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Abstract

We propose to exploit stochastic volatility for statistical identification of Structural

Vector Autoregressive models (SV-SVAR). We discuss full and partial identification of the

model and develop efficient EM algorithms for Maximum Likelihood inference. Simula-

tion evidence suggests that the SV-SVAR works well in identifying structural parameters

also under misspecification of the variance process, particularly if compared to alternative

heteroskedastic SVARs. We apply the model to study the interdependence between mon-

etary policy and stock markets. Since shocks identified by heteroskedasticity may not be

economically meaningful, we exploit the framework to test conventional exclusion restric-

tions as well as Proxy SVAR restrictions which are overidentifying in the heteroskedastic
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1 Introduction

Following Sims (1980), structural vector autoregressive (SVAR) models have been used exten-

sively in empirical macroeconomics. Based on a reduced form VAR, identifying restrictions are

imposed to back out a unique set of structural shocks and estimate their dynamic effects on

the endogenous variables. Popular approaches for identification include short- and long-run

restrictions on the effects of structural shocks (Sims; 1980; Bernanke & Mihov; 1998; Blan-

chard & Quah; 1989), sign restrictions (Faust; 1998; Canova & De Nicolo; 2002; Uhlig; 2005)

and identification via external instruments, also known as Proxy SVARs (Stock & Watson;

2012; Mertens & Ravn; 2013; Montiel-Olea, Stock & Watson; 2016). Furthermore, a growing

body of literature exploits statistical properties of the data to identify SVAR models, assuming

non-Gaussianity (Lanne, Meitz & Saikkonen; 2017; Gourieroux, Monfort & Renne; 2017) or

heteroskedasticity of the structural shocks (see Lütkepohl & Netšunajev (2017a) for a review).1

To model and identify heteroskedastic shocks within SVAR models, a variety of variance

models have been used in the literature. These include a simple breakpoint model (Rigobon;

2003), a Markov Switching model (Lanne, Lütkepohl & Maciejowska; 2010), a GARCH model

(Normandin & Phaneuf; 2004) and a Smooth Transition model (Lütkepohl & Netšunajev;

2017b). More recently, Lewis (2018) discusses identification and estimation of heteroskedastic

SVARs in a GMM framework without specifying any functional forms for the variance.

In this paper, we contribute to this literature in discussing identification and efficient esti-

mation of SVARs with a stochastic volatility (SV) model. Specifically, we assume that the log

variances of structural shocks are latent, each following independent AR(1) processes. Follow-

ing the methodology Lewis (2018), we show that in conjunction with a fixed impact matrix,

this yields additional restrictions that allow to pin down a unique set of orthogonal shocks. To

the best of our knowledge, this model has not yet been used for identification in the SVAR

literature.

A stochastic volatility model for the variance of structural shocks is an attractive specifica-

tion for various reasons. First, SV models enjoy increasing popularity in theoretical and em-

pirical macroeconomics. For example, Justiniano & Primiceri (2008) and Fernández-Villaverde

& Rubio-Ramı́rez (2007) allow for SV within fitted DSGE models, finding substantial time

variation in the second moments of their structural shocks. Furthermore, SV models are often

used to complement time varying parameter VARs and have been found to provide a good

description of volatility patterns in macroeconomic data (Primiceri; 2005; Koop & Korobilis;

2010). Given this context, it seems natural to exploit the model also for identification pur-

poses of SVAR models. Second, the SV model is known to be more flexible than models with

deterministic variance processes. As pointed out in Kim, Shephard & Chib (1998), this addi-

tional flexibility typically translates into superior fit in comparison to equally parameterized

models from the GARCH family. We find this to be confirmed in our empirical example where

a simple SV model provides the best model fit with a relatively small amount of parameters

1For a textbook treatment of identification in SVARs we refer to Kilian & Lütkepohl (2017).
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and therefore, is favored by any conventional information criterion (IC). This is an important

aspect, given that recent evidence of Lütkepohl & Netšunajev (2017a) suggests to choose the

heteroskedasticity model of SVARs by information criteria. Finally we provide evidence that,

in comparison to alternative heteroskedastic SVARs, the SV-SVAR model works well in esti-

mating the structural parameters under misspecification of the variance process, proofing itself

capable to capture volatility patterns generated by very different data generating processes

(DGPs). More specifically, by simulating data from SVAR models subject to four distinct vari-

ance specifications we find that the SV model performs superior in terms of mean squared error

of estimated impulse response functions.

Since the SV specification implies a nonlinear state space model, standard linear filtering

algorithms cannot be applied to evaluate the likelihood function which makes estimation of

the SV-SVAR model relatively challenging. However, many estimation methods have been

proposed in the literature to overcome this difficulty starting with Generalized Methods of

Moments (Melino & Turnbull; 1990), Quasi Maximum Likelihood (Harvey, Ruiz & Shephard;

1994; Ruiz; 1994), Simulated Likelihood (Danielsson & Richard; 1993) and Bayesian methods

(Kim et al.; 1998) based on Markov Chain Monte Carlo (MCMC) simulation. In this paper, we

follow Durbin & Koopman (1997) in evaluating the likelihood function by importance sampling.

To maximize the likelihood function we develop two versions of an Expectation Maximization

(EM) algorithm. The first is based on a second order Taylor approximation of the intractable

smoothing distribution necessary in the E-step and relies on sparse matrix algorithms developed

for Gaussian Markov random fields (Rue, Martino & Chopin; 2009; Chan; 2017). Therefore,

the algorithm is very fast and typically converges within seconds. Our second EM algorithm

approximates the E-step by Monte Carlo integration, exploiting that the error term of a log-

linearized state equation can be accurately approximated by a mixture of normal distributions

(Kim et al.; 1998). Conditional on simulated mixture indicators, the model has a normal

linear state space representation allowing to compute the expectations necessary in the E-step

by standard Kalman smoothing recursions. Thereby, the second order approximation can be

avoided at the cost of higher computational effort.

In an empirical application, we use the proposed model to identify the structural parameters

of a VAR specified in Bjørnland & Leitemo (2009). Within conventional SVAR analysis, they

study the interdependence between monetary policy and the stock market based on short-

and long-run restrictions. We find that compared to other heteroskedastic SVAR models, the

SV specification provides superior fit and is favored by all conventional information criteria.

Since structural shocks identified by heteroskedasticity are not guaranteed to be economically

meaningful, we follow Lütkepohl & Netšunajev (2017a) and test the exclusion restrictions used

by Bjørnland & Leitemo (2009). In addition, we also test Proxy SVAR restrictions which

arise if the narrative series of Romer & Romer (2004) and Gertler & Karadi (2015) are used

as external instruments to identify a monetary policy shock. Our results indicate that the

short-run restrictions of Bjørnland & Leitemo (2009) and Proxy SVAR restrictions based on

the shock of Gertler & Karadi (2015) are rejected by the data. However, we do neither find
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evidence against imposing the long-run restriction of Bjørnland & Leitemo (2009) nor against

identifying a monetary policy shock by the Romer & Romer (2004) series.

The paper is structured as follows. Section 2 introduces the SVAR model with stochastic

volatility and discusses under which conditions the structural parameters are identified. Section

3 considers Maximum Likelihood estimation and reviews a procedure to test for identification.

In section 4, we present simulation evidence while in section 5 we apply the proposed model to

study the interdependence between US monetary policy and stock markets. Section 6 concludes.

2 Identification of SVAR via Stochastic Volatility

Let yt be a K×1 vector of endogenous variables. We consider the heteroskedastic SVAR model

reading:

yt = ν +

p∑
j=1

Ajyt−j + ut, (2.1)

ut = BV
1
2
t ηt, (2.2)

where ηt ∼ (0, IK) is assumed to be a white noise error term. Equation (2.1) corresponds to a

standard reduced form VAR(p) model for yt, capturing common dynamics across the time series

data by a linear specification. Here, Aj for j = 1, . . . , p are K ×K matrices of autoregressive

coefficients and ν is a K × 1 vector of intercepts. Since we only consider stable time series

throughout the paper, we assume:

detA(z) = det(IK − A1z − . . .− Apzp) 6= 0 for |z| ≤ 1.

Equation (2.2) models the structural part and is set up as a B-model in the terminology of

Lütkepohl (2005). The reduced form error terms ut are decomposed into a linear function of K

structural shocks εt = V
1
2
t ηt, with B a K×K invertible contemporaneous impact matrix and V

1
2
t

a stochastic diagonal matrix with strictly positive elements capturing potential heteroskedas-

ticity and/or non-normality in each structural shock. This specification yields a time-varying

covariance matrix of the reduced form errors ut given as Σt = E(utu
′
t) = BVtB

′. Throughout

the paper, we assume that there are r ≤ K heteroskedastic shocks which are ordered such that

they appear first in the vector εt. To model the time varying second moment of these shocks,

we specify an independent Gaussian AR(1) log stochastic volatility model for each of the r

heteroskedastic components:

Vt =

[
diag(exp([h1t, . . . , hrt]

′)) 0

0 IK−r

]
, (2.3)

hit = µi + φi(hi,t−1 − µi) +
√
siωit, for i = 1, . . . , r, (2.4)
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where ωit ∼ N (0, 1) and E(ε′tωt) = 0 for ωt = [ω1t, . . . , ωrt]
′. Furthermore, the initial states are

assumed to be initialized from the unconditional distribution hi1 ∼ N (µi, si/(1−φ2
i )). Note that

the proposed model for equation (2.2) is very similar to the Generalized Orthogonal GARCH

(GO-GARCH) model of Van der Weide (2002) and Lanne & Saikkonen (2007), with the major

difference in the specification (2.3)-(2.4) of Vt. While for the GO-GARCH the first r diagonal

components are modeled by deterministic GARCH(1,1) processes, we model their logarithms

as latent AR(1)’s. We will assume that the underlying AR(1) processes of the log-volatilities

are stable with finite variance implying that for i = 1, . . . , r, |φi| < 1 and 0 < si < ∞. It

immediately follows that εt is assumed to be a strictly stationary stochastic process with finite

second moment, which will aid in the identification analysis. In particular, the following basic

properties can be derived for the model in a straightforward manner (see e.g. Jacquier, Polson

& Rossi (1994)): for i = 1, . . . , r,

γi(τ) = Cov(ε2
it, ε

2
i,t+τ ) = exp(2µi + σ2

hi
)(exp(σ2

hi
φτi )− 1) (2.5)

κi =
E(ε4

it)

(ε2
it)

2
= E(η4

it) exp
(
σ2
hi

)
, (2.6)

E(ε2
it) = E(exp(hit)η

2
it) = E(exp(hit))E(η2

it) = E(exp(hit)) = exp

(
µi +

1

2
σ2
hi

)
, (2.7)

where σ2
hi

= si/(1− φ2
i ) is the unconditional variance of the underlying log-volatility process.

The model is able to capture the main stylized facts of structural shocks that are typically

encountered in empirical SVAR analysis. First, heteroskedasticity can be modeled by setting

φi > 0. The respective autocovariance function in the second moment of εit is given by equation

(2.5), displaying an exponential decay φi. This autocovariance function has been found to be

very flexible enabling to capture a large variety of heteroskedasticity patterns, an argument

that we can confirm based on our simulation evidence. Second, the model can capture heavy

tailed errors and the respective kurtosis function κi can be decomposed into a part that is

due to the kurtosis of the standardized structural shocks ηit and a component which inflates

the value depending on the underlying SV parameters. That is, given a conditional Gaussian

error distribution in εit, excess kurtosis kicks in as soon as the SV process is nontrivial, that

is si > 0. This means that even if the shock is homoskedastic (φi = 0), the model is still able

to capture heavy tails under conditional Gaussianity. In this particular case, the structural

error would be independent and identically distributed following a mixture of log-normal and

Gaussian errors.2 We argue that this is a key advantage with respect to a model from the

GARCH family, which are generally unable to generate homoskedastic shocks featuring excess

kurtosis given the assumption of conditionally Gaussianity. Finally, equation (2.7) gives the

unconditional scale of the structural shocks as a function of the underlying SV parameters.

In the following, we will use equations (2.5)-(2.7) to discuss identification in detail. First,

note that the structural shocks are latent variables and a unique scaling must be obtained.

2Note the similarity to a t-distribution, which can be represented as a product of an independent Gamma
and Gaussian random variable.
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For this purpose, we follow the widely used normalization of setting the scale to E(εtε
′
t) = IK .

Using equation (2.7), this can be achieved by restricting the mean of the AR(1) processes

to µi = −0.5si/(1 − φ2
i ). It follows that the structural parameters in B are related to the

unconditional reduced form covariance matrix by:

E(utu
′
t) = Σu = BB′. (2.8)

Given this normalization, a standard interpretation applies in that the jth column of B corre-

sponds to the average contemporaneous response of the endogenous variables yt to shock εjt of

size “one standard deviation”.

Due to the symmetry of the covariance matrix, identification in the SV-SVAR model cannot

be discussed based on equation (2.8) solely. For that purpose, we follow the approach of Lewis

(2018) who treats identification by time varying volatility in a more general context requiring

no specific functional forms. In particular, identification can be analyzed based on the lag τ

autocovariance in the squared reduced form residuals ξt = vech(utu
′
t). In Appendix A.1, we

derive this function for the SV-SVAR model taking the following very compact form:

Cov(ξt, ξt+τ ) = LK(B ⊗B)GKMτG
′
K(B ⊗B)′L′K (2.9)

where LK is the elimination matrix such that vech(A) = LK vec(A), GK is a selection matrix

with zeros and ones such that vec(D) = GKd forD = diag(d) andMτ = diag(γ1(τ), . . . , γr(τ), 0K−r).

Note that one autocovariance has
∑5

i=1

(
i+K−3
K−2

)
unique elements (K ≥ 2), while the structural

model contains K2 in B and r autocovariances in γi(τ), implicitly parameterized nonlinearly

by the underlying SV processes. Proposition 1 summarizes which set of structural parameters

of the model in B are (locally) identified for any r ≤ K.

Proposition 1. Let B = [B1, B2] with B1 ∈ R
K×r, B2 ∈ R

K×(K−r) and. Assume the stable

SV-SVAR model presented above with |φi| < 1, φi 6= 0 and 0 < si < ∞ for i = 1, . . . , r,

implying that equations (2.8) and (2.9) hold. Then, matrix B1 is unique up to permutation and

sign switches.

Proof. See Appendix A.2.

In fact, it is not necessary that r = K shocks are heteroskedastic in order that the model is

fully identified. The orthogonality constraints implied by equation (2.8) yield enough structure

to fully identify the model in case of r = K − 1, which is summarized in Corollary 1.

Corollary 1. Assume the setting from Proposition 1 for the special case r = K − 1. Then, the

entire matrix B ∈ RK×K is unique up to multiplication of its columns by −1 and permutation

of its first K − 1 columns.

Proof. See Appendix A.3.

Our results are in line with those derived for SVAR and factor models identified with het-

eroskedasticity based on a GARCH model (see Sentana & Fiorentini (2001); Milunovich & Yang
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(2013)). Furthermore, they coincide with the general results of identification provided by Lewis

(2018) which also cover our model. However, our analysis is slightly different in that we assume

a different normalization of the shocks, which gives us full identification under r = K − 1 het-

eroskedastic shocks based on orthogonality constraints. Furthermore, it allows for a simplified

proof adapted to the parametric framework we consider.

At this point we highlight that identification of the model can also be discussed based on

non-Gaussianity implied by the SV model. If one is willing to assume mutual independence

in εit, the SV-SVAR model as discussed in this paper is covered by the general framework of

Lanne et al. (2017). Specifically, the structural parameters in B are identified up to permutation

and sign if the structural shocks are strictly stationary with finite second moments, mutually

independent and with at most one Gaussian component. For the SV-SVAR model, this means

that in order to achieve strict stationarity and finite second moments, we need si < ∞ and

|φi| < 1 ∀i as discussed above. Furthermore, under conditionally Gaussian errors, at most

one structural shock can display a degenerate SV process with si = 0, implying a Gaussian

marginal. Analogous results regarding to partial identification are available in Maxand (2017).

As in proposition A.2, the structural parameters associated with the non-Gaussian shocks are

locally identified up to permutation and sign-changes.

Before we continue with estimation of the model, we discuss an additional constraint that

we impose. Note that we identify the scale of the structural shocks by setting µi = − si
2(1−φ2i )

,

implying that E(εtε
′
t) = IK . However, this constraint holds only in expectation and for very

persistent heteroskedasticity patterns, the sample moment can be very distinct in finite samples.

For that purpose, we additionally impose the sample constraint:

Ahhi = µi, (2.10)

where Ah = 1T
′/T and hi = [hi1, . . . , hiT ]′. We find this constraint given in (2.10) to yield

satisfactory results in finite sample sizes, yielding a scalings of the latent shocks very close to

unit (sample) variance. Note that this constraint leads to a rank reduction of the covariance

matrix implied for hi by the Gaussian AR(1) model, which has to be accounted for during

estimation. Note that this is similar in spirit to imposing the alternative normalizing constraint

that E(hi1) = Var(hi1) = 0, implying that E(u1u
′
1) = BB′ which is typically used to identify the

scaling in Markov Switching SVAR models (Lanne et al.; 2010; Herwartz & Lütkepohl; 2014).

However, this would require that we leave µi unrestricted implying an additional parameter to

estimate, which is why we stick with restriction (2.10).

3 Maximum Likelihood Estimation

In order to estimate the model, we propose a full Maximum Likelihood approach. Let φ =

[φ1, . . . , φr]
′, s = [s1, . . . , sr]

′ and the parameter vector θ = [vec([ν,A1, . . . , Ap])
′, vec(B)′, φ′, s′]′.

Assuming normality of the standardized structural shocks ηt, the log-likelihood function based
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on the prediction error decomposition is given as follows:

L(θ) =
T∑
t=1

[
−K

2
log(2π)− 1

2
log |BVt|t−1B

′| − 1

2
u′t(BVt|t−1B

′)−1ut

]
,

where ut = yt− ν−
∑p

j=1Ajyt−j and Vt|t−1 = E[Vt|Ft−1] are one-step ahead predicted variances

conditional on the information set at time t− 1. Since the SV model implies a nonlinear state

space model, the predictive distributions p(ht|θ, yt−1) necessary to compute Vt|t−1 are not avail-

able in closed form. That is, the likelihood is intractable and standard Kalman filter algorithms

cannot be applied. To overcome this difficulty, we follow Durbin & Koopman (1997) and Chan

(2013) in evaluating the likelihood function by importance sampling in a computationally effi-

cient way. Furthermore, to maximize the likelihood, we develop two versions of an Expectation

Maximization algorithm which lead to fast and reliable results.

3.1 Evaluation of the Likelihood

To show how the likelihood can be evaluated by importance sampling, we slightly manipulate

the log-likelihood function. For that purpose, let εt = B−1ut and vi,t|t−1 the i-th diagonal

element of Vt|t−1, then:

L(θ) =− T log |B|+
K∑
i=1

T∑
t=1

[
−1

2
log(2π)− 1

2
log(vi,t|t−1)− 1

2
ε2
it/vi,t|t−1

]

=− T log |B|+
K∑
i=1

log p(εi|θ),

where we have used that log |BVt|t−1B
′| = 2 log |B| +

∑K
i=1 log

(
vi,t|t−1

)
. Therefore, given au-

toregressive coefficients and contemporaneous impact matrix, likelihood evaluation of the SV-

SVAR model reduces to the evaluation of K univariate densities for each structural shock. For

i = r + 1, . . . , K these densities are trivial to compute since vi,t|t−1 = 1. However, the den-

sities log p(εi|θ) for i ≤ r are not tractable. Their evaluation equals computing the following

high-dimensional integral for i = 1, . . . , r:

p(εi|θ) =

∫
p(εi|θ, hi)pc(hi|θ)dhi. (3.1)

where p(εi|θ, hi) is a Gaussian distribution and pc(hi|θ) the prior density implied by the Gaus-

sian AR(1) model subject to the constraint Ahhi = µi.

To evaluate this integral, we use an importance sampling estimator. Therefore, let q(hi) be

a proposal distribution from which independent random draws h
(1)
i , . . . , h

(R)
i can be generated,

and further let q(hi) dominate p(εi|θ, hi)p(hi|θ). An unbiased importance sampling estimator
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of the integral in equation (3.1) is:

p̂(εi|θ) =
1

R

R∑
j=1

p(εi|θ, h(j)
i )pc(h

(j)
i |θ)

q(h
(j)
i )

. (3.2)

Plugging (3.2) into the SV-SVAR log-likelihood yields an IS estimator of the SV-SVAR log-

likelihood function:

L̂(θ) = −T log |B|+
r∑
i=1

log p̂(εi|θ) +
K∑

i=r+1

log p(εi|θ). (3.3)

The accuracy of the IS estimator crucially depends on our choice for the importance densities

q(hi) which we discuss in the following. First, note that the optimal (zero variance) importance

density is given by the smoothing distribution p(hi|θ, εi) ∝ p(εi|θ, hi)p(hi|θ). However, since the

likelihood of the measurement equation is nonlinear in hi, the normalizing constant is unkown

which is why we rely on IS in the first place. We follow Durbin & Koopman (1997, 2000) and

use a Gaussian importance density denoted by πG(hi|θ, εi), which is centered at the mode of

p(hi|θ, εi) with precision equal to the curvature at this point. For computational reasons, we

rely on fast algorithms that exploit the sparse precision matrices of Gaussian Markov random

fields as used e.g. in Rue et al. (2009) for a broad class of models and Chan & Grant (2016) for

stochastic volatility models in particular.

To derive πG(hi|θ, εi), we follow the exposition of Chan & Grant (2016). For a moment,

assume that there was no linear constraint on hi. Then, normality implies the following explicit

form of the zero variance IS density:

p(hi|θ, εi) ∝ exp

(
−1

2
(hi − δi)′Qi(hi − δi) + log p(εi|θ, hi)

)
,

where Qi = H ′iΣ
−1
hi
Hi with

Hi =


1 0 0 . . . 0

−φi 1 0 . . . 0

0 −φi 1 . . . 0
...

. . . . . . . . .
...

0 0 . . . −φi 1

 ,

and Σhi = diag([ si
1−φi , si, . . . , si]

′). Furthermore, δi = H−1
i δ̃i with δ̃i = [µi, (1 − φi)µi, . . . , (1 −

φi)µi]
′. The Gaussian approximation is based on a second order Taylor expansion of the non-

linear density log p(εi|θ, hi) around some properly chosen h̃
(0)
i :

log p(εit|θ, hit) ≈ log p(εit|θ, h̃(0)
it ) + bithit −

1

2
cith

2
it, (3.4)
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where bit and cit depend on h̃
(0)
it . Based on the linearized kernel, an approximate smoothing

distribution πG(hi|θ, εi) takes the form of a Normal distribution with precision matrix Q̄i =

Qi + Ci and mean δ̄i = Q̄−1
i (bi + Qiδi), where Ci = diag([ci1, . . . , ciT ]′) and bi = [bi1, . . . , biT ]′.

The T -dimensional density has a tridiagonal precision matrix which allows for fast generation

of random samples and likelihood evaluation. The approximation is evaluated at the mode of

the smoothing distribution obtained by a Newton-Raphson method that typically converges in

few iterations. Details on the Newton-Raphson method and on explicit expressions for bit and

cit are given in Appendix B.1.

As discussed in section 2, our prior density for hi is subject to the normalizing constraint

Ahhi = µi. Therefore, the IS density πG(hi|θ, εi) needs a slight modification to account for this

linear constraint. In particular, an application of Bayes’ theorem yields a constraint density

πcG(hi|θ, εi) which is also Gaussian but has mean and covariance:

δ̄ci = δ̄i − Q̄−1
i A′h(AhQ̄

−1
i A′h)

−1(Ahδ̄i − µi), (3.5)

Cov(hi|θ, εi, Ahhi=µi) = Q̄−1
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1AhQ̄
−1
i . (3.6)

Note that imposing the linear restriction yields a non-sparse precision and a reduced rank

covariance which impedes direct efficient sampling and density evaluation. Following Rue et al.

(2009), sampling and evaluation of πcG(hi|θ, εi) can still be implemented at trivial extra costs by

what is known as “conditioning by kriging”. Specifically, a random sample h̃
(j)
i is first generated

from πG(hi|θ, εi), exploiting the sparse precision Q̄−1
i . In a second step, the draw is corrected for

the linear constraint by setting h
(j)
i = h̃

(j)
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1(Ahh̃
(j)
i − µi). Also evaluation

of the adjusted IS density can be achieved efficiently by applying Bayes’ Theorem:

πcG(hi|θ, εi) =
πG(hi|θ, εi)π(Ahhi|hi)

π1(Ahhi)
, (3.7)

where log π(Ahhi|hi) = −1
2

log |AhA′h| and π1(Ahhi) ∼ N (Ahδ̄i, AhQ̄
−1
i A′h). Note that the same

routine can be used to evaluate the prior density pc(hi|θ) which displays the same constraint.

That is, the constraint prior density is evaluated as follows:

pc(hi|θ) =
p(hi|θ)π(Ahhi|hi)

π2(Ahhi)
(3.8)

where p(hi|θ) ∼ N (δi, Qi), π2(Ahhi) ∼ N (Ahδi, AhQ
−1
i A′h) and π(Ahhi|hi) is as above.

Finally, we recommend to assess the quality of the estimator (3.3) by reporting its standard

error which can be computed e.g. by the batch means method. Furthermore, for the validity

of the standard error and
√
R-convergence of the IS estimator, the variance of the importance

weights has to exist. Since for the high-dimensional integral (3.1) that has to be estimated this

is not clear a-priori, we advise to test for the existence of the variance using e.g. the test of Koop-

man, Shephard & Creal (2009). However, for sample sizes typically used in macroeconomics

we do not expect this to be a serious issue.
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3.2 EM Algorithm

In order to optimize the likelihood function, we exploit the Expectation Maximization algorithm

first introduced by Dempster, Laird & Rubin (1977). The EM procedure is particularly suitable

for maximization problems under the presence of hidden variables. In our setting, the hidden

variables are the set of r log variances denoted by h = [h1, . . . , hr]. Our goal is to maximize:

L(θ) = log p(y|θ) = log

∫
p(y|θ, h)p(h|θ)dh.

Following Neal & Hinton (1998) and Roweis & Ghahramani (2001), let p̃(h) be any distri-

bution of the hidden variables, possibly depending on θ and y. Then, a lower bound on L(θ)

can be obtained by an application of Jensen’s inequality:

L(θ) = log

∫
p(y|θ, h)p(h|θ)dh (3.9)

= log

∫
p(y|θ, h)p(h|θ)

p̃(h)
p̃(h)dh (3.10)

≥
∫

log

(
p(y|θ, h)p(h|θ)

p̃(h)

)
p̃(h)dh (3.11)

=

∫
log (p(y|θ, h)p(h|θ)) p̃(h)dh−

∫
log (p̃(h)) p̃(h)dh (3.12)

=: F (p̃, θ). (3.13)

The EM algorithm starts with some initial parameter vector θ(0) and proceeds by iteratively

maximizing:

E-step: p̃(l) = arg max
p̃

F (p̃, θ(l−1)), (3.14)

M-step: θ(l) = arg max
θ

F (p̃(l), θ). (3.15)

Under mild regularity conditions the EM algorithm converges reliably towards a local optimum.3

It is easy to show that the E-step in (3.14) is given by setting p̃(l) equal to the smoothing

distribution p(h|θ(l−1), y). This can be seen by noting that for this choice, equation (3.11) holds

with equality which means that the lower bound F (p̃, θ) exactly equals the log-likelihood L(θ).

Furthermore, the M-step in equation (3.15) is given by maximizing the criterion function:

Q(θ; θ(l−1)) =

∫
log (p(y|θ, h)p(h|θ)) p̃(l)(h)dh (3.16)

= Eθ(l−1) (Lc(θ)) , (3.17)

where the expectation is taken with respect to p̃(l)(h) and Lc(θ) = log (p(y|θ, h)p(h|θ)) is the

complete data log-likelihood.

3For details on convergence, we refer to the textbook treatment in McLachlan & Krishnan (2007).
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For the SV-SVAR model, the complete data log-likelihood is rather simple and we refer to

Appendix B.3 for an explicit expression. It follows that for a given choice of p̃(l), computing

the M-Step is straightforward. However, since the smoothing distribution in SV models is

generally not tractable, we cannot simply set p̃(l) = p(h|θ(l−1), y). Instead, we develop two

algorithms which approximate this density to a different extent, one based on an analytical

approximation and the other based on Monte Carlo integration. In the following, we use

that independence among the structural errors implies that the smoothing distribution can be

factored as: p(h|θ(l−1), y) =
∏r

i=1 p(hi|θ(l−1), y).

3.2.1 Analytical Approximation

Our analytical approximation is based on the following E-step:

p̃(l)(h) =
r∏
i=1

πcG(hi|θ(l−1), εi), (3.18)

which is the Gaussian approximation of the smoothing distribution that we already introduced

as importance density. This E-step corresponds to maximizing F (p̃, θ(l−1)) with respect to p̃

considering only the family of Gaussian distributions. To motivate this approach, we follow

the arguments of Neal & Hinton (1998) who argue that it is not necessary to work with the

exact smoothing distributions in the EM algorithm to get monotonic increases in the log-

likelihood function L(θ). In fact, it can be shown that F (p̃, θ) = L(θ) −DKL (p̃(h)||p(h|y, θ))
where DKL(·||·) is the Kullback - Leibler (KL) divergence measure. Therefore, if the Gaussian

approximation is close to the smoothing density in a KL sense, iteratively optimizing F (p̃, θ)

yields convergence to a point very close to the corresponding local maximum of L(θ). In the

following, we refer to this algorithm as EM-1 and provide details in Appendix B.3.

3.2.2 Monte Carlo Approximation

The second approach is based on Markov Chain Monte Carlo (MCMC) integration and draws on

the results of Kim et al. (1998).4 The idea is to consider the linearized state space representation

of the r independent SV equations:

log(ε2
it) = hit + log(η2

it), (3.19)

hit = µi + φi(hi,t−1 − µi) +
√
siωit, (3.20)

4See also Mahieu & Schotman (1998) for a similar Monte Carlo EM algorithm to estimate a univariate SV
model.
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where ηit ∼ N(0, 1) and ωit ∼ N(0, 1). Kim et al. (1998) propose to closely approximate the

log-χ2 error distribution in (3.19) by a mixture of seven normals. In particular, they specify:

p(log(η2
t )|zit = k) ∼ N (log(ε2

it);mk, v
2
k), (3.21)

p(zit = k) = pk, (3.22)

with mixture parameters pk,mk, v
2
k for k = 1, . . . , 7 tabulated in Appendix B.3. The advantage

of representing the transformed measurement error with a normal mixture is that conditional

on a realization of the indicators zi = [zi1, . . . , ziT ]′, the state space model is both, linear and

Gaussian which allows for closed form computations of p(hit|θ, zit, y) by Kalman smoothing

recursions.

We exploit this property in our Monte Carlo EM algorithm in the following way. First,

consider the mixture representation of the intractable smoothing distribution:

p(h|θ(l−1), y) ≈
∫
p(h|θ(l−1), z, y)p(z|θ(l−1), y)dz.

Using this distribution in the EM algorithm yields the following objective function in the M-

step:

Q(θ; θ(l−1)) ≈
∫ ∫

log [p(y|θ, h)p(h|θ)] p(h|θ(l−1), z, y)p(z|θ(l−1), y)dzdh.

To approximatively solve this high-dimensional integral, we simulate a large number of mixture

indicators z from p(z|θ(l−1), y) by MCMC methods and consider the Monte Carlo counterpart:

Q(θ, θ(l−1)) ≈ 1

R

R∑
j=1

E
(j)

θ(l−1) [L(θ)],

where the expectation is now taken with respect to the tractable Gaussian distribution p(h|θ(l−1), z(j), y)

which can be computed by Kalman smoothing recursions.

In order to generate random draws of the mixture indicators we follow the MCMC scheme

of Kim et al. (1998) which involves iteratively drawing from the conditional distributions

p(hi|θ(l−1), zi, y) and p(zi|θ(l−1), hi, y). For computational reasons we rely on the precision sam-

pler of Chan & Jeliazkov (2009) which exploits the sparsity in the precision matrix. Further-

more, it allows for a straightforward extension to implement the linear normalizing constraint

on hi. In the remainder, we call the Monte Carlo based algorithm EM-2 and for details on the

MCMC algorithm and respective M-steps, we refer to Appendix B.3.

3.3 Properties of the Estimator

Because the SV-SVAR model is a special case of a Hidden Markov Model, the asymptotic

properties of the maximum likelihood estimator can be inferred from Cappé, Moulines & Ryden
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(2005). Let θ̂ denote the ML estimator, under appropriate regularity conditions, θ̂ is consistent

and asymptotically normally distributed:

T 1/2(θ̂ − θ) d→ N (0, I(θ)−1), (3.23)

where I(θ) = −E
[
∂2 log p(y|θ)

∂θ′∂θ

]
is the information matrix. Furthermore, a strongly consistent

estimator for the asymptotic variance is given as:

Î(θ) = T−1J (θ̂) (3.24)

where J (θ̂) = −∂2L(θ)
∂θ′∂θ

∣∣
θ=θ̂

is the observed information matrix evaluated at the ML estimator.

To compute estimator (3.24) in algorithm EM-1, note that we can evaluate an approximate

log-likelihood in closed form based on the Gaussian approximation which we rely on in the

E-step. In particular, based on Bayes’ Theorem:

log p(εi|θ) ≈ log p(εi|θ, hi) + log p(hi|θ)− log πcG(hi|θ, εi), (3.25)

which can be evaluated for any hi. For convenience, the r likelihoods for the heteroskedas-

tic structural shocks are evaluated at the mean hi = δ̄ci , such that the exponential term in

πcG(hi|θ, εi) drops out. Therefore, based on (3.25) an approximate complete log-likelihood is

given as:

La(θ) = −T log |B|+
r∑
i=1

[log p(εi|θ, hi) + log p(hi|θ)− log πcG(hi|θ, εi)] +
K∑

i=r+1

log p(εi|θ).

We take the second derivative of this approximation with respect to the parameter vector θ

using numerical differentiation to obtain an approximation of the observed information matrix

J1(θ̂) = −∂2La(θ)
∂θ′∂θ

∣∣
θ=θ̂

.

For the Monte Carlo based algorithm EM-2, no closed form approximation of the likelihood

is available which makes the computation of the information matrix estimator more involved.

We apply Louis Identity (Louis; 1982) to the observed information matrix:

J2(θ̂) = E
[
Jc(θ̂)|y

]
− Cov(Sc(θ̂)|y), (3.26)

where Jc(θ̂) = −∂2Lc(θ)
∂θ∂θ′

∣∣
θ=θ̂

, Sc(θ̂) = ∂Lc(θ)
∂θ

∣∣
θ=θ̂

are the observed information matrix and score

of the complete data log-likelihood Lc. The integrals necessary to compute expected value and

variance are with respect to the smoothing distribution at the ML estimator p(h|θ̂, y) which is

intractable for the SV model. However, based on simulated values of the mixture indicators
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z(j)(j = 1, . . . , R), Monte Carlo integration is feasible with:

E
[
Jc(θ̂)|y

]
≈ 1

R

R∑
j=1

−E

[
∂2Lc(θ)
∂θ∂θ′

∣∣∣ z(j), y

]
θ=θ̂

,

Cov(Sc(θ̂)) ≈
1

R

R∑
j=1

E

[
∂Lc(θ)
∂θ

∂Lc(θ)
∂θ′

∣∣∣ z(j), y

]
θ=θ̂

,

where the second approximation holds since E(Sc(θ̂)|y) = 0. The integrals required to compute

the expected values are with respect to the tractable Gaussian distributions p(h|θ̂, z(j), y). The

derivatives necessary to apply the Louis Method are available in closed form and given in

Appendix B.4.

3.4 Inference on Structural Impulse Response Functions

Identification of the SVAR model is ultimately useful to conduct structural analysis. Since

Impulse Response Functions (IRFs) are likely to be the most widely used tool for that purpose,

we quickly outline how to conduct inference on these quantities with our model.

Following Lütkepohl (2005), the IRFs are elements of the coefficient matrices Θj = ΦjB in

the Vector Moving Average (VMA) representation of the model:

yt = µy +
∞∑
j=0

ΦjBεt,

where εt = V
1
2
t ηt are the structural shocks, µy = (IK − A1 − . . .− Ap)−1ν is the unconditional

mean of yt and Φj ∈ RK×K (j = 0, 1, . . .) is a sequence of exponentially decaying matrices given

as: Φj = JAjJ ′ with J = [IK , 0, . . . , 0] and

A =


A1 A2 . . . Ap−1 Ap

IK 0 . . . 0 0

0 IK 0 0
...

...
. . .

... 0

0 0 . . . IK 0

 .

The elements of Θi, θjk,i’s are the impulse response functions in variable j to a structural

innovation k after i periods.

We conduct inference on the estimated quantities Θ̂i based on their asymptotic distribution.

Given that the IRFs are nonlinear functions of the model parameters, the distribution can

be inferred based on the result that T 1/2(θ̂ − θ) d→ N (0, I(θ)−1). Let α = vec(A) with A =
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[A1, . . . , Ap], β = vec(B) and partition the asymptotic covariance matrix of θ̂ into:

I(θ)−1 = Σθ =


Σν

Σν,α Σα

Σν,β Σα,β Σβ

Σν,φ Σα,φ Σβ,φ Σφ

Σν,s Σα,s Σβ,s Σφ,s Σs

 .

As in Brüggemann, Jentsch & Trenkler (2016), an application of the Delta method yields

the asymptotic distribution of the structural impulse responses:

√
T (Θ̂i −Θi)

d→ N (0,ΣΘ̂i
), i = 0, 1, 2, . . . ,

where:

ΣΘ̂i
= Ci,αΣαC

′
i,α + Ci,βΣβC

′
i,β + Ci,αΣ′α,βC

′
i,β + Ci,βΣα,βC

′
i,α,

with C0,α = 0, Ci,α = ∂ vec(Θi)
∂α′

= (B′ ⊗ IK)Gi and Gi = ∂ vec(Φi)
∂α′

=
i−1∑
mj=0

[J(A′)i−1−j] ⊗ Φj for

i ≥ 1. Finally, Ci,β = ∂ vec(Θi)
∂β′

= (IK ⊗ Φi) for i ≥ 0. Similarly, for the accumulated structural

impulse responses Ξn =
n∑
i=0

Θi, we get:

√
T
(

Ξ̂n − Ξn

)
d→ N (0,ΣΞ̂n

), n = 0, 1, 2, . . . ,

where:

ΣΞ̂n
= PnΣαP

′
n + P̄nΣβP̄

′
n + PnΣ′α,βP̄

′
n + P̄nΣα,βP

′
n,

with Pn = (B′ ⊗ IK)Fn, F0 = 0, Fn = G1 + · · ·+Gn, P̄n = (IK ⊗Ψn) and Ψn =
n∑
i=0

Φi.

3.5 Testing for Identification

For valid likelihood inference on the structural parameters including the impact matrix B, the

model must be identified. As highlighted in section 2, at most one component in ε is allowed to

be homoskedastic if the model is to be identified solely by heteroskedasticity. To determine the

number of heteroskedastic shocks in a given application, we recommend to follow a procedure

considered by Lanne & Saikkonen (2007) and Lütkepohl & Milunovich (2016) within SVAR-

GARCH models. The idea is to conduct the following sequence of tests:

H0 : r = r0 vs H1 : r > r0, (3.27)
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for r0 = 0, . . . , K − 1. If all null hypotheses up to r0 = K − 2 can be rejected, there is evidence

for sufficient heteroskedasticity in the data to fully identify B.

The testing problem given in (3.27) is nonstandard since parts of the parameter space differ

between null and alternative hypothesis. Therefore, Lanne & Saikkonen (2007) suggest test

statistics which require estimation under H0 only. In particular, suppose that r0 is the true

number of heteroskedastic errors, and separate the structural shocks εt = B−1ut = [ε′1t, ε
′
2t]
′

into a heteroskedastic part ε1t ∈ Rr0 and homeskedastic innovations ε2t ∈ RK−r0 . Note that if

the null is true (r = r0), ε2t ∼ (0, IK−r0) is white noise. To test for remaining heteroskedasticity

in ε2t, Lanne & Saikkonen (2007) propose to use Portmanteau types of statistics on the second

moment of ε2t. In particular, they construct the following time series:

ξt = ε′2tε2t − T−1

T∑
t=1

ε′2tε2t, (3.28)

ϑt = vech(ε2tε
′
2t)− T−1

T∑
t=1

vech(ε2tε
′
2t), (3.29)

with vech(·) being the half-vectorization operator as defined e.g. in Lütkepohl (2005). Based

on these time series, autocovariances up to a prespecified horizon H are tested considering the

following statistics:

Q1(H) = T
H∑
h=1

(
γ̃(h)

γ̃(0)

)2

, (3.30)

Q2(H) = T
H∑
h=1

tr
[
Γ̃(h)′Γ̃(0)−1Γ̃(h)Γ̃(0)−1

]
, (3.31)

where γ̃(h) = T−1
∑T

t=h+1 ξtξt−h and Γ̃(h) = T−1
∑H

t=h+1 ϑtϑ
′
t−h. It is shown that under the

null, Q1(H)
d→ χ2(H) and Q2(H)

d→ χ2
(

1
4
H(K − r0)2(K − r0 + 1)2

)
.

To apply these tests, we must be able to estimate the model under H0 which requires

additional restrictions on B if r0 < K − 1. To uniquely disentangle the shocks in ε2t, it turns

out that it is sufficient to impose a lower triangular structure on the lower right (K−r)×(K−r)
block of B:

Corollary 2. Assume the setting from Proposition 1 for r ≤ K − 2. Moreover, separate

B =

(
B11 B21

B12 B22

)
, B11 ∈ Rr×r, B12 ∈ R(K−r)×r, B21 ∈ Rr×(K−r) and B22 ∈ R(K−r)×(K−r). Let

B22 be restricted to be a lower triangular matrix. Then, the full matrix B is unique up to

multiplication of its columns by −1 and permutation of its first r columns.

Proof. See Appendix A.4.

We conclude with a remark regarding the small sample properties of the tests. Based on

extensive simulation studies, Lütkepohl & Milunovich (2016) find a substantial lack in power
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for sample sizes typically available in macroeconomics. Hence, if the null hypothesis can be

rejected for all r0’s up to K − 2, this can be interpreted as strong evidence in favor of model

identification.

4 Monte Carlo Study

An important question for practitioners is how a heteroskedastic SVAR model performs in

estimating structural parameters under inherent misspecification of the variance process. To

shed some light on this question, we conduct a small scale Monte Carlo (MC) study. Specifically,

we compare the estimation performance of the SV-SVAR model under misspecification to that

of alternative heteroskedastic SVARs, namely a simple Breakpoint model (BP-SVAR), Markov

Switching models (MS-SVAR) and a GARCH model (GARCH-SVAR).

Our analysis involves generating a large number of datasets from the four stated het-

eroskedastic SVARs. Then, we estimate each model and compare the relative estimation perfor-

mance of the misspecified to the correctly specified model. We focus on estimation of structural

IRFs which are probably the most widely used tool in SVAR analysis. Furthermore, they are

nonlinear functions of both, the structural impact matrix and reduced form autoregressive pa-

rameters. Thus, they are particularly suited to summarize the overall estimation performance

of a SVAR model. As a metric of comparison, we use cumulated Mean Squared Errors (MSEs)

of the IRF estimates.

The following data generating processes (DGPs) are specified to simulate the datasets,

closely resembling the MC design of Lütkepohl & Schlaak (2018).5 Time series of lengths

T ∈ {200, 500} are generated by the following bivariate VAR(1) process:

yt = A1yt−1 + ut,

with ut ∼ N (0, BΛtB
′) for t = 1, . . . , T and

A1 =

(
0.6 0.35

−0.1 0.7

)
, B =

(
1 0

0.5 2

)
.

For the diagonal matrix Λt, the following DGPs are specified:

1. BP-SVAR: The BP-SVAR is subject to a one time change in the variance. We set

Λt = I2 for t = 1, . . . T/2 and Λt = diag([2, 7]′) for t = T/2 + 1, . . . T .

2. MS(2)-SVAR: The specified MS-SVAR involves a switching variance with the same

5Some difference to their design comes from our choice of the impact matrix. In particular, we use what we
think are more realistic values of the impact matrix in a sense that they lead to less dramatic changes in the
VAR error variance.
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regimes than the BP-SVAR. We specify the transition probability matrix:

P =

(
.95 .05

.1 .9

)
.

Based on simulated states s1, . . . , sT ∈ {1, 2}, Λst=1 = I2 and Λst=2 = diag([2, 7]′).

3. GARCH-SVAR: For this specification, the diagonal elements of Λt = diag([λ1t, λ2t]
′)

follow univariate GARCH(1,1) processes with unit unconditional variance:

λit = (1− αi − βi) + αiε
2
i,t−1 + βiλi,t−1, i ∈ {1, 2},

where εt = B−1ut is the vector of structural shocks at time t. We set αi = 0.15 and

βi = 0.8 (i = 1, 2) which correspond to values typically estimated for empirical data.

4. SV-SVAR: For this DGP, Λt = diag([exp(h1t), exp(h2t)]
′) with:

hit = µi + φi(hi,t−1 − µi) +
√
siωit,

where ωit ∼ N (0, 1). We set µi = −0.5si/(1− φ2
i ) such that E(ε2

it) = 1. Furthermore, we

set φi = 0.95 and si = 0.04 (i = 1, 2) what corresponds to fairly persistent processes in

the variance often observed in macroeconomic and financial data.

To avoid that our results are driven by issues regarding to weak identification, we only accept

datasets in the MS(2)-SVAR DGP if at least 25% of the observations are associated with either

of the regimes. Likewise, for the GARCH and SV DGPs, only datasets with an empirical

kurtosis of the simulated structural shocks of at least 3.6 are accepted.

A total of M=1000 datasets are simulated for each variance specification. In the following,

let θ̂jk,i(m) for (j, k ∈ {1, 2}) denote the estimated impulse response function in variable j

caused by structural shock k after i periods based on estimates for the m-th dataset. Our

metric of comparison is then given as:

MSE (θjk)h =
1

M

M∑
m=1

(
h∑
i=0

(
θ̂jk,i(m)− θjk,i

)2
)
. (4.1)

We choose horizon h=5 as in Lütkepohl & Schlaak (2018). To compute parameter estimates,

we use algorithm EM-1 for the SV-SVAR model. For the BP-SVAR we maximize a Gaussian

likelihood over a grid of possible break-dates. Furthermore, for the MS-SVARs we use the

EM algorithm outlined in Herwartz & Lütkepohl (2014). Finally, for the GARCH-SVAR we

compute ML estimates based on the procedure of Lanne & Saikkonen (2007). Note that the

estimated models rely on different normalizing constraints for the structural shocks which is

why we rescale all impulse response functions to unit shock size.

The results of the simulation study are provided in Table 1. For improved readability, we

report relative MSEs in comparison to the correctly specified model. Overall, we find that the
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Table 1: Cumulated MSEs at horizon h = 5

T=200 T=500
θ11 θ12 θ21 θ22 θ11 θ12 θ21 θ22

B
P

-D
G

P BP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
MS(2) 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00
GARCH 1.61 1.79 1.58 1.14 1.20 1.24 1.19 1.04
SV 1.22 1.32 1.21 1.06 1.09 1.11 1.09 1.03

M
S
-D

G
P BP 3.23 3.72 4.71 1.37 7.98 9.75 12.01 1.79

MS(2) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GARCH 3.89 4.43 3.45 1.26 3.52 4.14 3.90 1.28
SV 1.74 1.94 1.54 1.08 1.23 1.30 1.29 1.08

G
A

R
C

H
-D

G
P BP 3.88 4.23 2.56 1.26 11.58 12.67 4.99 1.47

MS(2) 8.18 9.01 3.67 1.29 21.71 24.52 7.14 1.38
MS(3) 3.95 4.23 1.98 1.13 5.19 5.60 2.22 1.19
GARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SV 1.15 1.16 1.04 1.03 1.10 1.10 1.06 1.04

S
V

-D
G

P

BP 3.35 3.53 2.26 1.18 8.52 9.52 4.36 1.35
MS(2) 5.62 6.10 3.28 1.19 13.60 15.22 5.72 1.30
MS(3) 4.20 4.58 2.02 1.12 3.12 3.34 1.74 1.14
GARCH 2.41 2.60 1.77 1.15 1.50 1.54 1.23 1.07
SV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: MSEs of impulse response functions calculated as in (4.1) and displayed

relative to true model MSEs.

SV-SVAR model performs very well regardless of the true DGP or the sample size for each of

the impulse responses θjk. In fact, the largest deterioration that we register in terms of MSE is

found to be 94% in θ12 of the Markov Switching DGP. This contrasts all other models included

into the Monte Carlo study which are subject to a very heterogeneous performance. Whenever

they are inherently misspecified, we find relative MSE of much higher orders of magnitude.

For example, with detoriations of up to 24 times, estimates based on a MS(2)-SVAR seem

completely unreliable for data generated by the SV and GARCH DGPs. Admittably, the

complexity of a MS model can be increased by adding additional states. Therefore, we also

report estimates based on a MS(3) for the SV and GARCH DGPs. While indeed this yields

substantial improvements, we still register detoriations in MSE up to 460%.

If we compare the IRF estimates of the SV-SVAR to all other misspecified models in a certain

DGP, we find it to perform strictly better in two out of three DGPs. Specifically, for residuals

generated by a MS(2) and GARCH model, all impulse responses estimated by the SV-SVAR

have lower cumulative MSEs than the other misspecified models. Only if the structural errors

are simulated with a one time shift in the variance there is no clear advantage of the SV model

over the MS model. However, this is not surprising given that the latter is perfectly able to

capture such sudden shifts in the variance.

Finally, we find that the SV-SVAR model also compares favorable if its performance is
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directly matched to the most related model, the GARCH-SVAR. In particular, the SV-SVAR

model always performs better when both models are misspecified. Furthermore, while there is

almost no deterioration in the MSE of the SV-SVAR estimates in a GARCH-DGP, the other

way around we record substantially higher relative MSEs.

Summing up, our small simulation study yields promising results indicating that the SV-

SVAR may be a safe choice to identify structural shocks for different types of heteroskedasticity

patterns and to estimate the corresponding impulse response functions.

5 Interdependence between Monetary Policy and Stock

Markets

SVAR models are a widely used tool to investigate the dynamic effects of monetary policy, see

e.g. Ramey (2016) for an extensive overview of the literature. To identify the structural shocks,

the most simple way uses a Cholesky decomposition of the covariance matrix in a reduced form

VAR with the policy variable ordered last (Christiano, Eichenbaum & Evans; 1999; Bernanke,

Boivin & Eliasz; 2005). In accordance with theoretical economic models featuring nominal

rigidities (Christiano, Eichenbaum & Evans; 2005), this implies that only the central bank

is allowed to respond to all movements in the economy on impact, while all variables in the

system ordered above react with at least one lag to a monetary policy shock. While this seems

reasonable for slowly moving real macroeconomic aggregates, such a recursivity assumption

becomes unrealistic once fast moving financial variables are included into the SVAR analysis.

Over the last years, many other identification schemes have been developed to study the

effects of monetary policy shocks avoiding the use of a recursiveness assumption. Bjørnland &

Leitemo (2009) propose to identify a monetary policy shock under the presence of stock market

returns by a combination of short- and long-run restrictions. Besides zero impact restrictions

on real variables, a monetary policy shock is furthermore restricted to have a zero long-term

impact on stock markets. This additional restriction allows the authors to disentangle monetary

policy innovations from financial shocks.

Another promising way to address identification in presence of fast moving variables are

Proxy SVARs based on external instruments. If there is an external time series that is correlated

with the structural shock to be identified and uncorrelated with all other shocks in the system,

no exclusion restrictions are necessary at all. Recently, many narrative measures have been

proposed to identify monetary policy shocks. Widely used are proxies constructed based on

either readings of Federal Open Market Committee (FOMC) minutes (e.g. Romer & Romer

(2004); Coibion (2012)) or changes in high frequency future prices in a narrow window around

FOMC meetings (e.g Faust, Swanson & Wright (2004); Nakamura & Steinsson (2018); Gertler

& Karadi (2015)).6

6Yet another branch of the literature relies on sign restrictions of the impulse response functions (Faust;
1998; Canova & De Nicolo; 2002; Uhlig; 2005) or on a combination of sign restrictions and information in proxy
variables (Braun & Brüggemann; 2017).
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Finally, heteroskedasticity can be exploited to identify the interdependence between mone-

tary policy and financial variables. For example, Rigobon (2003) combines identification via

heteroskedasticity and economic narratives to estimate the reaction of monetary policy to stock

market returns. Also Wright (2012) links economic and statistical identification within a daily

SVAR, assuming that monetary policy shocks have a higher variance around FOMC meetings.

Even if no economic narrative is available for the statistically identified structural parameters,

the heteroskedastic SVAR model can be used to formally test conventional identifying restric-

tions. For example, Lütkepohl & Netšunajev (2017a) review various heteroskedastic SVAR

models and use them to test the combination of exclusion restrictions employed by Bjørnland

& Leitemo (2009).7 Their analysis includes a GARCH-SVAR, two specifications of a MS-SVAR

and a SVAR featuring a Smooth Transition model for the variance (STVAR).

To illustrate the use of our methods, we repeat the analysis of Lütkepohl & Netšunajev

(2017a) complemented by the SV-SVAR model. Besides testing the short- and long-run restric-

tions used by Bjørnland & Leitemo (2009), we additionally test Proxy SVAR restrictions that

arise if the narrative series of Romer & Romer (2004) and Gertler & Karadi (2015) are used as

instruments for a monetary policy shock.

5.1 Model and Identifying Constraints

The VAR model of Bjørnland & Leitemo (2009) is based on the following variables: yt =

(qt, πt, ct,∆st, rt)
′, where qt is a linearly detrended index of log industrial production, πt the

annualized inflation rate based on consumer prices, ct the annualized change in log commodity

prices as measured by the World Bank, ∆st S&P500 real stock returns and rt the federal

funds rate. For detailed description of the data sources, transformations and time series plots

see Appendix C. As in Lütkepohl & Netšunajev (2017a), we use an extended sample period

including data from 1970M1 until 2007M6, summing up to a total of 450 observations. To

make our results comparable, we also choose p = 3 lags which is supported by the AIC applied

within a linear VAR model.

In our analysis, we test the following set of short- and long-run constraints used by Bjørnland

& Leitemo (2009):

B =


∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 and Ξ∞ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗

 , (5.1)

where Ξ∞ = (IK−A1−. . .−Ap)−1B is the long-run impact matrix of the structural shocks on yt.

Note than an asterisk means that the corresponding entry in B and Ξ∞ is left unrestricted. The

7See also Lütkepohl & Netšunajev (2017b) for a similar analysis based on a Smooth Transition SVAR model
only.
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last columns of B and Ξ∞ correspond to the reaction of yt to a monetary policy shock. Economic

activity, consumer- and commodity prices are only allowed to respond with a delay of one

month to a monetary policy shock, while stock markets are allowed to react contemporaneously.

However, in the long run, a monetary policy shock is assumed to have a zero effect on the stock

market. The fourth column of B corresponds to a stock price shock which is constrained

to have no contemporaneous impact on activity and prices while the central bank is allowed

to adjust the interest rates within the same period. The remaining shocks do not have an

economic interpretation. To identify the model, Bjørnland & Leitemo (2009) simply disentangle

these shocks by imposing a recursivity assumption. As outlined before, restrictions (5.1) are

overidentifying in heteroskedastic SVAR models and can be tested against the data. In line

with Lütkepohl & Netšunajev (2017a), the following set of restrictions is tested:

R1: Both, B and Ξ∞ restricted as in (5.1).

R2: Only the last two columns of B and Ξ∞ are restricted as in (5.1).

R3: Only B is restricted as in (5.1).

We further contribute to the literature by testing Proxy SVAR restrictions that arise if an ex-

ternal instrument z is used for identification of a structural shock. The identifying assumptions

are that the instrument is correlated with the structural shock it is designed for (relevance) and

uncorrelated with all remaining shocks (exogeneity). Without loss of generality, assume that

the first shock is identified by the instrument. Then, Mertens & Ravn (2013) show that the rel-

evance and exogeneity assumption can be translated into the following set of linear restrictions

on β1, denoting the first column of B:

β21 = (Σ−1
zu′1

Σzu′2
)′β11. (5.2)

where β1 = [β11, β
′
21]′ with β11 scalar and β21 ∈ R

K−1. Furthermore, Σzu′ = Cov(z, u′) =

[Σzu′1
,Σzu′2

] with Σzu′1
scalar and Σ′zu′2

∈ RK−1. In practice, elements of Σzu′ are estimated by

the corresponding sample moments.8 To identify a monetary policy shock, we use the narrative

series constructed by Romer & Romer (2004) (RR henceforth) and Gertler & Karadi (2015)

(GK henceforth). We test the following Proxy SVAR restrictions that arise when the first

column of B is identified via either RR’s or GK’s instrument:

R4rr: IV moment restrictions (5.2) based on the RR shock.

R4gk: IV moment restrictions (5.2) based on the GK shock.

We use the RR series extended by Wieland & Yang (2016) which is available for the whole

sample. The GK shock is only available for a subsample starting in 1990M1. We use their

8In particular, at each M-step we compute Σ̂zu′ = N−1z

∑T
t=1Dtûtz

′
t where Dt is a dummy indicating

whether the instrument is available at time t and Nz =
∑T

t=1Dt.
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Table 2: Model Selection by Information Criteria

Linear SV-EM1 SV-EM2 GARCH STVAR MS(2) MS(3)

lnL −3159.3 −2680.4 −2677.9 −2763.6 −2878.3 −2827.4 −2775.3
AIC 6508.7 5590.9 5585.8 5757.2 5980.5 5878.8 5792.6
BIC 6898.4 6062.6 6057.6 6229.0 6440.0 6338.3 6289.0

Note: lnL - log-likelihood function, AIC=−2 lnL+2×np and BIC=−2 lnL+ln(T )×np with

np the number of free parameters. For SV-EM1 and SV-EM2, application of the batch means

method yields approximate 95%-confidence intervals of [-2680.48,-2680.33] and [-2678.11,-

2677.68], respectively.

baseline series which is constructed based on the three months ahead monthly fed funds futures.9

Time series plots of both series are available in Appendix C.

5.2 Statistical Analysis

Before we start testing the aforementioned restrictions, we conduct formal model selection for

the variance specification of the structural shocks. By means of information criteria and residual

plots, we compare the SV model to those models included in Lütkepohl & Netšunajev (2017a):

a GARCH, a Smooth Transition (ST) and different specifications of a Markov Switching model.

This allows us to directly compare our results.

Table 2 reports log-likelihood values, Akaike information criteria (AIC) and Bayesian infor-

mation criteria (BIC) for a linear VAR and all heteroskedastic models. First of all, we highlight

that there is only a small gain in terms of likelihood value of the SV model using the Monte

Carlo based algorithm (EM-2) compared to the deterministic approximation (EM-1). To assess

the Monte Carlo error of the estimates, we also report approximate 95%-confidence intervals

based on an application of the batch means method and R =100,000 draws of the importance

density.10 Comparing the different models, our results suggest that including time-variation

in the second moment is strongly supported by both information criteria. Moreover, among

the heteroskedastic models we find that particularly models designed for financial variables are

favored, that is the GARCH model and the SV model. This may be not surprising given that

stock market returns are included in the system.

Among all models considered, we find that the SV model performs best in terms of informa-

tion criteria. In this regard, our results deviate from those of Lütkepohl & Netšunajev (2017a)

who find that the MS(3) model provides the best description for this dataset.11

9We repeat our analysis for the other instruments available in Gertler & Karadi (2015). The results do not
change qualitatively.

10A formal test of Koopman et al. (2009) indicates that the variance of the importance weights is finite which
further supports the validity of our likelihood estimates.

11We also find a better ranking for the GARCH model compared to MS(3). Most likely, this is caused by a
different estimation procedure. Specifically, Lütkepohl & Netšunajev (2017a) do only approximatively maximize
the likelihood by a sequential estimation procedure.

23



Table 3: Tests of Identification in SV-SVAR Model

Q1(1) dof p-value Q2(1) dof p-value

r0 = 0 15.02 1 0.00 596.60 225 0.00
r0 = 1 23.89 1 0.00 250.09 100 0.00
r0 = 2 29.53 1 0.00 141.07 36 0.00
r0 = 3 18.43 1 0.00 43.70 9 0.00
r0 = 4 17.30 1 0.00 17.30 1 0.00

Q1(3) dof p-value Q2(3) dof p-value

r0 = 0 52.34 3 0.00 1433.70 675 0.00
r0 = 1 39.75 3 0.00 528.72 300 0.00
r0 = 2 32.85 3 0.00 222.01 108 0.00
r0 = 3 20.36 3 0.00 60.93 27 0.00
r0 = 4 19.86 3 0.00 19.86 3 0.00

Note: Sequence of tests to check the number of heteroskedastic

shocks in the system as introduced in section 3.5 (Lanne & Saikko-

nen; 2007).

In accordance with Lütkepohl & Netšunajev (2017a), we also consider standardized resid-

uals as an additional model checking device. Figure 1 provides a plot for the standardized

residuals of all models computed as ûit/σ̂ii,t where σ̂2
ii,t is the i-th diagonal entry of the esti-

mated VAR covariance matrix Σ̂t. These plots clearly suggest that none of the other methods

is fully satisfactory in yielding standardized residuals that seem to be homoskedastic and ap-

proximately normally distributed. However, for the SV-SVAR model, standardized residuals

seem well behaved with no apparent heteroskedasticity and virtually no outliers. To confirm

this impression, we provide complementary test results in Appendix C.1 concerned with re-

maining heteroskedasticity and non-normality in standardized structural shocks. We find that

only for the shocks of the SV-SVAR model, there is no evidence against both normality and

homoskedasticity. To conclude, statistical analysis suggests that the proposed SV-SVAR is the

most adequate for this application and we continue our analysis based on this model.

In order to test restrictions R1-R4 as overidentifying, it is necessary to count with enough

heteroskedastic shocks (r ≥ K−1) to fully identify the impact matrix B. As described in section

3.5, we apply a sequence of tests with H0 : r = r0 against H1 : r > r0 for r0 = 0, 1, . . . K − 1.

The results are reported in Table 3. We find strong evidence that r = K in our model, implying

that the model can be fully identified by heteroskedasticity.

We continue our analysis and test the economically motivated restrictions R1-R4 as overi-

dentifying. In Table 4 we provide Likelihood Ratio (LR) test statistics for the restrictions

introduced previously.12 Note that if B is identified under H0, they have a standard asymp-

totic χ2(nr)-distribution with nr being the number of restrictions tested. Since we estimate the

likelihood values with the help of importance sampling, we account for the Monte Carlo error

12This table is based on parameter estimates provided by EM-1. A corresponding Table based on EM-2 can
be found in Appendix C.1 and does not differ qualitatively.
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Figure 1: Standardized residuals of linear, ST-, MS(2)-, MS(3)-, GARCH- and SV-SVAR model.
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Table 4: Test for Overidentifying Restrictions (EM-1)

H0 H1 LR dof p-value p.025 p.975

R1 UC 25.649 10 0.0042 0.0039 0.0046
R2 UC 22.750 7 0.0019 0.0017 0.0020
R3 UC 24.004 9 0.0043 0.0040 0.0046
R1 R3 1.653 1 0.1986 0.1957 0.2016

R4rr UC 7.169 4 0.1272 0.0943 0.1705
R4gk UC 256.48 4 0.0000 0.0000 0.0000

Note: For details about overidentifying restrictions see sub-

section 5.1. Likelihood ratio test statistics are computed as

2 (lnLH1
− lnLH0

) and are approximatively χ2-distributed under

H0. Right columns report approximate 95%-confidence intervals

for the p-value resulting from an application of the batch means

method to the LR test statistic.

by applying the batch means method and reporting approximate 95%-confidence intervals for

the p-values.

In line with the findings of Lütkepohl & Netšunajev (2017a), our results suggest that R1,

the restrictions of Bjørnland & Leitemo (2009), are rejected by the data. To make sure that

this result does not come from the lower triangular block corresponding to the economically

meaningless shocks, Lütkepohl & Netšunajev (2017a) also propose to test R2, which are the

restrictions in B corresponding to the impact of monetary policy and stock market shocks.

Within the SV model, these restrictions are also rejected. Testing for the zero restrictions in B

in isolation (R3) also results in a rejection. However, in contrast to Lütkepohl & Netšunajev

(2017a), we find that the long-run restriction is not rejected at any conventional significance

level if R1 is tested against R3. This indicates that the long-run restriction is less of a problem,

but rather are those in the short run. This key difference in the empirical analysis might arise

due to more precisely estimated IRFs by the SV-SVAR model, strongly supported by statistical

evidence. The fact that we are able to draw a different empirical conclusion emphasizes the

importance of model selection in the context of heteroskedastic SVARs.

With respect to the Proxy SVAR restrictions, we find that identifying a monetary pol-

icy shock with the shock series of Gertler & Karadi (2015) is strongly rejected by the data

with a likelihood ratio test statistic exceeding 250. In turn, identification via the narra-

tive series of Romer & Romer (2004) cannot be rejected at any conventional significance

level. To further understand these results, we compute sample correlations of the instru-

ments z with ε̂, the estimated structural shocks of the unconstrained SV-SVAR model. For

GK, we find Corr(zGK , ε̂) = (0.039,−0.067, 0.050,−0.242, 0.419), while for RR, Corr(zRR, ε̂) =

(0.042, 0.005, 0.031,−0.021, 0.453). While both shocks are subject to a strong correlation with

one of the statistically identified shocks, the instrument of GK is highly correlated with at

least one additional shock. This clearly violates the exogeneity condition on the instrument.

Thereby, our results support the argument of Ramey (2016) who questions the exogeneity of
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Figure 2: IRFs up to a horizon of 72 months of a monetary policy shock with 68% confidence bounds.
Figures compare estimates based on EM-1 (solid line) and EM-2 (dashed line) with corresponding
asymptotic confidence intervals.

the GK instrument finding that it is autocorrelated and predictable by Greenbook variables.

In turn, for the RR shock we find that there is little correlation with the remaining structural

residuals of the SVAR. This clearly explains why identification via the RR shock is not rejected.

Since the Proxy SVAR restrictions based on RR cannot be rejected, we can interpret the last

shock of the unconstrained model as a monetary policy shock for which Corr(zRR, ε̂5) = 0.45.

In Figure 2 we plot impulse response functions (IRFs) up to 72 months (6 years) of the system

variables in response to a monetary policy shock. Besides point estimates, we provide 68%

asymptotic confidence intervals. Again, we note that there is qualitatively no difference in

using EM-1 or EM-2 to compute the estimates and corresponding standard errors.13 The IRFs

and their asymptotic confidence intervals coincide for all variables at all horizons. In line with

the IRFs computed by Lütkepohl & Netšunajev (2017a) based on other heteroskedastic models,

an unexpected tightening in monetary policy is associated with a puzzling short-term increase

in activity and prices before they reach negative values on the medium and long term. In turn,

commodity prices as well as stock market returns are found to react significantly negative in the

short run. This fact seems reasonable given that one would expect a shift in demand towards

risk free assets.

6 Conclusion

In this paper, we have considered stochastic volatility to identify structural parameters of

SVAR models. The resulting model (SV-SVAR) can generate patterns of heteroskedasticity

which are very typical in VAR analysis and therefore, we expect it to be useful in a wide range

of applications.

We discussed conditions for full and partial identification and proposed to estimate the model

by Gaussian Maximum Likelihood. For this purpose, we developed two EM algorithms which

approximate the intractable E-step to a different extent. One algorithm is based on a Laplace

13There is only a slight difference in scaling of impulse responses because of a slightly rescaled monetary
policy shock in EM-2.
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approximation while the other relies on MCMC integration. We leave the choice of algorithm to

individual preferences, but find that in pratice little is gained by using the computationally more

burdensome Monte Carlo EM. Besides discussing optimization, we stated the main properties

of the estimator and present tools to approximate the asymptotic covariance matrix. We

also described how inference on Impulse Response Functions can be conducted based on our

model. Tests considered by Lanne & Saikkonen (2007) can be used to determine the number

of heteroskedastic shocks and to test for identification.

To demonstrate the flexibility of the SV-SVAR model, we conducted a Monte Carlo study

investigating how precise Impulse Response Functions are estimated under misspecification

of the variance process. In contrast to alternative heteroskedastic SVARs, we find that the

proposed model performs very well regardless of the DGP specified for the variance.

In an empirical application, we have revisited the model of Bjørnland & Leitemo (2009)

who rely on a combination of short- and long-run restrictions to disentangle monetary policy

from stock market shocks. Formal model selection strongly supports a SV specification in the

variance if compared to other heteroskedastic SVARs used by Lütkepohl & Netšunajev (2017a)

in this context. The SV-SVAR is used to formally test the exclusion restrictions of Bjørnland

& Leitemo (2009) as overidentifying, and additionally test Proxy SVAR restrictions that arise

if external instruments are used to identify a monetary policy shock.

Future research in several directions could be pursued. First, a Bootstrap procedure would

provide a valuable alternative to summarize estimation uncertainty in the SV-SVAR model.

Second, there is a need for more powerful statistical tests of identification in conditional het-

eroskedastic SVAR models. Furthermore, the impact of weak identification on inference needs

to be investigated. Finally, it would be interesting to assess semiparametric methods to iden-

tify SVAR models by heteroskedasticity which do not require the specification of a particular

variance model.
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Appendix A Derivations and Proofs

To ensure identification of impact matrix B in model (2.1)-(2.4) we show that under sufficient

heterogeneity in the second moments of the structural shocks, i.e. r ≥ K − 1, there is no B∗

different from B except for column permutations and sign changes which yields an observation-

ally equivalent model with the same time-varying second moment properties in reduced form

errors ut for all t = 1, . . . , T . Furthermore, for r < K− 1, we show which parameters in impact

matrix B are identified and which are not. This also includes one possible identification scheme

for this scenario. We start with the derivation of the autocovariance function of the second

moments of reduced form residuals u.

A.1 Autocovariance function in second moment

The autocovariance function of the second moments of the structural shocks is:

Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
= [E (εitεjtεk,t+τεl,t+τ )− E (εitεjt)E (εk,t+τεl,t+τ )]ijkl .

The entries of this expression are only non-zero if both i = j = k = l and i ≤ r hold for

i, j, k, l ∈ {1, . . . , K} due to the structure of the SV-SVAR model (2.1)-(2.4). Thus, it is

Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
= GKMτG

′
K ,
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with GK being a selection matrix and Mτ as defined in section 2. Briefly recap that we define

(Lewis; 2018):

ξt = vech (utu
′
t) = LKvec (utu

′
t) .

Consequently, the autocovariance function in ξ reads:

Cov (ξt, ξt+τ ) = LKCov
(
vec (utu

′
t) , vec

(
ut+τu

′
t+τ

))
L′K

= LK (B ⊗B) Cov
(
vec (εtε

′
t) , vec

(
εt+τε

′
t+τ

))
(B ⊗B)′ L′K

= LK (B ⊗B)GKMτG
′
K (B ⊗B)′ L′K .

A.2 Proof of Proposition 1

Proof. Suppose B̃ = BQ and ε̃t = Q−1εt with Q =

(
Q1 Q3

Q2 Q4

)
, where Q1 ∈ R

r×r, Q2, Q
′
3 ∈

R
(K−r)×r and Q4 ∈ R(K−r)×(K−r) define an observationally equivalent model satisfying (2.8) and

(2.9). Due to (2.8), it is:

Σu = BB′ = B̃B̃′ = BQQ′B.

Hence, Q has to be an orthogonal matrix, i.e. QQ′ = IK . To keep the autocovariance function

in the second moment of the reduced form errors, it is:

Cov (ξt, ξt+τ ) = LK

(
B̃ ⊗ B̃

)
Cov

(
vec (ε̃tε̃

′
t) , vec

(
ε̃t+τ ε̃

′
t+τ

)) (
B̃ ⊗ B̃

)′
L′K

= LK

(
B̃ ⊗ B̃

)
(Q⊗Q)′GKMτG

′
K (Q⊗Q)

(
B̃ ⊗ B̃

)′
L′K .

As we still have a SV-SVAR model, (Q⊗Q)′GKMτG
′
K (Q⊗Q) must have the same form as

GKMτG
′
K , i.e. it is a diagonal matrix with exactly r non-zero entries γ̃i(τ) located at elements

(i− 1)K + i for i = 1, . . . , r of the diagonal. Thus, it is:

GK


γ̃1(τ)

. . .

γ̃r(τ)

0K−r

G′K = (Q⊗Q)′GK


γ1(τ)

. . .

γr(τ)

0K−r

G′K (Q⊗Q) .

This yields the following conditions:

∀i = 1, . . . , r :
r∑
l=1

q4
liγl(τ) = γ̃l(τ) 6= 0, (A.1)

∀aj ∈ {0, 1, 2, 3} :
K∑
j=1

aj = 4 :
r∑
l=1

(
K∏
j=1

q
aj
lj

)
γl(τ) = 0. (A.2)
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Because of (A.2), it is
r∑
l=1

q′l• q
2
liqlj︸︷︷︸

=:λlij

= 0 for all i, j ∈ {1, . . . , K} with i 6= j. As it is an

orthogonal matrix, row vectors ql• of matrix Q are linearly independent such that λlij = 0 for

all l ∈ {1, . . . , r}, i, j ∈ {1, . . . , K} : i 6= j. Consequently, considering the first r rows of Q, i.e.

matrix [Q1, Q3], only one element per row can be different from zero. Due to the orthogonality,

this element has to be ±1.

Because of (A.1), in each column of r × r matrix Q1 at least one element has to be non-zero.

Following the previous argument, these r non-zero entries correspond to the r ±1 entries in

[Q1, Q3]. This directly implies that Q3 is a zero matrix and Q1 has exactly one element different

from zero per row and column which is ±1. Thus, Q1 can be decomposed in DP where D is a

diagonal matrix with ±1 entries and P is a permutation matrix.

In addition, orthogonality of Q yields that Q2 has to be a zero matrix. Finally, Q4 has to be a

(K − r)× (K − r) orthogonal matrix to satisfy QQ′ = IK . Therefore, block B1 is unique up to

permutation and sign changes.

A.3 Proof of Corollary 1

Using Proposition 1 shows that an observationally equivalent model with the same autocovari-

ance function in the second moment of the reduced form errors can be obtained by B̃ = BQ

if and only if Q has the structure

(
Q1 0

0 Q4

)
, Q1 = DP with D a diagonal matrix with ±1

entries on the diagonal, P a permutation matrix and Q4 ∈ R(K−r)×(K−r) any orthogonal matrix.

Thus, the decomposition B = [B1, B2] with B1 ∈ RK×r and B2 ∈ RK×(K−r) yields uniqueness

of B1 apart from multiplication of its columns by −1 and permutation. Moreover, in case that

r = K − 1, column vector B2 is also unique up to multiplication with −1:

Proof. For r = K − 1, matrix Q4 is a scalar with Q2
4 = 1⇒ Q4 = ±1. So, full matrix Q can be

decomposed in a diagonal matrix with ±1 entries and a permutation matrix having a one in

the very last element. This proves the uniqueness of the full matrix B apart from sign reversal

of its columns and permutation of its first r columns.

A.4 Proof of Corollary 2

Proof. Let Q =

(
Q1 0

0 Q4

)
be a K×K matrix such that BQ =

(
B11Q1 B21Q4

B12Q1 B22Q4

)
has the same

structure as B, i.e. B22Q4 is still a lower triangular matrix. Thereby, it directly follows that Q4

is a lower triangular matrix itself. Moreover, because Q4 is orthogonal, it is also normal and

therefore diagonal. Any diagonal and orthogonal matrix has ±1 entries on the diagonal. So,

full matrix Q can be decomposed in a diagonal matrix D having ±1 entries and a permutation

matrix P having an identity block in the lower right (K−r)× (K−r) block. Thus, matrix B is

unique up to multiplication of its columns with −1 and permutation of its first r columns.
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Appendix B Estimation

B.1 Importance Density

To derive the Gaussian approximation of the (unrestricted) IS density πG(hi|θ, εi) for i =

1, . . . , r, we closely follow the exposition of Chan & Grant (2016). We start with an application

of Bayes’ theorem which gives the zero variance importance density:

log p(hi|θ, εi) ∝ log p(εi|θ, hi) + log p(hi). (B.1)

The assumption of normality in both the transition and measurement equation gives:

log p(hi) ∝−
1

2
(hi − δi)′Qi (hi − δi) , (B.2)

log p(εit|θ, hit) ∝−
1

2

(
hit + ε2

ite
−hit
)
. (B.3)

Since the measurement equation is nonlinear in hi, the normalizing constant of the smoothing

distribution in equation (B.1) is not known. An approximate distribution, however, can be

obtained by a second order Taylor approximation of the measurement equation (B.3). The

corresponding partial derivatives are given as:

∂ log p(εit|θ, hit)
∂hit

= −1

2
+

1

2
ε2
ite
−hit=: fit ⇒ fi = (fi1, . . . , fiT )′ ,

−∂
2 log p(εit|θ, hit)

∂h2
it

=
1

2
ε2
ite
−hit =: cit ⇒ Ci = diag ([ci1, . . . , ciT ]′) .

A second order Taylor approximation around h̃
(0)
i then yields:

log p(εi|θ, hi) ≈ log p(εi|θ, h̃(0)
i ) +

(
hi − h̃(0)

i

)′
fi −

1

2

(
hi − h̃(0)

i

)′
Ci

(
hi − h̃(0)

i

)

= −1

2

h′iCihi − 2h′i

(
fi + Cih̃

(0)
i

)
︸ ︷︷ ︸

=:bi

+ constant.
(B.4)

Combining (B.1), (B.2) and (B.4) provides an approximation of the smoothing distribution

which takes the form of a normal kernel:

log p(hi|θ, εi) ∝∼ −
1

2

h′i (Ci +Qi)︸ ︷︷ ︸
=:Q̄i

hi − 2h′i (bi +Qiδi)

 .

Consequently, the approximate smoothing density is:

πG (hi|θ, εi) ∼ N
(
δ̄i, Q̄

−1
i

)
, with δ̄i = Q̄−1

i (bi +Qiδi) .
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The restricted density πcG (hi|θ, εi) is constructed as outlined in section 3. Note that πcG (hi|θ, εi)
yields a good approximation only if h̃

(0)
i is chosen appropriately. In the following, we sketch how

the Newton Raphson method is used to evaluate the IS density at the mode of the smoothing

distribution (B.1).

B.2 Newton Raphson method

The Newton-Raphson method is implemented as follows: hi is initialized by some vector h
(0)
i

satisfying the linear constraint, i.e. Ahh
(0)
i = µi. Then, h

(l)
i is used to evaluate Q̄i, δ̄i and to

iterate:

h̃
(l+1)
i = h

(l)
i + Q̄−1

i

(
−Q̄ih

(l)
i + δ̄i

)
= Q̄−1

i δ̄i,

h
(l+1)
i = h̃

(l+1)
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
(
Ahh̃

(l+1)
i − µi

)
for l ≥ 0 until convergence, i.e. until

∥∥∥h(l+1)
i − h(l)

i

∥∥∥ < ε holds for a specified tolerance level ε.

B.3 EM Algorithm

To fix notation, define the following quantities:

Y 0 := (y1, . . . , yT ) K × T,
A := (ν,A1, . . . , Ap) K ×Kp+ 1,

Y 0
t :=

(
y′t−1, . . . , y

′
t−p
)′

Kp× 1,

xt :=
(

1,
(
Y 0
t

)′)′
Kp+ 1× 1,

X := (x1, . . . , xT ) Kp+ 1× T,
y0 := vec(Y 0) KT × 1,

α := vec(A) K(Kp+ 1)× 1,

U := (u1, . . . , uT ) K × T,
u := vec(U) KT × 1,

V −1 := (exp(−h1), . . . , exp(−hT )) K × T.

Using this, VAR equation (2.1) can be compactly written as:

y0 = Zα + u,

with Z = (X ′⊗IK), E(uu′) = Σ̃u. Note that its inverse is given by Σ̃−1
u = ([B−1]

′⊗IT )Σ−1
e (B−1⊗

IT ) where Σ−1
e = diag(vec(V −1)).
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This yields the following compact representation of the complete data log-likelihood:

Lc(θ) ∝− T ln |B| − 1

2

(
y0 − Zα

)′ ([
B−1

]′ ⊗ IT)Σ−1
e

(
B−1 ⊗ IT

) (
y0 − Zα

)
+

r∑
i=1

{
−T

2
ln(si) +

1

2
ln
(
1− φ2

i

)
− 1

2si

([
1− φ2

i

]
[hi1 − µi]2 +

T∑
t=2

([hit − µi]− φi[hi,t−1 − µi])2

)}
.

(B.5)

Both algorithms EM-1 and EM-2 require some starting values. They are set in the same

way for both alternatives. That is:

α̂(0) =
([

(XX ′)−1X
]
⊗ Ik

)
y0,

B̂(0) = (T−1Û Û ′)
1
2Q, with Û = Y 0 − ÂX,

where Q is a K × K orthogonal matrix uniformly drawn from the space of K-dimensional

orthogonal matrices. Furthermore, we set the r × 1 vectors:

φ̂(0) = [0.95, . . . , 0.95]′,

ŝ(0) = [0.02, . . . , 0.02]′,

which correspond to persistent heteroskedasticity with initial kurtosis of about 3.7 for the

estimated structural shocks ε̂i, i = 1, . . . , r.

Note that in order to satisfy linear restriction (2.10) we set for i = 1, . . . , r and l ≥ 1:

µ̂
(l−1)
i = − ŝ

(l−1)
i

2

/(
1−

(
φ̂

(l−1)
i

)2
)
.

EM-1

Because of ε̂
(l−1)
t = B̂(l−1)(yt−Â(l−1)xt), it is equivalent to condition the approximate smoothing

densities πcG and their moments to
(
θ(l−1), ε̂

(l−1)
i

)
or
(
θ(l−1), y

)
, respectively. Based on start-

ing values θ(0) =

[(
α̂(0)
)′
, vec

(
B̂(0)

)′
,
(
φ̂(0)
)′
,
(
ŝ(0)
)′]′

, the EM algorithm iteratively cycles

through the following steps for l ≥ 1:

1. E-step: For i = 1, . . . , r, evaluate the moments of the approximate smoothing densities,

mean δ̄ci and variance Q̄−1
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
AhQ̄

−1
i , as described in Appendix B.1.

Thereby, directly inverting Q̄i is unnecessary costly since we only need its diagonal el-

ements representing the marginal variances Var(hit|θ(l−1), y) and the entries of the first

off-diagonal corresponding to Cov(hit, hi,t−1|θ(l−1), y). Similar to the Kalman smoother re-

cursions, they can be obtained without computing the whole inverse using sparse matrix

routines based on Takahashi’s equations (Rue et al.; 2009). An efficient implementation

in Matlab is available at the MathWorks File Exchange (see sparseinv by Tim Davis).
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2. M-step: Conditional on the approximate smoothing density of log-variances hi (i =

1, . . . , r), we update parameters of both state and measurement equation of the SV-SVAR

model.

(a) Update φi and si for i = 1, . . . , r:

Conditional on the moments of the approximate smoothing density we maximize

the expected value of the complete data log-likelihood (B.5) with respect to the

state equation parameters. Therefore, define ∂a1+a2Lc
∂a1φ∂a2s

=
[
∂a1+a2Lc
∂a1φ1∂a2s1

, . . . , ∂a1+a2Lc
∂a1φr∂a2sr

]
for a1, a2 ∈ {0, 1, 2} with a1 + a2 ≤ 2, ∇G(φ, s) = E

[
∂Lc
∂φ
, ∂Lc
∂s

]
and H(φ, s) =

E

diag
(
∂2Lc
∂φ2

)
diag

(
∂2Lc
∂φ∂s

)
diag

(
∂2Lc
∂φ∂s

)
diag

(
∂2Lc
∂s2

). The detailed expressions for first and second deriva-

tives of the complete data log-likelihood are printed in B.4. Then, set φ̂k = φ̂(l−1)

and ŝk = ŝ(l−1) and update parameters using Newton-Raphson, i.e. set(
φ̂k+1

ŝk+1

)
=

(
φ̂k

ŝk

)
−
(
H
(
φ̂k, ŝk

))−1

∇G
(
φ̂k, ŝk

)

until

∥∥∥∥∥
(
φ̂k+1

ŝk+1

)
−

(
φ̂k

ŝk

)∥∥∥∥∥ is smaller than a specified threshold, e.g. 0.001. Then, set

φ̂(l) = φ̂k+1 and ŝ(l) = ŝk+1.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α̂(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

with Σ̃−1
u =

([(
B̂(l−1)

)−1
]′
⊗ IT

)
Σ̂−1
e

((
B̂(l−1)

)−1

⊗ IT
)

and

Σ̂−1
e = diag(vec(V̂ −1)). Furthermore, it is:

V̂ −1 =E(V −1|θ(l−1), y) = (v̂−1
1 , . . . , v̂−1

T ) ∈ RK×T , with

v̂−1
t = exp

(
−E(ht|θ(l−1), y) +

1

2
Var(ht|θ(l−1), y)

)
.

The latter is based on the properties of a log-normal distribution. Note that for

i = r + 1, . . . , K, v̂−1
it = 1.

(c) Update B. Therefore, define Û = Y 0 − Â(l)X, then:

B̂(l) =arg max
B∈RK×K

E

[
Lc(B)

∣∣∣∣Â(l), φ̂(l), ŝ(l), y

]
∝− T ln |B| − 1

2
vec(B−1Û)′Σ̂−1

e vec(B−1Û).
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3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We iterate between steps 1.-3. until the relative change in the expected complete data log-

likelihood becomes negligible. To be more precise, the algorithm is a Generalized EM algorithm

since the M-step of impact matrix B depends on VAR coefficients α.

EM-2

In EM-2, the expectations in the E-step are approximated by MCMC integration. Based on

starting values, θ(0), the algorithm iterates between the following steps for l ≥ 1:

1. E-Step: In order to compute the expectations necessary in the EM algorithm, we recur

to Monte Carlo integration. In particular, for each of the heteroskedastic shocks (i =

1, . . . , r), we simulate random draws of the mixture indicators z
(j)
i for j = 1, . . . , R and

compute:

Q(θ, θ(l−1)) ≈ 1

R

R∑
j=1

E
(j)

θ(l−1) [L(θ)], (B.6)

where the expectations are taken with respect to the tractable distribution

p(h|θ(l−1), z(j), y). To generate random draws of z, we rely on the methodology of Kim

et al. (1998). For each of the heteroskedastic shocks (i = 1, . . . , r), this involves iteratively

drawing from the following conditional distributions:

(a) z
(j)
i ∼ p

(
zi
∣∣θ(l−1), h

(j−1)
i , y

)
. The mixture indicators are drawn for each

t = 1, . . . , T from the discrete conditional distribution P
(
z

(j)
it = k

)
= qit,k for k =

1, . . . , 7 where:

qit,k =
pkφ (y∗it − hit;mk, v

2
k)

7∑
k=1

pkφ (y∗it − hit;mk, v2
k)

,

with y∗it = log

[(
ε̂

(l−1)
it

)2
]
, ε̂

(l−1)
t =

(
B̂(l−1)

)−1 (
yt − Â(l−1)xt

)
and φ(·;mk, v

2
k) in-

dicating the pdf of a normal distribution with mean mk and variance v2
k. Mixture

parameters pk’s, mk’s and vk’s are tabulated in Table 5.

(b) h
(j)
i ∼ p(hi|θ(l−1), z

(j)
i , y). To draw the log variances, first a random sample from

the unconstrained conditional distribution h̃
(j)
i ∼ N (δ̄ij,Σij) is generated using the

precision sampler of Chan & Jeliazkov (2009). The unconstrained moments are given

40



as:

Σ−1
ij = H ′iΣ

−1
hi
Hi +Gij,

δ̄ij = Σij

(
H ′iΣ

−1
hi
Hiδi +Gij(y

∗
i −mij)

)
,

and

y∗i =

(
log

[(
ε̂

(l−1)
i1

)2
]
, . . . , log

[(
ε̂

(l−1)
iT

)2
])′

,

Gij = diag
(
v2
(
z

(j)
i1

)
, . . . , v2

(
z

(j)
iT

))−1

,

mij = diag
(
m
(
z

(j)
i1

)
, . . . ,m

(
z

(j)
iT

))
.

In a next step, the draw is corrected to account for the linear constraint. That is:

h
(j)
i = h̃

(j)
i − ΣijA

′
h(AhΣijA

′
h)
−1
(
Ahh̃

(j)
i − µ̂

(l−1)
i

)
,

which yields a draw from the correct distribution under the linear constraint. The

moments of this distribution are:

δ̄cij = δ̄ij − ΣijA
′
h(AhΣijA

′
h)
−1
(
Ahδ̄ij − µ̂(l−1)

i

)
,

Cov

(
hi

∣∣∣∣θ(l−1), z
(j)
i , y, Ahhi=µ̂

(l−1)
i

)
= Σij − ΣijA

′
h(AhΣijA

′
h)
−1AhΣij.

Note that the corrected moments are those used to compute the Monte Carlo ex-

pected complete data log-likelihood from equation (B.6). As in EM-1, we only

compute the diagonal and first off-diagonal of the covariance matrix Σij using the

same sparse matrix routines.

2. M-steps: Conditional on the mixture indicators z
(j)
i (i = 1, . . . , r; j = 1, . . . , R), first and

second moments of hi’s are given. Thus, as in EM-1, we maximize the expected complete

data log-likelihood using Newton-Raphson updates in state equation parameters, a closed-

form update in VAR parameters and numerical optimization in the impact matrix.

(a) Update φi and si for i = 1, . . . , r: Conditional on the mixture indicators z, the

expected value of the complete data log-likelihood (B.5) is maximized. To do so,

define ∇GR(φ, s) = 1
R

R∑
j=1

E

(
∂Lc
∂φ
, ∂Lc
∂s

∣∣∣∣z(j)

)
containing the first and

HR(φ, s) = 1
R

R∑
j=1

E

diag
(
∂2Lc
∂φ2

)
diag

(
∂2Lc
∂φ∂s

)
diag

(
∂2Lc
∂φ∂s

)
diag

(
∂2Lc
∂s2

)∣∣∣∣∣z(j)

 including the second deriva-

tives. The detailed expressions are printed in subsection B.4. All expectations

of functions of the log-variances are uniquely determined by the sampled mixture

indicators. Then, set φ̂k = φ̂(l−1) and ŝk = ŝ(l−1) and update parameters using
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Newton-Raphson, i.e. set(
φ̂k+1

ŝk+1

)
=

(
φ̂k

ŝk

)
−
(
HR

(
φ̂k, ŝk

))−1

∇GR

(
φ̂k, ŝk

)

until

∥∥∥∥∥
(
φ̂k+1

ŝk+1

)
−

(
φ̂k

ŝk

)∥∥∥∥∥ is smaller than a specified threshold, e.g. 0.001. Then, set

φ̂(l) = φ̂k+1 and ŝ(l) = ŝk+1.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α̂(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

where everything is as in EM-1 but:

v̂−1
t =R−1

R∑
j=1

exp

(
−E

(
ht|θ(l−1), z

(j)
t , y

)
+

1

2
Var

(
ht|θ(l−1), z

(j)
t , y

))
.

(c) Update B as in EM-1.

3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We recommend to set the starting values based on the results of EM-1, which are quickly avail-

able. We increase the number of MCMC replications deterministically over the EM iterations.

This is necessary since automated strategies as the ascent-based MCEM algorithm (Caffo, Jank

& Jones; 2005) fail to converge due to the substantial amount of parameters to be estimated

in the VAR equation. That is, we first run a burn-in period of 300 EM steps using R = 50

and then proceed with another 100 EM iterations using R = 500. Subsequently, we increase R

to 50,000 and iterate EM steps until the stopping criterion of Caffo et al. (2005) applies. This

usually happens after a small number of additional EM steps using 50,000 MCMC replications.

Table 5: Mixture Components

k pk = Pr(zit = k) mk v2
k

1 0.00730 −10.12999 5.79596
2 0.10556 −3.97281 2.61369
3 0.00002 −8.56686 5.17950
4 0.04395 2.77786 0.16735
5 0.34001 0.61942 0.64009
6 0.24566 1.79518 0.34023
7 0.25750 −1.08819 1.26261

Note: Seven Normal Mixture components to approx-

imate a log
(
χ2
(1)

)
distribution adjusted by its mean

−1.2704.
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B.4 Derivatives complete data log-likelihood

The respective derivatives of the complete data log-likelihood (B.5) are given in the following.

Let h̄it = hit − µi for i = 1, . . . , r and t = 1, . . . , T . First and second derivatives with respect

to state equation parameters φi and si are given as follows:

∂Lc(θ)
∂si

= − 1

2si

(
T − 1− φ2

i

si
h̄2
i1 + h̄i1 +

T∑
t=2

[
h̄it − φih̄i,t−1

1 + φi
−
(
h̄it − φih̄i,t−1

)2

si

])
,

∂Lc(θ)
∂φi

= − φi
1− φ2

i

(
1 + h̄i1

)
+
φi
si
h̄2
i1 −

1

si

T∑
t=2

[(
h̄it − φih̄i,t−1

)(siφi(1− φi)
(1− φ2

i )
2 − h̄i,t−1

)]
,

∂2Lc(θ)
∂φi∂si

= − φi

2 (1− φ2
i )

2 +
φih̄i1

(1− φ2
i ) si

− φih̄
2
i1

s2
i

+
1

s2
i

T∑
t=2

[(
h̄it − φih̄i,t−1

)
(
siφi(1− φi)

(1− φ2
i )

2 − h̄i,t−1

)]
− 1

si

T∑
t=2

[
1

2 (1 + φi)

(
siφi(1− φi)

(1− φ2
i )

2 − h̄i,t−1

)

+
(
h̄it − φih̄i,t−1

)(φi(1− φi)
(1− φ2

i )
2 −

1

2 (1− φ2
i )

)]
,

∂2Lc(θ)
∂s2

i

=
1

si

(
T

2si
+
h̄i1
si
− h̄2

i1 (1− φ2
i )

s2
i

− 1

4 (1− φ2
i )
− T − 1

4 (1 + φi)
2

+
1

si

T∑
t=2

[
h̄it − φih̄i,t−1

1 + φi
−
(
h̄it − φih̄i,t−1

)2

si

])
,

∂2Lc(θ)
∂φ2

i

= − 1 + φ2
i

(1− φ2
i )

2

(
1 + h̄i1

)
− siφ

2
i

(1− φ2
i )

3 +
h̄2
i1

si
+

2φ2
i h̄

2
i1

(1− φ2
i )

2

− 1

si

T∑
t=2

(
siφi(1− φi)

(1− φ2
i )

2 − h̄i,t−1

)2

−

(
1− 3φi

(1− φ2
i )

2 +
4φ2

i (1− φi)
(1− φ2

i )
3

)
T∑
t=2

(
h̄it − φih̄i,t−1

)
.

Furthermore, let Σt = BVtB
′, β = vec(B), α = vec(A), X̃t = (x′t⊗IK), such that vec(Axt) =

X̃tα and K(K,K) be the K2 ×K2 commutation matrix. Then, the first and second derivatives

of (B.5) with respect to α and β are given as:
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∂Lc(θ)
∂α′

=

(
T∑
t=1

y′tΣ
−1
t X̃t

)
− α′

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂Lc(θ)
∂β′

= −T vec
([
B−1

]′)′
+ vec

(
T∑
t=1

[
B−1

]′
V −1
t B−1utu

′
t

[
B−1

]′)′
,

∂2Lc(θ)
∂α′∂β

= −
T∑
t=1

[(
ε′t ⊗ X̃ ′t

[
B−1

]′
V −1
t B−1

)
+
(
ε′tV

−1
t B−1 ⊗ X̃ ′t

[
B−1

]′)
K(K,K)

]
,

∂2Lc(θ)
∂α∂α′

= −

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂2Lc(θ)
∂β∂β′

= T
(
B−1 ⊗

[
B−1

]′)
K(K,K)

−
T∑
t=1

(
IK ⊗

[
B−1

]′
V −1
t

) (
K(K,K) + IK2

) (
B−1utu

′
t

[
B−1

]′ ⊗B−1
)

−
T∑
t=1

(
B−1utu

′
t

[
B−1

]′
V −1
t B−1 ⊗

[
B−1

]′)
K(K,K).

Note that the cross derivatives ∂2Lc(θ)
∂φi∂α

, ∂2Lc(θ)
∂φi∂β

, ∂2Lc(θ)
∂si∂α

and ∂2Lc(θ)
∂si∂β

are equal to zero due to the

structure of the complete data log likelihood (B.5).

Appendix C Data and complementary Results

The time series data used in section 5 is based on yt = (qt, πt, ct,∆st, rt)
′, where

• qt is the logarithm of industrial production (linearly detrended),

• πt is the growth rate of the consumer price index (in %),

• ct denotes the annualized change in the logarithm of the World Bank commodity price

index (in %),

• ∆st is the first difference of the logarithm of the CPI deflated real S&P500 index,

• rt is the Federal Funds rate.

As in Lütkepohl & Netšunajev (2017a) and Lütkepohl & Netšunajev (2017b), we use the

updated sample period 1970M1-2007M6. Except for ct, the data can be downloaded from the

FRED. The commodity price index is provided by the World Bank. The transformed data set is

readily available at http://sfb649.wiwi.hu-berlin.de/fedc/discussionPapers_formular_

content.php.

The monetary policy instruments of Gertler & Karadi (2015) and Romer & Romer (2004)

are obtained from the homepage of Valerie Ramey: http://econweb.ucsd.edu/~vramey/
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research.html#data. Note that the RR series used in our analysis is the one extended by

Wieland & Yang (2016).
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Figure 3: Time Series Data

C.1 Complementary results

Table 6: Tests on standardized structural shocks

Normality Heteroskedasticity

MJB p-value Q1 p-value Q2 p-value

Linear 12,911.0 0.000 52.34 0.000 1433.70 0.000
STVAR 49,785.0 0.000 40.25 0.000 1475.50 0.000
MS(2) 291.8 0.000 13.59 0.004 811.21 0.000
MS(3) 48.6 0.000 9.40 0.024 844.74 0.000

GARCH 555.0 0.000 8.22 0.042 627.45 0.904
SV 16.1 0.096 3.25 0.355 623.88 0.921

Note: Multivariate Jarque-Bera (MJB) test conducted as in (Lütkepohl; 2005,

p. 181). Test statistics Q1 and Q2 as discussed in section 3.5, applied to esti-

mated standardized structural shocks ε̂t
/

exp
(
ĥt/2

)
.
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Table 7: Test for Overidentifying Restrictions (EM-2)

H0 H1 LR dof p-value p.025 p.975

R1 UC 27.341 10 0.0023 0.0017 0.0032
R2 UC 23.693 7 0.0013 0.0009 0.0018
R3 UC 25.868 9 0.0021 0.0015 0.0030
R1 R3 1.543 1 0.2142 0.1390 0.3438

R4rr UC 5.779 4 0.2163 0.1388 0.3294
R4gk UC 256.590 4 0.0000 0.0000 0.0000

Note: For details about overidentifying restrictions see sub-

section 5.1. Likelihood ratio test statistics are computed as

2 (lnLH1
− lnLH0

) and are approximatively χ2-distributed under

H0. Right columns report an approximate 95%-confidence interval

for the p-value resulting from an application of the batch means

method to the LR test statistic.
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