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Abstract

We contribute to the recent literature on the economic effects of those

weather conditions that deviate from their regular seasonal pattern. To this

end we use local temperature and snow measurements across Germany to an-

alyze their impact on German monthly total industrial and construction-sector

production. We find noticeable effects of the various (linear and nonlinear,

contemporaneous and dynamic) weather regressors, which in the –seasonally

adjusted– construction sector growth data imply an extra explanatory power

of more than 50% of the variation, compared to benchmark predictive regres-

sions. As expected, the impact is quite a bit less in total industrial production.

From our estimates we obtain (seasonally as well as) weather adjusted produc-

tion series, and our regression-based approach also yields confidence intervals

for these adjustments. The estimated adjustments are quantitatively relevant

also for broad output (quarterly GDP). In a mixed-frequency framework we

find some value of the estimated monthly weather impact for quarterly GDP

nowcasts in (quasi) real time.
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1 Introduction

Whenever new observations of macroeconomic aggregates such as production or

(un-) employment are published by statistical agencies, it is often heard that some

part of the changes in the respective variables is due to some extraordinary weather

effect, such as a mild winter or an unusually snowy spring. The aim of this paper

is to provide a quantitative assessment of the impact of unusual weather conditions

on economic output. In this study we restrict ourselves to the case of Germany,

but our aim is to develop a tractable framework which could be universally applied

wherever systematic weather measurement is recorded.

Impacts of weather phenomena on economic variables are usually associated

with seasonal patterns and therefore treated as regular. Statistical agencies address

this pattern by providing seasonally adjusted series. Nevertheless, one might ex-

pect that deviations of weather conditions from their seasonal average may affect

economic activities and partly conceal the underlying structural dynamics. For

example, Bloesch and Gourio (2015, p.2) pointed out that whether the economic

slowdown in the winter 2013/2014 in the U.S. was due to harsher winter weather or

instead due to an underlying economic trend would have had implications for mon-

etary policy. A slowdown of the U.S. economy due to weather effects rather than a

negative economic trend might have implied less of a need for adjusting monetary

policy.

Depending on the primary objective, controlling for abnormal weather effects

and extracting the real economic trend can be accomplished in two different ways:

Wright (2013) suggested to include –and Boldin and Wright (2015) then included–

weather variables in the seasonal adjustment process for U.S. employment and GDP

data, resulting in a weather as well as seasonally adjusted time series. They argue

that abnormal weather effects may influence the seasonal adjustment procedure.

Ouwehand and van Ruth (2014) provided a quite differentiated analysis for Dutch
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GDP data on the national and sectoral level. Estimating an ARIMA model they

concluded that no significant weather effects could be identified for the majority of

the sectors. A similar approach was used by the Bundesbank for German GDP data

(Deutsche Bundesbank, 2014).

In a second type of approach the seasonally adjusted series is taken as given, re-

lying on asymptotic orthogonality between the seasonal component and the unusual

weather effects. Bloesch and Gourio (2015) for example found an overall weak but

significant weather effect on the non-farm employment growth rate using a (fixed-

effects) regression model. Our approach follows this two-step approach, because it

allows us much more flexibility in modeling month-specific and nonlinear weather

terms. Furthermore, because the second step is performed with a straightforward

OLS regression which includes nonlinear terms but is linear in the parameters, in

contrast to other methods suggested in the literature we can assess the parameter

uncertainty and thus report confidence intervals for the estimated weather adjust-

ment. While we do not doubt the theoretical possibility that omitted weather effects

might bias the first-step seasonal adjustment in finite samples, we believe that these

and other weather modeling issues are more relevant in practice.

A short but inspiring contribution is Hummel, Vosseler, Weber, and Weigand

(2015) who analyzed the effect of several weather variables like temperature, snow-

fall, or snow height on German national-level employment, based on 310 represen-

tative weather stations. They identified several weather and catch-up effects in the

following months. For instance, a one degree temperature increase in January raises

employment by 14,000 persons on average between 2006 and 2014. Also for Ger-

many, Döhrn and an de Meulen (2015) showed that including weather variables in

a business-cycle oriented forecasting procedure improves the model, but not in a

significant way in their setup.

There are also attempts to identify longer-run weather (or climate) effects on
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economic outcomes, see Dell, Jones, and Olken (2014), but in this paper we focus

on the shorter-run dynamics of occurrences of abnormal weather. The longer-run

impact of climatic trends on economic activity raises difficult questions about en-

dogenous adaptation and restructuring of production, as well as the adequacy of na-

tional accounts measurements that (almost) do not take into account environmental

damages.

In contrast to Hummel, Vosseler, Weber, and Weigand (2015) we focus on eco-

nomic output instead of labor inputs, however. We also provide a separate analysis

for the construction sector since any weather effects will be felt there most. We

include non-linearity through polynomial terms and by modeling heterogeneous

month-specific effects, see the following section 2. Empirical results for monthly

production indices as well as some implications for quarterly GDP figures are re-

ported in section 3. Finally, we discuss the use of the weather observations for fore-

casting purposes in a (pseudo) real-time setting, when the current production data

as well as their immediate lags would not have been published yet – often called

“nowcasting”. To this end section 4 also covers the nowcasting of quarterly GDP

with the help of a mixed-frequency (MIDAS) appraoch, before offering concluding

comments in section 5.

2 Data and empirical approach

The dependent variables that we analyze are the monthly growth rate of German real

total industrial production (IP) and the production in the construction sector, shown

in figure 1. Later in section 3.2 we analyze the implications of these adjustments in

the industrial sector for aggregate output (GDP). Total industrial output represents

an important cyclical indicator, while production in the construction sector is the

part of economic activity which is most likely to depend on weather conditions.
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An overview about the different production indices and their hierarchical structure

is given in Statistisches Bundesamt (2015), data are taken from the Bundesbank

website, and both indices are calendar and seasonally adjusted.

It can be seen that the production growth series with this monthly frequency are

quite noisy, but the great recession at the outbreak of the financial crisis is clearly

visible especially in total production which includes export sectors. In the estimated

equations we remove these effects by a small number of impulse dummies added

to the regressions. The salient feature of the construction sector growth distribution

is its heavy tails, with a considerable number of observations that exceed ±10%

monthly growth, leading to an empirical excess kurtosis of 6.7.

Weather data for Germany have recently begun to be provided on the internet

and are freely available.1 The construction of the weather data set was initially in-

spired by the approach of Hummel, Vosseler, Weber, and Weigand (2015), that is we

aggregated the weather data of the available 251 weather stations to the state levels

of the sixteen German federal states (including the three city-states Berlin, Ham-

burg, and Bremen), then weighing them by the state-level number of employees to

obtain aggregated data at the national level. See below for further details on the

aggregation method. The locations of the weather stations are displayed in figure

2, and the time series sample used in this paper is January 1991 through Novem-

ber 2015. We consider three measurable weather aspects, namely air temperature,

snow height and snow fall per week in centimeters, all time-averaged from daily

to monthly series. Other weather variables would also be possible in principle; the

Deutsche Bundesbank (2014) for example used the sum of ice-days in a specific

time interval (quarter or month), but that information does not differ much from the

combined content of snow fall and (cumulated) height.

1Original data series provided by Deutscher Wetterdienst and freely available at http://www.
dwd.de/.
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Figure 1: Total industrial (upper panel, gip) and construction sector (lower panel,
gconstr) production growth. Seasonally adjusted at the official source and trans-
formed to month-on-month growth rates (log differences).
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Figure 2: Weather measurement stations in Germany (map provided by the German
Weather Agency DWD, www.dwd.de).
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Given that the weather data are published already about a week after the end of

the month – in contrast to the production data that suffer from a publication delay of

at least one month – this allows one to predict or “nowcast” the weather effect on a

real-time basis, see section 4 below for further discussion. A potential disadvantage

is that the most recent data are mostly not yet checked for measurement errors.

What we have in mind as a reasonable approximation is a simple additive frame-

work that distinguishes between different components that together yield the ob-

served realization of the economic variable of interest:

yt = struct +weatherdevt + εt , (1)

where yt will be a seasonally adjusted growth rate of the underlying economic vari-

able, and struct is interpreted as a component which is structural in the sense that it

indicates the underlying tendency attributable to purely economic forces and intrin-

sic dynamics. In contrast, weatherdevt is an irregular component which measures

influences that stem from weather realizations beyond the systematic and regular

seasonal cycles. We allow these components to be dynamic, such that they will in-

clude lags as well. Finally, εt is a purely random error component which should be

(close to) white noise. As a consequence, yt − ̂weatherdevt will be a weather (and

seasonally) adjusted series.

We proceed by defining the extent of “abnormal weather” as the absolute devi-

ations of the observation X j,t from a month-specific (m = 1...12, corresponding to

January...December) time average for an individual weather station j:

xt, j = X j,t− X̄ j,m(t), (2)

where X ∈ {temperature, snow f all, snowheight}.2 The next step is to aggregate

2We have also experimented with relative deviations (where possible), with inferior results. Tak-
ing into account also a potential time trend in the regular weather series is left for future research.
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the time deviations across stations to the corresponding federal state level by a

simple average, xt,s = x̄t, j∈s, followed by a weighted average (by state employment

numbers et,s, with et = ∑
16
s=1 et,s) to the national level:

xt = e−1
t

16

∑
s=1

et,sxt,s, (3)

This construction of aggregate weather time series might be called “deviate-then-

aggregate”. The advantage is that regional station-specific seasonal patterns are

captured.3 Figure 3 shows the resulting time series. The lower panel of that figure

displays the snow-related variables, and while the two series are highly correlated

–for example because in the summers snow is mostly absent and thus the deviation

series are both zero– there are some marked differences in the spikes which could

be especially important when considering non-linear effects.

From now on, the deviation of a weather variable and the name of a weather

variable are used synonymously. For example, the deviation of temperature (from

its month-specific average) and temperature are used synonymously, and the abso-

lute level of a weather variable never enters any estimated model.

Our econometric framework is a straightforward dynamic regression. The bench-

mark specification is a model where the growth rate of the respective production in-

dex depends on own lags plus lagged indices of incoming orders ot and lags of the

term spread of interest rates st , augmented with two impulse dummies (2008M11,

2009M1) that capture obvious outliers in the great recession episode:

yt = c+
6

∑
i=1

ay,iyt−i +
3

∑
j=1

(ao, jot− j +as, jst− j)+δ1d2008M11,t +δ2d2009M1,t +ut (4)

In the full specification the following weather terms are included, where Dm
t is

3Before –in Haustein and Schreiber (2016)– we had used the reversed approach “aggregate-then-
deviate”. The revision was partly inspired by comments from Matthias Hertweck.
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Figure 3: Observed weather deviations (aggregates of station-specific deviations).
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a dummy variable for month m with mean zero (centered):

• Month-specific direct weather regressors:

∑
x∈{temp,s f all,sheight}

12

∑
m=1

(bm
x,1 xt Dm

t ) (5)

• Squared month-specific weather terms, where x2
t sgn(xt) represents a signed

quadratic function which unlike a pure parabola is negative for xt < 0:4

∑
x∈{temp,s f all,sheight}

12

∑
m=1

(bm
x,2 x2

t sgn(xt)Dm
t ) (6)

• Additional auxiliary dummy regressors that merely serve to balance the month-

specific non-zero means of the squared terms:

12

∑
m=1

dm Dm
t (7)

• Lagged weather terms (not month-specific to limit the total number of regres-

sors):

∑
x∈{temp,s f all,sheight}

6

∑
k=1

bx,k xt−k (8)

These details are accurate for the estimation of the historical adjustments; in the

case of forecasting or nowcasting the direct (and month-specific) terms enter as

lags, and the first lag(s) of the output growth are excluded, see below for further

explanations.

The lags of each weather variable were also included to control for possible

catching-up effects in the following months. However, we impose homogeneity

across months for the lagged effects because the number of parameters would oth-

4We have also experimented with a threshold model as an alternative nonlinear specification, but
with disappointing results.
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erwise explode relative to the available observations. By catching-up effects we

mean a shift of production in point of time; for example orders and contracts which

could not be carried out in February and March due to a harsh winter might be

completed one or two months later.

A further concern in time series analysis might be the existence of some struc-

tural break. During their analyses, Hummel, Vosseler, Weber, and Weigand (2015)

found some evidence for a structural break in 2006, which prompted them to use

a smooth transition regression model. The advantage of that model is that weather

effects can be flexibly modeled over time. However, the authors assign the struc-

tural break in 2006 mainly to the introduction of seasonal short time work benefits

(Saison-Kurzarbeitergeld), given that they focus on labor market variables. This is

not relevant for our focus on industrial production. Our modeling of month-specific

effects also limits the possibility of splitting the sample, as we effectively require

up to 12 times more observations. In any case, apart from the mentioned inclusion

of impulse dummies for the great recession there was no indication of structural

changes in our specifications.

The overall sample size in this monthly data is T ≈ 290, and we employ a simple

general-to-specific search to obtain a sparse model. More than 80% of the roughly

hundred regressors are typically removed as insignificant by the procedure.5

3 Estimating weather influences

3.1 Monthly industrial production

We can now report the estimated ̂weatherdevt component by adding together all

terms from the estimated regressions containing a weather-related variable, using

5We have also cross-checked some results with a more sophisticated best-subset method, but
without any noticeable changes.
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the estimated parameters in place of the unknown truth. The result is shown in

figure 4. It is clear that the observed output growth can most clearly be associated

with weather developments in the case of the construction sector (lower panel),

where many of the extraordinarily large realizations are explained quite well; the

resulting adjusted R̄2 of that regression is 72%, compared to a mere 15% in the

benchmark specification (4). As expected, for total industrial production (upper

panel) the explanatory power of abnormal weather is more modest with an R̄2 of

48%, rising from 33% in the benchmark specification without weather terms. Most

movements in total production are not attributable to weather but to other types of

shocks; nevertheless the explained variation is noticeable.

Notice that some non-linearity indeed remains in the sparse model, for example

in the case of the total IP equation we retain the sign-squared temperature deviations

in May, yielding a composite abnormal temperature impact of

[
0.017 tempt−0.012 temp2

t sgn(tempt)
]
×DMay

t ,

or the sign-squared snow height in January:

[
−0.0098sheightt +0.0019sheight2

t sgn(sheightt)
]
×DJan

t .

Furthermore, the weather coefficients are estimated with a certain amount of

sampling uncertainty, and in Figure 5 we take the associated standard error of̂weatherdevt into account, using the estimated co-variance matrix of the weather-

related coefficients.6 This yields interval estimates of the weather (as well as sea-

sonally) adjusted series at a nominal 95% level of confidence. The intervals in that

figure are depicted as shaded gray areas, while for easier visibility we display the

6Let ξt be the consolidated vector of all weather regressors in the full regression described in (5)
through (8), and β the corresponding stacked coefficient vector. Then we have ̂weatherdevt = β̂ ′ξt ,
and its variance is given as ξ ′t Ĉov(β̂ )ξt .
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un-adjusted original observations as red circles instead of lines.

One way to read this figure is that whenever the red circle is not touched by the

gray area the weather adjusted data-point is significantly different from the original

observation. This is quite often the case, of course especially for the construction

sector (lower panel). If it happens with larger observations (in absolute value), the

weather adjustment is “inwards”, closer to zero structural growth, which we observe

in about 90 of the roughly 290 observations. But notice that also a significant “out-

ward” adjustment is quite frequent, where the confidence interval of the weather

adjusted value is farther away from zero than the original observation. In the con-

struction sector this happens for 93 observations. Furthermore in about 10% of all

cases the weather adjustment in the construction sector flips the sign of the obser-

vation significantly. (These cases may be overlapping with the significant inward

or outward adjustments.)

All in all, it appears that the impact of abnormal weather conditions affects the

majority of observations in the construction sector in a statistically significant way.

Even though the situation is less extreme for total industrial output, in order to

assess the economic situation it seems that weather adjustments should play a more

prominent role than is currently the practice among macro-economists.

3.2 Implied adjustment of quarterly GDP

Our estimates are based on industrial production data. First the IP series is avail-

able at a higher (monthly) frequency, secondly it is well known that its short-run

volatility is considerably higher than that of GDP, and finally a higher dependency

on weather conditions is expected at least for some industrial sectors. However,

for macroeconomic analysis such as in monetary policy we are usually interested

in aggregate output, and therefore we have also applied the estimated weather ad-

justments to the GDP series. The monthly IP growth rates are cumulated to the
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Figure 4: Observed German industrial production (same as in figure 1) and esti-
mated historical weather components. Upper panel total production growth (gIP),
lower panel construction sector growth (gconstr).
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Figure 5: Estimation uncertainty of weather-adjusted industrial production (point-
wise 95% confidence intervals for the adjusted series yt − ̂weatherdevt ; ©: non-
adjusted observations, i.e. the same series as in figure 1). Upper panel total produc-
tion growth (gIP), lower panel construction sector growth (gconstr).
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quarterly frequency, then the growth differential between un-adjusted and adjusted

IP growth is re-scaled with the (annually varying) share of industry output in aggre-

gate output. This procedure implicitly assumes that any abnormal weather effects

in the non-industrial service and public sectors are negligible, yielding the results

in Figure 6.7 We find that even though the share of industry in aggregate output

is much less than 50% and declining in Germany, the fluctuations are important

enough to matter at the economy-wide level at least in some periods. The largest

implied adjustment occurs in 2010Q2 with a whopping figure of almost -4% (at

annualized rate, percentage points). However, we should bear in mind that the

average effect over all four quarters of 2010 is much smaller (about -1.1%), and

that reported growth in 2010 was extraordinarily high in Germany (about 4.5%),

catching up from the huge dip in the Great Recession. Thus the implied negative

adjustment for 2010 would still leave German annual GDP growth at a remarkable

positive rate above 3%.

4 Real-time growth assessment – nowcasting

4.1 Monthly industrial production itself

In the previous section we performed historical adjustments of German production

time series by estimating the dynamic influences of irregular or abnormal weather

conditions. In this section we want to investigate whether it helps that observations

of the weather measures are available much more quickly than the first publications

of production values by statistical agencies – in Germany the publication delay for

the first and tentative official figures on industrial production is around 38 days,

more than one month. Given that we found some significant contemporaneous

7The agricultural sector is obviously expected to also be affected by the weather, but its share in
aggregate output is very small for Germany. For other economies it might be necessary to take that
effect into account as well.
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Figure 6: GDP quarterly growth adjustment for abnormal weather (at annualized
rate differential in %), based on estimated weather deviation effects in total indus-
trial production. Calculated as ̂gGDPt − gGDPt , i.e. positive numbers mean that
weather-adjusted growth would have been higher than reported growth.

impact of the weather (deviations), it is natural to take these effects into account

when the aim is to produce a short-term forecast of economic activity.

However, even the weather data are not available contemporaneously in real

time, but take about a week after the end of the month to appear on the agency

website. Therefore we distinguish between the following two scenarios.

First we work with the information set of the middle of any given month, where

the aim is to produce a forecast for the current month. This timing could be called

“nowcast”, because the current month is affected, or it could also be called “semi-

forecast”, because the second half of the current month still lies in the future. In

the middle of the current month t we have available the weather data describing

the previous month t − 1 (and earlier), and the industrial production data relating

to t− 2 (and earlier). This means that the weather data in this scenario may only

enter with a lag, and the first lagged endogenous term must be removed from the

regressors in order to replicate the real-time information set.
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Secondly we also consider a scenario of the beginning of the next month t +1,

meaning that the weather data for period t are already available, but the output data

for t − 1 have not yet been released, because that typically takes until the middle

of the month. The target quantity is still output in period t, so this is called an

(early) “backcast”. Again no first lagged endogenous term must be included in the

equation, but now the period-t weather terms are allowed as regressors again.

Because our present aim is merely to check whether this constitutes a promis-

ing route for future research, we employ the shortcut that we do not work with

a full real-time data set but instead continue to use our data set on industrial and

construction-sector production which effectively contains only a single vintage (from

the end of the sample). We therefore do not take into account the data revisions oc-

curring after the respective first publications.

The present pseudo real-time exercise for nowcasting and backcasting thus ef-

fectively boils down to removing from the predictive regressions a lag of the depen-

dent variable and of the explanatory variable of orders received, and for the now-

casting exercise to exclude also a lag of the weather terms. The empirical strategy

is unchanged otherwise with respect to the historical analysis in section 3.

In Table 1 we report the simple R̄2 values (fit adjusted for number of retained re-

gressors) that are attained in the various scenarios, each compared with the respec-

tive non-weather benchmark. (The numbers in the historical adjustment columns

were already mentioned in the text above and are repeated for convenience and

comparison.) Without the contemporaneous weather terms in the nowcasting sce-

nario the extra predictive power of the remaining weather terms amounts to eleven

percentage points in the total industrial production equation (32−21 = 11); on the

one hand this is quite a limited value for practical nowcasting purposes, but on the

other hand it reflects a rise of the overall fit by about one half.

Furthermore, the quantitative picture is certainly different for the construction
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Table 1: Explanatory and nowcasting/backcasting power
(R̄2 in %) nowcasting /

middle-of-month
info set

backcasting /
early-next-
month info

set

historical
adjustment

total industry output growth
benchmark predictive regression 21 21 33

with (abnormal) weather 32 35 48

construction sector output growth
benchmark predictive regression 0 0 15

with (abnormal) weather 49 67 72

Notes: The historical adjustment column corresponds to results in section 3. The
benchmark equations are ARDL type models (see equation 4); the first lag
of output growth is removed in the nowcasting and backcasting cases for
the benchmark as well as the full model. Furthermore the contemporaneous
weather terms are removed in the nowcasting case.

sector, for which Table 1 reveals that the extra explanatory power of weather fluc-

tuations is still almost fifty percentage points even under the nowcasting scenario

(having dropped from 72−15 = 57 to 49−0 = 49).

4.2 Nowcasting GDP in a mixed-frequency framework

Our estimates are based on monthly industrial production for econometric reasons,

but quarterly GDP figures are often more important in public economic discourse.

Therefore we also assessed whether the inclusion of abnormal weather realiza-

tions yields additional predictive power. Given that one important advantage of the

weather data is its timeliness, we focus on a nowcasting exercise that takes place

right in the middle of the quarter. The middle of the quarter is also the middle of

the second month of the quarter, or February/M2, May/M5, August/M8, Novem-

ber/M11. At this point of time the value of the previous quarter is just published,

and the value of industrial production as well as incoming orders of two months
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back is also just becoming available (thus: M12, M3, M6, M9). The realizations

of the immediately preceding month (i.e., the first month of the quarter) are not yet

known, but they can be backcast using our dynamic regressions with weather terms

from 3.

We employ a mixed-frequency MIDAS approach as proposed and popularized

by Ghysels, Santa-Clara, and Valkanov (2004). The idea is to run a regression with

a quarterly left-hand side variable (GDP), including a candidate monthly variable

with all three monthly observations per quarter as three separate econometric terms.

Although it has recently also been suggested to simply run this somewhat “inflated”

regression unrestrictedly (Foroni, Marcellino, and Schumacher, 2015), the standard

in the literature is to impose a certain polynomial connection between the various

terms pertaining to a high-frequency variable. The overall impact of the variable can

then be defined by a low-dimensional parameter that prevents overfitting, especially

with a view to forecasting.

More formally, a generic MIDAS equation can be written as follows:

yt = α +
K

∑
k=1

βkyt−k +
M

∑
i=0

Xt−ibi +
J

∑
j=1

γ jWj
(
x j,τ−p j , ...,x j,τ−Pj ; θ j

)
+ εt (9)

In this equation, t denotes the low-frequency (quarterly) time periods whereas τ

stands for the high-frequency (monthly) time. The first standard block comprises

autoregressive terms up to lag K, where publication lags imply that lower-order co-

efficients β1, ... may have to be restricted to zero because the corresponding terms

yt−1, ... are not yet observable at the time of the nowcast. Next is a block of dis-

tributed lags of N exogenous variables measured at the low (quarterly) frequency,

such that Xt is an N-column matrix with associated N× 1 coefficient vector bi for

each lag i. Note that some of the indicators may be available quickly enough such
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that contemporaneous values at lag i = 0 may also appear.

Finally we have the different high-frequency indicators x1,τ , . . . ,xJ,τ that enter

the predictive equation in a special way. Each indicator group j is loaded with a

coefficient γ j, but the individual coefficients are governed by a weighting function

Wj that depends on a low-dimensional L j×1 hyperparameter θ j. Notice that in the

high-frequency time axis we use the convention that τ ± 0 denotes the first month

of the quarter.8 Since it is possible that a monthly indicator for the second or third

month of the t-quarter is already observable at the time of the forecast, this means

that the initial high-frequency term may be a lead relative to τ ± 0, thus p j < 0

is possible. Given a maximal high-frequency lag Pj, the requirement of having a

low-dimensional hyperparameter means L j < P∗j , where P∗j = Pj− p j+1 counts the

number of high-frequency terms of the j-th variable. Typical dimensionality values

are L = 2 or L = 3.

Regarding the weighting functions Wj, the simplest case is the unrestricted U-

MIDAS specification, where γ jWj
(
x j,τ−p j , ...,x j,τ−Pj ; θ j

)
= ∑

P∗j
i=1 w j,ix j,τ−i with all

w j,i freely varying. That is, γ j is implicitly normalized to unity, and there is no

role for θ j. In contrast, the various restricted MIDAS variants rely on polynomial

functions as follows. Let each weight be

w j,i = f (i,θ j)/

P∗j

∑
k=1

f (k,θ j) (10)

such that ∑
P∗j
i=1 w j,i = 1.

The “normalized exponential Almon” polynomial weighting function is then

given by plugging f (i,θ j)= exp(∑L
l=1 θ j,lil) into (10). For example, the widespread

case of L = 2 leads to w j,i = exp(θ j,1i+θ j,2i2)/∑
P∗j
k=1 exp(θ j,1k+θ j,2k2).

8This convention is common to Ghysels’ toolbox for Matlab as well as the MIDAS implementa-
tion in the gretl program that we use (Cottrell and Lucchetti, 2017). The relevant R package midasr
appears to follow a different timing rule. Also note that MIDAS specifications commonly contain
only one set of high-frequency terms instead of J different ones, so our setup is slightly more general.
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The “plain Almon” weighting function is represented by w j,i = ∑
L
l=1 θ j,lil−1.

The next possibility is the normalized beta case, where the hyperparameter is

two-dimensional and yields:

f (i,θ j) = ((i−1)/(P∗j −1))θ j,1−1(1− (i−1)/(P∗j −1))θ j,2−1 (11)

Loosely speaking, if θ j,2� θ j,1 then the weights are decreasing in i and relatively

smoothly approach the final value zero. Therefore this parametrization is also la-

beled “normalized beta, last lag zero”. The commonly available implementations

do not seem to impose this restriction, however. With a third hyperparameter el-

ement θ j,3 the final value can be allowed to depart from zero. Under the plain

label “normalized beta” the weights wbnz
j,i are given by starting from the previous

weights w j,i obtained from plugging (11) into (10), and then transforming them

via: wbnz
j,i = (w j,i+θ j,3)/(1+P∗j θ j,3) , which ensures that the sum of weights is still

unity.

As before, we include as predictors in the benchmark specification the growth

of new orders received, a term spread of interest rates, and lags of industrial pro-

duction along with (few) lags of GDP. Table 2 reports the results of these MIDAS

regressions.

The enhanced specifications that include weather terms –comprising the back-

cast for the IP value of the preceding month taking advantage of the weather infor-

mation– are capable of reducing the RMSE as a measure of forecast accuracy in

this MIDAS application. Only the unrestricted U-MIDAS variant appears to suffer

from overfitting and associated parameter uncertainty. For the first three MIDAS

variants reductions of RMSEs between 10 and 15% are achieved. With respect to

an even simpler quarterly AR(1) benchmark the compound gain is 30%, but this

latter number contains the effects of standard leading indicators such as new orders,
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Table 2: MIDAS nowcasts of German GDP
(all values

RMSE×10000)
MIDAS parametrization

Normalized
exp.

Almon

Almon Normalized
Beta

Norm.
Beta, zero

last lag

memo
item:

U-MIDAS

Benchmark 48 44 44 45 43
Specification
with weather

terms

41 38 39 43 54

Notes: AR(1) root mean square error (RMSE)×10000 for comparison: 54. Fore-
cast evaluation sample: 2010Q1-2015Q4. The assumed information set is all
published values up to the middle of the quarter (middle of the second month
of the respective quarter, e.g. mid-May for Q2). “U-MIDAS”: unrestricted
polynomial coefficients. For the specifications see the text.

albeit on a monthly basis.

5 Conclusions

We conclude that weather conditions that deviate from their regular seasonal pat-

tern affect the construction sector and aggregate production in Germany. Generally

and not surprisingly, the impact as well as the estimation precision are larger for

the construction sector than for total industrial production. Controlling for mea-

surable weather effects using freely available data sets thus helps to determine the

underlying economic dynamics and should lead to a more accurate assessment of

the business cycle, ultimately also implying more appropriate stabilization policy

advice.

By relying on the (approximate) orthogonality between regular seasonal effects

and irregular random weather outcomes we were able to keep the econometric

methods simple, using straightforward regression models that are linear in param-

eters while being non-linear in some of the variables. This allowed some further
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insights such as a quantification of the estimation uncertainty. We could confirm

earlier findings in the literature that the effects of the weather variables such as

air temperature or snow height (in deviations from seasonal averages) are month-

specific. The specification also had to account for serially correlated production and

dynamic reactions to past weather incidents.

Weather effects could also be used to improve the backcasting of monthly output

growth realizations that are still unknown because of the publication delay of such

macroeconomic data. It was also shown that the estimated weather adjustments do

not always cancel within a quarter and often are large enough to be noticeable even

when compared to economy-wide GDP measures.

Finally, we expect that such effects of “abnormal” weather apply to most other

economies as well, not only to Germany, and our framework is intended to be easily

adaptable given that it only requires three widely available weather measurements.

In the currently standard approach of conducting structural macroeconomic analysis

seasonally adjusted data is used, which means that weather variations are implicitly

seen as an uninteresting nuisance for economic trends. If taken seriously, this posi-

tion would imply that structural macroeconomic analysis needs series that are also

adjusted for other, non-seasonal and exogenous, weather variations as presented in

this paper.
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