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A multivariate GARCH perspective∗
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Abstract

We propose a spatiotemporal approach for modeling risk spillovers using time-varying
proximity matrices based on observable financial networks and introduce a new bilateral
specification. We study covariance stationarity and identification of the model, and an-
alyze consistency and asymptotic normality of the quasi-maximum-likelihood estimator.
We show how to isolate risk channels and we discuss how to compute target exposure
able to reduce system variance. An empirical analysis on Euro-area cross-country hold-
ings shows that Italy and Ireland are key players in spreading risk, France and Portugal
are the major risk receivers, and we uncover Spain’s non-trivial role as risk middleman.
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1 Introduction

The US subprime and European sovereign bond crises sparked a renaissance in the re-

search related to contagion and risk spillovers (Corsetti et al. (2011); Forbes (2012)).

In line with the literature (Bekaert and Harvey (1997); Ng (2000); Billio and Pelizzon

(2003)), we define a variance spillover as the contribution to the time t variance (risk)

of a recipient entity due to the variance or shocks impacting on a source entity before

time t, or due to the covariance between the two entities before time t. This definition

is signed and directional; it includes the time dimension and can account for feedback

effects. On the other hand, it excludes a systematic shift of variances due to a common

factor affecting both entities.1 We also focus on covariance spillovers, which we define as

the contribution to the time-t covariance (thus dependence) between two entities due to

the variance (risk) of the two entities, or due to the shocks affecting the variance evolution

of the two entities, always before time t.2 The covariance spillover becomes relevant in

a framework where the correlations are not directly modeled, and they can be indirectly

retrieved by means of variances and covariances. The definitions we adopt are strict and

target only one symptom, of the many phenomena usually related to contagion and, more

broadly, to systemic risk (see Silva et al. (2017) and Benoit et al. (2017) and reference

therein). Being focused on covariance allows us to fill a void in the current literature

that rarely addresses the quantitative investigation of economic transmission channels as

potential pathways for risk spillovers.

We aim to introduce an economically grounded medium through which variance and

covariance spillovers could flow. We consider the simplest model for this medium by

focusing on pairwise directed linkages as summarized by a network and introduce and

exploit a parallel between the network approach and the tools commonly used in spatial

econometrics. This parallel allows us to take advantage of spatial econometrics literature

1Our approach is meant either for a case in which returns are not affected by a common factor or for
modeling the residuals of a reduced-form system of equations.

2Where we assume that the covariance shocks are a function of the shocks affecting the variances of
the two entities.

1



 Electronic copy available at: https://ssrn.com/abstract=3239369 

of the past decades (see Anselin (2013), LeSage and Pace (2009), Elhorst (2003)). The

intersection and interaction of different research fields, such as network science, spatial

econometrics, economics, and finance, give rise to new developments and tools. In partic-

ular, one of the most advanced strands of the spatial econometrics literature (see Keiler

and Eder (2013); Blasques et al. (2016); Caporin and Paruolo (2015); Tonzer (2015); Bil-

lio et al. (2017)) focuses on statistical, economic, and financial relationships. Our work

belongs to this strand of the literature and aims at building a bridge between contagion,

volatility spillover, and networks.

The starting point of our paper is the contribution of Caporin and Paruolo (2015),

which introduces spatiotemporal econometrics tools for the analysis of conditional volatil-

ity models, with the objective of estimating and measuring risk channels, but our work

departs in a significant way. Even if we focus only on their BEKK class of models,

our network relationships are intended to be derived from specific and potentially gran-

ular financial variables (in our application, cross-border exposures of national banking

systems). The variables we suggest for consideration are those commonly perceived as

potential time-varying transmission channels of shocks, and are thus characterized by

asymmetry and time variation. The asymmetry in the weight matrix allows us to intro-

duce network dependence in the model in two different ways and to focus on both risk

spillover sources and risk spillover receivers. This distinction is possible only using jointly

a vectorial specification for spatial parameters and an asymmetric weight matrix, and was

not considered anywhere before. In addition, this new specification makes straightforward

the inference on the inferred network links (by allowing simple significance tests for each

link) and lets us understand if a particular risk channel between two entities is mediated

by the variable included in the selected weight matrix.

More precisely, from a methodological point of view, the asymmetric weight matrix

requires a generalization of the identification conditions of Caporin and Paruolo (2015)

that we derive and, motivated by the time variation of the network, we are the first to

discuss covariance stationarity using the joint spectral radius of Rota and Strang (1960)

2
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and Jungers (2009). Both identification and covariance stationarity conditions are more

complex in our framework. We obtain the identification condition by deriving a matrix

that linearly links our parameters with those of a full BEKK specification and demonstrate

that the rank of that matrix is linked to the algebraic connectivity characteristics of an

auxiliary undirected network, resulting in identification conditions more refined than the

ones derived in Caporin and Paruolo (2015).3 The identification restriction does not

imply a sign restriction on parameters associated with the network, and this leads to the

possibility of variance reducing network effects.

Understanding the role of joint spectral characteristics also allows us to justify a more

general weight matrix normalization with respect to the one considered in the literature

(Lee and Yu (2012), Qu et al. (2017)). We complete the methodological discussion by

adapting to the time-varying coefficients case the proof of consistency and asymptotic

normality of the quasi-maximum-likelihood estimator (QMLE) of the BEKK model ob-

tained in Hafner and Preminger (2009). Again, the joint spectral radius is a convenient

tool to generalize the existing proof, in which an essential part is played by bounds on

the usual spectral radius.

All methodological advances are driven and motivated by the development of tools

able to investigate and measure the amount of spillover that could be explained by the

transmission channels, as summarized by the selected network. This is particularly im-

portant in applications since, as already remarked, we are not only able to obtain the

statistical significance of a given channel, as in Tonzer (2015), but also to distinguish the

importance of different nodes by using diagonal matrix parameters. Moreover, the use of

directed networks (i.e., asymmetric proximity) allows us to weight the transmission chan-

nel according to their direction, and we recover information on the statistically relevant

channels of contagion, resulting in a better understanding of risk circulation.

We present an empirical analysis, considering a sample period covering the collapse

of Lehman Brothers, Greece’s bailout, and Brexit. We focus on the role of the network

3Nevertheless, we show how in the symmetric case we recover their results.
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of cross-country banking system exposures in explaining the European sovereign CDS

spillovers and provide a counterfactual analysis evaluating the risk-reducing exposures on

the period of the Brexit referendum.

The paper is organized as follows. In Section 2, we introduce the econometric model for

the spatial interpretation of risk and discuss identification, covariance stationarity, and

QMLE estimation. In Section 3, we discuss inference-based networks, system variance

decomposition, and the counterfactual analysis. In Section 4, we apply the methodology

to CDS differences for the major countries in the Euro area during the subprime, sovereign

debt crises, and Brexit. Finally, Section 5 summarizes our findings and concludes. The

Appendices A,B, and C include definitions, corollaries, and proofs of the main results. The

online supplementary material, S, reports several additional and complementary tables

and figures.

2 A Model for Spatial Econometrics of Networked

Risk

In this section, we start to describe our framework for a spatiotemporal econometric treat-

ment of risk and dependence relationships across entities. Two parts compose the frame-

work. First, a multivariate GARCH model, in which lagged shocks propagate through

fluctuating relationships. Second, an exclusive set of diagnostic tools able to investigate

risk circulation. Both parts have relevance in building the framework. In particular, the

model chosen is one of the possible alternatives for studying risk spillovers in a network of

entities. It is a workable example on which we can test the framework. About the second

part, we designed a set of diagnostic tools, adaptable to other modeling proposals, but

already able to showcase the benefits of mapping risk flows. Here, we study our Spatial

Bilateral BEKK (SB-BEKK) specification in all its identification and estimation details

and postpone to the next section the description of the risk tools.

Our approach focuses on the risk dimension as Caporin and Paruolo (2015), but ex-

4
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tends the historical spatial econometrics definition of proximity. In fact, usually, neigh-

boring relations are constant, based on geographical measures of distance, as in Anselin

(2013) and Elhorst (2003), or fixed economic properties, such as the industry sectors

membership in Caporin and Paruolo (2015). We choose, instead, the language of net-

work theory to describe not only the static similarities among entities already encoded in

the usual weight matrices, but the actual complex relationships among the nodes. This

different interpretation of the weight matrix as a network can characterize those relation-

ships in all their weighted, directed, and fluctuating generality. This new translation of

old ideas will have unanticipated outcomes both in methodology (see our identification

conditions in Theorem 1), and applications (see our inferred networks in subsection 3.2).

In this enterprise, we take inspiration from a recent strand of spatial econometrics

literature that includes finance-based weight matrices in their analysis (Keiler and Eder

(2013), Blasques et al. (2016), Tonzer (2015), and Billio et al. (2017)), and starts to

introduce the network terminology in the discussion. However, building on Caporin and

Paruolo (2015) differentiates us from the latter papers. First, we give an alternative

perspective in our focus on the risk dimension, as opposed to their aim to explain expected

returns. Second, they include only contemporaneous (spatial) transmission effect of the

linkages, as opposed to our lagged cross-sectional (spatiotemporal) effect.

In addition, one of the novel features of our framework, with respect to the latter

efforts, is a proper treatment of time dependence in the weight matrix. Previous appli-

cations of spatial methods to financial markets average these time-varying relationships,

reducing to a static framework (see, as an example, Tonzer (2015)). This contribution is

not completely new; however, we are the first to embed the time-varying nature of financial

proximity within a conditional covariance model, going beyond the static weight matrix

used in Caporin and Paruolo (2015). In fact, recent advances in the different modeling

approach of spatial panels address the point and study its statistical consequences Lee and

Yu (2012), Qu et al. (2017). Unfortunately, their assumption on weight-matrix normal-

ization is restrictive in the financial framework. Our use of joint spectral characteristics
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leads instead, to less constraining normalizations (see subsections 2.3 and 3.1).

The other major contribution of the paper is our bilateral specification of proximity.

The specification has two main ingredients. The first one is the use of variable-specific

proximity parameters, which allows heterogeneity in the network mediated effects. Het-

erogeneity was already present in the classical literature and Caporin and Paruolo (2015)

reintroduced it in a volatility framework. The second ingredient is our consideration of the

weight matrix as a directed network. Directedness is not present in classical approaches,

but is already considered in Billio et al. (2017); Tonzer (2015) and Blasques et al. (2016).

In fact, in classical spatial econometrics, if A is a neighbor of B with a given distance

between them, the reverse is also true. In a financial framework, instead, symmetry is not

usual. As an example, we can consider the relationship induced by the level of financial

claims. It is improbable that the amount of claim that A has on B would be the same

amount that B has on A. In a financial setting, then, the relationship is likely to be di-

rected. Moreover, transforming the relationship to an undirected one by considering net

claims, would result in an information loss. In fact, investors could perceive the riskiness

of the connection to be dependent on its direction. Heterogeneity and directedness were

already used, but no one understood the consequences of their combination. In fact, as

detailed in the following subsection, the joint use of the two leads to different multiplica-

tion possibilities in proximity matrices. We will show how this little improvement in the

design of proximity will have vast consequences in the econometric and empirical analysis.

2.1 Directed Networks and Bilateral Proximity

In our opinion, network theory is the correct language to describe general relationships of

the type needed in our analysis. This subsection integrates the concepts of the adjacency

matrix of a graph with the weight and proximity matrices discussed in the spatial econo-

metrics literature. It also introduces our new bilateral specification for network-based

proximity matrices. We can define a weighted network (graph) as an ordered pair of sets

and a function G = (V,E,w) where V = {1, . . . , n} is the set of vertices (or nodes),

6
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E ⊂ V ×V the set of edges (or arcs), and w(e) : E 7→ R+ is the weight function attribut-

ing strength to the edges. An edge between two nodes exists if there is a relationship

between them and it can be identified as the (ordered) pair {i, j} with i, j ∈ V . If there

is no direction in the connection between nodes, then an edge {u, v} is an unordered pair

of nodes and the graph G is said to be undirected, whereas if a direction exists, then each

edge {i, j} is defined as an ordered pair of nodes and the graph G is said to be directed

graph (or digraph). Different edges could have different strength as summarized by the

weight function. The vertex adjacency structure of a n-order graph G = (V,E,w) can be

represented through a n-dimensional matrix W called an adjacency matrix. Each element

ωi,j of the adjacency matrix is equal to w ({i, j}) if there is an edge {i, j} ∈ E (i.e., an

edge from institution u to institution v with i, j ∈ V ), and ωi,j = 0 otherwise. If the

graph is undirected, then ωi,j = ωi,j, that is, the adjacency matrix is symmetric.

In the literature (see Anselin (2013), LeSage and Pace (2009), Elhorst (2003)), a proximity

matrix is a matrix whose entries quantify the distance between entities. The prototypical

example is the real geographical distance. These are generally summarized into a weight

matrix W , whose entries ωi,j correspond to the physical distance from i to j. The matrix

W is, then, static and symmetric. In the language of networks, W corresponds to the

adjacency matrix of a weighted undirected network. We relax this implicit symmetry

hypothesis by considering W as the adjacency matrix of a weighted directed network.

Usually (Elhorst (2003)), W is row normalized to maintain reasonable magnitudes for

the parameters. In addition, often, the spatial impact is measured by a single coefficient

ρ, which pre-multiplies the weight matrix W . This implies a unique impact across the

entities involved in the analyses.4

Following Caporin and Paruolo (2015), we adopt a wider viewpoint, introducing the

proximity matrix P . P is a linear combination of an adjacency matrix W of a weighted

4The two most common specifications are the spatial autoregressive model (SAR), where a vector (a
cross-section) of observations Y obeys the linear model Y = ρWY +ε, and the spatial error model (SEM),
where, for the same observation, we have Y = ε + ρWε. In both cases, the coefficient ρ monitors the
spatial impact, that is, the response of Y to the neighbors’ values (in the SAR model) or to the neighbors’
shocks (in the SEM model).

7
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directed network and an identity matrix In,

P = ρ0In + ρ1W,

where ρ1 and ρ0 are scalars. In particular, ρ1 represents the global impact of a network

on the nodes, and ρ0 is a constant common to all the nodes. The previous authors,

among others, include heterogeneus impacts by transforming the scalar coefficients into

diagonal parameter matrices. In their specification, the proximity is an affine function of

the network:

P = diag (ρ0) In + diag (ρ1)W.

Moreover, we realized that commutativity is not anymore guaranteed for the product of

a diagonal parameter matrix and a non-symmetric W , as it was in the case of symmetric

W . Consquently, pre- and post-multiplication of W by the coefficient matrix represent

different effects. Accordingly, we introduce our bilateral representation of the proximity

matrix, which extends and includes all the previous formulations:

P (Wt) = diag (ρ0) In + diag (ρ1,L)Wt +Wtdiag (ρ1,R) , (1)

where n is the number of series, In is the n × n identity matrix, and we introduce two

parameter vectors associated with left multiplication, ρ1,L, and right multiplication ρ1,R.

This new form of proximity could be of independent interest even were it abstracted from

our risk framework and applied to models for conditional mean. This specification, as we

show in the following, allows for, in our model characterization of sources and receivers

of risk, the derivation of a linear restriction test for the significance of network edges, and

also leads to model-identification conditions that do not constrain parameter signs and

can describe variance-reducing spillovers, and several other features.

8
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2.2 Spatial Bilateral BEKK

A popular specification adopted for the estimation of conditional variance matrices is the

BEKK model of (Engle and Kroner, 1995). Unfortunately, even in its most parsimonious

specification (the BEKK(1,1)), this model is computationally infeasible, even for moderate

values of n, due to its large number of parameters (2n2 + 0.5n (n+ 1)). For this reason,

the standard practice is to restrict A and B to be either scalar or diagonal. Despite being

feasible, these restricted specifications impose strong limitations on the interpretability of

the model outcomes because they exclude or sensibly limit the presence of risk spillovers,

included in A, and variance feedbacks, coming from B.

To overcome these critical aspects, Caporin and Paruolo (2015) introduce the Spatial-

BEKK GARCH model, in which the full parameter matrices A and B are replaced by

proximity matrices. The spatial version of the BEKK model has the advantage of being

more parsimonious than the full BEKK case, as, at the same time, it is more flexible

than the diagonal specification, and it includes spillovers and feedback effects. We further

extend their model considering a time-varying weighted directed network Gt = (V,Et, wt),

with fixed nodes and adjacency matrices Wt, and allowing a bilateral specification for

proximity.

Given a vector yt of n cross-sectional observations at time t, we define ut = yt − ȳ,

where ȳ is the vector of sample means. Our Spatial Bilateral BEKK GARCH (SB-BEKK)

has the following structure:

ut = Σ
1/2
t εt εt ∼ N (0, In) , t = 1, . . . , T

Σt = CC ′ + A (Wt)ut−1u
′
t−1A (Wt)

′ +B (Wt) Σt−1B (Wt)
′

where C is a lower triangular matrix, Σ
1/2
t is the Cholesky decomposition of Σt,

5 and the

parameter matrices have a proximity specification described in equation (1) that includes

5Alternatively to the Cholesky, we can compute the square root by resorting to the spectral decom-

position and set Σ
1/2
t = DtP

1/2
t D′t, where Dt is the matrix of eigenvectors and Pt is the diagonal matrix

of eigenvalues.

9
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both left multiplication and right multiplication:

A (Wt) = A0 + A1,LWt +WtA1,R = diag (a0) In + diag (a1,L)Wt +Wtdiag (a1,R)

B (Wt) = B0 +B1,LWt +WtB1,R = diag (b0) In + diag (b1,L)Wt +Wtdiag (b1,R) ,

where a0, a1,M , b0 b1,M , with M = L,R, are n × 1 vectors. Within the SB-BEKK

framework, left and right multiplication allow researchers to focus on different aspects

of risk propagation. To better understand this model attitude, it is advisable to recall

the notions of direct and indirect effects of shock diffusions, previously introduced in the

spatial econometrics literature (see LeSage and Pace (2014)) and generalized here for

the SB-BEKK model. The starting point is the Spatial Error Model (SEM), where the

n−variate dependent variable vt depends on an n−dimensional vector of shocks ut, on a

weight matrix W , and on a scalar parameter θ

vt = (In + θW )ut.

LeSage and Pace (2014) decompose the error term in the direct effect v0
t and the local

indirect effect v1
t as follows:

vt = v0
t + v1

t , v0
i,t = [Inut]i = ui,t , v1

i,t = [θWut]i = [Wθut]i = θ

n∑
j=1

ωi,juj,t

where [X]i,j identifies the element of position i, j of the argument matrix X with one

single index if X is a vector, ωi,j represents the “distance”between subject i and subject j

coming from the spatial weight matrix W (time invariant, for simplicity), and by definition

ωi,i = 0.

This means that the target variable vi,t depends on its own shock, as monitored by

v0
t , the direct impact. Further, it is also affected by the indirect impact v1

t . The latter

captures the effect coming from neighboring elements vj,t with i 6= j and with an impact

only from those j such that ωi,j 6= 0. We note that in the SEM model, left and right

10
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multiplication are identical due to the presence of a scalar parameter θ. We translate

these elements into the SB-BEKK model and provide a novel decomposition. We focus

on the ARCH part of the model because we want to highlight the role of innovations. We

note that

vt = A (W )ut = (A0 + A1,LW +WA1,R)ut = v0
t + v1

L,t + v1
R,t (2)

v0
i,t = [A0ut]i = a0,iui,t (3)

v1
L,i,t = [A1,LWut]i = a1,L,i

n∑
j=1

ωi,juj,t. (4)

v1
R,i,t = [WA1,Rut]i =

n∑
j=1

ωi,ja1,R,juj,t. (5)

The i−th element of vt depends on its own past shock, weighted by the coefficient a0,j

(direct effect), on the past shocks of its neighbors weighted by the distance, loaded with

the sum of the same coefficient, a1,L,j (indirect left effect), and a coefficient different from

each source a1,R,i (indirect right effect). For the GARCH part, similarly to the ARCH

case, we introduce:

m0
i,t = [B0ut]i = b0,iui,t (6)

m1
L,i,t = [B1,LWut]i = b1,L,i

n∑
j=1

ωi,juj,t (7)

m1
R,i,t = [WB1,Rut]i =

n∑
j=1

ωi,jb1,R,juj,t. (8)

Consequently, bearing in mind that we are discussing properties of a conditional co-

variance model, the left multiplication term allows us to investigate which are the risk

receivers. In the right multiplication term, distinct from the left multiplication case, the

coefficients in the indirect effect are not pointing at the subject we are monitoring (sub-

ject j) but at the subject originating the shock (subject i). With the right multiplication

term, the parameters magnify the effect of the sources of risk, allowing us to focus on risk

spreaders.

11
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2.3 Model estimation

We suggest to estimate the parameters of our SB-BEKK, conditional on the availability

of the full sequence Wt for t = 1, 2, . . . , T , by means of QMLE methods. If we denote

by θ ≡ (vec (C) , a0,M , a1,M , b0,M , b1,M) the vector of model parameters, the log-likelihood

LT (θ) is :

`t (θ) =
n

2
log (2π) +

1

2
det (Σt) +

1

2
ut (Σt)

−1 u′t , LT (θ) = − 1

T

∑T
t=1 `t (θ) .

In the following proposition and lemma, we extend results included in Caporin and Paruolo

(2015), with a detailed study of identification for a directed network sequence. Moreover,

as the network matrices Wt might evolve on a time scale lower than that adopted for

entities, we focus here on the collection of the K distinct matrices Wk, k = 1, 2, . . . K

with K ≤ T . Our focus does not mean that we need for the estimation of the model a

lower frequency for the weight matrices.

The study of identification is possible by making explicit the expression of A (Wt) and

B (Wt) as a linear function of a vector of parameters. Considering A (Wt) as an example,

we could write:

vec (A (Wk)) = M (Wt)


a0

a1,L

a1,R

 , M (Wt) =

[
In ⊗ In W ′

t ⊗ In In ⊗Wt

]
(I3 ⊗H)

where H =
∑n

i=1 ei ⊗ eie′i and ei is the i-th column of In.

This explicit expression is novel with respect of Caporin and Paruolo (2015), even in the

symmetric case. Moreover, an anonymous referee to whom we are particularly grateful

pointed out how this linear map, in the asymmetric case, cannot be injective due to the

rank deficiency of M (Wt). A proper identification of the model is, then, impossible, with-

out imposing further restrictions on the parameters. The following important refinement

of the identification conditions elucidates the hidden role of the connectivity of the net-
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work sequence unexpected, given the simpler conditions for the symmetric case in Caporin

and Paruolo (2015).6

Before stating the identification conditions in the next proposition and lemma, let us define

an auxiliary network Gk = (V,Ek,wk), defined on the same nodes, but with undirected

edges and different weights, according to the adjacency matrix Wk :

Wk = (W ′
k �W ′

k) (DWk�Wk
)−1 (Wk �Wk) , DWk�Wk

= diag ((Wk �Wk) 1) .

We define as ck the number of connected components in Gk.

Proposition 1 (Identification). Assume that at least one of the matrices Wt is not sym-

metric. Let πK correspond to the vectorized collection of either A (Wk) or B (Wk) for

k = 1, 2, . . . K, that is πK = vec
([
A (W1)′ : A (W2)′ : . . . : A (WK)′

]′)
, where A (Wk) or

B (Wk) matrices are those coming from a full BEKK model fitted on each subsample, and

are thus globally identified. Let ψ be the parameter vector in the SB-BEKK representation

corresponding to πK. Additionally, let c = min
1,...,K

ck be the minimum number of connected

components of the induced networks Gk in the sample. Then, a necessary and sufficient

condition for the identification of ψ is that we place c linear restriction on it.

Lemma 1 (Single Restriction). A sufficient condition for having c = 1 is that at least

one of the original weight matrices Wk is fully indecomposable, inducing an ultrastrong

graph in the sense of Brualdi (1967).

The condition of Lemma 1 is not restrictive for small dense networks such as the one

we use in the empirical analysis. In those cases, the condition is trivially violated when

one node is isolated (i.e., if all the matrices Wk have the same column (row) full of zeros).

In that case, the corresponding right (left) parameter must be set to zero. For bigger and

sparser networks, sequences one should check the number of components of the induced

networks sequence Gk.

6We reproduce conditions in Caporin and Paruolo (2015) for the symmetric case; see corollary 1 in
Appendix subsection B.1
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In the full BEKK(1,1), it is sufficient to set A1,1, B1,1 > 0 to have global identification,

and in our case, this is equivalent to the conditions a0,1 > 0 and b0,1 > 0. Then, under

Lemma 1, we choose to achieve identification by imposing an equal sum of left and right

parameters:

a1,R,n = −
∑n

i=1 a1,L,i +
∑n−1

i=1 a1,R,i , b1,R,n = −
∑n

i=1 b1,L,i +
∑n−1

i=1 b1,R,i

We stress that this identification strategy allows for the presence of coefficients of both

signs in a0, b0, a1,L, a1,R, b1,L and b1,R. In subsection 3.3, we show how this allows contri-

butions that reduce the variance.

Subsection B.1 in the Appendix reports the proof of the previous proposition and

lemma, alongside corollary 1 for symmetric Wt matrices.

A necessary and sufficient condition for stationarity and geometric ergodicity, and

thus a sufficient condition to ensure the ergodicity and strict stationarity of the process

implied by the model, is covariance stationarity, Boussama et al. (2011). According to

the discussion in Avarucci et al. (2013), this condition, distinct from the univariate case,

appears necessary for consistency and asymptotic normality of the QMLE estimator. To

show the covariance stationarity, we introduce a VARMA representation of the process.

In addition, the condition for covariance stationarity will be expressed using the joint

spectral radius of Rota and Strang (1960) and Jungers (2009). It is well known that a

BEKK model admits a VARMA representation (see, for example, Hafner and Rombouts

(2007)). In our case, the VARMA coefficients will depend on the network sequence, and

ensuring covariance stationarity requires the study of convergence of a geometric series

with heterogeneus terms, analogous to the one studied in the generalized autoregressive

model; see Brandt (1986) and Bougerol and Picard (1992).

The VARMA representation of the SB-BEKK(1,1) has the following structure:

Xt = C̃ +
(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1 + ηt (9)
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where

Xt = vech (utu
′
t) , ξt = vech (Σt) , ηt = Xt − ξt, C̃ = vech (CC ′)

Ã (Wt) = Ln (A (Wt)⊗ A (Wt))Dn, B̃ (Wt) = Ln (B (Wt)⊗B (Wt))Dn,

and Ln is the elimination matrix, while Dn is the duplication matrix (see Magnus and

Neudecker (1999)). Given the distribution of εt in (2), adopting the terminology of Hafner

and Rombouts (2007), we have that ut is a strong GARCH process and ηt is a martingale

difference sequence. This remains true if the innovation distribution is misspecified, but

remains i.i.d. Equation (9) puts the model outside of the general specifications of dynamic

spatial panel models given in Elhorst (2001), because of the presence of a spatiotemporal

moving average term. The specification closer to ours is the STARMA model introduced

in Pfeifer and Deutsch (1980); for a recent overview, see Subba Rao and Costa Antunes

(2004). However, such a model adopts a static network and scalar coefficients. Due to

the presence of a time-varying network, our model is also close to the generalized au-

toregressive model of Brandt (1986) and Bougerol and Picard (1992). In order to derive

stationarity conditions for our case, we need a condition similar to those based on the

Lyapunov exponent in Brandt (1986) and Bougerol and Picard (1992). Accordingly, to

introduce it, we first need the following definitions concerning the joint spectral charac-

teristic of a set of matrices.

Let us consider an infinite countable set of n × n matrices A = {Ai}∞i=0 with the

convention that A0 = In. A generic product of t elements from A could be obtained by

extracting uniformly, with replacement, t elements from A and matrix-multiplying them.

For example, suppose that the elements sampled have indexes σ1 = 44, σ2 = 44, σ3 =

20, . . . , σt = 1; the product will be A2
44A20 · · ·A1. Let us define the set of all those

possible products At =
{
M ∈ At|M =

∏t
i=1Aσi , s.t. Aσ1 ∈ A, . . . Aσt ∈ A

}
.

We have:

Definition 2.1. Joint Spectral Radius. Given a proper norm ‖ · ‖ on Rn×Rn, we define
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on the set A the joint spectral radius % (A) by

% (A) = lim
t→∞

ρ̂t (A) (10)

ρ̂t (A) = sup
Aσ1 ,...,Aσt∈A

(∥∥∥∥∥
t∏
i=1

Aσi

∥∥∥∥∥
)1/t

(11)

Definition 2.2. Lyapunov Exponent. Given a proper norm ‖ · ‖ on Rn × Rn, assuming

that we have a probability measure on At, we define on the set A the Lyapunov Exponent

γ (A) by

γ (A) = lim
t→∞

1

t
E

[
log

(∥∥∥∥∥
t∏
i=1

Aσi

∥∥∥∥∥
)]

(12)

Using the Jensen inequality, it is possible to show that to eγ(A) ≤ % (A); see, for

instance, Tsitsiklis and Blondel (1997).

We are now ready to discuss the covariance stationarity of our model.

Theorem 1 (Covariance Stationarity). If the joint spectral radius

%

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1,

the SB-BEKK(1,1) process is covariance stationary conditionally on the network sequence.

We stress that the use of bounds on the joint spectral radius is a condition on dynamic

stability strictly weaker than the ones already present in the literature. For example, the

uniform boundedness assumption size in Lee and Yu (2012), being based on row and

column sum norm, implies our joint-spectral-radius condition. This is relevant for our

empirical application where the choice of normalization is different from the standard row

sum, and motivated by the economics of the data used (see section 3.1).

We now discuss the consistency and asymptotic normality of the QMLE estimator

along the lines of Hafner and Preminger (2009). In detail, we modify their proof to

generalize them to the case of time-varying Ã (Wt) and B̃ (Wt). In the following, ‖ · ‖
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represents the norm operator, with different norms being specified when needed. Denote

by θ the vector of stacked parameters that implicitly satisfy the identification condition

of Theorem 1, and denote the true parameter vector as θ0. Define the QMLE as θT =

arg maxθ∈θ LT (θ). Additionally, let Σ̃t be the process where the starting values are drawn

from their stationary distribution, and let ξ̃t, L̃T and ˜̀
t be defined analogously.

We begin by discussing the assumptions needed for consistency.

Assumption 1. The parameter space Θ is compact and %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1.

Assumption 2. {ut} is strictly stationary and ergodic, and ∃s > 0 s. t. E [‖ut‖s] <∞ .

Assumption 3. E [‖εt‖s] <∞, Var [εt] = In.

Assumption 4. The model is identified: i.e., conditions in Theorem 1 are satisfied.

Our assumptions parallel those in Hafner and Preminger (2009). The only conceptual

difference, once we take into account our use of time-varying matrices, is in Assumption

1, where we bound the joint spectral radius of the sum of Ã (Wt) and B̃ (Wt), instead of

a condition that points only at the joint spectral radius of B̃ (Wt) matrices. In Lemma 4

in subsection B.2 of the Appendix, we show that one condition implies the other. This

was done for the standard BEKK in Boussama et al. (2011), where they also show that

bounding the spectral radius of the sum was a sufficient condition for strictly stationarity

and ergodicity. Then, in the standard framework, the first part of assumption 2 would be

redundant. Showing that this also applies to our case is outside the scope of the paper.

Theorem 2 (Consistency). Under Assumptions 1-4 θ̂T →a.s. θ0.

Proof of Theorem 2 is in section B of the appendix.

To establish asymptotic normality, the following additional assumptions are needed.

Assumption 5. The parameter θ0 is an interior point of Θ

Assumption 6. E
[
‖ut‖6] <∞

Assumption 7. sup maxi=1,...,n

∑n
j=1 Wt,ij ≤ d∗ <∞ a.s.
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Assumptions 5 and 6 are identical to assumptions adopted in Hafner and Preminger

(2009). Assumption 7, pointing at the network structure, is not particularly restrictive.

In fact, it is trivially verified for the row-normalization case, but it also justified for

different normalization schemes. For example, the network used in our empirical analysis

has d∗ = 1 (c.f. section 4.1.1).

Further, let us also define the following matrices

V = E

[
∂ ˜̀(θ0)

∂θ

∂ ˜̀(θ0)

∂θ′

]
, J = E

[
∂2 ˜̀(θ0)

∂θ∂θ′

]
.

Theorem 3 (Asymptotic Normality). Under Assumptions 1-7

√
T
(
θ̂T − θ0

)
→D N

(
0, J−1V J−1

)
.

Proof of Theorem 3 is in section B of the Appendix.

In the empirical part, we compute the covariance analytically without using the sec-

ond derivatives, following the suggestions in Hafner and Herwartz (2008). Parameters

constrained to be positive are handled with an exponential transformation and the usual

modification of the gradient. Finally, under the asymptotic normality it is straightforward

to derive the distribution of the coefficients a1,R,n and b1,R,n linearly constrained by the

identification restrictions.

3 Tools for Spatial Econometrics of Networked Risk

In this section, we conclude the description our framework for a spatiotemporal econo-

metric treatment of risk and dependence relationships across entities, introducing a risk

toolbox able to investigate the flow of risk spillovers. In the following subsections, we dis-

cuss normalization issues for the network sequence, the insight provided by inference-based

networks, the decomposition of the system variance, and we introduce a counterfactual

covariance-reduction analysis. The practical impacts of these elements will be highlighted
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in the empirical analysis presented in Section 4.

3.1 Normalization and Robustness

Taking into account the time variation for the spatial proximity matrices Wt obliges us to

pay particular attention to the way in which we normalize these matrices. In fact, a simple

row normalization at each time would make the comparison of the proximity matrices over

time very difficult. Furthermore, a time-specific or matrix-specific normalization would

lead to a loss of information, as both disregard the evolution over time of the network

structure.

In order to obtain parameters of a reasonable magnitude, but also to retain differences

in matrix norms across time (which could be an important driver of dependence), we

divide each row of Wt by an (economic) measure of the magnitude of the entities, which we

denote as Mi,t. Note that this quantity is time varying to account for changing conditions,

states, or entities. As examples of possible measures, we mention the use of gross domestic

products or public debt for networks of countries, and the use of revenues or balance-sheet-

based indicators for networks of companies.

If we adopt this approach, we stress that the spatial matrices Wt will not have the

maximum eigenvalue equal to 1, as is standard in spatial econometrics. This new possi-

bility in choosing normalization schemes is granted by the use of the joint spectral radius

in our covariance stationarity condition in Theorem 1. In turn, this allows heterogeneity

in the spectral radii of single terms Wt in the network sequence and, consequently, to use

normalizations as devices to include additional economic and financial effects.

3.2 Inference-Based Networks

Within our SB-BEKK model, time-varying parameter matrices are composed of two ele-

ments: the series Wt, which we assume to be observed without errors, and the parameters

estimates, which, following Theorem 3, are characterized by an asymptotic normal dis-

tribution. By combining these two components, we can revise our knowledge of the un-
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derlying network by building several “inference-based”networks, whose characterization

derives from the dependence on specific inferential aspects of the BEKK model parame-

ters. We focus here on the A matrices and note that the same line of reasoning can be

applied to the B matrices.

Using a simple linear restriction, we can test whether an off-diagonal element of A (Wt)

is statistically significant:

H0,i,j : [A (Wt)]i,j = (a1,L,i + a1,R,j)ωt,i,j = 0 i 6= j

Then, under the asymptotic normality of the QMLE estimator, the test statistic for H0,i,j

is asymptotically distributed as a standard normal. The simplicity in this kind of inference

is one of the main features of our left-right specification not accessible to any previous

spatial models in the literature.

We thus define WA
t as a filtered ARCH network, or inference-based ARCH network

(i.e., the network whose signed weight matrix are the off-diagonal statistically signifi-

cant elements of A (Wt)). We also remark here that the sign of [A (Wt)]i,j depends on

the relative sign and magnitude of the parameters involved, having the same sign of

(a1,L,i + a1,R,j).

Using a similar approach, we derive filtered networks from the GARCH parameters.

The network that can be filtered from the ARCH matrices represents the response to a

shock in the previous period, while that associated with the GARCH matrices represents

the covariance persistence, that is, the response to the whole history of past shocks.

3.3 Covariance Decomposition

The introduction of proximity matrices in the dynamic of BEKK models allows the es-

timation 0.5(n + 1)n series of filtered conditional covariance elements. For n ≥ 3, it is

difficult to interpret directly all the recovered series, and it is therefore desirable to have

summary measures backed by some theoretical line of reasoning. This is a classical issue
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in spatial econometrics, where we observe the same difficulty in interpreting the impact of

explanatory variables or innovations. The complexity stems from the large cross-sectional

dimension of the analyzed data (or series), as in our case. The traditional solution is

to resort to summary measures of the direct and indirect effects of explanatory variables

and shocks; see LeSage and Pace (2009) and LeSage and Pace (2014). We follow a sim-

ilar approach and introduce a decomposition of the sequence of conditional covariances

provided by the SB-BEKK model. Nevertheless, there are two important distinctions:

first, focusing on conditional covariance matrices, we deal with quadratic forms where

spatial spillovers appear twice with an increase in the terms appearing in the decomposi-

tion; second, being that the SB-BEKK is a spatiotemporal model, we have a breakdown

conditional to the past. We propose a four-term decomposition of the system-conditional

covariance:

1. Constant Contribution: This represents the part of the covariance that is unrelated

to the model dynamic and independent from both the network and the time;

2. Direct Contribution: This represents the covariance contribution from each entity’s

own past; it is the variance due to past direct effects, and therefore has no depen-

dence on the network;

3. Indirect contribution: This represents the covariance contribution due to indirect

effects that are due to the assets’ network exposures;

4. Mixed contribution: This represents the covariance contribution originating from

the quadratic form of the model, and is due to the interaction of both direct and

indirect elements.

To introduce the algebra of our decomposition, we take as a working example a case

where we have non-null values in the time-invariant matrices W . From equation (2), the

conditional covariance at time t is given by the sum of three elements: the constant; a

quadratic term associated with the shocks; and a quadratic term associated with the past
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conditional covariance. In our decomposition, the constant term is simply given by the

constant of the conditional covariance, thus CC ′. We now focus on the shock-response

term, the ARCH part of the model. We remind the reader that we introduce in equations

(3) and (4) a definition of direct v0
i,t and indirect effects v1

L,i,t, v
1
R,i,t within the ARCH part.

We now decompose the entire shock response term as follows:

A (W )ut−1u
′
t−1A (W )′ = v0

t−1

(
v0
t−1

)′
+ v1

L,t−1

(
v0
t−1

)′
+ v0

t−1

(
v1
L,t−1

)′
+ v1

R,t−1

(
v0
t−1

)′
+ v0

t−1

(
v1
R,t−1

)′
+ v1

L,t−1

(
v1
L,t−1

)′
+ v1

R,t−1

(
v1
R,t−1

)′
+ v1

R,t−1

(
v1
L,t−1

)′
+ v1

R,t−1

(
v1
L,t−1

)′
.

The first element in the ARCH term decomposition refers to the variance (or covari-

ance) own shock. This is comparable to a direct shock contribution. The third term

represents the contribution to the covariance due to network weights. This corresponds

to an indirect effect, that is, the shocks’ impact due to the network. The second term can

be interpreted as mixed effects because they combine both direct and indirect elements.

Moving to the GARCH part of the model, the direct, indirect, and mixed contributions

correspond to covariances between the terms in equations equation (6), equation (7) and

equation (8). In fact, for the indirect contribution originating from the GARCH part of

the model, using the bilinearity of the conditional covariance operator and conditionally

on the network W , we have:

[
Ω1,1
L,L,t−1

]
i,j

= Cov
(
m1
L,i,t−1,m

1
L,j,t−1

∣∣ It−2,W
)

=
[
B1,LWΣt−1W

′B′1,L
]
i,j
. (13)

We can recover similar identities for the direct and mixed contributions. In Table (1), we

summarize the elements appearing in the conditional covariance decomposition.

Further, we highlight that the decomposition is time varying by construction and

might also be affected by the dynamic in the network structure. Since the model speci-

fications allow for positive and negative signs on both ARCH and GARCH coefficients,

in principle, diversification benefits could arise from all four contributions. The variance
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decompositions outlined above are specific to a single element of the covariance matrix.

Of particular interest in the empirical section will be the decomposition of the variance of

single series, a breakdown able to highlight which entity risk is the most affected by the

presence of the exposure network (i.e., which are the more fragile nodes in the network).

However, we might be interested in recovering a synthetic measure of the decomposition

at the entire covariance level. We propose to define this synthetic (and time-varying)

measure starting from a portfolio representation of the system, with portfolio weights

given by the vector z, such that
∑n

i=i zi = 1, and therefore leading to

σ2
t = Var (z′yt| It−1)

=
(
σConstantt

)2
+
(
σDirectt

)2
+
(
σIndirectt

)2
+
(
σMixed
t

)2
. (14)

The previous decomposition is able to report, globally, the importance of the network

sequence through time. Another possibility is instead to compute the marginal spillover

contributions MSCk,t that we could attribute to entity k:

MSCk,t =
1

2

∂

∂zk
Var (z′yt| It−1)

= MSCConstant
k,t +MSCDirect

k,t +MSCIndirect
k,t +MSCMixed

k,t (15)

The marginal spillover contribution is normalized, guaranteeing that, if we define the

vector MSC′t = [MSC1,t, . . . ,MSCn,t]
′, we have z′MSCt = Var (z′yt| It−1). MSCk,t

is, then, a measure of the importance of node k as a source of spillovers in time t. In

particular, our decomposition allows us to disentangle the direct sources of spillovers from

the ones that are mediated by the network sequence. Among the many possible choices,

in the empirical application, we chose the simplest one, and thus consider a portfolio

characterized by equal weights for each entity. This is also equivalent to considering the

behavior of an average element of the covariance (i.e., the average linear dependence in

the system). The use of different weighting schemes, with potentially better economic

explanations, is left for further empirical research. The explicit expressions for variance
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decompositions and marginal spillover contributions are reported in section A of the

Appendix.

3.4 Simulated Counterfactual Network and Covariance Reduc-

tion

Finally, we rely on a simulated counterfactual analysis (Mccallum (1988), Rotemberg and

Woodford (1997)) to investigate how changes in the network impact the variance of an

equally weighted index. In particular, we change the network in order to minimize the

multistep variance forecast based on ex-ante data. This choice of the objective function is

motivated by its equivalence with the minimization of the average forecasted covariance

coefficent (i.e., on the average linear dependence and risk in the system). The counterfac-

tual innovation paths are bootstrapped from estimated innovations (see section C of the

Appendix for the details of the circular bootstrap Politis and Romano (1992) we used).

In a similar way, we recover a realized innovation path on the out-of-sample period using

the previously estimated parameters and the out-of-sample observed network. By con-

struction, using the realized innovation path in the model with the realized weights will

reproduce the multivariate time series observed in the out-of-sample period. If, instead,

we feed the model with the previously obtained optimal weights and the realized innova-

tion path, we obtain a counterfactual multivariate time series that takes into account the

effect of the optimal change in the network. We then compare, as a proxy for system vari-

ance (i.e., the average covariance in the system), the squared observations of the equally

weighted indexes obtained from the realized and optimal counterfactual time series. If

we observe a reduction of the optimal counterfactual proxy with respect to the realized

one, we can conclude that, indeed, we can reduce the variance by optimally changing

the network based only on ex-ante data. In the following, we describe the details of the

procedure.

Conditional on the bootstrapped innovations ε̃
[b]
T+l with b ∈ [1, . . . , NB] and l ∈

[1, . . . , h], and assuming that the network is constant over the forecast horizon, the
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forecasted covariance path is a function of the network at time T , WT 7→ Σ̂F
T+l (WT )

l ∈ [1, . . . , h]. This raises the interesting possibility of obtaining a target network that

can reduce the future risk and dependence in the system. To define the optimal target

network, we require that it minimizes, at least locally, the average covariance coefficient of

the system, which we compute as the variance of an equally weighted portfolio of all the

series. We underline here that the methodology can easily accommodate different objec-

tive functions, being based on numerical optimization. A detailed investigation of more

refined and economically motivated targets is left for future research. With our approach,

we exploit the frequency mismatch between the data used to estimate the network and the

series for which the risk is evaluated. Such situations are not rare, as financial networks

might be built from lower-frequency data (using, for instance, balance-sheet data), while

financial market data are available at a daily or even higher frequency. In particular, we

assume that the network changes every q observations. That is, in the full sample T , we

have [T/q] = Q networks, or, alternatively, we have Q sub-periods in which the network

is stable. In the forecast exercise, we assume that WT+l = WQ for each l ∈ [1, . . . , h], such

that T + 1 and T + h are the beginning and end of the period Q+ 1. We require that the

average forecasted variance of the equally weighted index over period Q+ 1; i.e., the first

sub-period following the estimation sample, conditional on the bootstrapped innovations,

is minimized by numerically solving the following constrained optimization problem:

min
vecW ?

{
1

h

h∑
l=1

1

n2
1′Σ̂F

T+l (W
?) 1

}
s.t. 0 ≤ [W ?]i,j ≤ 1 for i, j = 1 . . . n, and Tr (W ?) = 0

where 1 is the n × 1 column vector whose elements are all equal to 1 and Tr (.) is the

trace operator. It is important to note that the estimated network W ? is weighted and

directed, but is totally unrelated to the last available network. We thus also consider a

more realistic constraint in which the out (in) strengths of the nodes, defined as the row

(column) sums of the optimal network, are set to be the same as the out (in) strengths
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of the nodes of the last network WQ. For the row-sum case, we impose

n∑
j=1

[W ?]i,j =
n∑
j=1

[WQ]i,j , (16)

and we can write a similar constraint for the column sum. These constraints avoid a

change in the strengths of the nodes and correspond to a simple redistribution of the

weights across the system. We refer to the constraint in equation (16) as a redistribution

constraint. Moreover, we introduce an additional alternative constraint imposing that the

resulting optimal network differs from the previous one in an ordinary way, and does not

represent an exceptional change. We implement this by computing the Frobenius norm

on the historical changes in the network

‖∆Wq‖F = ‖Wq −Wq−1‖F =
√

vec (Wq −Wq−1)′ vec (Wq −Wq−1) q = 1, . . . Q− 1, (17)

and imposing that the norm of optimal change ‖∆W ?‖F = ‖W ? −WQ‖F is less than or

equal to the empirical 0.95 quantile of historical norm changes q
‖∆W‖F
0.95

‖∆W ?‖F ≤ q
‖∆W‖F
0.95 . (18)

We refer to the constraint in equation (18) as a Frobenius norm constraint.

To evaluate the performance of the proposed out-of-sample methodology, we suggest

comparing two estimates of the model, one excluding the out-of-sample data, and the

second including the forecasted data. This enables us to compute the filtered innovations

for the forecasted periods, conditional on the true, observed Q+ 1 network:

ε̂T+l = Σ̂
− 1

2
T+l (WQ+1)uT+l l ∈ [1, . . . , h] . (19)

Then we can reconstruct the us and the counterfactual proxy for the equally weighted

index’s conditional variance, as if the realized network for the period of interest is the
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optimal one, W ?:

ũ?T+l = Σ̂
1
2
T+l (W

?) ε̂T+l (20)

Var

(
1

n
1′y?T+l

∣∣∣∣ IT+l−1

)
= Var

(
1

n
1′u?T+l

∣∣∣∣ IT+l−1

)
'
(

1

n
1′u?T+l

)2

(21)

In this way, we can compare the obtained optimal counterfactual proxy with the realized

proxy, the latter being robust against model misspecification. Even if this simulated

counterfactual analysis is similar to the one used in monetary-policy evaluation exercises

(see Rotemberg and Woodford (1997), Primiceri (2005) and more recently, Bikbov and

Chernov (2013)), we are aware that, concerning our empirical application, regulators

have, at the moment, no possibility of intervention in incentivizing the redistribution of

banking exposures. An additional issue in the use of this procedure in policy evaluation,

as noted in the literature, is that such a methodology is prone to the critique in Lucas

(1976), as we are not considering the market reaction to the network change. Regarding

those issues, we recall that endogenizing the network sequence is beyond the scope of

the present investigation and that in Tonzer (2015), in a framework similar to ours,

exogeneity failed to be rejected by several tests. In our case, in addition, the time-varying

nature of the network during the estimation period mitigates this issue. In fact, the

market reaction to changes in the network should have been at least partially encoded in

estimated parameters. Following this line of reasoning, we propose a procedure to test the

constancy of parameter estimates when we optimally change the network. In particular,

we estimate again the model using the in-sample Q periods and a Q+ 1 period in which

we use W ? and the ũ? of equation (20). We call the estimates for the network parameters

obtained in this way a?1,L, a
?
1,R, b

?
1,L, b

?
1,R. We also estimate the model using the in-sample

Q periods and the Q + 1 realized out-of-sample period. Then, considering as given the

estimates implied by the optimal network, we test for the joint hypothesis

H0 : a1,L = a?1,L, a1,R = a?1,R, b1,L = b?1,L, b1,R = b?1,R, (22)

27



 Electronic copy available at: https://ssrn.com/abstract=3239369 

using the estimates and covariance obtained by the realized sample in a Wald test. Fail-

ing to reject the null hypothesis would support parameter constancy and limit relevance

of the Lucas critique, making possible the policy exercise Engle and Hendry (1993). In

particular, we explicity designed the Frobenius norm constraint equation (18) to increase

the possibilities of obtaining parameter constancy. With those limitations in mind, we

highlight that the product of our counterfactual exercise is a first step toward the deter-

mination of the target exposures that can be helpful for policy makers from a monitoring

perspective.

4 Risk Spillovers among European Sovereign CDS

To better clarify the advantages and potential benefits of our methodology, we consider

an application to publicly available data, and in particular, we consider the Euro area

sovereign CDS premia. We consider only the Euro area because there is a documented

currency firewall effect both for sovereign, Groba et al. (2013), and banks CDS, Alemany

et al. (2015). Inside the EMU, we pick the two major economies and the peripheral

countries excluding Greece, whose bailout make the CDS series unmanageable from the

second semester of 2010. We use two different data sources: (i) the changes in the five-

years sovereign CDS spreads for a selection of European countries and (ii) the matrices of

foreign claims collected by the BIS. As we detail in the following subsection, these data

refer to the claims that the banking sector of a country A has with respect to the banking

(public and private) sector of another country B. There is clearly an asymmetry between

the dependent variable and the data source for the weighting matrices. Nevertheless,

several theoretical models show tight linkages and feedback loops between sovereign and

banking risk both in single and multi-country economies; see Bolton and Jeanne (2011);

Acharya et al. (2014); Gennaioli et al. (2014); Farhi and Tirole (2016). In Dungey et al.

(2017) this theoretical link is also empirically investigated. The aim of our analysis is

to characterize, identify and evaluate the sovereign risk of the system, considering the
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total sovereign risk of the Euro area as the volatility of a weighted-average portfolio of

European sovereign bonds. Risk spillovers are driven by the weight matrices, based on

cross-country cross-credit exposures.

4.1 Data Description

4.1.1 BIS Banking Statistics

We use data at a quarterly frequency to describe the network of foreign claims among Por-

tugal, Italy, Ireland, Spain, France, and Germany from Q4 2008 to Q4 2016, as they are

produced by BIS in the consolidated banking statistics (ultimate risk basis). The quar-

terly claims are converted to a daily basis by repeating them for each day in the quarter,

thus obtaining the sequence of daily matrices. This interpolating choice has an implicit

assumption: foreign claims variation is much slower than the changes in CDS spreads.7

BIS-consolidated banking statistics provide internationally comparable measures of na-

tional banking systems’ exposures to country risk (see McGuire and Wooldridge (2005)).

Country risk refers to countrywide events, which can lead to systemic instability that

prevents obligors (whether direct debtors or guarantors of claims on other borrowers)

from fulfilling their obligations. Banks contributing to the consolidated statistics report

a full-country breakdown of claims booked by their offices worldwide. Only assets are

reported. The residence of the ultimate obligor, or the country of ultimate risk, is defined

as the country in which the guarantor of a financial claim resides, or the place in which the

head office of a legally dependent branch is located. Foreign claims, in the ultimate risk

basis, reported by country A with country B as a counterpart, are all on-balance-sheet

financial assets, with the exclusion of derivative contracts guaranteed by public or private

entities of country B and owned by the banking system of country A. Our choice differs

from that in Tonzer (2015) who, mainly motivated by sample-length consideration and

exchange-rates-adjustment reasons, uses locational banking statistics, also from BIS. We

motivate this by the mixed nature of the data and the importance of the local banking

7We also used a linear interpolation scheme, and the estimation results were unaltered.
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system in international financial intermediation (McCauley et al. (2010)). Further, the

motivations in Tonzer (2015) are not relevant in our framework because we focus on a

smaller and more homogeneous group of countries, with a common currency, for which

the more reliable consolidated-ultimate-risk-basis statistics are available. We expect that,

if A reports a claim with B as a counterpart (i.e., if A’s banking system owns a certain

amount of B’s public and private debt, investors will perceive A’s sovereign risk to be

dependent on B’s sovereign risk in terms proportional to the claim amount. In the next

subsection, 3.1, we discuss the impact of normalization schemes on the estimations. In

particular, we stress how our choice of normalization removes a clear deleveraging trend

and gives a higher importance to peripheral countries. Here, instead, we underline how

the use of an economic normalization scheme is possible only with our careful examination

of identification and covariance stationarity conditions.

Our choice for the normalization Mjt of the j-th reporting country is its quarterly

time series of total ultimate-risk-basis claims, which includes claims from the selected

countries, but also from the rest of the world.8 In addition, we stress that using this

normalization allows us also to control for claims outside the chosen countries and to

evaluate the exposure channel importance at the country level. The comparison between

un-normalized series (Figure (S.1) in the supplementary material) and normalized series

(Figure S.2 in the supplementary material) show relevant differences. With respect to the

un-normalized series, the deleveraging trend is less evident and the peripheral countries

are more important. We note, in particular, the relevance of Spain as a counterpart of

Portugal and a big bump in Q4 2010 - Q3 2011 in Ireland’s claims with Germany as a

counterpart (a fact that was hidden when considering the dollar amount).

8We also investigated other choices for normalizations: the absence of normalization, row normaliza-
tion, the GDP of the reporting country, and the public debt of the reporting country. In the full sample
estimation, total claims outperform, in likelihood terms, the alternative normalization schemes in the vast
majority of models, and when this is not the case, the difference in likelihoods is negligible. Estimation
results for these alternatives are available upon request.
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4.1.2 Sovereign CDS spreads

We use the daily changes in the five-year sovereign CDS spreads, from 9/10/2008 to

30/12/2016, for France, Germany, Ireland, Italy, Portugal, and Spain, as downloaded

from Thomson Reuters Eikon. The choice of the five-year maturity is due to the more

volatile nature of shorter maturities. As can be seen from Table S.1 in the supplementary

material, mean and median are negligible, justifying our volatility approach. The Kurtosis

of some series — in particular, that of Portugal, but also those of Germany and Ireland

— is striking, adding a further motivation for a GARCH-type modeling.

The correlation is high between specific pairs — namely, Spain and Portugal, Spain

and Italy, and Italy and Portugal — highlighting the closeness between those economies.

Despite all being positive, several correlations display relatively small values, even if they

are all significantly different from zero with a p-value below 0.01. Most interestingly,

the smallest correlations are those between Germany and the other European countries

(France excluded).

4.2 Parameter Estimation

In Table 2, we report QMLE results for the relevant parameters of the model. Table S.2

in the supplementary material includes some specification tests. We estimate the model

by using a numerical-constrained optimization with bounds for the parameters function

of the joint spectral radius of the network sequence. We checked covariance stationarity

after the estimation by verifying the joint-spectral-radius condition of Theorem 2. In turn,

we do that by computing a numerical bound obtained with the conic ellipsoid algorithm

of the JSR matlab toolbox (see Vankeerberghen et al. (2014)).

As the first panel of Table S.2 shows, the SB-BEKK models outperform the diagonal

model. We check the joint significance of parameters by likelihood ratio test statistics

and a Wald-type statistic. Notably, both tests strongly reject the null, thus supporting

the relevance of networks in variance-spillover analysis. Other tests on the significance of

different parts of the model are also rejected. Table 2 shows the significance of the vast
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majority of coefficients of the proposed model. In addition, the presence of significant

coefficients of both signs induces variance-reducing contributions mediated by the claim

matrix, but at this stage, due to the nonlinearity of the model, is not easy to understand

which ones they are, and we are mainly commenting on their magnitude. At the 10%

significance level, all the spatial coefficients for France, Ireland, Spain, and Portugal are

statistically different from zero. Italy, instead, appears highly relevant in short-term risk

spreading, having an ARCH right coefficient that is highly significant and the second-

highest in magnitude. Germany, on the opposite, has a risk-receiving propensity in the

long run, having only a GARCH left coefficient statistically different from zero, but its

magnitude is the second-to-last in the GARCH left part. This is in line with the low

correlation with other series other than Germany, as displayed in the summary statistics,

and it is also coherent with Germany’s claims that have Italy and Ireland as counterpart.

Considering the magnitudes of coefficients, we expect Ireland to play a big role as a

risk spreader, both in the short run and in the long run, because its right coefficients

are highly significant and have the highest magnitude, even if they differ in sign. Given

the interesting dynamics uncovered in the normalized claims owned by Germany, this

is not surprising. Instead, France has the biggest risk-receiving coefficients in both the

short run and long run. Again, this can be understood looking at the series of its claims

with Italy as counterpart. Portugal appears to have a risk-receiving propensity; the risk

channel should be the claims it has with Spain as a counterpart. Spain, in this first rough

analysis, shows a role both in spreading and receiving risk.

4.3 Inferred Networks

We use the methodology outlined in Section 3.2 to build a graphical representation that

allows us to monitor the edges of the network — that is, the level of spillover between two

specific countries as measured by the time-varying off-diagonal element of matrices A and

B. In particular, one of the main features of our model is the ability to test the significance

of those implied edges with a linear restriction (c.f. 3.2). Due to the high number of
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coefficients and their time variation, it is difficult to conceive a tabular representation for

our results. Instead, in order to display the topology of spillover flows, we propose a signed

weighted directed network representation of the sequences of off diagonal elements in

A (Wt) and B (Wt), with the weight proportional to the edge width and color representing

the sign. In particular, in Figure 1, we report the relevant networks for three crisis

periods: Q4 2008 (i.e., the collapse of Lehman Brothers and the bank bailout in Ireland),

Q2 2010 (i.e., Greece’s bailout), Q2 2016 (i.e., the Brexit referendum).(Section S in the

supplementary material includes the complete representation.) Since we are conducting

2 ∗ (n2 − n) = 60 test, it could be argued that we need to adopt a multiple-hypothesis

testing framework; for this reason, we apply a Bonferroni correction to the nominal 5%

significance level and show in Figure 1 only edges with p-values smaller than 0.05
60

=

8.3e − 04.9 The model imposes a stable pattern on the network topology and signature.

The ARCH spillover topology shows how Spain, in the short term, is the central node

receiving risk from Italy and Portugal and giving it to Ireland and France. Further, while

France is giving risk back to Spain, Ireland is transferring risk to France and fueling

a feedback loop with Germany. The overall picture is more involved in the long run

(GARCH part), with several feedback loops, the strongest of which is between Portugal

and Spain. We register, also, the appearance of a feedback loop between the two major

economies: Germany and France. Here, Ireland has the same incoming interaction, but

has two new targets, Italy and Portugal. Regarding the signature, a negative sign implies a

sign change of the incoming shock, but we remind the reader that covariance contribution

is a quadratic form in the shocks, and therefore negative contribution does not directly

imply a covariance reduction. Again, the presence of edges of differing signs in both

series of matrices favors the presence of covariance reducing terms. However, given the

nonlinearity of the model, it is again difficult to understand where covariance reduction

is located. In the next subsection, we will have a clearer description using covariance

9We report in Table S.3 of the supplementary material the p-values relevant for each off-diagonal
element of the sequences A (Wt) and B (Wt), which under our hypothesis of no measurement errors in
weights is time invariant.
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decompositions.

The time variation we detect is in the edge weight (width). This is visible, for instance,

in the ARCH edge from Italy to Spain; it is less effective in the Greek crisis, in the GARCH

spillover from France to Germany, in the collapse of Lehman Brothers, in the sign-changing

ARCH transmission from Ireland to Germany, and during the Brexit referendum. The

big effect in 2011 from Germany to Ireland can be also appreciated by the pictures in

the supplementary material S. The previous results point out the role of Spain and, to a

lesser extent, of Ireland as risk middlemen able to transfer risk from peripheral countries

to major economies.

4.4 Covariance Decompositions

The use of a Bonferroni correction could hide the role of less-significant but relevant

links. In addition, as already noted, in the previous analyses, it is difficult to understand

where and when diversification benefits are at work. For these reasons, we use herein the

methodology of Subsection 3.3 on the covariance decomposition of the SB-BEKK model.

This tool will allow us to understand who benefited the most from variance-reducing

contributions mediated by the network, who is most impacted by network exposures, and

who are the major risk spreaders.

Figure 2 reports the percentage of the system-variance, constant, mixed, and indi-

rect contributions.10 The representation of the system is an equally weighted portfolio.11

The mixed contribution has both variance-increasing and variance-reducing contributions,

with only a few large peaks of diversifying effect, mostly around turmoil. The indirect

contribution is always positive and present during turbulent periods. In the second part

of the sample, the relevance of network contribution is reduced in favor of the constant,

10We do not include the direct contribution since, although it is the biggest, it does not depend on the
network links.

11It could be argued that an equally weighted portfolio does not represent a well-diversified portfolio.
Indeed, this is the point of view put forward in Brunnermeier et al. (2017), which proposed weights
proportional to the GDP to properly capture the sovereign credit risk of the Euro area. This possibility
and the relevance of our model in evaluating the proposed European Safe Bonds will be investigated
elsewhere.
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with the notable exception of some important episodes, such as the Brexit referendum.

This change in behavior could be understood by the developments in the second half of

2012, with Mario Draghi’s ”whatever it takes” speech in July, which led to the Outright

Monetary Transactions framework — but also with the July establishment and September

implementation of the European Stability Mechanism. These surrogates of a centralized

lender of last resort dampened the relevance of cross-border claims as a contagion channel.

Considering also variance decomposition for the other series, variance-reducing contribu-

tions come from the mixed part only in some periods, and are prevalent only for some

countries. We summarize our findings with the following table, in which we report the

cumulative percentage contribution on the whole estimation period.

Those results testify that most of the variance contribution is not mediated by the

banking system exposures. This is not surprising since this is only one of several contagion

channels. We also note how the indirect contribution is always superseded, in absolute

value, by the mixed one, but the order of magnitude is, in the majority of cases, the

same. In addition, the table shows that only Spain, Germany, and, to a lesser extent,

Italy benefited from network effects. For Portugal and France in particular, and Ireland

to a lesser extent, participation in the network of claims was dangerous. Looking again

at the previously derived topology of spillover, we could now argue that those are the

countries receiving risk from Spain and, in particular, that the countries most severely hit

are the ones involved in an unbalanced feedback loop that favors Spain.

In Table 4. we report the downside. In fact, cumulative marginal spillover contri-

butions, in percentage of the system variance, are able to identify the major sources of

spillovers. Here we see that the most important countries are Portugal and Spain, but

they contribute mostly in the amplification of their own variance. Instead, if we consider

the contribution mediated through the banking exposures, the major sources of risk are

Italy and Ireland, and, to a lesser extent, Spain. From the topology displayed before,

we could argue that Ireland has a worrisome relationship with Germany in the short run

and long run, and that it is contributing to the risk of France, Portugal, and Italy. It
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seems that Italy’s role as one of the major risk contributor to Spain has a big secondary

impact to other countries through the previously described feedback loops. In addition,

if we look at the P-values (Table S.3 in the supplementary material) we see that Italy

impacts directly, but in a less significant way, on Portugal and France. France’s shocks

seem to have little cumulative diversifying effect. This could be due to the slightly preva-

lent covariance-reducing effect on Germany, with respect to secondary effects triggered by

its interaction with Spain. Section S in the supplementary material reports the complete

series of decompositions for each country, excluding direct contributions.

4.5 Estimated Counterfactual Exposures

In the previous section, the bank exposure network is characterized as significant but

minor in the sample spillover channel. In this subsection, we evaluate, out of sample, by

an ex-ante counterfactual analysis, to what extent changing exposures could be beneficial.

In fact, the model allows for an estimation of the networks’ impact on the system variance.

Therefore, it is possible to evaluate the estimated model by focusing on the identification

of the optimal (in terms of the conditional linear dependence in the system) network

design. In particular, we propose to minimize the predicted path of the conditional

average covariance in the system, looking for the optimal network structure, by following

the methodology outlined in Subsection 3.4. We choose to optimize the forecast path in

the quarter of the Brexit referendum (Q2 2016), while also including part of the subprime

crisis and Greek bailout in the estimation sample (from Q4 2008 to Q1 2016). Our results

convince us that the spillovers are channeled through foreign claims in the same way

on the three occasions. We start by analyzing the counterfactual effect on the variance

proxy of the equally weighted index. We perform the analysis by replacing the network

of Q2 2016 with one of the following choices: a network with all exposures equal to

zero, a network resulting from unconstrained optimization, a network coming from a

redistribution-constrained optimization, and, finally, a network coming from a Frobenius-

norm-constrained optimization. For the redistribution-constrained model, equation (16)
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implies that there is only a redistribution of the claims among the considered countries;

for the Frobenius-constrained model, equation (18) implies that the change in the network

is comparable with the historically registered changes, but the total amount of claims can

change; for the unconstrained model, the total amount of claims changes for each country,

and extreme changes with respect to the historical ones are allowed.

Figure 3 shows the realized and counterfactual variance proxy of the equally weighted

index during the sovereign debt crisis. We compute the variance according to equations

(20) and (21). In addition, we plot the proxy coming from a network with zero expo-

sures. The prevalent diversifying effect of exposures is evident in comparing the realized

proxy with the zeroed one. The percentage change of the cumulative zeroed proxy with

respect to the realized one is an increment of 16.55%. This also clarifies the fact that

the näıve complete deleveraging solution, in our example, amplifies risk. This points out

the necessity of a nontrivial exposure change, if we want to achieve risk mitigation. Our

optimal counterfactual exercise is the first step in this direction. In particular, we think

that several additional insights could be obtained by looking at the optimal proxy in 3.

First of all, we are indeed able to reduce the out-of-sample counterfactual variance of the

system by optimizing the network, based only on ex-ante information. This remains true

also if we are imposing that the amount of claims for each country remain the same, or

that the change is aligned with historical ones. As we were expecting, the optimization

without constraints yielded the best percentage of cumulative reduction (-22.35%) and, in

this case, the Brexit peak is mitigated and delayed. The drawback of this approach is that

the variance is at several points in time above the realized one. On the opposite side, the

reduction is halved, with the Frobenius-norm constraint (-11.18%), reduced by a lesser

but comparable magnitude (-9.66%) with the redistribution constraint. The Brexit peak

drop is less perceptible, but is indeed present and again higher for the Frobenius-norm

constraint. Nevertheless, risk mitigation is much more stable in time and the variance

is always less than or equal to the realized one in both constrained cases. Additionally,

our procedure reduces an average correlation proxy (see Figure S.3 in the supplementary
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material). Instead, a procedure relying directly upon the minimization of conditional

average correlation has the drawback of increasing the variance (i.e., the risk) of some

countries.12

The remarkable performance of the unconstrained procedure is obtained through dras-

tic changes in the exposures (see Table S.4 in the supplementary material). We cannot

be sure that extraordinary changes do not trigger a reaction from economic agents, which

in turn could lead to a structural break in network parameters. As can be seen from

our test on parameter constancy (see Table 5), we cannot reject the null hypothesis (i.e.,

parameter constancy) in this extreme case. In any case, we have stronger evidence con-

sidering the constrained instances. In particular, it is reassuring that the Frobenius-norm

constraint is the best-performing optimization procedure, because it was designed as a

solution to this particular issue. It is also interesting that an economically motivated

constraint such as the redistribution one has comparable evidence in terms of parameter

constancy. Considering the amount of variance reduction, its path through time, and

the evidence for parameter constancy, the best compromise appears to be the optimal

networks obtained by imposing the Frobenius-norm constraint.

To evaluate the feasibility of its changes, in Table 6, we report, for the Frobenius

case only, the differences in billions of US dollars in the amounts needed to achieve the

optimal network. Looking at Table 6, we rediscover some previous results. In particular,

the results show in a clear way the necessity of deleveraging from Italy and Ireland, the

countries where the major sources of risk exist in the mixed and indirect cases. Germany

should invest more in other countries, as the evidence from Table 3 suggests it is the less-

fragile country, and indeed it is asked to invest highly in all but Ireland and Italy, and in

particular in Portugal. Portugal, in general, should be the target of most new investments

and at the same time should reduce all its exposures, again in line with previous results

in Table 3 and its small importance in 4. France’s role appears in a less-clear way, and we

12Result are available upon request.
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could argue that it is expected to strengthen its feedback loop with Germany in order to

support Portugal and, to a lesser extent, Spain, whose nontrivial contribution was already

pointed out. Here, the target network proposes a better balance in the feedback loop with

Portugal, and a deleverage in all the others. Furthermore, it is suggested that Germany,

and to a lesser extent France, support the country, with other peripheral countries that

divert their exposures from it. In general, the variance reduction we obtain is implied

by exposures changes that would be hard to enforce in a single quarter. In our opinion,

a lower but still meaningful variance reduction can be obtained by considering stricter

and economically sound maximum redistribution constraints, leading to an implementable

enforcement of redistribution. This is already possible with a minor modification of our

methodology that enables us to account for any kind of constraint by simply changing the

equation (16). In addition, the procedure is based on conditional covariance and could be

regularly updated, closely following actual market evolution after the changes.

5 Conclusions

This paper illustrates how financial networks can be efficiently integrated within a multi-

variate GARCH model for risk analyses. We refer to the proposed framework as spatiotem-

poral econometrics of networked risk, since it exploits spatial econometrics methodology

in the investigation of a network of risk relationships. The spatiotemporal economet-

rics of risk enables a number of evaluations and analyses aimed at disentangling and

understanding the role of asset interconnection in the evolution of the risk of a system.

In particular, our parsimonious econometric model directly measures how variance and

covariance spillovers flow through an exposure channel. Moreover, it can investigate long-

run and short-run spillovers, through the ARCH and the GARCH parts, and it entails

the possibility of diversifying or enhancing spillover contributions through coefficients of

both signs. Our work builds on the introduction of spatial methods into volatility models

in Caporin and Paruolo (2015). The model considers proximity matrices conveying the
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economic distances among assets and capturing the interdependence across the modeled

variables. This simple network model of an economic medium, based on data, through

which risk can flow allows a better investigation of the determinants of dependence and

spillover effects, with respect to purely statistical devices. We make a number of contribu-

tions that go beyond the framework of Caporin and Paruolo (2015). We take advantage

of the non-commutativity of matrices in modeling, and focus on both the risk-receiving

propensity and risk-spreading effectiveness of spillovers. We use graphtheoretic algebraic

connectivity results in the study of identification. We make use of joint spectral char-

acteristics for a set of matrices and derive the convergence of a heterogeneous geometric

series to obtain covariance stationarity; we obtain this result through a VARMA repre-

sentation of the model with time-varying coefficients. Moreover, we derive the asymptotic

normality of the QMLE under conditions that are standard in the literature. Again, the

usefulness of our joint-spectral-radius approach is evident in adapting proof of consistency

and asymptotic normality from the standard framework in Hafner and Preminger (2009).

The study of the identification, covariance stationarity, and asymptotic normality in the

general case allows us to include a general normalization procedure for proximity matrices,

driven by economic insight, whose payoff is made clear in the empirical application.

In addition, the empirical application shows the ability of our model to give a rea-

sonable description of European spillovers during the sovereign crisis, uncovering the

fundamental role of France and Portugal as risk receivers and the risk-spreading effec-

tiveness of Italy and Ireland. Our inferred network methodology also points out Spain’s

middleman role, which is not understandable from the single-parameter significance. We

also derive a covariance decomposition that allows us to understand the network-mediated

contribution to variance, pointing out in particular how several network configurations

can reduce the covariance. This effect is possible only with our complete study of iden-

tification conditions, which leaves unrestricted the sign of most of the model coefficients.

In our empirical analysis, this diversifying effect was produced only by the mixed con-

tribution in specific time periods. In addition, we document a change of relevance of
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exposures after regulatory interventions in the second half of 2012. Spillover spreading

and receiving effectiveness are heterogeneous across countries, and we study them by our

variance decomposition and the marginal spillover contribution. The picture that emerges

globally from our in-sample analysis points to Ireland and Italy as the major sources of

risk and Portugal and France as the recipients of most of it. However, while Portugal

is also a lesser source of risk, shocks coming from France appear mostly innocuous, if

not beneficial, having a small risk-reducing and stabilizing effect. Germany transforms

most risks it receives into diversification benefits, while contributing negligibly as a risk

spreader. Spain’s less-trivial role exploits network exposures for diversification benefits,

while at the same time, it is the third source of network-mediated risk in the system. This

middleman behavior in transferring risk from peripheral to major economies is direct with

respect to France, and aided and mediated through Ireland with respect to Germany.

Finally, inspired by the monetary policy literature, we devise a counterfactual analysis

able to obtain target exposures for risk mitigation based only on ex-ante information. The

empirical results on the quarter during which the Brexit referendum took place are an

additional soundness check of our model. They confirm the narrative implied by the in-

sample analysis and the essential diversifying effect of banking-system exposures. Since

the seminal works of Allen and Gale (2000), Eisenberg and Noe (2001) Freixas et al.

(2000), network of bank exposures were considered an important theoretical channel of

spillover effects. The focus on covariance allows, in our opinion, a better description of

the phenomenon with respect to the use of plain spatial models that were already fruitful

in this respect (see Tonzer (2015)). According to the recent review by Toniolo and White

(2016) that focuses on the financial-stability mandate across countries and across history,

the principal interventions that central banks took to maintain financial stability were the

liquidity provision and the monitoring of systemically important financial institutions. In

our paper, we propose a new econometric framework with the potential ability to help

the regulator to fulfill the financial system’s monitoring requirement in an empirically

measurable way. To achieve this ambitious goal, two major obstacles remain. The first is
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data disclosure: the bilateral exposures are made available only at the country level. The

second one is methodological. In fact, the application of our methodology to a greater

number of players requires the study of a covariance-targeting estimator of the model

in order to obtain a number of parameters growing linearly with the number of nodes.

Since rigorous covariance-targeting results for the standard multivariate volatility models

were obtained only recently in the literature (Pedersen and Rahbek (2014),Francq et al.

(2016)), this aspect is left for future research.

Although we are aware of those limitations, we feel that the major steps toward a

quantification of the importance of a particular economic spillover channel have been

completed through an intriguing example of cross-fertilization between application and

econometric innovation.
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A Portfolio Variance Decomposition and Marginal

Spillovers contributions
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B Proofs and Auxiliary Results

B.1 Identification

B.1.1 Proof of Proposition 1 on page 13

Proof. Without loss of generality, let us consider A (Wk), we have:

vec (A (Wk)) = vec (diag (a0)) +W ′
k ⊗ Invec (diag (a1L)) + In ⊗Wkvec (diag (a1R))

=
[
In ⊗ In W ′

k ⊗ In In ⊗Wk

]  vec (diag (a0))
vec (diag (a1,L))
vec (diag (a1,R))

 = M (Wk)

 a0

a1,L

a1,R

 .

46



 Electronic copy available at: https://ssrn.com/abstract=3239369 

and analogously

vec
([
A (W1)′ : A (W2)′ : . . . : A (WK)′

]′)
=

[
M (W1)′ : M (W2)′ . . . : M (WK)′

]′  a0

a1,L

a1,R


The [Kn2 × 3n] matrix M̄ =

[
(W1)′ : M (W2)′ . . . : M (WK)′

]′
, is of column rank equal to

max
1...k

rank (M (Wk)). We will show in lemma 2 that M (Wk) is of column rank 3n − ck.
Then, if we impose c = min

1...k
ck linear restriction on the parameter vector, variation in the

parameters induces a unique variation in πK .

Lemma 2 (Rank of M). We have:

rank (M (Wk)) = 2n+ rank (L (Gk)) , (31)

where L (Gk) is the Laplacian of the undirected graph Gk whose rank is equal to n− ck.

Proof.

M (Wt) =
[
In ⊗ In W ′

k ⊗ In In ⊗Wk

]
(I3 ⊗H)

=
n∑
i=1

[(ei ⊗ ei) e′i, (W ′
kei ⊗ ei) e′i, (ei ⊗Wkei) e

′
i]

M (Wk)
′M (Wk) =

[
In

M (Wk)

]
M (Wk) =

[
DWk�Wk

Wk �Wk

W ′
k �W ′

k DW ′k�W
′
k

]
DW ′k�W

′
k

= (W ′
k �W ′

k) 1n , DWk�Wk
= (Wk �Wk) 1n .

Given that the rank of a generic matrix T is equal to the rank of T ′T , it suffices to
compute the rank of M (Wk)

′M (Wk). Having the identity In as one of the diagonal
blocks, M (Wk)

′M (Wk) has at least rank n. In addition, using the property of the
determinant for block matrices, the characteristic polynomial of M (Wk), is:

det (M (Wk)− λIn2) = det
(
DW�k Wk

− λIn
)

det (L (Gk)− λIn) = 0

L (Gk) = DW ′k�W
′
k
−Wk

Since DW�k Wk
is diagonal, det

(
DW�k Wk

− λIn
)

= 0 has exactly n solutions and the rank of

M (Wk)
′M (Wt) is at least 2n. We obtain the final result for the rank of M (Wk)

′M (Wk)
by discussing the dimension of the kernel of L (Gk). Since Wk1n = DW ′k�W

′
k
, L (Gk) can

be interpreted as the Laplacian of the graph Gk with weight matrix Wk, and it is well
known from the work of Fiedler (Fiedler, 1973, 1975) that the dimension of the kernel of
L (Gk) is the number of connected components ck of Gk. Then, we have rank (M (Wk)) =
rank

(
M (Wk)

′M (Wk)
)

= 3n− ck.

B.1.2 Proof of Lemma 1 on page 13

Proof. The result follow from the fact that the non zero elements of Wk are the same
of (W ′

k �W ′
k) (Wk �Wk) and consequently of W ′

kWk. Then, since the multiplication of
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two fully indecomposable matrices is fully indecomposable, and fully indecomposability
implies irreducibility, Fenner and Loizou (1971), under the hypothesis of the lemma there
is a at least one k = 1 . . . K for which Wk has only one component. Then, the result
follows from Proposition 1.

B.1.3 Identification for Symmetric Matrices

Corollary 1. If the matrices Wk are all symmetric, to achieve identification the model
must include either the left multiplication or the right multiplication elements. The pre-
vious result holds with a corresponding simplification in the structure of M (Wk) and the
model is identified if the corresponding M̄ is full column rank.

Proof. The corollary is a consequence of symmetry of matrices Wk. Suppose we fo-
cus on the shock component and assume a constant W . We have ALut−1u

′
t−1A

′
L =

(A0 + A1,LW )ut−1u
′
t−1 (A0 +W ′A1,L) thanks to the diagonal form of the parameter matri-

ces. Moreover, by symmetry, (A0 + A1,LW )ut−1u
′
t−1 (A0 +W ′A1,L) and the latter equals

(A0 +W ′A1,L)ut−1u
′
t−1 (A0 + A1,LW ). The latter is equal to the right multiplication case

if W = W ′.
Then, with only left(right) parameters, we have :

M (Wk)
′M (Wk) =

[
In

DWk�Wk

]
.

This matrix is full rank unless some of the row(column) sums are zero. Since the Wk are
non negative this can happen only if the row(column) elements are all zero and we reduce
to the conditions given in (Caporin and Paruolo, 2015)

B.2 Covariance Stationarity

The following lemma considers a deterministic network sequence and gives a sufficient
condition on the joint spectral radius such that it probably collapses to the one given in
terms of the top Lyapunov exponent in Brandt (1986) for scalar coefficients. Bougerol
and Picard (1992) extended the last result to coefficient matrices.13 Note that results in
Bougerol and Picard (1992) are valid under the assumption that the network sequence
has a stationary distribution. A formal proof of the equivalence is left for future research.

Lemma 3 (Convergence of Heterogeneous Geometric Series). If % (A) < 1 then

S = lim
T→∞

Sn = lim
T→∞

T∑
t=0

t∏
i=0

Ai <∞ (32)

Proof. We can use here the Cauchy convergence criterion. Given m > n ∈ N with fixed
but arbitrary r = m− n, we have to show that ‖Sm − Sn‖ → 0 when n→∞.

13A similar condition is also used by Hafner and Preminger (2009) in showing stationarity and ergodicity
of the VEC model.
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We have :

0 ≤ ‖Sm − Sn‖ =

∥∥∥∥∥
m∑
k=n

Bk

∥∥∥∥∥ ≤
m∑
k=n

sup
Aσ1 ,...,Aσk∈A

(∥∥∥∥∥
k∏
i=1

Aσi

∥∥∥∥∥
)

(33)

and we can write

lim
n→∞

m∑
k=n

sup
supAσ1 ,...,Aσk∈A

(∥∥∥∥∥
k∏
i=1

Aσi

∥∥∥∥∥
)

= lim
n→∞

m∑
k=n

(ρ̂k (A))k

= lim
n→∞

% (A)n lim
n→∞

m∑
k=n

(ρ̂k (A))k

% (A)n
= lim

n→∞

1− % (A)r+1

1− % (A)
% (A)n → 0

The use of the joint spectral radius leads, also, to an interesting property for matrix
sets that leave a proper cone invariant.

Definition B.1. Cones and Proper Cones. A cone in Rn is a subset K ⊆ Rn such that
λv ∈ K for all λ ≥ 0 and v ∈ K. K is proper if it is closed, convex, has non empty
interior, and contains no straight lines.

Definition B.2. Cone Invariance. Ai ∈ A leave a proper cone invariant if there exist a
proper cone K ⊆ Rn such that if v ∈ K ui = Aiv ∈ Ji with Ji ⊆ K for each i.

According to Blondel and Nesterov (2005) it is possible to define a norm ‖·‖K asso-
ciated with the cone K such that, if A and B leave the proper cone K invariant, then
‖A‖K ≤ ‖A+B‖K . This norm will be the essential in the proof of the following lemma.

Lemma 4. Consider two infinite set of n × n matrices A = {Ai}∞i=0 and B = {Bi}∞i=0

and their sum A+ B = {M ∈ A+ B|M = Ai +Bi, Ai ∈ A,Bi ∈ B} with A0, B0 = In.
Suppose that A and B leave the cone K invariant. We have % (B) ≤ % (A+ B).

Proof.
∏t

i=1Aσi +Bσi is a sum of 2t products of t terms. By the assumptions the matrices
Cj j = 1, . . . , 2t obtained by each of this products leave K invariant. In addition we note
that C2t =

∏t
i=1 Bσi . We obtain∥∥∥∥∥

t∏
i=1

(Aσi +Bσi)

∥∥∥∥∥
K

=

∥∥∥∥∥
t∏
i=1

Bσi +
2t−1∑
j=1

Cj

∥∥∥∥∥
K

≥

∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K

so

% (B) = lim
t→∞

sup
Bσ1 ,...,Bσt∈B

(∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K

)1/t

= lim
t→∞

sup
(Aσ1+Bσ1),...,(Aσt+Bσt)∈(A+B)

(∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K

)1/t

≤ lim
t→∞

sup
(Aσ1+Bσ1),...,(Aσt+Bσt)∈(A+B)

(∥∥∥∥∥
t∏
i=1

(Aσi +Bσi)

∥∥∥∥∥
K

)1/t

= % (A+ B)
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B.2.1 Proof of theorem 1 on page 16

Proof. Let us consider the filtration Ft−1 = {Ut−1,Wt−1} where Ut−1 is the information
set given by the past ut and Wt−1 is the information set of the past network Wt. We
remark that, by definition of the processes, Wt−2 ⊂ Ut−1.

Since ηt is a martingale difference sequence E [ηt |Ut−1,Wt−1] = 0, and we also have

E [Xt |Ut−1,Wt−1] = C̃ +
(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1.

Using the iterated expectation theorem and the recursion for Xt

E [Xt |Ut−2,Wt−1] = E [E [Xt |Ut−1,Wt−1] |Ut−1,Wt−1]

= E
[
C̃ +

(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1 |Ut−2,Wt−1]

= C̃ +
(
Ã (Wt−1) + B̃ (Wt−1)

)
E [Xt−1 |Ut−2,Wt−1] .

Analogously,

E [Xt |Ut−3,Wt−1] =
[
I +

[
Ã (Wt−1) + B̃ (Wt−1)

]]
C̃

+
[
Ã (Wt−1) + B̃ (Wt−1)

] [
Ã (Wt−2) + B̃ (Wt−2)

]
E [Xt−2 |Ut−3,Wt−1] ,

Further, by induction

E [Xt |Ut−τ ,Wt−1] =

{
I +

τ−2∑
k=1

k∏
l=1

[
Ã (Wt−l) + B̃ (Wt−l)

]}
C̃

+

{
τ−1∏
l=1

[
Ã (Wt−l) + B̃ (Wt−l)

]}
E [Xt−τ+1 |Ut−τ ,Wt−1] .

When τ → ∞, if %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1, by Lemma 3, conditionally on

the network sequence, the first term converges to a finite limit and the remainder goes to
zero according to Gurvits (1995) and Jungers (2009).

B.3 Consistency and Asymptotic Normality

In this subsection we denote as ‖ · ‖ the operator norm. Different norms are specified
when needed. Dn is the duplication matrix and Cnm is the commutation matrix. Un-
der assumption 1 and by Lemma 4, since the set of half vectorized symmetric positive
semidefinite matrices is a proper cone of the set of half vectorized symmetric matrices,
i.e of the vector space R(n(n+1)/2), and Ã (Wt) and B̃ (Wt) leave this cone invariant (c.f
subsection 4.2 in Boussama et al. (2011)). we have

%B = %

({
B̃ (Wt)

}∞
t=−∞

)
≤ %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1 , %̄B = supθ∈Θ %B < 1.
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Lemma 5. Under Assumptions 1-4 E
[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥s/2] = O (%̄B)

Proof. By solving equation (9) recursively, we get

ξt = vech (Σt) = C̃ + Ã (Wt)Xt−1 + B̃ (Wt) ξt−1

= C̃ + Ã (Wt) yt−1 +
t−1∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(
C̃ + Ã (Wt−τ )Xt−τ−1

)
+

{
t−1∏
l=1

B̃ (Wt−l)

}
ξ0.

In addition∥∥∥Σt − Σ̃t

∥∥∥ ≤ ∥∥∥Σt − Σ̃t

∥∥∥
2
≤
∥∥D+

n

∥∥ ‖Dn‖
∥∥∥ξt − ξ̃t∥∥∥ ≤ ∥∥D+

n

∥∥ ‖Dn‖ %tB
∥∥∥ξ0 − ξ̃0

∥∥∥
By Assumption 2 and 3, and the cr inequality we have E

[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥s/2] = O (%̄B)

Lemma 6. Under Assumptions 1-7

i) E

supθ∈Θ

∥∥∥∥∥∂ξ̃t∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥∂ξ̃t∂b′

∥∥∥∥∥
3
 <∞

ii) E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂a′∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂b′

∥∥∥∥∥
3
 <∞

Proof. Using the linear map that links A (Wt) and B (Wt) to a and b, it is possible to
obtain the derivatives of Ã (Wt) and B̃ (Wt). Consider, as an example, B̃ (Wt):

vec
(
B̃ (Wt)

)
=

(
D′n ⊗D+

n

)
(In ⊗ Cnn ⊗ In) vec (M (Wt) b)⊗ vec (M (Wt) b)

=
(
D′n ⊗D+

n

)
(In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) (b⊗ b)

∂

∂b′
vec
(
B̃ (Wt)

)
= (D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n (b⊗ I3n)

∂

∂b′
vec

(
∂

∂b′
vec
(
B̃ (Wt)

))
=

[
I3n ⊗

[
(D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n

]] ∂

∂b′
vec (b⊗ I3n)

=
[
I3n ⊗

[
(D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n

]]
×

× (1⊗ C3n3n ⊗ I3n) (I3n ⊗ vec (I3n))

Let us define the following quantities

‖Cnn‖ = K1,n ‖(D′n ⊗D+
n )‖ = K2,n ‖(DnD

+
n )‖ = K3,n

supθ∈Θ ‖a‖ = Ka supθ∈Θ ‖b‖ = Kb supθ∈Θ ‖C‖ = Kc.
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Then, let us bound

‖(M (Wt)⊗M (Wt))‖ =
√
ρ
(
(M (Wt)⊗M (Wt))

′ (M (Wt)⊗M (Wt))
)

= ρ
(
M (Wt)

′M (Wt)
)

= ρM .

We already studied the characteristic polynomial of M (Wt)
′M (Wt) in the proof of

Proposition 1; it has n eigenvalues equal to 1, eigenvalues equal to µi =
∑n

j=1W
2
t,ij for

i = 1, . . . , n and the last n eigenvalues are the eigenvalues of the Laplacian L (Gt). In
particular, we are interested in ρ (L (Gt)). Bounds could be found in Rojo (2007), the
most trivial one being the column sum over row maxima of the weight matrix.

ρ (L (Gt)) <
n∑
j=1

max
i=1,...,n

Wt,ij

By Assumption 7 we can bound Wt,ij ≤ d∗ and µi ≤ n (d∗)2. We have

ρM = max

(
1, n (d∗)2 ,

n∑
j=1

max
i=1,...,n

Wt,ij

)
≤ max

(
1, n (d∗)2) (34)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥vec
(
B̃ (Wt)

)∥∥∥ ≤ K2,nK1,nρMK
2
b (35)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ ≤ K2,nK1,nρM2K3,3nKb (36)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec
(
B̃ (Wt)

))∥∥∥∥ ≤ K2,nK1,nρM2K3,3nK1,3n (37)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥vec
(
Ã (Wt)

)∥∥∥ ≤ K2,nK1,nρMK
2
b (38)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂

∂a′
vec
(
Ã (Wt)

)∥∥∥∥ ≤ K2,nK1,nρM2K3,3nKa (39)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂

∂a′
vec

(
∂

∂a′
vec
(
Ã (Wt)

))∥∥∥∥ ≤ K2,nK1,nρM2K3,3nK1,3n (40)

In addition, in the following we will need bounds for the first and second derivatives of
the products. For the first derivative we have:

∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

})

=
s∑
l=r

{
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

))
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sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

({
s∏
l=r

B̃ (Wt−l)

})∥∥∥∥∥
≤

s∑
l=r

{
sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥
{

s∏
m′=s−l+1

B̃ (Wt−m′)

}∥∥∥∥∥ sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥
{
s−l−1∏
m=r

B̃ (Wt−m)

}∥∥∥∥∥×
× sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
}

≤
s∑
l=r

%̄lB%̄
s−l−r
B sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
≤ (s− r + 1) %̄s−rB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ (41)

For the second derivative we need the following intermediate result:

∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})
=

[
In(n+1)/2 ⊗ Cn(n+1)/2 ⊗ In(n+1)/2

]
×

×

{
∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′)
⊗ vec

({
s−l−1∏
m=r

B̃ (Wt−m)

})
+

+ vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′)
⊗ ∂

∂b′
vec

({
s−l−1∏
m=r

B̃ (Wt−m)

})}

by which, we get the bound:

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})∥∥∥∥∥
≤ K1,n(n+1)/2 (l + 1) %̄lB%̄

s−l−r
B sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
+K1,n(n+1)/2 (s− l − r + 1) %̄s−l−rB %̄lB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
= K1,n(n+1)/2 (s− r + 1) %̄s−rB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ (42)
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For the second derivative we have:

∂

∂b′
vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))
=

=
s∑
l=r

∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

)))

=
s∑
l=r

[[
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

))]′
⊗ In(n+1)/2

]
×

× ∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})

+
s∑
l=r

{
I3n ⊗

{{
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}}}
×

× ∂

∂b′
vec

(
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

)))

and finally

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))∥∥∥∥∥
≤ (s− r + 1)2 %̄s−rB K1,n(n+1)/2 sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥2

+ (s− r + 1)2 %̄s−rB sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec
(
B̃ (Wt)

))∥∥∥∥ (43)

For part (i)

ξt = C̃ + Ã (Wt) yt−1 +
∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(
C̃ + Ã (Wt−τ )Xt−τ−1

)
∂ξt
∂a′

= X ′t−1 ⊗ In(n+1)/2

∂vec
(
Ã (Wt)

)
∂a′

+
∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

 (44)

∂ξt
∂b′

=
∞∑
τ=1

[(
C̃ + Ã (Wt−τ )Xt−τ−1

)′
⊗ In(n+1)/2

]
∂

∂b′
vec

({
τ−1∏
l=1

B̃ (Wt−l)

})
(45)

By using equation (44), equation (45), 39,36 and 41 and applying the Hölder and
Minkowski inequalities, we get
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E

sup
θ∈Θ

∥∥∥∥∥∂ξ̃t∂a′

∥∥∥∥∥
3
 ≤


∞∑
τ=0

%̄τ−1
B

E
sup
θ∈Θ

∥∥∥∥∥∥
(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

∥∥∥∥∥∥
3


1/3


3

≤

{
∞∑
τ=0

%̄τ−1
B

[
E
[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKa

]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥∂ξ̃t∂b′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

(τ − 1) %̄τ−2
B

[
K2
c + E

[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKb

]}3

<∞

.

For part (ii)

∂2ξt
∂a′∂a′

=
(
X ′t−1 ⊗ In(n+1)/2

) ∂

∂a′

vec

∂vec
(
Ã (Wt)

)
∂a′


+

∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(X ′t−τ−1 ⊗ In(n+1)/2

) ∂

∂a′

vec

∂vec
(
Ã (Wt)

)
∂a′

 (46)

∂2ξt
∂a′∂b′

=
∞∑
τ=1


(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

′ ⊗ In(n+1)

×
×


τ−1∑
j=1

{
τ−1−j∏
l=1

B̃ (Wt−l)
′

}
⊗


τ−1∏

l=τ−1−(j−1)

B̃ (Wt−l)

 ∂

∂b′
vec
(
B̃ (Wt−τ+j)

) (47)

∂2ξt
∂b′∂b′

=
∞∑
τ=1

[(
C̃ + Ã (Wt−τ )Xt−τ−1

)′
⊗ In(n+1)/2

]
∂

∂b′
vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))
.(48)

Then, from equation (46),equation (47), equation (48), 40,37 and 43 and the Hölder and
Minkowski inequalities, we have
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E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂a′∂a′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

%̄τ−1
B K2,nK1,nρM2K3,3nK1,3n

[
E
[
‖ut‖6]1/6]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂a′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

(τ − 1) %̄τ−2
B K2

2,nK
2
1,nρ

2
M2K2

3,3nKaKb

[
E
[
‖ut‖6]1/6]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂b′

∥∥∥∥∥
3
 ≤

{[
K2
c + E

[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKb

]
×

×

[
∞∑
τ=0

(τ − 1)2 %̄τ−3
B K2

2,nK
2
1,nρ

2
M2K2

3,3nK
2
b

+
∞∑
τ=0

(τ − 1)2 %̄τ−2
B K2,nK1,nρM2K3,3nK1,3n

]}3

<∞

B.3.1 Proof of theorem 2 on page 17

Proof. The proof is analogous to the proof of Theorem 2 in Hafner and Preminger (2009) if

we substitute in part (ii) of the proof of their Lemma 2 their bound of E
[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥]
(equation 17 in their paper) with our bound in Lemma 5 .

B.3.2 Proof of theorem 3 on page 18

Proof. The proof is again almost identical to the proof of the equivalent Theorem 3 in
Hafner and Preminger (2009) if we replace in part (i) and (ii) of their proof of Lemma 3
the bound on the derivatives of ξ̃t with respect to parameters (equations 28,29 and 33 in
their paper) with the bound we derive in Lemma 6.

C Multistep Forecast

Since analytical expressions for the multistep volatility forecast are not available in closed
form, the most common way to obtain a robust multistep forecast involves the use of boot-
strapping techniques, Andersen et al. (2006). In particular, we proceed with the following
methodology. Consider an estimation window t ∈ [1, . . . , T ] from which estimates for Ĉ,
Â (Wt), B̂ (Wt) and the series of filtered conditional covariances Σ̂t can be obtained, and
that we are interested in computing the path of the forecasted covariance matrix from,
assume, T + 1 to T + h. The first step computes the n × 1 vector of filtered innova-
tions (standardized residuals) ε̂t for each time in the estimation period t ∈ [1, . . . , T ].
We obtain the innovations by multiplying the vector ut and the inverse of the Cholesky
decomposition of the estimated conditional covariance Σ̂t:

ε̂t = Σ̂
− 1

2
t ut, t ∈ [1, . . . , T ] .
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The second step builds NB bootstrap samples of length h from the n×T matrix of filtered
innovations [ε̂1, . . . , ε̂T ]. We use a bootstrap procedure that preserves as much as possible
the residual longitudinal dependence in the data, so that it is robust to misspecification in
the model. We use a circular block bootstrap, Politis and Romano (1992), with automatic
block length selection, Politis and White (2004).14 In this way, we obtain the bootstrapped

innovations ε̃
[b]
T+l with b ∈ [1, . . . , NB] and l ∈ [1, . . . , h]. In turn, these allow computing

the bootstrapped mean innovations uT+l and the bootstrapped covariances for each l and
b:

ũ
[b]
T+l = Σ̂

1
2
T+lε̃

[b]
T+l

Σ̃
[b]
T+l = ĈĈ ′ + Â (WT+l) ũ

[b]
T+lũ

[b′]
T+lÂ (WT+l)

′ + B̂ (WT+l) Σ̃
[b]
T+l−1B̂ (WT+l)

′

Finally, we set the covariance matrix forecast equal to the average across the NB paths:

Σ̂F
T+l =

1

NB

NB∑
b=1

Σ̃
[b]
T+l.

Note that even quantiles could be considered in place of the mean, thus focusing on
low/high states for volatility forecasts and that the previous approach is valid for any
parametrization of the covariance dynamics, thus including the case of the Spatial-BEKK
model. However, we stress that when the parameter matrices are function of a time-
varying network, the forecast are conditional to the last observed network. Alternatively,
if there exists a model to forecast the network evolution, this can be integrated with the
previous covariance forecast approach, allowing the computation of forecasts accounting
for the network variability.

14In particular, we apply the procedure for selecting the block length to each univariate series and then
take the maximum of the obtained lengths.
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Table 1: Decomposition of [Σt]i,j

shock response (ARCH) persistence (GARCH)

Constant [CC ′]i,j

direct v0
i,t−1v

0
j,t−1

[
Ω0,0
t−1

]
i,j

indirect v1
L,i,t−1v

1
L,j,t−1 + v1

R,i,t−1v
1
R,j,t−1

[
Ω1,1
L,L,t−1

]
i,j

+
[
Ω1,1
R,R,t−1

]
i,j

+v1
L,i,t−1v

1
R,j,t−1 + v1

R,i,t−1v
1
L,j,t−1 +

[
Ω1,1
L,R,t−1

]
i,j

+
[
Ω1,1
R,L,t−1

]
i,j

mixed v1
L,i,t−1v

0
j,t−1 + v0

i,t−1v
1
L,j,t−1

[
Ω1,0
L,t−1

]
i,j

+
[
Ω0,1
L,t−1

]
i,j

+ v1
R,i,t−1v

0
j,t−1 + v0

i,t−1v
1
R,j,t−1 +

[
Ω1,0
R,t−1

]
i,j

+
[
Ω0,1
R,t−1

]
i,j

Table 2: Estimated Relevant Parameters of SB-BEKK on Daily Changes in the Five-Year EMU
Sovereign CDS spreads from 9/10/2008 to 30/12/2016. Standard deviation in parenthesis. *
parameters significant at the 10% level. ** parameters significant at the 5% level. *** parameters
significant at the 1% level

a1,L a1,R b1,L b1,R a0 b0

DE -0.056(0.11) -0.022(0.10) -0.088(0.03)*** -0.014(0.03) 0.258(0.03)*** 0.965(0.01)***
IT 0.089(0.09) 0.849(0.27)*** 0.001(0.03) -0.058(0.07) 0.192(0.02)*** 0.972(0.00)***
FR -0.636(0.19)*** 0.549(0.22)** 0.209(0.05)*** -0.292(0.10)*** 0.376(0.03)*** 0.887(0.01)***
IE -0.388(0.11)*** -1.719(0.53)*** 0.149(0.03)*** 0.757(0.16)*** 0.352(0.04)*** 0.929(0.01)***
ES 0.618(0.18)*** -0.568(0.22)*** -0.138(0.04)*** 0.076(0.04)* 0.107(0.02)*** 0.987(0.00)***
PT 0.206(0.12)* -0.742(0.10)*** 0.086(0.04)** 0.252(0.01)*** 0.290(0.03)*** 0.912(0.01)***

58



 Electronic copy available at: https://ssrn.com/abstract=3239369 

Table 3: The percentage of cumulative variance decomposition was obtained from data on daily
changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to 30/12/2016.

Constant Mixed Indirect Direct

σ2
DE % 0.0170 -0.0104 0.0021 0.9913
σ2
IT % 0.0170 -0.0034 0.0019 0.9845

σ2
FR % 0.0563 0.0137 0.0104 0.9196
σ2
IE % 0.0167 0.0063 0.0037 0.9732
σ2
ES % 0.0209 -0.0282 0.0192 0.9881
σ2
PT % 0.0344 0.0436 0.0059 0.9161

Table 4: The percentage of cumulative marginal spillover contribution (MSC) was obtained
from data on daily changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to
30/12/2016.

Total Costant Mixed Indirect Direct

MSCDE % 0.0893 0.0015 0.0011 0.0000 0.0866
MSCIT % 0.0984 0.0022 0.0063 0.0005 0.0894
MSCFR % 0.1442 0.0058 -0.0011 0.0010 0.1385
MSCIE % 0.1413 0.0023 0.0071 -0.0005 0.1323
MSCES % 0.2566 0.0059 0.0042 0.0002 0.2463
MSCPT % 0.2692 0.0037 0.0019 -0.0002 0.2638

Table 5: Parameter-constancy test for the different optimal networks

No Constraints Redistribution Constraint Frobenius Constraint

Wald Stat 27.1 8.2 7.4
P-value 0.3012 0.9988 0.9995

Table 6: Investment Needed to Reach Target Exposures (Billions of USD), obtained from daily
changes in five-year EMU sovereign CDS spreads.

Optimal Network with Frobenius Constraint
(Delta wrt true) Billions of USD

Location DE IT FR IE ES PT

Reporting
DE -41.2 32.6 -5.6 41.5 109.7
IT 8.1 -6.5 -7.7 -11.4 15.3
FR 44.9 -121.9 -10.8 9.0 85.3
IE -0.8 -1.3 -0.7 -1.9 2.4
ES -10.9 -56.3 -19.8 -2.8 24.1
PT -0.7 -3.6 -1.7 -0.4 -0.9
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Equally Weighted Index Variance Decomposition

01/08 01/10 01/12 01/14 01/16 01/18
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Constant
Mixed
Indirect

Figure 2: The relative variance decomposition of the equally weighted index was obtained
from data on daily changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted.

01/04/2016 01/05/2016 01/06/2016 01/07/2016
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Realized
Zeroed Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (+16.55%)
Optimal Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-24.89%)
Optimal Redistribution Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-9.66%)
Optimal Frobenius Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-11.18%)

Figure 3: The average covariance proxy during the Brexit referendum of Q2 2016 was ob-
tained from data on daily changes in five-year EMU sovereign CDS spreads. The percentage of
cumulative proxy change with regard to the realized one is reported in parenthesis
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Appendix to Networks in risk spillovers:
A multivariate GARCH perspective

June 20, 2018

S Supplementary Tables and Figures

Table S.1: Daily Changes in Five-Year Sovereign CDS spreads from 9/10/2008 to
30/12/2016. Summary Statistics

Germany Italy France Ireland Spain Portugal

mean -0.0003 0.0003 -0.0001 -0.0002 -0.0001 0.0006
s.d. 0.063 0.046 0.049 0.036 0.047 0.045
Skewness 0.16 -0.18 0.39 0.10 0.01 -0.68
Kurtosis 17.90 13.50 9.92 15.33 11.46 21.33
min -0.51 -0.45 -0.27 -0.33 -0.42 -0.59
max 0.59 0.34 0.36 0.25 0.34 0.31
median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Correlations
Italy France Ireland Spain Portugal

Germany 0.36 0.36 0.31 0.34 0.31
Italy 0.51 0.62 0.83 0.68
France 0.43 0.50 0.45
Ireland 0.61 0.60
Spain 0.71
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Figure S.1: BIS claims in billions of US Dollars by Counterparty (CP) and Reporting
country(RP)
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Figure S.2: BIS claims normalized by the worldwide amount declared by reporting coun-
try, by Counterparty (CP) and Reporting country (RP)
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01/04/2016 01/05/2016 01/06/2016 01/07/2016
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0.2
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0.6

0.8

1

Realized
Zeroed Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (+-35.42%)
Optimal Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-71.53%)
Optimal Redistribution Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-106.25%)
Optimal Frobenius Counterfactual Volatility Proxy, Estimation Sample: Q4 2008 Q1 2016 (-78.47%)

Figure S.3: Average correlation proxy during the Brexit Referendum of Q2 2016, obtained
from data on Daily Changes in Five-Year EMU Sovereign CDS spreads. Percentage
cumulative proxy change wrt realized is reported in parenthesis
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Table S.2: Specification tests for the Spatial-BEKK model on Daily Changes in the Five-
Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016.

Joint Significance of Network Parameters

LR Wald Wald L Wald R
Stat 268 176 97 55

P-value 0.0000 0.0000 0.0000 0.0000
Wald a1,L Wald a1,R Wald b1,L Wald b1,R

Stat 38 27 80 32
P-value 0.0000 0.0002 0.0000 0.0000

Table S.3: P-values of off-diagonal element of the sequences A (Wt) and B (Wt) for Daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016.

A (Wt) B (Wt)

DE IT FR IE ES PT DE IT FR IE ES PT

DE 0.007 0.045 0.001 0.008 0.007 DE 0.042 0.000 0.000 0.797 0.145
IT 0.033 0.004 0.004 0.050 0.036 IT 0.064 0.004 0.000 0.075 0.026
FR 0.002 0.292 0.000 0.000 0.000 FR 0.000 0.003 0.000 0.000 0.000
IE 0.000 0.086 0.476 0.000 0.000 IE 0.000 0.163 0.148 0.000 0.000
ES 0.007 0.000 0.000 0.077 0.783 ES 0.006 0.016 0.000 0.001 0.449
PT 0.253 0.002 0.004 0.005 0.010 PT 0.085 0.707 0.048 0.000 0.000
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Table S.4: Observed and Optimal Exposures, obtained from Data on Daily Changes in
Five-Year EMU Sovereign CDS spreads

True Network of Banking Exposures

Location DE IT FR IE ES PT

Reporting
DE 0.045 0.073 0.018 0.037 0.007
IT 0.245 0.057 0.012 0.067 0.004
FR 0.062 0.113 0.014 0.041 0.005
IE 0.010 0.015 0.047 0.024 0.003
ES 0.032 0.038 0.033 0.004 0.051
PT 0.011 0.089 0.043 0.014 0.167

Optimal Network (Delta wrt true)

Location DE IT FR IE ES PT

Reporting
DE 0.269 0.109 0.018 0.957 0.059
IT 0.736 -0.056 -0.008 -0.062 -0.003
FR 0.723 -0.110 -0.007 0.152 0.515
IE -0.008 -0.013 -0.044 -0.021 0.002
ES -0.030 -0.034 -0.015 0.000 0.042
PT 0.274 -0.051 -0.034 -0.003 0.207

Optimal Redistribution Network (Delta wrt true)

Location DE IT FR IE ES PT

Reporting
DE -0.044 -0.071 -0.017 -0.032 0.171
IT 0.113 -0.029 -0.009 -0.064 0.003
FR 0.166 -0.113 -0.013 -0.040 0.005
IE -0.009 -0.014 -0.045 -0.022 0.096
ES 0.024 -0.037 -0.013 0.028 -0.006
PT 0.087 -0.085 -0.040 -0.005 0.035

Optimal Frobenius Network (Delta wrt true)

Location DE IT FR IE ES PT

Reporting
DE -0.020 0.016 -0.003 0.020 0.053
IT 0.010 -0.008 -0.010 -0.015 0.020
FR 0.017 -0.047 -0.004 0.003 0.033
IE -0.009 -0.014 -0.008 -0.020 0.025
ES -0.007 -0.036 -0.013 -0.002 0.016
PT -0.008 -0.038 -0.018 -0.004 -0.010
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Figure S.15: Relative variance decomposition, of Germany, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.16: Relative marginal spillover contribution, of Germany, obtained from data
on daily Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted
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Figure S.17: Relative variance decomposition, of Italy, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.18: Relative marginal spillover contribution, of Italy, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.19: Relative variance decomposition, of France, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.20: Relative marginal spillover contribution, of France, obtained from data
on daily Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted
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Figure S.21: Relative variance decomposition, of Ireland, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.22: Relative marginal spillover contribution, of Ireland, obtained from data
on daily Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted
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Figure S.23: Relative variance decomposition, of Spain, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.24: Relative marginal spillover contribution, of Spain, obtained from data
on daily Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted
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Figure S.25: Relative variance decomposition, of Ireland, obtained from data on daily
Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016,
with the direct contribution omitted
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Figure S.26: Relative marginal spillover contribution, of Ireland, obtained from data
on daily Changes in the Five-Year EMU Sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted
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