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Non-technical summary

Research Question

The notion of an economy as a network of more or less tightly linked units has received

considerable attention in the finance and economics literature. Links in a network usually

have a direction, i.e., it makes a difference whether a link goes from node i to node j

or the other way around. In this paper, we study whether directedness in a network at

the cash flow level has implications for asset prices. To this end, we introduce a general

equilibrium asset pricing model, in which negative cash flow shocks in some industries can

increase the probability of subsequent cash flow shocks in other industries. The direction

and the magnitude of this “timing of shocks” characterize the network in our model.

Contribution

The innovative combination of self and mutually exciting jump processes with recursive

preferences allows for the integration of directed networks into a tractable equilibrium as-

set pricing model. Cash flow shocks propagate with a time lag, but, of course, equilibrium

prices react immediately to any shock in the economy since markets are efficient. It is this

instantaneous reaction of prices to cash flow shocks propagating slowly over time that is

at the heart of our equilibrium model. Our results indicate that it is necessary to decom-

pose expected returns into their constituents in order to understand the implications of

directed cash flow shock propagation.

Results

We introduce the variable “shock propagation capacity” (spc) to measure directedness.

Industries with a high spc are by definition those industries whose shocks substantially

increase the risk of subsequent shocks throughout the economy. Based on a series ex-

pansion of the closed-form solution of our model, we analyze the impact of spc on the

main equilibrium asset pricing quantities. Specifically, we prove the following two cross-

sectional statements: (i) Cash flow shocks in industries with high spc command a high

market price of risk. (ii) The response of an industry’s price to its own cash flow shocks

is less pronounced for industries with higher spc. Importantly, however, when it comes to

expected excess returns, these two effects work in opposite directions, so that the overall

impact of spc on risk premia depends on the tradeoff between them. To illustrate our

theoretical findings, we estimate an empirical network from industry cash flows and find

support for these predictions.



Nichttechnische Zusammenfassung

Fragestellung

Die Vorstellung der Volkswirtschaft als eines Netzwerks von verbundenen Einheiten hat in

der wirtschaftswissenschaftlichen Literatur zuletzt viel Beachtung erfahren. Verbindungen

in einem Netzwerk haben normalerweise eine Richtung, d.h. es macht einen Unterschied,

ob eine Verbindung vom Knoten i zum Knoten j verläuft oder umgekehrt. In diesem Papier

untersuchen wir die Fragestellung, ob die Richtung von Schocks in einem Netzwerk auf

Cash-Flow-Ebene Auswirkungen auf Wertpapierpreise hat. Zu diesem Zweck führen wir

ein Asset-Pricing-Modell ein, in dem negative Cash-Flow-Schocks in einigen Branchen

die Wahrscheinlichkeit von Cash-Flow-Schocks in anderen Branchen erhöhen können. Die

Richtung und die Größe dieser “Abfolge von Schocks” legen das Netzwerk fest.

Beitrag

Die innovative Kombination von sich gegenseitig verstärkenden Sprungprozessen mit re-

kursiven Präferenzen ermöglicht die Untersuchung von gerichteten Netzwerken in einem

handhabbaren Gleichgewichts-Asset-Pricing-Modell. Cash-Flow-Schocks verbreiten sich

mit einer zeitlichen Verzögerung, aber natürlich reagieren Wertpapierpreise im Gleichge-

wicht sofort auf jeden Schock in der Volkswirtschaft, da die Märkte effizient sind. Diese

unmittelbare Reaktion der Preise auf Cash-Flow-Schocks bildet das Kernstück unseres

Gleichgewichtsmodells. Unsere Ergebnisse zeigen, dass es notwendig ist, Risikoprämien

in ihre Bestandteile zu zerlegen, um die Implikationen gerichteter Cash-Flow-Schocks zu

verstehen.

Ergebnisse

Wir führen die Variable “shock propagation capacity” (spc) ein, um das Ausmaß gerich-

teter Schocks zu messen. Branchen mit einer hohen spc sind demnach Branchen, deren

Schocks das Risiko von Folgeschocks in der gesamten Volkswirtschaft erheblich erhöhen.

Basierend auf einer Reihenentwicklung der geschlossenen Lösung unseres Modells bewei-

sen wir die folgenden zwei Querschnittsaussagen: (i) Cash-Flow-Schocks in Branchen mit

hoher spc haben einen hohen Marktpreis des Risikos. (ii) Die Preisreaktion eines Wertpa-

piers auf seine eigenen Cash-Flow-Schocks ist für Branchen mit einer höheren spc weniger

ausgeprägt. Bezüglich Risikoprämien wirken diese beiden Effekte jedoch in entgegenge-

setzte Richtungen, so dass der Einfluss von spc auf Risikoprämien vom Trade-off zwischen

ihnen abhängt. Um unsere theoretischen Ergebnisse zu illustrieren, schätzen wir ein em-

pirisches Netzwerk aus Branchen-Cash-Flows und finden Evidenz für diese Hypothesen.
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The notion of an economy as a network of more or less tightly linked units has received
considerable attention in the finance and economics literature. Links in a network usually
have a direction, i.e., it makes a difference whether a link goes from node i to node j
or the other way around. In this paper, we document that directedness in a network
at the cash flow level is of first-order importance for asset prices. We propose a general
equilibrium asset pricing model, in which negative cash flow shocks in some industries can
increase the probability of subsequent cash flow shocks in other industries.1 The direction
and the magnitude of this “timing of shocks” characterize the network in our model
and we introduce the variable “shock propagation capacity” (spc) that measures this
directedness. Industries with a high spc are by definition those industries whose shocks
substantially increase the risk of subsequent shocks throughout the economy. Based on
a series expansion of the closed-form solution of our model, we analyze the impact of
spc on the main equilibrium asset pricing quantities. Specifically, we prove the following
two cross-sectional statements: (i) Cash flow shocks in industries with high spc command
a high market price of risk. (ii) The response of an industry’s price to its own cash
flow shocks is less pronounced for industries with higher spc. Finally, when it comes to
expected excess returns, these two effects work in opposite directions, so that the overall
impact of spc on risk premia depends on the tradeoff between them.

The intuition behind statement (i) is as follows. High spc industries have more links
or stronger links to other industries, relative to their low spc counterparts. Hence, shocks
originating from a high spc industry have a more pronounced impact on the rest of the
economy. They increase the aggregate risk of subsequent shocks by a larger amount, hence
they are more systematic and carry a higher market price of risk.

Statement (ii) builds on the general intuition that price-to-cash flow ratios throughout
the economy decrease in response to any cash flow shock that increases the aggregate risk.
However, we document that industry i’s price reaction to a shock to industry j’s cash flow
is the result of a tradeoff between two opposing forces: (1) a price decline through direct
spillover of shocks from j to i, i.e., because industry i’s cash flows are riskier after the initial
shock to industry j, and (2) an equilibrium hedge effect. The more shocks to industry j
spill over to other industries k 6= i, the more “attractive” (in relative terms) will industry
i be after the initial shock to j. This latter effect is always positive, irrespective of the
representative investor’s preference parameters, and is larger, the larger the spc of asset
j. In particular, if a shock to a high spc industry increases the probability of subsequent
shocks only in other, low spc industries, the equity of the “originating” industry itself
serves as a hedging device against the risk of further propagation of cash flow shocks
throughout the economy. The positive price-to-cash flow ratio reaction due to the hedge
effect (2) dampens the price decline due to the direct effect (1). In particular when it
comes to shocks in their own cash flows, high spc industries thus have a less negative price
reaction than their low spc counterparts.

Our stylized consumption-based equilibrium asset pricing model features an arbitrary
number of industries whose cash flows are linked via self and mutually exciting jump pro-
cesses, and a representative investor with recursive preferences. An initial negative cash
flow shock of industry i increases the probability of future cash flow shocks to connected
industries j 6= i (and potentially also to i itself), but it is unknown when (and if at all)

1We will use the term “industry” to refer to a node in the network throughout the paper. Of course,
nodes can also represent individual firms, countries, or any other economic unit.
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these shocks will materialize. The network thus manifests itself only indirectly via the
dynamics of jump intensities as state variables, but not directly through contemporaneous
shocks to the levels of several cash flows. Aggregate consumption is driven by all indi-
vidual jumps, but a given jump affects the cash flow of only one industry at a time. The
investor’s preference for early resolution of uncertainty, i.e., the fact that she cares about
the risk associated with future values of the state variables, implies that the price-to-cash
flow ratios of all assets will react to a jump in any individual cash flow, and it is the
structure of the network which determines the sign and the magnitude of these reactions.

We choose this model for the following three reasons. First, mutually exciting processes
naturally feature directedness, with a shock going from i to j, but not necessarily vice
versa. Second, the model belongs to the exponentially affine class for which there is
a well-developed solution theory, and thus it remains tractable with at least semi-closed
form expressions for all equilibrium quantities. A series expansion allows us to rewrite the
market prices of jump risk and jump exposures as functions of spc for arbitrary directed
networks. Third, the crucial model feature that cash flow shocks to one node in the
network affect other nodes only with a certain time lag has been documented empirically.
In a recent paper, Carvalho, Nirei, Saito, and Tahbaz-Salehi (2016) provide rich empirical
evidence for such a delayed propagation of cash flow shocks at the firm level in a natural
experiment setting around the nuclear incident of Fukushima in 2011. They summarize
the intuition behind their result as follows: “When faced with a supply-chain disruption,
individual firms are unable to find suitable alternatives in order to completely insulate
themselves from the shock (at least in the short run). This is consistent with an emerging
literature [. . . ] that emphasizes the importance of search frictions and relation-specific
investments along supply chains.”2 However, even though the cash flow shocks propagate
with a time lag, equilibrium prices react immediately to any shock in the economy since
markets are efficient. It is precisely this instantaneous reaction of prices to cash flow
shocks propagating slowly over time that is at the heart of our equilibrium model.

We close the paper with an empirical illustration of our findings. Since we propose a
consumption-based asset pricing model, industry cash flow data are the quantity to be
modeled in this exercise.3 We estimate an empirical cash flow network by applying the
generalized variance decomposition method suggested by Diebold and Yilmaz (2014) to
the earnings time series of 14 NAICS industries. Given spc for these industries, we regress
Sharpe ratios (as a proxy for the market prices of risk), return volatilities (as a proxy for
price exposures), and average excess returns of value-weighted industry portfolios on this
measure. In line with the model, we find in cross-sectional regressions positive coefficients
for Sharpe ratios, negative coefficients for return volatilities, and insignificant coefficients
for average excess returns.

As an example, consider the two industries “Manufacturing” and “Construction.”4

2See Carvalho et al. (2016), p.34.
3We restrain from using input-output production data to construct our cash flow network. While it

is intuitive to assume that a firm or industry which is central in the production input-output network
is also central in the cash flow network, it is not clear at all whether a similar relation also holds with
respect to direction. Empirically, Carvalho et al. (2016) document that cash flow shocks can propagate
both upstream and downstream along the supply chain. Consequently, directed links at the cash flow
level cannot necessarily be traced back to links of the same direction at the production level.

4The spc values presented in this example are taken from the network using a forecast horizon of
H = 2 quarters in Table 1. The descriptive statistics for the 14 value-weighted industry portfolio returns
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Manufacturing stocks have a much higher Sharpe ratio than construction stocks (22.36
vs. 15.59 percentage points monthly) and a much lower return volatility (4.70 vs. 7.73
percentage points monthly). We argue that these differences reflect differences in the
spc of the two industries: Empirically, earnings shocks in the manufacturing industry
explain the variance of subsequent earnings in all other industries to a larger extent
than earnings shocks in the construction industry do. Hence, manufacturing has a much
higher spc than construction (0.57 vs. 0.15). This implies that cash flow shocks in the
manufacturing industry have a pronounced potential to spread out across the economy
and trigger subsequent cash flow shocks in other industries, whereas cash flow shocks in
the construction industry do so to a much smaller extent.

Through a simulation exercise, we document that the cash flow network obtained
from earnings data via the Diebold and Yilmaz (2014) methodology delivers a reasonable
counterpart for the jump intensity network in our model. More precisely, we take the
empirically estimated cash flow network to be the intensity network in our model, then
simulate cash flow time series, and again apply the Diebold and Yilmaz (2014) method-
ology to the simulated data. The spc obtained from the simulated data is closely related
to the spc from the empirically estimated network, with rank correlations of around 0.75
or higher. Moreover, regression coefficients for Sharpe ratios and return volatilities in the
simulated data have the same signs as their empirical counterparts.

Our paper is linked to several strands of literature. First, there are papers studying the
asset pricing implications of networks at the production level. Herskovic (2018) extends
the input-output framework of Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)
to a time-varying network and highlights the role of sparsity and concentration of an entire
network for capturing aggregate risk. Gofman, Segal, and Wu (2018) determine a firm’s
vertical position in the supply chain and calculate a top-minus-bottom spread which they
explain in a production economy with layer-specific capital. In an international context,
Richmond (2016) relies on Katz centrality and finds that more central countries have lower
interest rates and currency risk premia. The purely empirical papers of Ahern (2013) and
Aobdia, Caskey, and Ozel (2014) link equity returns to trade flows between industries.
However, none of these papers focus on the impact of directedness, which is the key aspect
we emphasize.5 Second, Buraschi and Tebaldi (2018) model cash flows via jumps which are
not mutually exciting. However, their focus is not on directed links, but on systemic risk
in banking networks. A third strand of literature analyzes networks estimated from return
data. An example for such papers is Diebold and Yilmaz (2014). Many papers dealing
with the measurement of systemic risk also follow this route, e.g., Billio, Getmansky, Lo,
and Pelizzon (2012) and Demirer, Diebold, Liu, and Yilmaz (2017). The main difference
between these papers and ours is that we model the underlying fundamentals, i.e., cash
flows.

Finally, Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) are the first to discuss the role
of mutually exciting jumps in finance applications. The methodological framework of our

are shown in Table 2.
5There is also a strand of literature on production or supply chain networks in economics, however,

they do not focus on the asset pricing implications of network structures. Examples include, among
others, Long and Plosser (1983), Acemoglu et al. (2012), Carvalho and Voigtländer (2015), Wu (2015),
Acemoglu, Akcigit, and Kerr (2016), Carvalho et al. (2016), Barrot and Sauvagnat (2016), Wu (2016),
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2017), Ozdagli and Weber (2017), and Tascherau-Dumouchel
(2018). Carvalho (2014) provides an excellent review of this literature.
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model goes back to the paper by Eraker and Shaliastovich (2008). Besides, there is an
increasing literature about consumption-based asset pricing models with stochastic jump
intensities in the endowment process. For instance, Wachter (2013) and Gabaix (2012)
analyze asset pricing puzzles like the equity premium or the excess volatility puzzle in an
economy with a stochastic intensity for rare consumption disasters, but do so in a model
with only one endowment stream which obviously does not lend itself to any network
applications.6

1 Model

1.1 Fundamental dynamics

We assume a Lucas endowment economy. Log aggregate consumption y ≡ lnY follows

dyt = µ dt+
n∑
j=1

Kj dNj,t,

where µ is the constant drift rate and the Nj (j = 1, . . . , n) are self and mutually exciting
jump processes with constant jump sizes Kj < 0.7 Their stochastic jump intensities `j,t
have dynamics

d`j,t = κj
(

¯̀
j − `j,t

)
dt+

n∑
i=1

βj,i dNi,t. (1)

The coefficients βj,i represent discrete changes in `j induced by a jump in Ni. The pa-
rameters βj,i, collected in what we call the “beta matrix” or the connectivity matrix,
completely determine the structure of a given network.8 To preclude negative intensities
we assume βj,i ≥ 0 for all pairs (j, i).

There are n industries in the economy, indexed by i, with the following dynamics for
log cash flows yi:

dyi,t = µi dt+ Li dNi,t (i = 1, . . . , n). (2)

We do not link aggregate consumption to the sum of cash flows, but model cash flows as
claims on certain risk factors in the consumption process. This is similar to the assump-

6 This framework is extended to a two-sector economy with jump intensities driven by correlated
Brownian motions in Tsai and Wachter (2016) and towards CDS pricing in Seo and Wachter (2018).
Benzoni, Collin-Dufresne, Goldstein, and Helwege (2015) analyze defaultable bonds subject to contagion
risk in a general equilibrium model. Nowotny (2011) investigates a one-sector economy with consumption
following a self exciting process. Branger, Kraft, and Meinerding (2014) show that self exciting processes
can endogenously evolve in a framework with learning about latent disaster intensities. A comprehensive
summary of the disaster risk literature is provided by Tsai and Wachter (2015).

7We do not include diffusion terms in the dynamics of aggregate consumption for parsimony. One
could of course generalize the model to incorporate additional types of diffusive risk premia, e.g., by
making the expected consumption growth rate time-varying, as long as the framework remains affine.

8Our network is weighted in the sense that the links between nodes are represented by (positive) real
numbers, not just by the binary 0-1 information whether two nodes are linked or not.
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tions underlying the pricing of dividend claims in models like Bansal and Yaron (2004)
or Backus, Chernov, and Martin (2011).

Equations (1) and (2) formalize how the beta matrix gives rise to a dynamic shock
propagation mechanism by which negative shocks to one cash flow stream can spread
across the economy. With βj,i > 0, a downward jump in cash flow i immediately increases
the jump intensity of cash flow j by the amount βj,i. Once the increased intensity `j indeed
leads to a jump in cash flow j and there is a nonzero coefficient βk,j, the initial shock is
passed on to asset k and can in this way be propagated through the whole network. Note
that our specification is general in the sense that it also allows for “feedback loops”, i.e.,
depending on the structure of the network, an initial shock to node i can, after a number
of intermediate steps, eventually reach node i itself again. Nevertheless, each jump only
affects one cash flow directly, so that network connectivity is captured exclusively via
linkages in the dynamics of the state variables, not at the cash flow level itself.

Mutually exciting jumps provide certainly not the only, but a very lean and reduced-
form modeling tool to capture exactly the above intuition. An initial cash flow shock
in industry i increases the probability of future cash flow shocks to a connected industry
j 6= i (and potentially also firm i itself), but it is unknown when (and if at all) these
shocks will materialize. Stated differently, a cash flow shock of one firm changes the con-
ditional distribution of future cash flows of other firms, but does not necessarily affect
the level of these cash flows instantaneously. The structure of the jump processes in our
model thus differs in a time series and in a cross-sectional dimension from, for instance,
contemporaneous jumps in many assets. Representing this time dimension of shock prop-
agation alternatively by, e.g., a discrete-time vector autoregressive model would lead to
the problem that the sum of AR(1) processes is not necessarily an AR(1) process itself
(see Granger and Morris (1976)).

As stated above, our specification ensures that the vectorX = (y, `1, . . . , `n, y1, . . . , yn)′

follows an affine jump process.9 The joint process (N, `) is Markov. In all applications
of the model, we assume κi > βi,i for i = 1, . . . , n, so that the vector of intensities ` is
stationary.10

In the following analyses, we often refer to one particular measure for the directedness
of cash flow shocks. The shock propagation capacity, spc, of asset i is defined as the
respective column sum of the beta matrix without the diagonal entry:11

spci =
n∑
j=1
j 6=i

βj,i. (3)

This measure has been proposed by, e.g., Jackson (2008) and Diebold and Yilmaz (2014)
and represents the total strength of the network links going from node i to all other nodes
in the network. In the framework of our model, the higher the spc of a given node, the
more a shock to its cash flow increases the jump intensities of other nodes.12

9See Appendix A for details.
10See, e.g., Aı̈t-Sahalia et al. (2015) for details about mutually exciting processes, in particular, con-

cerning conditions for stationarity.
11Disregarding the diagonal entry is standard practice in the literature, see Diebold and Yilmaz (2014).
12Although we call spc a measure of “directedness”, it can of course also be applied in an undirected

network, i.e., in a network where the connectivity matrix is symmetric.
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1.2 Market prices of jump risk

Our economy is populated by a representative agent with an infinite planning horizon.
We assume that the agent has recursive preferences so that the risk generated by state
variables (in this case the intensities `i) will be priced in equilibrium.

The derivation of the model solution closely follows Eraker and Shaliastovich (2008).13

They show that the continuous-time dynamics of the pricing kernel M can be written as

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt,

where δ is the subjective time preference rate, γ is the coefficient of relative risk aversion,
ψ is the elasticity of intertemporal substitution (EIS), and θ ≡ 1−γ

1− 1
ψ

. We assume that the

representative agent has a preference for early resolution of uncertainty, implying γ > 1
ψ

and thus θ < 1.
The return on the consumption claim Rt satisfies the following continuous-time version

of the Euler equation

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
,

and follows from the dynamics of the log wealth-consumption ratio v and aggregate
consumption. To compute Rt, we use the Campbell-Shiller log-linear approximation
d lnRt = kv,0 dt + kv,1 dvt − (1− kv,1) vt dt + dyt with linearizing constants kv,0 and
0 < kv,1 < 1. Employing the usual affine guess for the log wealth-consumption ratio
vt, i.e., assuming vt = A + B′ `t with B = (B1, . . . , Bn)′ and `t = (`1,t, . . . , `n,t)

′, we can
solve numerically for the coefficients A and B as well as for the linearizing constants.

The dynamics of the pricing kernel are

dMt

Mt

= −rt dt−
n∑
i=1

MPJRi (dNi,t − `i,tdt),

where rt is the equilibrium risk-free rate and MPJRi is the market price of risk for the
jump process Ni. These in general negative market prices of jump risk are given as

MPJRi = 1− exp

{
−γ Ki + kv,1 (θ − 1)

[
n∑
j=1

Bj βj,i

]}
, (4)

with kv,1 = ēv

1+ēv
, where ēv is the steady-state wealth-consumption ratio. The exponential

term is a product of two factors. The first one, exp {−γ Ki}, represents the compensation
for the immediate shock caused by the jump in cash flow i. Since Ki < 0 these market
prices of jump risk are in general negative. The second one with the remaining exponents
is the compensation for the risk caused by variations in the state variables and is one
of the key features of our model. It depends on the impact of the intensities `i on the
equilibrium wealth-consumption ratio, represented by the components of the vector B.

13Details are presented in Appendix A.
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The coefficients in B depend on the structure of the network, and they are in general
not equal across all j = 1, . . . , n. Therefore, we cannot immediately formulate the market
prices of risk as functions of network measures such as spc just from Equation (4). To
obtain predictions for how the structure of the network affects the market prices of risk,
we derive the following proposition through a first-order approximation.14

Proposition 1. Assume that κ1 = . . . = κn = κ and K1 = . . . = Kn = K. Then, the
market price of jump risk MPJRi satisfies

MPJRi = 1− exp
{
A+ B · (βi,i + spci) +O

(
β2
)}
,

where the coefficients A and B are given by

A = −γ K

B =
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

]
and O(β2) denotes polynomial terms of order 2 or higher in the coefficients of the network
matrix. Defining the first-order approximation

MPJR∗∗i ≡ 1− exp {A+ B · (βi,i + spci)} (5)

and assuming γ > 1, θ < 0, 0 < κ < 1, and K < 0, we obtain the following results:

(1) A > 0 and B > 0.
(2) If spci > spcj, then |MPJR∗∗i | >

∣∣MPJR∗∗j
∣∣.

Proof: See Appendix B.1.
The second exponential factor on the right-hand side of (5) is one of the key features

of our model. The spc of an asset is the main driver of the equilibrium market price of
risk. The proposition states that the market prices of risk for jumps associated with high
spc assets are larger (in absolute terms) than those of low spc assets (note that A and B
do not depend on i).15

The economic intuition behind this key result is the following. By definition, high
spc industries have more links or stronger links to other industries, relative to their low
spc counterparts. Hence, cash flow shocks originating from a high spc industry have a
more pronounced impact on the rest of the economy, i.e. they increase the aggregate
risk of subsequent shocks by a larger amount. In models with stochastic cash flow jump

14A different strategy to obtain closed-form solutions for equilibrium quantities as functions of network
measures is to focus on special cases in which the connectivity matrix is very sparse. For instance, in
Online Appendix A, we derive such closed-form solutions without approximations in so-called star (or
core-periphery) networks.

15In Appendix B.3, we analyze the quality of the first-order approximation in Proposition 1 by regressing
the approximate solution (5) on the exact solution (4) for one of the empirical networks estimated in
Section 2. The R2 of this regression is 0.98, the ordering of the assets, and the signs of the market prices
of risk are all preserved. The slope of the regression line is 0.25, implying that the higher-order terms
omitted in the approximation are quantitatively sizable, but do not change any of our model results
qualitatively.
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intensities and recursive preferences, the wealth-consumption ratio is generally decreasing
in the aggregate jump risk.16 The wealth-consumption ratio in our economy thus reacts
more negatively to cash flow shocks of high spc assets. These shocks are thus more
“systematic” and carry a higher (i.e. more negative) market price of risk in equilibrium.

The proposition explicates that a necessary condition for this key result is that B > 0,
and this condition is satisfied under some mild preference parameter restrictions like θ < 0,
which implies ψ > 1 (if γ > 1). In this situation, the intertemporal substitution effect
dominates the income effect, so that the investor wants to consume more and save less
in bad times with high jump intensities. The proposition also shows that in the special
case of CRRA utility (θ = 1, implying B = 0), the second term in Equation (5) vanishes,
implying that state variable risk is not priced and that the market prices of risk do not
depend on the network structure. Finally, MPJRi is the larger, the larger the impact of
jumps in asset i on aggregate consumption, as measured by K.

1.3 Jump exposures

In analogy to the return on the consumption claim, the returns Ri,t on the individual cash
flow claims satisfy the continuous-time Euler equations

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

To compute the expected excess return on asset i, we proceed as in the case of the con-
sumption claim, i.e., we employ an affine guess for the log price-to-cash flow ratio of asset
i, vi,t = Ai +C ′i`t with Ci = (Ci,1, . . . , Ci,n)′, and use the Campbell-Shiller approximation
d lnRi,t = ki,0 dt + ki,1 dvi,t − (1− ki,1) vi,t dt + dyi,t with linearization constants ki,0 and
0 < ki,1 < 1. Again, we solve for the coefficients Ai and Ci,j (j = 1, . . . , n) as well as for
the linearization constants ki,0 and ki,1 numerically.

The return on the i-th individual cash flow claim is then given by

dRi,t = . . . dt+
n∑
j=1

JEXPi,j dNj,t,

with the jump exposures

JEXPi,j =

{
exp (Li + ki,1

∑n
k=1Ci,k βk,i)− 1 for j = i

exp (ki,1
∑n

k=1Ci,k βk,j)− 1 for j 6= i.
(6)

The exponential term in the exposure of asset i to jumps in its own cash flow, JEXPi,i,
has two components. First, there is the price change due to the immediate cash flow
shock, represented via the jump size Li. By assumption this component is only present
in the exposure of asset i to jumps in its own cash flow i because yi is exclusively affected
by Ni, i.e., jumps in other intensities do not have a direct impact on the cash flow yi. The
second term is a special feature of models with recursive utility and captures the effect
of a shock in cash flow j on asset i’s price-to-cash flow ratio. For j 6= i, the exposure

16This has been shown, e.g., by Wachter (2013).
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JEXPi,j only consists of this valuation ratio effect.
In Equation (6), the coefficients Ci,k depend on the network structure. Since they will

not coincide for all k = 1, . . . , n in general, we cannot simply factor out spc in Equa-
tion (6). Therefore, we again apply a first-order approximation allowing us to formulate
the following proposition.17

Proposition 2. Assume that κ1 = . . . = κn = κ and K1 = . . . = Kn = K. Then, the
jump exposures JEXPi,j of asset i against shocks to cash flow j satisfy the equation

JEXPi,j =

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j +O (β2)
}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i +O (β2)

}
− 1 for j = i,

where the coefficients Ci and Di are given by

Ci =
1− exp {−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

Di =
1− exp {L−K γ} − θ−1

θ
[1− exp {K (1− γ)}]

1− κ− 1
ki,1

and O(β2) denotes polynomial terms of order 2 or higher in the network coefficients.
Defining the first-order approximation

JEXP∗∗i,j :=

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j
}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i

}
− 1 for j = i

(7)

and assuming γ > 1, 0 < κ < 1, and − log(2) < K < 0, we obtain Ci > 0 for all i.
Additionally assuming θ < 0, we obtain

(1) Di < 0, and Di − Ci < 0 for all i.
(2) If JEXP∗∗i,i, JEXP∗∗j,j < 0, ki,1 = kj,1, and spci > spcj, then

∣∣JEXP∗∗i,i
∣∣ < ∣∣JEXP∗∗j,j

∣∣.
Proof: See Appendix B.2.18

For j 6= i, the expression for JEXP∗∗i,j comprises two terms. The quantity Di βi,j
describes a price effect through direct spillover of shocks from j to i. A jump in asset j
increases the jump intensity of asset i by βi,j. Since Di < 0, the reaction of the price-
dividend ratio of i due to this direct effect, exp {Di βi,j} − 1, is negative.

The term Ci ·
∑n

k=1,k 6=i βk,j represents an equilibrium “hedge effect”. A jump in asset
j increases the jump intensities of (some or all) other assets k 6= i, and the price of asset

17In Online Appendix A, we show that qualitatively similar closed-form solutions for the return volatil-
ity can be obtained without approximations in so-called star (or core-periphery) networks.

18In Appendix B.3, we analyze the quality of the first-order approximation in Proposition 2 by regressing
the approximate solution on the exact solution of Equation (6) for one of the networks estimated in
Section 2. The R2 of this regression is 0.98, the ordering of the assets, and the signs of the jump
exposures are all preserved. The slope of the regression line is 0.77, implying that the higher-order
terms omitted in the approximation are quantitatively sizeable, but do not change any of our results
qualitatively.
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i increases through this mechanism, since Ci > 0. This hedge effect is always positive,
irrespective of the preference parameter θ. Intuitively, the hedge effect makes assets which
are not directly affected by a jump in asset j’s cash flow relatively more attractive. For
j 6= i, we can rewrite

JEXP∗∗i,j = exp
{
Ci · spcj + Ci · βj,j + (Di − Ci) βi,j

}
− 1, (8)

which implies that the hedge effect is larger for shocks originating from high spc assets
than from low spc assets.

For j = i, this positive hedge effect reduces the negative cash flow effect of a jump in
i on the price of asset i itself, represented by exp {L} − 1. Again, we can write

JEXP∗∗i,i = exp {L+ Ci · spci +Di · βi,i} − 1,

i.e., the hedge effect is more pronounced for a high spc asset than for a low spc asset.
The ultimate sign of JEXP∗∗i,j depends on the trade-off between the hedge effect,

Ci ·
∑n

k=1,k 6=i βk,j, and the direct price effect, Di · βi,j, and thus on the network struc-
ture. Despite the fact that the hedge effect is positive for any network structure and any
preference parameter θ, the choice of preferences is still very important for the overall
properties of the model. For L > K γ, CRRA preferences (θ = 1) will lead to all cross-
exposures JEXP∗∗i,j > 0 being positive, so that here the hedging effect massively outweighs
the direct negative effect. With recursive preferences, on the other hand, there will also
be pairs of assets with JEXP∗∗i,j < 0, i.e., there will be cases when the hedging effect is
not strong enough to dominate the direct negative effect. For i = j, the exposure JEXP∗∗i,i
comprises a third component, L, and if this parameter is chosen strongly negative, then
JEXP∗∗i,i will be negative.

1.4 Expected excess returns

Finally, the local expected excess return of asset i can be written as

1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j, (9)

i.e., the risk premium of asset i is given by the sum of the products of jump intensity,
market price of risk, and jump exposure over all n jump components.

Although the expected excess return depends on all market prices and all exposures,
the summand MPJRi JEXPi,i is usually the largest in this sum because the exposure
JEXPi,i also comprises the direct cash flow effect captured by the cash flow jump size L,
as shown in Equation (7). Propositions 1 and 2 show that MPJRi is higher for high spc
assets than for low spc assets, whereas the relation is the other way around for JEXPi,i.
Thus, we cannot obtain unambiguous cross-sectional predictions regarding the impact of
spc on expected excess returns.

For this insight, recursive preferences are crucial. With CRRA utility, the market
price of risk on all jumps would be identical, and all cross exposures would be positive for
L > K γ. So the trade-off outlined above does not exist and high spc assets earn larger
expected excess returns than low spc assets in a CRRA economy.
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2 Empirical illustration

2.1 Data on industry earnings

In the following, we perform several illustrative exercises to document empirically the
theoretical channels outlined above. We start by constructing quarterly time series of
industry earnings following Irvine and Pontiff (2009). The sample comprises all firms in
the CRSP/Compustat merged (CCM) fundamentals quarterly database from 1966-Q2 to
2014-Q4. In principle, the data is available from 1964 onwards, but before 1966-Q2 not
all industries are represented in the sample. We work with firms’ earnings per share (item
EPSPXQ) and require a firm to have at least four consecutive data entries to be included
in our sample. Following the procedure outlined in Irvine and Pontiff (2009), we winsorize
the EPS data.

Based on the NAICS code dictionary from the Bureau of Economic Analysis, we sort
in each quarter firms into 15 industry portfolios as in Menzly and Ozbas (2010). Following
Aobdia et al. (2014), and Menzly and Ozbas (2010), we exclude the government sector.
We multiply firms’ earnings per share by the number of shares to obtain total earnings,
sum up the total earnings across all firms in a given industry, and divide by the number of
firms in that industry to account for variation over time. We then calculate log earnings
growth rates for each industry.19 We adjust each time series for seasonality using the
method proposed in Hamilton (2018).20 Eventually, we end up with a time series of 49
log earnings growth rates for each of the 14 industries, i.e., 686 quarterly observations in
total.

2.2 Measurement of directed cash flow links

Having constructed quarterly industry earnings time series allows us to estimate the di-
rected earnings network following the procedure proposed by Diebold and Yilmaz (2014).21

The first step is to estimate a 14-dimensional VAR(1) process based on our earnings growth
time series: z1,t

...
z14,t

 =

 φ1
...
φ14

+

 φ1,1 . . . φ1,14
...

. . .
...

φ14,1 . . . φ14,14


 z1,t−1

...
z14,t−1

+

 ε1,t
...

ε14,t

 .
From the coefficient matrix φ and the covariance matrix of the shocks ε, we compute
generalized variance decompositions of quarterly earnings with a forecast horizon of H =
1, 2, 3, 4 quarters. We denote the fraction of H-quarter forecast error variance of industry
i’s earnings explained by shocks in industry j’s earnings by dHi,j. This gives us a 14 × 14
matrix (dHi,j)i,j=1,...,14, which Diebold and Yilmaz (2014) refer to as the connectedness table.
In the following, this matrix serves as our empirical network matrix at the cash flow level.

19We follow Lochstoer and Tetlock (2018) and winsorize log earnings growth rates at log (0.01) when
earnings growth rates are below -0.99.

20Running a Dickey and Fuller (1979) test on each resulting time series, we can reject the null hypothesis
of a unit root at the 1% significance level.

21We thank Francis Diebold and Kamil Yilmaz for sharing their code.
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There is no clear guidance towards the optimal choice of the forecast horizon H. As
documented by Diebold and Yilmaz (2014), a very short horizon produces noisy estimates,
but the estimates stabilize with longer horizons. Diebold and Yilmaz (2014), thus, choose
H = 12 days for their daily stock return data. We find similar, albeit weaker, effects
of the forecast horizon in our estimation and, therefore, report results for H = 1, 2, 3, 4
quarters in the following.

Figure 1 presents graphical illustrations of the estimated networks, where the arrow-
heads mark outgoing links. This helps to visually identify the industries with high spc in
the graphs. From the graphs, one can see the similarity of the networks for the different
forecast horizons of H = 1, . . . , 4 quarters.

From the empirical network matrix, we compute the shock propagation capacity spcHj
for industry j and horizon H analogous to Equation (3) as

spcHj =
N∑
i=1
i 6=j

dHi,j.

Diebold and Yilmaz (2014) call this measure total directional connectedness to others from
j. Table 1 provides the spc’s of the 14 industries. Most importantly, one can see that
there is a significant cross-sectional dispersion in spc at all horizons, so that this variable
indeed has the potential to explain cross-sectional variation in asset pricing moments. In
terms of important industries with high values for spc, manufacturing, wholesale trade,
and utilities are at the top of the list for H = 1, and this ranking is stable across the four
horizons. In contrast, cash flow shocks to construction and agriculture, forestry, fishing,
and hunting seem to be less important for the rest of the economy.

2.3 Cross-sectional performance of shock propagation capacity

Having estimated the network of cash flow linkages, we now illustrate the performance
of spc in a cross-sectional asset pricing exercise. The data is from the CRSP securities
monthly database and covers exactly the sample used for the cash flow network estimation.
We assign firms to industry portfolios based on their NAICS code and form value-weighted
industry portfolios accordingly.

For each industry portfolio, we calculate three variables over the whole sample, which
serve as dependent variables in our regressions. The average excess return of an industry
portfolio is the mean of the difference between its log return and the log three-month
Treasury bill return. Return volatilities are calculated as the standard deviations of
log returns. Sharpe ratios are computed as average excess returns divided by return
volatilities. The numbers are shown in Table 2.

The Sharpe ratio of an industry serves as a proxy for the market price of risk for cash
flow shocks of the respective industry, MPJR, because these market prices of risk are not
observable empirically. Recall from Equation (9) that the expected excess return on asset
i is given as

1

dt
E [dRi]− r =

n∑
j=1

`j JEXPi,j MPJRj.
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Figure 1
Empirical cash flow networks for different forecast horizons H

The pictures show the empirical cash flow networks obtained from Diebold and Yilmaz (2014) H-

quarter generalized variance decompositions for H = 1, . . . , 4, applied to quarterly log industry

earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total.

Arrowheads mark outgoing links. The thickness of a link corresponds to the size of the respective

entry. Diagonal entries of the connectivity matrix are disregarded. The industries are listed in

Appendix C.
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Industry Forecast horizon
H = 1 H = 2 H = 3 H = 4

Agriculture, forestry, fishing, hunting 0.0560 0.1012 0.1061 0.1068
Mining 0.2895 0.3147 0.3237 0.3247
Utilities 0.3637 0.4185 0.4189 0.4186
Construction 0.0599 0.1548 0.1679 0.1720
Manufacturing 0.3584 0.5740 0.6330 0.6482
Wholesale trade 0.4326 0.5272 0.5273 0.5271
Retail trade 0.0782 0.2277 0.2450 0.2497
Transportation and warehousing 0.3175 0.3679 0.3744 0.3753
Information 0.1560 0.2300 0.2517 0.2554
Finance, insurance, real estate, . . . 0.0448 0.0906 0.0998 0.1027
Professional and business services 0.1584 0.2861 0.3003 0.3022
Educational services, health care, . . . 0.0780 0.1384 0.1445 0.1452
Arts, entertainment, accommodation, . . . 0.1473 0.1388 0.1383 0.1382
Other services 0.0980 0.1375 0.1414 0.1415

Mean 0.1884 0.2648 0.2766 0.2791
Standard deviation 0.1350 0.1573 0.1643 0.1663

Table 1
Shock propagation capacities

The table shows the shock propagation capacity (spc) for 14 industries. spc is obtained from

Diebold and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4

applied to log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e.,

686 observations in total. spc is calculated according to Equation (3). Graphical representations

of the networks are shown in Figure 1.
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Industry Sharpe ratio Return
volatility

Average
excess return

Agriculture, forestry, fishing, hunting 0.1609 0.0635 0.0102
Mining 0.1351 0.0665 0.0090
Utilities 0.1459 0.0409 0.0060
Construction 0.1559 0.0773 0.0121
Manufacturing 0.2236 0.0470 0.0105
Wholesale trade 0.2070 0.0509 0.0105
Retail trade 0.1853 0.0557 0.0103
Transportation and warehousing 0.1784 0.0565 0.0101
Information 0.1888 0.0507 0.0096
Finance, insurance, real estate, . . . 0.1699 0.0557 0.0095
Professional and business services 0.1563 0.0546 0.0085
Educational services, health care, . . . 0.1693 0.0765 0.0130
Arts, entertainment, accomodation,. . . 0.1842 0.0679 0.0125
Other services 0.1362 0.0691 0.0094

Table 2
Descriptive statistics for industry portfolio returns

The table presents descriptive statistics for the returns of 14 value-weighted industry portfolios.

The average excess return of an industry portfolio is the mean of the difference between its log

return and the log three-month Treasury bill return. Return volatilities are calculated as the

standard deviations of log returns. Sharpe ratios are computed as average excess returns divided

by return volatilities. The data is from the CRSP securities monthly database and covers the

sample from April 1966 to December 2014.
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The i-th summand is by the far the largest on the right-hand side, since JEXPi,i is the
only exposure containing the direct cash flow effect represented by the jump size L. The
expected excess return of an asset is thus mostly driven by the response of its price and
of the pricing kernel to its own cash flow shocks. Therefore we use the Sharpe ratio of
asset i as a proxy for MPJRi and the return volatility as a proxy for JEXPi,i.

Table 3 reports the main results from this empirical exercise. Each of the three panels
shows four univariate cross-sectional regressions, where the explanatory variables are the
industry shock propagation capacities, determined using the empirical procedure outlined
above, with forecast horizons of H = 1, 2, 3, 4 quarters. The dependent variables are
return volatilities, Sharpe ratios, and average excess returns.22

First, the coefficients in the Sharpe ratio regressions are positive and significant for
H = 2, 3, 4, and the R2’s are large. This is also in line with Proposition 1, that shocks to
the cash flows of high spc industries carry a large market price of risk, which manifests
itself in high Sharpe ratios for these industries.

Second, the coefficients in the return volatility regressions are all negative and signif-
icant at the 1% level, and the adjusted R2’s are high for all forecasting horizons. This
negative connection is in line with Proposition 2 which states that high spc assets have
smaller jump exposures that translate into lower return volatilities.

Third, the coefficients in the average excess return regressions are insignificant for all
horizons. These results are also in line with our theoretical findings. The effects of spc
on the market price of jump risk and on price exposures have opposite signs, so that the
overall effect of spc on expected excess returns cannot be uniquely determined in general
within the model. Hence, the role of directedness in equilibrium can only be assessed
appropriately when the two opposing effects described above are disentangled.

Finally, the coefficients in the Sharpe ratio and return volatility regressions are not
only statistically, but also economically significant. For H = 2, the standard deviation of
spc is around 0.16. Thus, with a coefficient for spc in the Sharpe ratio regression of around
8.03, a one-standard-deviation difference in spc leads to a difference in Sharpe ratios of
roughly 8.03 · 0.16 ≈ 1.27 percentage points monthly. Similarly, a one-standard-deviation
difference in spc gives rise to a difference in return volatilities of about −4.67·0.16 ≈ −0.74
percentage points per month.

2.4 Empirical spc versus model-generated spc

The empirics above rely on generalized variance decompositions of cash flows to estimate
the structure of the underlying network, whereas the model features connectivity in a
network at the jump intensity level. We now show that the connectivity and directedness
information from the empirically estimated cash flow network is indeed a close represen-
tation of the underlying intensity network.

To this end, we perform the following simulation exercise for each forecast horizon
H = 1, 2, 3, 4. We plug the empirically estimated connectivity matrix (for the cash flows)
as the beta matrix (for the jump intensities) into our model which we then multiply
with 1

2
to make sure that the stationarity condition (A.7) holds. The remaining model

parameters are taken from Table 4. Then we simulate 10,000 years of cash flows with
monthly increments and run the procedure suggested by Diebold and Yilmaz (2014) on

22Although one of the three regressions is redundant, we report all three for the sake of completeness.
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const. H = 1 H = 2 H = 3 H = 4 R̄2

Sharpe ratios

15.9158∗∗∗ 6.3940 0.0404
[20.46] [ 1.24]

14.9951∗∗∗ 8.0267∗∗ 0.1811
[15.78] [ 2.10]

14.8668∗∗∗ 8.1489∗∗ 0.2143
[15.91] [ 2.37]

14.8382∗∗∗ 8.1778∗∗ 0.2236
[16.03] [ 2.46]

Return volatilities

6.8792∗∗∗ -4.9428∗∗∗ 0.3208
[16.73] [-3.16]
7.1838∗∗∗ -4.6676∗∗∗ 0.4057
[16.87] [-4.05]
7.1831∗∗∗ -4.4660∗∗∗ 0.4055
[17.30] [-4.13]
7.1776∗∗∗ -4.4060∗∗∗ 0.4039
[17.44] [-4.14]

Average excess returns

1.0999∗∗∗ -0.4888 0.0695
[16.06] [-1.38]
1.1052∗∗∗ -0.3677 0.0340
[13.64] [-1.22]
1.0994∗∗∗ -0.3311 0.0206
[13.59] [-1.17]
1.0972∗∗∗ -0.3203 0.0162
[13.59] [-1.15]

Table 3
Cross-sectional regressions on spc

The table reports the results of cross-sectional regressions of Sharpe ratios, return volatilities,

and average excess returns of the 14 industry portfolios on their shock propagation capacity

(spc). Returns within a portfolio are value-weighted. To obtain spc, we perform Diebold and

Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4 and calculate spc

as given in Equation (3). Numbers in square brackets denote t-stats adjusted for cross-sectional

heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗,

and ∗, respectively.
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Investors
Relative risk aversion γ 10
Intertemporal elasticity of substitution ψ 1.5
Subjective discount rate δ 0.02

Aggregate consumption
Expected growth rate of log aggregate consumption µ 0.02
Jump size of log aggregate consumption K1 = . . . = K14 -0.004

Industry cash flows
Expected growth rates of log cash flows µ1 = . . . = µ14 0.02
Jump sizes of log cash flows L1 = . . . = L14 -0.04

Stochastic jump intensities
Mean reversion speeds κ1 = . . . = κ14 0.85
Mean reversion levels ¯̀

1 = . . . = ¯̀
14 0.05

Table 4
Model Parameters

The table reports the parametrization of our equilibrium model. The beta matrix is determined

empirically using the approach described in Section 2.2.

simulated log cash flow growth rates, exactly as we do with the empirical data, resulting
in an estimate for the network matrix based on simulated data cash flows. From this, we
compute the spc values for the different industries and compare them to the corresponding
values based on the empirical network matrix that we had plugged into the model initially.

Table 5 presents correlations between the two spc vectors. One can see that the two
network matrices are very similar with respect to the spc values they generate, with
correlations of 0.75 or higher. Furthermore, it is especially relevant in the context of our
empirical analysis that sorting industries on spc delivers roughly the same ordering for
cash flow-based and intensity-based network matrices.

2.5 Regressions in model-generated data

In Section 2.4, we show that applying the Diebold and Yilmaz (2014) estimation method
to simulated data, preserves the ordering of industries with respect to spc. As a final step
and to further corroborate that the empirical procedure is in line with the intuition behind
the theoretical model, we now analyze whether the regression results from Section 2.3 also
carry over to model-generated data.

We start from the simulated path for H = 3 over a period of 10,000 years with
monthly increments from Section 2.4.23 Using these 14 industry cash flow time series,
we compute spc by applying the Diebold and Yilmaz (2014) methodology exactly as in

23For the sake of brevity, we report the results for this sample path only. The results using the paths
for H = 1, 2, 4 are qualitatively similar.
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Forecast horizon
H = 1 H = 2 H = 3 H = 4

correlation 0.85 0.81 0.87 0.66
rank correlation 0.82 0.85 0.90 0.75

Table 5
Empirical spc versus model-generated spc

The table reports correlations and rank correlations between empirically estimated and model-

generated shock propagation capacities. The model-generated values are obtained from sim-

ulated data using the empirically estimated network matrix as an input. The procedure is

described in detail in Section 2.4.

the data. Again the forecast horizons are H = 1, 2, 3, 4 quarters. Unconditional Sharpe
ratios, return volatilities, and average excess returns are computed from the simulated
monthly return time series exactly like their empirical counterparts in Section 2.3. Table 6
reports these results. As one can see, the analyses based on simulated and empirical data
produce qualitatively similar results for Sharpe ratios (positive coefficients) and for return
volatilities (negative coefficients for spc).

The coefficients for all regressions are much larger in Table 6 than in Table 3. The
reason is that the values for spc are smaller in model-generated than in empirical data.
The diagonal entries of the beta matrix are by definition not included when we compute
spc according to Equation (3). So a comparably smaller value for spc in the model-
generated data shows that self excitation, represented by the diagonal elements of the
beta matrix, is more pronounced in model-generated than in empirical data. In the real
world, shocks are also spread via potentially diffusive channels (which are not present in
our model for the sake of parsimony) and this can increase the relative size of the shocks
passed on to other industries, making the diagonal elements of the empirical network
matrix smaller and the off-diagonal elements, and thus also spc, larger.

With the given parameters, the model produces only weakly significant coefficients in
the regressions for unconditional average excess returns for H = 2, 3, 4, whereas in our
empirical analysis we basically found no impact of spc on risk premia. However, given
our discussion concerning the two opposing directions in which spc impacts exposures
(negatively) and market prices of risk (positively) in the model, the results for average
excess returns in Table 6 could simply mean that the positive effect of spc on the market
prices of risk weakly dominates in the simulated economy, whereas the two effects more
or less seem to offset each other in the empirical data.

In summary, the analysis generates results which are overall in line with our results
from Propositions 1 and 2. Hardly surprising, however, our very stylized model does
not match the unconditional volatility of the U.S. stock market (reflecting the well-
documented excess volatility puzzle), as indicated by the low values for the constants
in the return volatility regressions in Table 6. In principle, it would be possible to include
additional features, but this would unnecessarily complicate the solution of the model and
shift the focus away from the clear theoretical results derived above.24

24One way to generate stock return volatilities in the model that are closer to their empirical coun-
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const. H = 1 H = 2 H = 3 H = 4 R̄2

Unconditional Sharpe ratios

0.0026∗∗∗ 4.9670 -0.0705
[ 1.45] [ 0.45]
0.0010∗∗∗ 6.6106∗∗∗ 0.0522
[ 0.73] [ 2.97]
0.0010∗∗∗ 6.6073∗∗∗ 0.0527
[ 0.72] [ 2.98]
0.0010∗∗∗ 6.6073∗∗∗ 0.0527
[ 0.72] [ 2.98]

Unconditional return volatilities

0.9091∗∗∗ -904.7605∗∗∗ 0.2432
[17.98] [-2.84]
0.9629∗∗∗ -533.6300∗∗∗ 0.5922
[25.64] [-4.96]
0.9631∗∗∗ -532.1669∗∗∗ 0.5917
[25.59] [-4.95]
0.9631∗∗∗ -532.1604∗∗∗ 0.5917
[25.59] [-4.95]

Unconditional average excess returns

0.0023∗∗∗ 0.7408 -0.0828
[ 1.68] [ 0.09]
0.0012∗∗∗ 3.2697∗ -0.0183
[ 1.14] [ 1.78]
0.0012∗∗∗ 3.2711∗ -0.0179
[ 1.13] [ 1.78]
0.0012∗∗∗ 3.2712∗ -0.0179
[ 1.13] [ 1.78]

Table 6
Cross-sectional regressions on spc in model-generated data

The table reports the results from cross-sectional regressions of model-generated Sharpe ratios,

return volatilities, and average excess returns of 14 assets on their shock propagation capacity

(spc). As beta matrix, we use the empirical network determined in Section 2.2 for a forecast

horizon of H = 3 quarters. The remaining parameters are given in Table 4. Given the model

solution, we run a Monte Carlo simulation over 10,000 years with monthly time increments.

From the simulated data, we compute Sharpe ratios, return volatilities, and average excess

returns. To obtain spc, we apply Diebold and Yilmaz (2014) H-quarter generalized variance

decompositions to simulated log cash flow growth rates for H = 1, 2, 3, 4 and calculate spc as in

Equation (3). Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and
∗, respectively.
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2.6 Eigenvector centrality

The existing literature on network linkages and cross-sectional asset pricing features a
different approximation for the relative importance of a node in a network, namely eigen-
vector centrality.25 Let the network matrix β be diagonalized as follows:

β = S · diag (φ1, . . . , φn) · S−1, (10)

where the φi’s are the eigenvalues, ordered by absolute size, the columns of S are the
eigenvectors of β, and the rows of S−1 are the eigenvectors of the transposed matrix β′

(usually all normalized to have unit length). The eigenvector centrality of node i is defined
as the i-th entry of the first column vector in S (the so-called principal eigenvector), i.e,
evci = Si,1.26 Loosely speaking, a node has a high eigenvector centrality when it is linked
to many other nodes, to other central nodes, or both.

Both evc and spc are approximations, condensing the entire network matrix into one
value per node. Although evc can also be viewed as a “directed measure”, in the sense
that it changes when the network matrix is transposed, we view spc as the more natural
quantity when it comes to capturing directedness in the context of our model for the
following reason. An approximation of our equilibrium asset pricing results using evc
would combine the principal eigenvectors of both β and β′, hence mixing up the impact
of incoming and outgoing links. To see this, let evci denote the eigenvector centrality of
node i, and let evc′i denote the eigenvector centrality of node i based on the transposed
matrix β′. Defining the approximation β∗∗∗ of β via

β∗∗∗ := S · diag (φ1, 0, . . . , 0) · S−1,

i.e., replacing all non-principal eigenvalues by 0, one can easily show that

β∗∗∗ = φ1 ·

 evc1 evc′1 . . . evc1 evc′n
...

. . .
...

evcn evc′1 . . . evcn evc′n

 .

spc, on the other hand, offers a straightforward interpretation of directedness, given the
additive structure of our model with mutually exciting processes.

Table 7 reports the values of evc for the 14 industries. The cross-sectional dispersion
in evc is similar to spc. Tables 8, 9, and 10 present the results of regressions analogous
to those shown in Table 3, but now with evc as additional regressor. For the bivariate
regressions, we orthogonalize evc with respect to spc to quantify the additional explanatory
power of this measure beyond spc.27

The new regressions yield several interesting findings. The univariate regressions for

terparts would be to introduce persistent diffusion processes representing, e.g., stochastic volatility of
consumption growth.

25This concept was introduced by Bonacich (1972b,a) and has been applied, e.g., by Demirer et al.
(2017) and Walden (2018).

26Further technical details about the construction of eigenvector centrality are given in Online Appendix
C.

27In Online Appendix D, we also compare spc to a symmetrified version of eigenvector centrality that
has been proposed in the literature recently.
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Industry Forecast horizon
H = 1 H = 2 H = 3 H = 4

Agriculture, forestry, fishing, hunting 0.0581 0.0689 0.0707 0.0713
Mining 0.2680 0.2869 0.2877 0.2870
Utilities 0.4577 0.3808 0.3773 0.3769
Construction 0.0847 0.0888 0.0928 0.0938
Manufacturing 0.4083 0.3425 0.3311 0.3297
Wholesale trade 0.4859 0.4038 0.4089 0.4097
Retail trade 0.0774 0.1680 0.1688 0.1687
Transportation and warehousing 0.3575 0.4039 0.3989 0.3981
Information 0.2623 0.4355 0.4365 0.4366
Finance, insurance, real estate, . . . 0.0415 0.0629 0.0652 0.0655
Professional and business services 0.1878 0.1950 0.2102 0.2126
Educational services, health care, . . . 0.0757 0.0802 0.0788 0.0784
Arts, entertainment, accommodation, . . . 0.1583 0.1341 0.1316 0.1310
Other services 0.1870 0.1796 0.1852 0.1863

Mean 0.2222 0.2308 0.2317 0.2318
Standard deviation 0.1542 0.1399 0.1382 0.1380

Table 7
Eigenvector centrality

The table reports eigenvector centrality (evc) for the 14 industries in our sample. The network

measure is obtained from Diebold and Yilmaz (2014) H-quarter generalized variance decom-

positions for H = 1, 2, 3, 4 applied to log industry earnings growth rates over the sample from

1966-Q2 to 2014-Q4, i.e., 686 observations in total. evc is calculated according to Equation (10).

Graphical representations of the networks are shown in Figure 1.
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H = 1 H = 2

const. spc evc R̄2 const. spc evc R̄2

6.9909∗∗∗ -4.6955∗∗∗ 0.3923 7.1819∗∗∗ -5.3478∗∗∗ 0.4246
[15.87] [-3.46] [16.03] [-3.59]
6.8792∗∗∗ -4.9428∗∗∗ -8.3586 0.3571 7.1838∗∗∗ -4.6676∗∗∗ -3.1963∗ 0.4247
[15.68] [-3.32] [-1.52] [17.32] [-4.12] [-1.95]

H = 3 H = 4

const. spc evc R̄2 const. spc evc R̄2

7.2001∗∗∗ -5.4049∗∗∗ 0.4233 7.2033∗∗∗ -5.4157∗∗∗ 0.4235
[15.98] [-3.60] [15.97] [-3.60]
7.1831∗∗∗ -4.4660∗∗∗ -3.2327∗∗ 0.4310 7.1776∗∗∗ -4.4060∗∗∗ -3.2633∗∗ 0.4328
[17.77] [-4.33] [-2.01] [17.96] [-4.40] [-2.03]

Table 8
Cross-sectional regressions of return volatilities on spc and evc

The table reports the results from cross-sectional regressions of the return volatilities of the 14 industry portfolios on their shock propagation

capacity (spc) and eigenvector centrality (evc). Within the portfolios, returns are value-weighted. Both network measures are obtained from

Diebold and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4 (from upper left to lower right panel), applied to

log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total. evc is defined in Equation (10),

spc in Equation (3). In bivariate regressions, we orthogonalize evc with respect to spc. Numbers in square brackets denote t-stats adjusted

for cross-sectional heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and ∗, respectively.
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H = 1 H = 2

const. spc evc R̄2 const. spc evc R̄2

15.9409∗∗∗ 5.3110 0.0280 15.7070∗∗∗ 6.1260 0.0385
[19.64] [ 1.17] [22.02] [ 1.64]

15.9158∗∗∗ 6.3940 -1.9904 -0.0459 14.9951∗∗∗ 8.0267∗∗ -2.8222 0.1171
[20.85] [ 1.25] [-0.09] [16.40] [ 2.25] [-0.37]

H = 3 H = 4

const. spc evc R̄2 const. spc evc R̄2

15.7510∗∗∗ 5.9117 0.0275 15.7557∗∗∗ 5.8880 0.0262
[22.07] [ 1.61] [22.04] [ 1.60]

14.8668∗∗∗ 8.1489∗∗∗ -3.9154 0.1642 14.8382∗∗∗ 8.1778∗∗∗ -4.0006 0.1759
[17.16] [ 2.70] [-0.54] [17.38] [ 2.83] [-0.57]

Table 9
Cross-sectional regressions of Sharpe ratios on spc and evc

The table reports the results from cross-sectional regressions of the Sharpe ratios of the 14 industry portfolios on their shock propagation

capacity (spc) and eigenvector centrality (evc). Within the portfolios, returns are value-weighted. Both network measures are obtained from

Diebold and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4 (from upper left to lower right panel), applied to

log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total. evc is defined in Equation (10),

spc in Equation (3). In bivariate regressions, we orthogonalize evc with respect to spc. Numbers in square brackets denote t-stats adjusted

for cross-sectional heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and ∗, respectively.
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H = 1 H = 2

const. spc evc R̄2 const. spc evc R̄2

1.1202∗∗∗ -0.5057 0.1300 1.1394∗∗∗ -0.5702∗ 0.1399
[15.25] [-1.55] [14.80] [-1.86]
1.0999∗∗∗ -0.4888 -1.5207 0.1103 1.1052∗∗∗ -0.3677 -0.6554∗ 0.0649
[16.84] [-1.51] [-1.62] [14.98] [-1.41] [-1.81]

H = 3 H = 4

const. spc evc R̄2 const. spc evc R̄2

1.1450∗∗∗ -0.5919∗ 0.1516 1.1458∗∗∗ -0.5951∗ 0.1533
[14.76] [-1.90] [14.75] [-1.91]
1.0994∗∗∗ -0.3311 -0.7147∗ 0.0819 1.0972∗∗∗ -0.3203 -0.7237∗∗ 0.0848
[15.43] [-1.43] [-1.94] [15.57] [-1.42] [-1.96]

Table 10
Cross-sectional regressions of average excess returns on spc and evc

The table reports the results from cross-sectional regressions of the average excess returns of the 14 industry portfolios on their shock

propagation capacity (spc) and eigenvector centrality (evc). Within the portfolios, returns are value-weighted. Both network measures are

obtained from Diebold and Yilmaz (2014) H-quarter generalized variance decompositions for H = 1, 2, 3, 4 (from upper left to lower right

panel), applied to log industry earnings growth rates over the sample from 1966-Q2 to 2014-Q4, i.e., 686 observations in total. evc is defined

in Equation (10), spc in Equation (3). In bivariate regressions, we orthogonalize evc with respect to spc. Numbers in square brackets denote

t-stats adjusted for cross-sectional heteroskedasticity. Statistical significance at the 1%, 5%, and 10% level is indicated by ∗∗∗, ∗∗, and ∗,

respectively.
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Sharpe ratios in Table 9 show that evc has no explanatory power, while spc remains
robustly significant across all horizons. In the return volatility regressions in Table 8, evc
can explain the cross-section of return volatilities for industry portfolios. When combined
with spc, however, the orthogonalized version of evc is insignificant for H = 1, but it
seems to have explanatory power beyond spc for H = 2, 3, 4. In the bivariate regressions,
the coefficient for spc is significant for all horizons. Finally, in the regressions for average
excess returns in Table 10, evc yields negative and significant coefficients at the 10% level,
while spc is not significant both in the univariate and in the bivariate regressions. Overall,
we conclude that our theoretically motivated measure of directedness spc indeed contains
additional information above and beyond the information captured by centrality measures
like evc.

3 Conclusion

Networks have received considerable attention in the finance and economics literature.
In this paper, we analyze the implications of directed links in cash flows networks for
equilibrium returns. Our analysis is motivated by Carvalho et al. (2016) who provide
rich empirical evidence for a delayed propagation of cash flow shocks, both at the firm
and at the industry level, in a natural experiment setting around the nuclear incident of
Fukushima in 2011. We model this delayed propagation with mutually exciting processes
which naturally feature directedness and capture the intuition that cash flow shocks to
one node in the network affect other nodes only with a certain time lag.

In our general equilibrium model we combine these self and mutually exciting jump
processes for cash flows with a representative investor with recursive preferences. We
prove the following cross-sectional statements for arbitrary directed networks: (i) Cash
flow shocks in industries with high shock propagation capacity (spc) have a high market
price of risk. (ii) The response of the price-to-cash flow ratio of an industry to its own
cash flow shocks is less pronounced for industries with higher spc. Importantly, when
it comes to expected excess returns, the effects of spc on market prices of risk and on
exposures work in opposite directions, so that the overall impact of spc on risk premia
depends on the tradeoff between these two forces.

We close the paper with an empirical illustration of our theoretical findings, where
we estimate an empirical network from industry cash flows by applying the Diebold and
Yilmaz (2014) generalized variance decomposition methodology. In line with the model,
we find that high spc industries have lower return volatilities and higher Sharpe ratios
than their low spc counterparts. Regression coefficients for average excess returns are,
however, insignificant. Finally, we obtain regression results for return volatilities and
Sharpe ratios in simulated data from the model which are qualitatively similar to their
empirical counterparts.

To sum up, the innovative combination of self and mutually exciting jump processes
with recursive preferences allows for the integration of directed networks into a tractable
equilibrium asset pricing model. Our results indicate that it is necessary to decompose
equilibrium asset prices and returns into their constituents in order to understand the
implications of directed cash flow shock propagation.
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APPENDIX

A. Model solution

To solve for the equilibrium we apply the approach proposed in Eraker and Shaliastovich (2008).
The vector X ≡ (y, `1, . . . , `n, y1, . . . , yn)′ follows the affine jump process

dXt = µ (Xt) dt+ ξt dNt,

where we use the following notation:

• µ(Xt) =M+KXt

with M =



µ
κ1

¯̀
1

...
κn ¯̀

n

µ1
...
µn


and K =



0 0 . . . 0 . . . 0
0 −κ1 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . −κn . . . 0
0 0 . . . 0 . . . 0
...

...
. . .

...
. . .

...
0 0 . . . 0 . . . 0


,

• `t = l0 + l1Xt

with l0 =

 0
...
0

 and l1 =

 0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

,

• ξt =
(
ξ1,t, . . . , ξn,t

)
=



K1 . . . Kn

β1,1 . . . β1,n
...

. . .
...

βn,1 . . . βn,n
L1 . . . 0
...

. . .
...

0 . . . Ln


.

The jump transform % (u) ≡ E
[(
eu
′ξ1,t , . . . , eu

′ξn,t
)]′

is in our case simply equal to
(
eu
′ξ1,t , . . . , eu

′ξn,t
)′

,

since the jump sizes are all constant.
We define the selection vectors δy, δ`i,t (i = 1, . . . , n), and δy,i (i = 1, . . . , n) implicitly via

dyt = δ′y dXt, d`i,t = δ′`,i dXt, and dyi,t = δ′y,i dXt.
The continuous-time version of the Euler equation can be written as

0 =
1

dt
Et

[
d
(
elnMt+lnRt

)
elnMt+lnRt

]
, (A.1)

where R is the return on the claim to aggregate consumption. The logarithm of the pricing
kernel has the dynamics

d lnMt = −δ θ dt− (1− θ) d lnRt −
θ

ψ
dyt.
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We apply the usual affine conjecture for the log wealth-consumption ratio

vt = A+ (0, B1, . . . , Bn, 0, . . . , 0) Xt

= A+ (B1, . . . , Bn) `t,

and use the Campbell-Shiller approximation for the return on the consumption claim

d lnRt = kv,0 dt+ kv,1 dvt − (1− kv,1) vt dt+ dyt.

Combining the Campbell-Shiller approximation, the affine guess for vt, and the dynamics of the
log pricing kernel, we get

d
(
elnMt+lnRt

)
elnMt+lnRt

=
{
−δ θ + θ kv,0 − θ (1− kv,1)

(
A+B′Xt

)
+ χ′y (M+KXt)

}
dt

+
{
eχ
′
y ξt − 1

}
dNt, (A.2)

where

χy = θ

[(
1− 1

ψ

)
δy + kv,1B

]
=

(
−θ

(
1

ψ
− 1

)
, θ kv,1B1, . . . , θ kv,1Bn, 0, . . . , 0

)′
,

and where 1 is a vector of ones with length n. We plug expression (A.2) into the Euler equa-
tion (A.1) to get a system of equations for A and B:

0 = θ [−δ + kv,0 − (1− kv,1) A] +M′ χy + l′0 [% (χy)− 1] (A.3)

0 = K′ χy − θ (1− kv,1) B + l′1 [% (χy)− 1] . (A.4)

We have two additional equations for the loglinearization constants kv,0 and kv,1:

0 = −kv,0 − ln kv,1 + (1− kv,1)
[
A+B′ µX

]
(A.5)

0 = A+B′ µX − ln (kv,1) + ln (1− kv,1) , (A.6)

where µX is a vector with i-th component E [Xi] if that expectation is finite and 0 otherwise. Due
to the presence of the mutually exciting jump terms, the long-run means ¯̀̄

i, i.e., the unconditional
expectations, are not equal to the respective mean reversion levels ¯̀

i, as it would be the case,
e.g., for a standard square-root process. According to Aı̈t-Sahalia et al. (2015), the ¯̀̄

i are the
solution to the following system of equations:

¯̀̄
i =

κi ¯̀
i +
∑

j 6=i βi,j
¯̀̄
j

κi − βi,i
(i = 1, . . . , n). (A.7)

We assume κi > βi,i for i = 1, . . . , n to ensure that all the ¯̀̄
i are positive.

We solve the four equations (A.3), (A.4), (A.5), and (A.6) via an iterative procedure. We
initialize kv,1 by setting it equal to δ, then compute kv,0, A, and B. Given these we then compute
kv,1 again and iterate forward until the system converges.

The pricing kernel has dynamics

dMt

Mt
= −rt dt− [1− % (−λ)]′ (dNt − `tdt)
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with

λ = γ δy + (1− θ) kv,1B
= (γ, (1− θ) kv,1B1, . . . , (1− θ) kv,1Bn, 0, . . . , 0)′ ,

so that we can immediately read off the risk-free rate and the market prices of risk. The risk-free
rate is given as

rt = Φ0 + Φ′1Xt

with
Φ0 = θ δ + (θ − 1)

[
ln kv,1 + (kv,1 − 1) B′ µX

]
+M′ λ− l′0 [% (−λ)− 1]

and
Φ1 = (1− θ) (kv,1 − 1) B +K′ λ− l′1 [% (−λ)− 1] .

The market prices of jump risk are given as MPJR1
...

MPJRn

 = [1− % (−λ)]

=

 1− exp (−γ K1 + kv,1 (θ − 1) [B1 β1,1 + . . .+Bn βn,1])
...

1− exp (−γ Kn + kv,1 (θ − 1) [B1 β1,n + . . .+Bn βn,n])

 .

The return on the consumption claim is given by

dRt = {. . .} dt+ {% (δy + kv,1B)− 1} dNt

with jump exposures  JEXPy,1
...

JEXPy,n

 = % (δy + kv,1B)− 1,

where
JEXPy,i = exp [K1 + kv,1 (B1 β1,1 + . . .+Bn βn,1)]− 1

for i = 1, . . . , n.
To obtain the expected excess returns on the cash flow claims, we follow the same approach

as for the consumption claim. The continuous-time Euler equation again reads

0 =
1

dt
Et

[
d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

]
.

Applying the Campbell-Shiller approximation

d lnRi,t = ki,0 dt+ ki,1 dvi,t − (1− ki,1) vi,t dt+ dyi,t

and the usual affine guess for the log price-to cash flow ratio

vi,t = Ai + (0, Ci,1, . . . , Ci,n, 0, . . . , 0) Xt

= Ai + (Ci,1, . . . , Ci,n) `t,
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we arrive at

d
(
elnMt+lnRi,t

)
elnMt+lnRi,t

=
{
−δ θ − (1− θ)

[
kv,0 − (1− kv,1)

(
A+B′Xt

)]
+ ki,0

− (1− ki,1)
[
Ai + C ′iXt

]
+ χ′y,i (M+KXt)

}
dt

+
{
eχ
′
y,i ξt − 1

}
dNt, (A.8)

where χy,i = ki,1Ci+δy,i−λ. Plugging (A.8) into the Euler equation yields a system of equations
for the coefficients Ai and Ci:

0 = −θ δ + (1− θ)
[
ln kv,1 − (1− kv,1) B′ µX

]
− ln ki,1 + (1− ki,1) C ′i µX

+M′ χy,i + l′0 [% (χy,i)− 1] (A.9)

0 = K′ χy,i + (1− θ) (1− kv,1) B − (1− ki,1) Ci + l′1 [% (χy,i)− 1] . (A.10)

The two additional equations for the log-linearization constants ki,0 and ki,1 are

0 = −ki,0 − ln ki,1 + (1− ki,1)
(
Ai + C ′i µX

)
(A.11)

0 = Ai + C ′i µX − ln ki,1 + ln (1− ki,1) . (A.12)

The return of the individual cash flow claim i is then given by

dRi,t = {. . .} dt+ {% (δy,i + ki,1Ci)− 1} dNt

so that the jump exposure of the return is thus given by
JEXPi,1

...
JEXPi,i

...
JEXPi,n

 = [% (δy,i + ki,1Ci)− 1]

=


exp (ki,1 [Ci,1 β1,1 + . . .+ Ci,n βn,1])− 1

...
exp (Li + ki,1 [Ci,1 β1,i + . . .+ Ci,n βn,i])− 1

...
exp (ki,1 [Ci,1 β1,n + . . .+ Ci,n βn,n])− 1

 .

The expected return on the claim to cash flow i can then be written as

1

dt
Et [dRi,t] = − ln ki,1 + (1− ki,1) C ′i (µX −Xt) + [δi + ki,1Ci]

′ (M+KXt)

+ [% (δy,i + ki,1Ci)− 1] (l0 + l1Xt) .

The expected excess return is given by

1

dt
Et [dRi,t]− rt = (l0 + l1Xt)

′ [% (χy,i + λ) + % (−λ)− % (χy,i)− 1]
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which can be represented as

1

dt
Et [dRi,t]− rt =

n∑
j=1

`j,t MPJRj JEXPi,j .

B. Approximation for general network structures

B.1. Market prices of jump risk

B.1.1. First approximation step

Rewriting Equation (A.4) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives the following
system of equations

0 = B1 θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,1 + . . .+Bn βn,1)} − 1

...

0 = Bn θ [kv,1 (1− κ)− 1] + exp {K (1− γ) + θ kv,1 (B1 β1,n + . . .+Bn βn,n)} − 1

and translating this into matrix notation yields

1 = θ [kv,1 (1− κ)− 1] B + exp {K (1− γ)} exp
{
θ kv,1 β

′B
}
,

where now and in the following, the “exp” operator, applied to a vector, stands for element-wise
application of the “exp” operator to the vector.

Next, we apply the approximation exp (x) = 1 + x+O
(
x2
)

and solve for B:

B =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}]

+O
(
β2
)

(B.1)

where In×n denotes an n × n identity matrix and exp{K (1−γ)}
1−κ− 1

kv,1

< 0 since 1
kv,1

> 1 − κ (due to

1
kv,1

= 1+ēv

ēv > 1 > 1− κ for 0 < κ < 1).

To conclude the first approximation step, we define

B∗ =

(
In×n +

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)−1
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.2)
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B.1.2. Second approximation step

Since the inverse term in Equation (B.1) has the structure of a Leontief inverse, (I −A)−1 =
I +A1 +A2 + . . ., we rewrite (B.1) as:

B =

In×n − exp {K (1− γ)}
1− κ− 1

kv,1

β′ −

(
exp {K (1− γ)}

1− κ− 1
kv,1

β′

)2

− . . .

 1

θ [kv,1 (1− κ)− 1]

× [1− exp {K (1− γ)}] +O
(
β2
)

=

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}]

+O
(
β2
)

(B.3)

To conclude the second approximation step, we define

B∗∗ =

(
In×n −

exp {K (1− γ)}
1− κ− 1

kv,1

β′

)
1

θ [kv,1 (1− κ)− 1]
[1− exp {K (1− γ)}] . (B.4)

Plugging (B.3) into the market price of risk from Equation (4) and rewriting this in matrix
notation yields:

MPJR = 1− exp

{
−γ K +

kv,1 (θ − 1)

θ [kv,1 (1− κ)− 1]

[
β′ [1− exp {K (1− γ)}] +O

(
β2
)]}

= 1− exp

−γ K +
(θ − 1) (1− exp {K (1− γ)})

θ
[
(1− κ)− 1

kv,1

] (βdiag + spc) +O
(
β2
)

= 1− exp
{
A+ B (βdiag + spc) +O

(
β2
)}

with A and B given in Proposition 1. Thus we define

MPJR∗∗ = 1− exp {A+ B (βdiag + spc)} . (B.5)

For γ > 1, θ < 0, 0 < κ < 1, and K < 0, we have A > 0 and B > 0 since 1
kv,1

> 1− κ.

B.2. Jump exposures

B.2.1. First approximation step

Rewriting Equation (A.10) for κ1 = . . . = κn = κ and K1 = . . . = Kn = K gives a system of
equations for each i, exemplified in the following for i = 1:

0 = B1 (kv,1 − 1) (θ − 1) + C1,1 (k1,1 − 1)− κ [B1 kv,1 (θ − 1) + C1,1 k1,1]

+ exp {L−K γ + β1,1 [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,1 [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1

...

0 = Bn (kv,1 − 1) (θ − 1) + C1,n (k1,1 − 1)− κ [Bn kv,1 (θ − 1) + C1,n k1,1]

+ exp {−K γ + β1,n [B1 kv,1 (θ − 1) + C1,1 k1,1] + . . .+ βn,n [Bn kv,1 (θ − 1) + C1,n k1,1]} − 1.
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Collecting terms and introducing matrix notation yields the following system for each i:

1 = B (θ − 1) [kv,1 (1− κ)− 1] + Ci [ki,1 (1− κ)− 1]

+ [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • exp
{
kv,1 (θ − 1) β′B + ki,1 β

′Ci
}
,

where now and in the following, • represents element-wise multiplication of the vectors. In×1,i

is an n× 1 vector with the i-th entry equal to 1 and zeros otherwise.
Again, we employ exp (x) = 1 + x+O

(
x2
)

and solve for Ci:

Ci =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
, (B.6)

where
exp{−K γ}1+(exp{L−K γ}−exp{−K γ}) In×1,i

1−κ− 1
ki,1

< 0 since 1
ki,1

> 1− κ (due to 1
ki,1

= 1+ ¯evi
¯evi

> 1 >

1− κ for 0 < κ < 1).
To conclude the first approximation step, we define

C∗i =

(
I +

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)−1

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
. (B.7)
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B.2.2. Second approximation step

Again the inverse term in Equation (B.6) has the structure of a Leontief inverse, and we rewrite
(B.6) as:

Ci =

[
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′

−

(
exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)2

− . . .

 1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)

=

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
+O

(
β2
)
. (B.8)

To conclude the second approximation step, we define

C∗∗i =

(
In×n −

exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i

1− κ− 1
ki,1

• β′
)

1

ki,1 (1− κ)− 1

×
[
1− (θ − 1) [kv,1 (1− κ)− 1] B

− [exp {−K γ} 1 + (exp {L−K γ} − exp {−K γ}) In×1,i] • kv,1 (θ − 1) β′B

− exp {−K γ} 1− (exp {L−K γ} − exp {−K γ}) In×1,i

]
(B.9)

Plugging (B.8) into the jump exposures from Equation (6) and rewriting them in matrix
notation yields:

JEXPi = exp

{
LIn×1,i +

1− θ−1
θ (1− exp {K (1− γ)})− exp {−K γ}

1− κ− 1
ki,1

β′ 1

−exp {−K γ} (exp {L} − 1)

1− κ− 1
ki,1

β′ In×1,i +O
(
β2
)}
− 1.
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Breaking this expression down into the jump exposures JEXPi,j yields:

JEXPi,j =

 exp
{
Ci ·
∑n

k=1,k 6=i βk,j +Di · βi,j +O
(
β2
)}
− 1 for j 6= i

exp
{
L+ Ci ·

∑n
k=1,k 6=i βk,i +Di · βi,i +O

(
β2
)}
− 1 for j = i

=

{
exp

{
Ci · spcj + Ci · βj,j + (Di − Ci) βi,j +O

(
β2
)}
− 1 for j 6= i

exp
{
L+ Ci · spci +Di · βi,i +O

(
β2
)}
− 1 for j = i

where

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

Di =
1− θ−1

θ [1− exp {K (1− γ)} − exp {L−K γ}]
1− κ− 1

ki,1

Di − Ci =
exp {−K γ} (1− exp {L})

1− κ− 1
ki,1

.

Note that 1
ki,1

> 1−κ (see above). For γ > 1, 0 < κ < 1, and − log(2) < K < 0, we have Ci > 0.

Additionally assuming θ < 0, we obtain Di < 0, and Di − Ci < 0.
Proof that Ci > 0: We rewrite Ci as follows:

Ci =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {−K γ}
1− κ− 1

ki,1

=
exp {−K γ}

[
1
θ (exp {K γ} − 1) + exp {K} − 1

]
1− κ− 1

ki,1

Here, we have 1−κ− 1
ki,1

< 0 by assumption (since 0 < κ < 1). Moreover, we have exp {−K γ} >
0 and 1

θ (exp {K γ} − 1) + exp {K} − 1 < 0.
To see the last inequality, define

f (K) = exp {K γ} − 1− (exp {K}+ γ) (exp {K} − 1)

= exp {K γ} − 1− exp {2K} − γ exp {K}+ exp {K}+ γ

Then f (0) = 0 and

f ′ (K) = γ exp {K γ} − 2 exp {2K} − γ exp {K}+ exp {K}
= γ (exp {K γ} − exp {K}) + exp {K} − 2 exp {2K}

If γ > 1 and − ln (2) < K < 0, then f ′ (K) < 0 which implies f (K) > 0. In particular,

exp {K γ} − 1

exp {K} − 1
< exp {K}+ γ < −θ

from where the statement then follows. Altogether, we thus get Ci > 0.
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Proof that Di < 0: We rewrite Di as follows:

Di =
1− θ−1

θ [1− exp {K (1− γ)}]− exp {L−K γ}
1− κ− 1

ki,1

=
1
θ + exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
1− κ− 1

ki,1

Again, we have 1− κ− 1
ki,1

< 0. Moreover, we have

1

θ
+ exp {−K γ}

[(
1− 1

θ

)
exp {K} − exp {L}

]
> 0

⇔ exp {−K γ}
[(

1− 1

θ

)
exp {K} − exp {L}

]
> −1

θ

⇔
(

1− 1

θ

)
exp {K}+

1

θ
exp {K γ} − exp {L} > 0

⇔ (exp {K} − exp {L}) +
1

θ
(exp {K γ} − exp {K}) > 0

which is true if L < K, γ > 1 and θ < 0. This completes the proof.

B.3. Approximation quality

In this section, we assess the quality of the first-order approximations derived in the Propo-
sitions 1 and 2 using the empirical network for H = 3, i.e., the network which is preferred
according to Table 5.

As explained in Appendix B.1, MPJR∗∗ is based on two approximation steps, B∗ and B∗∗.
The left part of Figure 2 shows the result of the first approximation step graphically by plotting
B∗ against the exact solution B of Equation (4). The middle part shows similar results for the
second approximation step, B∗∗ given in Equation (B.4). Finally, the right part of Figure 2
depicts the full approximation of the market prices of risk MPJR∗∗ against the exact MPJR.

Regressing B∗ (or B∗∗, resp.) on B yields the following parameter estimates, t-stats, R2,
and correlations:

B∗i = −0.0003 + 0.8794 Bi + ui,
(−16.2) (189.3)

R2 = 0.9998, Corr = 0.9999

B∗∗i = −0.0015 + 0.2461 Bi + ui,
(−49.5) (33.1)

R2 = 0.9848, Corr = 0.9923.

Performing a similar regression of MPJR∗∗ on MPJR gives:

MPJR∗∗i = −0.0383 + 0.2512 MPJRi + ui,
(−49.1) (32.8)

R2 = 0.9847, Corr = 0.9923.

Altogether, we see from the figures that the first approximation step hardly affects the B coef-
ficients at all. The second approximation step (approximating the Leontief inverse) changes all
coefficients quantitatively, but not qualitatively. The ordering of the coefficients is preserved,
the sign is preserved, the correlation between approximated and exact coefficients is 99%. Only
the size and the dispersion is reduced.

Similarly, JEXP∗∗ is based on two approximation steps, C∗ and C∗∗, and its approximation
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Figure 2
Approximation quality of B∗, B∗∗, and MPJR∗∗

The graph on the left (in the middle) plot the coefficients B∗ (B∗∗) as a function of the coefficients B. The graph on the right plots the

approximation of the market price of jump risk as stated in Proposition 1, i.e., MPJR∗∗, as a function of the market prices of risk MPJR for

which the B coefficients have been computed numerically. The coefficients B∗ and B∗∗ are defined in Appendix B.1. The regression results

are discussed in Appendix B.3. We use the empirical network determined in Section 2.2 for a forecast horizon of H = 3 quarters as the beta

matrix. The remaining parameters are given in Table 4.
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quality is shown in Figures 3. The corresponding regressions yield

C∗i = −0.0054 + 0.9601 Ci + ui,
(−51.9) (326.1)

R2 = 0.9960, Corr = 0.9980.

C∗∗i = −0.0036 + 0.7675 Ci + u,
(−23.2) (53.4)

R2 = 0.9869, Corr = 0.9934.

JEXP∗∗i = −0.0010 + 0.7673 JEXPi + ui,
(−10.7) (53.5)

R2 = 0.9883, Corr = 0.9942.

Again, we see that the second approximation step is more severe than the first one. However,
it does not change the coefficients qualitatively. The ordering of the coefficients as well as the
sign are preserved and the correlation between approximated and exact coefficients is 99%.

C. Industries

We use the industry codes in the Industry Economic Accounts provided by the Bureau of Eco-
nomic Analysis (BEA) at the sector level.28 These are based on the North American Industry
Classification System (NAICS) code structure and contain 15 groups of industries. Following
Aobdia et al. (2014) and Menzly and Ozbas (2010), we exclude the government sector. We refer
to the 14 industries in our network graphs in Figure 1 as:

1. Ag: Agriculture, forestry, fishing, and hunting;

2. Mi: Mining;

3. Ut: Utilities;

4. Co: Construction;

5. Ma: Manufacturing;

6. Wh: Wholesale trade;

7. Re: Retail trade;

8. Tr: Transportation and warehousing;

9. In: Information;

10. Fi: Finance, insurance, real estate, rental, and leasing;

11. Pr: Professional and business services;

12. Ed: Educational services, health care, and social assistance;

13. Ar: Arts, entertainment, recreation, accommodation, and food services;

14. Ot: Other services, except government.

28Available at the BEA homepage (https://bea.gov/industry/io_annual.htm).
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Figure 3
Approximation quality of C∗, C∗∗, and JEXP∗∗

The graph on the left (in the middle) plots the coefficients C∗ (C∗∗) as a function of the coefficients C. The graph on the right plots the

approximation of the jump exposures as stated in Proposition 2, i.e., JEXP∗∗, as a function of the jump exposures JEXP for which the C

coefficients have been computed numerically. The coefficients C∗ and C∗∗ are defined in Appendix B.2. The regression results are discussed

in Appendix B.3. We use the empirical network determined in Section 2.2 for a forecast horizon of H = 3 quarters as the beta matrix. The

remaining parameters are given in Table 4.
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