A Service of

ECOMNZTOR

I I I Leibniz-Informationszentrum
.j B Wirtschaft " '

o . o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics

Jahn, Malte

Working Paper

Artificial neural network regression models: Predicting

GDP growth

HWWI Research Paper, No. 185

Provided in Cooperation with:

Hamburg Institute of International Economics (HWWI)

Suggested Citation: Jahn, Malte (2018) : Artificial neural network regression models: Predicting GDP
growth, HWWI Research Paper, No. 185, Hamburgisches WeltWirtschaftsInstitut (HWWI), Hamburg

This Version is available at:
https://hdl.handle.net/10419/182108

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/182108
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Hamburg Institute
of International
Economics

Artificial neural network regression
models: Predicting GDP growth

Malte Jahn

HWWI Research

Paper 185

Hamburg Institute of International Economics (HWWI) | 2018
ISSN 1861-504X

Corresponding author:

Malte Jahn

Hamburg Institute of International Economics (HWW])
Oberhafenstr. 1 | 20097 Hamburg, Germany

Telephone: +49 (0)40 340576-351 | Fax: +49 (0)40 340576-150
jahn@hwwi.org

HWWI Research Paper

Hamburg Institute of International Economics (HWWI)
Oberhafenstr. 1 | 20097 Hamburg, Germany

Telephone: +49 (0)40 340576-0 | Fax: +49 (0)40 340576-150
info@hwwi.org | www.hwwi.org

ISSN 1861-504X

Editorial Board:
Prof. Dr. Henning Vopel
Dr. Christina Boll

© by the author | September 2018
The author is solely responsible for the contents which do not
necessarily represent the opinion of the HWWI.

Artificial neural network regression models:
Predicting GDP growth

Malte Jahn

September 2018

Abstract

Artificial neural networks have become increasingly popular for statistical model fitting over the
last years, mainly due to increasing computational power. In this paper, an introduction to the
use of artificial neural network (ANN) regression models is given. The problem of predicting
the GDP growth rate of 15 industrialized economies in the time period 1996-2016 serves as an
example. It is shown that the ANN model is able to yield much more accurate predictions
of GDP growth rates than a corresponding linear model. In particular, ANN models capture
time trends very flexibly. This is relevant for forecasting, as demonstrated by out-of-sample

predictions for 2017.

Keywords: neural network, forecasting, panel data
JEL codes: C45, C53, C61, 040

1 Introduction

The main goal of the paper is to demonstrate the capabilities of artificial neural network (ANN)
regression models. In particular, the paper shall encourage researchers to use ANN models for
regression analysis. It shall help to overcome two existing barriers to the use of ANN models:
the lack of theoretical understanding on the one hand and the inability to actually implement
the model on the other hand. Therefore, the theoretical framework is discussed along with the
precise algorithm used to train the ANN. The academic usefulness is demonstrated by the abil-
ity of the ANN regression model to produce more accurate predictions of GDP growth rates of
15 developed countries between 1996 and 2016 than a corresponding linear model. Regarding

forecasts, the flexible time trend is shown to be a major advantage of the ANN model.

There have been previous applications of ANN models for prediction/forecasting of GDP or
similar economic variables.

Tkacz (2001) does an analysis of Canadian GDP growth rates, finding that his ANN model is
not superior to a linear model at the quarter-to-quarter forecasting horizon but is superior at
the year-to-year forecasting horizon. He believes that this is due to a non-linear influence of
monetary variables which seems to be more relevant in the longer run.

Chuku et al. (2017) analyze GDP data for South Africa, Nigeria and Kenya (individually) and
find that, in many of the considered specifications, the ANN model is superior to structural
econometric models and ARIMA models. Their main explanation is that developing economies
are ”exposed to potential chaotic influences from commodity prices, external factors, and even
political economy factors” (Chuku et al., 2017, p. 25). The flexibility of ANN models seems to
pay off in this regard.

Kock and Terasvirta (2014) deal with the monthly forecasting of industrial production and un-
employment in industrialized economies during a crisis. They find that their autoregressive
neural network does not perform significantly better than the linear autoregressive model.
Feng and Zhang (2014) investigate the evolution of the tertiary production in the Chinese
province of Zhejiang between 1971 and 1997. Their result is that the ANN outperforms the
alternative ”gray” forecasting model. Since they don’t consider classical autoregressive models
as a reference, their results are a bit more difficult to interpret.

It will be shown in the following sections that the results derived in this very paper come closest
to that of Tkacz (2001), both regarding the considered problem (annual GDP data in developed

economies) as well as the magnitude by which the ANN model outperforms linear models.

2 The data set

The GDP panel data set includes the following 15 countries, in alphabetical order: Austria, Bel-
gium, Denmark, Finland, France, Germany, Greece, Italy, Japan, Netherlands, Portugal, Spain,
Sweden, United Kingdom and the United States of Americal.

1The Republic of Ireland was also considered initially, but dismissed from the sample because its GDP growth
of over 20% in 2015 represents an outlier which cannot be reasonably predicted by any model.

The GDP is measured in constant prices, the observed time period is from 1992 until 2016 on
an annual basis. The GDP figures are not corrected for differences in purchasing power. The
starting year is chosen to be 1992 because it is the first year where GDP data are available for
the reunified Germany in the AMECO database. The AMECO database is the official database

of the European Commission.

The aim of this paper is to compare the performance of ANN regression models to that of con-
ventional linear regression models. Therefore, the process of choosing the optimal number of
time lags for each model is omitted and the first 3 time lags are chosen for both models. Note
that observations from the year 1992 are lost because no growth rate is defined and observations

from the years 1993-1995 are lost because of the undefined lags.

3 The starting point: linear models

The starting point, even if a modeler is only interested in fitting an artificial neural network,
should be a standard linear model. It is much easier to estimate and sets a performance standard
for the neural network.

Three different types of linear models are considered initially. The fixed effects model, a dy-
namic panel model and the pooled model. Theoretical assumptions of these linear models are
not discussed in this article. The focus is on the performance of these models in terms of the

2 as they mainly serve as a reference for the performance of the ANN

root mean squared error
model. A slightly deeper discussion of different types of linear GDP forecasting models is given

in, e.g. Tkacz (2001) or Kock and Terdsvirta (2014).

A closer look at the fixed effects regression (Table 1) shows that the individual effects only ex-
plain around 4% of the error variance (7%/s2,,,). The null hypothesis that all individual effects
are zero cannot be rejected (F-statistic in Table 1). This indicates the absence of unobserved
heterogeneity. Note that the constant and the time coefficient depend on the scaling of the
variables. The constant can be interpreted as a constant growth rate of 1.796% and the time
trend shows a decrease of 0.109 percentage points (pp) per year.

However, the fixed effects estimator may suffer from bias (”Nickell bias”) due to the inclusion
of lagged dependent variables. Even though the main interest is only in the predictive power of
models (and not in individual coefficients), an Arellano-Bond dynamic panel model is estimated
additionally (Table 2). Finally, the OLS estimator on the pooled data does not yield very differ-
ent results, either (Table 3). Therefore, and because of it does not require any transformation
of the input data, the pooled model is considered the most adequate of the three linear models

for comparison with the ANN model.

At this point, a modeler could, of course, still try to improve the simple linear model. For

example, a polynomial time-trend or an interaction term could be appropriate. However, the

2The root mean squared error is defined as RMSE = /1/n(eT€) for the error vector € of length N (number
of observations).

Table 1: Fixed effects model of GDP growth rates

gdpchange coefficient std. err. t-value P > |t| [95% Conf. Interval]
l1gdpchange 0.3826 0.0580 6.59 0.000 0.2683 0.4968
12gdpchange -0.1699 0.0615 -2.76 0.006 -0.2908 -0.0489
13gdpchange 0.0834 0.0547 1.53 0.128 -0.0242 0.1911
time -0.0109 0.0023 -4.75 0.000 -0.0154 -0.0064
constant 0.1796 0.0269 6.67 0.000 0.1266 0.2326

RMSE 0.1964

2,2
o2/o2 0.044
1 — Fr(14,206) (0-83) 0.6322

Source: AMECO database; own calculations

Table 2: Arellano-Bond dynamic panel model of GDP growth rates

gdpchange coefficient std. err. t-value P > |t [95% Conf. Interval]
llgdpchange 0.3732 0.0578 6.44 0.000 0.2560 0.4868
12gdpchange -0.1756 0.0610 -2.88 0.004 -0.2952 -0.0560
13gdpchange 0.0769 0.0545 1.41 0.158 -0.0299 0.1836
time -0.0115 0.0023 -4.95 0.000 -0.0160 -0.0069
constant 0.1869 0.0274 6.83 0.000 0.1333 0.2405
RMSE 0.1967

Source: AMECO database; own calculations

Table 3: Pooled model (OLS) of GDP growth rates

gdpchange coefficient std. err. t-value P > |t [95% Conf. Interval]
l1gdpchange 0.4240 0.0565 7.50 0.000 0.3128 0.5353
12gdpchange -0.1444 0.0607 -2.38 0.018 -0.2639 -0.0248
13gdpchange 0.1200 0.0533 2.25 0.025 0.0151 0.2250
time -0.0092 0.0022 -4.12 0.000 -0.0134 -0.0046
constant 0.1517 0.0255 5.94 0.000 0.1014 0.2019
RMSE 0.1958

Source: AMECO database; own calculations

modeler’s resources are usually scarce, so he or she might want to choose a model which more
or less automatically deals with complex influences of the explanatory variables. Such a model

is the ANN regression model which will be introduced in the next section.

4 Neural network regression

One goal of this paper is to give scientists who are familiar with ordinary least-squares (OLS)
regression a better understanding along with an example how to apply the ANN model to

real-world data.

4.1 Numerical optimization

The OLS problem is to minimize the following loss function:
: 1 2 1 2
mﬁlnE(ﬁ,X,y):mﬁmgﬂy—f(ﬁ,X)H :mﬁlniz:(yz_f(/@axz)) ’ (1)

where x; denotes the i-th row of the design matrix X, i.e. , the vector of variables (including a
constant) belonging to the i-th observation. The dependent variable y is called target variable
in the context of ANN. The notation for the regression function is f both for the vector-valued
version f(3, X) and the scalar-valued version f(3, ;). If the function f is linear in the param-
eters, f(5,X) = X, it is well known that the parameter vector which solves the ordinary least
squares problem is given by:

B = (XTx)'xTy (2)

This closed-form solution is in fact the reason why the OLS approach is so simple and favorable.
However, this explicit solution does not generally exist if f is a non-linear function of the
parameters. Numerical optimization techniques allow for a generalization of the OLS concept
to those general, in particular non-linear, functions.

One of the simplest numerical optimization algorithms and the basis of many more complex
algorithms is gradient descent. It means that the objective function (here: the sum of squared
errors) is minimized in a stepwise procedure by moving the parameter values into the direction
of the steepest descent of the objective function. Ultimately, the algorithm will run into a
point where the gradient is zero (if such a point exists), implying that at least a locally optimal
parameter vector is found. More information on gradient descent and more advanced versions
is found in the literature (e.g. Avriel, 2003; Wilamowski, 2011).

The simple gradient descent algorithm for solving the OLS problem is:

ﬁ:Z/l(—2,2)
for k=1to K :

T
VB X.y) = (20 . oxp)

First, uniformly distributed random parameters serve as an initial guess. Then, in every itera-
tion, the parameter is updated by moving into the direction of the negative gradient VE' (defined
as the vector containing the partial derivatives of the loss function F with respect to the J pa-
rameters). The algorithm itself uses a parameter 7 which is called the learning rate because it
determines how big the steps will be. Bigger steps allow for faster convergence (”learning”) but
might lead to problems finding the exact minimum, whereas for smaller steps, it is the other

way around.

Because of the quadratic loss function, the partial derivatives have the following form:

({)E(gﬁfw = (yi— f(B, 1)) - _5’)0(85@56@) N

i
In least squares regression, the gradient is generally of the form ”error times partial derivative
of the regression function”. In the standard linear case, the partial derivatives of f simplify
further to: o (5. 2:)
y L
——— = X 4

Using again matrix notation, setting the gradient to zero and solving for 3, it remains to the

reader to verify that formula 2 is indeed replicated:
!
VE(S, X.y) = (y - XB)' X =0 (5)

Coming back to non-linear regression functions, extensions of the gradient descent method often
consider the Hessian or Jacobian matrix. The Hessian matrix is the multidimensional second-
order derivative. In this paper, the Levenberg-Marquardt algorithm is employed which uses the

Jacobian matrix. The Jacobian of f w.r.t. § is defined as:

af(Byx1) of (B,x1)
01 T 0B
J=J(B)= (6)
af(B,znN) af(BxN)
01 to 0B

The Jacobian contains all (first-order) partial derivatives and is used to approximate f locally

around S in the following sense:
f(B+6,X)~ f(8,X)+ T (7)

The goal still is to move the parameters vector § into the direction of the (assumed) minimum
of the loss function E. The step 0 that locally minimizes the loss function can be determined

via the first order condition (analogous to equation 5):

5= (777) 7" - 16, %)) ®

The specific feature of the Levenberg-Marquardt algorithm is to avoid situations where J7 7 is

close to singular by adding a diagonal (in particular invertible) matrix as a second term:

SLM _ (jTj+)\diag(JTj))_le(y—f(ﬁaX)))

The parameter A is a tuning parameter similar to the learning rate n in the gradient descent
algorithm. The difference is that A is adjusted from iteration to iteration. A useful in-depth
discussion of the Levenberg-Marquardt algorithm in the context of ANN is given in Yu and
Wilamowski (2011). The Levenberg-Marquardt algorithm is generally considered one of the

most efficient training algorithm for neural networks (Hagan and Menhaj, 1994).

4.2 The artificial neural network regression model

There is a vast literature on neural networks and their different architectures (e.g. Wilamowski,
2011). The basic idea is that the true regression function is an (almost) arbitrary function of the
explaining variables. In contrast to the conventional approach, no specific structure is assumed
for the true regression function. Artificial neural networks are useful in this setting because the
universal approximation theorem states that a single hidden layer feedforward (SHLFF) network
of sufficient complexity is able to approximate any given (continuous) regression function on a
compact set to an arbitrary degree. The term ”single hidden layer” means that, in addition
to the input and the output layer, the network consists of one hidden layer. The expression
”feedforward” means that there is only one direction of information flow, from the inputs through
the hidden layer to the output. The network is shown in Figure 1.

The two curves below the actual network in Figure 1 indicate which type of activation function
is used to connect the adjacent layers. The H = 4 neurons in the hidden layer are activated by
a sigmoid function and the output neuron will be activated by a linear function. The choice of
the number of hidden neurons is a problem of model selection, similar to the one arising in other
regression models such as the degree in polynomial regression. In order to avoid an excessively
large network, a certain ratio of observations per parameter can be required as a rule of thumb.
The total number of parameters in a SHLFF network is P = (J + 1) - H. Requiring at least 10
observations per parameters yields H < (0.1N)/(J + 1). In the present case, H < 31.5/6 = 5.25.

Testing revealed that the results with 4 hidden neurons were not worse than those with 5.

Figure 1: Visual representation of the artificial neural network

input layer hidden layer output layer

lgdpchange

12gdpchange

13gdpchange
gdpchange

time

constant

Source: own illustration

The algebraic formulation of the artificial neural network is:

fw®, wh, x;) = Zw}lb(l +exp (— Z w?hXij))il = Z w,%bgi)(z w?hXij>, (10)
h J h J

with ¢ denoting the sigmoid function. The parameters w}b, w?h are called weights because they
describe how much weight a certain neuron loads on the neurons in the following layer.

The full regression model, including i.i.d. normal errors ~; is:
h J

The value of the output neuron is a linear combination of the values of the hidden neurons which
is consistent with some approaches in the relevant literature (e.g. Chuku et al., 2017), whereas
other approaches (e.g. Tkacz, 2001; Qi, 2001) use a sigmoid transformation of this linear com-
bination. Employing also a sigmoid function to connect the hidden layer to the output neuron
implies that the network output will always be in the interval (0,1). This makes sense for, e.g.,
binary classification problems, but is unnecessarily restrictive for general applications where the
values of the target variable cover a larger interval. Regarding the present case of the GDP

growth rate as target variable, such a model would be unable to predict a negative growth rate.

A constant is included in the input layer because the exact same design matrix X as in the lin-
ear model shall be used. Some approaches in the literature (e.g. Qi, 2001; Kock and Terésvirta,
2014; Chuku et al., 2017) use a constant both in the input and in the hidden layer. In Tkacz

(2001) it remains unclear whether constants are used at all. From a theoretical point of view,

even without any explicit constant, the SHLFF network would be able to account for a constant
component of the target variable. If the target variable was indeed just white noise, the training
process would very likely result in weights such that the influences of the considered input vari-
ables neutralize each other. These weight would not necessarily be small and the probability of
non-convergence of the algorithm would be rather high. On the other hand, in the same situ-
ation, a constant in the input layer (this paper’s model) should produce more stable algorithm
runs where the resulting weights for all explanatory variables except the constant are small.
In light of these considerations, an additional constant in the hidden layer is generally not be

needed to account for a constant component of the target variable.

Finally, the autoregressive aspects of the model consists of having the lagged GDP growth rates
as explanatory (i.e. input) variables (same design matrix as in the linear model). The most
important aspect is that the lagged growth rates (and the other input variables) are allowed to
have an almost arbitrary influence on the current growth rate. Kock and Terdsvirta (2014, equa-
tion 1) use lagged dependent variables both in the input and in the hidden layer. This seems to
produce an unnecessarily complex network with more or less redundant parameters. Having the
lagged dependent variables in the input layer already allows the model to capture an arbitrary,
in particular linear, relationship between the lagged and the current dependent variable. The
usefulness of their formulation is, however, that the linear AR model can be interpreted as a

special case of their autoregressive ANN model.

In order to determine the optimal parameters of the ANN model (minimal sum of squared
errors), the Levenberg-Marquardt algorithm is used. All that needs to be calculated are the
(first) partial derivatives of f with respect to the parameters. The starting point is the output
neuron, whose value is a linear combination of the values of the neurons of the hidden layer.

Therefore, the partial derivatives of f with respect to w}ll are simply:

8f(w0,w1,x-) 0

U)o | S ulx, 1
h j

In order to calculate the partial derivative with respect to w?h, the chain rule is used along with

the property of the sigmoid function that its derivative is ¢/ = ¢(1 — ¢):

0,1
IS) g | Sul X | (10 [S udaxr |) (13)
gh 3’ 7'
There is one additional feature that should always be implemented in ANN training algorithms.
The feature concerns the concept of validation. Validation means separating the data set into
a training set which is only used to derive the parameters which minimize the loss function and
a validation set which is only used to assess the performance of the model. A convenient way
to implement validation in the Levenberg-Marquardt algorithm is to define a stopping rule (cf.
Prechelt, 1997). In every iteration, the model error is evaluated on the validation set (which was

not used to update the parameter values) and if the error does not decrease for a given amount

of consecutive iterations, the algorithm (i.e. the loop over k) stops. Technically, the stopping

rule prevents a loss of the model’s generalizability (cf. Prechelt, 1997).

The precise algorithm in pseudo-code is:

w=U(-2,2)
for kK =1:200
ifup=1

calculate the MSE on the training and validation data at the current weights w
if the current MSE on the validation data is not smaller than the stored one
counter = counter+1
if counter = 4
BREAK
else
replace the stored MSE on the validation data by the current one
counter = 0
calculate the Jacobian J for the training data at the current weights w
W =wt (777 + X diag(T") Ty~ flw, X))
if largest (absolute) new weight component is larger than 1e3
BREAK
if largest (absolute) step component is smaller than le-12
BREAK

if MSE on the training data is lower for the new weights w"¢"

w = wnew

A=0.1Ax

up =1
else

A=2X

up =0

Regarding the further explanation of the algorithm, a random 80% of the observations will be
selected for training and the rest for validation. The initial value of the update parameter is
up = 1 and the initial learning rate is A = 5. Weights are initialized as uniformly distributed
random variables and, after every successful iteration (training error decrease), the learning rate
A is decreased, the weights are updated and the new Jacobian is calculated. If an iteration is
not successful (no training error decrease), the learning rate is increased and a new step is taken
with the old weights and old Jacobian.

There are four ways the algorithm terminates. First, it may reach the maximum number of
iterations k = 200. Second, the error on the validation set may fail to increase for consecutive 4
(successful) iterations. Third, the weights may reach a critically high level (in absolute values).
This stops the algorithm early in case of divergence. Finally, the algorithm may stop because the
step length in the weight updating process becomes too small, which indicates that the (locally)

optimal weights have been found.

10

Although the Levenberg-Marquardt algorithm is known to be more likely to find the a global
optimum compared with the gradient descent algorithm (Yu and Wilamowski, 2011, p. 15), it
may still convergence to a local minimum. Therefore, it makes sense to run the algorithm mul-
tiple times with different random initial weights in order to enhance the probability of finding

the global minimum.

The ANN model with the lowest training error (and only a small difference to the validation
error) after a few algorithm runs is shown in Table 4. The weights w?‘inal are represented as a
matrix with the hidden neurons as rows and the explanatory variables as columns. The weights
w}mal are displayed as an additional column. Regarding performance, it can be seen that the
ANN model outperforms the pooled linear model (Table 3) by far regarding the (root) mean

squared error.

Table 4: ANN model of GDP growth rates

hidden neuron w?’inal w}"inal
constant l1gdpchange 12gdpchange 13gdpchange time

1 -0.3516 9.0727 -3.8875 -2.1425 0.7359 0.8328

2 0.3935 1.0711 -6.1186 -7.7060 -1.2881 -0.5032

3 3.3696 -11.4281 -10.5128 -6.2537 -0.8980 0.2364

4 -0.3896 7.7375 -2.4829 -4.8235 4.0138 -0.4947
RMSE (full) 0.1648
RMSE (training) 0.1665
RMSE (validation) 0.1579

Source: AMECO database; own calculations

4.3 Parameter interpretation in ANN

In regression analysis, it is assumed that the regression function f describes the systematic re-
lationship between some set of explaining variables X and the conditional expectation of the
dependent variable y in the sense that E[y|X] = f(X) (e.g. Chernozhukov, 2006). This implies
that predictions from regression models formally refer to the conditional expectation of the de-

pendent variable. In parametric regression, the function f is described by a set of parameters.

The standard linear regression model (without polynomial or interaction terms) is not only
linear in these parameters but there is a one-to-one correspondence between parameters and
explanatory variables. Moreover, the parameters can be interpreted as the marginal effect of
the respective explanatory variable on the conditional expectation of the dependent variable. In
particular, the marginal effect of an explanatory variable is constant and does not depend on

the value of other explanatory variables.

In ANN models, there is obviously no one-to-one correspondence between weights (parameters)

and explanatory variables. More importantly, the marginal effect of a certain explanatory vari-

11

able on the conditional expectation of the dependent variable is a (non-constant) function of
all explanatory variables. A usual way to visualize this function is to keep all variables not of
interest at their mean or median values and let the variable of interest run over its observable
range and plot the value of the regression function (conditional expectation). This will become

clearer in the next section.

4.4 Prediction and forecast

The remaining goal is to determine whether the linear or the ANN model should be preferred.
Since the two models have different numbers of parameters, the (root) MSE is usually not ap-
propriate to compare their performances. The reason is that a model with more parameters is
also more likely to fit data better (lower MSE), even if a simpler model is true. In other words,
the larger model might only perform well on the available data, but not generalize well to unseen
data. This aspect would also be relevant for the comparison of different ANN models.

In the present case, the generalizability of the ANN model has been ensured by validation. The
fact that the ANN model performs better than the pooled OLS model (regarding the MSE) on
both training and validation set is more than enough reason to conclude that the ANN model

is superior. In the following, a little more insight into possible reasons is given.

Considering the marginal effect of the variable ”time”, Figure 2 illustrates the difference between
the linear and the ANN time trend for the GDP growth rates. The curves in Figure 2 show the
prediction, i.e. the conditional expectation of the GDP growth rate, given the different observed
values of the time variable. The two slightly different curves for both models correspond to
the predictions calculated with the other variables at their mean and at their median values,
respectively. For the linear prediction, the marginal effect of time as well as the difference be-
tween the expectation at the mean and the expectation at the median is constant. For the ANN

prediction, the marginal effect of time and the difference between the curves are non-constant.

Figure 2: Estimated time trends of GDP growth rates

3 T T T

....... ANN (mean)
2.5 [Frsa i = == ANN (median) B
X —— linear (mean)
linear (median)

........
...........

=
w
T

.........
..........
...........

GDP growth rate [%]

~~~~~
.

~

[iN
T

...............

~.

.......
.
=

05 Il Il Il Il Il
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

year

Source: AMECO database; own calculations

Regarding the interpretation of Figure 2, the linear model suggests a general decline of growth
by a certain rate (0.09 pp per year, see Table 3), whereas the ANN model suggest a decline of

growth prior to the global economic crisis in 2009 and an increase afterwards which is, indeed,

12



more plausible. For panel data, time-specific effects can be used in the linear model to partly
overcome the restriction of a linear trend. Regarding forecasting, however, some sort of trend
is preferable because one would not want to make an additional forecast of the time-specific
effects. Using the ANN and the pooled linear model to predict the GDP growth rates for 2017,
one-year-ahead forecasts are displayed in Table 5. The forecasts are calculated as conditional

expectations.

Table 5: Out-of-sample forecast of 2017 GDP growth rates by different models

GDP growth [%)]

prediction ANN error ANN prediction linear error linear
Austria 2.48 0.46 0.29 2.64
Belgium 2.05 -0.36 0.35 1.34
Denmark 1.90 0.34 0.51 1.73
Finland 2.46 0.17 0.08 2.56
France 2.47 -0.66 0.48 1.34
Germany 2.12 0.10 0.52 1.70
Greece 0.64 0.71 -0.57 1.92
Ttaly 2.31 -0.81 0.07 1.43
Japan 2.18 -0.47 0.66 1.05
Netherlands 2.37 0.79 0.56 2.60
Portugal 2.47 0.20 0.37 2.30
Spain 1.93 1.13 0.92 2.14
Sweden 2.99 -0.58 1.47 0.94
United Kingdom 1.56 0.23 0.68 1.11
United States 2.31 -0.04 0.92 1.35
RMSPE 0.555 1.833

Source: AMECO database; own calculations

It can be seen that the root mean squared prediction error (RMSPE) is much lower for the ANN
model. Regarding the underestimation in the linear model (positive errors), a likely reason is
that the linear time trend is quite restrictive and falsely suggests generally declining growth
rates over time. Note that the general analysis is based on the AMECO database as of October
2017; the GDP growth rates for 2017 were calculated from the database in June, 2018.

5 Conclusion

This paper demonstrates that an artificial neural network (ANN) regression model is able to
yield much better performance than a corresponding linear model in predicting the annual GDP

growth rates of 15 industrialized economies in the time period from 1996 to 2016.

The results come closest to those of Tkacz (2001) who finds that the average error is 0.25 per-
centage points lower for the ANN compared with the best linear model. However, the results in
Tkacz (2001) are also questionable because, according to his equation (5), the network output
in the approach is constrained to the interval (0,1) due to the sigmoid function connecting the
hidden layer with the output layer. This makes it impossible to predict a negative growth rate.

This also concerns the results in Qi (2001). The latter further suffers from an error in the def-

13



inition of the ANN regression function in equation (1), where the residual is defined as part of

the regression function.

The results in Chuku et al. (2017) indicate problems with the convergence of the training algo-
rithm, maybe due to bad scaling. The trained weights exceed the value of 20,000 in the case of
Kenya.

Feng and Zhang (2014) do not analyze GDP data but rather the share of the tertiary sector
in regional GDP. However, the (autoregressive) ANN model is only compared with a "gray”’
forecasting model and not with conventional linear models such as AR or ARIMA, which makes
it hard to judge its performance. Furthermore, there seem to be only 24 observations (annually
from 1971 to 1994) to train the ANN model which has 25 (assuming that the bias/threshold
neuron in the hidden layer is included in the stated 5 hidden neurons) or even 30 (otherwise) pa-

rameters. The network is simply to big to be reasonably trained from the available observations.

Regarding the results of Kock and Terdsvirta (2014) that ANN models generally do not out-
perform linear models, it must be remembered that they analyze industrial production and
unemployment during a crisis, which is a somewhat different problem than generally predicting
GDP growth. Furthermore, their ANN model includes both linear and non-linear terms which
makes it possible to understand the linear AR model as a sub-model. However, it also means

that their ANN model contains more or less redundant parameters.

Summing up, the contribution of this very paper is threefold. First, it contributes to the GDP
forecasting literature by offering a flexible non-linear modeling approach. Second, the exact
algorithm used to train the presented ANN regression model is given. This limits the perceived
black-box character of the ANN regression model and helps analysts to understand and actually

employ ANN models for regression purposes.

References

Avriel M. (2003): Nonlinear Programming: Analysis and Methods, chapter 10, Courier Corpo-

ration.

Chernozhukov V. (2006): Statistical Method in Economics, Lecture Notes, downloaded from
https://ocw.mit.edu/ [17.01.2018]

Chuku C., Odour J., Simpasa A. (2017): Intelligent forecasting of economic growth for African
economies: Artificial neural networks versus time series and structural econometric models,

”Forecasting Issues in Developing Economies 2017”7 conference paper, Washington.

Feng L., Zhang J. (2014): Application of artificial neural networks in tendency forecasting of
economic growth, Fconomic Modelling 40, 76-80.

14



Hagan M.T., Menhaj M. (1994): Training feedforward networks with the Marquardt algorithm,
IEEE Transactions on Neural Networks 5(6), 989-993.

Kock A.B., Terésvirta T. (2014): Forecasting performances of three automated modelling tech-
niques during the economic crisis 2007-2009, International Journal of Forecasting 30, 616-631.

Prechelt L. (1997): Early Stopping - but when?, in: Neural Networks: Tricks of the trade,

Lecture Notes in Computer Science 1524, Springer.

Qi M. (2001): Predicting US recessions with leading indicators via neural network models,

International Journal of Forecasting 17, 383-401.

Tkacz G. (2001): Neural network forecasting of Canadian GDP growth, International Journal
of Forecasting 17, 57-69.

Wilamowski B. (2011): Neural Network Architectures, in: Industrial Electronics Handbook, vol.
5 — Intelligent Systems, chapter 6, 2"% Edition, CRC Press.

Yu H., Wilamowski B. (2011): Levenberg-Marquardt training, in: Industrial Electronics Hand-
book, vol. 5 — Intelligent Systems, chapter 12, 2"¢ Edition, CRC Press.

15



The Hamburg Institute of International Economics (HWWI) is an independent
economic research institute that carries out basic and applied research and pro-
vides impulses for business, politics and society. The Hamburg Chamber of Com-
merce is shareholder in the Institute whereas the Helmut Schmidt University /
University of the Federal Armed Forces Hamburg is its scientific partner. The Insti-
tute also cooperates closely with the HSBA Hamburg School of Business Adminis-
tration.

The HWW!I’s main goals are to:

« Promote economic sciences in research and teaching;

« Conduct high-quality economic research;

- Transfer and disseminate economic knowledge to policy makers,
stakeholders and the general public.

The HWWiI carries out interdisciplinary research activities in the context of the fol-
lowing research areas:

- Digital Economics

« Labour, Education & Demography

« International Economics and Trade

« Energy & Environmental Economics

« Urban and Regional Economics






