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A multivariate GARCH perspective*
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Abstract

We propose a spatiotemporal approach for modeling risk spillovers using time-varying
proximity matrices based on observable financial networks and introduce a new bilateral
specification. We study covariance stationarity and identification of the model, and an-
alyze consistency and asymptotic normality of the quasi-maximum-likelihood estimator.
We show how to isolate risk channels and we discuss how to compute target exposure
able to reduce system variance. An empirical analysis on Euro-area cross-country hold-
ings shows that Italy and Ireland are key players in spreading risk, France and Portugal
are the major risk receivers, and we uncover Spain’s non-trivial role as risk middleman.
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1 Introduction

The US subprime and European sovereign bond crises sparked a renaissance in the re-
search related to contagion and risk spillovers (Corsetti et al. (2011)); [Forbes| (2012)).
In line with the literature (Bekaert and Harvey| (1997); Ng (2000); Billio and Pelizzon
(2003)), we define a variance spillover as the contribution to the time ¢ variance (risk)
of a recipient entity due to the variance or shocks impacting on a source entity before
time t, or due to the covariance between the two entities before time ¢. This definition
is signed and directional; it includes the time dimension and can account for feedback
effects. On the other hand, it excludes a systematic shift of variances due to a common
factor affecting both entities[[] We also focus on covariance spillovers, which we define as
the contribution to the time-t covariance (thus dependence) between two entities due to
the variance (risk) of the two entities, or due to the shocks affecting the variance evolution
of the two entities, always before time ¢/§] The covariance spillover becomes relevant in
a framework where the correlations are not directly modeled, and they can be indirectly
retrieved by means of variances and covariances. The definitions we adopt are strict and
target only one symptom, of the many phenomena usually related to contagion and, more
broadly, to systemic risk (see Silva et al. (2017) and [Benoit et al.| (2017) and reference
therein). Being focused on covariance allows us to fill a void in the current literature
that rarely addresses the quantitative investigation of economic transmission channels as
potential pathways for risk spillovers.

We aim to introduce an economically grounded medium through which variance and
covariance spillovers could flow. We consider the simplest model for this medium by
focusing on pairwise directed linkages as summarized by a network and introduce and
exploit a parallel between the network approach and the tools commonly used in spatial

econometrics. This parallel allows us to take advantage of spatial econometrics literature

1Our approach is meant either for a case in which returns are not affected by a common factor or for
modeling the residuals of a reduced-form system of equations.

2Where we assume that the covariance shocks are a function of the shocks affecting the variances of
the two entities.



of the past decades (see Anselin| (2013)), |[LeSage and Pace| (2009), Elhorst| (2003))). The
intersection and interaction of different research fields, such as network science, spatial
econometrics, economics, and finance, give rise to new developments and tools. In partic-
ular, one of the most advanced strands of the spatial econometrics literature (see Keiler
and Eder| (2013); Blasques et al.| (2016)); |Caporin and Paruolo| (2015)); [Tonzer| (2015)); Bil-
lio et al.| (2017))) focuses on statistical, economic, and financial relationships. Our work
belongs to this strand of the literature and aims at building a bridge between contagion,
volatility spillover, and networks.

The starting point of our paper is the contribution of |(Caporin and Paruolo (2015),
which introduces spatiotemporal econometrics tools for the analysis of conditional volatil-
ity models, with the objective of estimating and measuring risk channels, but our work
departs in a significant way. Even if we focus only on their BEKK class of models,
our network relationships are intended to be derived from specific and potentially gran-
ular financial variables (in our application, cross-border exposures of national banking
systems). The variables we suggest for consideration are those commonly perceived as
potential time-varying transmission channels of shocks, and are thus characterized by
asymmetry and time variation. The asymmetry in the weight matrix allows us to intro-
duce network dependence in the model in two different ways and to focus on both risk
spillover sources and risk spillover receivers. This distinction is possible only using jointly
a vectorial specification for spatial parameters and an asymmetric weight matrix, and was
not considered anywhere before. In addition, this new specification makes straightforward
the inference on the inferred network links (by allowing simple significance tests for each
link) and lets us understand if a particular risk channel between two entities is mediated
by the variable included in the selected weight matrix.

More precisely, from a methodological point of view, the asymmetric weight matrix
requires a generalization of the identification conditions of (Caporin and Paruolo (2015))
that we derive and, motivated by the time variation of the network, we are the first to

discuss covariance stationarity using the joint spectral radius of |Rota and Strang| (1960))



and |Jungers| (2009). Both identification and covariance stationarity conditions are more
complex in our framework. We obtain the identification condition by deriving a matrix
that linearly links our parameters with those of a full BEKK specification and demonstrate
that the rank of that matrix is linked to the algebraic connectivity characteristics of an
auxiliary undirected network, resulting in identification conditions more refined than the
ones derived in (Caporin and Paruolo (2015)ﬂ The identification restriction does not
imply a sign restriction on parameters associated with the network, and this leads to the
possibility of variance reducing network effects.

Understanding the role of joint spectral characteristics also allows us to justify a more
general weight matrix normalization with respect to the one considered in the literature
(Lee and Yu| (2012)), Qu et al| (2017)). We complete the methodological discussion by
adapting to the time-varying coefficients case the proof of consistency and asymptotic
normality of the quasi-maximum-likelihood estimator (QMLE) of the BEKK model ob-
tained in Hafner and Preminger| (2009). Again, the joint spectral radius is a convenient
tool to generalize the existing proof, in which an essential part is played by bounds on
the usual spectral radius.

All methodological advances are driven and motivated by the development of tools
able to investigate and measure the amount of spillover that could be explained by the
transmission channels, as summarized by the selected network. This is particularly im-
portant in applications since, as already remarked, we are not only able to obtain the
statistical significance of a given channel, as in {Tonzer| (2015), but also to distinguish the
importance of different nodes by using diagonal matrix parameters. Moreover, the use of
directed networks (i.e., asymmetric proximity) allows us to weight the transmission chan-
nel according to their direction, and we recover information on the statistically relevant
channels of contagion, resulting in a better understanding of risk circulation.

We present an empirical analysis, considering a sample period covering the collapse

of Lehman Brothers, Greece’s bailout, and Brexit. We focus on the role of the network

3Nevertheless, we show how in the symmetric case we recover their results.



of cross-country banking system exposures in explaining the European sovereign CDS
spillovers and provide a counterfactual analysis evaluating the risk-reducing exposures on
the period of the Brexit referendum.

The paper is organized as follows. In Section[2] we introduce the econometric model for
the spatial interpretation of risk and discuss identification, covariance stationarity, and
QMLE estimation. In Section [3] we discuss inference-based networks, system variance
decomposition, and the counterfactual analysis. In Section [4] we apply the methodology
to CDS differences for the major countries in the Euro area during the subprime, sovereign
debt crises, and Brexit. Finally, Section |5/ summarizes our findings and concludes. The
Appendices[A]B] and [Cinclude definitions, corollaries, and proofs of the main results. The
online supplementary material, [S| reports several additional and complementary tables

and figures.

2 A Model for Spatial Econometrics of Networked
Risk

In this section, we start to describe our framework for a spatiotemporal econometric treat-
ment of risk and dependence relationships across entities. Two parts compose the frame-
work. First, a multivariate GARCH model, in which lagged shocks propagate through
fluctuating relationships. Second, an exclusive set of diagnostic tools able to investigate
risk circulation. Both parts have relevance in building the framework. In particular, the
model chosen is one of the possible alternatives for studying risk spillovers in a network of
entities. It is a workable example on which we can test the framework. About the second
part, we designed a set of diagnostic tools, adaptable to other modeling proposals, but
already able to showcase the benefits of mapping risk flows. Here, we study our Spatial
Bilateral BEKK (SB-BEKK) specification in all its identification and estimation details
and postpone to the next section the description of the risk tools.

Our approach focuses on the risk dimension as (Caporin and Paruolo| (2015), but ex-



tends the historical spatial econometrics definition of proximity. In fact, usually, neigh-
boring relations are constant, based on geographical measures of distance, as in |[Anselin
(2013) and [Elhorst| (2003), or fixed economic properties, such as the industry sectors
membership in |Caporin and Paruolo| (2015). We choose, instead, the language of net-
work theory to describe not only the static similarities among entities already encoded in
the usual weight matrices, but the actual complex relationships among the nodes. This
different interpretation of the weight matrix as a network can characterize those relation-
ships in all their weighted, directed, and fluctuating generality. This new translation of
old ideas will have unanticipated outcomes both in methodology (see our identification
conditions in Theorem , and applications (see our inferred networks in subsection .

In this enterprise, we take inspiration from a recent strand of spatial econometrics
literature that includes finance-based weight matrices in their analysis (Keiler and Eder
(2013), Blasques et al.| (2016]), [Tonzer| (2015), and [Billio et al.| (2017))), and starts to
introduce the network terminology in the discussion. However, building on |Caporin and
Paruolo| (2015) differentiates us from the latter papers. First, we give an alternative
perspective in our focus on the risk dimension, as opposed to their aim to explain expected
returns. Second, they include only contemporaneous (spatial) transmission effect of the
linkages, as opposed to our lagged cross-sectional (spatiotemporal) effect.

In addition, one of the novel features of our framework, with respect to the latter
efforts, is a proper treatment of time dependence in the weight matrix. Previous appli-
cations of spatial methods to financial markets average these time-varying relationships,
reducing to a static framework (see, as an example, Tonzer| (2015))). This contribution is
not completely new; however, we are the first to embed the time-varying nature of financial
proximity within a conditional covariance model, going beyond the static weight matrix
used in (Caporin and Paruolo| (2015)). In fact, recent advances in the different modeling
approach of spatial panels address the point and study its statistical consequences|Lee and
Yul (2012), Qu et al.| (2017). Unfortunately, their assumption on weight-matrix normal-

ization is restrictive in the financial framework. Our use of joint spectral characteristics



leads instead, to less constraining normalizations (see subsections and [3.1]).

The other major contribution of the paper is our bilateral specification of proximity.
The specification has two main ingredients. The first one is the use of variable-specific
proximity parameters, which allows heterogeneity in the network mediated effects. Het-
erogeneity was already present in the classical literature and |Caporin and Paruolo (2015))
reintroduced it in a volatility framework. The second ingredient is our consideration of the
weight matrix as a directed network. Directedness is not present in classical approaches,
but is already considered in Billio et al.| (2017)); Tonzer| (2015) and Blasques et al.| (2016)).
In fact, in classical spatial econometrics, if A is a neighbor of B with a given distance
between them, the reverse is also true. In a financial framework, instead, symmetry is not
usual. As an example, we can consider the relationship induced by the level of financial
claims. It is improbable that the amount of claim that A has on B would be the same
amount that B has on A. In a financial setting, then, the relationship is likely to be di-
rected. Moreover, transforming the relationship to an undirected one by considering net
claims, would result in an information loss. In fact, investors could perceive the riskiness
of the connection to be dependent on its direction. Heterogeneity and directedness were
already used, but no one understood the consequences of their combination. In fact, as
detailed in the following subsection, the joint use of the two leads to different multiplica-
tion possibilities in proximity matrices. We will show how this little improvement in the

design of proximity will have vast consequences in the econometric and empirical analysis.

2.1 Directed Networks and Bilateral Proximity

In our opinion, network theory is the correct language to describe general relationships of
the type needed in our analysis. This subsection integrates the concepts of the adjacency
matrix of a graph with the weight and proximity matrices discussed in the spatial econo-
metrics literature. It also introduces our new bilateral specification for network-based
proximity matrices. We can define a weighted network (graph) as an ordered pair of sets

and a function G = (V, E,w) where V' = {1,...,n} is the set of vertices (or nodes),



E C V xV the set of edges (or arcs), and w(e) : E — R is the weight function attribut-
ing strength to the edges. An edge between two nodes exists if there is a relationship
between them and it can be identified as the (ordered) pair {7, j} with i,j € V. If there
is no direction in the connection between nodes, then an edge {u,v} is an unordered pair
of nodes and the graph G is said to be undirected, whereas if a direction exists, then each
edge {7, 7} is defined as an ordered pair of nodes and the graph G is said to be directed
graph (or digraph). Different edges could have different strength as summarized by the
weight function. The vertex adjacency structure of a n-order graph G = (V, E,w) can be
represented through a n-dimensional matrix W called an adjacency matrix. Each element
w;; of the adjacency matrix is equal to w ({4, 7}) if there is an edge {i,j} € F (i.e., an
edge from institution w to institution v with 4,5 € V), and w;; = 0 otherwise. If the
graph is undirected, then w; ; = w; ;, that is, the adjacency matrix is symmetric.
In the literature (see|Anselin| (2013)), LeSage and Pace| (2009)), Elhorst| (2003))), a proximity
matrix is a matrix whose entries quantify the distance between entities. The prototypical
example is the real geographical distance. These are generally summarized into a weight
matrix W, whose entries w; ; correspond to the physical distance from 7 to j. The matrix
W is, then, static and symmetric. In the language of networks, W corresponds to the
adjacency matrix of a weighted undirected network. We relax this implicit symmetry
hypothesis by considering W as the adjacency matrix of a weighted directed network.
Usually (Elhorst| (2003)), W is row normalized to maintain reasonable magnitudes for
the parameters. In addition, often, the spatial impact is measured by a single coefficient
p, which pre-multiplies the weight matrix W. This implies a unique impact across the
entities involved in the analyses/[]]

Following |Caporin and Paruolo (2015), we adopt a wider viewpoint, introducing the

proximity matrix P. P is a linear combination of an adjacency matrix W of a weighted

4The two most common specifications are the spatial autoregressive model (SAR), where a vector (a
cross-section) of observations Y obeys the linear model Y = pWY +¢, and the spatial error model (SEM),
where, for the same observation, we have Y = ¢ + pWe. In both cases, the coefficient p monitors the
spatial impact, that is, the response of Y to the neighbors’ values (in the SAR model) or to the neighbors’
shocks (in the SEM model).



directed network and an identity matrix I,

P = pOIn + p1W,

where p; and py are scalars. In particular, p; represents the global impact of a network
on the nodes, and pg is a constant common to all the nodes. The previous authors,
among others, include heterogeneus impacts by transforming the scalar coefficients into
diagonal parameter matrices. In their specification, the proximity is an affine function of
the network:

P = diag (po) I, + diag (p1) W.

Moreover, we realized that commutativity is not anymore guaranteed for the product of
a diagonal parameter matrix and a non-symmetric W, as it was in the case of symmetric
W. Consquently, pre- and post-multiplication of W by the coefficient matrix represent
different effects. Accordingly, we introduce our bilateral representation of the proximity

matrix, which extends and includes all the previous formulations:

P (W,) = diag(po) I, + diag (p1,r) Wi + Widiag (p1,r) (1)

where n is the number of series, I, is the n x n identity matrix, and we introduce two
parameter vectors associated with left multiplication, p; 1, and right multiplication p; g.
This new form of proximity could be of independent interest even were it abstracted from
our risk framework and applied to models for conditional mean. This specification, as we
show in the following, allows for, in our model characterization of sources and receivers
of risk, the derivation of a linear restriction test for the significance of network edges, and
also leads to model-identification conditions that do not constrain parameter signs and

can describe variance-reducing spillovers, and several other features.



2.2 Spatial Bilateral BEKK

A popular specification adopted for the estimation of conditional variance matrices is the
BEKK model of (Engle and Kroner), [1995). Unfortunately, even in its most parsimonious
specification (the BEKK(1,1)), this model is computationally infeasible, even for moderate
values of n, due to its large number of parameters (2n? + 0.5n (n + 1)). For this reason,
the standard practice is to restrict A and B to be either scalar or diagonal. Despite being
feasible, these restricted specifications impose strong limitations on the interpretability of
the model outcomes because they exclude or sensibly limit the presence of risk spillovers,
included in A, and variance feedbacks, coming from B.

To overcome these critical aspects, Caporin and Paruolo| (2015) introduce the Spatial-
BEKK GARCH model, in which the full parameter matrices A and B are replaced by
proximity matrices. The spatial version of the BEKK model has the advantage of being
more parsimonious than the full BEKK case, as, at the same time, it is more flexible
than the diagonal specification, and it includes spillovers and feedback effects. We further
extend their model considering a time-varying weighted directed network Gy = (V, E;, w,),
with fixed nodes and adjacency matrices W;, and allowing a bilateral specification for
proximity.

Given a vector y; of n cross-sectional observations at time ¢, we define u; = y; — ¥,
where 7 is the vector of sample means. Our Spatial Bilateral BEKK GARCH (SB-BEKK)

has the following structure:

ut:Ei/zet e~N(01,), t=1,....,T

Et == CC, + A (Wt> ut—luéflA (Wt)/ + B (Wt) Et_lB (Wt)/

where C' is a lower triangular matrix, Etl /2 is the Cholesky decomposition of Et and the

parameter matrices have a proximity specification described in equation that includes

5 Alternatively to the Cholesky, we can compute the square root by resorting to the spectral decom-

position and set Zz /2 = DtPtl/ 2D2’5, where D, is the matrix of eigenvectors and P, is the diagonal matrix
of eigenvalues.



both left multiplication and right multiplication:

AWy = Ao+ AW, + WAy g = diag (ag) I, + diag (a1,) Wy + Widiag (a1,r)

B (Wt> = Bo + Bl,LWt —+ WtBl,R = dlag (bo) In + dlag (bl,L) Wt -+ Wtdlag (bl,R) s

where ag, a1, bo by v, with M = L, R, are n x 1 vectors. Within the SB-BEKK
framework, left and right multiplication allow researchers to focus on different aspects
of risk propagation. To better understand this model attitude, it is advisable to recall
the notions of direct and indirect effects of shock diffusions, previously introduced in the
spatial econometrics literature (see |LeSage and Pace (2014))) and generalized here for
the SB-BEKK model. The starting point is the Spatial Error Model (SEM), where the
n—variate dependent variable v; depends on an n—dimensional vector of shocks u;, on a

weight matrix W, and on a scalar parameter 6
VUVt = (]n + QW) Ut.

LeSage and Pace (2014) decompose the error term in the direct effect v and the local

indirect effect v} as follows:

n
v =0 +o} vgt = L), = wiy vit = [0Wuw), = [Wou,], = QZwi,juj’t

J=1

where [X]. . identifies the element of position ,j of the argument matrix X with one

]
single index if X is a vector, w; ; represents the “distance”between subject ¢ and subject j
coming from the spatial weight matrix W (time invariant, for simplicity), and by definition
w;; = 0.

This means that the target variable v;; depends on its own shock, as monitored by
v?, the direct impact. Further, it is also affected by the indirect impact v}. The latter

captures the effect coming from neighboring elements v;; with 7 # j and with an impact

only from those j such that w;; # 0. We note that in the SEM model, left and right

10



multiplication are identical due to the presence of a scalar parameter . We translate
these elements into the SB-BEKK model and provide a novel decomposition. We focus
on the ARCH part of the model because we want to highlight the role of innovations. We

note that

u=AW)u, = (Ao+ A W+WA g)u = v + vit + "011%7,f (2)
vy = [Aow; = aouiy (3)
Viae = (AW, = ain; Y wijus. (4)
j=1
Viae = (WALRW], =D wijan g e (5)
j=1

The 7—th element of v; depends on its own past shock, weighted by the coefficient ag ;
(direct effect), on the past shocks of its neighbors weighted by the distance, loaded with
the sum of the same coefficient, a; 1, ; (indirect left effect), and a coefficient different from
each source a1 g; (indirect right effect). For the GARCH part, similarly to the ARCH

case, we introduce:

myy = [Boud]; = bosui (6)
M, = [BioWul, =biri Y wiju (7)
j=1
My = [WBLrwl, =Y wijbir . (8)
j=1

Consequently, bearing in mind that we are discussing properties of a conditional co-
variance model, the left multiplication term allows us to investigate which are the risk
receivers. In the right multiplication term, distinct from the left multiplication case, the
coefficients in the indirect effect are not pointing at the subject we are monitoring (sub-
ject 7) but at the subject originating the shock (subject 7). With the right multiplication
term, the parameters magnify the effect of the sources of risk, allowing us to focus on risk

spreaders.

11



2.3 Model estimation

We suggest to estimate the parameters of our SB-BEKK, conditional on the availability
of the full sequence W, for t = 1,2,...,T, by means of QMLE methods. If we denote
by 6 = (vec (C), ao ar, a1, boar, b1ar) the vector of model parameters, the log-likelihood
Ly (0) is :

n 1 1 _ 1
0 (0) = 5 log (2m) + o det (B) + Sue (B0) " vy, Ly (0) = == S0, 4 (6) -

In the following proposition and lemma, we extend results included in|Caporin and Paruolo
(2015), with a detailed study of identification for a directed network sequence. Moreover,
as the network matrices W; might evolve on a time scale lower than that adopted for
entities, we focus here on the collection of the K distinct matrices Wy, k = 1,2,... K
with K < T. Our focus does not mean that we need for the estimation of the model a
lower frequency for the weight matrices.

The study of identification is possible by making explicit the expression of A (W;) and
B (W) as a linear function of a vector of parameters. Considering A (W;) as an example,

we could write:

Qo
vec (A (Wk)) =M (Wt) 1,1 ) M (Wt) = ]n X In VVt, X -[n In & Wt ([3 ® H)

a1,R

where H = Z?:l e; ® e;e; and e; is the i-th column of I,,.

This explicit expression is novel with respect of (Caporin and Paruolo (2015), even in the
symmetric case. Moreover, an anonymous referee to whom we are particularly grateful
pointed out how this linear map, in the asymmetric case, cannot be injective due to the
rank deficiency of M (W;). A proper identification of the model is, then, impossible, with-
out imposing further restrictions on the parameters. The following important refinement

of the identification conditions elucidates the hidden role of the connectivity of the net-

12



work sequence unexpected, given the simpler conditions for the symmetric case in Caporin
and Paruolo| (2015) [f

Before stating the identification conditions in the next proposition and lemma, let us define
an auxiliary network &, = (V| &, twy), defined on the same nodes, but with undirected

edges and different weights, according to the adjacency matrix 20y, :

W, = (W}, © Wi) (Dwom) " (Wi © Wi) . Dwow, = diag (W © W) 1).

We define as ¢, the number of connected components in &,.

Proposition 1 (Identification). Assume that at least one of the matrices Wy is not sym-
metric. Let mg correspond to the vectorized collection of either A (Wy) or B (Wy) for
k=1,2,...K, that is g = vec ([A W) AWy« ... A(WK)'],>, where A (W) or
B (Wy) matrices are those coming from a full BEKK model fitted on each subsample, and
are thus globally identified. Let 1 be the parameter vector in the SB-BEKK representation
corresponding to wx. Additionally, let ¢ = min ¢, be the minimum number of connected

components of the induced networks &y, in the sample. Then, a necessary and sufficient

condition for the identification of ¢ is that we place ¢ linear restriction on it.

Lemma 1 (Single Restriction). A sufficient condition for having ¢ = 1 is that at least
one of the original weight matrices Wy, is fully indecomposable, inducing an ultrastrong

graph in the sense of \Brualdi (1967).

The condition of Lemma [1] is not restrictive for small dense networks such as the one
we use in the empirical analysis. In those cases, the condition is trivially violated when
one node is isolated (i.e., if all the matrices W), have the same column (row) full of zeros).
In that case, the corresponding right (left) parameter must be set to zero. For bigger and
sparser networks, sequences one should check the number of components of the induced

networks sequence ®y.

SWe reproduce conditions in |Caporin and Paruolo| (2015) for the symmetric case; see corollary |1| in
Appendix subsection @
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In the full BEKK(1,1), it is sufficient to set A; 1, B11 > 0 to have global identification,
and in our case, this is equivalent to the conditions ag; > 0 and by; > 0. Then, under
Lemmal [I}, we choose to achieve identification by imposing an equal sum of left and right

parameters:

n n—1 n n—1
a17R7n = - ZZ:I a17L77’ _'_ lel al,R,Z ? blyR’n = - Z'L:l blzL»l + ZZ:I bl,R,Z

We stress that this identification strategy allows for the presence of coefficients of both
signs in ag, by, a1,r,, a1,r, b1, and by r. In subsection , we show how this allows contri-
butions that reduce the variance.

Subsection in the Appendix reports the proof of the previous proposition and
lemma, alongside corollary [1] for symmetric W; matrices.

A necessary and sufficient condition for stationarity and geometric ergodicity, and
thus a sufficient condition to ensure the ergodicity and strict stationarity of the process
implied by the model, is covariance stationarity, [Boussama et al. (2011). According to
the discussion in |Avarucci et al.| (2013)), this condition, distinct from the univariate case,
appears necessary for consistency and asymptotic normality of the QMLE estimator. To
show the covariance stationarity, we introduce a VARMA representation of the process.
In addition, the condition for covariance stationarity will be expressed using the joint
spectral radius of Rota and Strang| (1960) and Jungers (2009). It is well known that a
BEKK model admits a VARMA representation (see, for example, [Hafner and Rombouts
(2007)). In our case, the VARMA coefficients will depend on the network sequence, and
ensuring covariance stationarity requires the study of convergence of a geometric series
with heterogeneus terms, analogous to the one studied in the generalized autoregressive
model; see Brandt| (1986]) and Bougerol and Picard| (1992)).

The VARMA representation of the SB-BEKK(1,1) has the following structure:

X, = C+ (21 (W,) + B (Wt)) Xiot — B(Wy) mees + s 9)
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where

Xt = Vech(utug), ft = VeCh(Et), N = Xt_ftu é = VeCh(OO/)

AW) = Lo(AW) @ A(W)) Do, B(W,) = Ly (B(W,) ® B(W,)) Dy,

and L, is the elimination matrix, while D,, is the duplication matrix (see [Magnus and
Neudecker (1999)). Given the distribution of ¢ in (2), adopting the terminology of Hafner
and Rombouts| (2007), we have that u; is a strong GARCH process and 7, is a martingale
difference sequence. This remains true if the innovation distribution is misspecified, but
remains i.i.d. Equation @D puts the model outside of the general specifications of dynamic
spatial panel models given in Elhorst| (2001]), because of the presence of a spatiotemporal
moving average term. The specification closer to ours is the STARMA model introduced
in [Pfeifer and Deutsch| (1980)); for a recent overview, see Subba Rao and Costa Antunes
(2004). However, such a model adopts a static network and scalar coefficients. Due to
the presence of a time-varying network, our model is also close to the generalized au-
toregressive model of Brandt| (1986) and Bougerol and Picard, (1992). In order to derive
stationarity conditions for our case, we need a condition similar to those based on the
Lyapunov exponent in |Brandt| (1986]) and Bougerol and Picard| (1992)). Accordingly, to
introduce it, we first need the following definitions concerning the joint spectral charac-
teristic of a set of matrices.

Let us consider an infinite countable set of n x n matrices A = {A4;}:°, with the
convention that Ay = I,,. A generic product of ¢ elements from A could be obtained by
extracting uniformly, with replacement, ¢ elements from A and matrix-multiplying them.
For example, suppose that the elements sampled have indexes o1 = 44,00 = 44,03 =
20,...,0; = 1; the product will be A2,A---A;. Let us define the set of all those
possible products A' = {M € A'|M =[]i_, Ao, st. Ay, € A,... A, € A}

We have:

Definition 2.1. Joint Spectral Radius. Given a proper norm || - || on R™ x R™, we define
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on the set A the joint spectral radius o (A) by

0(A) = lim p, (A) (10)
. 1/t
0y (A) = sup A, 11
pr (A) P < E > (11)
Definition 2.2. Lyapunov Ezponent. Given a proper norm || - || on R™ x R"™, assuming

that we have a probability measure on A;, we define on the set A the Lyapunov Exponent

v (A) by
log < )

Using the Jensen inequality, it is possible to show that to e < o (A); see, for

v(A) = lim E

t—oo t

(12)

g4

instance, Tsitsiklis and Blondel| (1997)).

We are now ready to discuss the covariance stationarity of our model.

Theorem 1 (Covariance Stationarity). If the joint spectral radius

the SB-BEKK(1,1) process is covariance stationary conditionally on the network sequence.

We stress that the use of bounds on the joint spectral radius is a condition on dynamic
stability strictly weaker than the ones already present in the literature. For example, the
uniform boundedness assumption size in Lee and Yu (2012), being based on row and
column sum norm, implies our joint-spectral-radius condition. This is relevant for our
empirical application where the choice of normalization is different from the standard row
sum, and motivated by the economics of the data used (see section [3.1).

We now discuss the consistency and asymptotic normality of the QMLE estimator
along the lines of Hafner and Preminger, (2009). In detail, we modify their proof to

generalize them to the case of time-varying A (W;) and B (W,). In the following, || - ||
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represents the norm operator, with different norms being specified when needed. Denote
by 6 the vector of stacked parameters that implicitly satisfy the identification condition
of Theorem [I| and denote the true parameter vector as y. Define the QMLE as 0y =
arg maxgeg L7 (0). Additionally, let 3, be the process where the starting values are drawn
from their stationary distribution, and let ét, Ly and ¢, be defined analogously.

We begin by discussing the assumptions needed for consistency.

Assumption 1. The parameter space © is compact and o <{f~1 (Wy) + B (Wt)}oo > <L

t=—00

Assumption 2. {u;} is strictly stationary and ergodic, and 3s > 0 s. t. E[|juy|’] < oo .
Assumption 3. E[||¢]|°] < oo, Var[e] = I,,.
Assumption 4. The model is identified: i.e., conditions in Theorem [1] are satisfied.

Our assumptions parallel those in |Hafner and Preminger| (2009). The only conceptual
difference, once we take into account our use of time-varying matrices, is in Assumption
, where we bound the joint spectral radius of the sum of A (W;) and B (W}), instead of
a condition that points only at the joint spectral radius of B (W) matrices. In Lemma
in subsection of the Appendix, we show that one condition implies the other. This
was done for the standard BEKK in Boussama et al. (2011), where they also show that
bounding the spectral radius of the sum was a sufficient condition for strictly stationarity
and ergodicity. Then, in the standard framework, the first part of assumption [2| would be

redundant. Showing that this also applies to our case is outside the scope of the paper.
Theorem 2 (Consistency). Under Assumptions O —, o Op.

Proof of Theorem [2] is in section [B] of the appendix.

To establish asymptotic normality, the following additional assumptions are needed.
Assumption 5. The parameter 0y is an interior point of ©
Assumption 6. E [||ut]|6] < 0

Assumption 7. supmax;—1,__, Y, Wiy < d" <00 