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Jens Weghake, Mathias Erlei, Claudia Keser and Martin Schmidt 

Pricing in Asymmetric Two-Sided Markets: A Laboratory Experiment 

 

Abstract: We conducted a laboratory experiment to study the price setting behavior in 
two-sided markets. We seek to answer two specific research questions: Do participants 
charge the equilibrium prices that can be derived from a theoretical model? How is the 
price setting affected by the characteristics of the Nash equilibrium? Our study shows that 
there are hardly any realizations of the Nash equilibrium. Participants seem to use simple 
heuristics. The increase in complexity caused by asymmetry has two effects: On the one 
hand, it makes finding the optimal pricing more difficult so that, on average, we find prices 
that are further away from optimal prices. On the other hand, higher complexity goes 
along with stronger signals against non-expedient heuristics so that, on an individual 
level, the equilibrium is reached in more markets. 

JEL Codes: C72, C91, D43, L13 

Keywords: two-sided market theory, experiment, duopoly, platform competition  

 
1. Introduction 

Nowadays, the two-sided market theory rooted in Armstrong (2006), Blair and Romano 
(1993), Caillaud and Jullien (2001), Rochet and Tirole (2003) is an accepted part of 
modern industrial economics. Inter alia, it was developed to describe the price setting 
behavior of platforms that face two groups of users (sides of the market) that want to 
interact with each other (e.g.,  Evans 2003). For example, video game consoles bring 
together developers of games on one side of the market and gamers on the other. The 
interdependencies between the two market sides are characterized by indirect network 

effects as defined by Katz and Shapiro (1985): developers have an interest in producing 
video games for a console that is used by many gamers and gamers buy consoles for which 
there exist many games (and thus developers). In other words, the utility offered by a 
platform to users on one market side increases with the number of users on the other 
market side that also use this platform (and vice versa). Evans (2003) additionally require 
that direct, bilateral interactions (without using the platform) between the subjects of the 
two market sides shall not be possible or reasonable. Due to high transaction costs of 
bilateral interactions in real world situations, this condition is often fulfilled. Thus, 
platforms internalize the indirect network effects so that the interactions become 
possible, respectively, more efficient.  

A large fraction of research on two-sided markets focuses on the price setting, because 
prices for the distinct market sides play an important role in the question how well 

platforms internalize the indirect network effects. In this context, the distinction between 
price level and price structure is relevant (Rochet and Tirole 2003). In a two-sided market 
the price level is the sum of the prices charged to the two sides, while the price structure 
specifies how the price level is divided between the two market sides.1  

                                                        

1 Rochet and Tirole  (2006) point out that the two-sidedness (caused by indirect network effects) can be 
identified by this distinction in the following way. A market is supposed to be one-sided when the number 
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While, to date, a huge amount of theoretical work has emerged concerning markets with 

two or more sides and indirect network effects, only little is known about how well real-
world situations are described by the theory. In our study, we investigate price setting in 
a two-sided market (framed as a video-game-console market) in a controlled laboratory 
environment. Participants are in the role of a platform and have to charge prices for two 
simulated market sides (developers and gamers) that are interrelated by positive two-
way indirect network effects. The platforms compete in a duopoly situation; interaction 
between the same two platforms is repeated (partner matching). Thus, we shall not only 
check for convergence to equilibrium prices but also have an eye on potential platform 
collusion (Selten, Mitzkewitz, and Uhlich 1997). We are particularly interested in the 
impact of the relative importance of indirect network effects on price setting. To this end, 
in two out of three treatments, we choose the indirect network effect parameters to 
implement asymmetric price structures in equilibrium. This means that a platform should 
not charge the same prices as the platform, with which it competes for demand, to 

maximize its individual profit.  

To anticipate our results, we find, analyzing aggregate behavior, that median prices 
seemingly converge to equilibrium prices. However, looking at individual markets, we 

hardly find any realizations of the Nash equilibria in the asymmetric treatments.  
Surprisingly often, participants seem to use simple heuristics.   

To our knowledge, there exist two other studies that investigate price setting in 
experimental two-sided markets, Kalaycı, Loke, and McDonald (2015) and Nedelescu 
(2016).  Nedelescu (2016) examines the monopoly model of Armstrong (2006). Starting 
from a base treatment, in which one of the profit-maximizing prices lies below costs, he 
studies the effects of two price-setting restrictions - no prices below costs and uniform 
prices - and of increased costs. He finds that only in the uniform-price treatment 
participants reached the profit-maximizing price predicted by the underlying theory. 

The experiment by Kalaycı, Loke, and McDonald (2015) builds on Armstrong’s (2006) 
duopoly model. In four treatments, the authors vary users’ transportation costs and the 
strength of the (one-way) indirect network effect, both of which constitute the spread 
between equilibrium prices, respectively, the price structure. Equilibrium prices are 
symmetric in that they are the same for both platforms in one market. A key finding of this 
study is that prices showed no convergence to the equilibrium. 

Both Nedelescu (2016) and Kalaycı, Loke, and McDonald (2015) suggest that the missing 
convergence to the equilibrium might be driven by the high complexity of the task that 
involves the choice of two prices. Since we also examine asymmetric equilibria, the 
complexity is even higher in our experiment. Thus, it comes to no surprise that we 
observe, if at all, only weak convergence toward equilibrium prices. 

   

2. Theoretical Framework and Hypotheses 

Our experiment is based on a variation of the differentiated Bertrand duopoly model, 
which is also known as the Launhardt-Hotelling model (Hotelling 1929; Dixit 1979; Singh 

                                                        

of realized transactions depends only on the price level. If, for a given aggregate price level, different price 
structures lead to different volumes of transactions, the market is supposed to be two-sided. 
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and Vives 1984; Launhardt 1993). In our model, we add indirect network effects to 

implement the two-sidedness of the market. Due to our video-game-console framing, we 
also add direct network effects. The number of users of the two market sides A (gamers) 

and B (developers of video games) who join platform i and platform j (𝑛𝐴
𝑖 , 𝑛𝐴

𝑗
, 𝑛𝐵

𝑖 , 𝑛𝐵
𝑗

) are 

given by 

 

𝑛𝐴
𝑖 = 𝐴𝑖 − 𝑐𝐴

𝑖 ⋅ 𝑝𝐴
𝑖 + 𝑐𝑅𝐴 ⋅ (𝑝𝐴

𝑗
− 𝑝𝐴

𝑖 ) + 𝑎𝐴
𝑖 ⋅ 𝑛𝐵

𝑖 + 𝑏𝐴
𝑖 ⋅ 𝑛𝐴

𝑖  

𝑛𝐴
𝑗

= 𝐴𝑗 − 𝑐𝐴
𝑗

⋅ 𝑝𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅ (𝑝𝐴
𝑖 − 𝑝𝐴

𝑗
) + 𝑎𝐴

𝑗
⋅ 𝑛𝐵

𝑗
+ 𝑏𝐴

𝑗
⋅ 𝑛𝐴

𝑗
 

𝑛𝐵
𝑖 = 𝐵𝑖 − 𝑐𝐵

𝑖 ⋅ 𝑝𝐵
𝑖 + 𝑐𝑅𝐵 ⋅ (𝑝𝐵

𝑗
− 𝑝𝐵

𝑖 ) + 𝑎𝐵
𝑖 ⋅ 𝑛𝐴

𝑖 − 𝑏𝐵
𝑖 ⋅ 𝑛𝐵

𝑖  

𝑛𝐵
𝑗

= 𝐵𝑗 − 𝑐𝐵
𝑗

⋅ 𝑝𝐵
𝑗

+ 𝑐𝑅𝐵 ⋅ (𝑝𝐵
𝑖 − 𝑝𝐵

𝑗
) + 𝑎𝐵

𝑗
⋅ 𝑛𝐴

𝑗
− 𝑏𝐵

𝑗
⋅ 𝑛𝐵

𝑗
 

 

where 𝑝𝐴
𝑖 is the price charged by platform i to users of side A, 𝑝𝐵

𝑖 is the price charged by 

platform i to users of side B, and so on. The variables 𝐴𝑖 , 𝐴𝑗 , 𝐵𝑖 and 𝐵𝑗are the respective 
intercepts of the demand functions. They can be interpreted as the stand-alone utilities of 

the platforms. The parameter 𝑎𝐴
𝑖  (𝑎𝐴

𝑗
) determines the strength of the indirect network 

effect that users of side A receive from the number of users of side B on platform i (j). 

Analogously, 𝑎𝐵
𝑖 and 𝑎𝐵

𝑗
are the indirect network effects that users of side B receive from 

interacting with users of side A on platform i or respectively j. We assume only positive 
indirect network effects. Consequently, the utility that a user obtains from platform i (j) 
increases with an increase in the number of users of the other side that also choose 

platform i (j).  Direct network effects are given by 𝑏𝐴
𝑖 , 𝑏𝐴

𝑗
, 𝑏𝐵

𝑖  and 𝑏𝐵
𝑗

. The positive (negative) 

signs in the first and second (third and fourth) equation are due to design considerations. 
In our experiment we use a video-game-console framing. In this context, users of side A 
can be seen as gamers. The positive direct network effects for this side represent the 

benefit of sharing games or playing together. The developers of games are the users of 
side B. Therefore, the negative direct network effects shall demonstrate competition 
between developers or a congestion effect (e.g., Aloui and Jebsi 2010). The coefficients 

𝑐𝐴
𝑖 , 𝑐𝐴

𝑗
, 𝑐𝐵

𝑖  and 𝑐𝐵
𝑗

affect the immediate reaction of the users, when the respective price of a 

platform is varied. The parameters 𝑐𝑅𝐴 and 𝑐𝑅𝐵 are reaction coefficients that influence 
how fast users switch platforms due to a relative difference in prices. To simplify the task 
in the experiment, we leave out any costs. 

The four above equations can be simultaneously transformed to derive the demand 
functions depending only on prices (the calculation steps are in the appendix). In our 
model, we waive costs. Therefore, the revenues of both platforms are equal to their 
profits. By deriving the profit functions, we get the best response functions that are used 
to determine the equilibrium prices in Table 2. These are the unique Nash equilibria of 

the stage games and the unique subgame perfect equilibria of any finite repetition of the 
games. In order to determine the collusive prices, the joint profit functions must be 
established. Deriving this function and solving the resulting four first-order conditions 
simultaneously leads to the collusive prices in Table 2.  

Table 1 provides an overview of the specific parameterization used in three treaments. 
The differences between the treatments are limited to differences in the variables 

𝑎𝐴
𝑖 , 𝑎𝐴

𝑗
, 𝑎𝐵

𝑖  𝑎𝑛𝑑 𝑎𝐵
𝑗

. In other words, the treatments differ in the indirect network effects. 
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Table 1 - Parameter overview 

Treatment 𝐴 𝐵 𝑎𝐴
𝑖  𝑎𝐴

𝑗
 𝑎𝐵

𝑖  𝑎𝐵
𝑗

 𝑏𝐴 = 𝑏𝐵 𝑐𝐴 𝑐𝐵 
𝑐𝑅𝐴

= 𝑐𝑅𝐵 

symmetric 
(sym) 

10 2 0.6 0.8 0.1 0.5 0.3 0.5 

asymmetric 
(asym) 

10 2 0.6 0.4 0.7 0.984 0.1 0.5 0.3 0.5 

double 
asymmetric 
(d-asym) 

10 2 0.01 0.92 0.99 0.2 0.1 0.5 0.3 0.5 

 

Our study focuses on the investigation of price setting behavior. We seek to answer two 
specific research questions. First, do participants charge the equilibrium prices that can 
be derived from our theoretical model? Second, how is the price setting affected by the 
characteristics of the Nash equilibrium? We have designed three treatments, symmetric 
(sym), asymmetric (asym) and double-asymmetric (d-asym), with differing types of the 
Nash equilibrium by assuming different network indirect network effects. Table 2 
presents the prices in equilibrium for each platform and treatment. In Treatment sym both 
platforms face identical equilibrium prices. In treatment asym the optimal prices for both 
platforms are different, but the price structures are the same (relative low price for 
market side A and higher price for market side B).  In Treatment d-asym the price 
structure for platform i is different from platform j. This means that participants who have 
the role of running platform i have to charge a low price to market side A and a relative 
higher price to B. On the opposite, participants running platform j charge a high 

equilibrium price to market side A and a lower equilibrium price to B. Altogether, the task 
in treatment sym is supposed to be the easiest followed by treatment asym. Treatment d-
asym is supposed to be the most difficult treatment. 

Table 2: Nash equilibrium prices 

   

treatment 
sym 

treatment 
asym 

treatment 
d-asym 

   Nash Collusion Nash Collusion* Nash Collusion 

Price 

Platform 
i 

Group A 3.2 3.5 3.5 4.8 3.0 4.3 

Group B 7.0 14.4 6.8 14.3 9.0 17.9 

Platform 
j 

Group A 3.2 3.5 0.2 0.0 8.4 12.8 

Group B 7.0 14.4 11.2 20.0 0.2 4.8 

* Maximization with regard to a non-negativity condition, which we applied in the experiment according to which 
prices could not be negative. 

 

As stated above, one of our central research questions is whether the theoretical 
equilibrium prediction is consistent with the participants’ behavior in the experiment. 
Due to the (underlying) complex model, we conjecture that participants need some time 
for learning before they reach equilibrium behavior. This leads us to our first Hypothesis.  
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Hypothesis 1: Pricing behavior in all three treatments converges to the Nash equilibrium 

of the corresponding game.  

As already explained, the cognitive demands with regard to the learning abilities of 
participants differ between the treatments. As a consequence, learning should be simplest 
in the sym treatment and most difficult in the d-asym treatment. Treatments asym and d-
asym have yet another difficulty regarding the magnitude of one of the equilibrium prices, 
which is quite close to zero. In treatments asym und d-asym relative prices diverge 

extremely on platform j. Since we consider relative equilibrium prices 𝑝𝐴
𝑗

𝑝𝐵
𝑗

⁄  = 0.2/11.2 = 

1/56 and 𝑝𝐴
𝑗

𝑝𝐵
𝑗

⁄  = 8.4/0.2 = 42 as counterintuitive and harder to learn, we expect larger 

deviations for those prices whose equilibrium value is 0.2.  

Hypothesis 2: There will be treatment effects with respect to the convergence paths. (a) 
Treatment sym will converge faster than treatment asym, which in turn converges faster 
than treatment d-asym. (b) There will be larger deviations from equilibrium prices which 

have an equilibrium value close to zero (i.e., 𝑝𝐴
𝑗

= 0.2 in treatment asym and 𝑝𝐵
𝑗

= 0.2 in 

treatment d-asym).  

One of the major problems of learning equilibrium behavior consists in the underlying 
asymmetries of treatments asym and d-asym. In our experiment with partner matching, 
such asymmetries are particularly important if many participants exercise some kind of 
imitation learning. (Apesteguia, Huck, and Oechssler 2007) provide evidence for the 
relevance of imitation learning and that imitation is more pronounced when participants 
can observe the behavior and results of their immediate competitors. In our experiment, 
participants only learn their competitor’s behavior and profits but not the behavior of 
other participants in the same session. However, due to the asymmetries, the behavior of 
a platform’s competitor conveys little information regarding the efficient behavior of the 
platform itself. Therefore, we expect that there will be large differences in behavior 

between the treatments if imitation learning is widely applied. In turn, if there are large 
treatment effects, this may be due to imitation learning. 

Hypothesis 3: In the case of large treatment effects there will be a substantial part of 
participants whose behavior can be reconstructed by imitation learning. 

3. Experimental Design 

Our laboratory experiment was run at the economic laboratories at the Clausthal 
University of Technology2 (short: Cl) and the University of Göttingen3 (short Goe) using 
z-Tree (Fischbacher 2007). In total 278 participants, recruited using ORSEE (Greiner 
2004), took part in three different treatments, spread over thirteen sessions. An overview, 
containing number of sessions per laboratory and treatment can be found in  

Table 3. The average session took between 70 and 80 minutes and resulted in average 

payoffs4 of 16.91 €. 

 

                                                        

2 Clausthal Laboratory of Experimental Economics (ExECUTe) 
3 Göttingen Laboratory of Behavioral Economics (GLOBE) 
4 Average payoffs by treatment: 17.82€ (symmetric), 15.45 € (double asymmetric) and 17.18 € 
(asymmetric). 
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Table 3 - Overview sessions by treatment and laboratory 

Treatment Sessions # Groups 

Clausthal 

# Groups 

Göttingen 

# indep. obs 

Cl Goe 

sym 3 2 30 24 54 

asym 2 2 20 23 43 

d-asym  2 2 20 21 41 

 

The sessions were conducted following an identical protocol at both universities. 
Participants were welcomed and randomly allocated to computer terminals. Once 
everybody was seated, they were asked to read the printed instructions.5 Questions were 
answered individually. The instructions described the structure of the experiment and 

gave a qualitative explanation of how the prices chosen by the group members affect the 
demand for both market sides. An exact representation of the model was not included. 
After all participants finished reading the instructions, a questionnaire was used to check 
the understanding of key features of the experiment. Each question screen was followed 
by an answer screen, showing their own as well as the correct answer. Afterwards the 
treatment started. Participants were matched in groups of two and remained in this group 
for all 15 periods. Matched partners received no information about each other’s identities. 
Communication was not allowed.  

Each period consisted of two stages, the pricing stage and the profit overview. In the 
pricing stage, participants were asked to set a price for both market sides. Those prices 
could range from the lower bound of zero to the upper bound of twenty-five, while 
negative numbers were not allowed. To avoid negative quantities to be realized, our zTree 

program checked price combinations before progressing to the profit stage. If platform 𝑘 
(𝑘 ∈ 𝑖, 𝑗) charges prices that lead to negative quantities, the prices of platform k are 

automatically adjusted so that platform k faces zero demand on both market sides. 
Technically we achieve this quasi monopoly situation by adjusting prices to equations 

𝑝𝐴
𝑘 = 10 +

1

2
⋅ 𝑝𝐴

−𝑘 and 𝑝𝐵
𝑘 =

5

2
+

5

8
⋅ 𝑝𝐵

−𝑘 with 𝑘 ∈ 𝑖, 𝑗.6 If both platforms achieve negative 

quantities, the profits of both platforms are set to zero. We framed the market sides as 
“console”, reflecting the consumer or gamer side, and “license”, the producer or developer 
side. Additionally, a profit calculator was provided on a separate screen, which could be 
opened by clicking on the “test-calculator” button.7 It included two sliders for the 
platform’s own prices and two sliders for hypothetical prices of the competitor. To 
provide a better overview of the price effects, we additionally provided profits for prices 
close to the chosen price combination. A matrix on the lower half of the calculator screen 

showed profits for hypothetical platform prices ±0.1, ±0.2, and ±0.3. We limited the 
availability of the calculator to five minutes in the first two periods and reduced the 
timeout to three minutes from period three on, in order to limit the duration of the 
experiment. There was no timeout on setting the actual prices, though. After the prices 
were set, a text message appeared asking the participants to confirm their choices. Once 

                                                        

5 The instructions are provided in the Appendix. 
6 These equations apply to all three treatments for platform i and j. 
7 A depiction of the calculator screen can be found in the Appendix. 
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all participants had confirmed their decision, the profit stage started, informing 

everybody about their own as well as their group member’s prices and profits. The same 
information was provided in the pricing stage for past periods. At the end of the last 
period, participants were informed about their total cash payoff, which was followed by 
an (un-incentivized) questionnaire about their socio-economic background. Each 
experimental session was concluded by paying one participant at a time. 

4. Results 

4.1 Convergence toward equilibrium prices 

While the theory makes clear statements about where prices should converge to be 
mutually optimal (see Table 2), it is not a priori clear how well the theory describes actual 
human behavior. Therefore, we firstly check the development of prices on an aggregated 
data level.  Afterwards, we show some differences in individual behavior. 

The graphs in Figures 1, 2 and 3 present the median prices8 charged by the participants 
over periods.9 On the left sides of the Figures are the developments of prices for market 
side A while the right sides show prices for market side B. The solid lines illustrate the 

equilibrium levels. Because of the partner matching, we also included the dashed lines 
representing the (collusive) prices participants had to charge to maximize the group’s 
profit. This allows us to see if there was any collusive behavior. In Figures 2 and 3, due to 
the asymmetry, there are two solid and two dashed lines each. 

Figure 1 shows that in treatment sym median prices in later periods are relatively close to 
the equilibrium. However, median prices, charged to market side A are consistently too 
high and, from period 4 onwards, prices charged to market side B are too low. Given that 

equilibrium prices are 𝑝𝐴
𝑖 = 𝑝𝐴

𝑗
= 3.2 and 𝑝𝐵

𝑖 = 𝑝𝐵
𝑗

= 7 median prices are somewhat 

biased towards the middle. The large distance to the collusive price level of group B prices 

suggests that collusive behavior was of little relevance in treatment sym. 

Median prices of platform-i-participants in treatment asym tend to be too high but are 
near the equilibrium prices. However, median prices of platform-j-participants for market 

side A are clearly too high and prices for market side B were too low. Since all four prices 
must correspond to the equilibrium level this aggregated data view suggests that 
participants in treatment asym did not coordinate to the Nash-equilibrium.   

 

                                                        

8 We use median prices because the median is robust to outliers. However, mean and median are quite 
similar. 
9 We tested the null Hypothesis that mean prices charged by participants in Göttingen and Clausthal are 
equal by applying Wilcoxon–Mann–Whitney tests for the four prices in each treatment. We were not able 
to reject the null hypothesis at any level of significance lower than 9.8%. However, most test results lay 
clearly above this value. Therefore it should be reasonable that we pooled the observations collected in 
Göttingen and Clausthal.    
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Figure 1: Median prices over periods in treatment sym. 

 
Figure 2: Median prices over periods in treatment asym. 

Figure 2 also suggests that there is no collusive behavior in treatment asym. 



9 

Figure 3 shows that in treatment d-asym median prices are biased toward the middle. 

Nevertheless the prices seem to converge to the respective equilibrium prices. For a joint 
profit maximum, median prices are too low.  

 

 
Figure 3: Median prices over periods in treatment d-asym. 

As far as Hypothesis 1 is concerned, the development of median prices in treatment sym 
shows the most pronounced trend toward the Nash equilibrium, followed by the 
development in treatment d-asym. In treatment asym the deviations from the equilibrium 
of platform-j-participants are striking. With a pooled OLS-regression of the following 
model we test if prices converge to the respective equilibrium prices (for this purpose we 
use the deviations from the respective equilibrium price (dep)): 

𝑑𝑒𝑝𝑙
𝑘 = 𝛽𝑙,0

𝑘 + 𝛽𝑙,1
𝑘 ⋅

1

𝑝𝑒𝑟𝑖𝑜𝑑
+ 𝜖𝑙

𝑘 𝑤𝑖𝑡ℎ 𝑙 ∈ 𝐴, 𝐵 𝑎𝑛𝑑 𝑘 ∈ 𝑖, 𝑗  

If 𝛽𝑙,1
𝑘  is unequal to zero, 𝛽𝑙,1

𝑘 ⋅
1

𝑝𝑒𝑟𝑖𝑜𝑑
 goes against zero with increasing number of periods. 

Thus the model indicates that prices converge to the equilibrium level as long as the 
constant (𝛽𝑙,0

𝑘 ) is not significantly different from zero.10  We tested each price individually. 

The test statistics are reported in Table 4. It can be seen that in all treatments and for all 
prices the influence of the period is significantly different from zero. Consequently 𝛽𝑙,1

𝑘 ⋅
1

𝑝𝑒𝑟𝑖𝑜𝑑
 drops with increasing periods.   

                                                        

10 That means the models intercept is of interest. Therefore we use a pooled OLS regression although we 
have panel data. With a Hausman-test we checked if a random effects model is permitted. Since this is the 
case, pooled OLS is permitted, too (Cameron and Trivedi (2005)). To take into account the intra-group 
correlation we use cluster robust standard errors. 
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Table 4: Test of trend towards the equilibrium prices (OLS regression with cluster robust standard errors). 

treatment sym p
A
i  p

B
i  p

A

j
 p

B

j
 

period(-1) 
 7.202*** 

(0.754) 

 5.566*** 

(0.580) 

 7.987*** 

(0.904) 

 5.029*** 

0.836 

constant 
 0.269 

(0.219)* 

-1.252*** 

(0.303) 

 0.188 

 (0.222) 

-1.167*** 

(0.306) 

observations 810 810 810 810 

F-Stat 91.29 92.15 78.09 36.21 

R-squared 0.332 0.169 0.316 0.136 

treatment asym p
A
i  p

B
i  p

A

j
 p

B

j
 

period(-1) 
 5.892*** 

(0.834) 

 2.596*** 

(0.872) 

 8.360*** 

(0.963) 

 3.387*** 

(0.949) 

constant 
 0.250 

(0.281) 

 0.197 

(0.333) 

 2.644*** 

(0.363) 

-3.192 

(0.485) 

observations 645 645 645 645 

F-Stat 49.94 8.856 75.34 12.73 

R-squared 0.220 0.0369 0.284 0.0498 

treatment d-asym p
A
i  p

B
i  p

A

j
 p

B

j
 

period(-1) 
 4.557*** 

(0.757) 

 3.455*** 

(0.781) 

 4.856*** 

(0.930) 

 5.993*** 

(1.142) 

constant 
 1.121** 

(0.328) 

-2.026*** 

(0.519) 

-1.936*** 

(0.376) 

 2.286*** 

(0.415) 

observations 615 615 615 615 

F-Stat 36.28 19.56 27.25 27.56 

R-squared 0.121 0.0451 0.132 0.118 

Standard errors in parentheses 

* p < 0.05, ** p< 0.01, *** p< 0.001 

 

In treatment sym prices for side A converge to the equilibrium level, so do the prices of 
platform-i-participants in treatment asym. In treatment d-asym all four constants are 

significantly different from zero. Since all four prices have to reach the equilibrium level 
in order to achieve a mutually optimal state, these tests suggest that there is no overall 
convergence toward the equilibrium in any treatment. 

In this context the interdependencies between the prices are important and the missing 
consideration of these interdependencies is a shortcoming of the regression and of the 
descriptive Figures 1, 2 and 3. A participant may charge the equilibrium price for one side 
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and a price for the second side that is tremendously far away from the equilibrium level. 

Figures 1, 2 and 3 do not mirror such possible situations.  

However, we are interested if participants play equilibrium prices in later periods more 
often. For this purpose we calculate the logit quantal response equilibrium (LQRE) (for 
the theoretical basics see Goeree, Holt, and Palfrey 2016 and McKelvey and Palfrey 1995). 
For this calculation we use the normal form of the game, which has been adjusted by the 
following points: 

 Participants in the treatments had to set two prices between 0 and 25 and one 
decimal place. Thus each type has got 63001 strategies. Consequently the normal 
form of the game is a 63001x63001 matrix. Although we used a computer algebra 
system the dimension of the matrix led to problems in computing. Therefore we 
calculated the LQRE for prices between 0 and 25 and a step size of 0.5 (each type 
of participant has got 2601 strategies). For our intended purpose this lack of 

accuracy should not be crucial. 
 In the treatments losses (because of negative quantities) were excluded. If one 

participant charged prices (given the prices of the second participant in the group) 

leading to negative quantities this participant gets zero profit and the second 
participant gets the monopoly profit. If both participants had negative quantities 
both players earned zero profits. We have also taken this aspect into account in the 
calculation of the LQRE.  

We used the variant in which each strategy j of a subject i is chosen with the probability 

𝜋𝑖𝑗 =
𝑒𝜆𝑥𝑖𝑗(𝜋)

∑ 𝑒𝜆𝑥𝑖𝑘(𝜋)𝑛
𝑘=1

 𝑤𝑖𝑡ℎ 𝑥𝑖𝑗(𝜋): 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡𝑠 

That means, if 𝜆 equals zero each strategy is chosen with the same probability. If 𝜆 goes 

against ∞ the probability of playing the Nash-strategy goes against 1. Table 511 illustrates 
the key findings of the LQRE.  

In the “random-columns” there are the log likelihoods that result when each strategy is 
chosen with the same probability. The first entries in the “LQRE-columns” are the log 
likelihoods that result in the best possible fit of the aggregate data. The 𝜆s in brackets are 
the corresponding values that lead to these maximum likelihoods. Therefore the 
“random-columns” and the first entries in the “LQRE-columns” give impressions of the 
accuracy of the LQRE. The comparisons between these log likelihoods show that the LQRE 
represents the data better than a model that implies a decision-maker that randomizes 
uniformly.  

However, more interesting are the 𝜆-values in the LQRE-columns. While the absolute 
values cannot be interpreted, the developments in the rows allows inferences with regard 

to the price-setting behavior. An increasing 𝜆-value implies that in later periods more 
charged prices equal the equilibrium prices, respectively, are closer to the equilibrium 
than in earlier periods. Since both prices were considered simultaneously in this 

                                                        

11 For the calculation we used a uniform distribution as initial distribution. Computing was stopped when 
all differences of all probabilities between iteration 𝑡 and 𝑡 − 1 were ≤ 0.0000001. To find the maximum 
likelihoods some kind of bisection method was used. 



12 

evaluation the increasing 𝜆-values in treatment sym and asym suggest learning and a 

tendency to the equilibrium.     

 

Table 5: Key findings of the LQRE. 

Sum of log 
likelihoods 

random 
sym 

LQRE  
sym 

random 
asym 

LQRE 
asym 

random  
d-asym 

LQRE  
d-asym 

Periods 2-15 -11,889.84 
-9,429.68 
(λ = 0.04) 

-9,467.84 
-7,548.82 
(λ = 0.04) 

-9,027.47 
-7,907.58 
(λ = 0.04) 

Periods 11-
15 

-4,246.37 
-3,076.05 
(λ = 0.075) 

-3,381.37 
-2,598.04 
(λ = 0.05) 

-3,224.10 
-2,777.96 
(λ = 0.05) 

Periods 13-
15 

-2,547.82 
-1,813.72 
(λ = 0.085) 

-2,028.82 
-1,539.88 
(λ = 0.06) 

-1,934.46 
-1,672.53 
(λ = 0.05) 

Period 15 -849.27 
-584.07 
(λ = 0.115) 

-676.27 
-507.25 
(λ = 0.07) 

-644.82 
-553.91 
(λ = 0.05) 

 

In treatment d-asym there is almost no increase of the 𝜆-value. Thus on the aggregate data 
level we cannot find evidence for learning in treatment d-asym. At first glance, this finding 
seems to contradict the development of prices in Figure 3. However, this apparent 
contradiction can be explained by the fact that in Figure 3 the prices for the two sides A 
and B are considered individually and the LQRE is calculated with strategies that include 
both prices simultaneously. Consequently the developments in Figure 3 are only possible 

if there are participants who charged prices to one side that converge to the equilibrium 
level and prices for the second side that diverge from the equilibrium level over periods. 
Figure 4 illustrates this. In this Figure the sum of the absolute deviations from the 
respective equilibrium prices of each participant are shown in a boxplot. The declining 
position of the 25%-quantile implies that in later periods some participants succeeded in 
setting prices close to the equilibrium level. However, with an almost constant median 
and a slightly increasing position of the 75%-quantile, other participants have moved 
away from the equilibrium level at least on one side of the market. 
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Figure 4: Absolute deviations (sum of 𝑝𝐴 and 𝑝𝐵) from the equilibrium level over periods. 

 

4.2 Classification of individual prices 

Overall, this shows that there must have been significant differences at the individual 
level. Therefore, we have classified the individual decisions of all participants according 
to the following criteria that are illustrated in Figure 5.  

 

 
Figure 5: Classification of individual decisions. 

First of all, we classify prices as Nash-equilibria when all prices (of both players in one 
pairing) lay in the so-called “Nash-corridor”. For our classification, the Nash corridor in 
Figure 5 has three different widths. In the strictest demarcation all four prices in one 
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pairing must be equal to the equilibrium prices ± no more than 0.5. Building on this, we 

have two further demarcations in which prices must be equal to the equilibrium prices ±] 
0.5, 1], respectively, ±] 1, 1.5]. That means the first three parts in the Figures 6, 7 and 8 
are cumulative. Moreover, since we use all four prices in the groups, the height of these 
parts must be equal for platform i and platform j. For all further classifications, only the 
two prices of each participant are taken into account. The classification “biased to the 
mean” is chosen if both prices of a participant lay between the upper bound of the Nash-
corridors12 of the relative lower equilibrium price and the lower bound of the Nash-
corridor of the relative higher equilibrium price. Furthermore, the price structure has to 
be “correct” in these cases. This means that relative prices must be in line with the price 
structure in equilibrium. Cases in which participants charged prices with the “wrong” 
price structure were classified as “inverse prices”. Next, we use the classification “bias-to 
boundary-values” if the price structure is correct, one price is above the Nash-corridor 
and simultaneously the other one is below the Nash-corridor. That means charged prices 

have to be closer to 0 and 25 than prices in the equilibrium are. We call prices “too high” 
if both prices lie above the upper bound of the Nash-corridor of the related equilibrium 
prices. If a participant charged equal prices for side A and side B we choose “uniform 

prices” as classification. “Other” includes three cases: (1) one player has prices in the 
Nash-corridor, while the second player in the pairing has his prices outside of our 
definition of equilibrium prices. (2) One player has one price in the corridor and the 
second price lays outside the corridor. (3) Too low prices, which have occurred only very 
rarely. 

Against the background of the importance of the price structure we consider inverse 
prices and uniform prices to be the clearest violations of the behavior that is derived 
theoretically.  

                                                        

12 This refers to the size 3 Nash-corridors, which is done to have a clearly defined separation. 
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Figure 6: Proportion of the classified decisions in treatment sym. 

 
Figure 7: Proportion of the classified decisions in treatment asym. 
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Figure 8: Proportion of the classified decisions in treatment d-asym. 

Figures 6, 7 and 8 show that the proportion of price decisions that can be classified as 
uniform prices and inverse prices tend to decrease. This can be evaluated in favor of the 
theory. Nonetheless even in period 15, especially in treatment d-asym, several inverse 
prices were charged by the participants. 

Another interesting aspect is the development of decisions that can be classified as 
equilibrium prices. First of all, it is noticeable that the proportion of equilibrium prices 
increases most markedly in treatment sym. Furthermore, it is remarkable that in 
treatment d-asym some cases can be classified as equilibrium, whereas in treatment asym 
hardly any cases can be classified as equilibrium, although the LQRE suggests learning in 
treatment asym and no learning in treatment d-asym. Therefore this is a case in which an 
evaluation based on aggregated data does not reveal all important aspects. Specifically, it 
must be stated that although there was an overall tendency to the equilibrium in 
treatment asym the deviations from the equilibrium prices must be large. In contrast, the 
prices of the majority of the participants in treatment d-asym do not converge to the 
equilibrium or even move away from the equilibrium, but some pairings actually achieve 
the mutually optimal state. 

Conclusion of Subsections 4.1 and 4.2: Considering the entire evaluation so far, it is not 
possible to make a definitive judgement regarding Hypothesis 1. In all treatments we 
found some evidence for convergence to the Nash equilibrium. However, in no treatment 
the equilibrium was reached and the convergence differs markedly between treatments. 
In treatment sym, the trend towards equilibrium is the most pronounced. When 
comparing treatment asym and treatment d-asym a judgement can only be made if it has 
been clarified whether the average behavior or individual behavior is used as a criterion. 
Gigerenzer and Brighton (2016) state: “Do not test what the average individual does, 
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because systematic individual differences may make the average meaningless.” 

(Gigerenzer and Brighton 2016, S. 22). Nevertheless, averages (and medians) are 
regularly used to evaluate results. We don’t want to answer the question what the correct 
way is. In addition, we do not want to make a final judgement whether it is better when 
the average converges to equilibrium but remains far from it (as in treatment asym) or 
the case in which some participants actually reach the equilibrium and the majority of 
participants miss the equilibrium (treatment d-asym). Therefore it is also difficult to give 
a final answer regarding Hypothesis 2. Once again, our results suggest that symmetry 
favors convergence. But it is not clear whether prices converge more quickly in the case 
of asymmetry or double asymmetry. 

Result 1: Summarizing, we reject Hypothesis 1. Although median prices, viewed in isolation, 
tend towards the respective equilibrium level in all treatments, the complete equilibrium, 
consisting of four prices, is rarely realized.  

Result 2a: We reject Hypothesis 2 (part a). Our analysis suggests that learning is simplest in 
the symmetric treatment. However, we find no evidence that learning is more difficult under 
double asymmetry than under simple asymmetry.   

4.3 Equilibrium prices close to the lower bound 

There is another feature in the asymmetric and double-asymmetric treatment worth 
mentioning. Participants running platform j had to charge a price of 0.2 to one of the sides 
in equilibrium (participants could set prices between 0 and 25). That means one price was 
close to the lower bound. Equilibrium prices of participants of role i were more centered. 
Altogether, we supposed that participants who had to charge a price close to the bound 
could have bigger difficulties with finding the profit maximizing price structure.  

Therefore, we tested the null Hypothesis that prices charged by participants running 

platform i and j in the asymmetric treatment and double-asymmetric treatment have the 
same absolute deviation from the corresponding equilibrium levels by applying a 
Wilcoxon Matched-Pairs Signed-Ranks Test.13 Table 6 reports the mean absolute 
deviations from the respective equilibrium, the z-values of the test, the corresponding p-
values and Pearson’s r. We report the results for all periods, the last five periods and the 
last three periods. Table 6 must be read column by column. 

There are significant differences between the participants in both treatments. In the 
double-asymmetric treatment over all 15 periods the platform j prices for market side A 
are closer to the equilibrium prices than the platform i prices for market side A. Measured 
by Pearson’s r the significant effects are small to medium.14 For side B, the significant 
difference in the deviations vanishes toward the end of the experiment. For side A, the 
significant difference remains. Considering that participants running platform j had to 
charge a price of 0.2 to side B, these results suggest that the task to charge a price close to 

the bound was not a problem in the double-asymmetric treatment.  

  

                                                        

13 We use the Wilcoxon Matched-Pairs Signed-Ranks Test due to the dependency of the two prices which 
results from the partner matching. The tests were conducted using subject means. 
14 We use Cohen‘s (1992) classification with r = 0.1 for a small effect, r = 0.30 for a medium effect and r = 
0.50 for a large effect. 
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Table 6: Testing for identical deviations from equilibrium 

 

In the asymmetric treatment the deviations from the equilibrium prices of platform j were 
significantly greater on both market sides over the whole experiment, over the last five 
periods and over the last three periods.   
However, the difference between the asymmetric and the double-asymmetric treatment 
does not allow for clear conclusions with respect to the importance of the relative prices 
in equilibrium. Consequently it is also unclear whether the border position of one 
equilibrium price impedes the convergence to the equilibrium.  

Given that prices charged by participants running platform i and participants running 
platform j do not conform to equilibrium prices the results in Table 6 do not provide 

information with regard to profit maximizing behavior. It is possible that participants give 
best-responses to the non-equilibrium prices of the second participants in the respective 
pairing. Therefore we tested the null Hypothesis that prices charged by participants 
running platform i and j have the same absolute deviation from the best-responses to the 
prices in the prior period. Due to the same reason as before we again use the Wilcoxon 
Matched-Pairs Signed-Ranks Test. To ensure that the test results give an impression of 
profit maximizing behavior we compare the sums of deviations (both prices must be best-
responses to maximize the own payoff). As there are no best-responses to the prior period 
in the first period the first column of each treatment covers the periods 2-15. Table 7 
reports the results. 

In all three treatments there are significant differences between participants running 
platform i and j. In the symmetric and double-asymmetric treatment the deviations of 

platform-j-participants are smaller. However, in these two treatments the effects are 
small to medium. That means, the actual extent of the differences are rather small. In the 
asymmetric treatment the prices charged by participants running platform i are 
significantly closer to the best-responses and the effects are large. Thus only few prices 
charged by platform-j-participants are best-responses.  
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Table 7: Testing for identical deviations from best-responses to prior period 

 

Conclusion of Subsection 4.3: All things considered it can be concluded that participants 
running platform j in the asymmetric treatment got the biggest problems finding the best 
response prices for side A and side B. A possible explanation might be the combination of 
the border position of one equilibrium price and the comparatively weaker incentives for 
best-responses against imitation as discussed previously.  

Result 2b: We reject Hypothesis 2 (part b). We do not find sufficient evidence that an 
equilibrium value close to zero leads to larger deviations from equilibrium prices. 

4.4 Decision heuristics 

Further examination of the individual decisions shows that there are many price decisions 
that can be reproduced by two simple explanations: 

1. Best responses to previous period prices of the other player in the pairing. 
2. Imitation of the other player's prizes if the other player was more successful.   

Figure 9 is an example of 1. The dots show the actual prices charged by the participants 
in treatment d-asym session 4 that formed group 3. The connected circles indicate what 
prices participants should have chosen to give best responses to the respective other's 
previous period prices. It is striking that the prices charged by the participants are 
identical or at least very similar to these hypothetical prices. In consequence participants 
in this group reached the mutual optimal equilibrium state. 
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Figure 9: Actual price decisions in the experiment (dots) and prices that participants should have charged if they wanted 
to give best responses to the prices of the previous period (connected circles) in treatment d-asym session 4 group 3. The 
solid lines show the equilibrium prices. 

Figure 9 is a prime example of a pairing in which both players give best responses. Figure 
10 is some kind of counterexample. While the prices of platform i are still quite close to 
the best responses, prices of platform j do not fit to this explanation at all. In fact, this is a 

case of an inverse price structure, so that platform j achieves a significantly lower payoff 
than the best-response-player.  

In Figure 11 is the same group as in Figure 10. The difference is, that in Figure 11 the 
connected circles indicate the prices participants should have charged if they follow the 
simple rule “imitate-if-better”. In this explanatory approach, we assume that one 
participant takes over the prices of the other participant if his or her own profit is lower. 
Otherwise, he keeps his prices. Even though not all dots and circles are perfectly identical, 
it can be seen that the observations of platform j are much better represented by 
imitation. Thus the comparison between these two Figures suggests that the platform-j-
participant in this pairing imitates the more successful platform-i-participant. In the next 
chapter we discuss why participants might have imitated and to what extent imitation is 
a useful heuristic in the treatments.  
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Figure 10: Actual price decisions in the experiment (dots) and prices that participants should have charged if they wanted 
to give best responses to the prices of the previous period (connected circles) in treatment d-asym session 2 group 9. The 
solid lines show the equilibrium prices. 

 
Figure 11: Actual price decisions in the experiment (dots) and prices that participants should have charged if they followed 
the rule “imitate-if-better” (connected circles) in treatment d-asym session 2 group 9. The solid lines show the equilibrium 
prices. 
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Figure 12 shows how many price decisions can be classified as best-responses or 

imitation. For this classification the actual observations and the theoretical values do not 
have to be exactly identical. Instead we classified a decision as best response/imitation 
when the absolute difference between the actual charged price and the price given by the 
respective explanation is ≤ 0.5 for both prices of a participant.  

Not all decisions can be clearly assigned. For example, many observations in the left sides 
of Figures 10 and 11 can be classified as both best responses and imitation. Nonetheless, 
Figure 12 shows that there are many cases of imitation that cannot be simultaneously 
classified as best responses. The most striking part of Figure 12 is the development of the 
platform-j-participants in treatment asym. These participants seem to have imitated very 
often and have given almost no best responses. A result already shown in Table 7. 
However, in the other treatments there are also several cases of imitation. We will discuss 
this finding in more detail in the following chapter. 

Result 3: We cannot reject Hypothesis 3. Actual many pricing decisions can be reconstructed 
by imitation learning. 

 
Figure 12: Proportion of all decisions (without period 1) that can be classified as best responses or imitation. 

  

5. Discussion 

In our treatments there are, if at all, only weak trends to the respective equilibria. 
However, in favor of theory we observe that the number of extensive violations in terms 
of theory (e.g. inverse price structure, uniform prices) decrease. In this context, the 
finding that many observations can be classified as imitation is noTable. According to 
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Gigerenzer (2002), Gigerenzer and Selten (2002) and Gigerenzer and Brighton (2016) 

human decision-makers rather use heuristics instead of optimization when they face 
constrains in time and/or cognitive performance. Imitation, respectively, the decision rule 
“imitate-if-better” is such a simple heuristic that was apparently used – even though the 
calculator in the experimental setting facilitated giving best responses to prices in prior 
periods. 

5.1 Is imitation useful heuristic in our experiment?  

Duersch, Oechssler, and Schipper (2012) demonstrate conditions under which imitation 
is “unbeaTable”. They highlight that the only class of symmetric two-player games in that 
“imitate-if-better” can be exploited are any generalizations of the rock-paper-scissor 
game. However, our symmetric treatment falls under the conditions under which an 
exploitation of this heuristic is impossible. That means, even a fully rational, forward-
looking participant, without any constrains in time and computational capacities who is 

aware that he is playing against an imitator cannot achieve a significantly higher15 profit 
(see Feldman, Kalai, and Tennenholtz 2010; Duersch, Oechssler, and Schipper 2012). In 
our symmetric treatment prices converge to the Nash equilibrium if an imitator and a 

best-response-player is matched. Moreover, if two imitators are matched prices also 
converge to the equilibrium if there is a minimum of exploration and if players want to 
become better off in absolute terms.16   
Consequently, in the symmetric treatment “imitate-if-better” was a suiTable heuristic if 
participants wanted to maximize their individual profits. Therefore, there is a match 
between this (obviously popular) decision rule and the experimental environment in the 
symmetric treatment. Consequently, imitators act ecologically rational in the sense of 
Gigerenzer (2002) and Gigerenzer and Brighton (2016). Of course, under this definition 
using the calculator giving best responses on prior period prices is also evolutionary 
viable. Accordingly, best-response-players are ecologically rational, too.  

In the asymmetric and double-asymmetric treatment the heuristic “imitate-if-better” is 
not suiTable to increase individual profits. When a best-response-player and an imitator 
are matched the best-response-player obtains a considerably higher profit (measured in 
percent of the equilibrium profit). If two imitators are matched, the outcome is not a priori 
clear. However, it is not possible that both imitators reach their respective profit 
maximum. Nevertheless, a number of price-settings can be reconstructed by our 
definition of imitation.  

Interestingly, the proportion of imitators in the double-asymmetric treatment is smaller 
than in the asymmetric treatment. This is striking since we consider the task in the 

                                                        

15 In a Cournot oligopoly setting Schipper (2009) shows that imitators can even outperform best-
response-players. 
16 Vega-Redondo (1997), Schipper (2003) and Apesteguia, Huck, and Oechssler (2007) show for several 
games that imitation can lead to competitive outcomes and not to Nash equilibria if small mistakes are 
allowed. Crucial for this finding are the assumptions that players are interested in relative payoffs and that 
spiteful behavior is possible. That means, a player who suffers less from an adjustment towards the 
competitive outcome than the opponent(s) would do this adjustment due to the relative better result. As 
the spiteful player is considered as new benchmark, imitators are expected to follow this player towards 
the competitive outcome level. Using the same line of argumentation, Apesteguia, Huck, and Oechssler 
(2007) suggest for a simple 3-player Cournot game that competitive outcomes become more likely if 
players can imitate their immediate competitors.  However, we do not assume (and did not find evidence) 
that players are only interested in relative outcomes. 
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double-asymmetric treatment as the most complicated one. Hence, it would be reasonable 

to expect that participants use the simple “imitate-if-better”-heuristic more frequently 
under double-asymmetry. However, Smith (2003), Haltiwanger and Waldman (1985) and 
Fehr and Tyran (2008) stress the importance of market institutions and the strategic 
environment. While under some institutions/environments convergence towards the 
equilibrium is encouraged, other institutions and environments are less helpful. In our 
context imitation causes bigger financial losses in the double-asymmetric treatment than 
in the asymmetric treatment. These bigger losses can be considered as hints for 
participants in the double-asymmetric treatment that imitation is not expedient. That 
means participants can exploit the structures of information in the environment 
(Gigerenzer 2002; Gigerenzer and Brighton 2016) of the double-asymmetric treatment. 
These stronger incentives for best-responses against imitation can potentially explain 
some of our results. However, as we have shown in the previous chapter, the majority of 
the participants in the double-asymmetric treatment was not able to charge optimal 

prices and several participants have even worsened in the course of the periods. 
Nevertheless, we expect that with more periods the suboptimal “imitate-if-better”-
heuristic would disappear in the asymmetric and in the double-asymmetric treatment. 

Furthermore, as the higher complexity in the double-asymmetric treatment comes along 
with stronger incentives we would expect that imitation should decline faster in the 
double-asymmetric treatment than in the asymmetric treatment. This does not 
necessarily imply that the speed of convergence towards equilibrium is higher in the 
double-asymmetric treatment (Hypothesis 2). It is also possible that participants switch 
from “imitate-if-better” to another suboptimal heuristic. However, participants who 
abandon imitation should have recognized that the optimal price structures differ 
between platforms 

5.2 External validity 

Finally, we want to discuss the implications of our empirical findings for real world two-
sided markets and for competition policy. First, we have to assert that our experiment 
provides – at best – very limited support for the standard equilibrium theory of two-sided 
markets. On the whole, the strategic interdependencies in two-sided markets are much 
more complicated than those in markets for standard consumption goods. Simple but 
effective learning strategies such as imitation may not work in platform markets so that 
it is uncertain whether Nash equilibria are reached at all. With respect to the concept of 
ecological rationality Vernon Smith (2003) emphasizes that rationality is often embodied 
in the institutions of social interaction. Our data suggest that the standard rules of market 
interaction which work so well in one-sided markets may not work as well in two-sided 
markets. At the least, learning processes take more time than in standard markets.  

Second, however, we have to take into account that firms may invest much more time and 

resources into price setting in real world two-sided markets than the participants in our 
experiment. Yet even if they hire excellent experts, those researchers may lack a reliable 
knowledge basis regarding the structure of the market. In addition, many two-sided 
markets are highly innovative and provide numerous innovations in small intervals of 
time (Evans and Gawer 2016). In this case relying on data from the past may lead to 
serious mistakes in actual business policy.  

Taken together, our conclusion is that it remains quite unclear whether the equilibrium 
theory of two-sided markets covers the most important features of market behavior. 
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Acknowledging our limited understanding of two-sided markets further implications for 

competition policy may arise. First, there is uncertainty whether current market prices 
represent strategic behavior, competitive equilibrium behavior, or price setting in 
disequilibrium (Hayek 1989). Second, socially optimal prices have only been derived for 
restrictive assumptions (Rochet and Tirole 2003; Armstrong 2006; Weyl 2009, 2010) so 
that we do not have reliable characteristics of socially optimal states. Given this lack of 
knowledge, our experiment advises competitive authorities to behave very cautiously. In 
particular, they should avoid extreme punishments of ways of behavior that we only 
partially understand.  

6. Conclusion  

Participants in our laboratory experiment struggled to find the equilibrium prices for the 
two sides of the market. This is certainly due the high complexity of the task. It is not only 
a matter of setting a second price, but also that interdependencies must be taken into 

account when choosing the two prices. For example, if the price for market side A is too 
high, the platform will obviously lose customers from market side A. Since both market 
sides are connected through indirect network effects, the platform will also lose demand 

on market side B. This in turn reduces the attractiveness of the platform for market side 
A, so that it can be expected that the platform under consideration will lose more 
customers on market side A (and so on). If there is a competitor, suboptimal pricing is 
even more detrimental since each costumer that switches to the competitor leads to a 
higher attractiveness of the competitor for the second market side. All in all, participants 
were not able to charge optimal prices within the 15 periods of the experiment.  

From a behavioral point of view the pricing decisions of many participants are well 
comprehensible. Since the complexity of the task was high, the participants used simple 
heuristics instead of optimization. The more sophisticated participants tend to use the 

calculator and give best responses to the prior-period prices of the competitor. However, 
our investigation shows that imitating a more successful competitor was even more 
popular. Although this imitation heuristic is quite naive it works very well in symmetric 
structures like those given in our treatment sym. Under asymmetric structures imitation 
leads to poor results and a more sophisticated competitor might exploit imitation. As one 
might expect, the imitation heuristic was given up the faster, the more negative the 
consequences were. Most negative were the consequences in treatment d-asym, which we 
consider to be the most complicated of our three treatments. From this we conclude, that 
the complexity of the task has two effects. On the one hand, it makes finding the optimal 
pricing more difficult so that, on average, we find prices that are further away from 
optimal prices. On the other hand, higher complexity leads to stronger signals of the 
dysfunctionality of imitating behavior so that, on an individual level, the equilibrium is 
reached in more markets. 

Altogether, the suboptimal pricing in our experiment is mainly driven by the complexity 
of the strategic environment. A central question is how well the popular heuristics fit to 
the incentives given by the strategic environment.     
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Appendix 

Calculation of theoretical solutions 

Our four initial demand functions  

𝑛𝐴
𝑖 = 𝐴𝑖 − 𝑐𝐴

𝑖 ⋅ 𝑝𝐴
𝑖 + 𝑐𝑅𝐴 ⋅ (𝑝𝐴

𝑗
− 𝑝𝐴

𝑖 ) + 𝑎𝐴
𝑖 ⋅ 𝑛𝐵

𝑖 + 𝑏𝐴
𝑖 ⋅ 𝑛𝐴

𝑖  

𝑛𝐴
𝑗

= 𝐴𝑗 − 𝑐𝐴
𝑗

⋅ 𝑝𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅ (𝑝𝐴
𝑖 − 𝑝𝐴

𝑗
) + 𝑎𝐴

𝑗
⋅ 𝑛𝐵

𝑗
+ 𝑏𝐴

𝑗
⋅ 𝑛𝐴

𝑗
 

𝑛𝐵
𝑖 = 𝐵𝑖 − 𝑐𝐵

𝑖 ⋅ 𝑝𝐵
𝑖 + 𝑐𝑅𝐵 ⋅ (𝑝𝐵

𝑗
− 𝑝𝐵

𝑖 ) + 𝑎𝐵
𝑖 ⋅ 𝑛𝐴

𝑖 − 𝑏𝐵
𝑖 ⋅ 𝑛𝐵

𝑖  

𝑛𝐵
𝑗

= 𝐵𝑗 − 𝑐𝐵
𝑗

⋅ 𝑝𝐵
𝑗

+ 𝑐𝑅𝐵 ⋅ (𝑝𝐵
𝑖 − 𝑝𝐵

𝑗
) + 𝑎𝐵

𝑗
⋅ 𝑛𝐴

𝑗
− 𝑏𝐵

𝑗
⋅ 𝑛𝐵

𝑗
 

can be rearranged simultaneously to get the demand functions that only depend on the 
prices: 

𝑛𝐴
𝑖  =

(𝑐𝑅𝐴 ⋅  (𝑝𝐴
𝑖 − 𝑝𝐴

𝑗
) − 𝐴𝑖 + 𝑐𝐴

𝑖 ⋅  𝑝𝐴
𝑖 ) ⋅  𝑏𝐵

𝑖 + (𝑐𝑅𝐵 ⋅  (𝑝𝐵
𝑖 − 𝑝𝐵

𝑗
) − 𝐵𝑖 + 𝑐𝐵

𝑖 ⋅  𝑝𝐵
𝑖 ) ⋅  𝑎𝐴

𝑖 + 𝑐𝑅𝐴 ⋅  (𝑝𝐴
𝑖 − 𝑝𝐴

𝑗
) − 𝐴𝑖 + 𝑐𝐴

𝑖 ⋅  𝑝𝐴
𝑖

(−1 + 𝑏𝐴
𝑖 ) ⋅  𝑏𝐵

𝑖 + 𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖

 

𝑛𝐴
𝑗

 

=
(𝑐𝑅𝐴 ⋅  (𝑝𝐴

𝑗
− 𝑝𝐴

𝑖 ) −  𝐴𝑗 + 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗
) ⋅  𝑏𝐵

𝑗
+ (𝑐𝑅𝐵 ⋅  (𝑝𝐵

𝑗
− 𝑝𝐵

𝑖 ) − 𝐵𝑗 + 𝑐𝐵
𝑗

⋅  𝑝𝐵
𝑗

) ⋅  𝑎𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅  (𝑝𝐴
𝑗

− 𝑝𝐴
𝑖 ) − 𝐴𝑗 + 𝑐𝐴

𝑗
⋅  𝑝𝐴

𝑗

(−1 + 𝑏𝐴
𝑗
) ⋅  𝑏𝐵

𝑗
+ 𝑎𝐴

𝑗
⋅  𝑎𝐵

𝑗
− 1 + 𝑏𝐴

𝑗
 

𝑛𝐵
𝑖  =

(𝑐𝑅
𝐵 ⋅  (𝑝𝐵

𝑗
− 𝑝𝐵

𝑖 ) + 𝐵𝑖 − 𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 ) ⋅  𝑏𝐴
𝑖 + (𝑐𝑅𝐴 ⋅  (𝑝𝐴

𝑖 − 𝑝𝐴
𝑗

) − 𝐴𝑖 + 𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖 ) ⋅  𝑎𝐵
𝑖 + 𝑐𝑅𝐵 ⋅  (𝑝𝐵

𝑖 − 𝑝𝐵
𝑗

) − 𝐵𝑖 + 𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖

(1 + 𝑏𝐵
𝑖 ) ⋅  𝑏𝐴

𝑖 + 𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 − 𝑏𝐵
𝑖

 

𝑛𝐵
𝑗

 

=
(𝑐𝑅𝐵 ⋅  (𝑝𝐵

𝑖 − 𝑝𝐵
𝑗

) + 𝐵𝑗 − 𝑐𝐵
𝑗

⋅  𝑝𝐵
𝑗

) ⋅  𝑏𝐴
𝑗

+ (𝑐𝑅𝐴 ⋅  (𝑝𝐴
𝑗

− 𝑝𝐴
𝑖 ) − 𝐴𝑗 + 𝑐𝐴

𝑗
⋅  𝑝𝐴

𝑗
) ⋅  𝑎𝐵

𝑗
+ 𝑐𝑅𝐵 ⋅  (𝑝𝐵

𝑗
− 𝑝𝐵

𝑖 ) − 𝐵𝑗 + 𝑐𝐵
𝑗

⋅  𝑝𝐵
𝑗

(1 + 𝑏𝐵
𝑗

) ⋅  𝑏𝐴
𝑗

+ 𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 − 𝑏𝐵
𝑗

 

In the sake of ease we waive any costs. Therefore the profit of platform 𝑖 is given by 𝑛𝐴
𝑖 ⋅

𝑝𝐴
𝑖 + 𝑛𝐴

𝑖 ⋅ 𝑝𝐴
𝑖 : 

Π𝑖

=  −𝑝𝐴
𝑖

⋅
𝑎𝐴

𝑖 ⋅  𝐵𝑖 − 𝑎𝐴
𝑖 ⋅  𝑐𝐵

𝑖 ⋅  𝑝𝐵
𝑖 + 𝑎𝐴

𝑖 ⋅  𝑐𝑅
𝐵 ⋅  𝑝𝐵

𝑗
− 𝑎𝐴

𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 + 𝐴𝑖 − 𝑐𝐴

𝑖 ⋅  𝑝𝐴
𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
− 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
− 𝑏𝐵

𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 + 𝑏𝐵

𝑖 ⋅  𝐴𝑖  − 𝑏𝐵
𝑖 ⋅  𝑐𝐴

𝑖 ⋅  𝑝𝐴
𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖
− 𝑝𝐵

𝑖

⋅
𝐴𝑖 ⋅  𝑎𝐵

𝑖 − 𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 + 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 − 𝑏𝐴

𝑖 ⋅  𝐵𝑖 + 𝑏𝐴
𝑖 ⋅  𝑐𝐵

𝑖 ⋅  𝑝𝐵
𝑖 − 𝑏𝐴

𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

+ 𝑏𝐴
𝑖 ⋅ 𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖 ⋅  𝑎𝐵
𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
⋅  𝑎𝐵

𝑖 + 𝐵𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖  

Analogously the profit of platform j is given by 𝑛𝐴
𝑗

⋅ 𝑝𝐴
𝑗

+ 𝑛𝐴
𝑗

⋅ 𝑝𝐴
𝑗
: 

Π𝑗

=  −𝑝𝐴
𝑗

⋅
𝑎𝐴

𝑗
⋅  𝐵𝑗 − 𝑎𝐴

𝑗
⋅  𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
+ 𝑎𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑎𝐴
𝑗

⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

+ 𝐴𝑗 − 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
+ 𝑏𝐵

𝑗
⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 − 𝑏𝐵
𝑗

⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

+ 𝑏𝐵
𝑗

⋅  𝐴𝑗 − 𝑏𝐵
𝑗

⋅  𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

− 𝑝𝐵
𝑗

⋅
−𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
+ 𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑏𝐴
𝑗

⋅  𝐵𝑗 + 𝐴𝑗 ⋅  𝑎𝐵
𝑗

+ 𝐵𝑗 + 𝑏𝐴
𝑗

⋅  𝑐𝐵
𝑗

⋅  𝑝𝐵
𝑗

− 𝑏𝐴
𝑗

⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 + 𝑏𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑗
− 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
⋅  𝑎𝐵

𝑗
− 𝑐𝐴

𝑗
⋅  𝑝𝐴

𝑗
⋅  𝑎𝐵

𝑗
+ 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 ⋅  𝑎𝐵
𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗  

By deriving the profit functions according to the prices one obtains the first order 

conditions. 

𝜕Π𝑖

𝜕𝑝𝐴
𝑖

=  −
𝑎𝐴

𝑖 ⋅  𝐵𝑖 − 𝑎𝐴
𝑖 ⋅  𝑐𝐵

𝑖 ⋅  𝑝𝐵
𝑖 + 𝑎𝐴

𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑎𝐴
𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 + 𝐴𝑖 − 𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

− 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 + 𝑏𝐵

𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

− 𝑏𝐵
𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 + 𝑏𝐵
𝑖 ⋅  𝐴𝑖 − 𝑏𝐵

𝑖 ⋅  𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖

− 𝑝𝐴
𝑖 ⋅

−𝑐𝐴
𝑖 − 𝑐𝑅𝐴 − 𝑏𝐵

𝑖 ⋅  𝑐𝑅𝐴 − 𝑏𝐵
𝑖 ⋅  𝑐𝐴

𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖 − 𝑝𝐵
𝑖 ⋅

−𝑐𝑅𝐴 ⋅  𝑎𝐵
𝑖 − 𝑐𝐴

𝑖 ⋅  𝑎𝐵
𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖 =  0 
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𝜕Π𝑖

𝜕𝑝𝐵
𝑖

=   −𝑝𝐴
𝑖 ⋅

−𝑎𝐴
𝑖 ⋅  𝑐𝐵

𝑖 − 𝑎𝐴
𝑖 ⋅  𝑐𝑅𝐵

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖

−
𝑏𝐴

𝑖 ⋅  𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 − 𝑏𝐴
𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑗
+ 𝑏𝐴

𝑖 ⋅  𝑐𝑅
𝐵 ⋅  𝑝𝐵

𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖 ⋅  𝑎𝐵
𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
⋅  𝑎𝐵

𝑖 + 𝐵𝑖 − 𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 + 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 − 𝑏𝐴

𝑖 ⋅  𝐵𝑖 + 𝐴𝑖 ⋅  𝑎𝐵
𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖

− 𝑝𝐵
𝑖 ⋅

𝑏𝐴
𝑖 ⋅  𝑐𝐵

𝑖 + 𝑏𝐴
𝑖 ⋅  𝑐𝑅𝐵 − 𝑐𝐵

𝑖 − 𝑐𝑅𝐵

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖
=  0 

𝜕𝛱𝑗

𝜕𝑝𝐴
𝑗

= −
𝑎𝐴

𝑗
⋅  𝐵𝑗 − 𝑎𝐴

𝑗
⋅  𝑐𝐵

𝑗
⋅ 𝑝𝐵

𝑗
+ 𝑎𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑎𝐴
𝑗

⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

+ 𝐴𝑗 − 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
+ 𝑏𝐵

𝑗
⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 − 𝑏𝐵
𝑗

⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

+ 𝑏𝐵
𝑗

⋅  𝐴𝑗 − 𝑏𝐵
𝑗

⋅  𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

− 𝑝𝐴
𝑗

⋅
−𝑐𝐴

𝑗
− 𝑐𝑅𝐴 − 𝑏𝐵

𝑗
⋅  𝑐𝑅𝐴 − 𝑏𝐵

𝑗
⋅  𝑐𝐴

𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

− 𝑝𝐵
𝑗

⋅
−𝑐𝑅𝐴 ⋅  𝑎𝐵

𝑗
− 𝑐𝐴

𝑗
⋅  𝑎𝐵

𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

=  0 

𝜕Π𝑗

𝜕𝑝𝐵
𝑗

:

=  −𝑝𝐴
𝑗

⋅
−𝑎𝐴

𝑗
⋅  𝑐𝐵

𝑗
− 𝑎𝐴

𝑗
⋅  𝑐𝑅𝐵

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

−
𝑏𝐴

𝑗
⋅  𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
− 𝑏𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 + 𝑏𝐴
𝑗

⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑐𝑅𝐴 ⋅ 𝑝𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

⋅  𝑎𝐵
𝑗

+ 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 ⋅  𝑎𝐵

𝑗
+ 𝐵𝑗 − 𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
+ 𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑏𝐴
𝑗

⋅  𝐵𝑗 + 𝐴𝑗 ⋅  𝑎𝐵
𝑗

𝑎𝐴𝑗 \𝑐𝑑𝑜𝑡 𝑎𝐵𝑗 − 1 + 𝑏𝐴𝑗 − 𝑏𝐵𝑗 + 𝑏𝐵𝑗 \𝑐𝑑𝑜𝑡 𝑏𝐴𝑗

− 𝑝𝐵
𝑗

⋅
𝑏𝐴

𝑗
⋅  𝑐𝐵

𝑗
+ 𝑏𝐴

𝑗
⋅  𝑐𝑅𝐵 − 𝑐𝐵

𝑗
− 𝑐𝑅𝐵

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

=  0 

Rearranging these equations to the respective price leads to the best response functions 
of the platforms. However, the expressions become even more complicated (especially 
the resulting equilibrium prices). Therefore we give the best response functions for the 
specific parameterization that is provided in the following Table. 

Treatment 𝐴 𝐵 𝑎𝐴
𝑖  𝑎𝐴

𝑗
 𝑎𝐵

𝑖  𝑎𝐵
𝑗

 𝑏𝐴 = 𝑏𝐵 𝑐𝐴 𝑐𝐵 
𝑐𝑅𝐴

= 𝑐𝑅𝐵 

symmetric 
(sym) 

10 2 0.6 0.8 0.1 0.5 0.3 0.5 

asymmetric 

(asym) 
10 2 0.6 0.4 0.7 0.984 0.1 0.5 0.3 0.5 

double 
asymmetric 

(d-asym) 
10 2 0.01 0.92 0.99 0.2 0.1 0.5 0.3 0.5 

 
With these values the best response functions of Treatment sym are: 

𝑝𝐴
𝑖  =

785

239
+

175

956
⋅  𝑝𝐴

𝑗
−

45

478
⋅  𝑝𝐵

𝑗
 

𝑝𝐵
𝑖  =

3715

956
+

55

478
⋅ 𝑝𝐴

𝑗
+

1515

3824
⋅ 𝑝𝐵

𝑗
 

𝑝𝐴
𝑗

 =
785

239
+

175

956
⋅  𝑝𝐴

𝑖 −
45

478
⋅  𝑝𝐵

𝑖  

𝑝𝐵
𝑗

 =
3715

956
+  

55

478
⋅  𝑝𝐴

𝑖 +
1515

3824
⋅  𝑝𝐵

𝑖  

Thus the equilibrium prices (rounded to one decimal place) of Treatment sym are 𝑝𝐴
𝑖 =

𝑝𝐴
𝑗

= 3.2 and 𝑝𝐵
𝑖 = 𝑝𝐵

𝑗
= 7.0. 

The best response functions of Treatment asym are: 
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𝑝𝐴
𝑖  =

17960

4439
+

1895

8878
⋅  𝑝𝐴

𝑗
−

495

8878
⋅  𝑝𝐵

𝑗
 

𝑝𝐵
𝑖  =

12410

4439
+

605

8878
⋅  𝑝𝐴

𝑗
+

1590

4439
⋅  𝑝𝐵

𝑗
 

𝑝𝐴
𝑗

 =
28335

22931
+

4701

45862
⋅  𝑝𝐴

𝑖 −
18675

91724
⋅  𝑝𝐵

𝑖  

𝑝𝐵
𝑗

 =
159700

22931
+

22825

91724
⋅  𝑝𝐴

𝑖 +
45575

91724
⋅  𝑝𝐵

𝑖  

Equilibrium prices (rounded to one decimal place) in Treatment asym are 𝑝𝐴
𝑖 = 3.5,

𝑝𝐴
𝑗

= 0.2, 𝑝𝐵
𝑖 = 6.8 and 𝑝𝐵

𝑗
= 11.2. 

The best response functions of Treatment d-asym are: 

𝑝𝐴
𝑖  =

1048050

542999
+

148995

1085998
⋅  𝑝𝐴

𝑗
−

110475

542999
⋅  𝑝𝐵

𝑗
 

𝑝𝐵
𝑖  =

3685510

542999
+

135025

542999
⋅  𝑝𝐴

𝑗
+

492505

1085998
⋅  𝑝𝐵

𝑗
 

𝑝𝐴
𝑗

=
25925

3979
+

2425

7958
⋅  𝑝𝐴

𝑖 +
1675

15916
⋅  𝑝𝐵

𝑖  

𝑝𝐵
𝑗

 =  −
57160

35811
−

18425

143244
⋅  𝑝𝐴

𝑖 +
3885

15916
⋅  𝑝𝐵

𝑖  

Equilibrium prices (rounded to one decimal place) in Treatment d-asym are 𝑝𝐴
𝑖 = 3.0,

𝑝𝐴
𝑗

= 8.4, 𝑝𝐵
𝑖 = 9.0 and 𝑝𝐵

𝑗
= 0.2. 

For calculating the collusion prices the profit function of platform i and the profit 
function of platform j must be summed up. The joint profit function is given by: 

Π𝑖𝑗

=  −𝑝𝐴
𝑖

⋅
𝑎𝐴

𝑖 ⋅  𝐵𝑖 − 𝑎𝐴
𝑖 ⋅  𝑐𝐵

𝑖 ⋅  𝑝𝐵
𝑖 + 𝑎𝐴

𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑎𝐴
𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 + 𝐴𝑖 − 𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

− 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 + 𝑏𝐵

𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

− 𝑏𝐵
𝑖 ⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 + 𝑏𝐵
𝑖 ⋅  𝐴𝑖 − 𝑏𝐵

𝑖 ⋅  𝑐𝐴
𝑖 ⋅  𝑝𝐴

𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖

− 𝑝𝐵
𝑖

⋅
𝑏𝐴

𝑖 ⋅  𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 − 𝑏𝐴
𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑗
+ 𝑏𝐴

𝑖 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 ⋅  𝑎𝐵
𝑖 − 𝑐𝐴

𝑖 ⋅  𝑝𝐴
𝑖 ⋅  𝑎𝐵

𝑖 + 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

⋅  𝑎𝐵
𝑖 + 𝐵𝑖 − 𝑏𝐴

𝑖 ⋅  𝐵𝑖 − 𝑐𝐵
𝑖 ⋅  𝑝𝐵

𝑖 + 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑖 + 𝐴𝑖 ⋅  𝑎𝐵

𝑖

𝑎𝐴
𝑖 ⋅  𝑎𝐵

𝑖 − 1 + 𝑏𝐴
𝑖 − 𝑏𝐵

𝑖 + 𝑏𝐵
𝑖 ⋅  𝑏𝐴

𝑖

− 𝑝𝐴
𝑗

⋅
𝑎𝐴

𝑗
⋅  𝐵𝑗 − 𝑎𝐴

𝑗
⋅  𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
+ 𝑎𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅   𝑝𝐵

𝑖 − 𝑎𝐴𝑗 ⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

+ 𝐴𝑗 − 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

+ 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 − 𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑗
+ 𝑏𝐵

𝑗
⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴

𝑖 − 𝑏𝐵
𝑗

⋅  𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

+ 𝑏𝐵
𝑗

⋅  𝐴𝑗 − 𝑏𝐵
𝑗

⋅  𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗

− 𝑝𝐵
𝑗

⋅
𝐵𝑗 + 𝑏𝐴

𝑗
⋅  𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
− 𝑏𝐴

𝑗
⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 + 𝑏𝐴
𝑗

⋅  𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

− 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 𝑐𝐴
𝑗

⋅  𝑝𝐴
𝑗

⋅  𝑎𝐵
𝑗

+ 𝑐𝑅𝐴 ⋅  𝑝𝐴
𝑖 ⋅  𝑎𝐵

𝑗
− 𝑏𝐴

𝑗
⋅  𝐵𝑗 − 𝑐𝐵

𝑗
⋅  𝑝𝐵

𝑗
+ 𝑐𝑅𝐵 ⋅  𝑝𝐵

𝑖 − 𝑐𝑅𝐵 ⋅  𝑝𝐵
𝑗

+ 𝐴𝑗 ⋅  𝑎𝐵
𝑗

𝑎𝐴
𝑗

⋅  𝑎𝐵
𝑗

− 1 + 𝑏𝐴
𝑗

− 𝑏𝐵
𝑗

+ 𝑏𝐵
𝑗

⋅  𝑏𝐴
𝑗  

With this function the collusive prices that maximize the total profit can be determined. 

Since we only allowed prices greater than or equal to 0 in the experiment, the 
maximization for Treatment asym must be done under the constraint that all four prizes 
must be greater than or equal to 0. Without this constraint, one collusive price in 
Treatment asym would be negative. The result of the maximization can be seen in Table 
2. We abstain from presenting further calculation steps. 
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Figure 13:  Example screen of the pricing stage 

 

 
Figure 14: Example screen of calculator 
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Experiment-Anleitung 
 

Sie nehmen an einem wirtschaftswissenschaftlichen Entscheidungsexperiment teil. In 
diesem Experiment können Sie bares Geld verdienen. Wie viel Sie verdienen, hängt von 
Ihren Entscheidungen und den Entscheidungen einer anderen Person im Experiment ab. 
Alle Teilnehmer*innen treffen ihre Entscheidungen individuell und isoliert von den 
anderen am Computer. Wir bitten Sie von nun an nicht mehr mit anderen 
Teilnehmer*innen zu sprechen. 

Das Experiment läuft über 15 Runden. Zu Beginn des Experiments werden Sie zufällig 
einer anderen Person zugeordnet, mit der Sie während des gesamten Experiments 
interagieren. Die Identität dieser Person wird Ihnen dabei zu keinem Zeitpunkt bekannt.  

 

Die Entscheidungen 

Sie und die andere Person repräsentieren zwei unabhängige Unternehmen, die jeweils 

eine Spielekonsole herstellen, auf der zwei Kundengruppen, Spieler und Entwickler, 

zusammengebracht werden. Spieler kaufen Ihre Spielekonsole als Plattform zur 

Wiedergabe von Spielesoftware, die von Entwicklern angeboten wird. Letztere benötigen 

eine Lizenz, um entsprechende Software für Ihre Spielekonsole entwickeln zu dürfen. In 

jeder Runde setzen Sie für jede der beiden Kundengruppen Ihrer Spielekonsole 

jeweils einen Preis, d.h. einen Plattformpreis (Spieler) und einen Lizenzpreis 

(Entwickler). Die Preissetzung beider Unternehmen erfolgt in jeder Runde gleichzeitig. 

Die Nachfrage einer Kundengruppe nach Ihrer Spielekonsole hängt jeweils von Ihrem 

Preis und dem Preis des anderen Unternehmens für diese Kundengruppe sowie von der 
Nachfrage der anderen Kundengruppe nach Ihrer Spielekonsole ab. 

Grundsätzlich gilt, dass die Nachfrage der Spieler nach Ihrer Plattform umso höher ist, 

 je niedriger Ihr Plattformpreis 

 je niedriger Ihr Plattformpreis relativ zum Preis der anderen Plattform 

 je höher die Nachfrage der Entwickler nach Ihrer Lizenz 

Darüber hinaus gilt, dass man Spieler umso mehr an Ihre Plattform binden kann, je mehr 
andere Spieler Ihre Plattform ebenfalls nachfragen. 

Diese Zusammenhänge gelten auch für das andere Unternehmen und dessen Plattform. 
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Für die Nachfrage der Entwickler nach Ihrer Lizenz gilt, dass sie umso höher ist, 

 je niedriger Ihr Lizenzpreis 

 je niedriger Ihr Lizenzpreis relativ zum Preis der Lizenz des anderen 

Unternehmens 

 je höher die Nachfrage der Spieler nach Ihrer Plattform 

Darüber hinaus gilt, dass man Entwickler umso weniger vom Kauf der Lizenz für Ihre 
Plattform überzeugen kann, je mehr andere Entwickler die Lizenz nachfragen. 

Diese Zusammenhänge gelten auch für das andere Unternehmen und dessen Plattform. 

Beachten Sie, dass Spieler und Entwickler sofort auf die Preise reagieren, so dass deren 
Nachfragen nicht von Preisen in den Vorrunden abhängen. Falls in einer Runde für ein 
Unternehmen die Nachfrage einer Kundengruppe negativ werden sollte, wird die 

Nachfrage beider Kundengruppen dieses Unternehmens auf null gesetzt und das 
betroffene Unternehmen nimmt in dieser Runde nicht am Markt teil.  

Ihre Gewinne berechnen sich in jeder Runde wie folgt: 

 

Rundengewinn     = Plattformgewinn + Lizenzgewinn  

        = Plattformpreis x Plattformnachfrage + Lizenzpreis x 
Lizenznachfrage 

 

Testrechner: Sie haben die Möglichkeit Ihre Gewinne für hypothetische Preise zu 
berechnen (Plattform- und Lizenzpreis des anderen Unternehmens, Ihr Plattformpreis, Ihr 
Lizenzpreis). Dafür stellen wir Ihnen einen Testrechner zur Verfügung. Zum Aufrufen 

betätigen Sie bitte die <Testrechner>-Taste. Auf dem nun eingeblendeten Bildschirm 
nutzen Sie die Schieberegler in der oberen Hälfte des Bildschirms, um alle hypothetischen 
Preise für beide Unternehmen festzulegen. In der unteren Hälfte des Bildschirms wird in 
einer Tabelle Ihr Rundengewinn für die von Ihnen gesetzte Preiskombination angezeigt. 
Zu Ihrer Übersicht werden in der Tabelle die Rundengewinne angrenzender 
Preiskombinationen mit ausgewiesen (jeweils Abweichungen von ± 0.1, 0.2 und 0.3 in 
einem der beiden Preise). Um auf den Entscheidungsbildschirm zurückzukehren, 
betätigen Sie die <Zurück>-Taste. 

In den ersten zwei Runden haben Sie maximal fünf und danach in jeder Runde maximal 
drei Minuten Zeit für die Nutzung des Testrechners. Danach schaltet er sich automatisch 
ab. Sobald Sie Ihre Preisentscheidungen getroffen haben, klicken Sie bitte auf die <OK>-
Taste. Danach werden Sie zu einer Bestätigung Ihrer Eingabe angehalten. 
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Auszahlung 

Die Gewinne werden über alle 15 Runden aufaddiert. Dieser Gesamtgewinn wird mit 

einem Wechselkurs von 0.007 (in Treatment sym und asym) / von 0.01 (in Treatment d-

asym) in Euro umgerechnet und zuzüglich einer Teilnahmevergütung von 3 Euro 

ausbezahlt. Die Auszahlung erfolgt am Ende des Experiments individuell und anonym. 

 

Verfügbare Informationen 

In jeder Runde verfügen Sie auf Ihrem Bildschirm über eine Übersichtstabelle mit den 
Ergebnissen aller bisher abgeschlossenen Runden. Die Ergebnisse umfassen jeweils 
folgende Information: 

Ihr Plattformpreis, Ihr Plattformgewinn, Ihr Lizenzpreis, Ihr Lizenzgewinn, Ihr 

Rundengewinn sowie Preise und Gewinne des anderen Unternehmens. 

Falls Sie sich das Ergebnis länger zurück liegender Runden betrachten wollen, können Sie 
die Scroll-Funktion auf der rechten Seite der Übersichtstabelle benutzen. 

 

Wenn Sie nun auf die <Weiter>-Taste klicken, werden Ihnen auf dem Bildschirm einige 
Fragen zum Verständnis dieser Anleitung gestellt. Erst wenn alle Teilnehmer alle Fragen 
korrekt beantwortet haben, kann das Experiment beginnen. Bei Verständnisfragen 
bezüglich der Anleitungen machen Sie sich bitte per Handzeichen bemerkbar. Ihre 
Fragen werden dann am Platz beantwortet. 

 


