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A primary object of sociological inquiry is 
how social environments—ranging from the 
family and the neighborhood to the state—
shape human action. An enthusiasm for such 
context effects motivates many of the greatest 
examples of sociological thought—from  
Durkheim’s (1897) classical investigation of 
anomie in Le Suicide to Sampson’s (2013) 
recent portrayal of the Great American City.

In recent decades, scholars have increasingly 
examined context effects using quantitative 

statistical analysis, thanks in part to a growing 
availability of suitable data. Such analyses 
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using quantitative multilevel modeling. Our review of multilevel studies in leading sociology 
journals shows that most assume the effects of lower-level control variables to be invariant 
across clusters, an assumption that is often implausible. Comparing mixed-effects (random-
intercept and slope) models, cluster-robust pooled OLS, and two-step approaches, we find 
that erroneously assuming invariant coefficients reduces the precision of estimated context 
effects. Semi-formal reasoning and Monte Carlo simulations indicate that loss of precision is 
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pose statistical challenges because observa-
tions belonging to the same contextual unit or 
cluster (e.g., a school, census district, or coun-
try) tend to be more similar than two randomly 
chosen observations, violating the independ-
ence assumption of traditional regression anal-
ysis. Statisticians and practitioners in sociology 
and other disciplines have developed several 
distinct approaches for addressing this compli-
cation, which we subsume under the term 
“multilevel modeling techniques.” In sociol-
ogy, the most prevalent approach is to use 
mixed-effects multilevel or hierarchical mod-
els with random intercepts and random slopes. 
Mixed-effects models are powerful tools for 
analyzing multilevel data; but they are not the 
only ones. Economists tend to favor models 
with cluster-robust standard errors, whereas 
some scholars, especially in political science, 
advocate two-step approaches. A first goal of 
our article is to introduce applied sociologists 
to these alternative techniques and to highlight 
their strengths and weaknesses.

Our second and more important goal is to 
explore the consequences of a common 
assumption in applied research: that the coef-
ficients of lower-level control variables do 
not vary across clusters. Our review of all 
articles published in three leading generalist 
sociology journals between 2011 and 2014 
indicates that this “invariant coefficients 
assumption” (ICA) is nearly ubiquitous in 
quantitative multilevel studies. Yet such an 
assumption is often highly unrealistic, as we 
will demonstrate using illustrative analyses of 
European Social Survey (ESS) data.

Adding to a small but growing literature 
on the shortcomings of current multilevel 
modeling practice (e.g., Bryan and Jenkins 
2016; Schmidt-Catran and Fairbrother 2016), 
we explore the ramifications of assuming 
invariant coefficients through semi-formal 
reasoning, Monte Carlo simulations, and 
empirical analyses. Drawing on an analogy to 
classic omitted variable bias, our semi-formal 
argument suggests that neglecting differences 
in the effects of control variables adds noise 
to cluster-level relations of interest. Coeffi-
cient estimates of context effects thus become 

less precise. For the same reason, allowing 
effects of controls to vary across clusters 
(e.g., by adding random slopes to a mixed-
effects model) can result in more precise 
estimates of context effects. Increased preci-
sion means that the estimates produced by 
individual studies tend to be closer to the 
corresponding true values. Put differently, the 
risk that a single study severely misrepresents 
a context effect will be minimized. More gen-
erally, repeated studies will produce more 
similar results and standard errors will be 
smaller, raising statistical power (i.e., the 
probability of rejecting the null hypothesis of 
no effect when it is false). The potential loss 
of accuracy associated with the invariant 
coefficients assumption should be a major 
concern in multilevel applications: because 
there are often very few clusters, estimates of 
contextual effects tend to be quite uncertain. 
Using an unnecessarily imprecise estimator 
exacerbates this problem.

We present extensive Monte Carlo simula-
tions to explore this issue under controlled 
and ideal conditions. We consider several 
prominent multilevel estimation strategies 
(i.e., mixed-effects models, cluster-robust 
pooled OLS, and two-step approaches) and 
compare three basic scenarios that are typical 
of applied research. The first two resemble 
cross-national comparisons with a small num-
ber of clusters (15 and 25) and large samples 
at the lower level (between 600 and 2,000 
units per cluster). The third scenario is more 
typical of applications with other types of 
contextual units, such as cities or neighbor-
hoods (50 clusters with 70 to 130 units per 
cluster). To assess the consequences of the 
ICA, we introduce cluster-specific coeffi-
cients for up to five lower-level variables, 
with effect heterogeneity being unrelated to 
the contextual factor of interest. Given this 
benign form of heterogeneity, the ICA does 
not lead to biased parameter estimates. In line 
with our argument, however, it does result in 
a loss of precision relative to more flexible 
specifications. The severity of the problem 
depends on the extent of (neglected) hetero-
geneity, the number of clusters, and the extent 
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of compositional differences among them 
(with respect to lower-level predictors).

The simulation results suggest that the 
ICA entails an avoidable loss of precision and 
that practitioners have much to gain from 
using more flexible specifications. To investi-
gate this possibility under realistic conditions, 
we conduct illustrative multilevel analyses 
using data on 28 countries from the European 
Social Survey. Our analyses show that the 
maximally flexible mixed-effects specifica-
tion with random slopes for all lower-level 
controls and no constraints on the correlations 
among them typically performs worse than 
the invariant specification. Thus, practitioners 
should not respond to our simulation results 
by blindly estimating a model that allows all 
coefficients to vary. Rather, our overall con-
clusion is that it will often be possible to 
improve the precision of estimated context 
effects by finding a random-effects specifica-
tion that captures the most important patterns 
of cross-cluster heterogeneity, yet remains 
parsimonious enough to be estimable using a 
small upper-level sample.

The task of finding the optimal random-
effects specification is essentially one of 
model selection, so it is possible to draw on a 
well-established toolbox. In our applications, 
we use a slight modification of Bates, Kliegl, 
Vasishth, and Baayen’s (2015) procedure for 
simplifying complex random-effects struc-
tures. In addition to classic indicators such as 
information criteria, Bates, Kliegl, and col-
leagues (2015) use principal component anal-
ysis to identify overly complex random-effects 
structures that are not supported by the data. 
In our applications, the method yields models 
that compare favorably with the invariant 
specification that predominates in applied 
research. We conclude that the method is a 
promising approach for simplifying random-
effects structures in typical sociological appli-
cations. However, we note that alternative 
selection strategies that are more specifically 
tailored toward the identification of context 
effects might perform even better.

DIFFERENT APPROACHES 
TO HANDLING MULTILEVEL 
DATA

Before we explore the implications of ignor-
ing cross-cluster variation in the effects of 
lower-level control variables, we introduce 
the statistical challenges of multilevel analy-
sis and the three estimation approaches that 
we compare in this study: cluster-robust ordi-
nary least squares (OLS), mixed-effects 
(ME), and two-step estimation. A simple lin-
ear model is a useful starting point:

y x xi i k ki i= + +…+ +β β β ε0 1 1 .  (1)

yi is the value of the outcome variable for unit 
i. Throughout the article, we focus on the case 
where yi is metric (or continuous). Equation 1 
specifies yi as a linear combination of a con-
stant β0, i’s values on covariates x1i to xki, 
multiplied by their respective coefficients β1 
to βk, and an unobservable error term εi.

The primary goal in regression analysis 
usually is to estimate parameters β0 to βk. The 
most popular approach for doing so is ordi-
nary least squares (OLS) estimation. How-
ever, multilevel data typically violate the 
fundamental OLS assumption that the error 
term εi is uncorrelated across observations. 
Observations from the same country or school 
likely share unobserved (contextual and indi-
vidual) attributes that render them more simi-
lar than observations from different clusters. 
OLS estimation remains unbiased when the 
independence assumption does not hold 
(Kloek 1981; Moulton 1986). However, it is 
no longer the most precise (or most efficient) 
estimator; other estimators can produce more 
reliable estimates that tend to be closer to the 
true parameter values. Second, the conven-
tional estimator of OLS standard errors is no 
longer appropriate, resulting in invalid—and 
usually anticonservative—statistical infer-
ence (Moulton 1986, 1990). That is, confi-
dence intervals based on conventional OLS 
standard errors will be too narrow and p-values 
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too small, leading to over-rejection of the null 
hypothesis of no effect.

Cluster-Robust Pooled OLS
Cluster-robust pooled OLS sticks with OLS 
for estimating slope parameters and only cor-
rects standard error estimates to achieve accu-
rate statistical inference (for an extensive 
treatment, see Cameron and Miller 2015). 
Cluster-robust standard errors are an exten-
sion of White’s (1980) heteroscedasticity-
consistent standard errors to clustered settings 
(Rogers 1993; Williams 2000). They remain 
consistent given any kind of between- and 
within-cluster heteroscedasticity and autocor-
relation (Wooldridge 2003).

In practice, cluster-robust standard errors 
tend to be larger than conventional OLS 
standard errors, and often substantially so. 
The difference between conventional and 
cluster-corrected standard errors increases 
with average cluster size and the extent of 
imbalance (i.e., variation in cluster sizes). 
Moreover, it is larger the less a predictor var-
ies within clusters (Kloek 1981; Moulton 
1986, 1990). Hence, failure to correct for 
clustering is particularly consequential for 
statistical inference on contextual variables, 
which do not vary within clusters.

Cluster-robust standard errors are a flexible 
and easy-to-use means of accounting for clus-
tering that has been generalized to many other 
estimators, including nonlinear models such 
as probit and logit. Unfortunately, conven-
tional cluster-robust standard errors require a 
sufficient number of clusters to be fully accu-
rate; simulation studies suggest they are too 
small when the cluster-level sample is below 
50 (e.g., Kézdi 2004; MacKinnon and Webb 
2014). Hence, they will be inappropriate in 
many sociological applications, and research-
ers should consider more recently developed 
small-sample corrections (e.g., Esarey and 
Menger 2015; Imbens and Kolesár 2016).

Mixed-Effects Models
Mixed-effects models allow the analyst to 
explicitly model multilevel structures, which 
can increase the precision of point estimates 

relative to pooled OLS (Gelman and Hill  
2007; Lindley and Smith 1972). Mixed-effects 
multilevel models are usually estimated via 
(restricted) maximum likelihood, but Bayesian 
estimation is an important alternative (Gelman 
and Hill 2007). To illustrate the approach, 
reconsider the model in Equation 1, adding the 
g subscript to index clusters (g = 1, …, G):

y x xig g g ig kg kig ig= + +…+ +β β β ε0 1 1 .
    (2)

The basic idea of mixed-effects modeling is 
to assume that one or several of the β param-
eters in Equation 2 vary randomly over the G 
clusters. The simplest model, a random- 
intercept model, assumes that only β0g varies 
due to a cluster-level random effect v0g. In a 
direct-context-effect (DCE) model, β0g also 
depends on at least one cluster-level covariate 
zg, yielding the following equation:

β γ γ ν0 00 01 0g g gz= + + .
 (3)

γ00 is the overall intercept and γ01 coefficient 
on zg, a direct context effect. The label 
“mixed-effects model” is due to the fact that 
these models include both fixed effects (coef-
ficients) such as γ00 and γ01 and random effects 
such as v0g.

Mixed-effects models can further incorpo-
rate cluster differences in the coefficients of 
lower-level variables by incorporating ran-
dom slopes and cross-level interactions. As 
an example, consider the following model for 
β1g, the slope of x1ig:

β γ γ ν1 10 11 1g g gz= + + .
 (4)

According to this equation, β1g depends on zg 
and a random effect v1g. Substitution of Equa-
tions 3 and 4 into 2 yields the following:

y z z x

x

ig g g g g ig

kg kig ig

= + + + + +

+…+ +

= +

( ) ( )γ γ ν γ γ ν

β ε

γ

00 01 0 10 11 1 1

00 γγ γ γ

β ν ν ε
01 10 1 11 1

0 1 1

z x z x

x x

g ig g ig

kg kig g g ig ig

+ + +…+

+ + +( ).  (5)

This equation now includes two random effects, 
v0g and v1g, which account for within-cluster 
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similarities that remain after accounting for 
lower- and cluster-level predictors. These 
random effects are usually assumed to follow 
a multivariate normal distribution. zgx1ig is a 
cross-level interaction (CLI) between a cluster-
level and a lower-level covariate. It is possi-
ble to specify more than one slope as random 
and to include additional cluster-level 
characteristics.

Mixed-effects models borrow strength by 
partially pooling observations across clusters, 
shrinking estimates for unreliable clusters 
(e.g., with small samples) toward the cluster-
average intercept or slopes (Gelman and Hill 
2007; Raudenbush and Bryk 2002). A poten-
tial weakness of mixed-effects models is the 
assumption of (multivariate) normally distrib-
uted random effects, although simulation 
studies suggest they are rather robust to devi-
ations from normality (Maas and Hox 2004).

Two-Step Estimation

Two-step estimation is perhaps the most 
intuitive approach to multilevel modeling. 
The basic idea is to estimate G cluster-specific 
regressions in a first step:

y x x

y x x

i i k ki i

iG G G iG kG kiG

1 01 11 1 1 1 1 1

0 1 1

= + +…+ +

= + +…+ +

β β β ε

β β β ε

;



iiG .    (6)

In a second step, coefficient estimates from 
the first step become outcome variables in a 
cluster-level regression with G cases. For 
example, an analyst interested in the effect of 
zg on the slope of x1ig would regress β̂11 to β̂1G

on z1 to zG.
Separate estimation of the cluster-specific 

first-step regressions has the important conse-
quence that all β coefficients can vary freely 
across clusters, without any restrictions on 
their distribution. Practitioners who want to 
treat a coefficient as invariant across clusters 
would have to explicitly introduce such a 
constraint. That said, two-step approaches are 
most appropriate for analyzing cross-level 
interactions. One might be tempted to 

examine direct context effects by regressing 
the intercepts of the cluster-specific regres-
sions on contextual variables. But these inter-
cepts are simply predicted values of the 
outcome variable for the case that all lower-
level predictors take the value 0. Because all 
coefficients are allowed to vary freely across 
clusters, cluster differences in these predicted 
values (and hence their relationship with cluster-
level predictors) can vary widely depending 
on which configuration of the covariates this 
case represents. Another potential issue with 
the two-step approach is low precision due to 
the large number of parameters that have to 
be estimated. This drawback hits hardest 
when precise estimation of the first-stage β’s 
is not possible due to small cluster sizes or 
little within-cluster variation.

MULTILEVEL MODELING 
PRACTICE IN LEADING 
SOCIOLOGY JOURNALS

Given the choice among these three 
approaches, how do sociologists analyze mul-
tilevel data? To obtain a picture of current 
practice, we identified and classified all quan-
titative multilevel analyses that appeared in 
the American Journal of Sociology (AJS), 
American Sociological Review (ASR), and 
European Sociological Review (ESR) in the 
years 2011 to 2014. Table 1 summarizes key 
information from this review. The three jour-
nals published 541 full-length research arti-
cles during the period in question. We 
classified 117 articles as quantitative multi-
level studies.1 For simplicity, we focus on the 
78 articles that used two-level data with 
lower-level units nested in one type of higher-
level unit. Casual inspection suggests our 
main conclusions also apply to the 39 studies 
with more complex data structures.

The vast majority of surveyed studies rely 
on mixed-effects models, with cluster-robust 
and two-step approaches accounting for only 
4 and 3 of the 78 studies, respectively. Analy-
ses of direct context effects and cross-level 
interactions are equally common in applied 
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research. Half the articles examine cross-level 
interactions in one way or another (some of 
these studies also investigate direct context 
effects). Table 1 shows that multilevel analy-
ses differ enormously in terms of the numbers 
of cases at the higher and lower levels. Among 
the 78 studies, 18 use fewer than 20 cluster 
units, and 38 use between 20 and 50. Turning 
to cluster size, that is, the average number of 
lower-level units per cluster, roughly 45 per-
cent of the studies have small (50 or fewer) to 
moderate (50 to 500) cluster sizes. The 
remaining studies rely on large clusters that 
contain more than 500 lower-level units, on 
average. Further analysis reveals that number 
of clusters and average cluster size are sys-
tematically related. Country comparisons, 
which account for a large portion of multi-
level studies, are typically based on few clus-
ters with many lower-level observations per 
cluster. Applications that can draw on 50 or 
more clusters mostly study other contextual 
units, such as neighborhoods or cities. These 
cases tend to have fewer lower-level observa-
tions per cluster.

The typical multilevel model features a 
substantial number of lower-level predictors. 
According to Table 1, the average study 
included 13.46 lower-level independent vari-
ables in the most comprehensive model.2

With mixed-effects models and cluster-robust 
OLS, the default is to assume that the coeffi-
cients of these controls are invariant across 
clusters. Analysts must explicitly allow them 
to vary, but our review indicates they hardly 
ever do. Most studies (52 of the 75 studies 
using mixed-effects or cluster-robust OLS 
estimation) assume the effects of all lower-
level variables to be invariant across clusters. 
Among the 23 remaining studies, 21 let the 
coefficients of at least one, but less than 50 
percent, of all lower-level predictors vary 
across clusters. Usually these predictors are 
of substantive interest and part of a cross-
level interaction. Only 2 of the 75 studies let 
more than 50 percent of lower-level effects 
vary. Given this nearly universal practice, the 
core question of this article is: what are the 
consequences of ignoring cross-cluster varia-
tion in the coefficients of control variables, 

and are different multilevel estimation 
approaches similarly affected?

IMPLICATIONS OF 
IGNORING CROSS-CLUSTER 
DIFFERENCES IN THE 
EFFECTS OF CONTROLS

We now argue semi-formally that, even under 
benign conditions, neglect of cross-cluster 
differences in the effects of lower-level con-
trols reduces the precision of estimated con-
text effects, resulting in unnecessarily wide 
confidence intervals and low statistical power. 
To see this, consider the case of two-step esti-
mation. Anticipating one of our empirical 
illustrations (see the Flexible Multilevel 
Modeling in Practice section), one might run 
a separate regression of xenophobia on level 
of education (and controls) for each of the 28 
ESS countries and then regress the estimated 
effects of education on a country-level vari-
able such as the Human Development Index. 
More generally, one would first fit G cluster-
specific regressions to obtain cluster-specific 
estimates of an effect of interest, say β1g (the 
effect of x1ig), and then relate them to a  
cluster-level, contextual variable, say zg, to 
estimate a cross-level interaction between x1ig 
and zg.

As is well known (cf. Wooldridge 
2014:76ff.), if we omit a confounder x2ig from 
the regression for cluster g (e.g., we might fail 
to account for age differences when estimat-
ing the relationship between xenophobia and 
level of education), the expectation of the 
coefficient estimate on x1ig, say β

~
1g, will not 

be the desired β1g, but

E( )
( , )

( )
,β β β

σ
σ1 1 2

1 2

2
1

g g g
ig ig

ig

x x

x
= +

 (7)

where σ(x1ig, x2ig) denotes the covariance of 
x1ig and x2ig and σ2(x1ig) the variance of x1ig. 
Thus, the more x1ig and x2ig are correlated, and 
the stronger the effect of x2ig on yig (i.e., β2g), 
the more E(β

~
1g) will differ from β1g.

The case of interest here, however, is not 
one where x2ig is omitted completely, but one 
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where its slope β2g is specified as invariant 
across clusters, effectively constraining it to 
its (weighted) average effect β2•. For exam-
ple, we might account for age differences 
among educational groups, but fail to 
acknowledge that these differences play out 
very differently in Sweden than they do in 
Romania. In this scenario, the expectation of 
the estimated within-cluster slopes of x1, say 
β*

1g, will again not be the desired β1g, but3

E( ) ( )
( , )

( )
.β β β β

σ
σ1 1 2 2

1 2

2
1

g g g
ig ig

ig

x x

x
∗ = + − •

   (8)

Equation 8 shows how erroneously assuming 
the effect of a lower-level confounder to be 
invariant will bias cluster-specific estimates 
of the effects of other variables, unless (β2g – 
β2•) or σ(x1ig, x2ig) equals zero. In other words, 
estimated education-related differentials in 
xenophobia for country g will be biased, 
unless education and age are uncorrelated in 
g or the effect of education on xenophobia in 
g equals the average effect across the 28 
European countries. As for the former condi-
tion, it is well known that level of education 
and age are correlated in advanced economies 
(due to cohort differences in educational 
attainment). As for the latter, our illustrative 
analysis (see the Flexible Multilevel Mode-
ling in Practice section) demonstrates that it is 
unlikely to hold. We find that the relationship 
between xenophobia and age varies consider-
ably across the 28 countries in our sample. 
More importantly, this also holds for most 
other combinations of outcome measures and 
predictors we consider.

If heterogeneity in the slopes of controls is 
purely random (i.e., unsystematic with respect 
to the contextual variable of interest), improper 
adjustment for lower-level controls should 
not introduce bias into estimated context 
effects; but it does add noise to the cluster-
specific estimates of the lower-level relation-
ship of interest. Thus, our argument suggests 
that erroneously assuming the effects of 
lower-level controls to be invariant reduces 
the precision of estimated context effects. 

Moreover, the loss of precision should 
increase with the number of lower-level con-
trols whose effects vary and with the extent of 
cross-cluster variation in their coefficients.

Asymptotically (i.e., as the number of 
clusters approaches infinity), the additional 
noise introduced by the invariant coefficients 
assumption is no major concern—intuitively 
this is because the cluster-specific biases can-
cel each other out in large samples. But in 
small samples it can substantially increase the 
risk that a single study will produce very mis-
leading estimates of the contextual effect of 
interest. Accordingly, the number of cluster 
units is an influential factor.

So far, we have focused on the cross-level 
interaction case. We argued that cluster- 
specific estimates of β1g will be biased when 
one erroneously constrains the slope of a con-
trol variable to its average effect. How about 
the direct effect of a contextual factor on yig? 
It is important to acknowledge that the inclu-
sion of lower-level controls serves different 
purposes in the two cases. In the cross-level 
interaction case, the primary goal is to purge 
the cluster-specific relationships between x1ig 
and yig of differences that are due to con-
founding variables. In the case of a direct 
context effect, the goal is to adjust cluster 
differences in the level of yig for variability 
that reflects compositional differences with 
respect to the lower-level controls. This 
adjustment will be imperfect if the model 
erroneously assumes the slopes of lower-level 
controls to be invariant across clusters. Thus, 
the precision costs associated with errone-
ously assuming invariant coefficients should 
increase with the extent of compositional dif-
ferences across clusters, particularly in the 
case of direct context effects.

How can the earlier-discussed multilevel 
modeling approaches tackle heterogeneity in 
the slopes of controls? In the cluster-robust 
OLS setting, this is difficult and precision 
losses seem largely inevitable. Mixed-effects 
models can accommodate heterogeneous 
coefficients of controls by specifying random 
slopes on control variables; but our review of 
current practice shows this is rare in practice. 
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Two-step approaches automatically accom-
modate any number, strength, and structure of 
cluster-varying control slopes during the first 
step. Yet, it is not clear if this advantage is 
large enough to outweigh the costs of estimat-
ing many more parameters than mixed-effects 
or cluster-robust OLS estimation.

MONTE CARLO SIMULATION 
STUDY
We conduct Monte Carlo simulations to 
explore the implications of neglecting cluster 
heterogeneity in the coefficients of control 
variables for the estimation of context effects. 
Monte Carlo simulations are a powerful tool 
for assessing different estimation approaches 
under controlled and ideal conditions, when 
purely analytic comparisons are not feasible. 
The basic idea is to repeatedly simulate data 
with a known data-generating process (DGP) 
and to apply alternative estimation approaches 
to each simulated dataset (also referred to as 
replications). The performance of the different 
approaches over a large number of datasets 
allows one to compare their statistical proper-
ties. By repeating this exercise for different 
DGPs, one can better understand how key 
features of actual applications (e.g., the num-
ber of clusters) shape the relative perfor-
mance of the alternative estimators.

Data-Generating Processes

Equation 9 describes the basic data-generating 
process for our simulations. As before, yig is 
the outcome for individual i in cluster g, 
which is determined by an intercept β0g, six 
lower-level predictors4 x1ig to x6ig with associ-
ated coefficients β1g to β6g, and an error term 
εig:

y x x x

x x x

ig g g ig g ig g ig

g ig g ig g ig i

= + + +

+ + + +

β β β β

β β β ε
0 1 1 2 2 3 3

4 4 5 5 6 6 gg .     (9)

The g indices on the intercept and slope terms 
in Equation 9 indicate that their size may vary 
across clusters. We are interested in how well 
different approaches estimate the coefficients 

of cluster-level (i.e., contextual) variables 
when such variation is present in the data. We 
study two broad variants of the DGP in Equa-
tion 9, which resemble the two types of 
research questions addressed in applied research. 
Both variants include one contextual factor zg. 
In the first variant, which we term DGP-DCE 
(with DCE for direct context effect), zg affects 
only the intercept in Equation 9; formally

β γ γ ν0 00 01 0g g gz= + + .
 (10)

The second variant of the DGP—the DGP-
CLI—has a cross-level interaction: zg also 
affects the slope of x1ig; formally

β γ γ ν1 10 11 1g g gz= + + .
 (11)

In both DGPs we set all fixed effects to 1 (i.e., 
all γ’s, including the effects of interest, γ01 
and γ11). Our main research question is how 
well different approaches estimate γ01 and γ11 
when the coefficients of lower-level control 
variables are not constant across clusters. For 
both DGP-DCE and DGP-CLI, we consider 
several variants. Adopting a common term 
from the Monte Carlo literature, we refer to 
the different variants as experimental condi-
tions. The different experimental conditions 
follow directly from our review of published 
research and from the semi-formal argument 
presented in the previous section.

A first factor we vary is the number of 
lower-level control variables (i.e., x2ig to x6ig) 
whose effects differ across clusters. Specifi-
cally, we let the coefficients of these variables 
depend on random effects v2g to v6g: 
β γ νkg k kg= + ∈0 2 3 4 5 6 for k { , , , , }. We gener-
ally start with a baseline set-up that includes 
all lower-level controls but has none of their 
coefficients vary across clusters. We then 
introduce random cross-cluster variation by 
setting the standard deviations of the vkg’s to a 
value greater than zero for one, three, and 
finally all five lower-level controls. We con-
sider two values for the standard deviation of 
the vkg’s: .2 (20 percent of the average effect) 
and 1 (100 percent of the average effect). 
These values fall into the lower and upper 
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ends of the range observed in our illustrative 
empirical analyses (see the Flexible Multi-
level Modeling in Practice section). The ran-
dom effects related to the contextual predictor 
of interest zg (i.e., v0g in DGP-DCE and v0g 
and v1g in DGP-CLI) always have standard 
deviations of .6. The random effects are multi-
variate normal with a random correlation matrix. 
We provide formal representations of the full 
DGPs in Part C of the online supplement.5

For both DGP-DCE and DGP-CLI, we 
further manipulate the number and size of 
clusters. We consider three scenarios that 
resemble those typically found in applied 
work. The first two mimic country-comparative 
applications with few clusters (15 and 25) and 
many observations (uniformly distributed 
between 600 and 2,000) per cluster. The third 
setting features more clusters (50) but fewer 
observations per cluster (uniformly distributed 
between 70 and 130). These numbers are typi-
cal of studies analyzing clusters such as cities 
or census tracts. The last dimension we mod-
ify is the extent of cross-cluster compositional 
differences with respect to lower-level varia-
bles. We consider three levels where 0 percent 
(no compositional differences), 15 percent, 
and 50 percent of the total variance in lower-
level predictors is between clusters. As with 
the random slopes on controls, compositional 

differences are random and unrelated to the 
contextual variable zg.

6

Table 2 lists the four dimensions of the 
DGPs that we vary, along with their different 
levels. There are 72 (= 4 × 2 × 3 × 3) experi-
mental conditions for each of the two broad 
variants of the DGP (DGP-DCE and DGP-
CLI). We ran simulations for all experimental 
conditions, obtaining 10,000 replications 
each to minimize Monte Carlo error. We 
focus on the most important patterns here and 
provide additional results in the online sup-
plement. Part D of the online supplement 
describes how we implemented the Monte 
Carlo simulations in the software package R. 
Code for replicating the simulations is avail-
able with the online supplements.

Estimators Compared

We consider four estimators. The first is a 
mixed-effects multilevel model that always 
assumes the coefficients of lower-level con-
trol variables to be invariant across clusters 
(ME-Invariant). As noted in our review of 
multilevel modeling practice, this currently is 
by far the most common estimator in applied 
sociological research. When applied to DGP-
DCE, this model is a random-intercept model. 
When applied to DGP-CLI, it is a model with 

Table 2. Monte-Carlo Simulations: Dimensions of Comparison

Dimension Implementation Levels

Cluster Heterogeneity I Number of random effects on 
control variables

0
1
3
5

Cluster Heterogeneity II Standard deviation of random 
effects

.2
1

Type of Application/Setting Number of clusters G and indi-
vidual units per cluster Ng

15 countries: G = 15; 600 ≤ Ng ≤ 2000
25 countries: G = 25; 600 ≤ Ng ≤ 2000
50 cities: G = 15; 70 ≤ Ng ≤ 130

Compositional Differences 
among Clusters

Standard deviation of cluster 
means for control variables

No compositional differences among 
clusters

15 percent of variance in control vari-
ables between clusters

50 percent of variance in control vari-
ables between clusters
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a random intercept and one random slope, 
namely on the predictor of interest x1ig. The 
second estimator is a mixed-effects model 
with the correct random-effects structure 
given the version of the DGP it is applied to. 
Thus, it is identical to ME-Invariant in the 
baseline setting, but contains one, three, and 
five additional random effects in the more 
complex variants of the DGPs. We impose no 
constraints on the correlations between the 
random effects, which are estimated from the 
data. We refer to this model as ME-Correct. 
The third estimator is pooled OLS with  
cluster-robust standard errors (OLS-Cluster), 
which like ME-Invariant does not allow for 
cluster differences in the coefficients of con-
trols. The last estimator (two-step-FGLS) is a 
version of the two-step estimator that imple-
ments the Feasible Least Squares approach 
described by Lewis and Linzer (2005).7 We 
consider two-step-FGLS only when estimat-
ing the cross-level interaction between zg and 
x1ig (i.e., γ11 in DGP-CLI).

Estimation of mixed-effects models can run 
into convergence problems, that is, the opti-
mizer may fail to identify the maximum of the 
likelihood function. Fortunately, separate anal-
ysis of replications with and without conver-
gence warnings does not suggest that our main 
conclusions are sensitive to the convergence 
status of the mixed-effects estimators. We 
therefore present simulation results with con-
vergent and non-convergent solutions pooled 
together. Part E, Section E.5, of the online sup-
plement provides disaggregated results by 
whether convergence warnings occurred or not.

Quantities of Interest

A first quantity of interest in most simulation 
studies is bias in point estimates. An estimator 
is unbiased if parameter estimates are equal to 
their true values in expectation. In the present 
study, all estimators produce unbiased esti-
mates of context effects because we consider 
only unsystematic differences in the effects of 
controls. Here, we simply note this fact and 
do not discuss bias further (results are avail-
able upon request).

Our main interest lies with the precision of 
point estimates. Intuitively, precision refers to 
the variation of point estimates around the 
corresponding true values over repeated sam-
ples. That is, it measures how reliably an 
estimator approximates the true parameter 
values. Other things—in particular, parameter 
bias—being equal, one would prefer a more 
precise estimator to a less precise one, because 
the former tends to provide more accurate 
estimates of the true effects. A standard meas-
ure for characterizing the precision of an 
estimator is the Root Mean Squared Error 
(RMSE), with smaller values implying greater 
precision. Let γ̂m denote the point estimate for 
the mth simulated dataset (or replication) and 
let γ denote its true value (i.e., its value in the 
DGP). With a total of M Monte Carlo replica-
tions, the RMSE equals

( )2
1

1
ˆRMSE .

=

= −∑
M

m
mM

γ γ

Another important question is whether the 
different approaches correctly estimate statis-
tical uncertainty. We therefore investigate 
whether the actual coverage rate of two-sided 
95 percent confidence intervals equals their 
nominal coverage rate. In other words, we 
examine if these intervals cover the true 
parameter value in more or less than 95 per-
cent of the 10,000 Monte Carlo replications. 
Let C95(m) equal one if the 95 percent confi-
dence interval for the mth replication includes 
the true value of the parameter of interest and 
zero otherwise. Then coverage is defined as

Coverage =
=
∑1

95
1M
C m

m

M

( ).

If coverage is greater than 95 percent, confi-
dence intervals are too large and over- 
conservative. Hypothesis tests will retain the 
null hypothesis of no effect too often. By 
contrast, if coverage is below 95 percent, 
confidence intervals are too narrow and null 
hypotheses rejected too frequently. We use a 
t-distribution with G – 2 degrees of freedom 
to identify the limits of analytic 95 percent 
confidence intervals for the coefficient of the 
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contextual predictor zg and its cross-level 
interaction with x1ig (where G represents the 
number of clusters and 2 is subtracted to 
account for the degrees of freedom consumed 
by the intercept and the cluster-level predic-
tor; see Elff et al. 2016; Raudenbush and 
Bryk 2002:280).

Simulation Results I: Consequences 
of Heterogeneity in the Effects of 
Controls for Estimates of Direct 
Context Effects

We begin with the estimation of direct context 
effects. Figure 1 displays precision in terms of 
the RMSE, expressed in percent of the true 
effect. Results are for 25 clusters with 600 to 
2,000 lower-level observations each, numbers 
that are typical of country-comparative stud-
ies. The figure consists of six panels. Within 
each panel, we change the number of variables 
with varying coefficients from left to right. 
The three lines thus show how the precision of 
the different estimators evolves as the DGP 
incorporates increasing heterogeneity in the 
effects of the five control variables. The coef-
ficients of lower-level controls have cross-
cluster standard deviations of .2 (20 percent of 
the average effect) in the top row and 1 (100 
percent of average effect) in the bottom row. 
For better readability, the scale is larger in the 
top than in the bottom row. Across the differ-
ent columns, we vary the extent of between-
cluster compositional differences with respect 
to the lower-level controls. Note that we use a 
logarithmic scale on the y-axis (RMSE). The 
logarithmic scaling means that a given dis-
tance on the scale always corresponds to the 
same relative change in RMSE (i.e., the dis-
tance between 10 and 20 is identical to that 
between 20 and 40). The value labels attached 
to the axis are directly interpretable without 
further transformation.

A consistent result in Figure 1 is that 
ignoring cross-cluster differences in the coef-
ficients of lower-level variables can induce 
substantial and unnecessary uncertainty into 
estimates of direct contextual effects. Within 
each panel, the precision gap (i.e., the differ-
ence in RMSE) between ME-Correct and the 

other two estimators widens as we manipulate 
the DGP to include random slopes on one, 
three, and eventually all five lower-level con-
trol variables. Focusing on a concrete exam-
ple, panel 1a (i.e., the case of no compositional 
differences and a cross-cluster standard devi-
ation of .2 for controls with varying effects) 
shows that a mixed-effects model that cor-
rectly specifies random slopes on five control 
variables with heterogeneous effects (ME-
Correct) has an RMSE of 11.2 percent. The 
models that erroneously assume invariant 
coefficients, ME-Invariant and OLS-Cluster, 
have RMSEs of 12.9 and 13.4 percent, respec-
tively. More generally, the RMSE of ME-
Correct tends to be smaller by a factor of .7 to 
.9 in the less extreme experimental condi-
tions, that is, ME-Correct is 10 to 30 percent 
more precise than ME-Invariant.

To see that these differences are substantial, 
note that the RMSEs are essentially Monte 
Carlo approximations to the true standard 
errors of the estimators and that increasing the 
sample size by a factor of a reduces the stand-
ard error by a factor of approximately a . Thus, 
even using the lower-bound estimate of a 10 
percent reduction in the RMSE, ME-Invariant 
would need roughly 31 rather than 25 cluster 
units to produce equally precise estimates of 
the context effect as ME-Correct (i.e., the sam-
ple would have to be larger by a factor of 1.23 
= 1/.92). Comparativist scholars would cer-
tainly applaud an addition of six countries to a 
cross-national study such as the European 
Social Survey and see it as a considerable 
increase in terms of statistical power for multi-
level analysis. Our Monte Carlo results suggest 
that a comparable increase can be achieved by 
adequately accounting for cross-cluster differ-
ences in the effects of lower-level variables.

In many of the other experimental condi-
tions, the precision gains from using ME-
Correct rather than OLS-Cluster or 
ME-Invariant are even larger. The most 
extreme case in Figure 1 occurs in panel 3b, 
where ME-Correct has an RMSE of 13.5 per-
cent, and the corresponding values for ME-
Invariant and OLS-Cluster are roughly 3.5 
times as large at 48.7 percent and 51.7 percent 
of the true effect.
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Overall, OLS-Cluster and ME-Invariant 
perform quite similarly in Figure 1. ME-
Invariant is generally slightly more accurate 
than OLS-Cluster, but this difference is negli-
gible compared to the advantages of ME-
Correct that emerge in many settings. This 
suggests that whether a model assumes invar-
iant coefficients of lower-level variables will 
often have a much larger impact on precision 
than will the method of estimation used 
(mixed-effects versus pooled OLS).

Detailed comparisons across the six panels 
in Figure 1 reveal how key aspects of the 
DGP affect the magnitude of precision losses. 
Comparing the top with the bottom row 
shows that more pronounced heterogeneity in 
the effects of controls exacerbates the costs of 
making the invariant coefficients assumption. 
For any given number of control variables 
with varying coefficients, the precision gap 
between ME-Correct and the other two esti-
mators is larger when the varying coefficients 
have a standard deviation of 1 (bottom row) 
rather than .2 (top row). Another crucial pat-
tern in Figure 1 concerns the extent of com-
positional differences among clusters. In the 
(unrealistic) case that there are no composi-
tional differences (left column), this gap is 
very small throughout and primarily due to 
ME-Correct becoming more precise as the 
number of random slopes increases. Appar-
ently, ME-Correct can exploit information 
about systematic correlations among the ran-
dom slopes to arrive at somewhat better esti-
mates of the parameter of interest.8 Greater 
compositional differences clearly amplify the 
precision gap between ME-Correct and the 
other two estimators. The effect of growing 
compositional differences on the precision 
gap is dramatic when we set the standard 
deviations of the varying coefficients on 
lower-level controls to 1 in the DGP (bottom 
row). It is smaller, but still sizable, when we 
assume limited cross-cluster variation (stand-
ard deviation of .2, top row).

Figure 2 explores how the number of 
higher- and lower-level units affects the rela-
tive performance of the estimators. For sim-
plicity, we now consider only the case of 
moderate compositional differences, with 15 

percent of the variance in lower-level varia-
bles being among clusters. Figure 2 indicates 
that the invariant coefficients assumption is 
costlier with few clusters (here 15 or 25 coun-
tries). With 50 cities, the random errors intro-
duced by erroneously assuming invariant 
coefficients tend to average out. Only in the 
case of strong variability in the true effects of 
lower-level controls (panel 3b) do we still 
find ME-Invariant and OLS-Cluster to be 
substantially less accurate than ME-Correct.

We now turn to statistical inference. Fig-
ure 3 shows results for the case of moderate 
compositional differences (15 percent of vari-
ance in lower-level predictors among clus-
ters). Consistent with previous research 
(Cameron and Miller 2015), we find that 
OLS-Cluster underestimates statistical uncer-
tainty when the number of clusters is small. 
The problem becomes less severe as the num-
ber of clusters increases, but undercoverage 
remains noticeable even in the 50 cities con-
dition. Further analysis shows that the extent 
of undercoverage is positively related to the 
extent of compositional differences (see Fig-
ure E.3.1 in the online supplement). In com-
bination with its relatively poor performance 
in terms of accuracy, these results suggest that 
OLS with conventional cluster-robust stand-
ard errors would not be a good choice in most 
applications.

ME-Invariant consistently yields valid 
inference—even in the extreme case of only 
15 clusters and five (unspecified) varying 
coefficients in the DGP. This result seemingly 
contradicts Stegmueller (2013) and Bryan 
and Jenkins (2016), who conclude that linear 
mixed-effects multilevel models require at 
least 20 to 25 clusters for unbiased inference 
on the coefficients of context variables. The 
reason for this divergence is that we use 
restricted maximum likelihood estimation 
and a t-distribution with the approximately 
correct G – 2 degrees of freedom rather than 
the normal distribution to identify confidence 
limits (Elff et al. 2016).

Results for ME-Correct are sobering in that 
it generally produces confidence intervals that 
are too narrow. Thus, there seems to be a trade-off 
between precision and valid statistical inference. 
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Undercoverage worsens as the number of cor-
rectly specified random slopes increases. Con-
sider the case of 15 countries and a standard 
deviation of .2 for the random slopes on con-
trols (panel 1a in Figure 3). In this setting, the 
actual coverage rate of nominal 95 percent 
confidence intervals is approximately 92.5 per-
cent when only one of the lower-level controls 
has varying coefficients. When the slopes of all 
five controls vary across clusters (and ME-
Correct specifies five random slopes), coverage 
drops to approximately 81.8 percent. Only the 
findings for the 50 cities scenario (panels 3a 
and 3b) deviate from the pattern that undercov-
erage increases with the number of random 
slopes, but as we further explore in the online 
supplement (Section E.5), this apparent irregu-
larity is driven by replications where ME-Cor-
rect ran into convergence problems. Figure 3 
further indicates that the undercoverage prob-
lem attenuates as the number of clusters 
increases (columns). The extent of cross-cluster 
variation in the slopes of lower-level variables 
seems to matter very little (top versus bottom 
row).9 Finally, additional analysis reveals that 
stronger compositional differences exacerbate 
the problem (see Figure E.3.1 in the online 
supplement).

A likely explanation for the inferential defi-
ciencies of ME-Correct is that its complex 
random-effects structure may sometimes be 
overspecified: when the effects of all five 
lower-level controls vary, the covariance matrix 
has 21 elements (the variances of the random 
intercept and five random slopes as well as 15 
covariances). Overspecification issues should 
increase with the number of random slopes and 
decrease with the number of clusters, which is 
exactly what Figure 3 shows. This raises ques-
tions of model simplification and model selec-
tion that we will address in the context of the 
empirical illustrations (see the Flexible Multi-
level Modeling in Practice section).

Another important question is whether 
valid inference for complex mixed-effects 
models is possible even in the presence of 
overspecification. In the final step of the 
Monte Carlo analysis, we present simulation 
results suggesting that non-parametric boot-
strapping may do the trick.

Simulation Results II: Consequences 
of Heterogeneity in the Effects of 
Controls for Estimates of Cross-Level 
Interactions

Now we turn to cross-level interactions where 
a contextual factor moderates the association 
between a lower-level predictor and an out-
come variable (i.e., we focus on estimation of 
γ11 in DGP-CLI; see Equation 11). Here we 
additionally consider two-step-FGLS, which 
avoids the invariant coefficients assumption 
by design. For brevity, we report results for 
different levels of compositional differences 
in Figure E.2.1 in the online supplement. The 
main finding is that even without composi-
tional differences among clusters, erroneously 
assuming invariant control slopes can severely 
reduce the precision of estimated cross-level 
interactions. Figure 4 illustrates how precision 
depends on the extent of variation in the 
slopes of lower-level controls (top versus bot-
tom row) and the number of clusters and 
lower-level units per cluster (columns). We 
show results for moderate compositional dif-
ferences (15 percent of variance in lower-level 
variables between clusters).

In one important respect, Figure 4 conveys 
the same messages as Figures 1 and 2. Ignoring 
cross-cluster heterogeneity in the coefficients 
of lower-level variables can result in very 
imprecise estimates. Except in the baseline case 
where all controls have the same effect in all 
clusters, OLS-Cluster and ME-Invariant have 
larger RMSE than does ME-Correct. When 
variability in the slopes of controls is high (bot-
tom row), they also perform worse than two-
step-FGLS in the country scenarios. The 
precision gap between OLS-Cluster and ME-
Invariant and the other estimators primarily 
stems from the fact that the former become less 
accurate as the number of controls with varying 
coefficients increases. As in the case of direct 
context effects, we also find that the costs of 
assuming invariant coefficients are largest 
when the number of clusters is small.

Overall, precision losses are quite similar 
to the direct context effects case (see Figure 
2). As an example, consider the case with 
varying coefficients on all five controls in 
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panel 1b of Figure 4 (i.e., the case of 15 coun-
tries and a cross-cluster standard deviation of 
1 for the effects of controls). Here the RMSE 
is 16.4 percent for ME-Correct and 32.0 per-
cent for ME-Invariant. To make things more 
concrete, we can use the fact that the RMSE 
is effectively the standard deviation of point 
estimates around the true parameter value. 
This implies that in 20 percent of all potential 
applications, ME-Correct will miss the true 
value of the coefficient on the cross-level 
interaction by at least 21.0 percent.10 The cor-
responding number for ME-Invariant is 41.0 
percent. In 10 percent of all applications, the 
two will miss the true value by at least 27.0 
percent and 52.6 percent, respectively.

How does two-step-FGLS perform? By 
design it neither loses nor gains precision as the 
number of control variables with varying 
effects increases. In all panels of Figure 4, we 
essentially see a straight line with some random 
fluctuation. The level of the line, however, dif-
fers considerably across the panels, both in 
absolute terms and, more importantly, also rela-
tive to the alternative estimators. When there is 
limited heterogeneity in the effects of lower-
level controls (top row), two-step-FGLS gener-
ally is the least efficient estimator. The picture 
is different in the bottom row, where the slopes 
of lower-level controls with heterogeneous 
coefficients have a cross-cluster standard devi-
ation of 1 rather than .2. In the country condi-
tions (panels 1b and 2b), two-step-FGLS 
clearly outperforms ME-Invariant and OLS-
Cluster as soon as we include three control 
variables with heterogeneous coefficients in the 
DGP. Yet, two-step-FGLS remains less precise 
than ME-Correct. The latter not only combines 
a flexible specification of random slopes with a 
more parsimonious and efficient estimation 
approach, but it also gains precision because of 
the information inherent in correlated random 
slopes. An unambiguous result in Figure 4 is 
that two-step-FGLS produces very imprecise 
estimates in the cities setting, even when there 
is marked cross-cluster heterogeneity in the 
effects of controls (panel 3b). The costs of fit-
ting a separate first-level regression based on 
only 70 to 130 observations for each cluster 
clearly are substantial.

Turning to statistical inference, results for 
the mixed-effects estimators and OLS-Cluster 
resemble those for direct context effects (see 
Figure E.4.1 in the online supplement for vis-
ualizations of these results). OLS-Cluster gen-
erally produces confidence intervals that are 
too narrow, as does ME-Correct, particularly 
when there are several (correctly specified) 
random slopes in the model. Again, having 
only a few clusters amplifies these problems. 
By contrast, both ME-Invariant and two-step-
FGLS consistently achieve correct inference.

In summary, our simulation results suggest 
that neglecting cross-cluster differences in the 
effects of controls can substantially reduce 
the precision of estimated context effects. 
This holds for direct context effects as well as 
for cross-level interactions. In many experi-
mental conditions, mixed-effects multilevel 
models with a flexible random-effects struc-
ture yield much more precise point estimates 
than do invariant specifications that assume 
the effects of lower-level variables to be con-
stant across clusters. For the cross-level inter-
action case, two-step estimation is an 
easy-to-implement alternative that allows 
coefficients to vary freely across clusters. It 
shows good performance when clusters are 
sufficiently large, but generally remains less 
precise than a mixed-effects model with the 
correct random-effects structure.

More precise estimates reduce the risk that 
a given analysis severely misrepresents the 
true effect of a contextual variable. In addi-
tion, they will more often lead to rejection of 
the null hypotheses of no effect when it is in 
fact wrong (greater statistical power/lower 
type-II error rates). The benefits of using a 
flexible specification are largest when hetero-
geneity is pronounced (many and strongly 
variable coefficients) and when analysts have 
only a few clusters at their disposal. In the 
DCE case, the precision gains also increase 
with the extent of compositional differences 
among clusters. These conditions are most 
typical of country-comparative studies. Unfor-
tunately, analytic confidence intervals for 
complex mixed-effects models can be severely 
anticonservative, so model simplification or 
other methods of inference are needed.
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Bootstrap Inference for Complex 
Mixed-Effects Models

Given the problems with conventional statisti-
cal inference for ME-Correct (see Figure 3), 
we ran additional simulations to evaluate the 
performance of non-parametric cluster boot-
strap confidence intervals (Goldstein 2011). In 
Part F of the online supplement, we describe 
the bootstrap procedure in detail and show 
how to implement it in R and Stata. Because 
of the large computational burden, we focus 
on one experimental condition where analytic 
confidence intervals suffer from severe under-
coverage: the case of 15 countries, moderate 
compositional differences (15 percent of vari-
ance between clusters), and three controls 
with varying slopes, each with a standard 
deviation of 1. In this condition, ME-Correct 
is a model with random slopes on all three 
controls and no constraints on the correlations 
among them. We ran 5,000 Monte Carlo 

replications and 2,000 bootstrap replications 
per Monte Carlo replication.11

The rightmost bar in Figure 5 shows the 
coverage rate of analytic confidence intervals 
for an optimized specification. We elaborate 
on this at the end of the next section. The 
crucial comparison at this point is between 
the actual coverage rates of analytic (leftmost 
bar in Figure 5) and non-parametric cluster 
bootstrap confidence intervals (middle bar) 
for ME-Correct. Figure 5 sends a clear mes-
sage: the non-parametric cluster bootstrap 
performs well. It improves dramatically on 
the much too low coverage rate of analytic 
confidence intervals (85.67 percent; cf. panel 
1b in Figure 3). At 95.62 percent, the cover-
age rate of the bootstrapped confidence inter-
val is close to the nominal level. If anything, 
it appears to be slightly over-conservative (in 
fact the difference to the nominal coverage 
rate of 95.00 percent is barely significant at 
the 5 percent level). Further research on this 

86.57

95.62

92.00

85.0

87.5

90.0

92.5

95.0

97.5

Analytical
(Maximally Flexible Model)

Non−Parametric Bootstrap
(Maximally Flexible Model)

Analytical
(Optmized Model)

Estimator of 95% Confidence Interval

A
ct

ua
l c

ov
er

ag
e 

ra
te

 o
f

no
m

in
al

 9
5%

 c
on

fid
en

ce
 in

te
rv

al

Figure 5. Coverage Rates for Analytic and Bootstrap-Based 95 Percent Confidence Intervals



816		  American Sociological Review 82(4) 

issue is required, but it appears that non-para-
metric bootstrapping can effectively resolve 
the inferential limitations of ME-Correct.

Flexible Multilevel 
Modeling in Practice: an 
Illustrative Analysis

As a final step, we now explore the transferabil-
ity of the Monte Carlo results to real-life set-
tings by presenting illustrative analyses of five 
outcome variables based on the European Social 
Survey (ESS Round 6 2016), a dataset widely 
used in cross-national comparative research.

To foreshadow the results, we show that 
the coefficients of six standard individual-
level (control) predictors, such as gender and 
age, differ substantially across ESS countries. 
The extent of cross-country variability is 
broadly consistent with the experimental con-
ditions used in the Monte Carlo simulations. 
However, practitioners would be mistaken to 
simply estimate maximally flexible mixed-
effects models with random slopes on all 
lower-level predictors (and no constraints on 
the correlations among them). Such models 
tend to yield less precise estimates of context 
effects than the invariant specification. A 
likely reason is that maximally flexible mod-
els will often suffer from overparameteriza-
tion. Small cluster-level samples limit the 
number of random effects (and correlations 
among them) that can be estimated reliably. 
In such a situation, random-effects structures 
need to be selected carefully. Including ran-
dom slope terms with little actual variance 
may do more harm than good. Recall that the 
most complex mixed-effects model investi-
gated in the Monte Carlo simulations (i.e., 
ME-Correct) did not generally specify ran-
dom slopes on all controls. It did so only for 
the predictors whose effects actually varied 
across clusters, which we happened to know 
because the data were artificially created. 
Even so, the problems with analytic inference 
for ME-Correct suggest it may have stretched 
the (simulated) data beyond the limits in 
some situations. The presence of a random 
effect in the underlying DGP does not mean 

that a finite dataset necessarily contains 
enough information to reliably model it.

In real-life applications, one must strike the 
right balance between flexibility and parsimony 
to reap the increased precision found in the 
Monte Carlo analysis. Fortunately, practitioners 
can rely on the well-established toolbox of 
regression diagnostics and model selection cri-
teria. Building on these techniques, we find that 
models whose random-effects structure has 
been simplified according to the procedure out-
lined by Bates, Kliegl, and colleagues (2015) 
tend to produce more precise estimates of con-
text effects than do invariant specifications.

An Illustrative Analysis of the 
European Social Survey

Taking its cue from a sociological classic, our 
empirical illustration studies how five out-
come variables—generalized trust, xenopho-
bia, occupational status, homophobia, and 
fear of crime—depend on the Human Devel-
opment Index (HDI; United Nations Devel-
opment Programme 2015) as a broad indicator 
of modernization across a sample of 28 Euro-
pean countries.12 All outcome variables are 
standardized to have a mean of zero and a 
standard deviation of one. In keeping with the 
two types of research questions identified 
earlier, we consider both a direct context 
effect of the HDI and its cross-level interac-
tion with having a high level of education. 
For instance, we investigate whether overall 
levels of generalized trust are associated with 
the HDI, and whether the relationship between 
having high education and generalized trust 
varies according to a society’s level of human 
development.

Education is measured in terms of an indi-
vidual’s highest degree, subsumed into three 
standard categories: low (highest degree 
below the upper-secondary level), intermedi-
ate (highest degree at the upper-secondary or 
nontertiary postsecondary level), and high 
(highest degree at the tertiary level). As with 
all categorical predictors, we include level of 
education using weighted effects (rather than 
dummy) coding. Weighted effects coding of 
categorical predictors is akin to grand mean 
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centering of continuous predictors. It ensures 
that the intercept corresponds to the predicted 
outcome for the average individual (te Groten-
huis et al. 2016). This not only eases interpre-
tation, but it safeguards against problems that 
can arise in the estimation of mixed-effects 
models when the intercept corresponds to a 
highly idiosyncratic value near or even beyond 
the boundaries of the observed covariate dis-
tribution (Enders and Tofighi 2007). Given the 
weighted effects coding, the coefficient of the 
high-education indicator captures the 
(adjusted) difference in the respective out-
come variable between high-educated indi-
viduals and individuals whose level of 
education equals that of the average European. 
Its cross-level interaction with the HDI indi-
cates whether this difference changes with a 
society’s level of human development.

In addition to the high-education indicator, 
the HDI, and (in half the specifications) their 
cross-level interaction, our models contain 
the following standard control variables: age 
(z-standardized around the grand mean) and 
(weighted effect-coded) indicators for having 
intermediate education, being female, being 
married, and being unemployed. Part A of the 
online supplement describes the predictor and 
outcome variables in more detail.

Varying Coefficients of Lower-Level 
Variables Are a Real Concern

Gender and at least some of the other five 
control variables are arguably included in 
most sociological regression models. If the 
associations between these six lower-level 
predictors and the five outcome variables vary 
considerably across ESS countries, we would 
thus have convincing evidence that the invari-
ant coefficients assumption is dubious in 
many multilevel analyses. To investigate this 
possibility, we estimate, for each of the five 
outcome variables, a mixed-effects model that 
includes the HDI and all lower-level predic-
tors. To examine the extent of cross-country 
heterogeneity in the effects of the lower-level 
variables, we allow the coefficients of all six 
predictors to vary across countries.

The results indicate substantial cross- 
cluster heterogeneity. To see this, consider the 
following best guesses of the country-specific 
coefficients based on the corresponding 
mixed-effects estimates (more technically, we 
report best linear unbiased predictions or 
BLUPs). Across Europe, the highly educated 
are less xenophobic than the average Euro-
pean by about .31 standard deviations. Yet, 
this average coefficient masks substantial 
cross-national differences. In Ukraine and 
Russia, being highly educated hardly makes a 
difference (b = –.09 and –.11, respectively). 
In Great Britain and Ireland, the effect is 
much more substantial (b = –.54 and –.50, 
respectively). Even the close link between 
education and occupational status varies 
across Europe. In Bulgaria and Lithuania, the 
highly educated hold jobs that are more than 
a standard deviation higher in status than 
those of individuals with an average level of 
education (b = 1.20 and 1.15, respectively). In 
Spain and the Netherlands, the advantage of 
holding a tertiary degree is smaller by about 
one third of a standard deviation (b = .88 and 
.91, respectively).

To give a comprehensive picture, we meas-
ure coefficient heterogeneity as the standard 
deviations of the random slopes, expressed in 
percent of the respective average coefficient 
(i.e., fixed effect). For each lower-level pre-
dictor, Figure 6 reports the median value of 
this measure across the five outcome variables 
(i.e., the ordered third value).13 The two verti-
cal lines indicate the two different values 
assumed in the Monte Carlo simulations.

Figure 6 shows that coefficient variation 
across clusters, as measured by the cross-
cluster standard deviation, is typically at least 
half as large as the average coefficient. That 
is, within two standard deviations to the left 
and right of the average coefficient, there are 
countries where the control variable is hardly 
related to the outcome and others where the 
association is nearly twice as strong. In some 
cases (e.g., for the coefficient of being unem-
ployed), median variability even exceeds 100 
percent. Such high values might be the result 
of small average coefficients in the 
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denominator. We therefore provide a more 
detailed figure that shows the average coeffi-
cient as well as the range of country-specific 
coefficients (again, based on BLUPs) for all 
30 combinations of the five outcome and six 
predictor variables (see Figure E.6.1 in the 
online supplement). Although there are some 
small average coefficients, these clearly do 
not drive the results of Figure 6. In summary, 
this exploration of cross-country variation in 
the effects of standard controls not only vali-
dates our Monte Carlo simulations; it also 
carries the important message that such vari-
ation is likely a real concern in the typical 
(cross-country) multilevel analysis.

Maximally Flexible Models Do Not 
Perform Well in Practice

We have argued, and demonstrated through 
Monte Carlo simulations, that erroneously 
assuming the effects of lower-level variables 
to be invariant across clusters tends to reduce 
the precision of estimated context effects. 
One response to our results might be to sim-
ply estimate the maximally flexible model 
with random slopes for all lower-level vari-
ables and no constraints on their interrela-
tions. However, as noted earlier, there are 
reasons to be concerned that such models 

might suffer from overparameterization, 
especially when the number of clusters is 
small.

We also discussed two-step estimation as 
an easy-to-implement alternative to mixed-
effects models. It involves completely sepa-
rate and unconstrained estimation of 
cluster-specific effects, which is advanta-
geous when substantial heterogeneity exists, 
but also quite wasteful when there is no or 
very little actual heterogeneity. Our Monte 
Carlo results indicate that, given large lower-
level samples, the benefits may outweigh the 
costs when the effects of at least some con-
trols vary markedly.

To assess the performance of the different 
approaches under realistic conditions, we 
now turn to our illustrative empirical analy-
ses. We measure the precision of estimated 
context effects using the width of two-sided 
95 percent confidence intervals, focusing on 
three effects for each of the five outcome 
variables: the effect of the HDI from the 
DCE specification, and the cross-level inter-
action and main effect of the HDI from the 
CLI specification that includes an interaction 
term between the HDI and the high-educa-
tion indicator. For each of these 15 effects of 
interest, we compare the confidence intervals 
from the maximally flexible models with 

Figure 6. Cross-Country Variation in the Effects of Common Control Variables
Note: Cross-country variation is measured as the standard deviation of the random slope on a predictor, 
expressed in percent of the average effect (i.e., the fixed-effect coefficient estimate). The dots represent 
the median case (i.e., the third ordered value) across the five outcome variables studied in the 
illustrative analyses. The two vertical lines indicate the levels of variation assumed in the Monte Carlo 
simulations.
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those from the invariant mixed-effects 
specification.14

Table 3 summarizes the results. We focus 
on differences D in the width of confidence 
intervals between the flexible models and 
the invariant one, expressed in percent of 
interval width for the invariant model.15 
Negative (positive) values thus mean that 
the given flexible model estimates the con-
text effect more (less) precisely than the 
invariant model. Columns 3 (bootstrapped 
intervals) and 4 (analytic intervals) show 
how the maximally flexible mixed-effects 
model performs relative to the invariant one. 
Columns 5 (bootstrapped intervals) and 6 
(analytic intervals) compare two-step esti-
mation to the invariant mixed-effects model. 
We report comparisons based on analytic 
intervals for completeness, but we focus on 
the bootstrap-based comparisons because 
only the latter seem to provide accurate 
inference for complex mixed-effects models 
(see Figure 5). Table E.7.1 in the online sup-
plement reports the interval widths underly-
ing Table 3 and supports this result; 

bootstrapped confidence intervals for the 
maximally flexible mixed-effects model are 
systematically larger than their analytic 
counterparts, whereas no such pattern exists 
for the invariant model and the two-step 
estimates. This underlines that the boot-
strapped intervals are preferable for com-
parisons of the different models.

Table 3 sends a rather sobering message 
about the performance of maximally flexible 
models. In only six of the 15 cases does the 
maximally flexible mixed-effects model out-
perform the invariant specification. In one 
case (DCE for homophobia), the difference is 
essentially zero. In the eight remaining cases, 
the invariant specification yields estimates 
that are substantially more precise. The most 
extreme case is the direct effect of the HDI on 
fear of crime, where the confidence interval 
for the maximally flexible specification is 
63.2 percent wider than for the invariant one. 
Turning to two-step estimation, there is not a 
single case (out of five) where it produces 
more precise estimates than the invariant 
alternative.

Table 3. Precision of Context Effect Estimates Relative to Invariant Specification: Maximally 
Flexible Mixed-Effects and Two-Step Model

Maximally Flexible 
Mixed-Effects Model Two-Step Model

Outcome Context Effect DBootstrap CI DAnalytic CI DBootstrap CI DAnalytic CI

Direct Context Effect (DCE)
Generalized trust Direct HDI effect –6.80 –33.71  
Homophobia Direct HDI effect .00 –23.46  
Xenophobia Direct HDI effect 33.72 –16.01  
Fear of crime Direct HDI effect 63.22 –17.63  
ISEI Direct HDI effect 17.77 –19.88  

Cross-Level Interaction (CLI)
Generalized trust Interaction effect –4.57 –7.56 7.30 16.28
Homophobia Interaction effect 17.41 –16.52 6.05 4.21
Xenophobia Interaction effect 15.45 –18.48 .84 4.18
Fear of crime Interaction effect 21.83 –6.72 13.82 4.11
ISEI Interaction effect –9.52 –13.56 32.20 25.71
Generalized trust Main HDI effect –22.71 –25.78  
Homophobia Main HDI effect –3.64 –25.33  
Xenophobia Main HDI effect 12.63 –14.42  
Fear of crime Main HDI effect 14.45 –12.79  
ISEI Main HDI effect –19.47 –22.84  
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In short, the evidence in Table 3 suggests 
that maximally flexible mixed-effects and 
two-step models will often be a suboptimal, 
and sometimes a very bad, choice. However, 
this does not mean practitioners should sim-
ply continue to use the invariant specification. 
The likely explanations for the sobering per-
formance of the maximally flexible mixed-
effects model also suggest a potential solution, 
namely to find an optimal balance between 
parsimony and flexibility by removing ran-
dom effects that add little explanatory power.

Optimized Specifications Tend to 
Deliver Precision Gains

The task of balancing flexibility and parsi-
mony is essentially one of model selection. 
As such, we can draw on the established tool-
box of regression diagnostics and model 
selection techniques. That being said, simpli-
fication of the random-effects structure for 
mixed-effects models raises a few generic 
issues that many readers may not be familiar 
with. We therefore now describe the proce-
dure we used to find more parsimonious  
random-effects specifications.

Our approach closely follows recent work 
by Bates, Kliegl, and colleagues (2015), here-
after BKVB, from a psycholinguistic context. 
The cases considered by BKVB tend to differ 
from the typical sociological application: for 
example, their data usually contain multiple, 
non-hierarchical levels of nesting. BKVB’s 
overall goal is very similar to ours, however, 
namely to simplify the random-effects struc-
ture of a flexible mixed-effects model in a 
way that avoids overparameterization, while 
capturing the most important patterns of 
cross-cluster variation in the data. We provide 
a detailed example of the procedure in Part G 
of the online supplement. The replication files 
provide annotated step-by-step code for all 
analyses reported in Table 4 below.

The optimization routine starts with the 
maximally complex model and consists of two 
major and internally iterative steps. The first 
step seeks to iteratively reduce the number of 
random slopes by removing random effects 

that are not supported by the data. In each 
iteration, the crucial question is whether and 
how to simplify a given baseline specification. 
Initially, this baseline specification is the maxi-
mally flexible model with random slopes on all 
predictors. The simpler alternatives to the 
baseline specification, which we refer to as 
“candidates,” comprise the specifications that 
result when one random slope is dropped at a 
time.16 Following BKVB, it is useful to speed 
up estimation by constraining all correlations 
to zero during this step. Two criteria determine 
if one of the (simpler) candidates is preferable 
to the (more complex) baseline specification: 
(1) changes in BIC (other selection criteria are 
possible, but we found BIC to perform best17) 
and (2) the results of a principal component 
analysis (PCA). As for (1), lower BIC values 
are preferable, so the most promising alterna-
tive to the baseline specification, the best can-
didate, is the one with the lowest BIC value. If 
the BIC value of the best candidate is lower 
than that of the baseline specification, the for-
mer is preferable and becomes the new base-
line specification for the next iteration. If the 
BIC value of the best candidate exceeds that of 
the baseline specification, we turn to (2) and 
the decision depends on the results of the PCA. 
The goal of the PCA is to find out whether the 
data provide sufficient information to support 
the complexity of the (baseline) model.18 
BKVB argue persuasively that the number of 
principal components that cumulatively 
account for 100 percent of the variance of the 
random effects is an upper limit for the number 
of random effects supported by the data. Thus, 
if the PCA indicates that the number of princi-
pal components that jointly account for the 
random-effects structure is smaller than the 
number of random effects, we prefer the best 
candidate to the baseline specification even if 
it has a higher BIC than the latter. The best 
candidate then becomes the new baseline spec-
ification in the next iteration of the first step. If 
the PCA indicates no need for further simplifi-
cation and the best candidate has a higher BIC 
than the baseline specification, the latter is 
preferable and the first step of the optimization 
routine is complete.



Heisig et al.	 821

Once the first step of the procedure has 
been completed, the second step seeks to sim-
plify the structure of the correlations among 
them. Again, this step is iterative and consists 
of repeated comparisons between a baseline 
specification and one or several candidates 
with a simpler correlation structure. Initially, 
the baseline specification is the model with 
all random effects remaining after the first 
step and no constraints on the correlations 
among them. After the first iteration, it is the 
best candidate from the previous step. Identi-
fication of candidates is somewhat more dif-
ficult than in the first step of the routine, 
because the number of possible correlation 
structures is quite large unless the number of 
random slopes is small. It is therefore useful 
to examine the random-effects covariance 
matrix of the baseline specification for low 
correlations and to identify a small subset of 
promising candidates. Again, the choice 
between the baseline specification and the 
candidates should then be based on a trans-
parent criterion (in our case, BIC). The sec-
ond step of the procedure terminates when no 
further improvements are possible.

One complication needs to be taken into 
account during this second step of the optimi-
zation routine. Constraining the correlation 
between the random slope for a lower-level 
predictor, say x, and the random intercept to 
zero can render coefficient estimates on con-
textual variables sensitive to the scaling of x 
(Bates, Mächler, Bolker, and Walker 2015). 
Centering of continuous and (weighted) effect 
coding of categorical predictors (te Grotenhuis 
et al. 2016) help safeguard against this issue. 
Nevertheless, researchers should verify that 
estimated context-effect sizes are robust to the 
removal of correlation terms, while noting that 
some variation is to be expected simply due to 
chance and changes in precision. If a context 
effect changes substantially, one should either 
(re)introduce the respective correlation (i.e., 
use a more complex model) or remove the 
uncorrelated random slope entirely.

Do optimized models produce more pre-
cise estimates of context effects than the 
invariant specification? Table 4 shows they 
typically do. As in Table 3, we report relative 

differences in interval width between the 
optimized and invariant specifications. Focus-
ing on the bootstrap-based comparisons in the 
penultimate column, we now find that for six 
of the 15 context effects, using a more flexi-
ble (optimized) specification increases preci-
sion by over 10 percent. For another four 
effects, we find modest gains between 2 and 
4 percent. For four of the remaining five 
effects, the difference is between −2 and +1 
percent. In only one case, the cross-level 
interaction between HDI and the high-education 
indicator in the model for fear of crime, do we 
find the optimized model to produce a notice-
ably less precise estimate than the invariant 
specification, with the difference being 
approximately 4.4 percent. Table 4 (see col-
umns three and four) shows that flexible 
(optimized) models need to be much more 
parsimonious than the maximally flexible 
model to achieve these gains in accuracy. 
Whereas the maximally flexible model speci-
fies seven random effects (one intercept and 
six slopes) as well as 21 correlations among 
these, the optimized models retain between 
two and four random slopes. Moreover, sev-
eral correlations are usually constrained to 
zero (the maximum number of correlations 
varies across models because it depends on 
the number of random slopes that remain 
after the first optimization step).

Table E.7.1 in the online supplement 
reports the absolute widths of the confidence 
intervals that underlie the relative compari-
sons in Table 4. Interestingly, it shows that 
bootstrapped confidence intervals for the 
optimized flexible models are not systemati-
cally larger than their analytic counterparts. 
As with the invariant model, the bootstrapped 
confidence intervals are generally of broadly 
similar magnitude. This is consistent with 
overparameterization being the primary rea-
son why analytic confidence intervals for 
ME-Correct showed severe undercoverage in 
the simulations, particularly in experimental 
conditions with few clusters or many varying 
effects (cf. Figures 3 and 5). It suggests that 
model optimization can greatly reduce or per-
haps even resolve the problems with conven-
tional analytic inference. To further examine 
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this possibility, we ran another set of Monte 
Carlo trials, evaluating the coverage rate of 
analytic confidence intervals for specifica-
tions optimized according to the above proce-
dure. We did so for the same experimental 
condition used to evaluate the performance of 
the non-parametric bootstrap (15 countries, 
moderate compositional differences [15 per-
cent of variance between clusters], three con-
trols with varying slopes, each with a standard 
deviation of 1).19 The actual coverage rate of 
analytic confidence intervals for the opti-
mized specifications across 10,000 Monte 
Carlo trials was 92.00 (cf. the rightmost bar in 
Figure 5). This is a substantial improvement 
over the coverage rate of analytic confidence 
intervals for ME-Correct (85.67 percent), but 
it still falls short of the nominal level. Until 
this issue has been examined more compre-
hensively, we recommend that researchers 
base their final inference on bootstrapped 
confidence intervals.

Overall, our illustrative analyses of ESS 
data suggest that eschewing the predominant 
invariant model for a more flexible specifica-
tion can substantially improve the precision of 
estimated context effects in real-life settings. 

But to make the most of their data, researchers 
need to find the right balance between com-
plexity and parsimony. There may of course 
be room for improvement, but our slightly 
adapted version of BKVB’s optimization pro-
cedure provides a transparent and principled 
algorithm for achieving this goal.

Conclusions
Thanks to a long-standing interest in context 
effects, ever-improving data availability, and 
methodological advances, quantitative analy-
sis of multilevel data has become a staple of 
applied work in sociology. Our review of cur-
rent multilevel modeling practices in leading 
sociology journals shows that analysts rarely 
allow the coefficients of lower-level controls 
to vary across clusters, even when they deal 
with very heterogeneous ones such as coun-
tries. Based on semi-formal reasoning, we 
argued that this “invariant coefficients 
assumption” leads to biased estimates of 
within-cluster relationships and thereby jeop-
ardizes the reliability of estimated context 
effects. Illustrative multilevel analyses using 
data on 28 countries from the European 

Table 4. Precision of Context Effect Estimates Relative to Invariant Specification: Optimized 
Mixed-Effects Model

Outcome Context Effect

Remaining 
Random 
Effects

Remaining 
Correlations DBootstrap CI DAnalytic CI

Direct Context Effect (DCE)
Generalized trust Direct HDI effect 4/7 1/6 –2.24 –12.54
Homophobia Direct HDI effect 5/7 2/10 .24 –.63
Xenophobia Direct HDI effect 5/7 2/10 –13.85 –11.70
Fear of crime Direct HDI effect 4/7 1/6 –15.08 –10.29
ISEI Direct HDI effect 5/7 2/10 –11.40 –9.53

Cross-Level Interaction (CLI)
Generalized trust Interaction effect 3/7 1/3 –3.83 1.79
Homophobia Interaction effect 5/7 4/10 –.04 –13.70
Xenophobia Interaction effect 5/7 4/10 –2.46 –15.49
Fear of crime Interaction effect 4/7 1/6 4.36 –3.97
ISEI Interaction effect 5/7 6/10 –2.19 –7.71
Generalized trust Main HDI effect 3/7 1/3 .48 .17
Homophobia Main HDI effect 5/7 4/10 –1.45 –6.42
Xenophobia Main HDI effect 5/7 4/10 –10.40 –10.75
Fear of crime Main HDI effect 4/7 1/6 –11.51 –8.96
ISEI Main HDI effect 5/7 6/10 –26.36 –21.95
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Social Survey demonstrate that varying coef-
ficients are a real concern: for five outcome 
variables, we found that cross-country varia-
tion in the effects of standard controls, such 
as gender, age, and level of education, is typi-
cally substantial.

We explored the consequences of the invar-
iant coefficients assumption using Monte 
Carlo simulations. Our results show that erro-
neously assuming the coefficients of lower-
level predictors to be invariant across clusters 
can markedly reduce the precision of param-
eter estimates for both direct context effects 
and cross-level interactions. By the same 
token, models that do allow for varying effects 
achieve greater precision and statistical power, 
that is, they have better chances of rejecting 
the null hypotheses of no effect when it is in 
fact wrong. The Monte Carlo analysis shows 
that the consequences of neglecting cross-
cluster heterogeneity are particularly severe 
when the variation of coefficients is substan-
tial (i.e., when there are many lower-level 
variables whose effects vary or when the vari-
ability of effects is high), when clusters differ 
markedly in terms of their composition with 
respect to lower-level variables (direct context 
effects only), and when there are few clusters. 
These conditions are typical of country- 
comparative studies, where concerns about 
precision are also most salient because so few 
cases are available for identifying the contex-
tual effects of interest.

OLS with conventional cluster-robust 
standard errors delivered the poorest perfor-
mance in the Monte Carlo simulations, in 
terms of both precision and inference. Two-
step estimation generally produced accurate 
statistical inference. It also achieved relatively 
high precision when clusters were large (as 
they typically are in country comparisons) and 
when there was substantial heterogeneity in 
the effects of controls. The predominant model 
in applied sociological research, a mixed 
model assuming the effects of all lower-level 
control variables to be invariant across clus-
ters, achieved good results overall, generally 
producing slightly more precise estimates of 
context effects than did OLS with cluster-
robust standard errors. In contrast to some 

recent analyses (Bryan and Jenkins 2016; 
Stegmueller 2013), our analysis shows that it 
provides accurate statistical inference for con-
text effects when certain guidelines are fol-
lowed (for details, see Elff et al. 2016).

The most important result of the Monte 
Carlo analysis, however, is that a more flexi-
ble mixed-effects specification with random 
slopes on lower-level variables whose effects 
actually vary across clusters produced more 
precise estimates of context effects than did 
the invariant alternative. A drawback of flex-
ible mixed-effects models is that conven-
tional statistical inference tends to be 
anticonservative: analytic confidence inter-
vals are too narrow and p-values too optimis-
tic. Fortunately, additional simulation 
evidence suggests that this problem can be 
overcome by using a non-parametric cluster 
bootstrap. Moreover, our empirical illustra-
tions and further Monte Carlo analysis sug-
gest that overparameterization is the primary 
reason why conventional analytic inference 
for complex models falls short. Careful model 
selection should therefore attenuate the prob-
lem, but to be on the safe side we recommend 
that practitioners use bootstrapping for their 
final inferences.

Our empirical illustrations using ESS data 
are consistent with the simulation results and 
suggest that practitioners would be well-
advised to “[c]onsider all coefficients as poten-
tially varying” (Gelman and Hill 2007:549). 
Yet, this does not mean one should blindly 
assume that all coefficients vary. Small upper-
level samples will often provide insufficient 
information for estimating the maximally flex-
ible mixed-effects specification with random 
slopes on all lower-level controls. Analysts 
therefore need to find a random-effects specifi-
cation that captures the most important aspects 
of cross-cluster heterogeneity while avoiding 
overparameterization. This task of model 
selection is not unique to the present setting, 
and many practitioners will already be profi-
cient in it. In particular, one can rely on several 
well-established tools, such as regression diag-
nostics and information criteria in the search 
for an optimal specification. We have outlined, 
and examined the performance of, an 
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optimization procedure based on recent work 
by Bates, Kliegl, and colleagues (2015). The 
method uses standard tools for model compari-
son—in our case, BIC worked best—but also 
involves a check that is more generic to the 
task at hand, namely that of subjecting the 
random-effects structure to a principal compo-
nent analysis to identify overparameterization. 
The resulting optimized specifications com-
pare rather favorably with the invariant alter-
native that predominates in applied research. 
In our illustrative analyses, the increase in 
precision achieved by the optimized models is 
more modest than in the Monte Carlo simula-
tions. Nevertheless, achieving gains of compa-
rable magnitude (e.g., a 10 percent increase) 
without improving the model would require 
substantially larger samples at the cluster 
level—something that practitioners frequently 
yearn for.

Putting all our arguments and findings in a 
nutshell, we make the following recommenda-
tions: consider all coefficients as potentially 
varying, but find the right balance between 
flexibility and parsimony by using a princi-
pled optimization routine, and finally boot-
strap the standard errors to be on the safe side.

Despite its promising results and apparently 
clear message, our study has limitations that 
should be addressed in future research. The out-
lined strategy for model selection may not yet be 
the ideal one. The resulting models often achieve 
substantial precision gains, but they do not do so 
in all illustrative analyses. Furthermore, even 
though imposing constraints on the correlations 
among random effects is an effective means of 
simplifying the random-effects structure, it intro-
duces a risk that estimated context effects 
become sensitive to the scaling of lower-level 
controls. Centering and weighted effects coding 
of predictors alleviate this problem, yet careful 
analysis remains imperative. It is also important 
to note that the primary criterion in the strategy 
outlined here is overall model fit. Yet, an ideal 
selection strategy for the kinds of research ques-
tions we focused on should perhaps put special 
emphasis on the estimation of context effects. 
Our analysis suggests several aspects that might 
be central in such an approach: for example, 

varying coefficients on a lower-level predictor 
should not necessarily matter much if that pre-
dictor shows little cross-cluster compositional 
differences (direct-context-effects case) or if it is 
hardly correlated with the lower-level variables 
whose varying coefficients we seek to explain 
using cross-level interactions. Whatever the 
approach taken, we believe that researchers 
should provide a clear rationale for their specifi-
cation choices. Indeed, one benefit of a transpar-
ent and principled algorithm is that it reduces the 
risk of cherry-picking (e.g., arbitrarily choosing 
specifications that produce particularly strong 
effects).

Further obvious questions for future 
research are how the different approaches per-
form when the data have a more complex 
structure and when heterogeneity in the effects 
of controls takes more pernicious forms. For 
example, many cross-national surveys such as 
the ESS now cover several waves, leading to 
the diffusion of more complex multilevel 
models with multiple (cross-classified) levels 
of nesting (Schmidt-Catran and Fairbrother 
2016). It may be worthwhile to consider situ-
ations where cluster differences in the effects 
of controls are systematically related to a con-
text variable of interest. Another possible 
extension is to repeat the analysis for non-
continuous outcomes, although we would 
expect results to be qualitatively similar.

The central insight from our study is that 
heterogeneity in the effects of lower-level vari-
ables is a crucial possibility to consider in 
multilevel settings. Our semi-formal reason-
ing, Monte Carlo simulation evidence, and 
several illustrative multilevel analyses all dem-
onstrate that, even in its most benign forms, it 
can depress the ability of predominant estima-
tors to detect and precisely quantify context 
effects. Questions about context effects rank 
among the most important ones that sociolo-
gists study, yet they are often difficult to 
answer because so few clusters are available—
as, for example, in country comparisons that 
seek to identify policy effects. Our analysis 
suggests that we need to reassess our empirical 
strategies to ensure we make optimal use of the 
potential offered by multilevel data.
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Notes
  1. 	 We did not count analyses of vignettes (factorial 

surveys) or panel analyses as multilevel studies, 
although such data also have a clustered struc-
ture and are often analyzed using mixed-effects  
models.

  2. 	 Even counting sets of dummies as one variable, the 
average study still included 8.41 lower-level predictors.

  3. 	 For the derivation, see Part B of the online supplement.
  4. 	 The lower-level predictors x1ig to x6ig are multi-

variate normal with standard deviations of one, and 
correlation matrix Σ. In the setting with no compo-
sitional differences (see below) all predictors have 
means of zero. To ensure that our findings do not 
hinge on the (arbitrary) choice of a specific cor-
relation matrix, each simulation run generates Σ 
randomly using a generalization of the algorithm 
proposed by Joe (2006). The pairwise correlations 
in Σ are positive and negative with equal probabil-
ity. Their average strength (in absolute terms) is .3.

  5. 	 Because the random effects are (multivariate) 
normal, the middle 90 percent of cluster-specific 
effects fall into the range .67 to 1.33 when we set 
the standard deviation to .2. When we set it to 1, the 
90 percent range runs from –.64 to 2.64. As with the 
lower-level predictors, we generate random correla-
tion matrices using a generalization of the algorithm 
by Joe (2006). The average absolute correlation 
between the random effects is .33. In Part E of 
the online supplement we show simulation results 
based on a lower average absolute correlation of .2.

  6. 	 Technically, we implement compositional differ-
ences by adding random cluster-specific constants 
to the lower-level predictors. The constants are 
uncorrelated across predictors and normally distrib-
uted with means of zero. We control the extent of 
compositional differences by changing the standard 
deviation of the cluster-specific constants.

  7. 	 This approach seeks to improve precision by 
weighting down unreliable estimates in the cluster-
level regression. Additional analyses show that 
using OLS in both steps yields similar results.

  8. 	 Further simulations indeed show that the RMSE of 
ME-Correct hardly declines at all with the number 

of random slopes when we use a DGP with lower 
correlations among the random effects (see Figures 
E.1.1 and E.1.2 in the online supplement).

  9. 	 The one qualification to this statement is that in 
the country scenarios high levels of heterogeneity 
(cross-cluster standard deviation of 1) appear to 
exacerbate coverage when all five lower-level con-
trols have varying effects.

10. 	 We calculated this by multiplying the RMSE of 
ME-Correct (16.4 percent) with the 90th percentile 
of the normal distribution (ca. 1.282).

11. 	 As before, actual coverage rates of analytic confi-
dence intervals are based on 10,000 replications.

12. 	 Except for Kosovo where we detected problems 
with one of the lower-level variables (marital sta-
tus), we include all countries that participated in 
round 6 of the ESS.

13. 	 Additional analyses (available upon request) show 
that the extent of cross-national heterogeneity in the 
coefficients of the six predictors is broadly similar if 
we calculate it using mixed-effects models that con-
strain the correlations between the random effects 
to zero or using country-specific linear regressions 
(i.e., the first step of two-step estimation).

14. 	 The invariant specification includes only a random 
intercept in the DCE case and a random intercept 
as well as a random slope on being highly educated 
in the CLI case. The maximally flexible mixed-
effects model includes a random intercept and ran-
dom slopes on all six lower-level predictors in both 
cases. The covariances between the random effects 
are not constrained and estimated from the data. The 
two-step estimates are based on running country-
specific regressions in a first step and then regress-
ing the coefficient estimates for the high-education 
indicator on the HDI (as before, we consider this 
approach only for the cross-level interaction term).

15. 	 The measure is directly comparable to the reduc-
tion in RMSE (or standard error) emphasized in 
the discussion of the Monte Carlo evidence. To see 
this, note that a standard two-sided 95 percent con-
fidence interval based on the normal approxima-
tion has a width of approximately (2 × 1.96 × SE). 
It follows immediately that reducing the SE by a 
constant factor reduces the width of the confidence 
interval by the same factor.

16. 	 We never remove the random slope on a lower-level 
predictor that is part of a cross-level interaction, 
because the inclusion of this random slope is crucial 
for correct inference.

17. 	 BKVB focus on likelihood ratio tests, taking an 
insignificant test result as evidence that the simpler 
specification is preferable. In our case, this crite-
rion is of little use because, given our sample size 
of roughly 50,000 individuals, likelihood ratio tests 
practically always favor the more complex specifi-
cation. Another obvious option would be to consider 
changes in AIC. AIC tends to penalize additional 
parameters less harshly than BIC, by a factor of 2 
rather than log(n), where n is the total sample size 
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(Müller, Scealy, and Welsh 2013). In fact, we also 
conducted the optimization routine using the AIC 
criterion. Overall, the resulting models performed 
worse than those based on BIC (results available 
upon request), so we report only the latter ones in 
the interest of brevity.

18. 	 In R, the PCA of the random-effects matrix is 
implemented in the rePCA function of the RePsy 
chLing package available at (https://github.com/
dmbates/RePsychLing). We have written a Stata 
program that implements the method for two-level 
hierarchical models. It is available for download 
with the online supplements.

19. 	 To conduct these simulations, we had to automate 
the optimization procedure. To simplify and speed 
up the process, we had the algorithm start from the 
random-effects specification for ME-Correct, that 
is, from a specification with a random intercept 
and random slopes on the three lower-level predic-
tors whose effects actually vary in the DGP for the 
experimental condition. The effects of the remain-
ing lower-level variables were treated as fixed from 
the outset. We thus used information that would not 
be available in an actual application, but the ran-
dom slopes on the non-varying predictors would 
usually have been pruned during the optimization 
procedure anyway. The algorithm then proceeded 
with the first step of the optimization procedure as 
described earlier, eliminating or retaining random 
slope terms based on changes in BIC and the results 
of the PCA. In the second optimization step (elimi-
nation of correlations), the algorithm considered all 
possible specifications and chose the one with the 
lowest BIC value.
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