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1 Introduction

The substantial social and economic costs of environmental degradation through climate

change have been thoroughly detailed, amongst others, by Tol (2002a, 2002b) and Stern

(2008). For this matter, it should be of little surprise that nowadays politics are consid-

erably influenced by environmental concerns. It has become apparent that governments

have to take measures to both, decelerate climate change and find ways to cope with the

consequences of altered, less favorable environmental conditions. This is also reflected in

the Paris Agreement on climate change which states the intent of more than 170 involved

parties to limit greenhouse gas emissions and the rise of the global temperature but also

acknowledges the need to adapt to the fallout from climate change (United Nations, 2015).

Moreover, an intensively and controversially discussed side-effect of climate policy is its

fiscal impact on public budgets. On the one hand, there is the hope of co-benefits like, for

instance, the possible double dividend when revenues from carbon taxation are recycled

in order to lower other distortionary taxes (e.g., Goulder (1995) or Proost and Van Rege-

morter (1995)). On the other hand, variations in tax revenues over time and investing in

adaption to climate change may put additional strain on the public budget. This effect

is of particular importance, since many countries, not only in Europe but worldwide, still

struggle with austerity in the wake of the financial crisis of 2007–2010 and try to limit (or

entirely halt) the accumulation of new debt.

This paper contributes to the discussion on the fiscal implications of climate policy.

We take a look at the rather unexplored but - as explained above - highly policy relevant

relation between emission taxation and optimal public debt: When a tax is implemented

not only to provide resources for spending requirements, but also to lower greenhouse gas

emissions, will it create an economic reason to increase or decrease optimal public debt?

To answer this question, we commence our analysis from the tax smoothing approach

of Barro (1979, 1989) and extend this approach by including environmental externalities.

We develop a two-period model where in each period a representative household consumes

two goods, one of which pollutes the environment. Emissions are assumed to accumulate

over time and cause environmental damage. They are taxed by an emission tax on the

polluting good. The tax plays a dual role since it may be used for both funding a given time

path of public expenditures and correcting the environmental externality. In addition, in

the first period the spending requirements may be financed by issuing public debt which
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has to be repaid in the second period. The time path of tax rates and public debt are set

such that welfare of the household is maximized. The basic insight we derive from this

model is that the impact of the environmental externality on optimal public debt depends

on whether the optimal tax rates are on the increasing or decreasing side of the Laffer

curve and whether the accumulated marginal environmental damages from first period

consumption are higher or lower than those from second period consumption.

More specific, we first consider the case without environmental externality as bench-

mark. Optimal tax rates are then constant over time in order to minimize the present

value of the excess burden associated with taxation and optimal public debt smoothes out

variations in public expenditures. Hence, optimal public debt is positive only if the expen-

diture requirement is larger in the first period than in the second period; with constant

spending requirements optimal public debt is zero. This is the classical tax smoothing

argument. We then turn to the case with environmental externality and show that the

externality may imply the optimal policy to deviate from tax smoothing. If the accumu-

lated marginal environmental damages from first-period consumption are larger (smaller)

than those from second-period consumption, then the role of the tax as a correcting in-

strument renders the optimal tax rate in the first period larger (smaller) than that in the

second period, in contrast to tax smoothing. If in addition both tax rates are on the in-

creasing side of the Laffer curve, tax revenues in the first period are larger (smaller) than

those in the second period and for constant spending requirements public debt is negative

(positive). These results are reversed if the tax rates are on the decreasing side of the

Laffer curve. Then, tax revenues are larger (lower) in the second period and for constant

expenditures public debt becomes positive (negative). We show that these results hold

independently of whether tax revenues from the Pigouvian (first best) internalization of

the externality are already sufficient to finance the spending requirements.

As an extension of our analysis, we take into account endogenous adaptation invest-

ments that are of increasing interest and importance in the public debate, as argued in the

beginning. We introduce an opportunity for the decision maker to invest in a technology

that requires upfront effort in the first period and will adapt the economy to better cope

with pollution in the second period. Thereby, we further extend the model by adding an

endogenous margin to public spendings. This is in contrast to the standard tax smooth-

ing analysis where spending requirements are exogenously given and influence neither the
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household’s utility nor any technology. Since engagement in adaptation effort alleviates

the damage from pollution in the second period, we find that the adaptation will shrink

the wedge between the tax rates induced by the environmental externality. Hence, taking

into account adaptation to climate change reduces the deviation from the tax smoothing

principle caused by the environmental externality. If previously it had been optimal to

accumulate public savings (debt), adaptation would reduce the optimal level of public

savings (debt). Nevertheless, even with adaptation the inclusion of the environmental

externality impacts optimal public debt qualitatively in the same way as described above

for the case without adaptation, though to a lesser extent.

The diversity of cases for which we derive results raises the question which case is

the most relevant one from an empirical point of view. To answer this question, two

arguments may be of importance. First, in the context of climate change it seems plausi-

ble that greenhouse gas emissions from today’s consumption lead to higher accumulated

marginal damages than those from tomorrow’s consumption, simply because the decay

of greenhouse gas emissions in the atmosphere is negligible. Hence, it seems to be likely

that the optimal emission taxes decrease over time, starting with relatively high levels

and then turning to lower levels. This conclusion is also consistent with the optimal tax

path in the context of the green paradox (Sinn, 2012). Second, empirical research on the

Laffer curve suggests that tax rates usually are on the increasing side of the Laffer curve,

at least for labor and capital taxes, see e.g. Trabandt and Uhlig (2011). Putting both

arguments together, in our model we are in the case where the inclusion of externalities

leads to higher taxes rates and revenues in the first period compared to the second period

and, thus, to a fall in the optimal debt level. Allowing for adaption investments miti-

gates this negative impact of the externality on public debt. Nevertheless, we sell this

implication with caution since the question for the most relevant case is in the end an

empirical one and we cannot be sure that previous empirical findings are applicable to

our framework. For example, to the best of our knowledge there is no empirical study

showing that emission tax rates are on the increasing side of the Laffer curve, too. If their

primary function is to internalize pollution damages, environmental taxes might also be

located on the decreasing side. Hence, the question for the most relevant case deserves a

thorough empirical analysis that is beyond the scope of our paper.

We contribute to the literature in two ways. First, we add a further dimension to the
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discussion on the fiscal implications of climate policy. As already mentioned above, the

double dividend is a prominent topic in this strand of literature, see e.g. Bovenberg and

De Mooij (1994), Proost and Van Regemorter (1995), Parry (1995) and Goulder (1995).

The basic question addressed is whether an emission tax has not only the positive effect of

increasing environmental quality by reducing emissions, but also the potential to improve

efficiency of the tax systems by reducing other distortionary taxes. A related topic is

discussed in the recent study of Franks et al. (2017). In a dynamic general equilibrium

model, these authors investigate whether emission taxation yields higher welfare than

taxation of mobile capital, even if environmental externalities are ignored. However, all

these papers ignore the link between emission taxation and optimal public debt, which is

the main contribution of our analysis.

Second, our paper brings the climate change problem into the literature on public

debt. This literature can basically be divided into positive studies explaining the accu-

mulation of public debt, like the political economy models of, e.g., Persson and Svensson

(1989), Tabellini and Alesina (1990) and Woo (2003), and normative studies investigating

optimal public debt, like the tax smoothing theory of Barro (1979, 1989). Our analysis

relates to the normative approach and, in contrast to the tax smoothing analysis, shows

that in the presence of a taxable, polluting consumption good, optimal public deficits may

be non-zero, even if spending requirements are constant over time. To the best of our

knowledge, the only paper that discusses the relation between environmental policy and

public debt is Fodha and Seegmuller (2014). They examine the welfare effect of an envi-

ronmental abatement policy which may either be funded by tax revenues or public debt

in a fully dynamic model. They find that pollution abatement should not be conducted

on the cost of increased debt when the capital stock is low. However, in their model

the tax is modeled as lump sum tax and not as a distortionary tax on pollution or on a

polluting consumption good. Hence, in contrast to our analysis, they cannot investigate

the implication of climate policy for the tax smoothing role of public debt.

The paper is organized as follows. In Section 2 we introduce the basic framework. In

Section 3, we determine the optimal climate and debt policy in case without adaptation.

Section 4 provides an examples to buttress our results from the general analysis. In

Section 5, we investigate how our findings will be affected when the economy can adapt to

pollution by means of investing in an adaptation technology. The final section concludes.
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2 The model

2.1 Private Sector

We consider an economy with a representative household which lives for two periods 1

and 2. In period t = 1, 2 the household consumes a composite good Y in quantity yt and

a polluting good X in quantity xt. The household’s utility in period t is given by

ut = yt + V (xt), (1)

with V ′ > 0 and V ′′ < 0. Without loss of generality, we normalize the discount rate of

the household to zero, so the present value of the household’s utility reads w = u1 + u2.

In each period, the household dispose of an exogenous endowment normalized to one.

Moreover, we assume that the goods Y and X can be produced from the endowment by

an one-to-one- technology. Hence, prices of both goods are equal to one, too. Good Y is

untaxed, whereas good X is taxed by a unit tax with tax rate τt in period t. The household

may receive a lump-sum transfer zt from the government in period t. For simplicity, we

ignore private savings. Hence, the private budget constraint in period t reads

yt + (1 + τt)xt = 1 + zt. (2)

Tax rates and the lump-sum transfer is taken as given by the household.

The household chooses consumption in order to maximize the present value of its

utility. Inserting (2) in (1), the maximization problem can be written as

max
x1,x2

w =
∑
t=1,2

{
V (xt) + 1 + zt − (1 + τt)xt

}
.

The first-order conditions can be written as

V ′(xt) = 1 + τt, t = 1, 2. (3)

This condition equates the household’s marginal utility to the after-tax price of good X

in period t. It determines the household’s optimal consumption of good X in period t as

function of the tax rate in period t. Formally, we have xt = X(τt) with X ′(τt) = 1/V ′′ < 0

and X ′′(τ) = −V ′′′/V ′′3 ≥ 0.1

1Here, we implicitly assume V ′′′ ≥ 0, which is satisfied, for example, if V is quadratic or if V is

monotone and has monotone derivatives. In the latter case, V ′′′ > 0 is implied by V ′ > 0 and V ′′ < 0.
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2.2 Government

Beside the tax rates τ1 and τ2 and the lump-sum transfers z1 and z2, the government may

raise revenues in the first period by public debt b which it has to repay in the second

period. Without loss of generality we normalize the interest rate equal to zero. With its

policy, the government pursues two goals. First, in period t it has an exogenous revenue

requirement gt ≥ 0 which has to be meet by taxation and public debt. Second, the

government may use its policy in order to internalize the externalities caused by pollution

of good X. We assume that pollution in the first period causes an environmental damage

given by D1(x1) with D′1 > 0 and D′′1 ≥ 0. In period 2, the environmental damage is given

by D2(x2 + γx1) with D′2 > 0, D′′2 ≥ 0 and γ ≥ 0. The parameter γ allows distinguishing

between flow pollution (γ = 0) and stock pollution (γ > 0). An example for the latter

case are greenhouse gases and climate change.

In choosing its fiscal policy, the government takes into account the reaction of the

private sector captured by the optimal consumption xt = X(τt). The government’s max-

imization problem can be written as

max
{b,τt,zt}t=1,2

w =
∑
t=1,2

{
V [X(τt)] + 1 + zt − (1 + τt)X(τt)

}
−D1[X(τ1)]−D2[X(τ2) + γX(τ1)], (4)

subject to

τ1X(τ1) + b = g1 + z1, τ2X(τ2)− b = g2 + z2, (5)

z1 ≥ 0, z2 ≥ 0. (6)

According to (4), the government maximizes the present value of the household’s utility

net of the environmental damage. It takes into account the public budget constraints

given in (5). Moreover, due to (6) we restrict the policy space to non-negative lump-sum

transfers.2 The reason is that we follow the tax smoothing literature referred to in the

introduction and focus on the case where the government has to use distortionary taxa-

tion in order to meet its revenue requirement. Hence, the sole role of the transfer is to

redistribute back excessive revenues in a non-distortionary way. In contrast to the tax

2Note that the tax rates have to be strictly positive since otherwise the government cannot meet its

revenue requirement. Therefore, we implicitly assume τ1, τ2 > 0. Public debt b may take any sign.
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smoothing literature, in our framework tax revenues may be above the revenue require-

ment since the government pursues a second goal, i.e. the internalization of externalities.

In order to characterize the solution to the problem above, we use the Lagrangian

L =
∑
t=1,2

{
V [X(τt)] + 1 + zt − (1 + τt)X(τt)

}
−D1[X(τ1)]−D2[X(τ2) + γX(τ1)]

+λ1[τ1X(τ1) + b− g1 − z1] + λ2[τ2X(τ2)− b− g2 − z2],

where λ1 and λ2 are Lagrange multipliers associated with the public budget constraints.

As Kuhn-Tucker first-order conditions we obtain

Lb = λ1 − λ2 = 0, (7)

Lτ1 = −X(τ1)−
{
D′1[X(τ1)] + γD′2[X(τ2) + γX(τ1]

}
X ′(τ1)

+ λ1

[
X(τ1) + τ1X

′(τ1)
]

= 0, (8)

Lτ2 = −X(τ2)−D′2[X(τ2) + γX(τ1]X
′(τ2) + λ2

[
X(τ2) + τ2X

′(τ2)
]

= 0, (9)

and the slackness conditions

Lλ1 = τ1X(τ1) + b− g1 − z1 ≥ 0, λ1 ≥ 0, λ1Lλ1 = 0, (10)

Lλ2 = τ2X(τ2)− b− g2 − z2 ≥ 0, λ2 ≥ 0, λ2Lλ2 = 0, (11)

Lz1 = 1− λ1 ≤ 0, z1 ≥ 0, z1Lz1 = 0, (12)

Lz2 = 1− λ2 ≤ 0, z2 ≥ 0, z2Lz2 = 0, (13)

where in (8) and (9) we used (3). Note that from (12) and (13) it follows λ1, λ2 ≥ 1 > 0.

Hence, (10) and (11) imply that both budget constraints are always satisfied with equality.

Finally, when z1 and z2 are zero, the second-order conditions require that the determinant

of the bordered Hessian |H| of the remaining system is negative. In Appendix we show

|H| = (x1 + τ1X
′
1)

2Lτ2τ2 + (x2 + τ2X
′
1)

2Lτ1τ1 + 2γ(x1 + τ1X
′
1)(x2 + τ2X

′
2)D

′′
2X
′
1X
′
2, (14)

with

Lτ1τ1 = −X ′1 − (D′1 + γD′2)X
′′
1 − (D′′1 + γ2D′′2)X ′21 + λ1(2X

′
1 + τ1X

′′
1 ),

Lτ2τ2 = −X ′2 −D′2X ′′2 −D′′2X ′22 + λ2(2X
′
2 + τ2X

′′
2 ),

and xt = X(τt),X
′
t := X ′(τt), X

′′
t := X ′′(τt), D

′
t := D′(xt) and D′′t := D′′(xt). In all

relevant cases considered below we will check whether |H| < 0 is satisfied.
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3 General Analysis

In this section we characterize the optimal policy of the government without referring to

specific functional forms. Central to our main results are the public budget constraints

in equation (5). Adding the two constraints gives

τ1X(τ1) + τ2X(τ2) = g1 + g2 + z1 + z2. (15)

Hence, the present value of tax revenues (LHS) has to be equal to the present value

of public spending and transfers (RHS). In the subsequent analysis, this intertemporal

budget constraint will be helpful in determining the optimal tax rates. Subtracting the

second budget constraint in (5) from the first gives

b =
g1 − g2

2
− τ1X(τ1)− τ2X(τ2)

2
+
z1 − z2

2
. (16)

Once we have determined the optimal tax rates τ1 and τ2 and the optimal transfers z1 and

z2, we will use (16) in order to compute the optimal level of public debt. Basically, the

equation has the same meaning as in previous studies of tax smoothing without pollution.

The first term on the RHS shows the central tax smoothing argument in the absence of

externalities: Public debt is used to equalize variations in exogenous public spending. The

reason is that without externalities the optimal tax policy minimizes the excess burden of

taxation and, thus, requires constant tax revenues over time with the consequence that

the second term on the RHS vanishes. In contrast, in our analysis with environmental

externalities it will turn out that tax revenues may vary over time and, thus, may impact

the optimal debt policy via the second term on the RHS of (16).3

More specific, if tax revenues in the second period, τ2X(τ2), are larger than tax

revenues in the first period, τ1X(τ1), then the second term of the RHS of (16) inclusive of

the minus sign in front of it is positive and yields an additional rational for public debt.

Crucial for such a result is the Laffer curve in period t given by

R(τt) = τtX(τt). (17)

We impose the following quite general assumption on the shape of the Laffer curve.

3In most cases of interest the transfers z1 and z2 are zero, so they do not further impact public debt.

In the cases with positive optimal transfer levels only the sum of transfers, z1 + z2, is determined. Since

we introduced these transfers only to redistribute back excessive tax revenues, also in case with positive

transfers it is natural to assume z1 = z2 in order to abstract from further effects on public debt.
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Assumption A. The Laffer curve R(τ) is twice continuously differentiable and satisfies

R′(τ) = X(τ)+τX ′(τ) T 0 if and only if τ S τ̄ with τ̄ > 0, R′′(τ) = 2X ′(τ)+τX ′′(τ) < 0,

R(0) = 0 and lim
τ→∞

R(τ) < (g1 + g2)/2 < R(τ̄).

These assumptions state that the Laffer curve is inverted U-shaped with a unique maxi-

mum at the positive tax rate τ̂ and vanishing tax revenues at a zero tax rate. The latter

properties in Assumption A ensure that maximal revenues at τ̄ are more than enough

to meet the spending requirements. This together with the U-shape of the Laffer curve,

in turn, implies that on both sides of the Laffer curve there are further tax rates that

generate tax revenues sufficiently high to meet the spending requirements.

Next let us rewrite the first-order conditions in order to identify conditions under

which revenue requirements are larger in the second period than in the first period. From

(7) we obtain λ1 = λ2 =: λ. Using this in (8) and (9) yields

λ =
X(τ1) +

{
D′1[X(τ1)] + γD′2[X(τ2) + γX(τ1)]

}
X ′(τ1)

X(τ1) + τ1X ′(τ1)
, (18)

λ =
X(τ2) +D′2[X(τ2) + γX(τ1)]X

′(τ2)

X(τ2) + τ2X ′(τ2)
, (19)

Since λ ≥ 1 > 0 from the slackness conditions (12) and (13), the nominators and denom-

inators on the RHS of (18) and (19) must have the same sign. They may be either both

positive or both negative, in each of these equations. The implications, however, depends

on whether the slackness conditions are binding or not.

In a special case we can unambiguously state that slackness conditions are binding.

Proposition 1. If D1 ≡ D2 ≡ 0, then the optimal policy is characterized by z1 = z2 = 0,

τ1 = τ2 = τ and b = (g1 − g2)/2, where τ is implicitly determined by τX(τ) = (g1 + g2)/2

and lies on the increasing side of the Laffer curve R(τ).

Proof: From D1 ≡ D2 ≡ 0 and (18) and (19) we obtain

λ = X(τ1)/[X(τ1) + τ1X
′(τ1)], λ = X(τ2)/[X(τ2) + τ2X

′(τ2)]. (20)

Since λ ≥ 1 > 0 and X(τt) > 0, it follows X(τt) + τtX
′(τt) > 0 for t = 1, 2. Hence, in each

period the optimal tax rate is on the increasing sides of the Laffer curve. As X ′(·) < 0,

we have X(τt) + τtX
′(τt) < X(τt) and therefore (20) implies λ > 1 and z1 = z2 = 0 by the
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slackness conditions (12) and (13). Moreover, (20) shows that τ1 and τ2 are determined

by the same equation which implies τ1 = τ2 = τ . Inserting this into the intertemporal

budget constraint (15) gives τX(τ) = (g1 + g2)/2. Finally, inserting τ1 = τ2 = τ and

z1 = z2 = 0 into (16) implies b = (g1 − g2)/2. �

Proposition 1 replicates the results from the previous literature: When good X does

not cause externalities, the only purpose of taxation is to meet the spending requirement.

Since taxation is distortionary, the government sets tax rates such that the excess burden is

minimized. The minimum is obtained if the tax rates and, thus, tax revenues are constant

over time (τ1X(τ1) = τ2X(τ2)). Of course, due to the excess burden of taxation the

government will not generate more revenues than required for exogenous spending, so the

transfers are zero in both periods (z1 = z2). What remains in equation (16) as determinant

of public debt is the difference in the spending requirement, i.e. b = (g1− g2)/2. Hence, a

positive debt level may be optimal if spendings requirement vary. For example, if spending

is higher in the first period than in the second (g1 > g2), then it is optimal for an efficient

tax policy to issue debt in the first period and to repay it in the second period.

More interesting for our purpose is the case with externalities. Due to (18) and (19),

for D1, D2 6= 0 there are two important differences to the case without externalities. First,

λ may be equal to one such that the slackness conditions are not binding and, second,

tax rates may be on the decreasing part of the Laffer curve. We start with the case where

the slackness conditions are still binding and later discuss the case where they are not.

Proposition 2. If D1, D2 6= 0 and λ > 1, then the optimal policy is characterized by

(i) z1 = z2 = 0.

(ii) τ1 T τ2 if and only if D′1 + γD′2 T D′2.

(iii) If D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, then τ1 and τ2 are both on the increasing

side of the Laffer curve and τ1 > D′1 + γD′2 and τ2 > D′2. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 S D′2.

(iv) If D′1 + γD′2 > −x1/X ′1 and D′2 > −x2/X ′2, then τ1 and τ2 are both on the decreasing

side of the Laffer curve and τ1 < D′1 + γD′2 and τ2 < D′2. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 T D′2.
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Proof: Part (i) immediately follows from λ > 1, (12) and (13). In order to prove part

(ii) rewrite (18) and (19) as

F (τ1) =
D′1[X(τ1)] + γD′2[X(τ2) + γX(τ1)]

λ
, F (τ2) =

D′2[X(τ2) + γX(τ1)]

λ
, (21)

with

F (τ) := τ − 1− λ
λ

X(τ)

X ′(τ)
, F ′(τ) := 1− 1− λ

λ

[X ′(τ)]2 −X(τ)X ′′(τ)

[X ′(τ)]2
> 0, (22)

where the sign of F ′(τ) follows from λ > 1 and [X ′(τ)]2−X(τ)X ′′(τ) > 0 which, in turn,

follows from X ′ < 0, X ′′ ≥ 0 and, thus, X ′′′ ≤ 0. Since F (τ) on the LHS in each of the

equations of (21) is an increasing function of the tax rates and the RHS in each of the

equations of (21) is a decreasing function of the tax rates, we have proven part (ii).

Next turn to part (iii). If D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, equations (18)

and (19) imply x1 + τ1X
′(τ1) > 0 and x2 + τ2X

′(τ2) > 0, i.e. both tax rates lie on the

increasing side of the Laffer curve. Moreover, rearranging (18) and (19) in this case gives

τ1 > D′1 + γD′2 and τ2 > D′2. Taking into account part (ii) and that both tax rates are

on the increasing side of the Laffer curve we obtain τ1X(τ1) S τ2X(τ2) if and only if

D′1 + γD′2 S D′2. Using this property together with z1 = z2 = 0 in (16) proves the result

with respect to optimal debt b in part (iii). Finally, the proof of part (iv) is perfectly

analogous to that of part (iii). �

Since the slackness conditions are still binding, the transfers are zero as shown in

part (i) of Proposition 2. The reason is that taxing good X according to the marginal

environmental damage (Pigouvian taxes) will not generate enough tax revenues to satisfy

the spending requirements. This property is also expressed in part (iii) [part (iv)], where

the optimal tax rates are above [below] the marginal environmental damage and Pigouvian

tax rates would generate lower tax revenues than the optimal tax rates, since the latter

are on the increasing [decreasing] side of the Laffer curve. Nevertheless, according to

part (ii) of Proposition 2 the optimal tax rates are positively correlated with the marginal

environmental damage in the sense that the tax rate is always higher in the period in which

good X causes the larger marginal environmental damage, even though the optimal tax

rates are not equal to the marginal environmental damage.

The most important insight of Proposition 2, however, is with respect to optimal

debt. As we can see from part (iii) and (iv), the presence of environmental externalities
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may influence the optimal debt level as b may deviate from (g1 − g2)/2, which is the

optimal debt level in the absence of externalities. For instance, consider first part (iii)

of Proposition 2 where the marginal environmental damage is relatively low, so that

in both periods optimal tax rates are on the increasing side of the Laffer curve. If,

additionally, the marginal damage is larger (smaller) in period 1 than in period 2, then

the optimal debt level is lower (larger) than in the absence of externalities. The reason is

that according to part (ii) the optimal tax rate and the optimal tax revenues are larger

(smaller) in period 1 than in period 2. In part (iv) we obtain the reversed argument. The

marginal environmental damage is relatively large and the optimal tax rates are both on

the decreasing part of the Laffer curve. If now the marginal damage is larger (smaller) in

period 1 than in period 2, the optimal tax rate is larger (smaller) in period 1 than in period

2 and the tax revenues are lower (larger) in period 1 than in period 2. As consequence,

optimal debt exceeds (falls short of) the optimal level in the absence of externalities.

Put differently, there may be a positive debt level even if spending requirements are

constant over time (g1 = g2) and, thus, the tax smoothing argument identified in the

previous literature is absent. According to part (iii) of Proposition 2 this is the case if

tax rates are on the increasing side of the Laffer curve and the environmental damage is

smaller in period 1 than in period 2, i.e. D′1 + γD′2 < D′2. Admittedly, in the context of

climate change this condition may be satisfied when we take into account tipping points for

pollution above which environmental damages are huge. But for climate change γ is pretty

close to one such that D′1 + γD′2 < D′2 is hardly satisfied and environmental externalities

are likely to lower the optimal debt level. As shown by part (iv) of Proposition 2, however,

this argument may be reversed if the marginal damage is rather large in both periods.

Both tax rates are then on the decreasing side of the Laffer curve. If, additionally, the

marginal damage is larger in period 1 than in period 2, i.e. D′1 + γD′2 > D′2, the optimal

tax rate is larger and the tax revenues are lower in period 1 than in period 2. Optimal

debt is then positive even if spending requirements are constant over time (g1 = g2). This

case seems to be quite relevant in the case of climate chance, since we then expect large

environmental damages and γ is close or even almost identical to one.

Next, turn to the case where the slackness conditions are no longer binding and λ = 1.

We then obtain

Proposition 3. If D1, D2 6= 0 and λ = 1, then the optimal policy is characterized by

12



(i) z1 = z2 =
(D′1 + γD′2)X[D′1 + γD′2] +D′2X(D′2)

2
− g1 + g2

2
> 0.

(ii) τ1 = D′1 + γD′2 T D′2 = τ2 if and only if D′1 + γD′2 T D′2.

(iii) If D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, then τ1 and τ2 are both on the increasing

side of the Laffer curve. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 S D′2.

(iv) If D′1 + γD′2 > −x1/X ′1 and D′2 > −x2/X ′2, then τ1 and τ2 are both on the decreasing

side of the Laffer curve. Moreover

b T
g1 − g2

2
⇔ D′1 + γD′2 T D′2.

Proof: For λ = 1 equation (18) and (19) can be written as

x1 + (D′1 + γD′2)X
′
1

x1 + τ1X ′1
= 1 =

x2 +D′2X
′
2

x2 + τ2X ′2
, (23)

It follows that the optimal tax rates are τ1 = D′1 + γD′2 and τ2 = D′2 which proves part

(ii) of Proposition 3. For D′1 + γD′2 < −x1/X ′1 and D′2 < −x2/X ′2, equation (23) implies

that τ1 and τ2 are on the increasing side of the Laffer curve. As we assume z1 = z2, the

optimal debt level in (16) becomes

b =
g1 − g2

2
− (D′1 + γD′2)X[D′1 + γD′2]−D′2X(D′2)

2
. (24)

Since the tax rates are on the increasing side of the Laffer curve, we immediately obtain

the result for b in part (iii), wich completes the proof of part (iii). The proof of part (iv)

is analogous. Finally, inserting (24) into (10) and (11), where both Lλ1 and Lλ2 have to

be zero, and solving with respect to z1 and z2 shows part (i) of Proposition 3. �

As becomes obvious from part (iii) and (iv) of Proposition 3, with respect to the

optimal debt level we obtain exactly the same results as in Proposition 2: Depending on

whether the optimal tax rates are on the increasing or decreasing part of the Laffer curve

and depending on the relation of the marginal damage in the two periods, introducing

externalities into the tax smoothing analysis may increase or decrease the optimal debt

level. The difference to Proposition 2 is that the optimal tax rates are on their Pigouvian

level (marginal damage) and that the transfers are positive in both periods. The reason is

13



that the spending requirements are so low that the tax rates which satisfy these require-

ments are not high enough to internalize the externalities. The transfers thus reflect the

difference between tax revenues and spending requirement and become positive.

4 An Example

Suppose a linear-quadratic specification of our model. The utility function for good X in

period t is given by V (xt) = (α + 1)xt − βx2t/2 with α, β > 0. The marginal damage in

period 1 and 2 reads, respectively, D1(x1) = δ1x1 and D2(x2 + γx1) = δ2(x2 + γx1) with

δ1, δ2 > 0. The household’s first-order condition (3) then imply X(τt) = (α− τt)/β. The

Laffer curve in period t is R(τt) = (ατt − τ 2t )/β with a maximum at τt = α/2 and zero

tax revenues at τt = 0 and τt = α. We assume 0 < τt < α in order to ensure positive tax

revenues. The central equations (18) and (19) can be written as

λ =
α− τ1 − δ1 − γδ2

α− 2τ1
, λ =

α− τ2 − δ2
α− 2τ2

. (25)

The intertemporal budget constraint (15) becomes

ατ1 − τ 21
β

+
ατ2 − τ 22

β
= g1 + g2 + z1 + z2. (26)

The optimal debt (16) is

b =
g1 − g2

2
− ατ1 − τ 21 − (ατ2 − τ 22 )

2β
+
z1 − z2

2
. (27)

We first consider the case where λ > 1 and δ1 = δ2 = δ. We then have z1 = z2 = 0 and

the boardered Hessian (14) reads

|H| = 1− 2λ

β3

[
(α− 2τ2)

2 + (α− 2τ1)
2
]
< 0. (28)

Start with the benchmark case δ = γ = 0. From (25) follows τ1 = τ2 =: τ ∗. Inserting

together with z1 = z2 = 0 into (27) gives b∗ = (g1 − g2)/2. The tax rate τ ∗ is determined

by setting τ1 = τ2 =: τ ∗ in (26). We obtain a quadratic equation with the two solutions

τ− =
α

2
−
√(α

2

)2
− β(g1 + g2)

2
∈]0, α/2[, (29)

τ+ =
α

2
+

√(α
2

)2
− β(g1 + g2)

2
∈]α/2, α[. (30)

14



Using δ = γ = 0 and τ1 = τ2 =: τ ∗ in (25) gives λ∗ = (α−τ ∗)/(α−2τ ∗). Since λ∗ > 1 > 0

and α > τ ∗ we also must have α > 2τ ∗. The second-order condition requires |H| from (28)

to be negative and, thus, 1− 2λ∗ < 0. Using the expression for λ∗ we can show that this

condition is satisfied iff τ ∗ < α/2. Hence, the solution for the tax rate is τ ∗ = τ− and lies

on the increasing side of the Laffer curve. In sum, without environmental externalities,

the example confirms all results obtained for the general case in Proposition 1.

As next case consider δ > 0 and γ = 0. Hence, period 1 consumption of good

X does not cause environmental damage in period 2 (flow pollution) and the marginal

damage is the same in both periods. From (25) it again follows that both tax rates are

equal, i.e. follows τ1 = τ2 =: τδ. Also optimal debt is the same as in the benchmark.

This can be seen by inserting τ1 = τ2 =: τδ together with z1 = z2 = 0 into (27) which

yields bδ = (g1 − g2)/2. The tax rate τδ is again determined by (26), which gives τ−

and τ+ from (29) and (30). However, the difference to the benchmark case is that now

λδ = (α − τδ − δ)/(α − 2τδ). Hence, now the numerator and, thus, the denominator

may both be negative. This has consequences for the question of whether τ− or τ+ is

the optimal tax rate. From (28) we have 1 − 2λδ < 0. Inserting the expression for λδ

and rearranging gives (2δ − α)/(α − 2τδ) < 0. Therefore, if δ < α/2, then τδ < α/2

and τδ = τ−. In contrast, if δ > α/2, then τδ > α/2 and τδ = τ+. In sum, when

we introduce symmetrically an externality in both periods, this will not affect public

debt, which is consistent with our general analysis (since for δ > 0 and γ = 0 we have

D′1 + γD′2 = D′2). Moreover, in our example we get the additional insight that increasing

the marginal damage δ in both periods to the same extent will not change the optimal

tax rates as long as the marginal damage stays below α/2. Only if δ jumps from values

below α/2 to values above α/2, the optimal tax rate τδ jumps once from τ− to τ+.

Next turn to the case δ, γ > 0. We confine ourself to a numerical example in order

to illustrate to our result from the general analysis that the environmental externality

may influence public debt. Suppose α = β = 1, δ = 0.9, γ = 0.1 and g1 = g2 = 0.2.

Even though both tax rates are no longer equal, we get two solutions. The first one is

τ−1 = 0.255 and τ−2 = 0.300. However, at this solution we have |H| = 0.800 > 0 which

violates the second-order condition. The second solution is τ+1 = 0.745 > 0.700 = τ+2 .

The second-order condition is satisfied since |H| = −0.800 < 0. Tax revenues in the two

periods are R+
1 = 0.190 < 0.210 = R+

2 . Public debt is positive (b+ = 0.010 > 0) even
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though spending requirements are equal in both periods. This case again confirms our

results from the general analysis.

5 The Case of Adaptation

In this section, we turn to analyze how the optimal policy is affected when adaptation

technology becomes available to the social planner. Suppose that the government now

has the opportunity to invest effort e in the first period to reduce damage from pollution

in the second period. Essentially, we add an endogenous margin to public spendings

which increases social welfare. In the context of climate change, we could think of the

construction of a dam that protects from rising sea-levels. Due to the scale of such a

project, the economy will not benefit from the investment immediately but, when finished,

it will reduce damage from the entire stock and flows of pollution, γx1 + x2. We consider

the adaptation technology in our model by adding e to the budget requirements in the

first period. Let the updated period two damage function, D2(γx1 + x2, e), be additive

separable in the quantity of the polluting consumption good and effort, with D2,e < 0,

D2,ee > 0 and the cross-derivatives equal to zero.

We want to determine how the optimal tax rates and level of debt established under

proposition 2 change when the government engages in adaptation. Therefore, assume that

a solution to the government’s maximization problem exists, with e > 0 and z1 = z2 = 0.

In ?? we derive the marginal effect of introducing adaptation effort on the tax rates as

∂τ1
∂e

=
Γτ2∆e −∆τ2Γe

∆τ2Γτ1 − Γτ2∆τ1

,
∂τ2
∂e

=
∆τ1Γe − Γτ1∆e

∆τ2Γτ1 − Γτ2∆τ1

, (31)

where

Γ = X1 +
(
D1,x + γD2,x

)
X ′1 +D2,e

(
X1 + τ1X

′
1

)
= 0, (32)

∆ = X2 +D2,xX
′
2 +D2,e

(
X2 + τ2X

′
2

)
= 0. (33)

Because valid solutions to the maximization problem have to satisfy |H| < 0, we know

that the denominator in equations (31) has to be positive.4 The optimal level of public

4In fact, the denominator is equal to the second principal minor, |H2|, of the associated Hessian. For

the Hessian to be negative definite with |H| < 0, we know that |H2| will always be positive.
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debt in the presence of adaptation effort is

b =
g1 − g2

2
− R(τ1)−R(τ2)

2
+
e

2
, (34)

so that even for constant spending requirements, g1 = g2, a positive level of public debt,

i.e., b∗ = e/2, becomes optimal under the tax smoothing regime. To analyze how the

environmental externality influences optimal debt, we take the total differential of (34)

db

de
= −1

2

[∂τ1
∂e

R′(τ1)−
∂τ2
∂e

R′(τ2)
]

+
1

2
. (35)

From the intertemporal budget constraint it is also clear that at least one of the tax rates

has to be raised (lowered) if both rates are on the increasing (decreasing) side of the

Laffer curve, to maintain a balanced budget when we allow for non-zero effort spendings,

e > 0. The general analysis of equation (35) shows that, in the presence of a taxable

environmental externality, the change in b will typically deviate from 1/2. Hence, the

additional spending requirements from increasing e will not be distributed equally across

the two periods.

However, it proves difficult to draw any further conclusions without assuming a spe-

cific functional form for X(τt) or Dt(X, e). Therefore, consider again X(τt) = (α− τt)/β
from our previous example and suppose D2(γx1 + x2, e) = δ2[γx1 + x2 − ln(1 + e)] while

we still have D1(x1) = δ1x1. Consequently, adaptation effort will lower the damage from

pollution at a decreasing rate. Employing these expressions and the respective derivatives,

equations (31) reduce to

∂τt
∂e

= − δ2(α− 2τt)

(2δ2 − (1 + e))(1 + e)
. (36)

Substituting equations (36) and R′(τt) = (α− 2τt)/β into (35) we receive

db

de
=

δ2
2β(2δ2 − (1 + e))(1 + e)

[
(α− 2τ1)

2 − (α− 2τ2)
2
]

+
1

2
. (37)

Corollary 1. If D1, D2 6= 0 and λ > 1, the availability of an adaptation technology will

affect optimal policy

(i) if τ1 and τ2 are both on the increasing side of the Laffer curve by

db

de
T

1

2
⇔ D′1 + γD′2 T D′2,

(ii) if τ1 and τ2 are both on the decreasing side of the Laffer curve by

db

de
T

1

2
⇔ D′1 + γD′2 S D′2.
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Proof: To prove corollary 1, we draw on the results from proposition 2. In part (i) both

tax rates are on the increasing side of the Laffer curve, i.e., R′(τt) = (α − 2τt)/β > 0.

Since β > 0, this condition implies α−2τt > 0. The total differential of the intertemporal

budget constraint

R′(τ1)dτ1 +R′(τ2)dτ2 − de = 0, (38)

requires ∃dτt > 0 when de > 0 for the budget to be balanced. Hence, at least one of

equations (36) has to be positive. This will only hold for 2δ2 − 1 < e, but then the

denominator of the first summand in (37) becomes negative. From part (ii) of proposition

2 we know that for the initial tax rates τ1 T τ2 iff D′1 + γD′2 T D′2. Hence, the numerator

of the first summand in (37) will also be negative when the marginal damage is larger in

the first period and db/de will be larger than 1/2 in total (and vice versa). The proof of

part (ii) is conducted analogously. �

If initially on the same side of the Laffer curve, both tax rates have to move in the

same direction when the government can invest in the adaptation technology. Since we

assumed that the Laffer curve is inversely u-shaped, the lower (higher) tax rate has to

increase (decrease) more if the tax rates are on the increasing (decreasing) side of the

Laffer curve (equation (36) confirms this for the linear case). That means, resorting to

the adaptation technology will reduce the wedge which was driven between the tax rates

to internalize the environmental damage.5

The most important insight from this analysis is that the effect of adaptation on

taxes and public debt seems to run counter the implications from the general analysis.

When the government spends effort on adapting to the consequences of climate change,

the detrimental effect of pollution on welfare will be alleviated. Hence, the emphasis of

environmental taxes shifts from preventing consumption of the polluting good towards

funding public expenditures. As elaborated above, empirical evidence suggests that tax

rates on the increasing side of the Laffer curve may be more relevant in practice. Thus,

consider first the cases with τ2 < τ2 ∩ R′(τ) > 0, where optimal public debt was positive

before the introduction of the technology. Then debt may still grow but always by less

than the increase in effort spendings. This result is contingent on a higher marginal

5Comparative statics show that a comparable shock to exogenous spendings, g1, would cause the

opposite effect on optimal debt. Since exogenous spendings are not productive, i.e., do not reduce

environmental damages, they do not lower the incentive to internalize pollution.
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damage in the second period which, as stated before, can hold when the environment

reaches a critical tipping point. Yet, especially when thinking about greenhouse gases,

we might rather assume D′1 + γD′2 > D′2 because their longevity once emitted to the

atmosphere will drive γ close to one. But then our findings from section 3 require a lower

level of public debt than when there is no environmental externality. Even if the exogenous

spending requirements were higher in the first period, g1 > g2, we would have to conclude

that environmental concerns restrict the public deficit or even mandate the accumulation

of savings. However, when we introduce the adaptation technology, the government may

again maintain a higher optimal level of debt because (i) the investment requirements

for effort e will be equally distributed across both periods and (ii) the difference between

tax revenues, R(τ1) − R(τ2), becomes smaller again. The insight gained from this case

is especially appealing not just because it depends on credible assumptions about the

relationship between marginal damages from pollution and empirically relevant properties

of the Laffer curve. Even more so, when the tax is lower in the later period, τ1 > τ2,

environmental policy can effectively reduce pollution because households do not want to

’overconsume’ the polluting good x today in anticipation of future tax increases.

In summary, we find that public investments in an adaptation technology will reduce

the spread between the optimal tax rates which was initially created by internalizing the

environmental damages. The better the technology, the more our results may resemble

the optimal tax structure under the tax smoothing regime.

6 Conclusion

to be completed
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Appendix

Determining (14). If z1 = z2 = 0, the bordered Hessian is

H =



Lλ1λ1 Lλ1λ2 Lλ1b Lλ1τ1 Lλ1τ2

Lλ2λ1 Lλ2λ2 Lλ2b Lλ2τ1 Lλ2τ2

Lbλ1 Lbλ2 Lbb Lbτ1 Lbτ2

Lτ1λ1 Lτ1λ2 Lτ1b Lτ1τ1 Lτ1τ2

Lτ2λ1 Lτ2λ2 Lτ2b Lτ2τ1 Lτ2τ2



=



0 0 1 x1 + τ1X
′
1 0

0 0 −1 0 x2 + τ2X
′
2

1 −1 0 0 0

x1 + τ1X
′
1 0 0 Lτ1τ1 −γD′′2X ′1X ′2

0 x2 + τ2X
′
2 0 −γD′′2X ′1X ′2 Lτ2τ2


where in the second row we calculate the second derivatives of the Lagrangian from (7)–

(11). Calculating the determinant of H with standard methods gives (14).

Derivation of (31). We reformulate the social planner’s new Lagrangian as

L =
∑
t=1,2

{
V [X(τt)] + 1 + zt − (1 + τt)X(τt)} −D1[X(τ1)]−D2[γX(τ1) +X(τ2), e]

+ λ1[τ1X(τ1) + b− g1 − z1 − e] + λ2[τ2X(τ2)− b− g2 − z2]. (39)

The first oder conditions are then given by

Lτ1 = −X(τ1)−
{
D1
x[X(τ1)] + γD2

x[γX(τ1) +X(τ2), e]
}
X ′(τ1)

+ λ1

[
X(τ1) + τ1X

′(τ1)
]

= 0, (40)

Lτ2 = −X(τ2)−D2
x[γX(τ1) +X(τ2), e]X

′(τ2) + λ2

[
X(τ2) + τ2X

′(τ2)
]

= 0, (41)

Le = −D2
e

[
γX(τ1) +X(τ2), e

]
− λ1 ≤ 0, e ≥ 0, eLe = 0, (42)

Lλ1 = τ1X(τ1) + b− g1 − z1 − e ≥ 0, λ1 ≥ 0, λ1Lλ1 = 0. (43)

Again, restricting attention to interior solutions with e strictly greater than zero, we may

substitute λ = −D2
e and rewrite equations (40) and (41) as

Γ = X1 +
(
D1
x + γD2

x

)
X ′1 +D2

e

(
X1 + τ1X

′
1

)
= 0, (44)
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∆ = X2 +D2
xX
′
2 +D2

e

(
X2 + τ2X

′
2

)
= 0. (45)

Differentiating equations (44) and (45), we find

Γτ1 = X ′1 + (D1
x + γD2

x)X
′′
1 + (D1

xx + γ2D2
xx)X

′2
1 +D2

e(2X
′ + τ1X

′′
1 ), (46)

Γτ2 = γD2
xxX

′
1X
′
2, (47)

Γe = D2
ee(X1 + τ1X

′
1) = D2

eeR
′(τ1), (48)

∆τ1 = γD2
xxX

′
1X
′
2, (49)

∆τ2 = X ′2 +D2
xX
′′
2 +D2

xxX
′2
2 +D2

e(2X
′
2 + τ2X

′′
2 ), (50)

∆e = D2
ee(X2 + τ2X

′
2) = D2

eeR
′(τ2). (51)

From the definition of the consumption and damage functions we know that Γτ2 and ∆τ1

have to be (weakly) larger than zero. The signs of the derivatives with regard to e follow

directly from which side of the Laffer curve we want to analyze. Finally, to receive the

marginal effects of an increase in effort on the tax rates we take the total differentials of

(44) and (45)

0 = Γτ1dτ1 + Γτ2dτ2 + Γede, (52)

0 = ∆τ1dτ1 + ∆τ2dτ2 + ∆ede. (53)

Rearranging a substituting these two equations, we receive

∂τ1
∂e

=
Γτ2∆e −∆τ2Γe

∆τ2Γτ1 − Γτ2∆τ1

,
∂τ2
∂e

=
∆τ1Γe − Γτ1∆e

∆τ2Γτ1 − Γτ2∆τ1

. (54)
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