑
k=1

1
k

ηj−k

)
(μbD(Tb)j + ηj)

= T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

μ2
bD(Tb)j−k

)
D(Tb)j + T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

μbD(Tb)j−k

)
ηj

+ T−1
T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
μbD(Tb)j + T−1

T

∑
j=2

(
j−1

∑
k=1

1
k

ηj−k

)
ηj

≡ A1 + A2 + A3 + A4.

It is easy to show that A1 = 0. For A2, we have

(A2)
2 = μ2

b
1

T2

(
T−(Tb+1)

∑
k=1

1
k

ηT1+1+k

)2

≤ μ2
b

1
T2

(
T−(Tb+1)

∑
k=1

1
k2

)(
T−(Tb+1)

∑
k=1

η2
T1+1+k

)

≤ μ2
b

π2

6
1

T2

(
T−(Tb+1)

∑
k=1

η2
T1+1+k

)
= μ2

b
π2

6

(
1
T

T−(Tb+1)

∑
k=1

η2
T1+1+k

)
1
T

= Op(T−1) = op(1),

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality
holds because ∑∞

k=1 k−2 = π2/6 (see Tanaka (1999) [14]). Because ηt is a short-memory zero-mean
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covariance stationary process, it is straightforward to show that T−1 ∑
T−(Tb+1)
k=1 η2

T1+1+k = Op(1). By
the continuous mapping theorem, |A2| = op(1), which implies that A2 = op(1). Similarly,

(A3)
2 = μ2

b
1

T2

(
Tb

∑
k=1

1
k

ηTb+1−k
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6
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T
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η2
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)
1
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= op(1).

Given the results previously,

LMM =
√

T

√
6

π2
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j=2

(
∑

j−1
k=1

1
k ηj−k
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j=2 η2

j + op(1)
=

√
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√
6

π2

T

∑
k=1

1
k

ρk + op(1),

hence following Lemma A1 and Slutsky’s theorem, we have LMM
d→ N (0, 1).

Proof of Theorem A2. Under H0 : d0 = 1, Δyt = β1 + Δut = β1 + ηt1t≥1. Define Δ̃yt = Δyt − β̂1.
First, consider the denominator of LMT . Under H0, conditioning on y0 = 0,

T−1
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(
Δ̃yt
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where we use the fact that β̂1 − β1 = Op(T−1/2), and T−1 ∑T
t=1 ηt

p→ 0 by the weak law of large
numbers. Second, the numerator of LMT is given by
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where we use the expansion − log Δ = L + 1
2 L2 + 1

3 L3 + · · · . We show that Bi = op(1) for i = 1, 2, 3.

B1 ≤ (β1 − β̂1
)2 T−1T (log T + γ + ζT) = Op(T−1) (log T + γ + ζT) = op(1),

B2 =
(

β1 − β̂1
)

T−1
T−1

∑
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⎛⎝1
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ηj

⎞⎠ = Op(T−1/2)op(1) = op(1),
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⎛⎝1
k

T−k

∑
j=1

ηj

⎞⎠ = Op(T−1/2)op(1) = op(1),

where γ is the Euler-Mascheroni constant and ζT ∼ 1/(2T) which approaches 0 as T → ∞. The results
for B2 and B3 follow from the arguments used in the proof of Theorem 1 for the terms A2 and A3. Hence,
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Then, under H0,
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(
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1
k ηj−k
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t=1 η2

t
+ op(1).

This completes the proof.

Proof of Propositions A1 and A3. When the estimate of the break date is consistent, the proof is
trivial and omitted. We here focus on having a consistent estimate of the break fraction at some
rate Tκ for 0 < κ ≤ 1. Specifically, suppose that the estimate of the break fraction λ̂ satisfies that
λ̂ − λb = op(T−κ) for 0 < κ ≤ 1. For all models A1–A3, we have a detrended sequence {ỹt} based on
the OLS method in PZ. The Lagrange Multiplier test statistic is given by:

LMT,λ̂ =
√

T

√
6

π2
∑T

t=2 (− log ΔΔỹt)Δỹt

∑T
t=1 (Δỹt)

2 =
√

T

√
6

π2

∑T
t=2

(
∑t−1

k=1
1
k Δỹt−k

)
Δỹt

∑T
t=1 (Δỹt)

2 .

We show that the stochastic orders of terms associated with the deterministic time trend are smaller
than those of terms associated with the error process. We can write (9) as:

Ỹ = M̂zZ(Tb)φ + M̂zU = M̂zZ(Tb)2φ2 + M̂zU = M̃ + Ũ,

and ΔỸ = ΔM̃ + ΔŨ. Since LMT,λ̂ is a functional of ΔỸ and subvectors of ΔỸ, it suffices to consider
the inner product of ΔỸ′ΔỸ, that is,

ΔỸ′ΔỸ = ΔM̃′ΔM̃ + 2ΔM̃′ΔŨ + ΔŨ′ΔŨ.

Note that we only need to check the stochastic order of ΔỸ′ΔỸ because the lag of order k is controlled
to be small relative to the sample size T. We want to show that the term ΔŨ′ΔŨ dominates the
others. It is straightforward to show that ΔŨ′ΔŨ = Op(T) uniformly over all admissible break
dates Tb ∈ {πT, (1 − π)T} for some π ∈ (0, 1/2) in all models. When ΔM̃′ΔM̃ has a smaller
order of magnitude compared to that of ΔŨ′ΔŨ, so does ΔM̃ΔŨ by the Cauchy-Schwartz inequality.
Further, the order of magnitude of ΔM̃′ΔM̃ cannot be greater than that of M̃′ΔM̃. The order of
magnitude of M̃′ΔM̃ is Op(T2−2κ) for Models A2 and A3, which implies that the break fraction should
be estimated consistently at some rate greater than T1/2. On the other hand, for Model A1b, the
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stochastic order of M̃′ΔM̃ is Op(T1+2α). Hence, the orders of magnitude of terms associated with the
deterministic trend are greater than those of the terms associated with the error process, thereby the
LM statistic diverges as T → ∞.
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Abstract: Testing for the equality of integration orders is an important topic in time series analysis
because it constitutes an essential step in testing for (fractional) cointegration in the bivariate case.
For the multivariate case, there are several versions of cointegration, and the version given in
Robinson and Yajima (2002) has received much attention. In this definition, a time series vector is
partitioned into several sub-vectors, and the elements in each sub-vector have the same integration
order. Furthermore, this time series vector is said to be cointegrated if there exists a cointegration
in any of the sub-vectors. Under such a circumstance, testing for the equality of integration orders
constitutes an important problem. However, for multivariate fractionally integrated series, most tests
focus on stationary and invertible series and become invalid under the presence of cointegration.
Hualde (2013) overcomes these difficulties with a residual-based test for a bivariate time series. For the
multivariate case, one possible extension of this test involves testing for an array of bivariate series,
which becomes computationally challenging as the dimension of the time series increases. In this
paper, a one-step residual-based test is proposed to deal with the multivariate case that overcomes
the computational issue. Under certain regularity conditions, the test statistic has an asymptotic
standard normal distribution under the null hypothesis of equal integration orders and diverges to
infinity under the alternative. As reported in a Monte Carlo experiment, the proposed test possesses
satisfactory sizes and powers.

Keywords: asymptotic normal; fractional cointegration; Monte Carlo experiment; residual-based test

JEL Classification: C12; C32

1. Introduction

By allowing the equilibrium error to follow a fractionally integrated process, fractional
cointegration constitutes a useful extension of classical cointegration. It has received considerable
attention in the statistics, finance and econometric literature. There are several notions of (fractional)
cointegration for a p-dimensional time series Xt (see Engle and Granger (1987) [1], Johansen (1996) [2],
Flôres and Szafarz (1996) [3] and Robinson and Yajima (2002) [4] among others). In the definition
studied in Robinson and Yajima (2002) [4], a p-vector Xt is partitioned into several sub-vectors such that
elements in each sub-vector have the same integration order. Furthermore, Xt is said to be (fractionally)
cointegrated if a cointegration exists in any of the sub-vectors. Under this setting, partitioning Xt

requires testing for the homogeneity of integration orders of multiple time series, which has attracted
much interest. Current procedures usually assume stationarity and invertibility. For example, Heyde
and Gay (1993) [5] and Hosoya (1997) [6] investigate this problem based on a parametric setting, and
Robinson (1995) [7] and Lobato (1996 and 1999) [8,9] study the problem using the semiparametric
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framework. When cointegration exists or the time series becomes nonstationary, some of these tests
become invalid.

Robinson and Yajima (2002) [4] construct a single-test statistic that is valid in the presence
of cointegration for testing the homogeneity of the fractional integration orders of multiple
(asymptotically) stationary and invertible time series. They propose estimating the fractional
integration order using the local Whittle likelihood method and introduce a user-chosen number
to deal with the inversion of an asymptotically singular matrix. Nielsen and Shimotsu (2007) [10]
extend this test statistic to accommodate both (asymptotically) stationary and nonstationary time
series by applying the exact local Whittle likelihood method of Shimotsu and Phillips (2005) [11]. The
simulation results in Nielsen and Shimotsu (2007) [10] show that the test statistic is sensitive to the
choice of the user chosen number, which is assumed to satisfy certain conditions. Hualde (2013) [12]
proposes a residual-based test, which covers the nonstationary and noninvertible series, and is valid
irrespective of whether cointegration exists. Although this test is developed for a bivariate series,
extending it to the multivariate case is non-trivial because multiple comparisons are needed when
high-dimensional series are involved. There are two ways to extend the Hualde (2013) [12] result. The
first involves testing the equality of each pair of integration orders, which requires p(p − 1)/2 simple
tests for a p-dimensional series. When p is large, this test procedure becomes computationally intensive.
The second extension is to explore the possibility of a one-step single test, which is pursued here.

In this paper, a residual-based testing procedure for the equality of integration orders of a multiple
fractionally integrated process is proposed. The test encompasses both the stationary/nonstationary
and invertible/noninvertible situations, and is valid even when the time series is cointegrated.
The procedure is computationally feasible because it is a one-step test without inverting ill-conditioned
matrices under cointegration. The test can be computed very fast even when dealing with a large p.
The test statistic converges to a standard normal distribution under the null hypothesis that all
integration orders are equal, and diverges when there are different integration orders.

This paper is organized as follows. In Section 2, the testing procedure and asymptotic theory
are presented. Empirical sizes and powers of the proposed test are given via a Monte Carlo study in
Section 3. Section 4 concludes the paper.

2. Integration Orders

Consider the following p-dimensional time series (x1,t, x2,t, . . . , xp,t)
′
, with prime denoting

transposition and t ∈ {0,±1,±2, . . .},

x1,t = Δ−δ1{υ1,t1(t > 0)}, x1,t = 0, t ≤ 0,
... (1)

xp,t = Δ−δp{υp,t1(t > 0)}, xp,t = 0, t ≤ 0,

where 1(·) is the indicator function, Δ = 1 − L, L is the lag operator, and υt = (υ1,t, . . . , υp,t)
′

is
a vector of zero mean covariance stationary processes. Note that the series {xi,t} is nonstationary
for δi > 1/2 and “asymptotically stationary” for δi < 1/2, i = 1, . . . , p. By Taylor’s expansion,

Δα = ∑∞
j=0 πj(−α)Lj, πj(α) =

(α)j
j! , where (α)j = (α)(α + 1) . . . (α + j − 1). If α is not a negative integer,

then πj(α) =
Γ(j+α)

Γ(α)Γ(j+1) . When α is a negative integer, then πj(α) = 0 for j > −α and Δ−α becomes the
usual formula of differencing with integer orders. The symbol || · || is used to represent the Euclidean
norm and A ∼ B means that A/B converge to a constant or converge in distribution to a random
variable as n goes to ∞.

Assumption 1. Consider the process υt = A(L)εt, t ∈ Z with A(L) = ∑∞
j=0 AjLj. Assume that

1.1. ∑∞
j=1 j||Aj||2 < ∞;
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1.2. εt are i.i.d vectors with mean zero, positive definite covariance matrix Ω and E||εt||q < ∞ for some
q > max{2, 1/(δ̄ + 1/2)}, where δ̄ = min{δi}p

i=1.
1.3. fii(0) > 0, i = 1, 2, where f (λ) is the spectral density matrix of υt and fij(0) is the (i, j) − th

element of f (0).

Assumption 1 is mild because it is satisfied by the usual stationary and invertible autoregressive
moving average (ARMA) processes. This is a common assumption for applying the functional
limit theorem of Marinucci and Robinson (2000) [13], and it has appeared in a similar form as
Assumptions A–C of Marmol and Velasco (2004) [14], Assumption A of Hualde (2013) [12] and
Assumption 1 of Wang, Wang and Chan (2015) [15]. In Particular, the moment condition in
Assumption 1.2 is discussed by Johansen and Nielsen (2012) [16]. As pointed out in Wang, Wang
and Chan (2015) [15], Assumption 1.1 ensures that the limiting process of the partial sum of υt has
nondegenerated finite-dimensional distributions. Assumption 1.1 implies that f (λ) is Lip(γ), γ > 0.

Under Assumption 1, model (1) means that all xi,t, i = 1, . . . , p are type-II fractionally integrated
processes. Furthermore, based on the fractional cointegration definition given in Robinson and
Yajima (2002) [4], if the integration orders of xit, i = 1, . . . , p are the same and there exists a non-zero
linear combination β

′
xt that is I(b)(b < δi), then the p-dimensional time series xt is said to be

cointegrated. Furthermore, any multiple time series containing xt as a sub-vector is also said to be
cointegrated.

To test whether all of the δi, i = 1, . . . , p are the same, we need to estimate δi precisely. Thus, the
following assumptions are introduced.

Assumption 2. Under both the null and alternative hypotheses,

2.1. there exists a positive constant K < ∞ and estimates δ̂i of δi, i = 1, . . . , p, respectively, such that

p

∑
i=1

|δ̂i| ≤ K, (2)

and there exists κ > 0,
δ̂i − δi ∼ n−κ ; (3)

2.2. Letting f̂ (0) be an estimate of f (0), then f̂ (0)
p→ f (0), where

p→ stands for the convergence
in probability.

Assumption 2 is very mild, as condition (2) is satisfied if δ̂i, i = 1, . . . , p are optimizers of the
corresponding functions over compact sets. δi, i = 1, · · · , p can be estimated by semiparametric
methods (see, for example, the log periodogram estimate of Geweke and Porter-Hudak (1983) [17]
studied by Hurvich et al. (1998) [18] or the narrow-band Gaussian or Whittle estimate introduced by
Künsch (1987) [19] and studied in Robinson (1995) [7] and Lobato (1999) [9]. Equation (3) is satisfied
by many estimation methods, such as that used in Beran (1995) [20] and Tanaka (1999) [21]. As
pointed out by Hualde and Velasco (2008) [22], Equation (3) is satisfied if δi is estimated from xi,t
using the usual parametric or semiparametric methods. For example, the Whittle pseudo-maximum
likelihood estimation proposed by Velasco and Robinson (2000) [23] satisfies (3). In particular, if a
parametric structure is imposed on υt, then a

√
n-consistent estimator results by means of a multivariate

extension of Robinson (2005) [24]. Assumption 2.2 is quite common and is satisfied by many classic
semiparametric or nonparametric estimates. Actually, a stricter condition on the convergence rate of
f̂ (0) ( f̂ (0)− f (0) = Op(n−χ), with χ being a positive constant) is used in many articles, such as Hualde
and Robinson (2006) [25], Hualde and Robinson (2010) [26], Hualde and Velasco (2008) [22] and Wang
(2008) [27], among others. In particular, Hualde and Robinson (2006) [25] discuss the convergence
rate of some estimates of f , including a weighted periodogram estimate that satisfies Assumption 2.2.
Hualde and Velasco (2008) [22] point out that the nonparametric estimate of f (0) introduced in
their paper satisfies Assumption 2.2. Once δ̂i is estimated, the nonparametric estimator of f (0) can
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be based on the weighted averages of the periodogram of the proxy v̂t = (x1,t(δ̂1), . . . , xp,t(δ̂p))
′
,

where xi,t(δ̂i) = Δδ̂i{xi,t1(t > 0)}.
Let hn > 0 be a sequence such that

h−1
n + n−κhn → 0 as n → ∞. (4)

Let d = ∑
p
i=1 δi, d̂ = ∑

p
i=1 δ̂i and

â = (I1, I2, . . . , Ip)
′
, (5)

where Ii = 1{Ai ∩ Bi}, Ai = {nκ(δ̂i − max
j=1,...,p,j =i

{δ̂j}) ≥ −hn} and Bi = {nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn}.

Furthermore, for i = 1, let max
j=1,...,i−1

{δ̂j} = −∞. Clearly, B1 is the entire sample space with P(B1) = 1.

Defining δ∗i = d−δi
p−1 and δ̂∗i = d̂−δ̂i

p−1 , we denote:

F̂ = F(δ̂, f̂ (0)) =
â
′
∑t xt(δ̂∗1 , . . . , δ̂∗p)
(2nπ)1/2 â′ f̂ (0)â

,

as the test for H0 : δ1 = · · · = δp against the alternative H1: there exists at least a pair of (i, j) such that
δi = δj.

Theorem 1. Letting Assumptions 1 and 2 hold, xt is defined in (1), and then F̂ d→ N(0, 1) under H0 and

F̂ = Op(n
p∗max{δi}−d

p−1 ) under H1, where d→ stands for convergence in distribution as n → ∞.

Remark 1. Denote the set of indices of the maxima of δi as S = {j, δj = max{δi}p
i=1}, and let m0 be the

smallest index of the maxima, that is, m0 = min{S}. Furthermore, let a = em0 , where em0 is the unit vector
that equals one at the m0-th coordinate and zero otherwise. Then, it is shown in the proof of Theorem 1 that
â

p→ a.

Remark 2. The vector â can also be set as a vector of constants: a = (a1, · · · , ap)
′
, which satisfies a

′
f (0)a = 0.

As f̂ (0) → f (0) in probability, a
′
f̂ (0)a > 0 with probability 1. However, with {δi}p

i=1 unknown, it is not
guaranteed that F̂ diverges under H1 at a rate as fast as that specified in Theorem 1. Wang (2008) [27] shows
that different pre-determined â may lead to different divergence rates.

Remark 3. As pointed out in Remark 2, the choice of â has an influence on the diverging speed of F̂. From the
proof of Theorem 1, to get the theoretical diverging speed of F̂ as in Theorem 1, define â by Equations (4) and
(5). Then, â

p→ em0 when n → ∞, with m0 being the smallest index of the maxima of {δi}p
i=1. Consequently,

the denominator of F̂ converges to (2nπ)1/2 fm0,m0(0) > 0. Similar to the analysis in Hualde (2013) [12] and
Wang, Wang and Chan (2015) [15], it is natural to replace condition (4) by setting hn = 0, in which case â
converges to a random limit under H0. Furthermore, the limits of the numerator and denominator of F̂ are
dependent, which complicates analysis of the asymptotic distribution of F̂. From the definition of â, it is obvious
that the power of the proposed test with hn = 0 is superior to that of tests with other choices of hn. However,
when the sample size n → ∞, the powers of different cases will become the same. In practice, hn = lognκ or
hn = nκ/2 are two possible choices. In particular, if the parametric method in Hualde and Robinson (2011) [28]
is used, κ = 1/2, then we can set hn = n1/4.

Remark 4. If (x1,t, x2,t, . . . , xp,t) is cointegrated with β
′
xt = Δbut, β = 0, b < δ1 = δ2 = · · · = δp, then

f (0) would be singular. In this situation, most of the tests in the literature involve the inverse of f (0) and become
invalid under H0. However, the proposed test still works in the presence of cointegration. As fm0,m0(0) > 0 by

Assumption 1, and â
p→ a = em0 as mentioned in Remark 1, we have a

′
f (0)a > 0. Furthermore, as shown in
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Theorem 1, â
′
f (0)â converges to a

′
f (0)a > 0 in probability. Then, â

′
f̂ (0)â is positive with probability 1, and F̂

remains valid under cointegration.

3. Simulation

To assess the performance of our testing procedure, we conduct two Monte Carlo experiments.
For both experiments, we generate (x1,t, x2,t, x3,t)

′
as in (1) with vt being a three-dimensional white

noise with E(vt) = 0, Var(υi,t) = 1 for i = 1, 2, 3, Cov(vi,t, vj,t) =0.5. We compute F̂ parametrically,
which means δ̂i, i = 1, 2, 3 are estimated as in Hualde and Robinson (2011) [28] and f (0) is estimated
by f̂ (0) = (2πn)−1/2 ∑n

t=1 υ̂tυ̂
′
t.

For the first experiment, using 10,000 replications and 3 different sample
sizes n = 100, 250 and 500, we compute the proportion of rejecting F̂ for nominal size α = 0.01,

0.05, and 0.1 with different combinations of (δ1, δ2, δ3). Letting φ =
p∗max

i=1,...,p
{δi}−d

p−1 , we consider
φ = 0, 0.3, 0.6, 0.8 and 1.0. To investigate the sensitivity of the choice of hn, we present the result for
h1n = 0, h2n = log(nκ), h3n = nκ/2 with κ = 1/2 in Table 1.

Table 1. Empirical sizes and powers based on different δ and α.

n 100 250 500

hn α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

h1n

φ = 0 0.0603 0.1572 0.2874 0.0453 0.1356 0.2317 0.0415 0.1228 0.1969
φ = 0.3 0.5687 0.6726 0.7508 0.6615 0.7473 0.7881 0.7357 0.8113 0.8522
φ = 0.6 0.8730 0.9116 0.9288 0.9334 0.9598 0.9657 0.9767 0.9814 0.9892
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

h2n

φ = 0 0.0134 0.056 0.1127 0.0060 0.0533 0.105 0.0057 0.0523 0.1024
φ = 0.3 0.4724 0.5803 0.6437 0.5360 0.6875 0.7480 0.7371 0.8158 0.8463
φ = 0.6 0.8651 0.9082 0.9224 0.9392 0.9537 0.9556 0.9675 0.9804 0.9893
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

h3n

φ = 0 0.0047 0.0507 0.1068 0.0046 0.0482 0.1035 0.0049 0.0484 0.1033
φ = 0.3 0.4230 0.5399 0.6045 0.5168 0.6404 0.7006 0.6385 0.7334 0.7842
φ = 0.6 0.8457 0.8873 0.9162 0.9384 0.9625 0.9706 0.9727 0.9748 0.9881
φ = 0.8 0.9427 0.9562 0.9653 0.9693 0.9805 0.9833 0.9861 0.9896 0.9932
φ = 1.0 0.9733 0.9750 0.9820 0.9922 0.9951 0.9964 0.9972 0.9985 0.9987

First, consider the sizes, that is, φ = 0. We observe that for h1n, F̂ is oversized and the empirical
sizes of case h2n and h3n are very close to the nominal sizes. As n increases, the empirical sizes under
all scenarios approach the nominal sizes as expected. We also examine the power for φ = 0.3, 0.6, 0.8
and 1.0. It can be seen that the empirical power increases as n and φ increase, and that F̂ performs very
well for all choices of hin, i = 1, 2, 3. As expected, a smaller hn leads to better power, so h1n has the best
power and h2n has better power than h3n. As φ increases, the difference decreases substantially, and it
is clear that for φ ≥ 0.6, the powers of all hin, i = 1, 2, 3 are almost the same. One explanation is that
when φ is large enough, n−κhin, i = 1, 2, 3 become relatively small compared with φ, leading to the
same â. As ARMA models are common in modeling stationary time series, autoregressive fractionally
integrated moving averaging (ARFIMA) models constitute a reasonable approximation to xt when the
parametric method in Hualde and Robinson (2011) [28] is considered. In practice, if there is insufficient
information about the true model, a general ARFIMA(p1, δ0, p2) model is entertained first and a model
selection procedure based on some information criteria is conducted to choose p1 and p2.
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For the second experiment, we conduct a simulation to compare the proposed test F̂ with the test
in Nielsen and Shimotsu (2007) [10]:

T̂0 = m(Sδ̂)
′
(

S
1
4

D̂−1 (ĜoĜ
)

D̂−1S
′
+ k2

n Ip−1

)−1
(Sd̂),

where m is the bandwidth parameter; δ = (δ1, δ2, · · · , δp)
′

is the vector of integration orders of
(x1,t, x2,t, . . . , xp,t)

′
; o is the Hadamard product; Ip−1 is the (p − 1)-dimensional identity matrix;

S = [Ip−1,−ι], with ι being the (p − 1)-vector of ones; kn is a positive sequence satisfying certain
assumptions; G is the spectral density matrix of the δ’th differenced process around the origin; and
D is the diagonal matrix of G. Using 5,000 replications and 3 different sample sizes n = 128, 256 and
512, we report the rejection frequencies of F̂ with h3n = nκ , κ = 1/2, as well as T̂0 with bandwidth
parameter m = [n0.6] and two choices of kn, that is k1n = 1/log(n) and k2n = 1/(log(n))1/2 in Table 2.
Here, [z] denotes the largest integer smaller than or equal to z. The fractional integration order δ is
estimated by the exact local Whittle likelihood for T̂0.

Table 2. Empirical sizes and powers of F̂ and T̂0.

n 128 256 512

α 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

F̂ with h3n

φ = 0 0.02 0.0566 0.1148 0.016 0.0514 0.1118 0.0138 0.0514 0.1106
φ = 0.3 0.5172 0.6224 0.6842 0.5718 0.6698 0.7120 0.6398 0.7342 0.7842
φ = 0.6 0.8622 0.8976 0.9134 0.9328 0.9572 0.9680 0.9712 0.9758 0.9854
φ = 0.8 0.9592 0.9682 0.9742 0.9800 0.9850 0.9874 0.9902 0.9926 0.9938
φ = 1.0 0.9694 0.9758 0.9802 0.9858 0.9884 0.9902 0.9968 0.9976 0.9984

T̂0 with k1n

φ = 0 0.1310 0.2438 0.3278 0.1280 0.2438 0.3278 0.1010 0.2008 0.3076
φ = 0.3 0.5584 0.7144 0.7860 0.5584 0.7184 0.7860 0.5684 0.7184 0.7968
φ = 0.6 0.9722 0.9890 0.9944 0.9722 0.9890 0.9944 0.9742 0.9890 0.9974
φ = 0.8 0.9964 0.9994 0.9994 0.9968 0.9994 0.9994 0.9972 0.9996 0.9996
φ = 1.0 0.9988 0.9998 1 1 1 1 1 1 1

T̂0 with k2n

φ = 0 0.0490 0.1154 0.1808 0.0490 0.1154 0.1808 0.0498 0.1156 0.1810
φ = 0.3 0.3680 0.5662 0.6658 0.3680 0.5662 0.6658 0.3780 0.5682 0.6678
φ = 0.6 0.9352 0.9772 0.9868 0.9552 0.9782 0.9868 0.9552 0.9782 0.9868
φ = 0.8 0.9872 0.9962 0.9980 0.9892 0.9964 0.9980 0.9892 0.9964 0.9980
φ = 1.0 0.9950 0.9986 0.9994 1 1 1 1 1 1

We find that all of the three tests are oversized, and that their empirical powers increase when φ

increases. However, the empirical powers and empirical sizes of T̂0 do not change much when the
sample size changes from 128 to 512, while those of F̂ improve significantly when n increases.

We first compare the simulation results of T̂0 with k1n and k2n. It is obvious that T̂0 is sensitive to
the choice of kn: T̂0 works reasonably well for k2n = 1/(logn)1/2 and T̂0 over-rejects substantially for
k1n = 1/logn. The test T̂0 is oversized for both k1n and k2n, and k2n has a better empirical size and k1n
better empirical power. This phenomenon is also reported in Nielsen and Shimotsu (2007) [10].

We then compare F̂ with T̂0 and find that, for all sample sizes n, F̂ has much better empirical sizes
than T̂0 for both k1n and k2n. The empirical power of F̂ is not as good as that of T̂0 when the sample
size is relatively small (128 and 256). However, as the sample size increases to 512, the empirical power
of F̂ becomes superior to that of T̂0.

4. Conclusions

A residual-based test for testing the equality of the integration orders of multiple fractionally
integrated processes is proposed in this paper. The test is valid under cointegration and is
computationally feasible. One needs only to estimate the integration order and the spectral density

108



Econometrics 2016, 4, 49

function of the process that generates the fractionally integrated processes. The proposed test enjoys
standard asymptotics and possesses satisfactory finite sample behavior.
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Appendix A

Lemma A1. Let δi, δ∗i and δ̂∗i be defined as in Section 2. Then n−1/2 ∑n
t=1 Δδ̂∗i xi,t − n−1/2 ∑n

t=1 Δδ∗i xi,t ={
op(1), under H0,

op(nδi−δ∗i ), under H1.

Proof. Let g(λ, zt) = Δλzt. Then g(λ, zt) = ∑t−1
i=0 πi(λ)zt−i if zt = 0 for t ≤ 0, where πi(·),

i = 1, . . . , t − 1 are as defined in Section 2 and the derivatives g(r)(λ, zt) = ∑t−1
i=1 π

(r)
i (λ)zt−i,

where π
(r)
i (λ) = drπi(λ)/dλr. Based on Taylor’s expansion around δi, for a certain constant R

to be defined subsequently, we can show that

n−1/2
n

∑
t=1

Δδ̂∗i xi,t − n−1/2
n

∑
t=1

Δδ∗i xi,t

=n−1/2
n

∑
t=1

(g(δi − δ̂∗i ; υi,t)− g(δi − δ∗i ; υi,t))

=
1√
n

R−1

∑
r=1

(δ∗i − δ̂∗i )
r

r!

n

∑
t=1

g(r)(δi − δ∗i ; υi,t) +
(δ∗i − δ̂∗i )

R

R!
√

n

n

∑
t=1

g(R)(δi − δ̃; υi,t) (A1)

=

{
op(1), under H0,

op(Tδi−δ∗i ), under H1,
(A2)

where δ̃ ∈ (min(δ∗i , δ̂∗i ), max(δ∗i , δ̂∗i )).
(A1) and (A2) can be derived based on reasoning similar to that of Theorem 1 of Wang, Wang and

Chan (2015) [15] or Theorem 1 of Hualde (2013) [12], under Assumptions 1 and 2. In particular, to
verify (A2), we apply the functional central limit theorem as in Marinucci and Robinson (2000) [13],
which is guaranteed by Assumption 1.

Proof of Theorem 1. First, we show that â
p→ a, where â = (I1, I2, . . . , Ip), with Ii = 1{Ai ∩ Bi},

Ai := {nκ(δ̂i − max
j=1,...,p,j =i

{δ̂j}) ≥ −hn}, Bi = {nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn}, and B1 is as defined in

Section 2.
Note that ∀i ∈ {1, . . . , p},

1{Ai ∩ Bi}+ 1{Ac
i ∪ Bc

i } = 1,
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and â
p→ a is immediately obtained if we show that

1{nκ(δ̂i − max
j=1,...,p,j =i

{δ̂j}) ≥ −hn} = op(1), if δi < max
j=1,...,p

{δj}, (A3)

1{nκ(δ̂i − max
j=1,...,p,j =i

{δ̂j}) < −hn} = op(1), if δi = max
j=1,...,p

{δj}, (A4)

1{nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) > hn} = op(1), if δi ≤ max
j=1,...,i−1

{δj}, (A5)

1{nκ(δ̂i − max
j=1,...,i−1

{δ̂j}) ≤ hn} = op(1), if δi > max
j=1,...,i−1

{δj}. (A6)

The reason is that, if i = m0, with m0 as defined in Remark 1, δi = max
j=1,...,p

{δi} and δi > max
j=1,...,i−1

{δi},

then 1{Ac
i ∪ Bc

i } ≤ 1{Ac
i }+ 1{Bc

i } = op(1) + op(1) = op(1) and 1{Ai ∩ Bi} p→ 1.
Otherwise, if i = m0, which means δi < max

j=1,...,p
{δi} or δi ≤ max

j=1,...,i−1
{δi}, then 1{Ai ∩ Bi} ≤

1/2(1{Ai}+ 1{Bi}) = op(1) + op(1) = op(1).

Therefore, Ii
p→ 1{i = m0}, and furthermore â

p→ a.
Then, we prove (A3)–(A6). As the definition of 1{Bi} is similar to the terms that appear

in Hualde (2013) [12] and Wang, Wang and Chan (2015) [15], (A5) and (A6) can be proved with
similar reasoning. We prove (A3), which means that δi is smaller than max

k=1,...,p
{δk} = δj. Denote

Qn = nκ(δ̂i − δ̂j − (δi − δj)), then |Qn| = Op(1) based on Assumption 2. First, we show that

1{Ai} = 1{nκ(δ̂i − max
k=1,...,p,k =i

{δ̂k}) ≥ −hn}

= 1{nκ(δ̂i − δ̂j) ≥ −hn}
= 1{Qn + nκ(δi − δj) ≥ −hn}
≤ |Qn |

−hn+nκ(δj−δi)
= op(1),

(A7)

by (4).
Similarly, for (A4), when δi = max{δk

k=1,...,p
} ≥ max{δk

k=1,...,p,k =i
},

1{Ac
i } = 1{nκ(δ̂i − max

k=1,...,p,k =i
{δ̂k}) < −hn}

≤ ∑
p
k=1,k =i 1{nκ(δ̂i − δ̂k) < −hn}

= ∑
p
k=1,k =i 1{Qn + nκ(δi − δk) < −hn}

= op(1),

(A8)

since

1{Qn + nκ(δi − δk) < −hn},

=

{
1{−Qn > hn} ≤ |Qn |

hn
= op(1), if δi = δk,

1{nκ(δi − δk) < −hn − Qn} ≤ |Qn |+hn
nκ(δi−δk)

= op(1), if δi > δk.

Next, we prove that

F(δ, f (0)) = ∑n
t=1 a

′
xt(δ

∗
1 ,...,δ∗p)

(2nπ)1/2a′ f (0)a
,{

d→ N(0, 1), under H0,
= Op(n(p∗max{δi}−d)/(p−1)), under H1.

(A9)
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Under H0, δ∗i = δi,
n−1/2a

′
∑t xt(δ1,...,δp)

(2π)1/2a′ f (0)a
converges in distribution to N(0, 1) in view of the

functional limit theorem of the I(0) process. Under H1, δi − δ∗i = p∗δi−d
p−1 ,

a
′

∑t vt(−(δ1−δ∗1 ),...,−(δp−δ∗p))
(2nπ)1/2a′ f (0)a

=

Op(n
p∗max{δi}−d

p−1 ), based on the properties of the integrated process.
Finally, we show that

n−1/2
n

∑
t=1

(â
′
xt(δ̂

∗
1 , . . . , δ̂∗p)− a

′
xt(δ

∗
1 , . . . , δ∗p))

=
(â − a)

′
√

n

n

∑
t=1

xt(δ
∗
1 , . . . , δ∗p)) +

â
′

√
n

n

∑
t=1

(xt(δ̂
∗
1 , . . . , δ̂∗p)− xt(δ

∗
1 , . . . , δ∗p)) (A10)

=

{
op(1) under H0,

op(n(p∗max{δi}−d)/(p−1)), under H1.

By Lemma A1, || 1√
n ∑n

t=1(xt(δ̂∗1 , . . . , δ̂∗p) − xt(δ∗1 , . . . , δ∗p))|| is op(nmax{δi−δ∗i }); additionally, p ∗
max{δi} − d = 0 under H0. Thus, it is op(n(p∗max{δi}−d)/(p−1)) under H1, and is op(1) under H0.

|| 1√
n ∑n

t=1 xt(δ∗1 , . . . , δ∗p))|| is Op(n(p∗max{δi}−d)/(p−1)) and ||(â − a)|| is op(1),

so (â−a)
′

√
n ∑n

t=1 xt(δ∗1 , . . . , δ∗p)) is op(n(p∗max{δi}−d)/(p−1)).

Furthermore, based on (A9) and (A10) and given that â
′
f̂ (0)â

p→ a
′
f (0)a > 0, the proof of

Theorem 1 is complete.

References

1. Engle, R.F.; Granger, C.W.J. Cointegration and error correction: Representation, estimation and testing.
Econometrica 1987, 55, 251–276.

2. Johansen, S. Likelihood-based inference in cointegrated vector autoregressive models, 2nd ed.; Oxford University
Press: Oxford, UK, 1996.

3. Flôres, R.G., Jr.; Szafarz, A. An enlarged definition of cointegration. Econ. Lett. 1996, 50, 193–195.
4. Robinson, P.M.; Yajima, Y. Determination of cointegrating rank in fractional systems. J. Econom. 2002, 106,

217–247.
5. Heyde, C.C.; Gay, R. Smoothed periodogram asymptotics and estimation for processes and fields with

possible long-range dependence. Stoch. Proc. Appl. 1993, 45, 169–182.
6. Hosoya, Y. A limit theory for long-range dependence and statistical inference on related models. Ann. Stat.

1997, 25, 105–137.
7. Robinson, P.M. Gaussian semiparametric estimation of long-range dependence. Ann. Stat. 1995, 23,

1630–1661.
8. Labato, I.G. Multivariate Analysis of Long Memory Series in the Frequency Domain. Ph.D. Thesis,

University of London, London, UK, 1996.
9. Lobato, I.G. A semiparametric two-step estimation on a multivariate long-memory model. J. Econom. 1999,

90, 129–153.
10. Nielsen, M.; Shimotsu, K. Determine the cointegration rank in nonstationary fractional systems by the exact

local Whittle approach. J. Econom. 2007, 141, 574–596.
11. Shimotsu, K.; Phillips, P.C.B. Exact local Whittle estimation of fractional integration. Ann. Stat. 2005, 33,

1890–1933.
12. Hualde, J. A simple test for the equality of integration orders. Econ. Lett. 2013, 119, 233–237.
13. Marinucci, D.; Robinson, P.M. Weak convergence of multivariate fractional processes. Stoch. Proc. Appl. 2000,

86, 103–120.
14. Marmol, F.; Velasco, C. Consistent testing of cointegrating relationships. Econometrica 2004, 72, 1809–1844.
15. Wang, B.; Wang, M.; Chan, N.H. Residual-based tests for fractional cointegrations. Econ. Lett. 2015, 126,

43–46.

111



Econometrics 2016, 4, 49

16. Johansen, S.; Nielsen, M. A necessary moment condition for the fractional functional central limit theorem.
Econom. Theory 2012, 28, 671–679.

17. Geweke, J.; Porter-Hudak, S. The estimation and application of long memory time series models. J. Time
Ser. Anal. 1983, 4, 221–238.

18. Hurvich, C.M.; Deo, R.; Brodsky, J. The mean squared error of Geweke and Porter-Hudak’s estimates of the
memory parameter of a long memory time series. J. Time Ser. Anal. 1998, 19, 19–46.

19. Künsch, H.R. Statistical aspects of self-similar processes. In Proceedings of the First World Congress of the
Bernoulli Society; Prokhorov, Y., Sazonov, V.V., Eds.; VNU Science Press: Utrecht, The Netherlands, 1987;
Volume 1, pp. 67–74.

20. Beran, J. Maximum likelihood estimation of the differencing parameter for invertible short and long memory
autoregressive integrated moving average models. J. R. Stat. Soc. Ser. B 1995, 57, 659–672.

21. Tanaka, K. The nonstationary fractional unit root. Econom. Theory 1999, 15, 549–582.
22. Hualde, J.; Velasco, C. Distribution-free tests of fractional cointegration. Econom. Theory 2008, 24, 216–255.
23. Velasco, C.; Robinson, P.M. Whittle pseudo-maximum likelihood estimation for nonstationary time series.

J. Am. Stat. Assoc. 2000, 95, 1229–1243.
24. Robinson, P.M. The distance between rival nonstationary fractionary fractional processes. J. Econom. 2005,

128, 283–300.
25. Hualde, J.; Robinson, P.M. Semiparametric Estimation of Fractional Cointegration. STICERD-Econometircs

Paper Series No. EM/2006/502. 2006. Available online: http://sticerd.lse.ac.uk/dps/em/em502.pdf
(accessed on 1 July 2016).

26. Hualde, J.; Robinson, P.M. Semiparametric inference in multivariate fractionally cointegrated systems.
J. Econom. 2010, 157, 492–511.

27. Wang, B. Residual-based tests for fractional cointegrations. Ph.D. Thesis, The Chinese University of Hong
Kong, Shatin, Hong Kong, 2008.

28. Hualde, J.; Robinson, P.M. Gaussian pseudo-maximum likelihood estimation of fractional time series models.
Ann. Stat. 2011, 39, 3152–3181.

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

112



econometrics

Article

Oil Price and Economic Growth: A Long Story?

María Dolores Gadea 1,*, Ana Gómez-Loscos 2 and Antonio Montañés 3

1 Department of Applied Economics, University of Zaragoza, Zaragoza 50006, Spain
2 Directorate General Economics, Statistics and Research, Bank of Spain, Madrid 28045, Spain;

agomezloscos@bde.es
3 Department of Economic Analysis, University of Zaragoza, Zaragoza 50006, Spain; amontane@unizar.es
* Correspondence: lgadea@unizar.es; Tel.: +34-976-76-1842

Academic Editor: Pierre Perron
Received: 30 August 2016; Accepted: 7 October 2016; Published: 28 October 2016

Abstract: This study investigates changes in the relationship between oil prices and the US economy
from a long-term perspective. Although neither of the two series (oil price and GDP growth rates)
presents structural breaks in mean, we identify different volatility periods in both of them, separately.
From a multivariate perspective, we do not observe a significant effect between changes in oil prices
and GDP growth when considering the full period. However, we find a significant relationship in
some subperiods by carrying out a rolling analysis and by investigating the presence of structural
breaks in the multivariate framework. Finally, we obtain evidence, by means of a time-varying VAR,
that the impact of the oil price shock on GDP growth has declined over time. We also observe that
the negative effect is greater at the time of large oil price increases, supporting previous evidence of
nonlinearity in the relationship.

Keywords: oil price; business cycle; structural breaks

JEL Classification: C22; C32; E32; Q43

1. Introduction

The literature on oil and macroeconomic variables is very extensive (see [1,2]). There is an ongoing
debate on the interaction between oil price and macroeconomic performance. However, analyses
of the link between oil price shocks and the business cycle have concentrated almost completely on
relatively short horizons, from the early 1970s on. In particular, two specific periods have received a
great deal of attention: the 1970s in particular and, to a lesser extent, the years since the beginning of
the 21st century. It is well recognized that this interest dates back to the 1970s because the 1970s (and
also the early 1980s) were characterized by serious oil price fluctuations together with unfavorable oil
supply shocks, considered as the reasons behind worldwide macroeconomic volatility and stagflation.
The interest has been rekindled in more recent times, given the possibility of a recurrence of this
scenario. Indeed, some authors have investigated the different effects between these two periods on
the macroeconomic variables see [3,4].1 Two notable exceptions to this relatively short-term perspective
are [7], who investigate the volatility and persistence patterns of oil price shocks based on annual

1 Since the seminal work of [5] for the US economy, a growing number of articles have analyzed the economic consequences
of oil price shocks in industrialized countries. Most of the literature shows that the effect of oil price on the economy was
very important during the 1970s, but has gradually disappeared since then (many studies support this view; the work in [2]
provides a comprehensive review of the literature). The papers [4,6] show that this influence has revived, but with less
intensity, since 2000 and, most important, is manifested on inflation.
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data for 1861–2008,2 and, more recently [8], who analyze the effects of oil prices on output and real
dividends using a quarterly sample beginning in 1946.

The fact that the literature has focused on correctly identifying the source of shocks on oil prices,
almost exclusively during the post-1970s period, is related to the frequent and tumultuous events in
oil price markets at that time. It is also due to the absence of high-frequency data from earlier periods.
However, much can be learned about the relationship between oil prices and macroeconomic conditions
from the less-recent past. We expect that over such a long period there have been important changes in
the demand and supply for oil that could lead to identify some structural breaks. For instance, prior to
the mass production of automobiles, demand for oil focused on kerosene lamps. Regarding oil supply,
the relative importance of Texas Railroad Commission and OPEC in setting world oil prices changed
over this period. In this study, we aim to investigate changes in the behavior of oil prices and their
influence on the US economy, using the longest available oil price series (January 1861–February 2016),
which allows us to offer an alternative view to the literature of the historical role of the macroeconomic
effects of oil.

The contributions of this study, which has some advantages over the previous literature, are
twofold. First, we use data with a broader coverage in the time dimension than the previous studies
(January 1861–February 2016 for oil prices and January 1875–February 2016 for GDP). In particular,
our study is the first one, as far as we know, that captures the relationship between oil price shocks
and the US GDP growth with such a long-term perspective. Second, we provide a comprehensive
methodological framework to analyze the relationship between the two variables. We investigate
the univariate properties of the series, focusing on the presence of structural breaks and volatility.
Then, we adopt a multivariate perspective to delve into the relationship between oil price shocks and
GDP performance in order to identify structural breaks in the multivariate regressions by employing
three complementary tools: a VAR method, a rolling estimation of causality and long-term impacts,
and the Qu and Perron (QP, henceforth) methodology [9]. Once the presence of instabilities in the
series has been established, we propose a time-varying GDP-oil price model to capture the relationship
between the two variables over time, detailing impulse responses during periods of intense shocks in
the oil price markets.

The main findings of the study are as follows. First, although neither of the two series presents
structural breaks in the mean, we identify in both of them, separately, different volatility periods
associated with major events either in the economic performance of the US economy or in the oil
markets. Second, delving deep into the relationship between the two variables through the full period,
we observe that changes in oil prices have no significant effect on GDP growth. Nevertheless, it is
reasonable to think that, with so many significant events in such a long period, both in business
cycle dynamics and in the demand and supply factors of oil prices, the relationship between the
two variables may have not been so stable. This is clear when we carry out a rolling analysis and
investigate the presence of structural breaks in the multivariate framework. In particular, we clearly
identify four different periods: February 1875–April 1912, January 1913–January 1941, February
1941–March 1970, and April 1970–February 2016. Third, we obtain evidence of a changing relationship
over time regarding the time-varying VAR: the impact of an oil price shock on GDP growth has
declined over time. We also observe that the negative effect is greater at the time of large oil price
increases, supporting previous evidence of nonlinearity in the relationship.

The remainder of the paper is organized as follows. Section 2 describes the dataset used in the
analysis. Section 3 investigates the univariate evolution of the series, focusing on the presence of
structural breaks in mean and volatility. Section 4 analyzes the transmission of the effects between oil
price shocks and GDP growth, adopting a multivariate perspective. Section 5 proposes a time-varying

2 The authors find that the real price of oil has historically tended to be both more persistent and more volatile whenever
rapid industrialization in the world economy coincided with uncertainty regarding access to supply.
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VAR model to capture different behaviors in the relationship over time. Finally, Section 6 concludes
the study.

2. Data

We use series beginning in the nineteenth century and running until the present for our analysis
of oil prices and US GDP. Regarding the US GDP, we use real quarterly data from the Bureau of
Economic Analysis (BEA) and the National Bureau of Economic Research (NBER), covering the period
January 1875 to February 2016. In particular, the BEA GDP series from 1947 onward is linked to
a historical dataset beginning in 1875, which is available at the NBER until 1983.3

The long crude oil price series in real terms is taken from the British Petroleum’s Statistical Review
of World Energy [11]. This series has an annual frequency and links three different price series: US
average price (1861–1944), Arabian Light (1945–1983), and Brent (1984–2015). Since our aim is to
analyze the relationship between oil price shocks and GDP, we adopt two strategies to be able to
work with higher-frequency data, which would allow us to better capture the effects of oil prices on
economic growth. First, we use the Chow-Lin interpolation technique [12] to convert the annual series
of oil prices into a quarterly series dataset, using an intercept as high frequency indicator.4 Figure 1
displays both historical series. Second, in the last part of our sample, we work with real quarterly
Brent data from Datastream.5 We have considered three options to link this quarterly series with the
transformed annual data: (i) begin using the quarterly series in 1957, the first year for which Brent
data are available; (ii) delay the use of the quarterly series until the 1970s, when data variability clearly
increases; (iii) maintain the first two consecutive series of the British Petroleum database and link
with the quarterly series in 1984. Figure 2 illustrates the different options, and we observe hardly
any difference among the three (called oilp1, oilp2, and oilp3, respectively). To obtain more reliable
quarterly data, we chose the Brent quarterly series beginning in 1957 (oilp3).6 This series is more
accurate due to its higher frequency and is directly obtained from Datastream. Thus, our final crude oil
price time series consists of the quarterly interpolated British Petroleum historical dataset until 1956,
linked to the quarterly Brent data from 1957 onward, and ranges from January 1861 to February 2016.
Figure 3 displays the growth rates of oil prices and GDP, calculated as the first logarithmic differences,
which we denote as ΔOILPt and ΔGDPt, respectively.

3 The first series is in real 2009 dollars, while the long historical series is in real 1972 dollars, but has been transformed to link
both. The historical series is taken from Appendix B of [10].

4 Chow-Lin interpolation is a regression-based technique to transform low-frequency (annual, in our case) data into
higher-frequency (quarterly, in our case) data. In particular, we apply the average version, which disaggregates the
annual data into the means of four quarters and is the most suitable approach for price data, and select the maximum
likelihood method. We use the Matlab toolbox of [13,14]. This approach gives us the best fit when compared to the
available quarterly data. However, we have tested the accuracy of other disaggregation methods and the results remain
broadly unchanged.

5 Prices are in 2009 US dollars per barrel, and the US GDP deflator data are from the IMF.
6 We have also considered other alternatives: (1) use the British Petroleum dataset, updating the last years with the annual

Brent series and transforming the whole sample into quarterly data through the Chow-Lin procedure; (2) use the historical
British Petroleum series linked to the West Texas Intermediate data or the Producer Price Index for crude petroleum (since
they are available or from 1984 onward) instead of Brent prices. We have decided to disregard these options to obtain a
more homogeneous dataset by using Brent prices. However, comparing the path of the alternative series to the one we use,
we do not observe much difference. Furthermore, we repeated some calculations, obtaining quite similar results.
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Figure 1. Historical oil prices. Notes: The top figure represents the annual BP oil price series, which
are made of three different series: US average price (1861–1944), Arabian Light (1945–1983), and Brent
(1984–2015). The bottom figure displays the same series converted to a quarterly frequency through
the Chow-Lin interpolation technique. Dates are in year.month format.

×

Figure 2. Oil prices and GDP. Notes: The top figure represents the US real quarterly GDP obtained from
the BEA and the NBER (January 1875–February 2016). The bottom figure shows three different real
quarterly oil price series: “oilp1” links the BP real quarterly series (transformed using the Chow-Lin
technique) with Brent quarterly data from 1957 on; “oilp2” is composed of the BP real quarterly series
(transformed using the Chow-Lin technique) and Brent quarterly data from 1970 on; “oilp3” puts
together the BP real quarterly series (transformed using the Chow-Lin technique) and Brent quarterly
series from 1984 on. Dates are in year.month format.
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Figure 3. Oil prices and GDP growth rates. Notes: The top figure represents the growth rate of the US
real quarterly GDP obtained from the BEA and the NBER (January 1875–February 2016). The bottom
figure displays the growth rate of “oilp3”, which consists of the quarterly interpolated BP historical
dataset until 1956 linked to the quarterly Brent data from 1957 onward and ranges from January 1861
to February 2016. Dates are in year.month format.

3. Univariate Analysis of the Series

In this section, as a first data exploratory analysis, we examine the univariate evolution of each
of the two series, oil prices and GDP growth rates. In particular, we explore the possible existence of
structural changes in both mean and variance of the series.

3.1. Changes in Mean

In this subsection, we test for the presence of structural breaks in the mean of ΔGDP
and ΔOILP. To this end, we apply the methodology of Bai and Perron [15–17] (BP, henceforth).7

The BP methodology looks for multiple structural breaks, consistently determining the number of
break points over all possible partitions, as well as their location, and it is based on the principle of
global minimizers of the sum of squared residuals. The methodology considers m possible breaks
(m + 1 regimes) in a general linear model of the type:

yt = x′tβ + z′tδj + ut (1)

where the explanatory variables β and δj (j = 1, ..., m + 1) are the corresponding vectors of the
coefficients and Ti, ..., Tm are the break points, which are treated endogenously in the model.

Using this method, [15] proposes three types of tests. The first one, called the supF(k) test,
considers the null hypothesis of no breaks against the alternative of k breaks. The second test,
supF(l + 1/l), considers the existence of l breaks, with l = 0, 1, ..., as H0, against the alternative of l + 1
changes. Finally, the so-called double maximum tests UDmax and WDmax (the third type) test the null
of the absence of structural breaks against the existence of an unknown number of breaks. The strategy

7 We have tested, but not rejected, the hypothesis that both series are I(0), using a battery of standard unit root tests.
The stationarity of the series is a pre-condition for applying the BP method. Detailed results are available upon request.

117



Econometrics 2016, 4, 41

suggested by Bai and Perron [16] consists of first beginning with the sequential test supF(l + 1/l).
In case no break is detected, they recommend checking this result with the UDmax and WDmax tests
to determine whether at least one break exists. When this is the case, they recommend continuing
with the sequential application of the supF(l + 1/l) test, with l = 1, ... In addition, information criteria
such as the traditional Schwarz Bayesian information criterion (SBIC) and the modified Liu Wu Zidek
criterion (LWZ)8 are used to select the number of changing points.

This strategy has been followed to explore the existence of structural breaks in a model
representing the mean of the variables, that is, a model with just a constant: z′t = 1 and x′t = 0.
The disturbance term is allowed to present both autocorrelation and heteroskedasticity. A maximum
number of five breaks has been considered in accordance with a sample size of T = 565 for GDP
growth and 621 for oil price growth. Then, according to the length of the series, the selected trimming
is ε = 0.15. A non-parametric correction has been employed to consider these effects. Table 1 shows
the results. According to the different tests, we cannot reject the hypothesis that neither ΔGDP nor
ΔOILP presents structural changes in the mean.9 For the whole period, the mean GDP growth is 0.80%
and the mean oil price growth, 0.19%.

Table 1. Multiple structural breaks in mean (Bai-Perron methodology).

ΔGDP ΔPOIL

supF(k)

k = 1 1.80 0.38
k = 2 1.70 0.94
k = 3 2.20 1.71
k = 4 2.08 1.32
k = 5 1.43 0.70

supF(l + 1/l)
l = 0 1.80 0.38
l = 1 2.44 1.54
l = 2 2.77 0.58
l = 3 1.58 0.82
l = 4 − −

UDmax 2.20 1.71
WDmax 3.56 2.46

T(SBIC) 0 0
T(LWZ) 0 0

T(sequential) 0 0

Notes: Changes are tested by selecting a trimming of ε = 0.15 and a maximum number of five breaks.
Serial correlation and heterogeneity in the errors are allowed. The consistent covariance matrix is constructed
using the Andrews method [20]. Critical values in [15].

3.2. Changes in Volatility

To test for the possibility of structural breaks in the variance of the process, we consider the Inclán
and Tiao (IT) test [21]. This test, which has been extensively used, allows for the detection of changes
in the unconditional variance of a series and belongs to the CUSUM-type family of tests. The test is
defined as follows:

8 See [18].
9 Alternatively, we tried a standard autoregressive model of order 1, with z′t = 1 and x′t = (yt−1), finding similar conclusions.

The results are also robust to considering a higher number of maximum breaks. A paper by [19] also confirms the absence of
structural breaks in the mean of US GDP series.
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IT = supk
∣∣√T/2Dk

∣∣ where
Dk =

Ck
Ct

− k
t with Do = DT = 0

Ck = ∑k
t=1 u2

t

(2)

This test assumes that the disturbance ut in equation yt = μ + ut, being yt = ΔOILPt or ΔGDPt,
is a zero-mean, normally i.i.d. random variable and uses an iterated cumulative sum of squares (ICSS)
procedure to detect the number of breaks. However, [22] shows that the asymptotic distribution of
the IT test is critically dependent on normality. Indeed, the IT test has large size distortions when
the Gaussian innovation assumption is not met in the fourth-order moment, or for heteroskedastic
conditional variance processes, and consequently tends to overestimate the number of breaks.10

To overcome this drawback, they propose a correction that explicitly takes into account both the
fourth-order moment properties of the disturbances and the conditional heteroskedasticity (κ1 and
κ2, respectively).

IT(κ1) = supk
∣∣√T/Bk

∣∣ where

Bk =
Ck− k

T CT√
η̂4−σ̂4

η̂4 = T−1 ∑T
t=1 y4

t , σ̂4 = T−1CT

(3)

IT(κ2) = supk
∣∣√T/Gk

∣∣ where
Gk = �̂−1/2

4 (Ck − k
T CT)

(4)

where �̂4 is a consistent estimator of �4 = limT→∞ E(T−1(∑k
t=1(u

2
t − σ2))2).

The US GDP growth series is not mesokurtic (in fact, its excess kurtosis series is 3.15) and has
a fat right tail. Moreover, the conditional variance of the innovations is not constant over time.11

These properties are even more accentuated for oil price growth series, in which excess kurtosis reaches
20.10 and shows very long tails. Consequently, we use the previous corrections in addition to the
original ICSS algorithm.

Table 2 shows the results of the ICSS(IT), ICSS(κ1), and ICSS(κ2) tests applied to the US GDP
and oil price growth rates. We observe overestimation of break dates when using the original IT test
(and even in the ICSS(κ1) test), which is especially dramatic for oil price growth, considering the
properties of this series. Therefore, we focus on the results of the ICSS(κ2) test, which includes all
corrections. We find three breaks in the variance of GDP growth, chronologically located in April 1917,
February 1946, and January 1984, confirming the findings of [19].12 These break dates approximately
match the end of each of the world wars and the beginning of the Great Moderation. Thus, a secular
reduction in volatility is observed in US GDP growth.

The results of the variance tests applied to the oil price growth rate show only two changes in
variance, in April 1878 and April 1973. Indeed, oil prices are more volatile in the beginning and ending
periods (the last period being significantly more volatile), while a much less volatile period is observed
from 1878 to 1973 (see Figure 3). These break points to are related to a combination of technological

10 The IT approach is extended to more general processes by [23], showing that the correction for non-normality proposed
by [22] is suitable when the test is applied to the unconditional variance of raw data. Furthermore, [24] carry out a Monte
Carlo experiment that highlights the adequacy of this procedure when the mean or other coefficients in the regression do
not change; otherwise, the test has important size distortions, which increase with the magnitude of change in the mean.

11 The US GDP growth rates can be approximated by leptokurtic densities as shown by [25]. This indicates that output
growth changes tend to be quite uneven in the sense that large positive or negative changes seem to be more frequent than
a Gaussian model would predict.

12 The authors offer a thorough analysis of the sources and features of these different volatility periods.
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and geographic factors affecting the oil market by [7],13 along with a booming demand for oil, driven
by the large-scale industrialization of the US and East Asia.14

Table 2. Multiple structural breaks in variance (ICSS methodology).

ΔGDP ΔOILP

ICSS(IT)

April 1917 April 1878
February 1946 February 1914
February 1984 March 1921

April 2007 March 1930
February 2009 February 1934

March 1936
April 1944
March 1947
April 1960
April 1970

ICSS(κ1)

March 1929 January 1862
March 1934 January 1963

February 1946 April 1878
January 1984 March 1930

February 1934
April 1973

ICSS(κ2)

April 1917 April 1878
February 1946 April 1973
January 1984

Note: Dates of the detected changes in variance. ICSS(i), i = {IT, κ1, κ2}.

To provide robustness to the previous results, we use an additional test within the parametric
framework, which consists in applying the BP test to the mean of the absolute value of the estimated

residuals
√

π
2 |εt| from one of the following specifications:15

Model 1: yt = μ + εt

Model 2: yt = μ + ρyt−1 + εt

εt = z′tδj + ut

z′t = 1

(5)

where yt represents ΔOILPt or ΔGDPt.
Table 3 roughly confirms the ICSS(κ2) test results. We focus on the results of Model 1. Regarding

the identification of structural breaks in the GDP growth rate, we identify three break points as in the
previous exercise. However, the dates differ, as a structural break in March 1929 coincides with the
1929 Crash as against the one related to the end of the first world war.16 Concerning the oil prices,

13 Construction of the first long-distance pipeline began in 1878, allowing the railroad monopoly over oil transportation to end.
However, US control over excess exploitable reserves ended and OPEC dominance increased in 1969.

14 See also [26] for a historical survey of the oil industry with particular focus on the events related to significant oil
price changes.

15 A paper by [24] shows that, in case changes in the mean of the series are not taken into account, the test suffers from severe
size distortions. However, we have shown that our series do not have structural breaks in the mean. This method has been
used in several studies: [27–29], among others.

16 Notice that these break points are the least significant ones with both approaches. Indeed, the break of March 1929 is not
even identified with Model 2 of the BP methodology.
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we find three break points instead of two. The new break point is located in February 1935, while the
other two are the same previously identified. This methodology to the annual series of oil prices by [7],
finding roughly the same three break points. They link the new break to both a major oil discovery a
few years earlier (the East Texas oil Field) and a worldwide recession.

Table 3. Multiple structural breaks in variance (Bai-Perron methodology).

ΔGDP ΔOILP

Model 1

March 1929 April 1878
January 1947 February 1935

February 1984 April 1973

Model 2

March 1946 March 1973
April 1983

Notes: The BP method is applied on the corrected square residuals of yt = μ + εt, Model 1 or yt = μ + ρyt−1 + εt,
Model 2. Changes in the mean are tested selecting a trimming of ε = 0.15. and a maximum number of 10 breaks.
Serial correlation and heterogeneity in the errors are allowed. The consistent covariance matrix is constructed
using the Andrews method [20]. Critical values in [15].

4. Multivariate Analysis of the Series

After studying the univariate evolution of both oil price and GDP growth rates, this section
analyzes the transmission of the effects between them and their direction. To this end, we first use
a standard VAR methodology and, subsequently, consider different methodologies to take into account
the possible instability of the VAR parameters. In particular, we compute a rolling causality test and
cumulative impulse response functions. In addition, we analyze the presence of structural breaks in
our VAR equation.

4.1. VAR Estimation

A simple way to analyze the dynamic relationship between oil price variations and GDP growth
is the use of a standard VAR(p) model. Following [30,31], among many others, we define this model
as follows:

Yt = μ +
p

∑
i=1

ΨiYt−1 + εt, t = 1, 2, ..., T (6)

where Yt = (ΔGDPt, ΔOILPt)′ is a 2 × 1 vector composed of observations of the variables,
Ψi (i = 1, ..., p) are 2 × 2 coefficient matrices, εt = (ε1t, ε2t)

′ with εit, (i = 1, 2) is an unobservable
zero mean white noise vector of dimension T, and p is the parameter that determines the VAR
dimension, chosen according to the SBIC criterion.17 The model is specified as follows:[

ΔOILPt

ΔGDPt

]
=

[
ψ11 ψ12

ψ21 ψ22

] [
ΔOILPt−1

ΔGDPt−1

]
+

[
ε1t
ε2t

]
(7)

The VAR estimation is reported in Table 4. The results show no significant effect of oil price growth
on GDP growth, which means ΔOILP does not influence—that is, does not Granger-cause—GDP

17 The SBIC criterion selects one lag. Nevertheless, other information criteria, such as the Akaike information criterion (AIC)
and the Hannan-Quinn (HQ) criterion select five lags. Therefore, we use a VAR(1) as the preferred model and estimate,
additionally, a VAR(5) to check the robustness of our results. For simplicity, and to save space, we only present the results
for the VAR(1) and discuss whether some interesting results or significant differences appear with respect to the VAR(5).
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growth. We obtain a similar result in the opposite direction, as the effect of GDP growth on oil price
growth is not significant.

Table 4. Estimation of the VAR system.

Coeff. p-Value

Dependent variable: ΔGDP

Intercept 0.486 0.000
ΔGDP 0.392 0.000
ΔOILP −0.003 0.649

Dependent variable: ΔOILP

Intercept −0.049 0.932
ΔGDP 0.175 0.478
ΔOILP 0.132 0.002

Granger causality

ΔOILP→ ΔGDP 0.207 0.649
ΔGDP→ ΔPOIL 0.504 0.478

Note: The null hypothesis for the Granger causality test is that ΔOILP does not cause ΔGDP or vice versa.

Furthermore, the parameter ψ12 is negative and ψ21 is positive. This means that the effect of oil
price growth on output growth is negative, while the effect of GDP growth on oil price is positive.
Although these findings are quite suggestive and support our intuition about the causal effects between
GDP and oil prices, we test them more formally.

The previous framework allows us to test for causality direction. Following [32], a variable
(or group of variables), z1, is found to help predict another variable (or group of variables), z2. Then,
z1 is said to Granger-cause z2. We can test this hypothesis by simply studying whether the Ψ matrices
are triangular, which is a remarkably visual test for a VAR(1). Additionally, a more formal Wald test is
computed, where the null hypothesis is that z1 does not cause z2. More specifically, z1 does not lead to
z2 if E(z2t|z2t−1, z2t−2, ...; z1t−1, z1t−2, ...) = E(z2t|z2t−1, z2t−2, ...).18 The results of the Granger causality
analysis are presented in the last rows of Table 4, confirming the previous findings.19

We also employ impulse-response functions (IRFs) to capture the dynamics of the shocks.
To obtain IRFs, we use a moving average representation of the VAR system, which is defined in
the following expression:

Yt =

[
μ1

μ2

]
+

∞

∑
s=0

[
ψ11 ψ12

ψ21 ψ22

]s [
ε1t−s
ε2t−s

]
(8)

or in matrix notation and in terms of the innovations of the structural model: Yt = μ +
∞
∑

s=0
Φ(s)εt−s.

The coefficients of the succession of matrices Φ(s) represent the impact that a shock in the
structural innovation has on the variables of the VAR system over time. Results of IRF computations
with a horizon of 5 years (20 quarters) are displayed in Figure 4, where confidence intervals at 90%
are computed according to bootstrap-after-bootstrap method of [33]. We conclude that the effects,
which are negative for the response of ΔGDP to an impulse of ΔOILP and positive for the response of
ΔOILP to an impulse of ΔGDP, last between 7 and 8 quarters and are not significant at any length.
We also observe a high degree of uncertainty during the time of non-zero IRFs.20

18 We have repeated the analysis with annual data as a robustness check, finding qualitatively the same results.
19 An estimation of a VAR system with five lags does not change this conclusion.
20 As is well-known, the order of variables is relevant for IRF computation, as the Cholesky decomposition requires

triangulation. To test the robustness of the results, we have redone all calculations with the system in the inverse order:
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Figure 4. Impulse-response functions (IRFs) of a VAR(1) for GDP and oil price growth rates. Note:
Confidence intervals at 90% of confidence level have been computed according to [33].

In addition, we compute cumulative impulse-response functions (CIR), defined as

CIR =
∞
∑

h=0
IRF(h), which allow us to identify the same effects in the long run. Thus, considering the

full period (February 1875–February 2016), ΔOILP has a negative effect (−0.0057) on ΔGDP, while
ΔGDP has a positive effect (0.3306) on ΔOILP, although neither is significant.21

Summing up, we do not observe any significant effect between changes in oil prices and GDP
growth when considering the full period. Nevertheless, it is reasonable to think that in such a long
period in which significant events have occurred, both in the business cycle dynamics and in the
demand and supply factors of oil prices, the relationship between the two variables may have not
been so stable. In fact, our findings in the previous section already show several structural breaks in
volatility that correspond to important changes in the characteristics of the business cycle and different
periods in the evolution of oil prices. The hypothesis of a changing relationship is explored in the
following subsections.

Yt = (ΔOILPt, ΔGDPt)′ and have also calculated the generalized IRF. The findings are the same, which is not surprising,
given the results of casualty.

21 The confidence intervals are (−0.0269, 0.0151) and 0.3306 (−0.4279, 1.1086), respectively. They were computed with the
same bootstrap methodology as for the IRFs.
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4.2. Rolling Sample Analysis

The previous section provides some insights about the direction of the relationship between oil
inflation and the US GDP growth. However, it is possible that this relationship has been modified
across time, as suggested by [4]. Thus, it is advisable to estimate the model for different subsamples in
order to verify whether the parameters change. In this regard, we adopt two alternative strategies:
(i) compute causality test and (ii) calculate CIRs, as a measure of long-run impacts, instead of using
short-run parameters. We consider a rolling estimation with a window of 40 quarters in both cases.

Regarding the causality test, results are displayed in Figure 5, which plots a heat map of p-values
of the Granger causality test. Different colors represent the different significance levels at which we
can reject or accept the Granger causality test. Values in yellow and dark blue mean that we can reject
the null hypothesis of non-causality, whereas values in no colour indicate no causality between the
variables. In general, we scarcely observe periods of significant causality, given the overwhelming
presence of no color in the figure. Focusing on causality from ΔOILP to ΔGDP (left-hand side of
the figure) and with a liberal threshold of the 0.10 significance level, we identify two stable and
long periods where oil prices clearly influence GDP growth: January 1879–April 1894 and January
1981–February 1999. In the rest of the period, we only find isolated dates during mid-20th century (the
1950s) and at the beginning of the period, before April 1879. Results basically hold when considering a
tighter significance level of 5%, although the instability during the 1980s and 1990s increases. To sum
up, the influence of oil price growth on GDP growth is significant only for 14% of the sample at the
10% significance level.

As for the opposite direction of causality, from ΔGDP to ΔOILP (right-hand side of the figure),
the proportion of the sample where the influence is significant is similar at 10% level but reduces
to 9% at the 5% significance level. Periods of causality from GDP growth to oil price variations
are found in February 1911–April 1923, February 1953–February 1971, and February 1988–February
2000.22 We conclude that the relationship between the two variables is relatively weak in the long run.
However, at shorter horizons, the major intensity in the bidirectional relationship is located in the
1980s and 1990s.

With respect to CIRs, Figure 6 displays the results of impulses from ΔGDP to ΔOILP (upper panel)
and from ΔOILP to ΔGDP (lower panel). Focusing on the rolling estimation of CIRs between the
two variables, we observe that the estimated response to an impulse from ΔGDP to ΔOILP remains
close to zero, and non-significant, over the whole sample, except for the estimated impulse response
over the periods 1961–197123 and 1937–1946.24 The estimated impulse from ΔOILP to ΔGDP presents
higher variability. Indeed, from the mid-1960s to the end of the century, it is positive most of the time.
The effect turns negative during the noughties of the 21st century. Nonetheless, the confidence intervals
show no significant effect in the short periods, also identified in the upper panel of the figure.25

22 Since 2005, the causality test is near the 10% threshold limit of significance. This result agrees with that of [34], who document
a positive and significant effect of GDP growth on oil prices since the 2000s.

23 This was an extraordinary growth period in the US economy. The increasing demand for oil caused oil price increases.
24 During this period, the US economy had to face World War II with devastating economic consequences (the first postwar US

recession began at the end of 1948). The demand for petroleum products caused a sharp increase in the price of oil and
although the US increased oil production enormously during World War II, there were shortages in several plants.

25 We have repeated the analysis using annual data, reaching the same conclusions.
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4.3. Structural Breaks in the Relationship between Oil Prices and GDP

The univariate analysis of the series offers some evidence of structural breaks in the volatility of
the two series. Additionally, the rolling results of the previous subsection are not conclusive about
the hypothesis of parameter stability. Thus, it seems to be appropriate to consider the existence of
structural breaks in our multivariate specification. To that end, the Qu and Perron (QP) [9] approach
provides a valid technique to find structural breaks,26 as it allows for multiple structural changes that
occur at unknown dates in a general system of equations, which indeed include the one defined in (10).

Following these authors, we assume that we have n equations and T observations, the vector
Yt includes our two endogenous variables (ΔGDP and ΔOILP), the parameter q is the number of
regressors, and zt is a set that includes the regressors from all the equations. The selection matrix S
is of dimension np × q with full column rank, where q is the total number of parameters. It involves
elements that take the values 0 and 1, indicating which regressors appear in each equation. The total
number of structural changes in the system is m, and the break dates are denoted by the m vector
T = (T1; ...; Tm), considering that T0 = 1 and Tm+1 = T, with j indexing the regime (j = 1, ..., m + 1).
Then, the model proposed takes the following form:

Yt =
(

I ⊗ z
′
t

)
Sβ j + ut (9)

with ut having mean 0 and covariance matrix ∑j for Tj−1+1 ≤ t ≤ Tj. In our present case,
we should note that zt = (1, ΔGDPt−1, ..., ΔGDPt−p, ΔOILPt−1, ..., ΔOILPt−p), and S = I2q, where
q = 2 + p(2 + 1) and p is the selected number of lags. Again, the number of lags has been chosen by
taking into account the SBIC.

To determine the number of breaks in the system, we first use the UDmaxLRT(M) statistics to
test whether at least one break is present. When the tests reject it, the test Seqt(l + 1|l) is sequentially
applied for l = 1, 2 . . . m until it fails to reject the null hypothesis of no additional structural break.
Additionally, we compute the SupLR) to test l = 1, 2 . . . , m versus l = 0.

According to the critical values derived from the response surface regressions, the tests offer
evidence of three breaks (m = 3) in the system of equations, which satisfies the minimal length
requirement, notice that because of our sample size (T = 562), we have carried out the procedure
with a trimming parameter of 0.2. Results of the application of this procedure are reported in Table 5.
The three break dates are located in April 1912, January 1941, and March 1970. Notice that the first two
breaks are quite close to those identified in the univariate analysis of structural breaks in volatility of
the GDP growth, while the third break is near the last structural volatility break in oil prices. Hence, we
identify four different periods in the relationship between oil price shocks and the US GDP growth.27

For each of the four periods, we repeat the analysis presented in Section 4.1. The number of lags
for each period has been selected according to different information criteria (they appear in brackets
in Table 5).

The first interval covers the period between January 1875 and April 1912. Thus, the imminent
beginning of World War I (WWI, henceforth) marks the end of this period. The sample begins just after
the panic of 1873, when the US was still facing its economic consequences. A few years later, the US
economy had to cope with the aftermath of the 1893 panic, while already in the 20th century, the US
economy faced WWI (1914–1918). Regarding oil prices, this period is characterized by the evolution
of the oil industry along with the exhaustion in production of key oil fields, at a time in which the
demand was strong.

26 This methodology has been used to test the effects of oil price shocks on GDP growth and CPI inflation for the G7 countries
in [4] and for the Spanish economy in [6].

27 For a detailed analysis of the dynamics of US GDP growth over these periods, see [19]. For the case of oil price evolution,
see [7,26].
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The second period starts in January 1913 and ends in the early 1940s. During that time, the US
economy was affected by some of the most influential economic events of the 20th century, such as
the Crash of 1929, with devastating economic effects during the next decade, and WWII (1939–1945).
Concerning the historical oil price shocks, this period was much influenced by the Great Depression,
with an associated decline in oil demand, and the introduction of state regulation of industry and
restrictions on competition. No Granger causality is identified from any of the two variables to the
other in either of the first two subperiods.

The third period runs from February 1941 to March 1970. In terms of the US economy dynamics,
this period is characterized by a post-war economic boom that lasted until the 1970s. Indeed, during
the 1950s, and especially the 1960s, the US experienced its longest, almost uninterrupted period of
economic expansion in history. Oil prices were quite stable during this period. OPEC was established in
1960 with five founding members. Throughout the post-WWII period, exporting countries experienced
an increasing demand for oil, and the volume of oil that Texas producers could produce was no longer
limited, but the power to control crude oil prices shifted from the US to OPEC. During this period of
economic boom, ΔGDP has a significant effect on ΔOILP.

Finally, the last period begins in the early 1970s and ends in February 2016. The 1970s were
characterized by the end of the Bretton Woods system and substantial oil price shocks, economic
growth became stagnant, and inflation grew. In the 1980s, these disequilibria were reversed, and the
US economy witnessed a reduction in the volatility of the business cycle. The last period of the sample
(from 1984 on) is called the Great Moderation. During this period, the US enjoyed long economic
expansions, interrupted only by three recessions, the last one being the Great Recession (2007–2009),
which was followed by a weak recovery. The evolution of oil prices during this period and its effect
on macroeconomic performance have been extensively studied in the literature. The US, as did most
industrialized economies, became heavily dependent on imported crude oil from the Middle East,
and the 1970s were a tumultuous decade in terms of oil market events.28 Other political events that
influenced oil prices took place during the rest of the period.29 During this final period, the effect of
ΔOILP on ΔGDP is significant at 10%.

To sum up, the Granger causality between the two variables is significant only in two periods.
ΔGDP has a significant effect on ΔOILP, on the one hand, in the February 1941–March 1970
sample, when the US economy experienced a huge economic boom, and, on the other, in the March
1970–February 2016 sample (in the opposite causality direction), when oil price shocks exerted
a significant influence on economic performance.

Figures 7–10 display IRFs in different regimes delimited by structural breaks. We observe that
ΔOILP has a negative effect on ΔGDP in all periods except February 1941–March 1970. Regarding the
effect of the ΔGDP shock on ΔOILP, the sign changes, highlighting the positive influence in the last
period. Nevertheless, these effect are non significant for the most part of all sub-periods.

28 The Arab-Israel war in 1973, which followed the long-lasting Arab-Israeli conflict, and the Iranian revolution in 1978–1979
are a few examples.

29 Such as the Iran-Iraq war of 1980–1988, the Persian Gulf War of 1990–1991, the Venezuelan crisis of 2002, the Iraq War of
2003, or the Libyan uprising of 2011.
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Figure 7. IRF of February 1875–April 1912. Note: Confidence intervals at 90% of confidence level.

Figure 8. IRF of January 1913–January 1941. Note: Confidence intervals at 90% of confidence level.
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Figure 9. IRF of February 1941–March 1970. Note: Confidence intervals at 90% of confidence level.

Figure 10. IRF of April 1970–February 2016. Note: Confidence intervals at 90% of confidence level.

5. A Time-Varying GDP-Oil Price Model

In previous sections, we find ample evidence of instability and non-linearities in the relationship
between real GDP growth and oil price shocks. In this section, we use a more subtle and sophisticated
econometric tool, a time-varying structural VAR model, to further explore the relationship between
the two variables. Following [35], we consider the model

Yt = μt +
p

∑
i=1

Ψi,tYt−1 + εt, t = 1, 2, ..., T (10)
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where μt is a 2 × 1 vector of time-varying coefficients for the constant term; Ψi,t is a 2 × 2
matrix of time-varying coefficients, and εt contains heteroskedastic unobservable shocks with the
variance-covariance matrix Σt. After a triangular reduction of Σt, we obtain the following model:

yt = In ⊗ [1, y′t−1, ..., y′t−p]Ψt + Φ−1
t Σtut

ΦtΩtΦ′
t = ΣtΣ′

t
(11)

where Φt is a lower triangular matrix and Σt is a diagonal matrix.
The time-variant nature of the VAR model derives both from the coefficients and the

variance-covariance matrix of the innovations. Its estimation is based on a Markov chain Monte
Carlo algorithm with a Bayesian approach.30

The identification conditions of the model allow us to capture oil price shocks affecting GDP
growth, but these shocks are exogenous to GDP growth, as well as the reaction of oil prices to
GDP growth evolution. Thus, we focus on exogenous oil price shocks, which can be isolated in the
time-varying system and are more relevant considering the previous analysis. Figure 11 presents
the posterior mean of the time-varying standard deviation of oil price shocks. The post-1970s period
exhibits a substantially higher variance of oil price shocks than other periods. Although not our
primary concern, the time-varying standard deviation of GDP growth, too, reveals interesting results.
We can observe a secular decline in volatility and identify several periods delimited by WWII and the
Great Moderation.31

Figure 11. Posterior means of the standard deviation of residuals.

More interestingly, the time-varying VAR approach allows us to calculate IRFs at different points
of time and assess different responses. The dates are not arbitrary, but capture major shocks behind
the largest movements in oil price markets, which could have exerted an influence on the economic
conditions regarding the relationship between oil prices and GDP growth in those dates. In particular,
we select the oil price downturns of April 2014, April 2008, January 1986, January 1991, and March
2008, ordered from the highest to the lowest decline (−91.1%, −65.1%, −51.4%, −48.0%, and −39.6%,

30 For technical details, see [35]. An adaptation of its Matlab code has been used to compute the estimates.
31 These results confirm those obtained by [19].
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respectively), and the increases that took place in January 1974, March 1990, February 1979, February
2009, and January 1999, from the highest to the lowest value (118.2%, 89.5%, 41.5%, 36.6%, and 35.1%,
respectively). They are displayed in Figure 12. In the following paragraphs, we describe the events
affecting world oil markets during these dates in chronological order.

Figure 12. The five largest downturns and increases of real quarterly oil price.

The Arab oil-exporting nations’ embargo of 1973 against countries (in particular, the US and many
other developed countries) supporting Israel in the Yom Kippur War, at a time of rising demand and
decreasing OPEC production, caused oil prices to abruptly increase. Specifically, by the first quarter of
1974, the increase reached 118.2%.

From 1974 to 1978, crude oil prices were relatively flat, but the crises in Iran and Iraq in 1979 and
1980 led to a new round of increases. Indeed, the Iranian revolution was the cause of one of the highest
oil price rises, in spite of its relatively short duration. In the second quarter of 1979, the oil price jump
was 41.5%.

In 1986, there was a collapse in crude oil prices, which was due to the fact that the OPEC
cut output significantly to defend its official price in response to declining world oil demand and
increasing production in non-OPEC countries. In the first quarter of the year, the decrease in oil prices
reached 65.1%.

The Persian Gulf War also affected world oil markets. The Iraqi invasion of Kuwait in 1990 caused
a rapid oil price escalation. Indeed, in the third quarter of 1990, oil prices rose by 89.5%. However,
after two months of oil price increases, the United Nations approved the use of force against Iraq and
oil prices began falling. In the first quarter of 1991, oil prices diminished by 48%.
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In early 1999, oil prices began to grow, after the downward trend during the previous year, caused
by a decline in consumption in Asian economies and higher OPEC production. This rise in oil prices
was due to the reduction of OPEC production. This organization decided to cut production by about
three million barrels per day, and the increase in oil prices in the first quarter of 1999 was 35.1%.

In 2008, after the Great Recession began,32 falling petroleum demand, at a time when speculation
in the crude oil futures market was exceptionally strong, decreased oil prices. In the third quarter of
2008, this decrease was 39.6%, while in the fourth quarter, the decline deepened to 91.1%. Nevertheless,
an OPEC production cut in early 2009, some tensions in the Gaza Strip, and a rising demand from
Asian countries increased oil prices steadily. In the second quarter of 2009, oil prices peaked at 36.6%.

The oil price decline in 2014 came after a period of stability. This drop was due to several factors.
There was a slowdown in global economic activity. Indeed, the same countries that pushed up the price
of oil in 2008 helped bring oil prices down in 2014. The US and Canada increased their production of oil,
cutting their oil imports sharply, which put further downward pressure on world prices. Furthermore,
Saudi Arabia decided to keep its production stable in order not to sacrifice their market share and
restore the price. The oil price decline in the fourth quarter of 2014 was −91.1%.33

Results of impulse-response analysis over time are displayed in Figures 13 and 14. It should be
noted that at selected dates (either increases or decreases), we introduce a normalized shock in the
model (always positive) to see to what extent the conditions of the economy could have changed over
time. Oil price growth shocks have temporary effects on GDP growth. At the time of large oil price
increases, we observe a GDP decline over the first three quarters, while at the time of large oil price
decreases, the effect on GDP is not so clear. However, confidence intervals are quite large during
the first two years and a half. Figures 15 and 16 compare the magnitude of GDP growth changes in
different periods. We observe that all the oil price increase dates considered have a similar negative
effect on GDP growth, except the one in February 2009. We find the same pattern for the effect of oil
price decreases. The impact of an oil price shock on GDP growth has declined over time, although
there is more dispersion among different episodes in this case. Overall, oil price elasticity with respect
to GDP has declined.34 Finally, Figure 17 compares the average effects at the time of large oil price
increases and decreases. We observe that the negative effect of oil price shocks on GDP growth is
greater at the time of large oil price increases, which confirms previous evidence of nonlinearity in the
relationship [37].

32 The Great Recession has been the worst recession in the US economy since the Great Moderation. For an analysis of the
Great Moderation in the face of the Great Recession, see [29].

33 See [36] for a thorough analysis of this episode.
34 These results would be in line with [3], who find a changing relationship over time, such that the economy is more resilient

to an oil price shock today than in the past.
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Figure 15. IRFs of ΔGDP to ΔOILP shocks at the time of the five largest increases of oil prices.
Note: Confidence intervals at 90% of confidence level.

Figure 16. IRFs of ΔGDP to ΔOILP shocks at the time of the five largest decreases of oil prices.
Note: Confidence intervals at 90% of confidence level.
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Figure 17. Comparison of the effects of ΔGDP to ΔOILP shocks at the time of the five largest increases
and decreases of oil prices.

6. Conclusions

This study analyzes the relationship between oil prices and GDP from a long-term perspective,
from the last third of the 19th century, when crude oil started to be commercially produced in
Pennsylvania, to the present. Using different econometric tools, we analyze the individual dynamics
of the series, as well as their interaction. The univariate study of the series shows that none of
them presents structural breaks in mean. However, this apparent tranquility hides a considerable,
and divergent, volatility. While real GDP growth has evolved into a secular volatility reduction,
the variability of oil prices has substantially changed over the sample period.

Considering the whole sample, the evidence of the influence between GDP and oil prices
is extremely weak, and not statistically significant, which could be due to the fact that there are
instabilities in the relationship masking it. Indeed, over such a long period there have been important
changes in the demand and supply for oil that could lead to identify some structural breaks. Therefore,
we use several econometric techniques to detect and isolate different episodes, finding three break
dates which are located in 1912, 1941, and 1970. Only this last period has been thoroughly studied in
the literature.

We find that the period of the strongest relationship, characterized by a negative effect of oil price
increases on GDP growth, occurs after the 1970s. However, in this last period, a time-varying model
shows a decline in the impact of oil price shocks on GDP growth since then. Furthermore, we identify
an asymmetric effect between large oil price increases and decreases. We notice that the negative effect
of oil price shocks on GDP growth is greater at the time of large oil price increases. We also observe
that the response of GDP to oil is significant over the periods 1961–1971 and 1937–1946.

Overall, the story of the relationship between GDP and oil prices is relatively turbulent.
Although our findings point to a negative influence from oil price increases on economic growth,
this phenomenon is far from being stable and has gone through different phases over time. Further
research is necessary to fathom this complex relationship.
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Abstract: This study reconsiders the common unit root/co-integration approach to test for the Fisher
effect for the economies of the G7 countries. We first show that nominal interest and inflation rates
are better represented as I(0) variables. Later, we use the Bai–Perron procedure to show the existence
of structural changes in the Fisher equation. After considering these breaks, we find very limited
evidence of a total Fisher effect as the transmission coefficient of the expected inflation rates to
nominal interest rates is very different than one.
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1. Introduction

One of the most important results from classical economic theory is that the movements of
nominal variables have no impact on real economic variables. This result, which can be verified by
testing the long-run neutrality proposition, implies that a permanent movement in the inflation rate
has no effect on the equilibrium real interest rate. The traditional way to represent this phenomenon is
to decompose nominal interest rates into two separate components that reflect expected inflation and
the “real” interest rate. Following Fisher’s (1930) study [1], which is very influential, this relationship
can be stated through the well-known Fisher equation:

Rt = πe
t + rt (1)

where R represents the nominal interest rate, πe is the expected rate of inflation and r is the (ex-ante)
real interest rate. In simple economic models, this last variable is determined by deep structural
parameters, such as investor preferences or the marginal efficiency of capital, and is often assumed
to be constant over long horizons. According to (1), moneylenders need a nominal interest rate that
compensates them for the purchasing power lost over the duration of the loan, which is proxied by
the expected inflation. Thus, if there is no money illusion, then a change in the expected inflation rate
should be fully transmitted to the nominal interest rate to maintain a constant real interest rate.

Equation (1) provides useful information, both for theoretical research and for those making
economic policy decisions. For example, if the Fisher effect holds, then the expected inflation is a good
predictor of the nominal interest rate. Further, there is evidence of the superneutrality of money
hypothesis. Consequently, it comes as no surprise that a significant body of literature analyzes the
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relationship between nominal interest rates and inflation or, more exactly, whether the so-called Fisher
effect holds. The most common approach starts by estimating the following equation:

Rt = α + βπt+1 + et (2)

which implicitly assumes the presence of perfect rational expectations (πt+1 = πe
t ) and that α reflects

the (ex-ante) real interest rate. It is clear that, whenever the value of the parameter β, often referred to
as the Fisher coefficient, is equal to one, this equation is equal to (1), and therefore, we should conclude
that the Fisher effect holds. At first sight, the analysis of this effect appears to be quite straightforward,
in the sense that it only requires an estimation of (2) and a subsequent test of the null hypothesis Ho:
β = 1. However, the literature confirms that there are several points that should be considered to
accurately estimate this parameter and to test this hypothesis. Our study proposes a different statistical
methodology to test the relationship between inflation and the nominal interest rate, adding to the
controversy over which technique is the most suitable for testing the Fisher effect. 1 Here, we consider
the appropriate treatment of the time series properties of the variables, as well as the possible presence
of changes in the values of the parameters α and β. In this study, we consider the importance of these
two points.

With respect to the first, there seems to be an almost unanimous opinion in the literature about
the existence of unit roots in both the nominal interest rate and the inflation rate. Therefore,”standard”
econometric models are no longer valid; rather, the co-integration approach should be employed.
There are several examples of the use of this unit root/co-integration approach, beginning with the
seminal studies of Rose (1988) [4] and Mishkin (1992) [5], whose methodology was subsequently
applied in the more recent studies of Crowder and Wohar (1999) [6], Koustas and Serletis (1999) [7],
Rapach (2002) [8], Laatsch and Klein (2003) [9] and Rapach and Weber (2005) [10], amongst many
others. Some recent studies opted to use the panel data unit root/co-integration approach, as is the
case of Westerlund (2008) [11] and Ozcan and Ari (2015) [12].

Nevertheless, some authors, such as Cox et al. (1985) [13], Malliaropoulos (2000) [14], Lanne
(2001) [15], Olekalns (2001) [16], Gil-Alaña (2002) [17] and Atkins and Coe (2002) [18], questioned the
presence of a unit root in the evolution of both the nominal interest rate and the inflation rate. Similarly,
some other authors suggest the possibility that these variables may follow a long-memory process.
We can cite the papers of Baum et al. (1999) [19], Phillips and Perron (1998) [20], Tsay (2000) [21],
Sun and Phillips (2004) [22], Gil-Alaña (2004) [23] and Gil-Alaña and Moreno (2012) [24], in the case of
the nominal interest rate, and Hassler and Wolters (1995) [25] and Bos et al. (1999) [26] with respect
to the inflation rate. In light of this, the use of the unit root/co-integration approach is now open
to debate.

In addition to the doubts raised by the authors above, we tentatively offer a new source of criticism
in this study based on the potential non-constancy of the parameters included in the Fisher equation
in the spirit of Lucas’s critique (Lucas (1976) [27]). Our argument is based on the fact that most of
the studies analyzing the Fisher effect use sample sizes covering the period from the 1970s to the
present day. However, none of these appear to account for the different monetary policies in effect
during this very lengthy period of time, making the constant parameter hypothesis doubtful. Instead,
we argue that it is more appropriate to consider the hypothesis that some structural breaks affect the
Fisher relationship. They may arise, if we consider that the presence of which can be understood if we
consider, for example, that the real interest rate is the consequence of the interaction between savings
and investment, and it may change when savings owners modify their behavior.

In this regard, and as Chadha and Dimsdale (1999) [28] point out, demographic change,
technological progress, fiscal incentives, changes in the taxation of profits, the size of the public

1 Recently, Caporale and Pittis (2004) [2], and Panopoulou (2005) [3] emphasized that this is a key issue in the empirical
evidence supporting the Fisher relationship.
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debt, investors’ perception of risk and the degree of regulation or deregulation of capital markets could
alter the constant and inflation parameters. Another source of possible variation in the parameters
of (2) comes from the fact that the influence of inflation on the nominal interest rate can also vary.
More robust inflation targeting and a more active monetary policy, as indicated by Söderlind (2001) [29]
and Olekalns (2001) [16], or constraints on capital markets could be important determinants of the
final value of these parameters.

Against this background, this study aims to analyze the Fisher effect for the G7 group of countries
by explicitly accounting for the both variables and, more importantly, that the presence of structural
breaks can affect the parameters of the Fisher equation. In order to illustrate this starting hypothesis,
we begin by testing the time series properties of nominal interest and inflation rates. If we can find
evidence that leads us to better characterize these variables as being I(0), then we should not use
the co-integration approach because applying, similar arguments as Malliaropoulos (2000) [14] does,
this may lead to spurious evidence of the Fisher effect. Furthermore, and in order to reflect the possible
non-constancy of the Fisher equation, we allow for the presence of some breaks in the relationship
between the nominal interest rate and the inflation rate. In a stationary scenario, we can apply Bai and
Perron’s (1998, 2003) [30,31] proposed procedure to test for the stability of the Fisher effect equation.
This method also has the advantage of providing consistent estimations of both the number of breaks
and the periods when these occur. Finally, we can use the results obtained by applying these techniques
to estimate the Fisher relationship when we incorporate the structural breaks and the dynamic effects.

The rest of the paper is organized as follows. In Section 2, we describe the tests we employ to
test for the time series properties of the variables. When these are applied to the nominal interest
and inflation rates of the economies of the G7 countries, we find that they allow us to reject the unit
root null hypothesis, a result that suggests that it is more advisable to analyze the Fisher effect in
a stationary framework, rather than in a non-stationary one. In light of this result, in Section 3, we first
propose the use of the Bai–Perron procedure to determine the presence of structural breaks in the
Fisher equation. We then apply this procedure to analyze the Fisher effect for the economies of the G7
countries. Section 4 closes the paper with a review of the most important conclusions.

2. Fisher Effect with Non-Integrated Variables

Following Nelson and Plosser’s (1982) seminal study [32], most empirical analyses based on
the use of variables measured as time series begin by studying the time properties of the variables.
If these are better characterized as being integrated, then researchers use co-integration techniques.
If, by contrast, they are stationary, then we can use standard econometric techniques. The study of
the Fisher effect is a scenario in which we can clearly appreciate the application of this strategy and,
since Mishkin’s (1992) [5] classic study, most of the literature devoted to this issue has followed such
an approach.

However, some studies appear to have raised some questions about the appropriateness of the
unit root model when seeking to accurately describe the evolution of both inflation rates and nominal
interest rates. Malliaropoulos (2000) [14] and Baum et al. (1999) [19] showed that USA nominal interest
and inflation rates can be better represented using broken trend stationary models. This finding is
very important in the sense that, at least for the USA data, it casts doubts on the adequacy of the
co-integration approach to test for the Fisher effect. A common method under this approach is to
test whether the real interest rate is integrated. If we can conclude that the real interest rate is not
integrated, this will be interpreted as evidence of the Fisher effect. However, this method is only valid
when the nominal interest rate and the expected inflation rate are integrated. To better appreciate this,
let us consider an expected inflation (π) and a nominal interest rate (R) represented as I(0) variables.
Any combination of these variables, say R− β π, will also be an I(0) variable. However, this does not
imply that the Fisher effect holds, because it only does so when the parameter β is one. Thus, in the
presence of I(0) variables, admitting that the real interest rate is not integrated, does not necessarily
imply that the Fisher effect holds.
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This finding requires a careful analysis of the time properties of the nominal interest rates and
inflation rates, which is precisely the aim of the next subsection.

2.1. Analysis of the Time Properties of the Nominal Interest Rates and Inflation Rates

We have already made the point that an analysis of the time properties of the nominal interest
rates and inflation rates should be carried out carefully, and should certainly not be regarded as
just a prior step in using co-integration techniques. There is a great range of statistics devoted to
this issue. For example, most of the studies related to this area base their analysis on augmented
Dickey–Fuller (ADF) tests (Dickey and Fuller (1979) [33]; Said and Dickey (1984) [34]), the methods
presented in Phillips and Perron (1988) [20] or subsequent modifications of these types of statistics
proposed by Ng and Perron (2001) [35], which compare the performance of a wide range of unit root
statistics. For example, these authors consider the ADFGLS, which is based on the very popular ADF
test. Following Elliot et al. (1996) [36], this can be obtained by estimating the following model:

yt = δt + ρ yt−1 +
�

∑
i=1

φiΔyt−i + εt (3)

where δ t reflects the deterministic elements, 2 and subsequently calculating the pseudo t-ratio to test
whether the parameter ρ is one. The differences between this and the simple ADF test lie in the fact
that ADFGLS is based on the use of GLS (Generalized Least Squares) estimation methods instead of
OLS (Ordinary Least Squares) estimators and on determining the value of the lag truncation parameter
(�) by using an information criterion, called MIC (Modified Information Criteria), also proposed in Ng
and Perron (2001) [35]. This type of statistics is not useful to reject the presence of a unit root in nominal
interest rates and inflation. This is why some authors have recently employed different statistics to
analyze the time series properties of the variables to take advantage of the cross-sectional information
of a database. Thus, it seems suitable to use a panel data approach to test for the presence of a unit
root in the variables in the Fisher equation. In order to select the most appropriate type of panel data
unit root test, we should first know the characteristics of the database, because of the possible presence
of a cross-sectional correlation between the variables.

It is common to begin by testing for the null hypothesis of cross-sectional independence using
Pesaran’s (2004) CD (Cross Dependence) statistic [37], which has the following definition:

CD =

√√√√2T
N

N

∑
j=1

ρ̂2
j ∼ N(0, 1) (4)

where T is the sample size, N the cross-sectional dimension and ρ̂ is the pair-wise Pearson’s correlation
coefficients ρ̂j, j = 1, ..., n, n = N(N − 1)/2 of the residuals obtained from augmented Dickey–Fuller
type regression equations. If we cannot reject this null hypothesis, then we should use the CIPS
statistics because they correct the distortion caused by the cross-sectional correlation. Following
Pesaran (2007) [38], the CIPS (cross-sectionally augmented panel unit root test) statistic is defined
as follows:

CIPS = N−1
N

∑
i=1

t̄i (5)

2 In our present case, we only include an intercept in the model specification.
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with t̄i being the OLS t-ratio to test the Ho : αi = 0 in the following cross-sectional ADF regressions:

Δyit = δit + αi yit−1 + γi ȳt−1 +
p

∑
j=1

φij Δyi,t−j +
p

∑
j=0

ϕij Δȳt−1 + εit (6)

where ȳt−1 denotes the cross-sectional mean of yit. Tables II(a)–(c) in Pesaran (2007) [38] provide the
critical values for the CIPS tests, in addition to a proposed truncated version of this statistic, commonly
referred to as CIPS*, which will be used in the following section.

2.2. Empirical Evidence from the G7 Countries

As we mentioned earlier, the methodology to employ to analyze the Fisher effect depends on
the time properties of the variables that are necessary to study it, namely the nominal interest rates
and inflation rates. Thus, we should be careful when determining the integration order of these
variables. To that end, we apply the statistics presented in the previous section to the nominal interest
rates and inflation rates of the G7 countries. We take two different measures of the nominal interest
rates. First, we select a short-run variable, measured through the three-month treasury bill rate
(or equivalent) for each sample country. Second, we take the 10-year government bond (or equivalent)
for each sample country as a measure of the long-run behavior of nominal interest rates. We obtain
the annualized inflation rates from the Consumer Price Index (CPI). We obtain all data from the
OECD Main Economic Indicators. Finally, the quarterly data, where possible, cover the sample period
1970:Q1–2015:Q4. 3 Figures 1–3 illustrate these variables, whilst Tables 1 and 2 report the results of
applying the previously-mentioned statistics to our database.

Table 1 reflects the results of the CD statistic to test the null hypothesis of no cross-sectional
dependence. We can easily reject this null hypothesis, and consequently, we should employ panel data
unit root tests that account for its presence. The CIPS* statistic, whose results are presented in Table 2,
takes into account the cross-sectional dependence. As we can see, there is only very robust evidence
against the unit root null hypothesis. However, some countries may exhibit the presence of the unit
root in any of the analyzed variables. 4 In order to explore this possibility, we have considered several
subgroups of countries. We have taken all of the possible combinations of five and six countries, and
the values of the CIPS* statistic always allows the rejection of the null hypothesis, the average p-value
being lower than 0.01 Thus, this lack of evidence against the null hypothesis matches the results of
Constantini and Lupi (2007) [40] and Lee and Chang (2007, 2008) [41,42], who reject the presence of
a unit root in the inflation rate for different sample sizes of OECD countries using the LM (Lagrange
Multiplier) tests proposed in Lee and Strazicich (2003, 2013) [43,44], which consider the presence of
broken trends in the evolution of these variables. These statistics can also provide evidence against
the unit root null hypothesis for the nominal interest rates, as is reflected in Gadea et al. (2009) [45].
Thus, the global consideration of all of this evidence leads us to an analysis of the Fisher effect using
I(0) variables instead of the much more common approach of using I(1) variables.

3 The Italian short-term interest rates for 1970:Q1–1970:Q4 were estimated using the evolution of Italy’s long-term interest
rates.

4 See Pesaran (2012) [39] in this regard.
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(a)

Figure 1. Cont.
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(b)

Figure 1. Cont.
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(c)

Figure 1. (a) Expected Inflation rates; (b) Long-run nominal interest rates; (c) Short-run nominal
interest rates.
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Table 1. Testing for cross-sectional dependence.

Long-Run Nominal Interest Short-Run Nominal Interest Inflation

p = 0 29.25 * 19.13 * 20.06 *
p = 1 26.33 * 15.39 * 20.32 *
p = 2 25.85 * 15.52 * 19.27 *
p = 3 25.16 * 15.32 * 19.83 *
p = 4 24.76 * 15.28 * 18.78 *

This table reports the values of the CD (Cross Dependence) statistic proposed in Pesaran (2004) [37] to test the
non-cross-sectional dependence null hypothesis. The values were obtained by estimating a Dickey–Fuller-type
equation without trend, with fixed effects and for different lag values (p = 1,..,4). *: rejection of the null hypothesis
even for a demanding 1%.

Table 2. CIPS* panel data unit root tests.

Long-Run Nominal Interest Short-Run Nominal Interest Inflation

p = 0 −2.89 ** −6.73** −12.94 **
p = 1 −3.08 ** −7.19** −12.46 **
p = 2 −2.27 * −6.14** −10.79 **
p = 3 −2.38 ** −5.67** −7.52 **
p = 4 −2.36 ** −5.87** −7.50 **

This table reports the values of the CIPS* (cross-sectionally augmented panel unit root test, truncated version)
statistic proposed in Pesaran (2007) [38] to test the unit root null hypothesis. The values were obtained by
estimating (6), where the specification includes only an intercept. ** and *: rejection of the null hypothesis at the
5% and the 1% significance level, respectively.

3. Structural Breaks and the Fisher Effect

As we have seen, the presence of a unit root in the variables under examination is not supported
by our data. Consequently, we argue that we should test for the Fisher effect by considering that
nominal interest rates and inflation rates are not integrated. Malliaropoulos (2000) [14] and Atkins and
Chan (2004) [46] tried to provide an appropriate reply to studies of the Fisher effect with stationary
variables. These authors first filter the broken trend component for both the nominal interest rate
and the inflation rate and then study the relationship between the cyclical components of these two
variables. However, we should note that this method does not account for the fact that the presence
of breaks may affect the relationship between these variables. To explore this possibility, we can use
Bai and Perron’s (1998, 2003) procedure [30,31]. 5 This method allows us to detect the presence of
an unknown number of breaks, as well as to estimate the relationship of the Fisher effect. We estimate
the following expression, in which up to m breaks may appear:

Rt = αj + β j πt+1 + ut, t = TBj−1, ...., TBj j = 1, 2, ...m + 1 (7)

with TBj representing the period in which the break appears, m representing the number of breaks
and TBo = 1 and TBm+1 = T. The Bai–Perron procedure estimates the above equation by considering
that the break may appear in any period of the sample. We then define a Chow-type test in order to
determine the existence of a first break, which coincides with the period in which this Chow-type
statistic attains its maximum value. We subsequently analyze the existence of multiple breaks
by applying this procedure sequentially, combining it with the repartition method described in
Bai (1997) [51]. To determine the existence of breaks, we can use the UDmax and WDmax statistics,
which test the null hypothesis of no structural breaks versus the presence of an unknown number
of breaks. Note that we consider a maximum of five breaks and that we use the quadratic spectral
kernel to account for the presence of possible autocorrelation and heteroskedasticity in the residuals

5 We should note that Garcia and Perron (1996) [47], Bierens (2000) [48], Lanne (2006) [49] and Panopoulou and Pantelidis
(2016) [50] have also considered the presence of non-linearities in the Fisher equation.
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and the Andrews (1991) [52] automatic bandwidth selection. This method should help us account for
the possible dynamic components of the relationship, and consequently, Equation (7) also offers an
appropriate scenario in which to test for the Fisher effect from a long-run perspective. The results of
this analysis appear in Table 3. These results clearly confirm our suspicion of the presence of breaks
in the structural relationship between the interest rates and inflation rates. We can verify this by
observing the values of WDmax, which clearly reject the null hypothesis of no breaks for almost any
level of significance. Thus, it is necessary to consider the presence of these breaks in order to reflect
this relationship appropriately.

The findings of this study contribute to different debates with respect to the relationship between
nominal rates and expected inflation. First, previous research highlighted the importance of the term
structure of interest rates because it contains some information to forecast inflation (Fama (1990) [53]).
Furthermore, by using short-run interest rates, we only observe a liquidity effect instead of the Fisher
relationship. Fahmy and Kandil (2003) [54] conclude that the ability of nominal interest rates to capture
inflationary expectations increases with maturity, attaining a one-to-one relationship for assets of
five-year maturity. On the other hand, numerous studies, including that of Fisher himself, test the
Fisher effect using short-run interest rates (e.g., Mishkin (1992) [5] and Evans and Lewis (1995) [55]).

In this framework, we find some significant differences in the results using short- and long-term
interest rates. First, we can see that the number of breaks is greater when using the long-run rather
than the short-run nominal interest rate. This can be interpreted by considering that the short-run
interest rates react more quickly than the long-run interest rates to the changes in the inflation. We can
also observe that there is some coincidence with respect to the estimation of the periods in which the
breaks appear and, of special interest, the break related to the Great Recession.

Table 3. Estimation of the Fisher coefficient.

W D0.05
max ψ1 TB1 ψ2 TB2 ψ3 TB3 ψ4 TB4 ψ5 TB5 ψ6

Panel A: long-run nominal interest rates

Canada 616 0.53 79:2 0.61 86:1 0.42 96:3 0.63 07:4 0.18 - -
France 258 0.61 79:4 1.37 86:3 1.11 $ 96:3 0.68 09:1 1.02 - -

Germany 178 0.40 96:3 0.73 08:4 1.50 - - - - - -
Italy 218 0.95 76:3 1.27 $ 84:2 1.52 97:2 1.15 - - - -

Japan 1337 0.20 85:2 0.47 95:1 0.07 01:4 0.71 - - - -
UK 495 0.67 76:3 0.13 83:2 0.24 91:3 0.86 98:2 0.07 08:4 0.50

USA 254 0.52 78:4 2.63 $ 85:4 0.62 92:2 0.99 00:4 0.12 08:3 0.38

Panel B: short-run nominal interest rates

Canada 642 0.86 79:1 0.89 92:1 0.15 08:4 0.08 - - - -
France 375 0.86 $ 81:1 0.68 95:3 0.03 08:4 0.31 - - - -

Germany 185 0.70 95:3 0.92 09:1 0.40 - - - - - -
Italy 586 0.80 79:4 0.79 86:3 1.75 98:3 1.71 - - - -

Japan 266 0.55 92:4 0.13 - - - - - - - -
UK 526 0.08 79:2 0.53 92:3 0.10 08:4 0.03 - - - -

USA 500 0.71 79:2 0.92 86:1 1.43 01:3 −0.70 08:4 −0.01 - -

This table presents the results of the Bai–Perron procedure and the estimation of the Fisher coefficient for
the different estimated regimes. WD0.05

max (WDmax at 5% significance level) tests for the null hypothesis of no
structural breaks, rejecting this hypothesis for any significance level considered. These statistics have been
obtained by correcting the possible autocorrelation/heteroscedasticity by way of the quadratic spectral kernel
with the bandwidth being selected according to Andrews (1991) [52]. TB1, ..., TB5 are the estimated break
periods according to the LWZ (modified Schwarz criterion) statistic. ψ1, ..., ψ6 are the estimations of the Fisher
coefficients defined in (8) and (9) for each estimated regime. $ means that a second order ARDL (Autoregressive
Distributed Lag) model was estimated.

We can now analyze the estimation results for the β parameter, which determines whether the
Fisher effect holds. To that end, instead of using the estimated Equation (7), it seems to be much more
appropriate to split the sample by using the estimated breaks and, then, to include some lags in the
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specification to better capture the dynamics of the relationship by way of an ARDL (Autoregressive
Distributed Lag) of order one.

Rt = αj + β j πt+1 + γjRt−1 + φj πt + ut, t = TBj−1 + 2, ...., TBj j = 1, ...m + 1 (8)

and, subsequently, obtain the long-run multiplier for the Fisher coefficient defined as:

ψj =
β j + φj

1 − γj
(9)

We should note that the effective sample removes the initial observations of each segment in order
to assure that all of the information belongs to the same estimated period. Later, we use bootstrap
methods based on 1000 replications to obtain the confidence intervals of the estimated ψ. Figures 2
and 3 present the results for the long- and short-run nominal interest rates, respectively.

Canada France 

Germany Italy 

Japan UK 

USA 

Figure 2. Estimated Fisher Coefficient. Long-run nominal interest rate. The solid line represents the
estimated Fisher coefficient defined by (9), whilst the dotted line reflects twice the standard deviation,
obtained by way of bootstrapping techniques.
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Canada France 

Germany Italy 

Japan UK 

USA 

Figure 3. Estimated Fisher Coefficient. Short-run nominal interest rate. The solid line represents the
estimated Fisher coefficient defined by (9), whilst the dotted line reflects twice the standard deviation,
obtained by way of the bootstrapping techniques.

We can first observe that there is a clear relationship between interest rates and expected inflation,
although the estimated coefficients are some distance from unity, and therefore, the transmission of
the effect from expected inflation rates to interest rates is not exactly the one predicted by the Fisher
effect. Moreover, we can frequently reject the null hypothesis that the ψj coefficients are equal to one,
thus failing to provide evidence of the Fisher effect for most periods of the sample. Therefore, we can
broadly conclude that there is a weak Fisher effect or, in other words, that the nominal interest rate
“under-adjusts” to a change in inflation evolution, and consequently, a transmission to real rates exists.

This is a crucial issue in macroeconomics and monetary economics because it implies rejecting
superneutrality. This hypothesis holds if changes in the money supply affect inflationary expectations
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and, in turn, real rates. In the absence of a full Fisher effect, shocks to inflation would translate
into disturbances in real rates, which is a controversial result in the context of standard models of
inter-temporal asset pricing and would break monetary neutrality. However, our estimation results
show a link between nominal rates and expected inflation, but not the required full one-to-one
adjustment of the former to the latter. Rapach and Wohar (2005) [56] obtain similar results.

Many studies propose explanations of the lack of empirical evidence of the Fisher hypothesis.
Together with the inability to measure inflationary expectations directly, the Mundell–Tobin effect
emerges as the most likely theoretical explanation for a β coefficient less than one, in accordance with
the results in Table 2. Following the Tobin (1965) [57] formulation, agents replace nominal assets for
real money balances in response to increases in expected inflation. This reallocation process increases
capital stock and lowers the long-run real return to capital. In Mundell’s (1963) model [58], an increase
in inflation raises savings if they depend on a real money balance, via the wealth effect, and thus,
the real interest rate falls. Accordingly, the Mundell–Tobin effect predicts a negative long-run real
interest rate response to an increase in inflation, and thus, the nominal interest rate would rise by less
than unity. 6

By assuming some degree of inflationary monetary transmission to real interest rates, it is
interesting to study the influence of changes in monetary policy on the Fisher effect. Using a dynamic
expectations model with staggered price-setting, Söderling (2001) [29] claims that a more active
monetary policy decreases the Fisher effect. This finding has been supported in the well-documented
case of the USA. Numerous studies (e.g., Miskhin (1992) [5] and Lanne (2001) [15]) find strong evidence
supporting the Fisher hypothesis for the period between the early 1950s to 1979, characterized by
interest rate targeting while the Federal Reserve was especially concerned with growth and the
employment level. On the other hand, the effect is absent in the post-1970 sub-sample periods when
monetary policy emphasized inflation targeting.

The analysis of the periods in which the breaks appear provides some rich insights. We can see
that the most common breaks appear in four fairly well-defined periods: in the late 1970s, in the
mid-1980s, in the mid-1990s and, finally, in the second part of the 2000s, clearly related to the Great
Recession. 7 The periods in which the breaks appear can be easily interpreted from an economic
point of view. The first and second breaks are connected with the general tightening of monetary
policy applied with different rhythms in each country. The case of the USA, where the Federal Reserve
introduced new operational procedures in 1979 and the inflation target gained weight in its reaction
function, is a good example. 8 The third break is not connected with a single cause; rather, its origin
may be related to multiple causes because it coincides with a somewhat convulsive period as far
as monetary policy is concerned. For instance, we should consider that the crisis of the European
Monetary System occurred during that period. Therefore, it comes as no surprise that the estimation
of this break is less accurate than the estimation of the other breaks. However, and despite some
occasional episodes, monetary policy in the 1990s tended towards more stability and greater credibility
of central banks that maintained their inflation targets. Finally, the recent international crisis is clearly
behind the last period.

6 This hypothesis has recently been re-examined with optimizing agents in an overlapping generations context. See Rapach
(2003) [59] for a comprehensive survey.

7 In order to analyze the robustness of the estimated periods, we have obtained the Bai–Perron statistics for the
1980:Q1–2015:Q4 and for the 1970:Q1–2007:Q4 samples. In this latter case, the estimated periods of breaks almost coincide
with those of the full sample. In the former, the variations are a bit larger, especially for the short-run case. The total
number of estimated breaks is 19, 15 being coincident with the full sample analysis. For the long-run model, the new total of
estimated breaks is 23, 20 being coincident. In summary, given this high degree of coincidence in the results and taking
into account that these new estimated breaks are a consequence of the decrease in the size of the lowest segment, we can
conclude that the Bai–Perron procedure offers very robust results in this scenario.

8 See Clarida et al. (2000) [60]. The consequences have been exhaustively studied in different contexts, such as the analysis of
the evolution of the real exchange rates. See Gadea et al. (2004) [45], amongst others.
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If we analyze the estimations of the β coefficients from a historical perspective, some further
insights emerge. We begin with the long-run equation in which we can see that the estimated values
of the β coefficients for the first regime are lower than one. Italy exhibits the highest value (0.95) and
Japan the lowest value (0.20). The rest of the estimated coefficients are around 0.5, clearly rejecting the
Fisher hypothesis.

Interestingly, we can also appreciate that the first oil crisis does not seem to affect the Fisher
equation, despite the fact that this phenomenon clearly affected inflation in all of the countries
included in our study. Moreover, some previous studies, such as that of Rapach and Wohar (2005) [56],
detect a break for the real interest rate in industrialized countries in 1973. Therefore, according to our
results, the increase in the inflation rate during that period was absorbed by the movements in the
nominal interest rates and, consequently, the Fisher relationship remained unaltered.

The second period covers the years running from the late 1970s to the mid-1980s. The most
noteworthy economic event of this time was the change in monetary policy, which became more
restrictive. The main finding associated with this period is the increase in the estimated value of the
coefficients, especially remarkable for France and the USA and much more moderate for Canada and
Italy. The evolution of the Fisher coefficient during the 1990s and 2000s shows a downward path for
France, the USA and, to a lesser extent, the UK, whilst Germany, Japan and Italy show slight increases.
In any event, except for the case of Italy, the value of this coefficient is well below one. Finally, the effect
of the Great Recession implies a clear increase in this parameter for France and Germany, in excess of
one. These increases are much more moderate for the UK, Japan and the USA.

Let us now consider the short-run model. The estimated values of the Fisher parameter are not
globally distant from those of the long-run model, being quite similar to or slightly higher than those
up to the 2000s, but showing a clear decline in the final part of the sample. We can thus conclude that
the values of the expected inflation rates are again transmitted to short-run nominal interest rates for
the sample countries. Note, however, that the amount transmitted is below the value predicted by the
Fisher hypothesis and is slightly slower than that transmitted to the long-run nominal interest rates,
especially after the Great Recession. The exception to this behavior is Italy, which exhibits a somewhat
stable value of more than one for this coefficient.

We can also see that the estimated values of the β coefficients show an upward trend from the
beginning of the sample to the mid-1990s. Finally, we can observe that the estimated value of the β

coefficient exhibits a clear reduction from the mid-1990s onwards, especially noticeable after the Great
Recession. Thus, the expected inflation rate does not act as a good predictor of the short-run nominal
interest rates during this period. This situation is quite understandable for the EU countries, which lost
their independence in terms of monetary policy following the introduction of the euro and the fixing
of nominal interest rates by the European Central Bank. The Japanese results can be explained by the
substantial reduction in the nominal interest rates that aimed to re-activate the economy. This makes it
easy to explain why the estimated values of both the intercept and the β coefficient decreased since
the 1990s. By contrast, the transmission of the expected inflation to nominal interest rates remained
virtually unaltered in the USA. In short, the Fisher effect seems to decrease, and nearly disappear,
in the 1990s, coinciding with more stable inflation expectations because central banks halted price
pressures in the economy to meet their inflation targets. As a result, the nominal and real interest rates
move in parallel.

4. Conclusions

In this study, we offer evidence of the fact that the nominal interest rates and inflation rates of the
G7 group of countries are better characterized as I(0) variables than as first order integrated variables.
We obtain this conclusion by using recently developed panel data unit root tests. Consequently,
we should note that using techniques based on unit root/co-integration tests should be carefully
reconsidered when analyzing the relationship between nominal interest rates and inflation rates,
which are commonly studied by estimating the Fisher equation.
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We also considered the presence of some breaks in the Fisher equation in order to capture the
different monetary regimes that co-exist across the sample. Using a procedure recently proposed in
Bai and Perron (1998, 2003) [30,31] confirms our hypothesis, offering robust evidence of the existence
of different regimes in the relationship between nominal interest rates and inflation rates.

This procedure also offers an excellent scenario for testing for the Fisher effect, considering the
presence of breaks in the relationship that affects both parameters. The results based on this method
show that there is a clear connection between nominal interest rates and expected inflation rates.
However, there is no evidence of a total Fisher effect for the G7 countries. Inflation is not always
transmitted to nominal interest rates. In fact, we should note that the Fisher coefficient estimates have
very high variations. The changes in the monetary policy produced an adjustment in the transmission
of the effect of inflation to nominal interest rates.

We also observed the existence of four different regimes in the relationship between nominal
interest rates and expected inflation rates in the estimated periods, in which the regimes changed
during the late 1970s, mid-1980s, mid-1990s and the late 2000s. It is remarkable to notice that there
is no break associated with the first oil crisis (around 1973), despite the fact that previous studies
analyzing real interest rates offered evidence of a break at that time. We should nevertheless note
that these studies consider that the β coefficient of the Fisher equation is equal to one, a value that is
consistently rejected for most of the cases analyzed in the present study.

Finally, we observed that the transmission of the expected inflation to nominal interest rates was
greater in Italy than in the other countries and was very low in Japan, the UK and Canada. France,
the USA and Germany also showed periods with a significant transmission of the inflation rates to
nominal interest rates, even exceeding the value of one.

To sum up, our findings show that regime changes govern the Fisher equation. The estimations
show a link between nominal interest rates and expected inflation, but a weak Fisher effect, which does
not support the monetary neutrality hypothesis. The values obtained for the Fisher coefficients lead
us to conclude that there is “under-adjustment” of nominal rates to inflationary expectations and,
consequently, of their transmission to real rates. Furthermore, as stated above, the weakness of the
Fisher effect increases with the credibility of monetary policy.
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