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ABSTRACT 

Delivery companies offer same-day delivery (SDD) 
in more and more cities. SDD defines a business 
model in which a customer order is fulfilled the same 
day it is issued. To gain a competitive advantage, 
companies start offering increasingly narrower 
delivery deadlines of a few hours length. Currently, 
many companies struggle to cost-efficiently maintain 
a network of depots and vehicles to deliver the orders 
within the promised delivery deadlines. In this paper, 
we quantify the impact of delivery deadlines on the 
delivery costs in a simulation study. We further 
analyze the impact of delivery deadlines to the design 
of the delivery network. To this end, we extend an 
existing dynamic routing method from the literature. 
In our computational case study of the Iowa City 
area, we show that the costs and the network-layout 
for SDD significantly depend on the delivery 
deadlines and that an extension of the deadline by 
only one hour may reduce delivery costs 
substantially. 
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1. INTRODUCTION

Recent growth in same-day delivery (SDD) has led to 
significant challenges for logistics service providers 
and to an increasing stream of research. In SDD, 
customers order goods online and expect a delivery 
within the day at low or no costs (Wahba 2015). To 
reduce costs and delivery times, major e-commerce 
companies have started to acquire significant parts of 
the delivery supply-chain (Webb 2016, Rao 2015, 
Shao and Ruwitch 2016). In the final step of these 
supply-chains, the goods are delivered from 

warehouses in the city to the customers. This last-
mile delivery within the city is highly expensive and 
comprises more than half of the entire delivery costs 
(Bernau et al. 2016). Thus, service providers struggle 
to perform SDD cost-efficiently (Howland 2016). 
One major driver of the high last-mile delivery costs 
is that deliveries can usually not be combined to large 
batches and customers need to be served individually. 
This problem is amplified for SDD because of two 
reasons: First, customers order during the day with 
delivery vehicles already on the road. To serve these 
orders, a vehicle needs to return to the depot several 
times over the day (Voccia et al. 2017). Thus, on 
each trip, only a few customers are served. Another, 
even more challenging reason for high delivery costs 
in SDD is that delivery deadlines are promised to the 
customers (Ram 2015). Delivery deadlines are a 
powerful tool to bridge the gap of instant gratification 
compared to brick and mortar shopping (Anderson 
2015). Thus, narrow delivery deadlines have become 
an important marketing instrument recently. In 
Berlin, for example, Amazon started in spring 2016 
to offer 2 hours delivery deadlines (Birger 2016). 
One month later, a local service provider decreased 
delivery deadlines to 90 minutes (Grösch 2016). 
Another month later, Amazon reacted by offering 60 
minutes delivery deadlines (Fuest et al. 2016). 
Still, narrow deadlines come at a price. It has become 
common knowledge that temporal commitments in 
delivery routing can increase service costs 
significantly. Punakivi and Saranen (2001) and 
Ehmke and Campbell (2014) show how time-
windows result in higher routing costs and/or a lower 
number of customers served. The purpose of this 
research is to quantify the impact of delivery 
deadlines on the costs of SDD and the layout of the 
SDD-network. To this end, we present a simulation 
study for the same-day delivery problem with soft 
deadlines (SDDPSD), a common SDD business 
model. In the SDDPSD, a fleet of vehicles and depots 
are given. The vehicles start and end their tours at 
one of the depots. During an order phase, customers 
order goods stochastically at arbitrary locations in the 
service area. Each order is picked up at one of the 
depots and dynamically delivered to the customer by 
a vehicle. Each delivery has a deadline defined by the 
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time of the order and the allowed time for delivery. In 
case the order is not delivered before this deadline, 
the customer experiences a delay. The objective of 
the dispatcher is to utilize the given resources to 
minimize the expected average delay per customer 
delivery. 
For the SDDPSD, we analyze how deadlines impact 
the delay per customer. We further analyze how 
many orders can be served by a limited fleet given a 
specific deadline and determine the numbers of 
depots and/or vehicles as well as the amounts of 
working time required to fulfill a certain service level 
without significant delay. To this end, we extend a 
dynamic routing policy by Ulmer et al. (2016a) to the 
specification of the SDDPSD capturing assignment 
decisions, multiple depots, multiple vehicles, and 
deadlines. For a real-world case study of Iowa City 
and a variety of instance settings, we derive the 
following managerial implications: 
 

1. Delivery deadlines significantly impact the 
number of required vehicles and working time 
to satisfy a certain service level. A delivery 
deadline of 60 minutes may require more than 
twice as many vehicles and working times 
compared to a delivery deadline of 3 or 4 
hours. 

2. Different delivery deadlines require a different 
layout of the delivery network. More specific, 
narrow deadlines demand for a higher density 
of depots in the city. 

3. One key for more efficient SDD is the increase 
in the number of orders per day. This allows 
consolidation and reduces the delivery costs 
per customer significantly. 

 
Our contribution is as follows. With the SDDPSD, 
we analyze an important stochastic dynamic vehicle 
routing problem of high practical relevance. We 
present a new and comprehensive route-based 
Markov decision process (MDP) model formulation 
capturing the dynamism and the stochasticity of the 
problem. For the SDDPSD, we determine a runtime-
efficient dynamic assignment and routing directly 
operating on the MDP’s decision space. We analyze 
our methods in a real-world case study. Our 
structured experimental design and analysis allow 
general statements about the impact of deadlines on 
network layout, routing costs, and fleet size. Finally, 
the SDDPSD is a promising starting point for a 
variety of future research directions. 
This paper is outlined as follows. We present the 
related literature in §2. In §3, we define the SDDPSD 
and model it as Markov decision process. In §4, we 
describe the dynamic assignment and routing policy. 
We present the case study for Iowa City and analyze 
the results in §5. This paper concludes with a 
summary and an outlook in §6. 
 

2. LITERATURE REVIEW 
 
In this section, we present the related literature. Our 
work analyzes the impact of temporal commitment in 
a large-scale same-day delivery routing environment 
and has not yet been studied in the literature. The 
only work directly related to the SDDPSD is 
presented by Voccia et al. (2017). They consider a 
same-day delivery problem with hard deadlines 
and/or TWs. In contrast to the SDDPSD, they allow 
the rejection of customers. To determine assignment 
and routing decisions, they apply the multiple-
scenario approach (MSA) by Bent and Van 
Hentenryck (2004). In each decision point, the MSA 
samples a set of future order requests and determines 
suitable plans based on these samples. Voccia et al. 
(2017) experience average runtimes per decision 
point of several minutes for instance settings with 3 
vehicles and 96 expected orders. A transfer of the 
MSA to real-world size instances of the case study is 
therefore challenging because we often observe 
multiple orders per minute. In their work, Voccia et 
al. (2017) also analyze the impact of delivery 
deadlines and TWs on the algorithm’s performance. 
They observe that evenly spread TWs allow more 
services while TWs late in the day allow more 
flexibility and a better anticipation. Other works 
either consider same-day delivery or the impact of 
temporal commitments such as time-windows (TWs) 
or delivery deadlines on routing costs and/or the 
number of served customers. In the following, we 
present relevant literature from these two domains. 
 
2.1 Same-Day Delivery 
Same-day delivery problems combine dynamic 
vehicle routing problems with stochastic order 
requests and depot returns. For a general overview on 
dynamic vehicle routing, the interested reader in 
referred to Ritzinger et al. (2015). The work on SDD-
problems is limited. Work on SDD with time-
windows is presented by Azi et al. (2012). In their 
problem, customers request during the day and are 
either accepted or rejected. They apply an MSA for 
instance settings up to 5 vehicles and 144 customer 
requests. The time-windows are uniformly distributed 
over the horizon and 60 minutes long. Other work on 
same-day delivery is presented by Klapp et al. (2016) 
and Ulmer et al. (2016a). Both papers present single-
vehicle routing without deadlines. The problem 
presented in Klapp et al. (2016) considers customers 
and depot on a line. They apply an a-priori policy on 
a rolling horizon. This policy is determined by 
mixed-integer programming. Ulmer et al. (2016a) 
analyze the impact of preemptive depot returns on the 
potential to serve customers. To determine which 
customers to serve and when to return to the depot, 
they use value function approximation. To allow 
preemptive returns, they introduce a dynamic routing 
policy based on insertion methods. In this paper, we 
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extend this policy incorporating assignments, 
multiple depots, and delivery deadlines. Another 
paper related to the SDDPSD is presented in Ghiani 
et al. (2009). The authors consider a courier service 
problem, where a fleet of capacitated vehicles 
performs one-to-one pickup and deliveries within a 
city. Each request has a deadline of 45 minutes. They 
use an online sampling procedure to analyze the 
decision’s impact on the near future requests. 
 
2.2 Impact of Temporal Commitment 
The impact of temporal commitments is analyzed in 
many publications considering routing problems with 
TWs. In the following, we present three examples 
from the literature. Punakivi and Saranen (2001) 
compare (static) delivery routing with and without 
TWs. They show that the use of 120 minutes TWs 
increases delivery costs by up to 50%. Campbell and 
Savelsbergh (2005) present a customer acceptance 
problem for attended home delivery. Customers 
request dynamically in a capture phase and can either 
be accepted or rejected. Each customer has a TW. 
Deliveries take place in a separate delivery phase. 
They show that 120 minutes TWs increase profits by 
more than 6% in comparison to 60 minutes TWs. 
Ehmke and Campbell (2014) analyze a similar 
customer acceptance problem but additionally with 
stochastic travel times. The objective is to determine 
customer acceptance decisions avoiding TW 
violations. Ehmke and Campbell (2014) vary the 
length of TWs and state that “longer service time 
windows enable the acceptance of a significantly 
larger number of requests.” More specific, extending 
TWs from 30 minutes to 120 minutes leads to an 
increase in services of more than 15%. 
 
3. PROBLEM DEFINITION 
 
In the following, we define the same-day delivery 
problem with soft deadlines (SDDPSD). Notably, we 
assume the number and locations of depots as well as 
the vehicle fleet as externally given. We briefly 
describe the problem and then present the Markov 
decision process model for the SDDPSD. 
 
3.1 Problem Statement 
In this section, we describe the SDDPSD and 
introduce the according notation. The required 
notation is listed in Table 1. A fleet of 𝑚𝑚 vehicles 
𝑉𝑉 =  {𝑣𝑣1, . . . , 𝑣𝑣𝑚𝑚} delivers goods from a set of 
depots 𝐃𝐃 =  {𝐷𝐷1 . . . ,𝐷𝐷𝑛𝑛} to a set of ordering 
customers 𝐂𝐂 in a service area 𝐴𝐴. The vehicles start 
and end their tours in the first depot 𝐷𝐷1 The orders 
occur during an order phase 𝑇𝑇  =  [0, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚]. Each 
customer 𝐶𝐶 ∈  𝐂𝐂 orders at a point of time 𝑡𝑡(𝐶𝐶)  ∈  𝑇𝑇 
and is unknown beforehand. The point of time and 
location of the customer’s order follows a spatial-
temporal probability distribution. The loading status 
of a customer 𝑙𝑙(𝐶𝐶) is initially not loaded with 

𝑙𝑙(𝐶𝐶)  =  0. The orders can be picked up at any depot 
𝐷𝐷 from the overall set of depots 𝐃𝐃. In case the 
according good is picked up at a depot, the loading 
status changes to loaded, 𝑙𝑙(𝐶𝐶)  =  1. The travel 
durations between customers and/or the depot are 
determined by function 𝑑𝑑(·,·). The loading time at the 
depot is 𝑡𝑡𝐷𝐷. The service time at a customer is 𝑡𝑡𝑠𝑠. The 
allowed time for delivery is τ. The delivery deadline 
𝛿𝛿(𝐶𝐶) of customer 𝐶𝐶 is therefore 𝛿𝛿(𝐶𝐶)  =  𝑡𝑡(𝐶𝐶)  +  𝜏𝜏. 
Over the day, the dispatcher maintains and updates a 
planned route 𝜃𝜃(𝑣𝑣) for each vehicle 𝑣𝑣. A planned 
route 𝜃𝜃 is a sequence of ℎ customers 𝐶𝐶𝑖𝑖𝜃𝜃 and 𝑝𝑝 depot 
visits 𝐷𝐷𝑑𝑑𝑗𝑗

𝜃𝜃  with according arrival times 𝑎𝑎(𝐶𝐶𝑖𝑖𝜃𝜃) and 
𝑎𝑎(𝐷𝐷𝑑𝑑𝑗𝑗

𝜃𝜃 ) ending in the depot: 
 
𝜃𝜃 = ((𝐶𝐶1𝜃𝜃 , 𝑎𝑎(𝐶𝐶1𝜃𝜃)), … , (𝐶𝐶𝑙𝑙𝜃𝜃 ,𝑎𝑎(𝐶𝐶𝑙𝑙𝜃𝜃), (𝐷𝐷𝑑𝑑1

𝜃𝜃 , 𝑎𝑎(𝐷𝐷𝑑𝑑1
𝜃𝜃 )), 

(𝐶𝐶𝑙𝑙+1𝜃𝜃 , a(𝐶𝐶𝑙𝑙+1𝜃𝜃 )),…, (𝐶𝐶ℎ𝜃𝜃, 𝑎𝑎(𝐶𝐶ℎ𝜃𝜃)), (𝐷𝐷𝑑𝑑𝑝𝑝
𝜃𝜃 ,a(𝐷𝐷𝑑𝑑𝑝𝑝

𝜃𝜃 ))). 
 
The first entry of a route 𝜃𝜃 represents the current 
location or the next location a vehicle will visit, in 
case it is currently on the road. A route may therefore 
also start in the depot. Because drivers and dispatcher 
usually communicate via mobile phone, diversion 
from the current destination is not permitted. 
Notation 𝐶𝐶𝑖𝑖𝜃𝜃 indicates the 𝑖𝑖𝑡𝑡ℎ customer in tour 𝜃𝜃. The 
index 𝑑𝑑𝑗𝑗 in 𝐷𝐷𝑑𝑑𝑗𝑗  indicates the visit of Depot 𝐷𝐷𝑑𝑑𝑗𝑗𝜖𝜖 𝐃𝐃 . 
Index 𝑗𝑗 = 1 represents the first planned visit of a 
depot. Index 𝑗𝑗 =  𝑝𝑝 represents the last planned visit. 
The last depot visited is 𝐷𝐷1 and 𝑑𝑑𝑝𝑝 = 1. The routing 𝛩𝛩 
is the overall set of routes, 𝛩𝛩 =  (𝜃𝜃(𝑣𝑣1), . . . ,𝜃𝜃(𝑣𝑣𝑚𝑚)). 
At time of a new order, the provider determines a 
new routing 𝛩𝛩𝑥𝑥 to integrate the new order. After the 
update, the vehicles proceed with the routing until the 
next customer orders. Each routing can be evaluated 
with respect to its planned delay ∆(𝛩𝛩) as follows: 

Δ(𝜃𝜃) = � � max�0, 𝑎𝑎(𝐶𝐶) − 𝛿𝛿(𝐶𝐶)�.
𝐶𝐶∈𝜃𝜃(𝑣𝑣)𝑣𝑣∈𝑉𝑉

 

 
The planned delay is the sum of the individual delays 
per customer 𝐶𝐶, calculated by the difference between 
arrival time and delivery deadline, max (0, 𝑎𝑎(𝐶𝐶)  −
 𝛿𝛿(𝐶𝐶)). The objective of the SDDPSD is to minimize 
the expected sum of delay over all customers. 
 
3.2 Route-Based Markov Decision Process 
In the following, we model the SDDPSD as a 
Markov decision process (MDP). To incorporate the 
routing component, we draw on a route-based MDP 
formulation (Ulmer et al. 2016b). A route-based 
MDP extends a conventional MDP by adding 
planned routes in the state and decision space. The 
use of a route-based MDP enables our heuristic to 
operate directly on the routing-component of the 
MDP. A decision point 𝑘𝑘 =  0, . . . ,𝐾𝐾 occurs when a 
customer orders delivery. The number of decision 
points 𝐾𝐾 is therefore a random variable. 
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Table 1: Problem Notation 

 
 
A state 𝑆𝑆𝑘𝑘 in a decision point 𝑘𝑘 contains the point of 
time 𝑡𝑡𝑘𝑘  ∈  𝑇𝑇, the currently planned routes 𝛩𝛩𝑘𝑘  =
 (𝜃𝜃𝑘𝑘 (𝑣𝑣1), . . . ,𝜃𝜃𝑘𝑘 (𝑣𝑣𝑚𝑚)), the customers including their 
delivery deadlines and their loading statuses 
summarized in 
 
𝐂𝐂𝑘𝑘  =   ((𝐶𝐶𝑘𝑘1, 𝑙𝑙(𝐶𝐶𝑘𝑘1), 𝛿𝛿(𝐶𝐶𝑘𝑘1)), . . . , (𝐶𝐶𝑘𝑘𝑛𝑛, 𝑙𝑙(𝐶𝐶𝑘𝑘𝑛𝑛), 𝛿𝛿(𝐶𝐶𝑘𝑘𝑛𝑛))) . 
  
A state further contains the new customer 𝐶𝐶𝑘𝑘. The 
overall state definition is therefore 
  
𝑆𝑆𝑘𝑘  =  (𝑡𝑡𝑘𝑘,𝛩𝛩𝑘𝑘 ,𝐂𝐂𝑘𝑘 ,𝐶𝐶𝑘𝑘). 
 
Decisions  𝑥𝑥𝑘𝑘 ∈ 𝐗𝐗(𝑆𝑆𝑘𝑘)  are made about the routing 
update 𝛩𝛩𝑘𝑘𝑥𝑥. An update is feasible if the following 
conditions hold: The first location and arrival time in 
the updated route are the same as in the original route 
for each vehicle meaning no diversion is allowed. It 
is feasible, if the set of routes contains each customer 
in 𝐶𝐶𝑘𝑘 exactly once, the loaded customers are in the 
same route as before, and unloaded customers are 
only in sequences after a depot visit. Further, one 
route contains 𝐶𝐶𝑘𝑘. Finally, the arrival times reflect 
travel, service, and loading times. The costs 𝑅𝑅 of a 
state 𝑆𝑆𝑘𝑘 and a decision  𝑥𝑥𝑘𝑘 are the marginal increase 
in delay, 𝑅𝑅(𝑆𝑆𝑘𝑘 ,  𝑥𝑥𝑘𝑘  )  =  ∆(𝛩𝛩𝑘𝑘𝑥𝑥)  −  ∆(𝛩𝛩𝑘𝑘  ). After a 
decision is selected, a stochastic transition 𝑤𝑤𝑘𝑘 leads 
to the next decision state. The transition consists of 
the proceeding with the routes 𝛩𝛩𝑘𝑘𝑥𝑥 until a new 
customer, 𝐶𝐶𝑘𝑘+1, orders at time 𝑡𝑡𝑘𝑘+1. The new state 
𝑆𝑆𝑘𝑘+1 contains an update of the routing 𝛩𝛩𝑘𝑘𝑥𝑥 and 
customers 𝐶𝐶𝑘𝑘+1 as follows: 

 
 

1. Services: All customers with arrival time 
𝑎𝑎(𝐶𝐶)  <  𝑡𝑡𝑘𝑘+1 are removed. 

2. Loading: If a route 𝜃𝜃 contains a depot visit 
with 𝑎𝑎(𝐷𝐷)  <  𝑡𝑡𝑘𝑘+1, this depot visit is removed 
and all customers in this route are set to 
loaded. 

3. Idling: If a vehicle served all customers in the 
route, it idles at the depot. The updated route 
only contains the depot with arrival time 
(𝐷𝐷) =  𝑡𝑡𝑘𝑘 , 𝜃𝜃 =  ((𝐷𝐷, 𝑎𝑎(𝐷𝐷))). 
 

The initial state 𝑆𝑆0 is in 𝑡𝑡0 = 0 with 𝐶𝐶0  =  ∅, and 
𝜃𝜃0(𝑣𝑣)  =  (𝐷𝐷1, 0) ∀ 𝑣𝑣 ∈  𝑉𝑉. The first decision point 
𝑘𝑘 =  1 occurs in  𝑡𝑡1  =  𝑡𝑡(𝐶𝐶1) when the first 
customer 𝐶𝐶1 orders. The termination state 𝑆𝑆𝑘𝑘 is 
in  𝑡𝑡𝑘𝑘  =   𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 . Due to the aforementioned 
restrictions of the plans, at that point of time, the 
routes only contain the depot, 𝜃𝜃𝑘𝑘(𝑣𝑣𝑖𝑖)  =  (𝐷𝐷,  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚). 
A solution for the SDDPSD is a decision 
policy    𝜋𝜋 ∈  𝚷𝚷, a sequence of decision rules 
(𝑋𝑋0𝜋𝜋, . . . ,𝑋𝑋𝐾𝐾𝜋𝜋 ) mapping a state 𝑆𝑆𝑘𝑘 to decision        
 𝑥𝑥𝑘𝑘 = 𝑋𝑋𝑘𝑘𝜋𝜋(𝑆𝑆𝑘𝑘). The objective for the SDDPSD is to 
find a policy 𝜋𝜋∗ minimizing the expected costs: 
 
  

𝜋𝜋∗ = argmin
𝜋𝜋∈𝚷𝚷

𝔼𝔼 ��𝑅𝑅(
𝐾𝐾

𝑘𝑘=0

𝑆𝑆𝑘𝑘,𝑋𝑋𝜋𝜋(𝑆𝑆𝑘𝑘))|𝑆𝑆0� . 
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Figure 1: Example for the MDP Model 

 

3.3 Example 
In the following, we give an example of the MDP. 
Figure 1 shows a decision state on the left and a 
potential decision on the right. The current decision 
point is 𝑘𝑘 =  7 where the 7th customer orders. The 
current point of time is 𝑡𝑡7  =  120. For the purpose of 
presentation, we assume a Manhattan-style grid and 
travel times for each segment of 10 minutes. Loading 
times at the depot and service times at the customer 
are set to 10 minutes as well. The allowed time per 
delivery is 𝜏𝜏 =  120 minutes. 
The depots are represented by the black squares. The 
example depicts two depots 𝐃𝐃 =  {𝐷𝐷1,𝐷𝐷2}. White 
and black circles indicate customers. White circles 
represent customers with goods not yet loaded to a 
vehicle. Black circles represent customers with goods 
already loaded to a vehicle. The deadline for each 
customer is depicted in the adjacent field. The set of 
customers 𝐂𝐂7 is therefore 
 
𝐂𝐂7 = ((𝐶𝐶1, 1, 180), (𝐶𝐶3, 1, 190), (𝐶𝐶4, 1, 200), 
(𝐶𝐶5, 1, 210), (𝐶𝐶6, 1, 230)).  
 
Customer 𝐶𝐶2 is not part of 𝐂𝐂7. Thus, the customer 
was already served. The new order 𝐶𝐶7 is represented 
by a white circle with a question mark. The deadline 
is 120 + 120 = 240 minutes. For our example, we 
consider two vehicles indicated by the grey circles. 
Each vehicle has a planned route represented by the 
dashed and dotted lines. The first vehicle is on the 
way to serve Customer 3. The plan then determines a 
return to Depot 2 and service of Customers 5 and 6. 
Eventually, the vehicle returns to Depot 1. 
Mathematically, the plan is 
  
𝜃𝜃7(𝑣𝑣1) = ((𝐶𝐶3, 140), (𝐷𝐷2, 180), (𝐶𝐶5, 210), 
(𝐶𝐶6, 240), (𝐷𝐷1, 270)). 
 
The second vehicle is currently on its way to 
Customer 1. The current plan determines Vehicle 2 to 
then visit Customer 4 and to return to Depot 1 
afterwards. The plan formulation for the second 
vehicle is therefore 
 
𝜃𝜃7(𝑣𝑣1) = ((𝐶𝐶1, 140), (𝐶𝐶4, 180), (𝐷𝐷1, 210)). 

 
The state is 
 

𝑆𝑆7  =  (𝑡𝑡7, (𝜃𝜃7(𝑣𝑣1),𝜃𝜃7(𝑣𝑣2)),𝐂𝐂7,𝐶𝐶7). 
 
The current delay of routing 𝛩𝛩7 is ∆(𝛩𝛩7) = 10 
minutes because the planned arrival 𝑎𝑎(𝐶𝐶6) =  240 at 
Customer 6 is 10 minutes after the deadline 𝛿𝛿(𝐶𝐶6)  =
 230. 
Decisions are now made about the assignment of the 
customer and the according update of the routing. A 
potential decision 𝑥𝑥7 is shown in the center panel of 
Figure 1. Decision 𝑥𝑥7 assigns Customer 7 to Vehicle 
2 and schedules a preemptive depot return before the 
visit of Customer 4. As later in our solution method, 
the decision maintains the sequence of existing 
customers and uses an insertion method to integrate 
𝐶𝐶7 and the depot return in the route of Vehicle 2, 
𝜃𝜃7(𝑣𝑣2). Route 𝜃𝜃7(𝑣𝑣1) remains unaltered. The updated 
routing is 
 
𝛩𝛩7𝑥𝑥 = (𝜃𝜃7(𝑣𝑣1), ((𝐶𝐶1, 140), (𝐷𝐷1 , 180), (𝐶𝐶4, 210), 
(𝐶𝐶7, 240), (𝐷𝐷1, 290))). 
 
The delay of the routing update 𝛩𝛩7𝑥𝑥 is ∆(𝛩𝛩7𝑥𝑥) = 20 
because Customer 4 is now visited 10 minutes after 
the deadline. The costs are ten: 𝑅𝑅(𝑆𝑆7, 𝑥𝑥7) = ∆(𝛩𝛩7𝑥𝑥) −
∆(𝛩𝛩7) = 20 − 10. The vehicles now follow routing 
𝛩𝛩7𝑥𝑥 until a new customer orders delivery. 
 
4. DYNAMIC ASSIGNMENT AND ROUTING 
POLICY 
 
Decision making for the SDDPSD is complex 
because vehicles are required to return to the depot to 
load the good for a new order. Further, because 
vehicles are routed in real-time, the calculation time 
accessible for decision making is highly limited. We 
therefore apply an assignment and routing heuristic 
inspired by practice. The heuristic allows preemptive 
depot visits to pick up goods for new customers in 
case a depot is nearby. The original heuristic was 
introduced in Ulmer et al. (2016a). We extend the 
policy to integrate a fleet of vehicles, multiple depots, 
and delivery deadlines.     
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Figure 2: Example for the Dynamic Assignment and Routing Policy 

4.1 Functionality 
The main idea of the policy is to maintain the current 
routing and only change the routing for the vehicle 
the new order is assigned to. To this end, the policy 
iterates through the set of routes, hypothetically 
inserts the customer (and depot return), and measures 
the resulting costs, i.e., sum of marginal increase in 
delay for each customer in the route. The policy then 
selects the tour with minimal costs to insert the new 
customer. In case of several tours with identical 
costs, the algorithm selects the tour leading to the 
lowest marginal increase in tour duration. 
The procedure is shown for the aforementioned 
example in Figure 2. On the left, the decision state is 
shown. For the example, we only consider Vehicle 2, 
but the algorithm conducts the identical procedure for 
Vehicle 1. First, the algorithm removes any depot 
return between the next location of the vehicle, 
Customer 1, and the final depot return. In the 
example, no such depot return was previously 
scheduled. Thus, no depot return is removed. In the 
next step, the new order, Customer 7, is inserted in 
the resulting route by means of cheapest insertion. 
This is shown in the center of Figure 2. Customer 7 is 
inserted between Customer 4 and the final depot 
return.  
The resulting route is not feasible because a depot 
return must be scheduled before Customer 7 can be 
served. To this end, the algorithm iterates through all 
depots, hypothetically inserts a depot by means of 
cheapest insertion, and inserts the depot with minimal 
extension of the route. This is shown on the right of 
Figure 2. Depot 1 is inserted between Customer 1 and 
Customer 4. Notably, Vehicle 2 performs a 
preemptive return to the depot and serves Customer 4 
afterwards even though the good for Customer 4 is 
already loaded on the vehicle. 
From a route-based MDP-perspective, the heuristic 
works on a restricted policy class due to the insertion 
methods and selects the routing update leading to the 
minimal immediate costs. Thus, the policy operates 
on the first term of the (route-based) Bellman 
Equation and is therefore myopic with respect to 
future developments. 

 

4.2 Algorithm 
In Algorithm 1, we present the algorithmic procedure 
of our policy.  The algorithm starts with a current 
routing 𝛩𝛩 and the new order 𝐶𝐶 and provides an 
updated routing 𝛩𝛩∗. The algorithm iterates through all 
routes and compares the minimal costs “mincosts” 
and minimal increase in duration “mininsert”, both 
set to a large number initially. For each route 𝜃𝜃, the 
algorithm generates a candidate route 𝜃𝜃� by means of 
insertion procedures. To this end, the algorithm first 
removes any depot return except the last one. Due to 
the structure of this algorithm, there is at most one 
depot return to remove. In the candidate route 
without the depot, the new customer is inserted by 
means of cheapest insertion with function 
CheapestInsertion(𝜃𝜃�,𝐶𝐶). This means that the 
customer is inserted in the position of the tour leading 
to the smallest increase in travel duration 
(Rosenkrantz et al. 1974). 
To allow feasibility, a depot return needs to be 
inserted in 𝜃𝜃�. This return must be scheduled before 
the first not loaded customer in the route. To this end, 
the algorithm determines the position of this 
customer by using the variable “loaded”. With 
function DepotInsertion(𝜃𝜃�, loaded), a depot 𝐷𝐷 ∈  𝐃𝐃 
is inserted in the subroute between next/current 
destination and first unloaded customer. To this end, 
the algorithm iterates through all depots and 
hypothetically inserts the depot in the subroute by 
means of cheapest insertion. The depot with the 
smallest extension of the tour duration is inserted. 
The delay of the resulting candidate route is then 
determined by Delay(𝜃𝜃�) and compared to the already 
existing delay of tour θ. Analogously, the increase in 
tour duration is calculated by function Duration(𝜃𝜃�). 
In case the costs are smaller than the existing solution 
or equal but the increase in duration is smaller, the 
best found solution is updated. The update function 
Update(𝛩𝛩,𝜃𝜃,𝜃𝜃�) removes θ from the routing and 
replaces it with 𝜃𝜃�. Eventually, the algorithm returns 
the routing 𝛩𝛩∗ with smallest costs.  
We implement the algorithm in Java. We run the tests 
on Windows Server 2008 R2, 64 bit, with Intel-Xeon 
E7-4830@2.13GHz, 64 cores, and 128GB RAM. The 
runtimes per decision point are neglectable. 
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5. CASE STUDY 

 
In this section, we present the computational 
evaluation for the Iowa City case study. We first 
define the instances differing in number of depots, 
deadlines, and number of orders in §5.1. We then 
define the service level in §5.2 and briefly describe 

how suitable depot locations are determined in §5.3. 
In our analysis, we examine the following questions: 
 
§5.4: How does the average delay per customer 
develop for different deadlines and a fixed number of 
depots, orders, and vehicles? 
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§5.5: How many orders can be served for a specific 
deadline with a sufficient service level, meaning 
services without “significant” delays? 
 
§5.6: How many vehicles are required to achieve a 
sufficient service level per instance setting given a 
fixed number of expected orders? 
 
§5.7: How much working time is required to achieve 
a sufficient service level given a fixed number of 
expected orders? 

 
5.1 Instances 
In the following, we describe the instance settings. 
We set the order time limit of the order phase to 
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 420 minutes. All orders occur within this 
phase and are served. Thus, the working times per 
vehicle may exceed 420 minutes. We assume travel 
distances as Euclidean multiplied with factor 1.4 to 
represent a street network (Boscoe et al. 2012). The 
travel speed per vehicle is 25 km per hour. The 
service time at a customer is 2 minutes. The loading 
time at the depot is 10 minutes. We draw on 32840 
potential customer locations as presented in Ulmer 
and Thomas (2017). The distribution of customer 
locations is depicted in Figure 3 showing the Iowa 

City area. Each circle represents one customer. For 
the purpose of presentation, we only depict one out of 
20 potential locations in Figure 3. The Iowa City area 
comprises a population of about 100,000 to 150,000 
inhabitants and is therefore exemplary for a medium-
sized US city. The area is split in three regions, 
Coralville in the northwest, University Heights in the 
southwest, and Downtown Iowa City in the east. 
We generate instances with expected numbers of 
orders of 200, 300, 400, 500, and 800. For the 
customer orders, we assume uniformly order 
probabilities for each location and each point of time. 
To this end, we generate the overall number of orders 
with a Poisson-distribution based on the expected 
number of customers. For each customer, we then 
draw the order time in time interval [0,420] and 
customer location with uniform probabilities. For 
each expected number of orders, we generate 1,000 
realizations. We test different delivery deadlines of 
30, 60, 90, 120, 180, and 240 minutes.  We finally 
differentiate instances with a number of depots of 1, 
2, 3, and 5.  We describe the process of determining 
the depot locations in §5.3. Overall, this leads to 24 
different settings. To allow a fair comparison, each 
setting draws on the identical 1,000 aforementioned 
realizations.

  
 

Figure 3: Customer and Depot Locations, Iowa City Area (Map data © 2017 Google)
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5.2 Definition of a Sufficient Service Level 
In the following, we describe the measure to quantify 
a sufficient service level. The measure indicates 
whether a solution avoids “significant” delays. Due 
to the stochastic and dynamic nature of this problem, 
a nearly infinite number of vehicles is required to 
avoid any delay. This is not suitable for practice. 
Thus, we determine a solution to be sufficient if the 
average delay per customer is less than 1 minute over 
the 1,000 realizations. 
 
5.3 Determination of Depot Locations 
To determine suitable depot locations, we consider 
40 potential locations. These locations represent 
commercial houses in the Iowa City area. We 
determine the locations for each deadline by 
enumeration as described in the following: 
For each number of depots (1,2,3,5), we enumerate 
the set of all potential subsets of depots. Each 
potential subset of depots is evaluated by the required 
number of vehicles as defined earlier. For evaluation, 
we generate additional 1,000 realizations. We select 
the subset of locations with the minimal number of 
vehicles 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 needed to reach the service level. To 
this end, we subsequently increase the number of 
vehicles and evaluate the delay until the threshold is 
met. In our computational study, we set the maximal 
number of vehicles to 100. Notably, for a deadline of 
30 minutes and 1 or 2 depots, there were no feasible 
solutions with less than 100 vehicles. 
Since the number of subsets scales fast, we only 
consider instance settings with 400 orders and use the 
same subset of depots for the other expected number 
of customers. The best depot locations for a deadline 
of 120 minutes are depicted in Figure 3. Still, the 
depot locations differ only slightly for different 
deadlines. In Figure 3, the numbers indicate to which 
subset the depot locations belong. As an example, the 
locations for instance settings with three depots are 
indicated with a “3”. 

 
5.4 Average Delay 
In this section, we analyze the delay for a specific 
instance setting. We choose the instance settings with 
an expected number of 400 orders, with 3 depots, and 
10 vehicles. For this instance setting, we calculate the 
average delay per customer. The results are depicted 
in Figure 4. On the x-axis, the delivery deadline is 
shown. On the y-axis, the average delay per customer 
is depicted. We observe a constant increase in delay 
with narrower deadlines. 
Notably, the increase is not linear but rather 
exponential. While the difference between 120 and 
90 minutes is only 15 minutes, the difference 
between 60 and 30 minutes is 42. This difference is 
larger than the difference in deadlines. This indicates 
that the delay for 30 minutes deadlines may be 
smaller when the dispatcher follows the assignment 
and routing decision induced by the 60 minutes 
deadline. This can be explained by the myopic nature 
of the routing and assignment policy. This policy 
prioritizes the minimization of the current costs (or 
delay) and then, in case of similar delay, searches for 
the most efficient routing solution. In case of 30 
minutes deadlines, the algorithm experiences delay in 
many routes and neglects potentially more efficient 
routing with higher immediate delay. This myopic 
decision then impedes the flexibility to integrate 
future orders efficiently. With larger deadlines, we 
observe more decision points, where an assignment 
to several vehicles is possible with zero delay and the 
algorithm is able to pick the most efficient routing. 
This provides more flexibility and results in more 
efficient future integrations of customers. In essence, 
this observation highlights that anticipation of future 
orders to maintain flexibility may be beneficial for 
the SDDPSD. Looking at the results in Figure 4, we 
observe that the delay for 240 minutes deadlines is 
below 1 minute. 

  
Figure 4: Average Delay for 400 Orders and 10 Vehicles 
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Table 2: Maximal Number of Orders Given a Limited 
Number of Vehicles 

 
 
Thus, for this deadline, 10 vehicles are sufficient to 
satisfy the service level defined in §5.2. For business 
models with 30, 60, 90, 120, and 180 minutes 
delivery deadlines, the number of vehicles is not 
sufficient to meet the service level for 400 expected 
orders. For these deadlines, either the number of 
orders needs to be smaller or the number of vehicles 
needs to be larger. In the following two sections, we 
analyze both directions. First, we analyze how many 
orders can be served given a limited fleet. We then 
analyze how many vehicles are required given a 
specific number of expected orders. 
 
5.5 Maximal Number of Orders given a Limited 
Fleet 
In this section, we analyze how many orders we can 
serve with a specific number of vehicles. We select 
the instance settings with 3 depots and set the number 
of vehicles to 5, 10, and 15. We generate instance 
realizations for expected number of customers of 50, 
100, 150, 200, etc. For each number of vehicles and 
deadline, we subsequently increase the number of 
orders by 50 until the average delay per customer 
exceeds one minute. For a delivery deadline of 30 
minutes, not even 50 orders could be served without 
significant delay. Thus, we exclude this deadline 
from this analysis. 
Table 2 shows the results for the number of vehicles 
and deadlines. We observe that the narrow deadlines 
decrease the number of services significantly. As an 
example, for 10 vehicles, a deadline of 4 hours allows 

more than 4 times more services compared to a 
deadline of 60 minutes. Given 15 vehicles, a deadline 
of 240 allows service of twice as many customers as 
a deadline of 120 minutes. We also observe that 
longer deadlines require fewer vehicles to serve the 
same number of orders. As an example, for a 
deadline of 60 minutes, we require 15 vehicles to 
serve 250 customers while for a deadline of 120 
minutes, we only require 10 vehicles to serve the 
same number of customers. 
Based on these results, we finally analyze how the 
number of services per vehicle depends on the 
delivery deadlines. To this end, we calculate the 
average number of services per vehicle per deadline 
and number of vehicles. First, we analyze how many 
orders can be served given a limited fleet. We then 
analyze how many vehicles are required given a 
specific number of expected orders. The results are 
depicted in Figure 5. The x-axis depicts the number 
of vehicles, the y-axis the number of services per 
vehicle. Figure 5 indicates that with longer deadlines, 
significantly more customers can be served by a 
vehicle. As an example, for 10 vehicles, only 10 
customers per vehicle can be served given deadlines 
of 60 minutes while 45 customers can be served by a 
vehicle given deadlines of 240 minutes. We further 
observe a scaling effect looking at the number of 
services with different fleet sizes. The more vehicles 
(and orders) we consider, the more services per 
vehicle are possible. We confirm both observations in 
the next section. 
 
5.6 Required Number of Vehicles per Expected 
Number of Orders 
In this section, we analyze how many vehicles are 
required for a specific number of orders, number of 
depots, and delivery deadline. To this end, we 
determine the minimal number of vehicles 𝑉𝑉min 
needed to satisfy the service level. 

 
Figure 5: Average Number of Services per Vehicle 
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Figure 6: Required Number of Vehicles per Number of Orders, Number of Depots, and Delivery Deadline 

 
 
Figure 6 shows the results for the individual instance 
settings. On the global x-axis, the number of depots is 
depicted.  The global y-axis shows the expected 
number of orders.  The local y-axis in every 
subfigure depicts the deadlines. The local x-axis 
depicts the according number of required vehicles 
𝑉𝑉min. 
Generally, we observe tendencies with an increasing 
number of depots and an increasing number of 
orders. The more orders are expected, the higher is 
the required number of vehicles. Notably, we 
experience a consolidation effect meaning that the 
number of vehicles does not increase linearly with 
the number of orders. As an example, for 1 depot, a 
deadline of 120 minutes, and 200 orders, 9 vehicles 
are required while for the same setting and 800 
orders, 25 vehicles are sufficient. Even though we 
experience 4 times more orders, less than 3 times the 
number of vehicles is required. This indicates that 
SDD becomes more efficient, the more customers 
order during the day. Another observation is that the 
number of vehicles decreases with an increasing 
number of depots. Still, for larger delivery deadlines, 
the difference is relatively small. 
As an example, for a deadline of 120 minutes and 
800 orders, the difference in vehicles is only 25-23=2 
considering 1 or 5 depots. The number of depots is 
more important for narrower delivery deadlines such 
as 30 or 60 minutes. In these settings, the addition of 
one depot replaces up to 7 vehicles. Furthermore, for 
a delivery deadline of 30 minutes, a single-depot 
layout may not even be feasible. 
Comparing the delivery deadlines, we experience 
significant differences in the number of required 
vehicles. For the instance setting with 1 depot and 

800 orders, a delivery deadline of 90 minutes requires 
42-30=12 (or about 30%) vehicles less than a 
delivery deadline of 60 minutes. A difference of only 
30 minutes as discussed in the introduction may 
therefore result in a significant difference in delivery 
cost. Furthermore, for this instance setting, setting the 
delivery deadline to 3 hours requires less than half of 
the fleet size compared to a 60 minutes deadline. This 
tendency is even more distinct for delivery deadlines 
of 30 minutes. In essence, we observe that offering 
narrow delivery deadlines comes at a high price with 
respect to infrastructure and fleet size. 
 
5.7 Required Working Times per Expected 
Number of Orders 
Finally, we analyze the according working times 
required to serve the customers. The working times 
reflect the sum of shift durations over the fleet. A 
vehicle’s shift ends in case the following conditions 
hold: 
1. The capture phase ended (𝑡𝑡 ≥  420). 
2. No more orders are assigned to the vehicle. 
3. The vehicle is located at one of the depots. 
 
For deadlines of 4 hours, the last delivery may be 
conducted around 240 minutes after the end of the 
capture phase while for 60 minute deadlines, the last 
delivery may be conducted up to 60 minutes after the 
end of the capture phase. Longer deadlines may 
therefore lead to longer shifts compared to short 
deadlines. 
The working times for the different deadlines are 
depicted in Figure 7. The individual working times 
per instance settings are shown in Table A2 in the 
Appendix. As depicted in Figure 7, we observe 
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Figure 7: Required Working Times per Number of Orders, Number of Depots, and Delivery Deadline 

 
 
similar proportions as with the required number of 
vehicles but the differences are slightly smaller. For 
the aforementioned example of 1 depot and 800 
orders, the delivery deadline of 90 minutes requires 
about 25% less in working times than deadlines of 60 
minutes. A deadline of 3 hours requires only 57% 
and deadlines of 4 hours around 50% of the working 
time compared to 60 minutes deadlines. In essence, 
shorter deadlines require both a larger fleet and, in 
sum, longer working times. 
 
 
6. CONCLUSION 
 
Same-day delivery is a major trend in e-commerce. 
Recently, companies offer customers delivery within 
narrow delivery deadlines. In this paper, we have 
quantified the impact of delivery deadlines on the 
resulting routing costs for the stochastic and dynamic 
same-day delivery problem with soft deadlines. To 
this end, we modeled the SDDPSD as a Markov 
decision process and extended an existing dynamic 
assignment and routing policy. Our case study on the 
Iowa City area shows that narrow delivery deadlines 
lead to substantially higher costs. We have further 
shown that narrow delivery deadlines may require a 
different delivery network, mainly a higher density of 
depots within the city. Finally, we have observed that 
the efficiency of SDD increases with a larger number 
of orders and vehicles. 
Future research may focus on developing solution 
methods for the SDDPSD or on extensions of the 
problem. As our analysis indicates, anticipation of 
future orders in routing and assignment decisions 
may be beneficial. Solution methods may incorporate 

future orders by online simulations as discussed in 
Ghiani et al. (2009) or Voccia et al. (2017). Still, as 
aforementioned, the accessible runtime for the 
SDDPSD is short. Suitable methods may focus on 
transferring the majority of simulation effort in an 
offline learning phase by means of approximate 
dynamic programming. Developing these 
anticipatory policies may be challenging because of 
large fleet size, the complex state and action space, 
and the limited online runtimes. Future research may 
further focus on problems related to the SDDPSD. 
For example, suitable policies may be developed to 
control the depots’ stocks and/or the transport flows 
between the depots. 
Further, research may analyze the impact of pickup 
points where customers pick up their orders 
(Savelsbergh and Van Woensel 2016) as well as 
crowdsourced delivery, where a subset of orders is 
delivered by private drivers (Archetti et al. 2016). 
Another interesting research direction is to offer 
different delivery deadlines to different customers, 
e.g., by dynamic slotting or pricing mechanisms. 
Central customers, which may be integrated in the 
tour efficiently, may be offered narrower delivery 
deadlines than customers located in rural areas. 
Finally, the fleet may be complemented by drones to 
allow efficient service of isolated customers (Agatz et 
al. 2015). Here, the challenge may be to determine 
which customers are served by delivery vehicles and 
which are served by drones. 
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APPENDIX 
 
In the Appendix, we present the individual results. 
Table A1 shows the required number of vehicles per 
instance setting. Table A2 shows the average 
working time per instance setting in minutes. 
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