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Non-Technical Summary 

 
The network estimation based on the causality methodology is used to understand how the risk 
spreads across assets returns. Assuming that the idiosyncratic shocks move according to the 
channel defined by the network based on the Granger causality, the paper investigates if a relation 
by indegree centrality and stocks returns exists and if the risk factor based on the indegree 
explains the idiosyncratic volatility puzzle. The puzzle consists of observing empirically a negative 
relation between portfolios sorted by idiosyncratic volatility with respect to Fama and French (1993) 
at the previous month and the expected stock returns.  

 
This association does not agree with the standard theory because the idiosyncratic risk can be 
diversified away and therefore should not be priced; moreover, it is not clear why the market 
should treat stocks having high idiosyncratic volatility as insurance. The basic idea of the paper is 
that interconnections can interfere with the aggregation mechanisms of idiosyncratic shocks as 
seen in chapter one. In this case, the network does not affect endogenously assets returns as 
previously. The work analyzes if indegree associated with the Granger causality could be seen as 
an exogenous factor. The analysis starts by replicating the results of Ang et al. (2006) and by using 
the same data and the same data period I investigate whether portfolio sorted by the indegree 
measure shows any relationship with stock returns. The study shows that there is a negative 
relationship between portfolios sorted by increasing indegree at previous month and stocks 
returns. This factor is largely negatively correlated with the momentum factor. Although the work 
does not explain the idiosyncratic volatility puzzle, i.e., the omitted factor that makes the alphas 
significant concerning Fama and French (1993) is not imputable to indegree. The second question 
I investigate is if portfolios having stocks with higher idiosyncratic volatility have lower or negative 
exposures on the factor based on indegree. Other centrality measures do not reveal the negative 
relation between stocks returns as indegree does. 



Idiosyncratic volatility puzzle: The role of assets’ interconnections
∗

Roberto C. Panzica †

This version: August 8, 2018

Abstract

The paper investigates the determinants of the idiosyncratic volatility puzzle by allowing
linkages across asset returns. The first contribution of the paper is to show that portfolios
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1 Introduction

Increasing literature investigates the role of the aggregate volatility risk and its relations with

expected stocks returns.1 Ang et al. (2006) find that stocks with higher sensitivity to innova-

tions in aggregate volatility have very low average returns, and at the same time stocks with

high idiosyncratic risk have abysmally low average returns. The authors show that the change

in aggregate volatility is a risk factor with a negative risk premium.2 They supposed that id-

iosyncratic volatility puzzle exists because of the omitted factor aggregate volatility risk. The

finding contradicts the conjecture, stocks having high idiosyncratic risk have lower returns for

reasons not related to the exposition the aggregate volatility risk.

Besides, the empirical evidence contradicts the existing literature because the market should

not expect any reward for holding stocks with higher idiosyncratic volatility since idiosyncratic

risk is not priced, see Ross (1976). This is the reason why this problem is called idiosyncratic

volatility (IVOL) puzzle. The IVOL puzzle is still an open research question because is not clear

why the market needs compensation for taking a risk reducible through the diversification and

moreover it is not yet evident why the market rewards this stocks with lower expected returns.

Hou and Loh (2016) find that many real explanations explain less than 10% of the puzzle.

Although the aggregation of the idiosyncratic shocks has no impact at aggregate level because

they would average out (Lucas (1977)), recent papers questioned this claim, for example, Gabaix

(2011) shows that the individual firm shocks don’t average out if the distribution of firm size is

fat tail; Acemoglu et al. (2012), using network analysis, find that idiosyncratic shocks may lead

to aggregate fluctuations. This paper investigates if the idiosyncratic volatility puzzle can be

explained by considering the linkages among assets that are formally defined by a network. The

network or some measure function of it can be useful to understand if the process of idiosyncratic

shocks aggregation can be seen as a risk factor, endogenously determined and helpful to explain

the puzzle or at least to locate stocks subjected to it.

The network used in this paper is estimated by using by using the methododolgy of Billio

et al. (2012), following the Granger causality test Granger (1969), measuring how much the series

i predicts the series j. In a bivariate framework, the Granger causality methodology can be seen

as a vector autoregressive process (VAR), useful to understand as the risk can spread among the

institutions. The network based on the Granger causality is not symmetric. Thus the number

of links outgoing from a node (outdegree) differs from the number of connections ingoing to that

node (indegree). Since the Granger causality defines a causality relation between two series, the

measure indegree can collect these causality relationships for each stock. Nodes having higher

indegree are shocks aggregator, in other words in network theory they are called ”Authority”

because they are nodes having a lot of ingoing links, see ?. The causality relation in the sense

of Granger is purely an econometric test that differs from economic causality. Therefore an

economic interpretation is challenging. There are two different ways to interpret the Granger

causality test; the first one is related to the shocks: the causality relation in the sense of Granger

1 Jackwerth and Rubinstein (1996), Bakshi et al. (2000), Chernov and Ghysels (2000), Buraschi and Jackwerth
(2001), Coval and Shumway (2001),Pan (2002), Bakshi and Kapadia (2003), Eraker et al. (2003), and Carr and
Wu (2008)

2The reason why the aggregate volatility has negative market price is imputable to hedging against the downside
risk, see Campbell and Hentschel (1992), French et al. (1987) and Bakshi et al. (2003).
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represents a proxy channel for which an idiosyncratic risk can spread to an institution to the

other. For example, an exogenous shock in oil returns could affect the returns of automotive

companies; a Granger causality test can detect this relation. In this framework, the indegree is

the most appropriate way to catch firms more exposed to shocks of others firms. Thus, through

this mechanism, an idiosyncratic shock combined with others can aggregate endogenously using

the channel of the causality link, and go beyond what can be explained by an exogenous factor,

to solve the idiosyncratic volatility puzzle.

The paper investigates if centrality measures associated with the Granger causality (indegree)

could be seen as an exogenous factor. Since the indegree affects the aggregation of idiosyncratic

shocks, the second purpose aims to examine if the factor indegree can explain the IVOL puzzle.

The analysis focuses on the period chosen by Ang et al. (2006).

Another alternative point of view, beyond the causality, is related to the predictability.

To say the series j causes in the sense of Granger the series i, it is equivalent to say that

series j predicts the return of series i at time t+1. In this work the causality inferred by

Granger test is computed pairwise, filtering the common market factor. Thus stocks with higher

indegree are stocks that are more predictable. The first interpretation helps to find a relationship

between the indegree and the idiosyncratic volatility puzzle; the second one helps to understand

why portfolios with stocks having increasing indegree have lower expected returns. This paper

analyzes the relationship between expected returns and indegree based on Granger causality

network for the first time. The reason for which indegree can be a factor and consequently have

an impact on the expected returns is related to the nature of Granger causality: stocks having

higher indegree are more predictable. To consider higher indegree stocks as more predictable

because they are caused or forecasted by different series at time t-1, would imply that these

stocks would be attractive, and the relation with the expected returns will be negative. Albeit

stocks predictability represents a puzzle from market efficiency perspective, to believe according

to empirical findings, that returns stocks are predictable, it means that stocks having higher

indegree based on Granger causality can be expressed through other stocks which could act as

benchmark behaving as another source of information for the investors and therefore reducing

the disagreement as in Cujean and Hasler (2017) or Garcia (2013). Another possible explanation

is that stocks with higher indegree have lower returns because they have a higher idiosyncratic

risk concerning Fama and French (1993). In this way, indegree would capture the hidden factor

of IVOL indirectly. Robustness checks control for this hypothesis finding that portfolios having

stocks with higher indegree have lower IVOL. Given this results, if indegree depended on IVOL

then portfolios sorted by indegree at previous month would have increasing returns, not reducing

as observed.

The relation detected by using Granger causality may reveal the latent interactions among

traders, found by Cohen-Cole et al. (2014), i.e., stocks having higher indegree can be part of the

trader’s strategy which has more influence among others traders. Active fund managers who

build forecasting models typically use autoregressive specification.3

In this paper, I show that portfolios having stocks with higher indegree (3th tercile) have lower

expected return than portfolios having lower indegree (1st tercile). The first contribution of the

3see Gridold and Kahn (1999) chapter 5 and Stewart et al. (2011) chapter 10
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paper is to show that IND, defined as difference between the (3th tercile) - (1st tercile) portfolio

monthly returns based on the indegree, is a risk factor priced, having a negative premium,

when the period 1986-2000 is considered.4 The reasons are not related to the mimicking factor

portfolio of the aggregate volatility changes FV IX replicated in appendix A.

If indegree is a risk factor priced like FV IX, then Fama and French (1993) augmented with

these two factors could explain the decreasing expected returns found by Ang et al. (2006). The

analysis show that the puzzle is still present.

The second contribution is to show that portfolios having higher idiosyncratic volatility stocks

increase the exposition negatively to IND factor. There is a significant negative relationship

between IVOL and IND.

The paper is organized as follows: Section 2 describes the current literature; section 3 de-

fines the network estimation methodology; section 4 defines the collecting data procedure and

provides some descriptive analysis; section 5 defines the indegree as a risk factor (IND) and

investigates on the relation between IND and the idiosyncratic volatility risk, section 6 provides

robustness checks, finally 7 concludes. Appendix A reproduces the idiosyncratic volatility puzzle

and replicates the Ang et al. (2006) paper.

2 Literature

The literature on the role of the idiosyncratic volatility risk and expected returns is discordant.

In particular Merton (1987), Ewens et al. (2013) and Malkiel and Xu (2002) suggest that the

relation between the expected returns and the idiosyncratic risk should be positive because

investors necessitate compensation for holding stocks not easy to diversify. The relationship

between expected stock returns and idiosyncratic volatility risk is puzzling because it is not

clear why investors ask less compensation for stocks having higher IVOL. Ang et al. (2006), in

their seminal work observe lower expected returns for stocks with high idiosyncratic volatility

concerning the Fama and French (1993) model for reasons not related to the aggregated volatility

changes to which the market assigns a negative premium. The IVOL puzzle is evidence not only

associated with the US market but also in G7 countries, and 23 developed markets (see Ang et al.

(2009)). Stambaugh et al. (2015) impute the negative relation between the expected return and

the idiosyncratic volatility risk to the arbitrage asymmetry and the arbitrage risk. Stocks with

higher idiosyncratic risk deter the arbitrageurs to find stock mispriced, and consequently, stocks

having more idiosyncratic risk have higher arbitrage risk. Besides, since holding an extended

position is more accessible than holding a short position in the actual financial market, the

negative relationship observed between expected returns and idiosyncratic volatility is imputable

to these two factors. Chen and Petkova (2012) decompose the aggregate market variance in two

components: average correlation and the average variance component; they find that only the

latter one is priced from the market and influences stocks expected returns. High idiosyncratic

volatility risk assets have lower expected returns because they offer hedging opportunity to

increases in the average stocks variance.

Empirical findings extensively experience negative relation between IVOL and expected re-

4Time interval used in Ang et al. (2006)
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turns,5 Campbell et al. (2001) show that the increase of firm-level volatility in the period 1962-

1997 is responsible for the market models declination and the failure of the diversification power

in that period. Brandt et al. (2009) observed that the idiosyncratic volatility are higher among

low-priced stocks that are held by retail investors. Baker and Wurgler (2006) define sentiment

a state variable related to securities whose valuation are highly subjective, they find negative

co-variation between sentiment and expected returns, in particular, high volatility stocks, have

lower return only when the sentiment for that securities is high.

Herskovic et al. (2016) observe that idiosyncratic US firms volatility are synchronized and

develop a theoretic model with an incomplete market of heterogeneous agents for explaining the

negative relation between IVOL and expected returns. Mainly they suppose that the common

idiosyncratic volatility (CIV) of the firms affects the pricing kernel of the firms through the labor

market. In this paper, interconnections among assets returns are allowed to explain the IVOL

puzzle; thus the aggregation mechanism is constrained to the network structure. In this direc-

tion, the way to concept the idiosyncratic shocks aggregation has changed after the global crisis

in 2008 where different papers questioned Lucas (1977)’ idea regarding that microeconomics

shocks have no global impact. The interconnections among institutions, therefore, can vehicle

idiosyncratic shocks among the financial system. For example, Acemoglu et al. (2012) used a

network structure based on input-output relationships to show that aggregate fluctuations may

originate from microeconomic shocks to firms. Kelly et al. (2013) developed a volatility model

based on customer-supplier connectedness, in particular, they find costumers’ concentration in-

fluences the volatility of their suppliers because the latter becomes less diversified. Gabaix (2011)

shows that idiosyncratic firm-level shocks explain one-third of the variation in output growth.

The idea is that the interconnections among assets can be used as an additional information

for investigating the relationship between the idiosyncratic volatility risks and expected returns.

Herskovic (2015) demonstrates that the ”concentration” and the ”sparsity,” characteristics asso-

ciated to networks, have asset pricing implications, (Ahern, 2013) finds industries that are more

central in the network of intersectoral trade earn higher stock returns than industries that are

less central. Buraschi and Tebaldi (2017) in their model defines two classes of equilibria. In the

first class, the diversification benefits hold according to Lucas (1977), at contrary to the second

case, shocks propagate endemically and persistently, and the power of diversification falls. The

network topology lowers the distance between the two points of equilibrium. Since they high-

light the shock causality, the network associated to these shocks is direct and thus distinguishes

the ”systemicness” (the contribution of each company to the aggregate network distress shock),

and ”vulnerability” (the exposure to aggregate network distress risk). This paper uses the same

framework as Ang et al. (2006) to explain the puzzle and define the drivers influencing IVOL

stocks by allowing the networks linkages among stocks. Differently from Chen and Petkova

(2012), in this work, the direction is introduced on the links that can affect the aggregation of

the shocks. In this case, the network used to infer the channel is based on the Granger (1969)

test of the daily stocks returns applying the methodology of Billio et al. (2012). The network

based on Granger Causality gives one of the most detailed stocks relationships, among all possi-

5This is true if we believe that IVOL is a good proxy of IVOL of the month. However, since IVOL is time-
varying, Fu (2009) using an EGARCH as proxy of the one-month lagged idiosyncratic volatility finds a positive
relationship with the expected returns.
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ble representations of interconnectedness,6 considered the high number of assets in US market;

in addition, to build a network by using a Granger causality permits to reach high frequency of

links variations as in this case, at monthly level. The double interpretation of Granger test, from

one hand causality and the other one predictability, can be useful to link the IVOL puzzle with

the lower expected return for increasing values of indegree. Indegree, in this case, captures the

”vulnerability” in the sense of Buraschi and Tebaldi (2017) i.e., stocks more exposed to shocks of

other stocks (exposure to the network distress), from the other side measures most predictable

stocks in the market. Cujean and Hasler (2017) in their model show that predictability rises

when investors assess the uncertainty differently, especially in bad times, spreading disagreement

among the investors. Stocks having indegree can be defined as most predictable stocks because

they are the function of lagged stocks returns.

The first contribution of the paper is to show that indegree is a relevant state variable

for explaining the cross section of stocks returns, with a negative risk premium not related

to the aggregate volatility risk changes. In addition, the empirical finding show that stocks

having higher indegree have on average low idiosyncratic volatility; if we consider higher indegree

stocks also as a proxy of ”objectivity”7 these findings are coherent with Baker and Wurgler

(2006) showing consequently that the valuation of stocks with higher indegree are more objective

because the information on that stocks are superior. It worth noting that Granger causality can

display latent interactions among traders’ strategies. Mainly, Cohen-Cole et al. (2014) find

that returns from trading are correlated with the position agents occupying a trading network;

investigate how traders positions in the network influence their profitability and how shocks

are transmitted across the market. Stocks having high indegree could reflect the strategy of an

influencer trader. Even though the paper does not solve the puzzle, the second contribution of

the paper is to show that stocks with higher IVOL have the higher negative exposition on IND.

The first part of the paper focuses on the Granger causality indegree as Factor. The second part

of the paper is related to show the relationship between IVOL portfolios and IND factor.

3 Network estimation and Measures

The procedure for the network estimation is an extension of the Granger causality method

Granger (1969) proposed for the network estimation in Billio et al. (2012). An alternative

approach is Diebold and Yilmaz (2014) who use the variance decompositions of VAR to build

weighted directed networks, this methodology is not adopted and suited in this work because of

the number extremely high of stocks, such that to estimate a VAR analysis. The series are daily

stock returns with one year time horizon and one-month rolling window. Stocks returns having

less of three months daily returns observations are not considered. The Granger Causality tests

on a bivariate basis the following equation:

Rit = aiiRit−1 + ajiRjt−1 + aMKTMKTt−1 + eit (1)

6Network based on the Sales relationship is not able to cover all stocks relationships in CRSP, especially with
a dynamic of one month.

7The term is opposed to ”subjective” Baker and Wurgler (2006), stocks having higher indegree, being more
predictable, give more information to the investors who hold that stocks. In this case, the predictability is related
to the Granger causality test.
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Rjt = ajiRjt−1 + aijRit−1 + aMKTMKTt−1 + ejt (2)

where eit and ejt are the residuals of asset returns i and j. The asset return j causes in sense

of Granger the asset i when the coefficient aji is significant, similarly the series i causes in

sense of Granger the asset j when the coefficient aij is significant. The first assumption of the

equations (1) and (2) is that the residuals eit and ejt are not correlated. In addition, the Granger

causality test is augmented by the market index in order to filter the causality relations from

some indirect relationship of other series through the market. The significance of the coefficient

is corrected by autocorrelation and heteroskedasticity using HAC estimator from Newey and

West (1987). In the bivariate model, the Granger causality test is thus a VARX if we add the

Market Index. The causality presence, as detected with the above-outlined procedure, is used

to determine the adjacency matrix and the associated network structure. In fact, the adjacency

matrix computation is by setting wi,j = 1 when the p-value of the test on the significance of

parameters aij of the reference regression for asset j suggests that asset i Granger-cause asset

j at the 5% confidence level. The adjacency matrix associated with the Granger causality is

not symmetric, and consequently, the graph (network) associated to the adjacency matrix is

directed. A network or graph G = (V,E) is a collection of vertexes V and edges E, where the

edges represent the links between the vertexes,8 with E ⊆ (V × V ). Networks are represented

by using the adjacency matrix W , a binary matrix where each element wi,j can take only two

values, 1 and 0. When wi,j is 1, the node j is linked to node i, with an information flow from i

to j. A value of zero identifies the absence of a link. Since the network is direct, if the series i

→ causes in the sense of Granger the series j, the element wij of the matrix W is equal to one,

and graphically we will observe a link starting from the node i to the node j, the direction of

the arrow defines the causality relationship between the two series, and consequently the matrix

associated with the network is asymmetric. When the graph is directed, the number of the

ingoing links differs from the number of outgoing links for each node. Assuming N nodes in the

network, the measures associated to the ingoing links is called indegree that counts the number

of links inward pointing at a node coming from its neighbors. At contrary outdegree counts

the number of outgoing links starting from the nodes to its neighbors. Formally, indeegree and

outdegree are defined according to the following equations:

Indegreei =
N∑
i=1

Wij (3)

Outdegreei =
N∑
j=1

Wij (4)

The two measures aim to detect different kinds of effects. The first measure represents how much

a node is affected by its neighbors; the second instead measures how much the node affects the

neighbors. Combining indegree and outdegree through the sum and the difference is used to

analyze other centrality perspectives. For example, computing the sum between indegree and

outdegree as in equation (5) can be useful to group nodes more active in the networks concerning

8The terms vertex and nodes are equivalent, and both are used interchangeably in this work. In the same way,
edges and links take on the same meaning.
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links. At the contrary, the difference between outdegree and indegree as in equation (6) captures

the most unbalanced nodes: unbalanced outwardly when the measure is positive and unbalanced

inwardly when it is negative. It’s important to outline that the quantity of links is not relevant

anymore for this centrality measure.

Outdegreei + Indegreei =

N∑
j=1

Wij +

N∑
i=1

Wij (5)

Outdegreei − Indegreei =

N∑
j=1

Wij −
N∑
i=1

Wij (6)

Another centrality measure is the eigenvector centrality. Introduced by Bonacich (1987),

which captures the node prestige as a function of the neighbors’ prestige. Formally it is the

eigenvector associated to the highest eigenvalue of the adjacency matrix. Defined with xi the

score of node i, λ1 the maximum eigenvalue associated to the adjacency matrix W, the eigen-

vector centrality is defined as equation (7)

xi =
1

λ1

N∑
j=1

Wijxj (7)

Since with the Granger causality, the adjacency matrix is not symmetric, the left eigenvector

differs from the right eigenvector. This work focuses on the effect coming from the system on

the node, for this reason the eigenvector considered is exclusively the left one.

To detect the network sparsity is useful to define another centrality measure, the ratio

between the actual number of links among the nodes over the all possible ones: the density,

defined by this equation:

D =

N∑
i=1

N∑
j=1

Wij/(N(N − 1)) (8)

The density is always greater than zero and lower than 1. Higher density indicates networks full

of interconnections, density close to zero indicates that the links among nodes are rare and the

network is sparse.

4 Data

The time interval considered in this analysis is from January 1986 to December 2000.9 This

section reports the cleaning procedure adopted for the stocks returns available in CRSP. 10

Figure (1) shows the monthly variation of the number of firms by looking at the steps during

the clearing procedure.

The cleaning procedure can be summarized with the following method. The initial database is

reduced by considering all the firms listed on AMEX, NYSE, NASDAQ. Once merged CRSP by

Compustat, all the stocks having missing book value are deleted from that month.11 The number

9As in Ang et al. (2006)
10https://wrds-web.wharton.upenn.edu/wrds/query_forms/navigation.cfm?navId=128
11Stocks having positive and negative book values are considered. The number of stocks having negative book
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of firms even reduces considerably when the firms having missing book value are excluded. The

pattern of sawtooth shape suggests a seasonality at the end of the year. The average number of

firms across the whole sample is 4902. The total number keep reducing when we hold only the

ordinary stocks and the stocks having daily observations for that month greater than 17.

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

Years
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NYSE AMEX Nasdaq
Book Value different from zero and NaN
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Greater than 17 obs for month

Figure 1: Number of firms across time. The figure exhibits the number firms monthly
variations from January 1986 to December 2000. Each line represents a step in the cleaning
procedure.

CRSP provides the average between the bid and ask price when the stock price information

is missing.12 The stock market capitalization is computed as the product between the price and

the outstanding share.

Figure (2) indicates the centrality measures computed monthly by using the network esti-

mated with the Granger Causality. The density is reported on the left axes. The density defines

the network connectivity that has a positive trend starting from a value of 3% at the beginning

of the period to 7% at the end of 2000. The right axis of the figure exhibits the average and

the standard deviation of indegree. The average indegree according to the density, reveals an

increasing pattern with a hump in the year 1999, where it reaches the global maximum of the

sample, 440 links of average. The standard deviation has an increasing pattern positive and

moderate which can manifest a disequilibrium and asymmetries in term of ingoing connections,

and consequently to influence the way of shocks aggregations.

value is hugely lower than stocks having positive book value.
12These observations in CRSP have denoted by a negative sign, and they are considered in the current analysis.
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Figure 2: Centrality measures of networks based on Granger causality. The density
(on the left axis), the average and the standard deviations of indegree (on the right axis) relative
network estimated with the Granger causality by month, from January 1986 to December 2000.

Table (1) summarizes 25 portfolios statistics sorted by size and book-to-market value weighted.

The ME indicates market capitalization and BM is the book-to-market ratio. As highlighted by

Fama and French (1993) the expected returns are positively correlated with the market capital-

ization and the book-to-market ratio. The standard deviation of the monthly portfolios returns

decreases by increasing the book-to-market exposure. The skewness of the returns distribu-

tions is close to zero or slightly negative, instead, the kurtosis is high. The 25 portfolios return

distributions are leptokurtic. Table (2) reports the statistics for 48 industry portfolios. The

returns are monthly and value-weighted; the stocks aggregation is according to SIC (Standard

Industrial Classification). Financial, Pharmaceutical Products and Electronic Equipment have

higher monthly returns in average respectively 1.75%, 1.79%, and 1.86%; Precious Metals have

the higher standard deviations. Returns have negative skewness, and positive kurtosis13 as for

the 25 portfolios sorted by size and book-to-market. I used these two different kinds of portfolios

returns to understand if indegree can explain the returns variations in cross section.

13It is necessary to subtract the number 3 to compare the portfolios returns kurtosis with the normal distribution
case
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Table 1: Descriptive analysis 25 Portfolios sorted by Size and Book-to-Market The
tables reports the statistics of portfolios monthly returns value weighted from January 1986 to
December 2000.

Descriptive analysis 25 Portfolios sorted by Size and Book-to-Market

Portfolio Mean
Standard
Deviation

Min Max Kurtosis Skewness

ME1 BM1 0.49 8.48 -34.23 38.94 7.70 0.20

ME1 BM2 1.26 7.43 -30.94 40.94 9.83 0.40

ME1 BM3 1.22 5.68 -28.70 22.06 8.34 -0.70

ME1 BM4 1.47 5.46 -28.88 25.45 10.33 -0.64

ME1 BM5 1.39 5.27 -28.88 16.46 9.26 -1.19

ME2 BM1 0.90 7.47 -32.71 28.18 5.90 -0.53

ME2 BM2 1.18 5.84 -31.67 17.62 8.36 -1.18

ME2 BM3 1.21 4.81 -28.13 12.62 10.79 -1.72

ME2 BM4 1.33 4.56 -25.44 10.37 9.76 -1.64

ME2 BM5 1.36 5.29 -28.84 14.55 8.57 -1.32

ME3 BM1 1.09 7.08 -29.79 24.61 5.40 -0.61

ME3 BM2 1.28 5.45 -29.05 13.49 8.83 -1.26

ME3 BM3 1.13 4.53 -24.29 11.16 8.61 -1.36

ME3 BM4 1.33 4.41 -23.03 13.43 8.49 -1.31

ME3 BM5 1.50 4.77 -26.17 11.92 9.16 -1.42

ME4 BM1 1.40 6.33 -25.94 26.22 6.23 -0.29

ME4 BM2 1.29 4.95 -28.83 12.97 10.80 -1.49

ME4 BM3 1.24 4.76 -25.00 14.07 8.31 -1.20

ME4 BM4 1.40 4.12 -18.26 11.94 5.70 -0.71

ME4 BM5 1.42 4.84 -23.84 15.96 6.84 -0.90

ME5 BM1 1.49 4.96 -21.64 15.36 5.26 -0.67

ME5 BM2 1.36 4.77 -22.42 16.53 6.66 -0.81

ME5 BM3 1.28 4.61 -21.71 11.34 6.50 -1.08

ME5 BM4 1.24 4.51 -15.17 16.09 4.37 -0.53

ME5 BM5 1.52 5.02 -18.73 15.65 4.63 -0.51
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Table 2: Descriptive analysis 48 Industry Portfolios The tables reports the statistics of
portfolios monthly returns value weighted from January 1986 to December 2000.

Descriptive analysis 48 Industry Portfolios

Portfolio Mean
Standard
Deviation

Min Max Kurtosis Skewness

Agric 0.95 6.26 -28.79 28.88 6.99 -0.16

Food 1.39 5.35 -17.88 19.59 4.36 0.06

Soda 1.27 7.66 -25.94 38.27 6.31 0.41

Beer 1.79 6.13 -19.76 22.02 4.48 -0.15

Smoke 1.59 7.45 -24.93 22.80 4.07 -0.20

Toys 0.91 7.05 -34.41 20.09 5.98 -0.70

Fun 1.39 6.68 -31.86 19.26 6.59 -0.95

Books 1.26 5.34 -22.57 14.67 4.67 -0.31

Hshld 1.22 5.15 -21.64 18.54 5.45 -0.62

Clths 1.06 7.06 -30.90 25.06 5.66 -0.52

Hlth 1.00 7.43 -31.43 21.13 5.01 -0.64

MedEq 1.47 5.59 -20.56 16.33 4.07 -0.42

Drugs 1.79 5.57 -19.11 16.27 3.82 -0.29

Chems 1.16 5.55 -28.00 22.05 7.27 -0.48

Rubbr 1.25 6.00 -30.57 19.27 7.35 -0.85

Txtls 0.87 6.41 -32.51 23.11 6.93 -0.80

BldMt 1.16 5.88 -27.74 18.25 6.41 -0.71

Cnstr 1.08 6.64 -31.10 20.03 5.98 -0.52

Steel 1.14 7.05 -30.48 30.67 6.84 0.01

FabPr 0.82 6.53 -26.67 25.96 5.62 -0.29

Mach 1.18 6.07 -31.19 16.08 7.20 -1.03

ElcEq 1.71 6.37 -32.20 18.28 6.80 -0.67

Autos 1.16 6.56 -28.33 19.33 5.08 -0.63

Aero 1.27 5.98 -30.23 14.99 7.24 -1.05

Ships 0.41 6.97 -32.27 17.17 5.26 -0.47

Guns 0.96 6.58 -30.08 18.86 6.85 -1.01

Gold 0.33 11.52 -30.93 78.68 13.83 1.66

Mines 1.04 6.47 -33.32 20.50 7.11 -0.51

Coal 1.35 9.57 -30.11 44.04 6.70 0.78

Oil 1.20 4.94 -18.21 16.75 4.64 0.23

Util 1.04 3.93 -10.77 11.72 3.00 -0.13

Telcm 1.38 5.03 -15.58 14.35 3.90 -0.54

PerSv 0.72 6.37 -28.25 24.47 5.83 -0.43

BusSv 1.73 7.02 -27.54 24.08 4.85 -0.38

Comps 1.44 7.77 -24.37 23.10 3.70 -0.03

Chips 1.86 7.95 -27.82 27.27 4.85 -0.51

LabEq 1.40 6.90 -30.15 22.04 5.59 -0.21

Paper 1.14 5.67 -26.35 24.27 7.44 -0.03

Boxes 0.98 6.52 -28.24 20.05 5.58 -0.62

Trans 1.08 5.53 -27.90 14.20 6.70 -0.95

Whlsl 1.05 5.03 -28.64 12.64 9.49 -1.33

Rtail 1.46 6.01 -29.17 14.36 5.87 -0.77

Meals 1.05 5.56 -24.04 15.98 5.04 -0.58

Banks 1.55 6.22 -24.19 16.14 4.73 -0.68

Insur 1.35 5.47 -16.85 22.87 4.74 -0.25

RlEst 0.03 5.58 -22.68 14.20 4.51 -0.70

Fin 1.75 6.49 -25.91 18.45 5.48 -0.67

Other 0.84 7.15 -26.37 20.15 4.41 -0.43
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5 Network as Exogenous Factor

This section investigates whether the indegree of the network based on the Granger causality

test is a risk factor priced. Granger causality methodology is used in this work because is

a compromise between estimation accuracy and computational time. In this work, the first

assumption related the Granger causality is to neglect all the effects coming from the other series

that are instead present in VARX, because of the number of stocks extremely high. For this

reason, I discard the variance decomposition proposed by Diebold and Yilmaz (2014). By using

the pairwise Granger causality test, there is an overestimation link that increases the density

of the networks. On the other hand, to use VARX constrained to LASSO would underestimate

the connections across the stocks returns.

There are different centrality measures defined for various applications. It is worth to notice

that indegree is the only centrality measure able to capture the mechanism of idiosyncratic

shocks aggregation. At the contrary, outdegree, since it measures the number of outgoing links,

reveals the spreading mechanism of idiosyncratic shocks from a node to the system. The sum

and the difference between outdegree and indegree as in equation (5) and (6) used in Billio et al.

(2012) would make difficult to distinguish if the market cared more to indegree or outdegree.

Finally, the eigenvector centrality would capture higher order aggregation mechanism of the

idiosyncratic shocks, but as outlined by Buraschi and Tebaldi (2017) it is not useful for the

directed network. Although this analysis focuses on indegree, I tested all the other measures as

robustness check in table (13) in section 6.

The preliminary analysis is to sort the stocks in three quantiles concerning the indegree and

to compute the portfolios returns at time t+1. The table (3) shows that the value-weighted

average of the portfolios returns decreases as soon as the tercile portfolios have stocks with

higher indegree. The market share, the size and the book to market ratio is roughly constant

across the portfolios quintiles. Finally, the CAPM and Fama and French (1993) (3FF) model

alphas are inversely proportional to the indegree loading, and they are statistically significant

only in the last tercile (3). There is a difference in -0.33% per month between the average of

the highest tercile having higher indegree and the lowest one, this difference is not statistically

significant when whole period is considered. Figure (3) shows the cumulative quantile portfolio

returns having stocks with increasing indegree computed at the previous month t−1, particular

portfolios with higher indegree have lower returns, especially in the second part of the period

starting from 1991, the small and medium indegree portfolios outperform the more top indegree

portfolios. The medium and lower indegree performances are so similar because the network

is sparse especially in the first part of the sample with a density of 3% thus the smallest and

the medium quantile are close to zero. In the second part of the sample, the density doubles to

7% as reported in figure (2) left axes. On the right axis, the table indicates the mean and the

standard deviation of the indegree. As observed for the density, the average and the standard

deviation inflate in the second half of the time horizon, the higher variance of indegree allows to

distinguish the middle from the lowest quantile. In this works, although the difference is not so

vast, the proposed risk factor based on the indegree of Granger causality test is the difference

between the 3th-1st hereafter IND.
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Table 3: Portfolios sorted by indegree based on Granger Causality network. The
statistics are relative to the quantile portfolios ordered for the indegree computed by using
equation (3). The value-weighted average and the standard deviation are relative to the returns
monthly based. Market share defines the market capitalization of the portfolio; the logarithm of
stock market capitalization represents the Size, and B/M is the Book-to-Market ratio average.
Alpha columns represent the intercept by regressing the portfolio returns with the CAPM and
the Fama and French (1993) model. The time interval is from January 1986 to December 2000
as Ang et al. (2006). Robust Newey and West (1987) t-statistics are reported in square brackets.

Portofolios Sorted by Indegree

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.51 5.29 32.19% 6.99 0.44 0.06 0.14

[0.61] [1.59]

2 1.45 4.60 38.18% 7.22 0.45 0.05 0.02

[0.7] [0.34]

3 1.18 4.32 29.64% 6.91 0.49 -0.15 -0.22

[-1.34] [-2.16]

3-1 -0.33 -0.21 -0.36

[1.62] [-1.05] [-2.07]

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
0

50

100

150

200

250

300

L-In
M-In
H-In

Figure 3: Cumulative Returns Indegree based on the Granger causality. Cumulative
Returns of the portfolio quantile by picking the stocks having high Indegree for the network
estimated with the Granger causality
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5.1 Factors descriptive analysis

The table (4) displays the statistical analysis of the factors monthly based, from January 1986

to December 2000. The factors considered are respectively the risk free (RF), the extra market

return (MKT), Small Minus Big size firms (SMB), High Minus Low growth (HML), Momentum

(UMD), 14 Liquidity level (LIQ), liquidity Innovations (LIQ INN) and liquidity value weighted

(LIQVW) are respecitively aggregate liquidity level factor, innovations and traded liquidity

factor value weighted see Pástor and Stambaugh (2003).15 Aggregate volatility delta change

(∆V IX) and mimicking tracking portfolio on the aggregate volatility risk (FVIX) risk factors.

The statistics show that except for the risk-free asset return all the other distributions behave

as not normal distributions and have leptokurtic shapes. The MKT and LIQ have a negative

skew, HML, UMD and FV IX have roughly a distribution symmetric, while the other risk

factors have a positive skewness. The risk-free asset has on average a monthly return of 0.4%

with a standard deviation of 0.1%. The MKT has a positive monthly extra return with an

average of 0.8% with the standard deviation of 4.5% instead the momentum has an average

monthly return of 1

Table 4: Risk factor descriptive analysis. The table shows the statistics of the most common
factors in the literature as well as indegree IND based on the Granger causality network. MKT ,
HML, SMB and UMD are Fama and French (1993) and Carhart (1997) momentum factors;
LIQ, LIQ INN , LIQVW are respectively aggregate liquidity level, innovations and traded
liquidity value weighted factors, see Pástor and Stambaugh (2003). Finally, ∆V IX and FV IX
represent the aggregate volatility innovations and its mimicking tracking portfolio. Monthly
observations from January 1986 December 2000.

Descriptive Analysis

Risk
Factor

Mean
Standard
Deviation

Min Max Kurtosis Skewness

RF 0.441 0.122 0.210 0.790 2.916 0.338

IND -0.332 2.713 -11.894 19.632 14.088 1.697

MKT 0.844 4.523 -23.240 12.470 7.389 -1.204

SMB -0.216 3.692 -17.170 22.080 12.382 1.025

HML 0.259 3.083 -10.490 11.290 4.900 0.089

UMD 1.003 3.752 -9.080 18.380 7.076 0.628

LIQ -0.019 0.066 -0.461 0.201 14.792 -2.217

LIQ INN 0.002 0.065 -0.384 0.287 12.830 -1.564

LIQVW 0.000 0.035 -0.091 0.110 3.556 0.328

FVIX -0.818 2.787 -7.961 14.785 7.972 1.224

∆ VIX 0.059 4.855 -15.380 39.030 27.294 3.113

Table (5) shows the factors correlation. Particularly it shows IND respectively correlated

14RF MKT , HML, SMB and UMD are available in http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html
15LIQ, LIQ INN and LIQVW are available in https://wrds-web.wharton.upenn.edu/wrds/ds/

famafrench/liq_ps.cfm?navId=204

15
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negatively with MKT at -0.21, with SMB -0.21 and with the Momentum UMD at -0.6 and

positively correlated with ∆V IX aggregate volatility risk changes and its mimicking portfolio

FV IX. The correlations with IND have magnitudes lower than 0.5, except the correlation with

UMD. If we take in account the other factors, MKT is moderately correlated with SMB, UMD

respectively at 0.13 and 0,21; strongly negatively correlated with FV IX -0.99; and sufficiently

with ∆V IX -0.56. The correlation between FV IX and ∆V IX is 0.56.

Table 5: Risk factor correlations. Correlations table among risk factors. IND is the dif-
ference between the 3th- 1st tercile as in table (3). MKT , HML, SMB and UMD are Fama
and French (1993) and Carhart (1997) risk factors; LIQ, LIQ INN , LIQVW are respectively
aggregate liquidity level, innovations and traded liquidity value weighted factors, see Pástor and
Stambaugh (2003). Finally, ∆V IX and FV IX represent the aggregate volatility innovations
and its mimicking tracking portfolio. Monthly observations from January 1986 December 2000.

Correlation

IND MKT SMB HML UMD LIQ LIQ INN LIQVW FVIX ∆ VIX

IND 1.000 -0.209 -0.212 0.457 -0.613 0.017 0.060 -0.102 0.213 0.105

MKT -0.209 1.000 0.137 -0.434 0.212 0.254 0.300 -0.107 -0.992 -0.559

SMB -0.212 0.137 1.000 -0.508 0.307 0.044 -0.009 -0.210 -0.152 -0.163

HML 0.457 -0.434 -0.508 1.000 -0.485 -0.016 0.015 0.101 0.454 0.169

UMD -0.613 0.212 0.307 -0.485 1.000 0.005 -0.059 -0.025 -0.206 -0.088

LIQ 0.017 0.254 0.044 -0.016 0.005 1.000 0.874 0.051 -0.261 -0.353

LIQ INN 0.060 0.300 -0.009 0.015 -0.059 0.874 1.000 0.050 -0.305 -0.348

LIQVW -0.102 -0.107 -0.210 0.101 -0.025 0.051 0.050 1.000 0.111 0.062

FVIX 0.213 -0.992 -0.152 0.454 -0.206 -0.261 -0.305 0.111 1.000 0.561

∆ VIX 0.105 -0.559 -0.163 0.169 -0.088 -0.353 -0.348 0.062 0.561 1.000

5.2 Missing Factor on 25 Size-BM portfolios

This section tests the marginal contribution of IND on top of the standard Fama and French

(1993) multifactor model. The dependent variables of equation (9) are the monthly extra returns

of the 25 size and book-to-market portfolios.16 The abnormal returns are defined as the difference

Zt between Yt-Ŷt, where Ŷt is the forecast of Yt as in equation (10).

Yt = α+ βMKTMKTt + βHMLHMLt + βSMLSMLt + εt (9)

Ŷt = β̂MKTMKTt + β̂HMLHMLt + β̂SMBSMBt (10)

Regressing the abnormal returns at monthly level with IND establishes whether the proposed

factor contributes to explain the abnormal returns by looking at the significance of the factor

loading. To make the analysis more robust, IND is tested separately but also compared and

jointly tested with other two factors: the momentum UMD and the mimicking portfolios on

the aggregate volatility changes FV IX. The choice of these factors is related to two different

reasons: In the first case, UMD and IND have a correlation equal to −0.6. Therefore it is

16Datadownloadedfromhttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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necessary to prevent that IND explains the abnormal returns because of the interaction with

UMD. In the second case, although the correlation with FV IX is equal to 0.21, FV IX can

be useful to investigate if IND has a different component concerning the aggregate volatility.

Thus, Zt is regressed respectively with the IND risk factor, with the mimicking factor portfolio

on ∆V IX , FV IX, and together as from equation (11) to equation (13).

Zt = a+ bINDINDt + ηt (11)

Zt = a+ bFV IXFV IXt + ηt (12)

Zt = a+ bINDINDt + bFV IXFV IXt + ηt (13)

Table (6) panel A shows the indegree factor loading as in equation (11); on the right the t-

statistic with Newey and West (1987) corrected standard errors in the square brackets. The

betas are mostly significant, they don’t increase their loading with respect to the size or book-

to-market dimension. The Panel A shows that the indegree IND can be considered as relevant

variable with 17 over 25 beta significant. Panel B reports instead the beta and the t-statistic as

in equation (12), highlighting that only few βFV IX are significant reflecting only a marginal role

of this risk factor with respect the 25 size book-to-market portfolios. Finally, Panel C reports

the results when both factors are in the same regression as in equation (13), the results show

clearly that IND still remains significant while the t-statistics on βFV IX are higher than Panel

B.

Zt = a+ bUMDUMDt + ηt (14)

Zt = a+ bINDINDt + bUMDUMDt + ηt (15)

Table (7) panel A shows same results of (6) panel A, since they refer to the same equation (11).

Panel B reports instead the beta and the t-statistic as in equation (14), highlighting that the

number of factor loading significant βUMD is only six over 25 portfolios. Finally, panel C reports

the results when both factor are in the same regression as in equation (15), the number of factor

loading significant reduces, from 17 to 11 for βIND and from 6 to 4 for βUMD. However it is

possible to claim that the impact of IND is relavant and evident even though the interaction

with the momentum reduces the global significance slightly below the half of the number of the

portfolios.
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5.3 Risk Premium

This section proposes to compute the price of the IND risk factor, by applying the Fama

and MacBeth (1973) procedure. The expected returns are related to the market price of risk

according to the equation (16). The equation puts in relation the expected returns of the assets

or portfolios i, with the risk-free, the market price of the risk factors λ and the factor loading

on that asset. The equation is in cross-section.

E[Ri] = rf + βΛ + η (16)

Fama and MacBeth (1973) propose a procedure in two stages able to estimate the market price

of risk, where the factor loading is the OLS time series estimates from January 1986 to December

2000. The second stage regression instead is an OLS regression where the covariates are the betas

estimates in the first stage. The market price of risk for IND risk factor is computed by using

both 25 size book-to-market portfolios and 48 industry portfolios. The procedure is applied to

Fama and French (1993) factors model and successively stepwise augmented by Indegree IND,

mimicking factor portfolio of aggregate volatility Index change FV IX, the Momentum factor

of Carhart (1997) UMD and Liquidity Innovations factors LIQ INN Pástor and Stambaugh

(2003). Shanken (1992) procedure corrects the results.

Table (8) reports the premiums estimates by looking at the 25 size book-to-market portfo-

lios. The left part of the table exhibits the results when the second stage regression considers

the intercept for computing the premium coefficients, while on the right part, the intercept is

removed and the results are corrected for Shanken (1992). The outcomes differ depending on

whether the intercept is omitted or not: the model with intercept indicates that only the SMB

and UMD are significant; the model without intercept determines the significance of MKT ,

FV IX, and UMD. The first model shows an adjusted R2 higher than the model without the

intercept, besides in the VI, VII, and VIII the adjusted R2 is negative, suggesting that the

intercept offers better performance results in term of adjusted R2.

Table (9) reports the premium coefficients for the 48 Industry portfolios. In this case, the

model with intercept without Shanken (1992) correction on the left part produces similar results

if compared to the model without intercept. The MKT , HML, IND, FV IX are significant in

both cases. SMB and UMD lose the significance after the Shanken (1992) corrections. Finally,

the adjusted R2 increases roughly by 4% when we add the IND risk factor.Fama and MacBeth

(1973) procedure produces higher adjusted R2 for 48 Industry portfolios rather than for 25

portfolios sorted by size and book-to-Market. Although risk factor IND is significant only in

case of 48 industry portfolios, in both circumstances is always negative. If the market decides

to price IND negatively, means that IND stands for insurance for investors, i.e., offers good

outcomes in the bad states and bad outcomes in good ones. The IND risk premium is equal to

−0.5%. The coefficient significant does not nullify the significance of FV IX showing that the

IND is priced for reasons not related to the mimicking factor portfolio of the aggregate volatility

change innovations. A possible explanation, assuming IND as the risk factor with a negative

price of risk could be that stocks having higher indegree are the more predictable. Further

developments in this paper will consider wider time intervals with a focus on the financial crisis.
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Table 8: Fama–MacBeth (1973) factor premiums 25 B/M portfolios. The table shows
the premium computed on the 25 portfolios sorted by size and book-to-market portfolios using
Fama and MacBeth (1973) procedure. The Fama and French (1993) model is the benchmark in
the first column and stepwise augmented by IND, FV IX, UMD and LIQ INN . The left part
and the right part of the table report the premium estimates with and without intercept. The
results are corrected by Shanken (1992). The square brackets present t-statistic with Newey and
West (1987) corrected standard errors.

Fama–MacBeth (1973) Factor Premiums 25 B/M portfolios

I II III IV V VI VII VIII IX X

Constant 1.74 1.61 1.55 1.41 1.26 - - - - -

[2.97] [2.56] [2.2] [2.32] [1.95] - - - - -

MKT -0.79 -0.63 -0.57 -0.44 -0.30 0.86 0.94 0.97 0.96 0.95

[-1.41] [-1.02] [-0.81] [-0.73] [-0.46] [2.54] [2.75] [2.83] [2.78] [2.75]

SMB -0.19 -0.21 -0.21 -0.22 -0.22 -0.11 -0.17 -0.18 -0.19 -0.20

[-2.44] [-2.46] [-2.4] [-2.89] [-2.84] [-0.4] [-0.61] [-0.64] [-0.67] [-0.67]

HML 0.04 0.05 0.05 0.14 0.13 0.04 0.06 0.08 0.17 0.14

[0.46] [0.56] [0.57] [1.57] [1.42] [0.16] [0.27] [0.36] [0.72] [0.61]

IND -0.17 -0.13 -0.16 -0.25 -0.43 -0.13 -0.17 -0.34

[-0.55] [-0.33] [-0.48] [-0.7] [-1.49] [-0.38] [-0.43] [-0.81]

FVIX 0.38 0.14 0.01 -0.45 -0.62 -0.72

[0.96] [0.42] [0.02] [-2.02] [-2.64] [-2.89]

UMD 1.85 2.14 2.11 2.60

[2.83] [2.76] [3.21] [3.08]

LIQ INN 0.01 0.03

[0.78] [1.57]

Rˆ2 25.89% 27.29% 27.42% 49.72% 51.21% -5.21% 3.49% 8.96% 34.71% 40.28%

Adj Rˆ2 15.31% 12.74% 8.32% 32.97% 31.12% -14.77% -10.29% -9.25% 17.53% 20.38%

Shanken
Correction

N N N N N Y Y Y Y Y
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Table 9: Fama–MacBeth (1973) factor premiums 48 Industry portfolios. The table
shows the premium computed on the 48 Industry portfolios using Fama and MacBeth (1973)
procedure. The Fama and French (1993) model is the benchmark in the first column and stepwise
augmented by IND, FV IX, UMD and LIQ INN . The left part and the right part of the
table report the premium estimates with and without intercept. The results are corrected by
Shanken (1992). The square brackets present t-statistic with Newey and West (1987) corrected
standard errors.

Fama–MacBeth (1973) Factor Premiums 48 Industry Portfolios

I II III IV V VI VII VIII IX X

Constant 0.20 0.29 0.06 0.08 0.10 - - - - -

[0.75] [1.13] [0.2] [0.29] [0.35] - - - - -

MKT 0.74 0.72 0.97 0.98 0.96 0.93 0.99 1.03 1.06 1.06

[2.94] [3] [3.34] [3.43] [3.32] [2.71] [2.86] [2.97] [3.05] [3.05]

SMB -0.38 -0.45 -0.42 -0.36 -0.35 -0.39 -0.46 -0.42 -0.36 -0.35

[-2.36] [-2.91] [-2.74] [-2.32] [-2.25] [-1.11] [-1.34] [-1.18] [-1.05] [-1.03]

HML -0.67 -0.54 -0.58 -0.53 -0.54 -0.68 -0.57 -0.58 -0.54 -0.55

[-5.83] [-4.41] [-4.68] [-4.3] [-4.31] [-2.71] [-2.25] [-2.3] [-2.1] [-2.13]

IND -0.59 -0.58 -0.55 -0.57 -0.58 -0.57 -0.55 -0.57

[-4.35] [-4.28] [-4.18] [-4.19] [-2.09] [-2.06] [-1.97] [-1.99]

FVIX -0.55 -0.57 -0.55 -0.59 -0.61 -0.61

[-3.44] [-3.59] [-3.47] [-2.71] [-2.77] [-2.77]

UMD 1.05 1.07 1.05 1.07

[3.53] [3.56] [1.96] [1.95]

LIQ INN 0.01 0.01

[0.86] [0.53]

Rˆ2 53.14% 58.13% 60.23% 62.84% 63.26% 52.53% 56.88% 60.19% 62.77% 63.15%

Adj Rˆ2 49.94% 54.23% 55.50% 57.41% 56.83% 50.42% 53.94% 56.49% 58.34% 57.75%

Shanken
Correction

N N N N N Y Y Y Y Y

5.4 Relationship with the Idiosyncratic volatility puzzle

Empirical evidence suggests that the IND can be considered as a risk factor priced by the

market.This part of the analysis investigates if IND can explain the idiosyncratic volatility

puzzle, and secondly which is the relation in term of factor exposure βIND between portfolios

sorted by IVOL and the risk factor IND. Table (10) displays the value weighted average of

portfolios returns ordered by IVOL with respect to a Fama and French (1993) model as in

equation (21) from January 1986 to December 2000. The last three colums report the alpha and

factors exposures of IND and FV IX of the equations (17).

rit = αi + βMKTMKTt + βSMBSMBt + βHMLHMLt + βINDINDt + βFV IXFV IXt + εt (17)

Particularly, table (10) shows that the proposed factor IND is not able to explain the puzzle

because the alpha coefficients are still statistically significant. The results are invariant with the

removal of FV IX from the equation (17). The results are more interesting if we observe how

much change the exposition on IND as soon as the portfolios have an increasing IVOL, factor

loading on IND βIND decreases significantly for all portfolios. To deepen this behavior table

(11) shows the factor exposure on indegree based on equation (17) of the 25 portfolios sorted by

Indegree based on the Granger causality and IVOL. By construction, portfolios having stocks

with higher indegree have a factor loading βIND on IND increasing. When the quintile portfolios

are controlled for indegree, then the factor loading on the Indegree decreases, and it is almost
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cases significant.

Table 10: Portfolios sorted by idiosyncratic volatility. Quantile portfolios ordered with
respect to the IVOL of equation (21). The statistics Mean and Standard Deviation are relative
to the total portofolio returns monthly percentage. The Alpha columns report the Jensens’
alpha with respect to the CAPM and the Fama and French (1993). The columns βIND and
βFV IX represent the exposure IND and FV IX by using the full sample regression of equation
(17). Robust Newey and West (1987) t-statistics are reported in square brackets. The sample
period is from January 1986 to December 2000.

Portofolios Sorted by Idiosyncratic Volatility

Rank Mean Std Dev.
Market
Share

Alpha βIND βFV IX

1 1.40 4.16 61.42% 0.07 0.16 -0.10

[0.7] [3.29] [-0.43]

2 1.33 4.83 24.45% -0.46 0.09 -1.55

[-3.59] [2.13] [-5.98]

3 1.31 6.21 8.96% -0.65 -0.13 -2.07

[-3.37] [-2.26] [-4.46]

4 0.72 7.74 3.81% -0.88 -0.26 -1.16

[-3.52] [-4.3] [-2.46]

5 -0.24 9.17 1.36% -1.59 -0.52 -0.49

[-4.31] [-4.72] [-0.6]

5-1 -1.47 -1.65 -0.67 -0.39

[-2.37] [-3.96] [-5.63] [-0.42]

Table 11: Factor loading of 25 portfolios sorted by indegree and IVOL on IND risk
factor. The table displays the beta’s on IND by considering the 25 portfolios returns sorted
by Indegree and IVOL.

25 portfolios sorted by Indegree and IVOL: βIND

Rank 1 2 3 4 5

1 -0.34 -0.48 -0.46 -0.58 -0.73

[-3.04] [-5.31] [-3.46] [-5.16] [-4.02]

2 -0.22 -0.16 -0.35 -0.40 -0.30

[-3.37] [-1.29] [-2.92] [-2.18] [-2.59]

3 0.23 0.16 0.28 -0.02 -0.07

[4.55] [2.31] [3.07] [-0.13] [-0.71]

4 0.41 0.36 0.21 0.27 -0.16

[9.45] [4.76] [2.1] [2.36] [-1.22]

5 0.55 0.63 0.62 0.46 0.20

[11.27] [7.91] [7.26] [3.1] [1.43]

23



6 Robustness check

6.1 Contemporaneous IVOL of Portfolios sorted by Indegree

This section investigates if the decreasing expected returns of portfolios having increasing in-

degree are linked to the fact that these portfolios have higher IVOL. If this Hypothesis were

accepted, it would mean that IVOL would be hidden factor behind the negative relationship

between indegree and expected returns. this section, therefore, analyzes if the observed effect

of decreasing expected returns with respect to increasing indegree is defined “by construction”

or could be related to economic reasons. The procedure is the following: for each month the

contemporaneous IVOL in equation (9) is computed for all stocks contained in tercile portfolios.

Statistics are computed monthly and then averaged across the whole sample.

Table (12) highlights that stocks contained in portfolios having lower indegree have in average

higher IVOL mean, IVOL median and value-weighted average. It means that if indegree were

priced for reasons related to IVOL, then the expected returns would have increasing values for

higher indegree. Also, empirical findings show as market share drives idiosyncratic volatility

concerning Fama and French (1993), as observed in table (10) because portfolios having higher

IVOL are driven by small size firms stocks. At the contrary, this is not the case for portfolios

sorted by indegree because their market share composition is constant roughly at 30 % across

the terciles. Therefore the negative relationship between IVOL and the factor loading on IND

βIND is not imputable to the size of firms.

Table 12: Descriptive Analysis of contemporaneous IVOL for stocks belonging to
tercile portfolios sorted by indegree. For each IVOL statistics computed for each stocks
daily return with respect to the Fama and French (1993) model, the results are averaged across
whole sample.

Statistics of Idiosyncractic Volatility for portfolio sorted by Indegree

Rank Mean Median
Standard
Deviation

Value
Weighted
Average

Min Max

1 18.61 2.86 72.33 6.13 -0.90 1821.39

2 12.24 2.06 34.99 4.58 -0.86 769.04

3 11.65 2.01 29.93 4.71 -0.82 615.30

6.2 Expected returns and centrality measures

The last part of robustness checks tests the relationship between other centrality measures and

stocks expected returns. In other words, portoflios returns are computed by sorting stocks

according the centrality measures described in section 3. Table (13) displays the results. Par-

ticularly, panel A exhibits the value weighted returns at time t+1 for portfolios terciles sorted

by outdegree at time t according the equation (4), averaged across the sample. Surprisingly, the

difference between the 3th - 1st is not significant and close to zero. On the contrary of indegree

case in table (3), market share is higher for portfolio having lower outdegree. The last columns

of the table shows alphas coefficient with respect to the CAPM and the Fama and French (1993),

they are not significant.
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Panel B reports the results by sorting the terciles portfolios by the sum of outdegree plus

indegree as in equation (5). The variable takes into account of stock more active is a sense

of links (ingoing and outgoing), the direction loses its role. As table (3), portfolios having

stocks with higher indegree+outdegree have lower expected returns, the magnitude is low and

not significant. In addition, portfolios having lower outdegree plus indegree have higher market

capitalization, however, the alpha relative of the third tercile for Fama and French (1993) is the

only one significant.

Panel C reports terciles value-weighted portfolios returns averaged across all sample, com-

puted by sorting the difference between the outdegree and indegree as in equation (6). The

measure considers the net effect of spreading and absorbing the shocks. In this case, portfolios

having an increasing difference between outdegree and indegree have higher returns. The dif-

ference between the 3th - 1st is not significant and equal to 0.15%. The alphas with respect the

CAPM and Fama and French (1993) are not significant and very low.

Panel D reports terciles value-weighted portfolios returns, averaged across the sample, com-

puted by sorting the eigenvector centrality as in equation (7). The measure considers the indirect

effect is coming from the neighbors. As table (3) portfolios having eigenvector centrality have

lower expected returns, as indegree, because the left eigenvector captures the impact coming

from the system. The difference between the 3th - 1st is not significant and equal to -0.12%.

The alphas with respect the CAPM and Fama and French (1993) are not significant and very

low. The results shown in table (13) indicate clearly that the centrality measures previously

described have a weaker effect on expected returns than indegree. In addition, alphas t-statistic

with respect to CAPM and Fama and French (1993) model suggest that these measures are not

good candidates as missing factors of stocks returns.
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Table 13: Portfolios sorted by centrality measures based on Granger causality net-
work, robusteness checks. The statistics are relative to the quantile portfolios ordered with
respect to outdegree in Panel A equation (4), with respect to outdegree plus indegree in Panel
B, with respect to Outdegree minus indegree in Panel C, with respect to eigenvector centrality
in Panel D. The value weighted average and the standard deviation are relative to the returns
monthly based. Market share defines the market capitalization of the portfolio, Size is computed
as logarithm of stock market capitalization and B/M is the Book-to-Market ratio average. Al-
pha columns represent the intercept by regressing the porfolio returns with the CAPM and the
Fama and French (1993) model. The time interval is from January 1986 to December 2000 as
Ang et al. (2006). Robust Newey and West (1987) t-statistics are reported in square brackets.

Panel A: Portofolios Sorted by Outdegree

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.40 4.40 46.67% 7.40 0.44 0.04 0.05

[0.44] [0.8]

2 1.47 4.80 26.76% 6.87 0.48 0.01 0.03

[0.18] [0.37]

3 1.39 4.92 26.58% 6.83 0.47 -0.06 -0.08

[-0.58] [-0.87]

3-1 -0.01 -0.10 -0.13

[-0.04] [-0.55] [-0.92]

Panel B: Portofolios Sorted by Outdegree+Indegree

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.41 4.59 45.25% 7.38 0.43 0.02 0.06

[0.17] [0.71]

2 1.56 4.56 28.30% 6.92 0.46 0.16 0.15

[1.77] [1.77]

3 1.22 4.91 26.45% 6.83 0.48 -0.22 -0.27

[-1.71] [-2.28]

3-1 -0.19 -0.24 -0.33

[-0.9] [-1.08] [-1.82]

Panel C: Portofolios Sorted by Outdegree-Indegree

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.40 4.27 42.73% 7.29 0.45 0.06 0.04

[0.93] [0.79]

2 1.35 4.70 31.07% 7.01 0.46 -0.08 -0.05

[-1.02] [-0.69]

3 1.55 5.03 26.21% 6.80 0.46 0.06 0.07

[0.63] [0.8]

3-1 0.15 0.00 0.03

[0.87] [0.02] [0.22]

Panel D: Portofolios Sorted by Eigenvector Centrality

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.44 4.63 36.85% 7.11 0.46 0.05 0.07

[0.46] [0.71]

2 1.48 4.80 25.85% 6.83 0.48 0.02 0.04

[0.28] [0.45]

3 1.32 4.78 37.30% 7.12 0.45 -0.11 -0.15

[-1.1] [-1.42]

3-1 -0.12 -0.16 -0.22

[-0.6] [-0.82] [-1.13]
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7 Conclusion

The idiosyncratic volatility puzzle is still an open research question. It is not clear why portfolios

sorted by increasing IVOL have lower expected returns. Hou and Loh (2016) find that many

real explanations explain less than 10% of the puzzle. As far as I know, this paper is the first

one to investigate the IVOL puzzle driver by using the indegree based on the Granger causality

network. The contribution can be split in two parts: The first part outlines that network

indegree based on the Granger causality affects stocks returns; stocks having higher indegree

have lower expected returns. Once created the factor IND given as the difference of the 3th-1st

tercile, it affects the cross-section of stocks returns having a negative price of risk: insurance

for investors. This factor is relevant for explaining the covariation of the abnormal returns of

the 25 portfolios sorted by size and Book-to-market. The Fama and MacBeth (1973) procedure

shows evidence in the pricing in 48 industry portfolios but not for 25 portfolios sorted by size

and Book-to-market. In the latter case, IND is a factor priced for reasons not related to the

FV IX Ang et al. (2006) i.e., the mimicking factor portfolio replicated in the appendix A. Stocks

having higher indegree hold lower contemporaneous IVOL indicating that indegree could help

investors to increase the information for that stocks. The reasons why the portfolios having

higher indegree have lower expected returns should be deepened, from one side can be related

to the nature of the Granger causality stocks having higher indegree are at the same time the

most predictable stocks Baker and Wurgler (2006), on the other hand, can reveal some potential

trading strategies see Cohen-Cole et al. (2014). The other centrality measures, except indegree,

described in section 3, have weaker and inconsistent relations with expected returns.

Although many other robustness checks should be done to support the thesis that IND is

a risk factor priced by the market as also to extend the sample time interval until 2016, the

second part of the paper shows that IVOL is priced for reasons not related to IND. However,

the relation between IVOL and IND is negative that is the second contribution of the paper.

Portfolios having higher and increasing IVOL have higher negative factor exposure to IND.
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Appendix

A Aggregate and idiosyncratic volatility puzzle

This section reports the results of Ang et al. (2006) replication, the pool of stocks and the

time interval is the same I used to investigate the puzzle causes. According to the authors, the

stocks are ordered and grouped in quintile by looking at the sensitivity of the innovations on

the aggregate volatility ∆V IX following this equation:

rit = αi + βMKTMKTt + β∆V IX∆V IXt + εt (18)

where ri indicates the excess return of the ith stock, βMKT measures the sensitivity on the

market CRSP index, β∆V IX represents the exposure on the change of the aggregate volatility

risk. The figure (A.4) shows the quintile portfolios cumulative returns sorted with respect to

the exposition on the aggregate volatility of the previous month. The higher is the exposition

on the aggregate volatility risk the lower are the portfolios’ returns. Portfolios gathering stocks

having lower exposure on the ∆V IX outperform portfolio having higher exposure to the change

of the delta volatility index.
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Figure A.4: Quintile portfolios cumulative returns sorted by ∆V IX. The figure reports
the cumulative returns of the five quintile portfolios, sorted to βV IX the previous month. Each
portfolio is value-weighted. L represents the portfolio made up with stocks having the lowest
exposition on the aggregate volatility risk, R2 is the second quintile, R3 is the third quintile,
R4 is the fourth quintile, H is the portfolio built with stocks having the highest exposure on the
aggregate volatility risk.

What is shown in figure (A.4) is coherent with the second column of the table (A.14). The

reason of the replication of the table (A.14) is to understand how much the results are close

to Ang et al. (2006) paper in order to start the second analysis investigating if IVOL can be

explained by using indegree based on the network estimated with the Granger causality test.

Also, it is worth to understand if the pricing of indegree (assuming to be a risk factor) takes

place in the same dimension of FV IX.

The first column of table (A.14) includes the portfolio quantile sorted by the exposure to

∆V IX, grouped in quintile. The second and the third column represent respectively totally

returns value weighted average and the standard deviation. The monthly average is roughly

1.74 % for the lowest quintile and decreases until 0.65% for the highest quintile. They are

computed by selecting the stocks according to with equation (18) by looking at the exposition

to ∆V IX of daily returns of the previous month. Market capitalization at the end of the last

month is used as the weight for computing the value-weighted portfolio. Portfolios co-varying

more with the change volatility risk have lower expected returns.
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The average market share of the quintile portfolios is calculated for each month as the ratio

between the market capitalization of each quintile portfolio and the market capitalization of all

portfolios. Size is the logarithm of the total market portfolio capitalization averaged by month.

B/M (Book-to-Market) reports for each quintile portfolio the ratio between the market value

and the book value at the end of the month. Firms having low market capitalization are in the

extreme quintiles suggesting that the small size firms do not drive high exposition to the change

of the aggregate volatility. Companies having higher market capitalization are located in the

middle quantiles. Alpha columns with respect to the CAPM and three-factor model Fama and

French (1993) present a decreasing pattern as soon as the exposition on ∆V IX increases, they

are significant for the 5 and 5-1 portfolios quintile. The alpha coefficients significance indicates

that a possible omitted risk factor can be present; CAPM and Fama and French (1993) are not

enough to explain the cross-section of the stock returns.

To reduce the noise in the estimates, the authors compute according to Breeden et al. (1989)

and Lamont et al. (2001), the mimicking portfolio FV IX of the aggregate volatility risk ∆V IX

, as in the equation (19).

∆V IXt = a+ b′Xt + et (19)

a is the intercept and Xt are the excess returns of the quintiles portfolios according to (18). For

each month, the estimation of b̂ according to the equation (19) is FV IXt = b̂′Xt. Once defined

the FV IX, they selected the stocks with respect to the factor mimicking aggregate volatility

risk FV IX and modifying the equation (18) that assumes this form.

rit = αi + βMKTMKTt + βFV IXFV IXt + εt (20)

ri indicates the excess return of the ith stock, βMKT measures the sensitivity on the Market

CRSP index, βFV IX is the sensitivity on FV IX the mimicking factor portfolio of ∆V IX.

In the table (A.14) columns β∆V IX and βFV IX report the value-weighted average of the

exposition to ∆V IX and FV IX factor for each quintile portfolio, according to (18) and (20).

As can be observed, both columns have the patterns, and in particular the portfolio sorted by

∆V IX exposures, are more two times higher than the portfolios sorted by FV IX.

Next month Formation β∆V IX displays the value-weighted ex-post beta formation on the

aggregate volatility risk. The computation procedure is the following according to the authors:

Once selected the stocks about the exposure on aggregate volatility risk innovations at the

month t, they compute the forecast of the daily returns quintile portfolio at the month t + 1.

The post-formation beta is computed by using the equation (18) at the time t + 1 and using

quintile portfolio return at time t + 1 as dependent variable. The results are averaged. The

replication finds as the authors Ang et al. (2006) that ex-post exposure on aggregate volatility

risk innovations is drastically lower than ex-ante exposure, but the pattern is still increasing. The

last column Full sample post-formation reports the exposure on the regression monthly based

between the Fama and French (1993) model augmented by the FV IX monthly observation and

the ex-post quantile portfolio returns ordered concerning the past loading on ∆V IX according

to (18).
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Table A.14: Portofolios Sorted by exposition on the aggregate volatility. Value weighted portfolio quantile total returns sorted by the
exposition on the β∆V IX as in equation (18). The statistics Mean, and Standard Deviation are relative to the total portfolio returns monthly
percentage. Size defines the average log stock market capitalization within the quintile portfolios and B/M average of the Book-to-Market ratio.
The Alpha columns report the Jensens’ alpha with respect to the CAPM and the Fama and French (1993). The columns β∆V IX and βFV IX

represent the exposure to ∆ VIX, and FVIX averaged for the whole sample. Finally, β∆V IX reports the next month exposure on ∆ VIX averaged
across the month, and βFV IX defines the post-formation of all sample by using daily portfolios returns. Robust Newey and West (1987) t-statistics
are reported in square brackets. The sample period is from January 1986 to December 2000.

Rank Mean Std Dev. Market
Share

Size B/M CAPM
Alpha

FF-3
Alpha

Pre
Formation
β∆V IX

Pre
Formation
βFV IX

Next
Month

Formation
β∆V IX

Full
Sample

Post
Formation
βFV IX

1 1.74 5.66 9.71% 5.89 0.45 0.27 0.32 -3.97 -1.35 -0.044 -5.04

[1.41] [1.65] [-15.76]

2 1.41 4.45 28.80% 7.10 0.45 0.16 0.08 -1.41 -0.43 0.005 -0.94

[1.51] [0.91] [-2.43]

3 1.34 4.42 30.85% 7.18 0.46 0.10 0.05 0.38 0.03 0.006 -0.26

[0.95] [0.6] [-0.85]

4 1.17 4.81 23.25% 6.87 0.46 -0.13 -0.12 1.91 0.49 -0.004 0.28

[-1.38] [-1.19] [0.77]

5 0.65 6.67 7.39% 5.67 0.46 -0.87 -0.52 4.73 1.42 0.061 2.33

[-3.19] [-2.32] [3.52]

5-1 -1.09 -1.55 -1.04

[-3.07] [-4.29] [-3.61]
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The contribution of Ang et al. (2006) is to show that the change in aggregate volatility risk

is a price factor. In particular, FV IX, the mimicking portfolio of the ∆V IX has a negative

price of risk and significant.17. Table A.15 displays the results by combining the FVIX with

Fama and French (1993), Carhart (1997), and Pástor and Stambaugh (2003) factors.

Table A.15: Fama–MacBeth (1973) Factor Premiums The table shows the premium com-
puted on the 25 portfolios sorted on the Market exposure βMKT and β∆V IX by using Fama and
MacBeth (1973) procedure. The first column reports the Fama and French (1993) factors pre-
mium and the mimicking factor portfolio premium. The second column adds the Carhart (1997)
factors premium.The third column adds the Pástor and Stambaugh (2003) factors premium. In
all cases the FVIX premium is always significant.

Fama–MacBeth (1973) Factor Premiums

I II III IV V VI

Constant 2.19 2.30 2.00 - - -

[3.53] [2.87] [2.17] - - -

MKT -0.83 -0.93 -0.64 1.32 1.29 1.28

[-1.35] [-1.19] [-0.72] [3.81] [3.73] [3.67]

FVIX -2.53 -2.57 -2.89 -3.56 -2.97 -3.62

[-2.77] [-2.70] [-2.71] [-2.79] [-2.56] [-2.57]

SMB 2.52 2.53 2.55 2.21 2.27 2.41

[9.76] [9.48] [9.37] [4.74] [4.86] [4.50]

HML -0.92 -0.91 -0.90 -0.16 -0.51 -0.62

[-3.33] [-3.13] [-3.06] [-0.37] [-1.16] [-1.27]

UMD 0.88 0.55 -0.66 -0.98

[1.15] [0.60] [-0.83] [-1.05]

LIQ 0.00 0.01

[0.52] [1.07]

Adj Rˆ2 89.1% 88.61% 88.33% 82.3% 83.65% 85.27%

Shanken
Correction

N N N Y Y Y

From the other side if the Fama and French (1993) is the correct model and the FVIX is a priced

factor then the omitted factor should be shown by looking at the residuals of the equation (21).

rit = αi + βMKTMKTt + βSMBSMBt + βHMLHMLt + εt (21)

Although the mimicking tracking portfolio of aggregate volatility risk FV IX is a risk factor

with negative premium, Ang et al. (2006) showed that the cause IVOL puzzle is not related

to the omitted factor FV IX. Portfolios monthly returns are computed by ordering stocks

according to the total volatility and IVOL with respect to the equation (21) at the previous

month, daily observations. The table (A.16) indicates the average and standard deviation of

the value-weighted quintile portfolio returns. The behavior observed by the authors as in table

(A.16) states that high idiosyncratic risk portfolios have a lower expected return. At the contrary

in table (A.14) small size firms have higher IVOL and total volatility, as reported by the Market

share column. The last two columns display the CAPM and Fama and French (1993) alphas,

relative to the quintile portfolios monthly returns. The pattern is decreasing, and according

17The results are with and without the significance correction proposed by Shanken (1992). In this part of the
paper, the first goal is to obtain results as close as possible to the Ang et al. (2006)
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to the α’s relative to CAPM and Fama and French (1993) in panel B table (A.16), there is

an omitted factor not related to FV IX, i.e., the mimicking factor portfolio of the aggregate

volatility changes. The causes of this decreasing pattern puzzles the researchers, according

to Ross (1976) the IVOL risk is not priced, because this kind of risk can be diversified.18 If

the idiosyncratic risk is not priced then the expected returns of stocks would not evidence any

pattern with respect to the portfolios ordered by idiosyncratic volatility, and moreover the alphas

of model CAPM and Fama and French (1993) reported in the last two columns (A.16) would

be not significantly different from zero.

18Ross showed that the IVOL risk is diversifiable by increasing the number of stocks held in the portfolio.
Assuming that the assets are not cross-correlated they have the same variance, then the idiosyncratic risk tend
to zero when the number of assets tends to infinity.
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Table A.16: Portfolio sorted by total (idiosyncratic) volatility Panel A (Panel B).
The statistics are relative to the quantile portfolios ordered with respect to the total volatily
(IVOL) of equation (21). The value weighted average and the standard deviation are relative
to the returns monthly based. Market share defines the market capitalization of the portfolio,
Size is computed as logarithm of stock market capitalization and B/M is the Book-to-Market
ratio average. Alpha columns represent the intercept by regressing the porfolio returns with the
the CAPM and the Fama and French (1993) model. The time interval of the analysis is from
January 1986 to December 2000 as Ang et al. (2006). Robust Newey and West (1987) t-statistics
are reported in square brackets.

Portofolios Sorted by Total Volatility

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.33 3.92 49.79% 7.63 0.47 0.17 -0.00

[1.37] [-0.07]

2 1.42 4.68 31.94% 7.20 0.44 0.15 0.05

[1.39] [0.61]

3 1.40 5.96 11.80% 6.16 0.44 -0.01 0.14

[-0.09] [1.00]

4 1.03 7.79 4.79% 5.22 0.44 -0.57 -0.13

[-1.78] [-0.59]

5 -0.11 9.34 1.68% 4.10 0.44 -1.78 -1.25

[-4.21] [-4.11]

5-1 -1.44 -1.96 -1.24

[-2.08] [-3.72] [-3.44]

Portofolios Sorted by Idiosyncratic Volatility

Rank Mean Std Dev.
Market
Share

Size B/M
CAPM
Alpha

FF-3
Alpha

1 1.40 4.16 61.42% 7.87 0.44 0.19 0.03

[1.63] [0.36]

2 1.33 4.83 24.45% 6.94 0.45 0.04 0.02

[0.47] [0.22]

3 1.31 6.21 8.96% 5.92 0.45 -0.16 0.02

[-0.85] [0.20]

4 0.72 7.74 3.81% 5.03 0.46 -0.85 -0.44

[-3.10] [-2.68]

5 -0.24 9.17 1.36% 3.97 0.46 -1.80 -1.29

[-4.04] [-4.54]

5-1 -1.47 -2.00 -1.32

[-2.37] [-3.70] [-3.91]
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