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Abstract

This paper explores the ability of the New-Keynesian (NK) model to explain the
recent periods of quiet and stable inflation at near-zero nominal interest rates. We
show how (conventional and unconventional) monetary policy shocks enlarge the
ability to explain the facts, such that the theory supports both a negative and a
positive response of inflation. Central to our finding is that monetary policy shocks
may have temporary and/or permanent components. We find that the NK model
can explain the recent episodes, even if one considers an active role of monetary
policy and restrict ourselves to the regions of (local) determinacy. We also show
that a new global solution, capturing highly nonlinear dynamics, is necessary to
generate a prolonged period of near-zero interest rates as a policy choice.
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1. Introduction

“Theories ultimately rise and fall on their ability to organize and interpret facts.”

(Cochrane, 2011, p.566)

In the aftermath of the financial crisis, new-Keynesian (NK) theory has fallen on hard

times. Once being a pillar of macroeconomics, in particular monetary economics, it has

been criticized on both the theoretical and the empirical ends. Consider the workhorse NK

model with rational expectations and active monetary policy, and the cut in interest rates

from 5.25% in 2007 to 0.25% by the end of 2008 (cf. Figure 1). Interpreting this cut as an

exogenous but transitory monetary policy shock, the NK model predicts a counterfactual

rise of inflation to more than 4 percent. Others would argue that the fall in interest rates

is a response to some other shock, usually to the natural rate. But then the subsequent

episode of an apparently binding zero-lower bound (ZLB), which is referred to as the

zero-interest-rate policy (ZIRP) period, intensified the criticism. If the economy entered

a liquidity-trap scenario, the NK model would predict a deep recession with deflation

(cf. Werning, 2012; Cochrane, 2017b). But nothing happened. If anything, core inflation

(excluding food and energy) declined moderately to values around 1 percent in 2010. So

what happened? Is the Taylor principle applicable in a world where interest rates stopped

moving more than one-for-one with inflation? Cochrane (2017a) shows that alternative

doctrines, including old-Keynesian models and the monetarist view, fail in explaining the

ZIRP period, when the Fed drastically decreased interest rates and embarked on immense

(unconventional) open market operations.

[insert Figure 1]

So the open question is on the ability of the NK model to organize our thoughts and

interpret the recent facts. Is the ‘neo-Fisherian’ hypothesis, which says that inflation and

interest rates are positively related, consistent with the predictions of the NK model? How

can short-term interests rates be lowered to near zero values without inflation picking up

as predicted by standard arguments? Despite the Fed Funds rate being kept near zero

through 2015, why does CPI inflation rebound in 2011 to values around 2 percent? Central

to those questions is the ability to replicate the yield curve, which from the expectation

hypothesis relates to the market perceptions about future interest rates. In this paper we

study whether the large cuts may have triggered changes in long-run rates.

Our contribution is to show that the ability to explain the facts crucially depends on

the way we interpret and solve the model. We take a fresh look at the standard NK model

under active monetary policy and show (i) that it supports both a negative and a positive

response of inflation to ‘monetary policy shocks’. Our broader interpretation of monetary

policy includes temporary and/or permanent components, such that a large interest rate
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cut may affect both ends of the yield curve. In this paper, we hypothesize that changes in

constant long-run target rates can be triggered by concrete policy action, and do reflect

changes in the conduct of monetary policy. Our strategy accounts for the enlarged set of

policy instruments of the monetary authority. We provide economic intuition why higher

interest rates might temporarily lower inflation, before eventually raising it. We also show

(ii) that some counterfactual predictions are due to the approximation of the model around

a zero inflation target, and can be avoided by linearizing around positive trend inflation.

A nonlinear (and global) solution, which accounts for potentially highly nonlinear shock

processes, performs far better in capturing non-normal times including immobile interest

rates near zero and stable quiet inflation. A combination of target changes and preference

shocks may result into a ZIRP period, and by the same arguments, inflation may rebound

while interest rates being kept near zero values as a policy choice.

Our arguments are motivated by the strong empirical evidence of shifting end-points in

the yield curve, which may just reflect the private sector’s perception of the inflation target

(cf. Kozicki and Tinsley, 2001; Gürkaynak, Sack, and Swanson, 2005).1 It also relates to

empirical evidence in the macro literature that the inflation target may not be ‘anchored’

but rather time-varying (cf. Ireland, 2007; Fève, Matheron, and Sahuc, 2010). Empirical

evidence for the US and Japan is also confirmative of the counteracting effects resulting

from transitory and permanent shocks to the interest rate (cf. Uribe, 2017). Moreover,

most theorist and practitioners share a believe that with short-term interest rates kept

near zero values for an extended period, an inflation target of, say, 2 percent would not

carry much credibility (Eggertsson and Woodford, 2003, p.142). Hence, changes in the

inflation target seems relevant for the ability of the NK model to explain the facts.

The quest on the ability of the NK model to explain the recent episodes has a deeper

motivation. It sheds light on whether new theories are required to reconcile the recent facts

with the theoretical predictions.2 We aim for a parsimonious specification to organize our

thoughts and interpret the data, in particular, we are interested in the necessary conditions

for the NK model being capable of generating a negative short-run impact of interest

rates on inflation (Cochrane, 2017a). Considering both conventional and unconventional

monetary policy instruments, and accounting for nonlinearities, widely enlarges the ability

to explain the data beyond standard arguments. This is true even with inflation not

determined by the fiscal theory of the price level (FTPL), and staying in the determinacy

region of the model. While the FTPL seems a promising route, we show that the minimal

set of ingredients to explain the recent facts is the NK model with shocks.

In contrast to the ZLB literature, we focus on equilibria with active monetary policy,

1Linking the policy target rates to the long-end of the yield curve is not new and received increasing
attention (see Gürkaynak and Wright, 2012, and the references therein). Time-variation in the inflation
target is needed to capture the evolution of inflation expectations (cf. Del Negro and Eusepi, 2011).

2Del Negro, Giannoni, and Schorfheide (2015) show that the NK model with financial frictions predicts
a protracted decline in inflation following a rise in financial stress around 2008.
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in which the enlarged set of policy instruments includes the long-run target rates. Our

simplifying assumption treats changes in the target rates as reflecting changes in the

conduct of monetary policy, e.g., unconventional monetary policy. This is not a paper on

the liquidity trap (among others Werning, 2012; Wieland, 2015; Cochrane, 2017b). We

do neither claim that the ZLB is not relevant nor that the ZIRP period reflected a policy

choice. This is an important empirical question, but beyond the scope of this paper. We

rather try to fill the gap in the literature by providing an investigation of the NK model

in non-normal times, when the simple approach fails. This is highly relevant since the

mode of criticism relates to the case that the ZIRP period reflected a binding constraint.

The bottom line is that changes in target rates (possibly through unconventional policies)

help to explain the recent episodes within the simple NK framework, while nonlinearities

play an important role to generate the ZIRP period as a policy choice.

The rest of the paper is organized as follows. First, in Section 2 we present the simple

NK model and explore the ability to explain the recent facts. In Section 3 we present the

full nonlinear analysis by introducing shocks, and show how near-zero interest rates can be

reconciled within the framework and may result as a policy choice. Section 4 concludes.

Further results and illustrations are available in an accompanying web appendix.

2. Simplified Framework

In this section we present the continuous-time specification of the standard NK model.

This simple framework is used to answer our questions regarding the qualitative effect of

the interest rate on inflation. In the next section we show how the equilibrium dynamics

follow from the standard micro-founded rational-expectation solution and shed light on

potential pitfalls when using the linearized dynamics around zero inflation targets.

The simplest version of the NK model reads:

dxt = (it − rt − πt)dt (1)

dπt = (ρ(πt − πss)− κxt)dt (2)

This system shows the (log-)linearized equilibrium dynamics around a zero inflation target

rate πss = 0. The appearance of the inflation target πss in (2) ensures that the solution

of the simple model coincides with the nonlinear solution for πss 6= 0 (cf. Section A.7).

Here, xt is readily interpreted as the output gap (percentage deviations), it is the nominal

interest rate, rt is the ‘natural interest rate’ which, in the absence of shocks, coincides with

the constant rate of time preference ρ, whereas κ controls the degree of price stickiness

with κ→ ∞ as the frictionless (flexible price) limit, and πt is inflation.

The equation (1) follows directly from the consumption Euler equation representing

the optimal investment/saving (IS) decision, often referred to as the IS curve, whereas (2)
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is the NK forward-looking Phillips curve. Solving forward it expresses inflation in terms

of future output gaps,

πt − πss = κ

∫ ∞

t

e−ρ(k−t)xk dk.

Hence, the current rate of inflation and expected rate of inflation are the same in continuous

time. In this model it is useful to think of the path of expected future inflation and other

variables (e.g., marginal cost) determining events at time t.

We close the model by specifying a rule which determines the (equilibrium) interest

rates. In this perfect-foresight model both inflation dynamics and the output gap are fully

determined by the Taylor rule. In what follows we analyze two alternative setups, which

we refer to as the traditional feedback model:

it = φ(πt − πss) + iss, φ > 0, (3a)

and the partial adjustment model (following Sims, 2004; Cochrane, 2017b):

dit = θ(φ(πt − πss)− (it − iss))dt, θ > 0, (3b)

which reflects both a response to inflation and a desire to smooth interest rates. The rules

(3a) and (3b) show the attitude of the monetary authority towards either the long-run

nominal interest rate or the target of inflation (one target is isomorphic to the other). In

this paper, we consider the constant inflation target as a policy parameter. So we abstract

from specifying a specific process, but experiment with changes in target rates, reflecting

changes in the conduct of monetary policy. Empirically, variations in the target rates are

crucial for understanding the dynamics of yields (cf. Bauer and Rudebusch, 2017). One

potential interpretation of those changes is that economic agents infer target rates from

observed interest rate and inflation dynamics: A large interest rate cut may also trigger

a decrease in the long-run interest rate (or inflation) target.

The rule (3b) specifies an explicit time lag between the inflation rate πt and the policy

rate it. The delay will be small if the parameter θ is large.3 While the rule (3a) may seem

simpler, it has some undesirable properties in continuous time. Among others, the clear

distinction between inflation (expected future inflation) that the interest rate controls and

inflation that the Fed responds to vanishes in continuous time.

3Note that we can rewrite the partial adjustment model for θ > 0 as

it − iss = φ(πt − πss)− (1/θ) dit/ dt ⇔ it − iss = φθ

∫ t

−∞

e−θ(t−k)(πk − πss) dk,

which makes it a state variable

it =

∫

∞

0

φ(k)πt−k dk.
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2.1. Can we rule out multiple equilibria?

In this section we study local determinacy. This is relevant because the indeterminacy

regions typically depend on the modelling frequency (Hintermaier, 2005). The findings for

the discrete-time model with a presumed modelling frequency cannot simply be translated

to different decision horizons, in particular to the continuous-time limit.

While the simple NK model with a feedback rule introduces the interest rate as a

control variable, the partial adjustment model makes the interest rate a state variable,

which is given by past inflation. Before we can meaningfully study shocks to the interest

rate it is important to answer the question about local determinacy (focusing on local

equilibria is not entirely uncontroversial, cf. Cochrane, 2011) and thus the possibility of

sunspot equilibria. For the ease of presentation, we set rt = ρ in this section.

This simple NK model with a feedback rule has no relevant state variables. The system

can be analyzed in terms of two equations (1) and (2) using (3a). A unique locally bounded

solution requires two positive eigenvalues of the Jacobian matrix (cf. Appendix A.8)4

A1 =

[

0 φ− 1

−κ ρ

]

.

Hence, a necessary (and sufficient) condition for local determinacy is φ > 1. So the unique

locally bounded solution is xt = 0 and πt = πss such that it = iss = ρ. In other words, a

negative (short-run) response of inflation to raising interest rates is not possible as long

as the monetary authority implements the Taylor principle. Any monetary policy shock,

which affects the policy targets, would be permanent and operates instantaneously. The

response of inflation is unambiguously positive. In this perfect-foresight model, interest

rates can be expressed in terms of future output gaps. We would also need to include a

serially correlated shock in order to generate transitional dynamics in the model.

In the simple NK model with partial adjustment, the only relevant state variable is

the interest rate (historically given inflation rates). We thus obtain the equilibrium values

for the output gap and the inflation rate as policy functions xt = x(it) and πt = π(it).

The system can be analyzed in terms of three equations (1), (2) and (3b), where a unique

locally bounded solution requires two positive eigenvalues of the Jacobian matrix5

A2 =







0 −1 1

−κ ρ 0

0 φθ −θ






.

4The Jacobian matrix has tr(A1) = λ1+λ2 = ρ > 0 and det(A1) = (φ− 1)κ is positive for φ > 1, thus
both eigenvalues have positive real parts, λ1λ2 = det(A1), such that λ1,2 = 1

2 (ρ±
√

ρ2 − 4((φ− 1)κ)).
5Note that det(A2) = −κθ(φ− 1) which is negative for φ > 1. Further, we know that λ1 + λ2 + λ3 =

tr(A2) = ρ− θ and λ1λ2λ3 = det(A2) = −κθ(φ− 1). Because a unique locally bounded solution requires
two positive eigenvalues, φ > 1 is necessary (and sufficient) to obtain determinacy in this model.
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Again, a necessary (and sufficient) condition for local determinacy is φ > 1.

Having determined the conditions for determinacy we follow the convention and define

an active monetary policy if φ > 1 and refer to monetary policy as passive if φ < 1. One

caveat is that the model is linearized around zero inflation targets. As shown below, the

condition φ > 1 remains necessary for πss 6= 0 (no longer sufficient though).

2.2. Which policy instruments?

The recent episodes shed light on the set of central bank instruments. In fact, the nom-

inal interest rate, once considered as the most important (conventional) instrument, will

no longer be the sole determinant of monetary policy. A large body of literature and

anecdotal evidence show that unconventional policies, in particular forward guidance and

quantitative easing (QE), are important monetary policy instruments too. Unless one adds

financial frictions (e.g., Gertler and Karadi, 2011), or assumes imperfect substitutability

between different maturities (cf. Chen, Cúrdia, and Ferrero, 2012), the NK model predicts

that arbitrary QE operations are irrelevant. This is important because inflation seems to

be unaffected by the large-scale asset purchase (LSAP) programmes. Hence, QE as such

is not considered a separate policy instrument.6 In contrast, forward guidance, which

also includes the communication of the inflation target, has strong effects in the standard

NK model (Del Negro, Giannoni, and Patterson, 2015; Campbell, Fisher, Justiniano, and

Melosi, 2016). While the traditional policy instrument targets the short-term interest

rate, the unconventional policy measures are commonly targeting interest rates at higher

maturities (or the longer end of the yield curve).

Beside changing the short-term interest rate, the monetary authority may focus on

other maturities, in particular the long-end of the yield curve.7 As the (constant) inflation

target is under the discretion of the monetary authority, there might be changes in its

perception by economic agents due to communication and/or other policy measures. In

what follows we consider the constant inflation target πss as a policy instrument.8 In our

analysis, a ‘target shock’ simply reflects (unexpected) changes to πss, which is interpreted

to representing a different ‘regime’, and thus may induce transitional dynamics.

There is also an important difference with respect to forward guidance for the two

Taylor rules specified in (3a) and (3b). Pure ‘communication’ about future policy induces

a reaction of the interest rate in the feedback model due to the effect on inflation, while

in the partial adjustment model interest rates are immobile on impact (pre-determined),

6As a caveat, LSAPs could affect term premia, a channel which is absent in the simple NK model and
will be discussed later. Moreover, the LSAPs could also affect agents expectations of the future course of
monetary policy (cf. Wright, 2012), which may be captured by ‘shocks’ to the long-run target rates.

7Swanson and Williams (2014) find that interest rates with a year or more to maturity were surprisingly
unconstrained and responsive to news throughout 2008 to 2010.

8Note that the simplifying assumption of constant target rates will not be relevant for our arguments.
Alternative approaches such as the regime-switching framework (see Sims and Zha, 2006), or time-varying
inflation targets (e.g., Ireland, 2007) would be more realistic, at the cost of more technical details.
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e.g., with respect to changes to long-run targets. So an immediate challenge for empirical

research is to identify target shocks, and also to which extent an observed monetary policy

shocks contain information about (perceived) changes in long-run targets.

2.3. Do higher interest rates raise or lower inflation?

Following the discussion on the policy instruments we now address the question of whether

higher interest rates raise or lower inflation. In fact, the NK model for φ > 1 makes sharp

predictions regarding the link between interest rates and inflation, but at the same time

can explain both the short-run negative response and the long-run positive Fisher effect

(for an illustration of indeterminacy see Cochrane, 2017a). The minimal set of ingredients,

in a forward-looking general equilibrium framework with active monetary policy, φ > 1, to

produce a negative short-run impact of interest rates on inflation is the partial adjustment

model (without shocks).

[insert Figure 3]

In particular, for the partial adjustment model (and given πss), the inflation rate is a

negative function of the interest rate (see Figure 3). The figure plots the initial inflation

rate (or current expected inflation) for different interest rates, which shows the short-run

negative relationship for given target rates. The intuition is that the interest rate depends

positively on the level of inflation, but negatively on its time derivative,

it = φ(πt − πss) + iss − θ−1 dit/ dt, θ > 0. (4)

For a given value dit/ dt 6= 0, the larger the central bank’s desire to smooth interest rates

over time (the lower θ), the larger the second effect: Suppose that after a contractionary

monetary policy shock it > iss, so the (after-shock) time-derivative of the interest rate is

negative dit/ dt < 0, which reflects the slope of the impulse response function. Higher

interest rates are related to lower inflation rates, because the inflation rate is determined

by both the (long-run) Fisher relation and the mean reversion back to the target level. For

our parameterization, inflation falls by 0.5 percentage points on impact for an 1 percentage

point increase in interest rates. To summarize, the short-run response of inflation rates on

impact is negative, while the positive relationship (higher inflation targets imply higher

interest rates) is still given by the long-run Fisher relation it = ρ+ πt.

So what happens if central banks raise interest rates? If the increase is considered by

agents not only as temporary, but after all reflects a change in the bank’s policy targets,

inflation stability in the Fisher equation will result in higher long-run inflation. But can

higher permanent interest rates reduce inflation in the short run? Indeed this is possible if

the ‘target shock’ is accompanied by concrete policy action, i.e., a raise in the short-term

interest rate. In the partial adjustment model, this induces the traditional negative effect
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on inflation, which may even dominate the long-run Fisher effect temporarily. However,

inflation cannot temporarily decrease in the simple feedback model. Because of the formal

peg – unless we add a persistent shock to the feedback rule – any temporary deviation

from the equilibrium instantaneously jumps back. Any temporary shock would evaporate,

and the interest rate will accommodate its equilibrium level (infinitely fast). Only for the

case where θ <∞, any temporary change induces persistent equilibrium dynamics.

[insert Figure 5]

Let us consider a concrete example. Suppose that variables in the simple NK model

are at steady state and the inflation target πss = 0.02 is lowered by 50 basis points (bp),

and the short-term interest rate is decreased by 250 bp. Hence, the observed concrete

policy action (or ‘monetary policy shock’) is 250 bp, but only a fraction 1/5 is permanent

leaving the remainder 4/5 being temporary and not reflecting changes in policy targets.

In the long run we expect lower inflation due to the Fisher relation, but temporarily the

traditional negative trade-off dominates the Fisher effect (cf. Figure 5). Our simulation

exercise shows that on impact the inflation rate increases to 2.5% and then both inflation

and interest rates accommodate their new equilibrium levels after about 10 quarters.

Obviously, the presented channel not a necessary condition for a temporarily negative

response of inflation. Another possibility is to add long-term debt and use the fiscal theory

to pin down the price level (following McCallum, 2001; Del Negro and Sims, 2015). As

shown in Cochrane (2017a), the FTPL produces a temporary reduction in the inflation

rate due to the decline in the nominal market value of the debt. Adding an interest

rate smoothing in the Taylor rule (3b) not only is simpler, it helps to avoid some of the

undesirable properties of the feedback model in continuous time.

This new perspective on ‘monetary policy shocks’ offers an alternative explanation for

the so-called ‘prize puzzle’ (going back to Sims, 1992; Eichenbaum, 1992).9 At the risk

of oversimplifying: Higher short-term interest rates (Fed Funds rate) decrease inflation,

whereas higher long-run interest rates (inflation target) increase inflation.10

2.4. Can we explain the recent episodes?

In this section, we provide anecdotal evidence to study the ability of the simple NK

model to explain the recent episodes during the new century, including the financial crisis

episodes. First, to the unaided eye, the data suggests a reversal of the usual negative

tradeoff in the period 2001-2007, rather supporting the ‘neo-Fisherian’ hypothesis, which

9Similarly, a cost-channel in addition to the demand channel is likely to generate a positive response on
impact, but has little empirical support (see Castelnuovo, 2012, and the references therein). Castelnuovo
and Surico (2010) show that accounting for expected inflation may also explain the ‘puzzle’.

10Recent empirical work estimates that inflation reaches its long-run level within a year (Uribe, 2017),
which is confirmative to our simulation results (cf. Figures C.3 and C.4).
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says that inflation and interest rates are positively related. If anything, inflation indeed

decreased in response to the interest rate cuts. Second, in the subsequent period from

2007 the Fed Funds rate has remained near zero until the liftoff in December 2015, to

which we refer to as the zero-interest-rate policy (ZIRP) period, but surprisingly, inflation

rates kept stable and quiet (cf. Cochrane, 2017a). Third, despite interest rates near zero

through 2015, inflation rebounded already in 2011, with about the same pattern as before.

Fourth, while the short rate seems immobile over the recent episode, the longer end of the

yield curve has considerable variation and is declining over time. From the expectation

hypothesis, we may read this as changes of market perceptions about future interest rates.

Between 2004 and 2005, the federal funds rate increased by 150 bp, while the ten-year

yield fell by about 70 bp (cf. Backus and Wright, 2007). So can we explain the recent

episodes and term structure anomalies within the NK model?

We use an impulse response analysis and try to reconcile the most prominent features

of the data discussed in the literature, which intensified the criticism, but keeping the

working hypothesis of an active monetary policy (φ > 1). With this hypothesis we study

whether the data really is telling us that something is wrong with our models – or whether

the recent episodes can be explained within the standard NK framework. This is important

at least for two reasons: First, the traditional approach (in normal times) presumes an

active monetary policy, which seems violated during the ZIRP period. So shall we abandon

the celebrated Taylor rule only because of an apparently binding constraint? Second, the

implications of passive monetary policy (φ < 1), including the case of φ = 0, are studied

thoroughly in Cochrane (2017a).11 As nicely illustrated, the problem of indeterminacy

(and excess sunspot volatility) of the workhorse model may be avoided when merging the

model with the FTPL. So we complement these results for φ > 1.

The most prominent features of the data discussed in the literature are studied by

looking at the respective periods. In what follows we study the ability of the NK model

to interpret the episodes: (i) with an apparent sign reversal (2001-2007), (ii) including a

zero-interest-rate policy (2007-2015), (iii) with an inflation rebound and near-zero interest

rates (2011), and (iv) including an apparent term structure anomaly (2004-2005).

[insert Table 3]

2.4.1. Sign reversal

While the academic discourse about the effects of the nominal interest rate on the inflation

rate has some tradition in macroeconomics, motivated by the ‘price puzzle’, it received

public attention in 2008, when the interest rates in the US (followed by the ECB in 2014)

hit essentially zero. Consider the period 2001-2007, right before the financial crisis.

11The interpretation of the data essentially followed the believes about monetary policy and the views
which theory should be applied (an excellent discussion of alternative theories is in Cochrane, 2017a).
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In Jan 2001 the Fed Funds rate was at 6 percent (5.98%), the long rate 10Y at 5

percent (5.16%). In Sep 2007 the Fed Funds rate was slightly below 5 percent (4.94%),

the long rate 10Y at 4.5 percent (4.52%). In the meantime, the Fed Funds rate has been

decreased and raised to and from 1 percent quite sharply. Over the same period, the

core CPI inflation followed a similar ∨ pattern and decreased slightly from 2.5 percent

(2.57%) to values around the announced target rate of 2 percent (2.10%). When the Fed

Funds rate dipped at 1 percent (0.98%) in Dec 2003, inflation also had its lowest value of

1 percentage point (1.09%) with long yields at 3.5 percent (3.33%). Can we reconcile this

pattern with the NK model?

If we interpret the ∨ pattern as two consecutive temporary monetary policy shocks,

the NK model predicts that inflation should have followed a counterfactual ∧ pattern.12

A transitory (negative) monetary policy shock of 500 bp would imply inflation to increase

by about 250 bp in 2003 (see Table 3).13 This summarizes the puzzling ‘sign reversal’ and

strikingly fails to explain the decline in long yields (cf. Figures C.9 and C.10). However,

the same transitory shock together with a (negative) permanent shock of 200 bp would

account for the observed pattern for inflation and would predict a decline in yields to

longer maturities. Similarly, a (positive) temporary monetary policy shock of 400 bp

together with restoring the announced inflation target rate in 2007 (cf. Figures C.15 and

C.16) has the opposite effect and may have generated the observed ∨ pattern of Fed Funds,

10Y yields and core CPI inflation in the period from 2001 to 2007. To summarize, the

observed pattern indeed can be reconciled with the (simple) NK model when allowing for

a ∨ pattern to both the short-run and the long-run target rates.

2.4.2. ZIRP period

We next consider the zero-interest-rate policy (ZIRP) period 2007-2015, right after the

begin of the financial crisis in Sep 2007 until the ‘liftoff’ in Dec 2015, with the end-point

marking the start of the Fed’s ‘normalization’ of monetary policy (Williamson, 2016).

In Sep 2007, the Fed Funds rate was at 5 percent (4.94%), the long rate 10Y rate at

4.5 percent (4.52%), while in Jan 2009 the Fed Funds rate was at 0.25 percent (0.15%),

the long rate 10Y at 2.5 percent (2.52%) and stayed there. Over the same period, the

core CPI inflation decreased from 2 percent (2.10%) to values way below the announced

target rate around 0.5 percent (0.60%) in Oct 2010, and then bounced back in Aug 2011

to values around the announced target of 2 percent (1.97%). At a first glance, things look

pretty much like the sharp decrease during the 2001-2003 period. This time, however, the

(short-run) nominal interest rates was quite close to the ZLB and did not return to higher

values for a while. Can we generate a ZIRP period within the NK model?

12To begin with, we neglect shocks to the natural rate (preference shocks) and let rt = ρ.
13For details and transitional dynamics, we also refer to the figures in the accompanying web appendix.
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An interest rate cut by about 475 bp, for an inflation target of 2 percent, we should

have expected inflation rates of more than 4 percent. If anything, core inflation (excluding

food and energy) declined from slightly above 2 percent to values around 0.5 percent in

2010, and then rebounded to 2 percent 2011. If one borrows the explanation of the 2001-

2003 period, the sharp decrease may also reflect a change in the inflation target by 2

percent (the 10Y bond yield declined approximately by 200 bp). Inflation would jump

only by 0.5% and then after about 2.5 years decline to zero (see Figures C.21 and C.22).

This sounds reasonable. But it does not explain the near zero values of the interest rate.

Although we are able to replicate the observed variables on impact, and inflation rates

eventually approaching zero, the model predicts a strong tendency of the interest rate to

revert back to its steady-state value. Extending the simple NK model by a shock to the

‘natural rate’ (preference shock), we may add a preference shock:

dd̂t = −ρdd̂tdt, (5)

and consider rt ≡ (ρ+ ρdd̂t) as the ‘natural rate of interest’ (e.g., Werning, 2012), which

may be interpreted as an alternative way of reconciling the NK model prediction with the

data. Is it possible that a ‘preference shock’, or a series of shocks to the natural rate kept

interest rates at near zero values, such that our working hypothesis is fulfilled?

In fact, we may replicate both inflation and interest rates by reverse-engineering the

latent process for the (realized) preference shocks. Economically we are looking for the

natural rate, which implies both inflation and interest rates in the data. Everything that

explains the changes in the required natural rate can potentially explain the empirical

patterns. Both the inflation target rate and the preference shock affects the natural rate.

So is this really an alternative explanation? This is important as we are interested in the

minimum ingredients of the NK model to explain the facts.

[insert Figure 2]

Figure 2 sheds light on the natural rate required for the simple model to explain the

data (cf. Figure C.41 for the required preference shock). The most interesting part is the

model-implied longer-end of the yield curve. If this prediction was line with the data,

the model indeed has something to say. For example, the ∨ pattern of Fed Funds, 10Y

yields and core CPI inflation in the period 2001-2007 could have been generated by a

similar pattern of the natural rate, while keeping the inflation target at 2 percent. The

ZIRP period is different though. Starting around 2011, when the inflation rates rebound

to higher values, the model-implied 10 year yields (Implied 10Y Govt) are substantially

higher than in the data. So the simple NK model is unable to explain the longer end even

for the hypothetical scenario of a series of shocks to the natural rate for a given inflation

target rate. The large (negative) preference shock about 10 percent would be required to
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remain idle around this value to generate the start of the ZIRP period.

What we learn from the hypothetical natural rate in Figure 2 is that a series of shocks

may indeed generate the observed pattern in the interest rates and inflation, but ultimately

this seems inconsistent with the underlying shock process. To explain the ZIRP episode

with a single shock we would need to modify the shock dynamics. Our simulation results

confirm this conjecture: Adding a negative preference shock of roughly 10 percent to both

monetary policy shocks helps to fix the yield curve and inflation, but does not generate

a ZIRP period. Even with higher persistence the assumed shock process (5) would not

imply that interest rates do remain close to zero (cf. Figures C.27 and C.28).

The bottom line of this section is that both temporary and permanent shocks are

required for the ability of the simple NK model with φ > 1 to explain the facts. One

subtle but important issue is that such a hypothetical series of shocks seems inconsistent

with the underlying shock process (5) to generate Figure 2. Perhaps, a nonlinear approach

is needed to capture potentially important shock dynamics? So this is something that

ultimately should be addressed, before we can safely ignore this possibility.

2.4.3. Inflation rebound (near-zero interest rates)

Elaborating on the previous results, it gets even more challenging to reconcile the facts

with the simple NK model, when we consider that after the long decline since 2007, the

begin of the ZIRP period, inflation suddenly rebounds to levels around 2 percent in 2011,

while interest rate remain immobile and near zero at least throughout 2015.

Let us turn to the facts. In Oct 2010, the Fed Funds rate was at 0.25 percent (0.19%),

the long rate 10Y at 2.5 percent (2.54%), and core CPI inflation dipped at 0.5 percent

(0.60%), while in Jun 2011 the Fed Funds rate was close to zero (0.09%), whereas the long

rate 10Y was at 3 percent (3.00%) and core CPI inflation increase to 1.5 percent (1.58%),

with tendency to revert back to values around the ‘official’ target rate at 2 percent.

If we considered a target shock of 200 bp, so we re-established the announced target

rate around 2011, while interest rates at near zero values, the NK model could explain the

inflation rebound without any effects on nominal interest rates on impact with the partial

adjustment model only (the feedback model cannot generate this for φ > 1). If anything,

the Fed Funds rate in fact was lowered by 10 bp, which seems too small to account for

the rebound of inflation rates. As shown above, a shock to the natural rate may also

affect the inflation rates. Hence, we consider a simultaneous negative preference shock

of about 15 percent (cf. Figure C.41). Without this shock to the natural rate, inflation

would jump to values around 4.5 percent for the presumed inflation target shock. A similar

(counterfactual) picture arose at the longer end of the yield curve, if we would try to match

the inflation figures with some preference shock only. So from our previous discussion,

one plausible scenario is that the economy (still) experiences a negative natural interest
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rate, which keeps inflation at reasonable levels after the target shock, but lets inflation

rebound with interest rates being at near zero values (cf. Table 3). Nonetheless, though the

combination of target shock and preference shock may explain the rebound, and alleviates

the tendency of the nominal interest rate to revert back to steady-state levels, we cannot

explain the remaining ZIRP period with a single shock (cf. Figures C.33 and C.34).

So we conclude that the simple NK model fails to replicate the observed pattern in the

data with a single shock. We would need a large shock to the natural rate and the target

rate which keeps nominal interest rates at near zero values for a while and simultaneously

depresses inflation. A higher inflation target, potentially triggered by market expectations

of higher future inflation due to the QE operations, may have caused inflation eventually

to pick up without affecting the nominal interest rate.

2.4.4. Term structure anomalies

The discussion on preference shocks vs. target shocks has shown that it is important to

consider both, the short and the longer end of the yield curve in order to interpret the data

through theoretical arguments. We now present some anecdotal evidence that shocks may

indeed arise simultaneously. If a monetary policy shock is accompanied by a preference

shock, some of the ‘anomalies’ observed in the date arise in the standard NK model.

Let us consider the period between 2004 and 2005, when a rotation in the yield curves

gave rise to what Alan Greenspan’s called a ‘conundrum’ (cf. Backus and Wright, 2007).

In Jun 2004, the Fed Funds rate was at 1 percent (1.03%), the long rate 10Y at 4.5 percent

(4.73%), while in Feb 2005, the Fed Funds rate was at 2.5 percent (2.50%), the long rate

10Y at 4 percent (4.17%). Over the same period, core CPI inflation increased from slightly

below its announced target rate of 2 percent (1.87%) to about 2.5 percent (2.31%).

The ‘conundrum’ is that the federal funds rate increased by 150 bp, but the ten-year

yield decreased by about 50 bp. Can we reconcile the rotation of the yields, to which

we refer as term structure ‘anomalies’, with the standard NK model? Given the previous

discussion, we may conjecture that a positive monetary policy shock was accompanied by

a negative shock to the natural rate, keeping the inflation target about the same level,

such that the standard negative relationship between interest rates and inflation is as

expected (with a tendency to revert back to the target rate).14

We simulate a positive monetary policy shock of 150 bp which is accompanied by a

negative preference shock of about 10 percent (in accordance with Figure 2). Both shocks

generate the rotation in the yields as observed in the data (cf. Figures C.39 and C.40).

While a rotation in the nominal yield curve could also be obtained by a contemporaneous

negative target shock, two reasons speak against this hypothesis for the period 2004-2005:

First, if anything, we would expect that a rise in nominal interest rates may trigger a rise

14This observation may give a hint that restoring the inflation target rate from 0% to 2% should have
occurred already right after Dec 2003 through Jun 2004 (see the discussion in Section 2.4.1).

13



in the target rate. Second, the predicted real yield curve would not show a rotation as

observed in the data (compare to Fig. 4 in Backus and Wright, 2007). Hence, a rotation in

both yield curves suggests that the monetary policy shocks was accompanied by a negative

shock to the natural rate. This results points towards directions for empirical research

how we may separate target shocks from preference shocks: In order to identify shocks, we

eventually employ data on both the nominal and the real yield curve. Though the simple

model is able to account for the rotation in the yields, it is too sensitive with respect to

the inflation rate (cf. Table 3). The simulated response to the monetary policy shock is

a counterfactual decline. We will show below that the strong effects on the inflation rate

indeed is an artefact of the linear model around zero inflation targets.

2.5. Discussion and open questions

So the bottom line is a partial remedy of the NK model to interpret the data. We show

how target shocks (loosely interpreted as forward guidance) in addition to the traditional

policy instrument improves the ability of the model to explain the facts. The linear model

(with φ > 1) is unable to account for nonlinearities, so the paper does not stop here.

We showed that the simple model still helps us to organize our thoughts, so abandon

the model might be too shortsighted: Allowing monetary policy shocks to have transitory

and permanent components, we may explain the sign reversal observed in the data and the

∨ pattern of the Fed Funds rate and core CPI inflation in the data. These predictions are

also in line with the predictions for the yield curve. Extending the model by (transitory)

shocks to the natural rate helps to explain the begin of the ZIRP period and the inflation

rebound in 2011, while interest rates being immobile and near zero. One open question

remains because the NK model fails to replicate the ZIRP period with a single shock such

that the shock dynamics are consistent with the underlying shock process. According to

Figure 2 we would need a large shock to the natural rate and that this shock keeps the

natural rate negative for a while, before eventually reverting back to its steady state.

Perhaps need to distinguish our approach between normal times and non-normal times,

where the dynamics are different from those at the intended equilibrium point? This is

what we learn from Brunnermeier and Sannikov (2014): In normal times, the equilibrium

system is near the steady state, where the system is resilient to most shocks near the

steady state. Unusually large shocks, however, may induce completely different dynamics

of macro aggregates. Once in a crisis state (non-normal times), also smaller shocks are

subject to amplification. A nonlinear framework may be an alternative interpretation in

which a single preference shock accounts for the ZIRP period. In what follows, we set

up a parsimonious model, where the dynamics of large negative shocks are different from

those around the steady state, at which the model is observational equivalent to (5).

Moreover, note that the presented model so far is an approximation of the NK model
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around zero inflation target rates, πss = 0. As we show below, the stability properties are

sensitive to non-zero inflation targets, πss > 0. In particular, allowing for (even small)

positive inflation targets, we need to extend the continuous-time feedback model, e.g, by

an output response, to obtain a unique locally bounded solution. On the other hand, the

partial adjustment model does generate local determinacy for plausible non-zero inflation

targets (including the ‘official’ target rate). The non-zero inflation targets, however, are

important to evaluate the effects of possibly shifting perceptions of the central bank’s

inflation target (see Gürkaynak and Wright, 2012, and the references therein).

Another caveat is that price dispersion typically is dropped as it becomes an exogenous

process in the linear model around zero inflation targets. It is easy to show, however, that

the price dispersion is quite different for an inflation target of about 2 percent: Higher

price dispersion is associated with higher inflation. Hence, a shock to the inflation target

has important implications for the price dispersion and inflation dynamics, and may also

generate different dynamics for macro aggregates. It will depend on the particular question

whether this is an important caveat. It might be irrelevant for small shocks, but becomes

important in non-normal times, when the economy is far away from its steady state.

In what follows we thus set up and solve the nonlinear version of the NK model. We

show that an alternative shock process, which is observational equivalent in normal times

(with small shocks), has quiet different dynamics in non-normal times (large shocks). We

also allow for stochastic shocks and show how uncertainty shocks will affect the long-end

of the yield curve even if the inflation target rate is constant. A time-varying inflation

target thus may be interpreted as a short cut to include ‘uncertainty’ shocks.

3. Nonlinear New-Keynesian Model with Shocks

We describe now the environment for our investigation. It is the continuous-time version

of the standard NK model (cf. Woodford, 2003). We summarize the equilibrium dynamics,

show how to compute impulse responses, compute the effects of uncertainty, and how to

solve the model in the policy function space. Throughout the paper, we keep the nonlinear

structure of the model, which turns out to be quite relevant for non-normal times when

considering large shocks and/or large deviations from the point of approximation.

3.1. The Model

The basic structure of the model is as follows. A representative household consumes, saves,

and supplies labor. The final output is assembled by a final good producer, who uses as

inputs a continuum of intermediate goods manufactured by monopolistic competitors. The

intermediate good producers rent labor to manufacture their good, and face the constraint

that they can only adjust the price following Calvo’s pricing rule (Calvo, 1983). Finally,

there is a monetary authority that fixes the short-term nominal interest rate through open
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market operations with public debt, and a fiscal authority that taxes and consumes. We

introduce four stochastic shocks, one to preferences (which can be loosely interpreted as a

shock to aggregate demand, temporarily affecting the real interest rate), one to technology

(interpreted as a shock to aggregate supply), one to monetary policy, and one to fiscal

policy. For simplicity, we do not explicitly model a shock to the inflation target, which is

considered a policy instrument under the discretion of the central bank.

3.1.1. Households

There is a representative household in the economy that maximizes the following lifetime

utility function, which is separable in consumption, ct and hours worked, lt:

E0

∫ ∞

0

e−ρtdt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

dt, ψ > 0, (6)

where ρ is the subjective rate of time preference, ϑ is the inverse of Frisch labor supply

elasticity, and dt is a preference shock, with log dt following an Ornstein-Uhlenbeck (OU)

process (the continuous time analog of a first-order autoregression):

d log dt = −ρd log dtdt+ σddBd,t. (7)

The process Bd,t is a standard Brownian motion, such that by Itô’s lemma:

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t.

Below, for this shock and the other exogenous stochastic processes, we will use both the

formulation in level and in logs depending on the context and ease of notation.

Let at denote real financial wealth, the household’s real wealth evolves according to:

dat = ((it − πt)at − ct + wtlt + Tt +̥t) dt, (8)

in which it is the nominal interest rate on government bonds, πt the rate of inflation of

the price level pt (or price of the consumption good), wt is the real wage, Tt is a lump-sum

transfer, and ̥t are the profits of the firms in the economy.

3.1.2. The Final Good Producer

There is one final good produced using intermediate goods with the following production

function:

yt =

(
∫ 1

0

y
ε−1

ε

it di

)
ε

ε−1

, (9)

where ε is the elasticity of substitution.
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Final good producers are perfectly competitive and maximize profits subject to the

production function (9), taking as given all intermediate goods prices pit and the final

good price pt. Hence, the input demand functions associated with this problem are:

yit =

(

pit
pt

)−ε

yt ∀i,

and

pt =

(
∫ 1

0

p1−ε
it di

)

1

1−ε

(10)

is the (aggregate) price level.

3.1.3. Intermediate Good Producers

Each intermediate firm produces differentiated goods out of labor using:

yit = Atlit,

where lit is the amount of the labor input rented by the firm and where At follows:

d logAt = −ρA logAtdt+ σAdBA,t. (11)

Therefore, the marginal cost of the intermediate good producer is the same across firms:

mct = wt/At.

The monopolistic firms engage in infrequent price setting á la Calvo. We assume that

intermediate good producers reoptimize their prices pit only when a price-change signal

is received. The probability (density) of receiving such a signal h periods from today is

assumed to be independent of the last time the firm got the signal, and to be given by:

δe−δh, δ > 0.

Thus e−δ(τ−t) denotes the probability of not having received a signal during τ − t,

1−

∫ τ

t

δe−δ(h−t) dh = 1−
(

−e−δ(τ−t) + 1
)

= e−δ(τ−t). (12)

A fraction of firms will receive the price-change signal per unit of time. All other firms

keep their old prices. Note that the lower the parameter δ, the higher price rigidities. In
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the frictionless case δ → ∞. Prices are set to maximize the expected discounted profits:

max
pit

Et

∫ ∞

t

λτ
λt
e−(ρ+δ)(τ−t)

(

pit
pτ
yiτ −mcτyiτ

)

dτ s.t. yiτ =

(

pit
pτ

)−ε

yτ ,

where λτ is the current value (not discounted) of a unit of consumption in period τ from

the perspective of the household (the pricing kernel for the firm).

After dropping constants, we may write the first-order condition as:

pitx1,t =
ε

ε− 1
ptx2,t ⇒ Π∗

t =
ε

ε− 1

x2,t
x1,t

, (13)

in which Π∗
t ≡ pit/pt is the ratio between the optimal new price (common across all firms

that can reset their prices) and the price of the final good and where we define the auxiliary

variables (interpreted as expected discounted marginal revenue and marginal costs):

x1,t ≡ Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

yτdτ , (14)

x2,t ≡ Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)mcτ

(

pt
pτ

)−ε

yτdτ . (15)

Both variables are forward looking (or jump variables) and determined in equilibrium.

Differentiating x1,t with respect to time gives:

dx1,t = ((ρ+ δ + (1− ε)πt) x1,t − λtyt) dt, (16)

in which the rate of inflation πt = dpt/pt. Accordingly:

dx2,t = ((ρ+ δ − επt)x2,t − λtmctyt) dt. (17)

Assuming that the price-change is stochastically independent across firms gives:

p1−ε
t =

∫ t

−∞

δe−δ(t−τ )p1−ε
iτ dτ ,

making the price level pt a predetermined variable at time t, its level being given by past

price quotations (Calvo’s insight). Differentiating with respect to time gives:

dp1−ε
t =

(

δp1−ε
it − δ

∫ t

−∞

δe−δ(t−τ )p1−ε
iτ dτ

)

dt = δ
(

p1−ε
it − p1−ε

t

)

dt

and
1

dt
dp1−ε

t = (1− ε) p−ε
t

dpt
dt
.
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Then

dpt =
δ

1− ε

(

p1−ε
it pεt − pt

)

dt ⇒ πt =
δ

1− ε

(

(Π∗
t )

1−ε − 1
)

. (18)

Differentiating (18) with respect to time, we obtain the inflation dynamics as:

dπt = −δ (Π∗
t )

1−ε (πt + (mct/x2,t − 1/x1,t)λtyt) dt

= −(δ + (1− ε)πt) (πt + (mct/x2,t − 1/x1,t)λtyt) dt, (19)

which is interpreted as the NK Phillips-curve.

3.1.4. The Government Problem

We assume that the government sets the nominal interest rate it through open market

operations according to two alternative setups, i.e., the feedback model:

it − iss = φπ(πt − πss) + φy(yt/yss − 1), φπ > 0, φy ≥ 0, (20a)

or the partial adjustment model:

dit = θ(φπ(πt − πss) + φy(yt/yss − 1)− (it − iss))dt+ σmdBm,t, θ > 0, (20b)

which includes a response to inflation and output, and a desire to smooth interest rates.

Similar to equation (3b), the rule in (20b) specifies a time lag between the inflation rate

and the interest rate, and allows for an output response and monetary policy shocks.15

The coupon payments of the government perpetuities T b
t = −itat are financed through

lump-sum taxes. Suppose transfers finance a given stream of government consumption

expressed in terms of its constant share of output, sgsg,t, with a mean sg and a stochastic

component sg,t that follows another Ornstein-Uhlenbeck process16:

d log sg,t = −ρg log sg,tdt+ σgdBg,t, (21)

such that

gt − T b
t = sgsg,tyt − T b

t ≡ −Tt.

3.1.5. Aggregation

First, we derive an expression for aggregate demand:

yt = ct + gt.

15Given our previous discussion, we will mainly focus on the partial adjustment model. Nevertheless,
for the ease of comparison with the literature, we highlight some of the results for the feedback model.

16While we could have sgsg,t > 1, our calibration of sg and σg is such that this event will happen with
a negligibly small probability. Alternatively we could specify a stochastic process with support (0,1).
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In other words, there is no possibility to transfer the output good intertemporally. With

this value, the demand for each intermediate good producer is

yit = (ct + gt)

(

pit
pt

)−ε

∀i. (22)

Using the production function we may write:

Atlit = (ct + gt)

(

pit
pt

)−ε

.

We integrate both sides:

At

∫ 1

0

litdi = (ct + gt)

∫ 1

0

(

pit
pt

)−ε

di

to get an expression:

ct + gt = yt =
At

vt
lt,

in which we define:

vt =

∫ 1

0

(

pit
pt

)−ε

di

as the aggregate loss of efficiency induced by price dispersion of the intermediate goods.

Similar to the price level, vt is a predetermined variable (Calvo’s insight):

vt =

∫ t

−∞

δe−δ(t−τ )

(

piτ
pt

)−ε

dτ . (23)

Differentiating this expression with respect to time gives:

dvt =
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

dt. (24)

Finally, as shown in the appendix, in equilibrium aggregate profits can be written as

a function of other variates:

̥t = (1−mctvt)yt. (25)

3.2. The HJB Equation First-Order Conditions

Define the state space Uz ⊆ Rn and the control region Ux ⊆ Rm. It is also convenient to

define the reward function f : Uz × Ux → R, the drift function g : Uz × Ux → Rn, the

diffusion function σ : Uz → Rn×n (we discuss the details below).

Given our description of the problem, we define the household’s value function as:

V (Z0;Y0) ≡ max
{Xt}∞t=0

E0

∫ ∞

0

e−ρtf(Zt,Xt) dt,
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in which Zt ∈ Uz denotes the n-vector of states, Xt ∈ Ux denotes the m-vector of controls,

and Yt = Y(Zt) is a vector of variates to be determined in equilibrium as a function of

the state variables, but taken as parametric by the representative household,

s.t. dZt = g(Zt,Xt;Yt) dt + σ(Zt) dBt,

where Bt is an k-vector of k independent standard Brownian motions. The instantaneous

covariance matrix of Zt is σ(Zt)σ(Zt)
⊤, which may be less than full rank n.

In particular, the vector of state variables is Zt = (at, it, vt, dt, At, sg,t)
⊤ and equilibrium

variables Yt = (yt, mct, wt, πt, x1,t, x2,t,Π
∗
t , λt, Tt,̥t)

⊤ to be determined endogenously, and

Xt = (ct, lt)
⊤ is the vector of controls. In our case, the reward function reads:

f(Zt,Xt) = dt log ct − dtψ
l1+ϑ
t

1 + ϑ
.

From the discussion above, we define the drift function (with partial adjustment):

g(Zt,Xt;Yt) =























(it − πt)at − ct + wtlt + Tt +̥t

θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss)

δ (Π∗
t )

−ε + (επt − δ)vt

−(ρd log dt −
1
2
σ2
d)dt

−(ρA logAt −
1
2
σ2
A)At

−(ρg log sg,t −
1
2
σ2
g)sg,t























(8)

(20b)

(24)

(7)

(11)

(21)

,

and the diffusion function of the state transition equations:

σ(Zt) =























0 0 0 0 0 0

0 σm 0 0 0 0

0 0 0 0 0 0

0 0 0 σddt 0 0

0 0 0 0 σAAt 0

0 0 0 0 0 σgsg,t























(8)

(20b)

(24)

(7)

(11)

(21)

.

By choosing the control Xt ∈ R2
+ at time t, the HJB equation reads:

ρV (Zt;Yt) = max
{Xt}∞t=0

{

f(Zt,Xt) + g(Zt,Xt;Yt)
⊤VZ +

1
2
tr
(

σ(Zt)σ(Zt)
⊤VZZ

)}

, (26)

where VZ is an n-vector, VZZ is a n × n matrix, and tr(·) denotes the trace of a matrix.

A neat result about the formulation of our problem in continuous time is that the HJB

equation (26) is, in effect, a deterministic functional equation. In the discrete-time version,

we need to numerically approximate expectations (or the n-dimensional integral).
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The first-order conditions with respect to ct and lt for any interior solution are:

dt
ct

= Va, (27)

dtψl
ϑ
t = Vawt, (28)

or, eliminating the costate variable (for ψ 6= 0):

ψlϑt ct = wt,

which is the standard static optimality condition between labor and consumption.

Most notably, the first-order conditions (27) and (28) yield optimal controls :

Xt = X(Zt, VZ(Zt;Yt);Yt) ≡

[

c(Zt, VZ(Zt;Yt);Yt)

l(Zt, VZ(Zt;Yt);Yt)

]

=

[

(Va(Zt;Yt))
−1dt

(Va(Zt;Yt)wt/(dtψ))
1/ϑ

]

.

Thus, the first-order conditions (27) and (28) make the optimal controls functions of the

states, ct = c(Zt;Yt), lt = l(Zt;Yt). Hence, the concentrated HJB equation reads:

ρV (Zt;Yt) = f(Zt,X(Zt, VZ(Zt;Yt)) + g(Zt,X(Zt, VZ(Zt;Yt));Y)
⊤VZ

+1
2
tr
(

σ(Zt)σ(Zt)
⊤VZZ

)

. (29)

Note that Va(Zt;Yt) = λt in (27) and (28) is readily interpreted as the marginal value

of wealth or the current value of a unit of consumption in period t, and thus determines

the asset pricing kernel in this economy. In what follows, we provide the asset pricing

kernel or the stochastic discount factor (SDF) consistent with equilibrium dynamics of

macro aggregates, which can be used to price any asset in the economy.

As we show in the appendix, the marginal value of wealth evolves according to:

dλt = (ρ− it + πt)λtdt

+σddtλddBd,t + σAAtλAdBA,t + σgsg,tλgdBg,t + σmλrdBm,t, (30)

which determines the equilibrium SDF (see Hansen and Scheinkmann, 2009):

ms/mt = e−ρ(s−t)Va(Zs;Ys)

Va(Zt;Yt)
, and mt = e−ρtλt, (31)

or, equivalently, the present value shadow price. After some algebra (see Appendix A.2),

we arrive at the Euler equation, which shows the equilibrium dynamics of consumption:

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

mc̃
2
r + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σmc̃rctdBm,t, (32)
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where c̃r ≡ cr/ct, c̃d ≡ cddt/ct, c̃g ≡ cgsg,t/ct, and c̃A ≡ cAAt/ct, reflecting the slope of the

consumption function with respect to the state variables that are driven by shocks.

3.3. Equilibrium dynamics

In order to understand the recursive-competitive equilibrium (as defined in Appendix A.3),

it is instructive to show the mechanics of the NK model. We start from market clearing:

ct = yt − gt = (1− sgsg,t)yt = (1− sgsg,t)Atlt/vt, (33)

such that the combined first-order condition reads:

wt = ψlϑt ct ⇔ vtwt = ψl1+ϑ
t (1− sgsg,t)At ⇔ l1+ϑ

t =
vtwt

(1− sgsg,t)Atψ
,

and from (28):

ct = ((1− sgsg,t)/vt)
ϑ

1+ϑAt(mct/ψ)
1

1+ϑ , (34)

or

mct = ψl1+ϑ
t (1− sgsg,t)/vt.

For a given level of current marginal cost,mct, the solution is known analytically. However,

in the NK model the firm takes into account current marginal cost and expected future

marginal cost whenever it has an opportunity to adjust its price. Hence, the equilibrium

value for current marginal costs is an unknown function of all states, Yt = Y(Zt).

So we arrive at a system of 5 endogenous processes, i.e., for the auxiliary variables x1,t,

x2,t, price dispersion vt, the Taylor rule it, and the consumption Euler equation ct, and 3

exogenous shock processes for sg,t, dt, At, which summarize equilibrium dynamics:

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

mc̃
2
r + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σmc̃rctdBm,t

dx1,t = ((ρ+ δ − (ε− 1)πt)x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − επt) x2,t −mctdt/(1− sgsg,t)) dt

dit = θ(φπ(πt − πss) + φy(yt/yss − 1)− (it − iss))dt+ σmdBm,t

dvt = (δ(1 + πt(1− ε)/δ)−
ε

1−ε + (επt − δ)vt)dt

in which (1 + πt(1− ε)/δ)
1

1−ε = ε/(ε− 1)(x2,t/x1,t) determines the inflation rate and

dt/ct = ((1− sgsg,t)/vt)
− ϑ

1+ϑ (mct/ψ)
− 1

1+ϑdt/At (35)

⇔ mct = ψ((dt/ct)(At/dt))
−(1+ϑ)(vt/(1− sgsg,t))

ϑ,

pins down marginal costs. Given a solution to the system of dynamic equations augmented
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by the stochastic processes (7), (11), and (21), the general equilibrium policy functions

(as a function of relevant state variables) can be obtained.

3.4. Numerical solution of the (conditional) deterministic system

In what follows we solve the NK model using the (conditional) deterministic system,

which demands that we need to account appropriately for risk. This is obtained if the

(nonlinear) solution to the HJB equation implies the same policy function of the boundary

value problem. The solution of the deterministic model is contained as a special case.

We start from the HJB equation (29) or (a more detailed version (A.8)) and find that

for Vaa(Zt;Yt) 6= 0

c(Zt;Yt) = (it − πt)at + wtl(Zt;Yt) + Tt +̥t − (ρ− (it − πt))
Va(Zt;Yt)

Vaa(Zt;Yt)

+(θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))
Vra(Zt;Yt)

Vaa(Zt;Yt)

+1
2
σ2
m

Vrra(Zt;Yt)

Vaa(Zt;Yt)
+
(

δ(1 + (1− ε)πt/δ)
− ε

1−ε + (επt − δ)vt

) Vva(Zt;Yt)

Vaa(Zt;Yt)

−(ρd log dt −
1
2
σ2
d)dt

Vda(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
dd

2
t

Vdda(Zt;Yt)

Vaa(Zt;Yt)

−(ρA logAt −
1
2
σ2
A)At

VAa(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
AA

2
t

VAAa(Zt;Yt)

Vaa(Zt;Yt)

−(ρg log sg,t −
1
2
σ2
g)sg,t

Vga(Zt;Yt)

Vaa(Zt;Yt)
+ 1

2
σ2
gs

2
g,t

Vgga(Zt;Yt)

Vaa(Zt;Yt)
, (36)

which we will use to define the Euler equation errors below.

In what follows, we compute the solution to the HJB equation from a deterministic

system of differential equations (a boundary value problem), which works in continuous

time since the HJB equation itself becomes a deterministic equation (cf. Chang, 2004).17

Nevertheless, we have to account appropriately for risk. So the idea is to transform the

system of SDEs into a system of PDEs which also solves the HJB equation. Assume the

existence of a consumption function ct = c(Zt), and use Itô’s formula to arrive at:

dct = ca dat + cr dit +
1
2
crrσ

2
m dt+ cv dvt

+cd ddt +
1
2
cdd(σddt)

2dt+ cA dAt +
1
2
cAA(σAAt)

2dt + cg dsg,tdt+
1
2
cgg(σgsg,t)

2dt.

This leads us to the following proposition.

17In contrast, the discrete-time HJB equation requires the analyst needs to evaluate the state space not
only at the current information set, but also at future expected values, so the continuous-time approach
does not require to numerically compute expectations (a burdensome step in discrete-time models).
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Proposition 1. By subtracting the Itô second-order terms from the Euler equation (32),

dct −
1
2
crrσ

2
m dt− 1

2
cdd(σddt)

2dt− 1
2
cAA(σAAt)

2dt− 1
2
cgg(σgsg,t)

2dt =

ca dat + cr dit + cv dvt + cA dAt + cd ddt + cg dsg,t,

and inserting dct from (32) we may eliminate time (and stochastic shocks) and together

with ct = dtV
−1
a yields (36) from the HJB equation.

Proof. Appendix A.4

A system of PDEs which implies the same policy function is constructed using (32)

and Proposition 1 by subtracting Itô terms from the Euler equation (accounting for risk)

and setting dBd,t = dBA,t = dBg,t = dBm,t = 0 (in the absence of shocks),

dct = −(ρ− (it − πt))ctdt+ c̃2dσ
2
dctdt + c̃2Aσ

2
Actdt + c̃2gσ

2
gctdt+ c̃2rσ

2
mctdt

−1
2
c̃ddσ

2
dctdt−

1
2
c̃AAσ

2
Actdt−

1
2
c̃ggσ

2
gctdt−

1
2
c̃rrσ

2
mct dt

−ctρd log dtdt +
1
2
σ2
dctdt− c̃dσ

2
dctdt

where we define c̃rr ≡ crr/ct, c̃dd ≡ cddd
2
t/ct, c̃gg ≡ cggs

2
g,t/ct, and c̃AA ≡ cAAA

2
t/ct reflecting

curvature of the consumption function with respect to the state variables that are driven

by shocks, such that dct = ca dat + cr dit + cv dvt + cA ddt + cd ddt + cg dsg,t solves (36).

So we refer to the following system of PDEs as the conditional deterministic system:

dct = −(ρ− (it − πt))ctdt+ c̃2dσ
2
dctdt+ c̃2Aσ

2
Actdt + c̃2gσ

2
gctdt+ c̃2rσ

2
mctdt

−1
2
c̃ddσ

2
dctdt−

1
2
c̃AAσ

2
Actdt−

1
2
c̃ggσ

2
gctdt−

1
2
c̃rrσ

2
mct dt

−ctρd log dtdt +
1
2
σ2
dctdt− c̃dσ

2
dctdt (37)

dit = θ(φπ(πt − πss) + φy(yt/yss − 1)− (it − iss)) dt

dvt = (δ (1 + (1− ε)πt/δ)
− ε

1−ε + (επt − δ)vt) dt

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt

dAt = −
(

ρA logAt −
1
2
σ2
A

)

Atdt

dsg,t = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt

dx1,t = ((ρ+ δ − (ε− 1)πt)x1,t − dt/(1− sgsg,t)) dt

dx2,t = ((ρ+ δ − επt)x2,t −mctdt/(1− sgsg,t)) dt

So the Euler equation (37) of the conditional deterministic system is used to obtain the

conditional deterministic (or stochastic) steady state.18 Recall that the inflation rate πt is

endogenously determined from (18), and the jump variables x1,t and x2,t. We restrict our

attention to the solution which leads the economy towards the (stochastic) steady state,

18Though there will be a steady-state distribution, we follow the convention in the literature and define
the fix point of this system as the ‘stochastic steady state’, and thus use both terms interchangeably.
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in which πt → πss. By solving for the time paths, the solution satisfies both the initial

and the transversality condition (TVC) and characterizes the stable manifold. We iterate

computing controls and updating the derivatives until convergence (cf. Table 1).19

[insert Table 1]

It is important to note that as long as ‖(σd, σA, σg, σm)‖ 6= 0, the term dct of the

conditional deterministic system (37) does not coincide with the term dct of the Euler

equation (32), which is an abuse of notation only needed in the numerical solution. Once

we derived the policy functions, the original Euler equation is used to simulate the model

and/or to make statistical inference, by allowing for the arrival of stochastic shocks.

We solve the system of PDEs by the Waveform Relaxation algorithm. In this way, we

can separate the solution in the time dimension from the solution in the policy space, which

turns out to be computationally more robust and less expensive.20 Following the idea in

Posch and Trimborn (2013) we obtain the unknown derivatives starting from the solution

of the deterministic system, then iteratively define c̃r(Zt;Yt) ≡ cr/ct, c̃rr(Zt;Yt) ≡ crr/ct,

c̃d(Zt;Yt) ≡ cddt/ct, c̃dd(Zt;Yt) ≡ cddd
2
t/ct, c̃g(Zt;Yt) ≡ cgsg,t/ct, c̃gg(Zt;Yt) ≡ cggs

2
g,t/ct,

c̃A(Zt;Yt) ≡ cAAt/ct, and c̃AA(Zt;Yt) ≡ cAAA
2
t/ct, and solve the system of ODEs. The

initial value for the control and/or jump variables is used to approximate the solution in

the policy function space (using tensor products of univariate grids as initial values), then

update the solution, and iterate until convergence.

In the boundary value problem (BVP) we seek a function x : [0, T ] 7→ Rk that satisfies

the (conditional) deterministic system consisting of the Euler equation (37) determining

ct, and the law of motion for x1,t, x2,t, it, vt, dt, At, and sg,t (which gives k = 8), together

with the given initial conditions for the states (i0, v0, d0, A0, sg,0) and the TVC assuming

that variables approach their (stochastic) steady state values. One complication is that

the time horizon is infinite, so we use the following transformation of time:

t =
τ

ν(1− τ )
for τ ∈ [0, 1),

where ν is a positive (nuisance) parameter, such that for t → ∞ we have that τ → 1.

Alternatively, we may set T sufficiently large but finite number.21

3.5. Numerical solution in the policy function space

In what follows, we show how we may alternatively solve the HJB equation (29) directly

by collocation based on the Matlab CompEcon toolbox (Miranda and Fackler 2002).

19It is important to note that a recursion as set out in Table 1 is only required if we are interested in
the solution of the stochastic model where ‖(σd, σA, σg, σm)‖ 6= 0.

20It is possible to parallelize the computation by allocating the grid of state variables to workers.
21Trimborn, Koch, and Steger (2008) introduced the relaxation algorithm to applications in economics.

In contrast to their approach, we use projection methods to solve the boundary value problem, which
turns out to be relatively efficient and (even for a few approximation points) highly accurate.
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Since the functional form of the solution is unknown, an alternative strategy for solving

the HJB equation is to approximate V (Zt;Yt) ≈ φ(Zt;Yt)v, in which v is an n-vector of

coefficients and φ is the n × n basis matrix. The computational burden can be reduced

when replacing the tensor product by sparse grids (Winschel and Krätzig, 2010). Starting

from the HJB equation (29), we may approximation of the value function and/or control

variables for given set of collocation nodes and basis functions φ(Zt;Yt):

ρφ(Zt;Yt)v = f(Zt,Xt) + g(Zt,Xt)
⊤φZ(Zt;Yt)v +

1
2
tr
(

σ(Zt)σ(Zt)
⊤φZZ(Zt;Yt)v

)

,

or

v =
(

ρφ(Zt;Yt)− g(Zt,Xt)
⊤φZ −

1
2
tr
(

σ(Zt)σ(Zt)
⊤φZZ

))−1
f(Zt,Xt),

which yields the coefficients based on a Newton method. This approach, however, requires

a good initial guess, but is extremely useful to verify whether the implied solution obtained

from the conditional deterministic system indeed solves the HJB equation.

Our results confirm the findings in the literature that the effects of uncertainty in the

standard NK model are small, and primarily a level shift (cf. Figures C.43 to C.51). Both

the deterministic steady state and the stochastic steady state are very close. What is more

important is a substantial level shift of the policy functions around equilibrium interests

rates and at near-zero values for the nominal interests rates.

3.6. Impulse responses

To compute the impulse response functions (IRFs), we initialize the state variables, given

the solution V (Zt;Y(Zt)) ≈ φ(Zt;Y(Zt)v, or the consumption function (36), and solve the

resulting system of ODEs following Posch and Trimborn (2013). Because we use a global

(and nonlinear) solution technique, in principle, we may initialize the system at any state

vector. Hence, we do not need to restrict our analysis to situations, where the economy

is assumed to be in the close neighborhood of the steady state (or normal times). This

is particularly important since we want to study the equilibrium dynamics in a situation

where the nominal interest rate is close to zero and/or the economy is hit by large shocks

(non-normal times). In fact, the computed IRF is the equilibrium time path of economic

variables, which reflect a single transitional path to the (stochastic) steady state.

3.7. Implied risk premium and the natural rate of interest

We approach the definition of a risk premium from the equilibrium long-run interest rate.

At the (stochastic) steady state we obtain from (37) that

ρ = iss − πss + c̃2dσ
2
d + c̃2Aσ

2
A + c̃2gσ

2
g + c̃2rσ

2
m

−1
2
c̃ddσ

2
d −

1
2
c̃AAσ

2
A − 1

2
c̃ggσ

2
g −

1
2
c̃rrσ

2
m − c̃dσ

2
d − ρd log dss +

1
2
σ2
d.
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Thus the steady-state risk premium is defined based on the identity ρ+ πss ≡ ifss or

ρ+ πss = iss + (c̃2d −
1
2
c̃dd − c̃d)σ

2
d + (c̃2A − 1

2
c̃AA)σ

2
A + (c̃2g −

1
2
c̃gg)σ

2
g + (c̃2r −

1
2
c̃rr)σ

2
m

in which ifss denotes the shadow risk-free rate (or the certainty equivalent rate of return).

The long-run interest rate is decomposed into iss = ifss +RPss, where

RPss ≡ −(c̃2d −
1
2
c̃dd − c̃d)σ

2
d − (c̃2A − 1

2
c̃AA)σ

2
A − (c̃2g −

1
2
c̃gg)σ

2
g − (c̃2r −

1
2
c̃rr)σ

2
m.

For our parameterization RPss ≈ 0.0695%, so it increases the nominal interest rate by

approximately 0.07% or 7 bp. Consistently, we define the risk premium (cf. Posch, 2011):

ρ−
1

dt
E

[

du′(ct)

u′(ct)

]

= E(ift +RPt − πt)

with

RPt ≡ −c̃d(Zt;Yt)
2σ2

d − c̃A(Zt;Yt)
2σ2

A − c̃g(Zt;Yt)
2σ2

g − c̃r(Zt;Yt)
2σ2

m + 1
2
c̃dd(Zt;Yt)σ

2
d

+1
2
c̃AA(Zt;Yt)σ

2
A + 1

2
c̃gg(Zt;Yt)σ

2
g +

1
2
c̃rr(Zt;Yt)σ

2
m + c̃d(Zt;Yt)σ

2
d, (38)

and thus the shadow risk free rate is ift ≡ it − RPt. Our numerical results show how the

risk premium is affected by the different state variables (cf. Figure C.52).

Hence, the Euler equation of the conditional deterministic system can be written as

dct = −(ρ− it + πt +RPt + ρd log dt −
1
2
σ2
d)ctdt (39)

or

dct ≡ −(rt − it + πt)ctdt (40)

with rt ≡ ρ + RPt + ρd log dt −
1
2
σ2
d, loosely interpreted as the ‘natural rate of interest’

(among others Werning, 2012). This link seems important for our analysis, because it

sheds light on different sources of shocks to the natural rate (temporary or permanent).

Indeed, a (positive) shock dt will increase the natural rate temporarily, while a permanent

increase in the risk premium RPt (e.g., higher fiscal policy shocks σg) would increase the

long-end of the yield curve similar to a change of the inflation target.

3.8. Can we rule out multiple equilibria? Different answers?

In this section we study local determinacy of the full NK model. We illustrate how the

results depend on the inflation target πss > 0, and how the Taylor rule can be extended to

allow for larger regions of determinacy. For comparison with the simple model we assume

throughout the section sg = 0 and ‖(σd, σA, σg, σm)‖ = 0, such that rt = ρ.

While the simple NK model with a feedback rule has no state variables, the NK model
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with no shocks (henceforth minimal NK model) with πss > 0 introduces price dispersion vt

as a relevant state variable, and a unique locally bounded solution requires three positive

eigenvalues of the Jacobian matrix (cf. Appendix A.8.1)22

A1 =













φy 0 (1− φπ)a2yss/x1,ss (φπ − 1)a2yss/x2,ss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2













where

a1 ≡ ρ+ δ − επss, a2 ≡ δ + (1− ε)πss, (41)

such that the (linearized) inflation dynamics are

dπt = ρ(πt − πss) dt− (δ + (1− ε)πss)πss(x2,t/x2,ss − 1)dt

−κ((yt/yss − 1) + (vt/vss − 1)ϑ/(1 + ϑ))dt. (42)

So we define

κ ≡ (δ + (1− ε)πss)(1 + ϑ) (ρ+ δ − επss) . (43)

For a unique locally bounded equilibrium we need three positive and one negative

eigenvalue. The determinacy regions are shown in the accompanying web appendix.

Similarly, in the minimal NK model with partial adjustment, the two relevant state

variables are the interest rate and the level of price dispersion, so a unique locally bounded

solution requires three positive eigenvalues of the Jacobian matrix (cf. Appendix A.8.2)

A2 =

















0 0 a2yss/x1,ss −a2yss/x2,ss yss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss 0

0 0 ρ+ εa2 (1− ε)a2x1,ss/x2,ss 0

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2 0

θφy/yss 0 −θφπa2/x1,ss θφπa2/x2,ss −θ

















whereas for πss = 0 it collapses to the 3 × 3 matrix of the simple model. Note that the

(linearized) inflation dynamics are not affected by the specification of the Taylor rule.

For a unique locally bounded equilibrium we need three positive and two negative

eigenvalues. The determinacy regions are shown in the accompanying web appendix.

22We impose the parametric restriction δ > επss to ensure non-negative price dispersion, which in the
frictionless case δ → ∞ the condition is fulfilled. For πss = 0 the system can be reduced to

A1 =

[

φy φπ − 1
−κ ρ

]

,

which shows that the output response would not introduce different conclusions regarding stability in the
simple NK model: A necessary (and sufficient) condition for local determinacy still would be φπ > 1.
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Our results highlight potential pitfalls when letting the inflation target vary as an

random walk (e.g., Ireland, 2007), because of the inability of the model to nail down un-

expected inflation even with active monetary policy (φπ > 1). This is in sharp contrast to

the approximation around zero inflation targets, hence the traditional requirement for ac-

tive monetary policy is no longer sufficient.23 Moreover, we know that determinacy regions

are quite sensitive to the timing assumption (Hintermaier, 2005): For the continuous-time

limit, a positive output response, φy > 0 helps in the feedback model. To summarize,

changing the inflation target is likely to have completely different implication than the

nonlinear model (or its linearized version), compared to the linearized model around zero

inflation target, because of the solution may exhibit multiple (sunspot) equilibria.

3.9. Which policy instruments? Different answers?

The nonlinear approach also sheds new light on the policy instruments, because our results

are pointing towards the fact that the variation in the (perception of the) inflation target

can be triggered by changes in risk premia, which may reflect changes in future uncertainty.

Hanson and Stein (2015) find that (the more narrow interpretation of) forward guidance

in the NK model (excluding shocks to target rates) is not able to generate the observed

effects in the real yield curve. They argue that changes in term premia are more likely, but

which are absent in the linear (simple) NK model. Though quantitatively those effects

are not important in the presented parsimonious model, it gives directions for developing

the theory and provides one alternative explanation for changes at the longer end of the

yield curve through the risk channel beyond the potential policy instrument πss.

Apart from the effects of risk, the policy instruments are the same as before. The more

general Taylor rules (20a) and (20b) introduce an output response φy, in addition to the

inflation response φπ as a new policy parameter.

3.10. Do higher interest rates raise or lower inflation? Different answers?

Let us consider unique locally bounded equilibria for the remaining analysis.24 We study

the link between inflation and (short-term) interest rates in the full (nonlinear) NK model

and compare it to the insights from the simple NK model. We also study the impulse

response function from the nonlinear approach for two identical economies, one of them is

initialized at the steady state values and the other one for interest rates near zero. Does

the same policy experiment imply the same predictions for both scenarios?

[insert Figure 4]

23Note that this result is not an artefact of the continuous-time approach. A similar result regarding
determinacy is obtained in the discrete-time model (Coibion and Gorodnichenko, 2011).

24As we enter the indeterminacy region, the sharp prediction of the simple NK model is lost. While the
inflation target for the simple model does not matter for determinacy, it is important for the dynamics
of the full model and the two models would have completely different predictions (see Section 3.8).
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Similar to the simple NK model, for the partial adjustment model (and given πss), the

inflation rate is a negative function of the nominal interest rate (see Figure 4). This effect,

however, is much smaller than suggested by the simple model. For our parameterization,

inflation falls only by 0.1 percentage points on impact for an 1 percentage point increase

of interest rates, around the steady state (slightly smaller around near-zero interest rates).

We find that the nonlinear model and the linearized version (with non-zero targets) give a

similar picture, so we conclude that the counterfactual large response of inflation indeed is

an artefact of linearizing around a zero inflation target rate. Although output is associated

with higher inflation rates (see Phillips curve), which implies that the central bank tends

to increase interest rates in times with high inflation rates, the negative link between

inflation and interest rates in the NK model is not overturned for an output response. In

contrast, for the feedback rule, we would observe a positive link between interest rates and

inflation along the dimension of the relevant state variables (price dispersion and shocks),

as long as the central bank actively follows the interest rate peg.

Let us now reconsider our thought experiment of lowering the inflation target by 50 bp,

and at the same time the short-term interest rate is decreased by 250 bp. On impact, the

inflation rate seems unaffected (moderately increases by 50 bp in the linearized version),

and both inflation and interest rates accommodate their new lower equilibria after about

15 quarters. We now compare this finding to a situation, when interest rates essentially

hit zero values (other state variables are at steady-state values). But also in this scenario,

on impact the inflation rate would remain unaffected, and then both inflation and interest

rates accommodate to lower levels. While on impact the Fisher effect (more than) offsets

the traditional negative trade-off, in the long run inflation and interest rates are expected

to decline to their new steady-state levels (cf. Figures C.1 and C.2).

Summarizing, the choice of the Taylor rule in the (continuous-time) NK model can be

decisive for the answer whether higher interest rates raise or (temporarily) lower inflation.

While the feedback rule postulates that higher interest rates necessarily correspond to

higher inflation rates (varying the relevant state variables/shocks), the partial adjustment

model supports both a negative and a positive link as in the simple model. Our results

indicate that the policy experiments imply qualitatively the same responses for interest

rates at near zero values compared to normal times about the long-run equilibrium.

3.11. Can we explain the recent episodes? Different answers?

For comparison with the simple model, we abstract from the effects of uncertainty in this

section. Although the source of the target shocks may in fact be unexpected changes in the

degree of uncertainty, the parsimonious model presented here does not generate sufficient

risk premia in order to overturn the results below. Thus, without loss of generality we

compare the effects of the simple model vs. the nonlinear approach. We discuss the effects
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of uncertainty and how it affects risk premia thereafter.

In what follows we show the insights for the ability of the full nonlinear NK model

to explain the recent episodes: (i) with sign reversal (2001-2007), (ii) including the zero-

interest-rate policy (2007-2015), (iii) with inflation rebound and near-zero interest rates

(2011), and (iv) including an apparent term structure anomaly (2004-2005).

[insert Table 4]

3.11.1. Sign reversal revisited

Comparing the simulated monetary policy shock of 500 bp (and target shock of 200 bp) to

the results of the simple model we find that the problematic prediction of the NK model

for the period 2001-2007, e.g., the counterfactual increase of the inflation rate by 250 bp,

is in fact an artefact of the linearized model around zero inflation target. Note that this

result is not a problem of linearization per se, but rather due to neglecting the non-zero

inflation target (and price dispersion).25 The full nonlinear approach with both temporary

and permanent shock to monetary policy predicts a similar ∨ pattern of Fed Funds, 10Y

yields and core CPI inflation (cf. Table 4, Figures C.5 and C.11).

The linearized model around non-zero inflation targets shows quite similar dynamics

compared to the nonlinear model. The predictions of the simple model, however, are useful

though to look at the long-run properties of the NK model. The different predictions are

only relevant for the short-run dynamics, as the models inherit the same fixed point.

3.11.2. ZIRP period revisited

Let us now consider the monetary policy shocks together with a preference shock. The

new insights we get are really due to the nonlinear model, and not only an artefact of

neglecting non-zero inflation targets in the simple model. We simulate the monetary policy

shock of 475 bp (and target shock of 200 bp) together with a ‘preference shock’ of about

10 percent, which is assumed to follow the logistic process (cf. Appendix A.9):

ddt = ρd(dt − d̄) (1− dt) /(1− d̄) dt, dt > d̄, (44)

with d̄ = 0.9130 and ρd = 0.975. It implies that the initial value d0 = 0.9220 is 1 percent

above the lower bound.26 In other words, this shock is considered ‘large’ and thus will have

completely different dynamics than small shocks. This particular parameterization has

been chosen to show that the implied interest rate process (of the full nonlinear approach)

25The linearized model around 2 percent inflation target without a target shock now predicts only a
small increase by 50 bp. But still, the same puzzling ‘sign reversal’ emerges qualitatively.

26Note that with the assumed logistic process for the preference shock the Euler equation (32) and the
definition of the risk premium (38) changes for the nonlinear model (cf. Section A.2).
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now is a prolonged period of an apparently binding ZLB (cf. Table 4, Figures 6 and 7).

This implies a ZIRP period of about 5 quarters, and is consistent with φ > 1.

[insert Figures 6 and 7]

Note that the linearized model around non-zero inflation targets shows quite similar

dynamics as the simple NK model, but strikingly fails to capture the nonlinear effects of

the logistic process (cf. Figure C.25). This result is quite intuitive because the dynamics

of the linear model (5) are the same as (44) only for small shocks.

One may ask why researches did not come across imposing different processes before?

A potential explanation is that in ‘normal times’ with smaller shocks, the local dynamics

of the assumed process (5) could have been quite successful. In normal times, when the

ZLB was out of reach, the (unobserved) shocks might have been well described by the

simple OU process. In fact, the local dynamics of the logistic process are observationally

equivalent to the dynamics of the OU process (cf. Appendix A.9). Thus, the implications

for the model dynamics can be different in non-normal times. Moreover, we show that

such shocks must be large in order to drag the interest rate close to (potentially below)

zero values. Hence, the traditional (linear and local) approach is not appropriate for

large shocks. This confirms the result in Brunnermeier and Sannikov (2014) such that

accounting for nonlinearities is an important issue in times of crises.

So distinguishing between normal times and non-normal times, in which the dynamics

are different from those at the intended equilibrium point, is one alternative interpretation

in which a single preference shock generates the observed pattern in the interest rates. We

conclude that (44) is a parsimonious specification where the dynamics of large negative

shocks (non-normal times) are different from the dynamics of a small shock (normal times).

At the same time, the linear approximation of (44) replicates the OU process (5).

3.11.3. Inflation rebound (near-zero interest rates) revisited

Recall that the simple NK model fails to replicate the observed pattern in the data even if a

target shock of 200 bp is accompanied by a negative preference shock of about 15 percent.

We now simulate the same ‘shock’ to the natural rate as in the simple NK model, which is

assumed to follow (44) with d̄ = 0.8667 and ρd = 0.975, in the full nonlinear approach. The

presumed shock implies that d0 = 0.8695 is only about 0.5 percent above the lower bound

d̄, which makes the shock indeed large compared to normal times. This parameterization

is chosen to show the ability of the NK model to predict immobile interest rates near zero

and inflation to rebound for a single shock.27 As a result, we find indeed that inflation

may rebound (about 1 percent on impact), and then returns to the target rate of about 2

27In particular, we do not claim that this parameterization reflects the true data generating process. It
remains an empirical task to estimate the structural parameters of the model including d̄ and ρd.
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percent, with interest rates being immobile for another 5 quarters, and eventually to lift

off to higher values (cf. Table 4, Figures C.29 and C.30).

Similar to the ZIRP period, the linear model (around zero/non-zero inflation targets)

fails to capture the nonlinear effects and is not able to generate immobile interest rates

at near zero values consistent with the Taylor principle and φ > 1.

3.11.4. Term structure anomalies revisited

Similar to the simple model, the rotation in the yield curve between 2004 and 2005 is

obtained if the observed monetary policy shock is accompanied by a preference shock. For

comparison with the simple model we set d̄ = 0 (i.e., nonlinear effects are less important)

together with ρd = 0.4214. This refers to the logistic growth model with similar dynamics

as the OU process nearby the steady state. We simulate the effects of a monetary policy

shock increasing the interest rate by 150 bp, which is accompanied by a negative shock to

the natural rate of about 10 percent (keeping the inflation target about 2 percent).

Similar to the simple NK model, the simulated response basically replicates dynamics

of macro aggregates and the rotation in both yield curves (cf. Figures C.35 and C.36).

In fact, the predicted inflation dynamics are more realistic, on impact it drops by 50 bp

and then increases back to the target level (cf. Table 4).28 Our findings are consistent

with the ‘expectation hypothesis’ explanation in the literature, which says that the term

structure simply reflects expectations of future inflation and the output gap. Hence, if

the FOMC raises policy rates today but, because of lower expected inflation, this leads

agents to anticipate lower short-term interest rates in the future, then long-term interest

rates could actually decrease (cf. Gürkaynak and Wright, 2012, p.333).

The linearized model around non-zero inflation targets shows quite similar dynamics

compared to the nonlinear model. So apart from the alternative specification for the

preference shock dynamics, the parsimonious NK model presented in the main text does

not inherit important nonlinearities. Although a preference shock of the same order of

magnitude as during the ZIRP period is assumed, here the initial value for d0 is sufficiently

above its ‘natural’ bound d̄ = 0, so the nonlinear dynamics do not matter here.

3.12. Discussion of the new insights

The full (nonlinear) approach and the local dynamics around positive inflation targets give

rise to at least four insights. First, the effects of risk affect the long-term interest rates and

are one potential explanation for changes at the long-end of the yield curve (term premia)

similar to changes in the inflation target. This risk channel, however, is negligible in

the standard NK model, but can be relevant in models where risk matters quantitatively

28We abstract from ‘adjusting’ price dispersion downwards in 2004 for our experiment, which in fact
would decrease the level of inflation. Hence, the predicted rate is even interpreted as an upper bound.
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for asset pricing (see Parra-Alvarez, Polattimur, and Posch, 2018).29 Second, shifts in

monetary policy, or its perception, are important to generate the inflation dynamics and

the correlation with interest rates as in the data. We confirm the hypothesis that inflation

persistence is driven by variations in long-run policy (cf. Cogley and Sbordone, 2008).

Third, we replicate the findings in Coibion and Gorodnichenko (2011), showing that the

conclusion about determinacy in the NK model is different in models with positive trend

inflation. This is important, because the numerical solution approach can determine the

theoretical prediction of the model. Similarly we find that the output response helps to

obtain determinacy in the feedback model, whereas the partial adjustment model seems to

be more robust to positive inflation target because of the interest smoothing component.

Fourth, a nonlinear approach can generate a ZIRP period in which φ > 1.

Our results document the ability of the NK model to explain the recent episodes,

including the ZIRP episode with active monetary policy, φ > 1, which is in line with the

theoretical prediction at both ends of the yield curve (cf. Table 4). Hence, we contribute

to the recent discussion because the standard approach is not able to explain a prolonged

period of stable quiet inflation at near-zero interest rates. We show that the nonlinear

NK model is able to generate phenomena similar to those observed in the data, e.g., by

allowing for a logistic shock process to the natural rate, which is observational equivalent

to the standard OU process at the long-run equilibrium values, but has quite different

dynamics for large shocks. We also show that the implied yield curve motivates and

supports changing target rates as suggested in the empirical literature.

We do not advocate that the ZIRP period has been generated by a preference shock.

Among others, a persistent monetary policy shock may generate similar dynamics. It is

well known that identification of shocks is not an easy task, but this is a regular task of

empirical macroeconomics, so it remains an empirical question and “not a special task

that must be relegated to theory or philosophy alone” (Cochrane, 2017b, p.61). We show

that the nonlinear approach largely extends the theoretical model predictions and suggest

a potential remedy to the standard NK model. Our experiments, in particular those for

unconventional monetary policy, challenge some of the standard identification schemes,

e.g., those restricting monetary policy instruments not to affect long-run economic activity

(for recent empirical identification schemes, see Ramey, 2016; Uribe, 2017).

4. Conclusion

In this paper we show the ability of the NK model to explain the recent episodes, even

when restricting ourselves to the regions of (local) determinacy. We show that the NK

model with active monetary policy supports both views that higher interest rates result

29Introducing recursive preferences produces a large and variable term premium without compromising
the model’s ability to fit key macroeconomic variables (cf. Rudebusch and Swanson, 2012).
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into higher long-run inflation (neo-Fisherian view), but at the same time higher interest

can temporarily reduce inflation (traditional view). We also show that the Taylor rule

requires an interest smoothing component to obtain the temporary negative effect. Central

to our finding is that monetary policy actions (changes in short-term rates) may trigger

variations in long-term target rates, a view that is motivated by empirical data. Allowing

further for temporary shocks to the natural rate allows us to understand several puzzles

in the literature, including apparent term structure anomalies. We also show that a

nonlinear approach can be used to generate a ZIRP period with stable and quiet inflation,

fully consistent with the model predictions. We review several important insights related

to positive trend inflation and determinacy in the NK model.

So the full NK model with positive trend inflation and the way we interpret monetary

policy shocks suggests a partial remedy compared to the simple NK model, which typically

is approximated around zero target rates (no trend inflation). With a nonlinear solution

method, accounting for nonlinearities which can be important after ‘large’ shocks, the NK

model may also generate a ZIRP period, in which near-zero rates are regarded as a policy

choice without a threat of high inflation. We also show how uncertainty is introduced in

this framework and shed light on the channels through which they affect the results.

We believe that this paper is a starting point for several lines of research. First, we

may extend our approach to a medium-scale model, allowing for other nominal and/or real

frictions, habit formation, variable capacity utilization and adjustment cost as in models

used by central banks for policy analysis (e.g., Christiano, Eichenbaum, and Rebelo, 2011),

or by including a financial sector (e.g., Brunnermeier and Sannikov, 2014). Second, we

should estimate the structural parameters using empirical data. One key advantage of the

continuous-time approach is that the model solution is consistent with different frequencies

of macro and financial data (cf. Christensen, Posch, and van der Wel, 2016). A promising

starting point is to combine traditional estimation approaches such as the particle filter

with an Euler discretization scheme of the equilibrium dynamics and use the standard

econometric toolbox. Alternatively, we can use the continuous-time econometric toolbox

developed in the financial literature and apply them to our macro models. Third, we

may study the monetary policy transmission in a heterogeneous-agent economy, e.g., with

idiosyncratic income shocks (cf. Kaplan, Moll, and Violante, 2018).

Our ultimate goal is not to advocate the use of continuous time over discrete time in

all applications. In this paper, we merely show how to handle models in macroeconomics

which exhibit nonlinearities, and where a local approximation scheme might fail to give the

right answers. Although formulating and solving complicated problems in macroeconomics

is important, we also aim to provide a simple device to develop intuition, conceptualize,

and facilitate the way we think about dynamic problems in economics.
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A. Appendix

A.1. Technical details

# dat on p.16: The household can trade on Arrow securities (excluded to save on notation)

and on a nominal government bonds bt at a nominal interest rate of it. Let nt denote the

number of shares and pbt the equilibrium price of bonds. Suppose the household earns a

disposable income of itbt + ptwtlt + ptTt + pt̥t, where pt is the price level (or price of the

consumption good), wt is the real wage, Tt is a lump-sum transfer, and ̥t are the profits

of the firms in the economy; the household’s budget constraint is:

dnt =
itbt − ptct + ptwtlt + ptTt + pt̥t

pbt
dt. (A.1)

Let bond prices follow:

dpbt = αtp
b
tdt (A.2)

in which αt denotes a price change, which is determined in general equilibrium (in equilib-

rium prices are function of the state variables, for example, by fixing αt the bond supply

has to accommodate so as to permit the bond’s nominal interest rate being admissible).

The household’s financial wealth, bt = ntp
b
t , is then given by:

dbt = (itbt − ptct + ptwtlt + ptTt + pt̥t)dt+ αtbtdt, (A.3)

Let prices pt follow the process:

dpt = πtptdt (A.4)

such that the (realized) rate of inflation is locally non-stochastic. We can interpret dpt/pt

as the realized inflation over the period [t, t+ dt] and πt as the inflation rate.

Letting at ≡ bt/pt denote real financial wealth and using Itô’s formula, the household’s

real wealth evolves according to:

dat =
dbt
pt

−
bt
p2t
dpt =

itbt − ptct + ptwtlt + ptTt + pt̥t + αtbt
pt

dt−
bt
p2t
πtptdt

or:

dat = ((it + αt − πt)at − ct + wtlt + Tt +̥t) dt (A.5)

Since government bonds are in net zero supply, bt = 0, it implies αt = 0 for all t.
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# dx1,t on p.18: Differentiating x1,t in (14) with respect to time gives:

1

dt
dx1,t = e(ρ+δ)tp1−ε

t

1

dt
dEt

∫ ∞

t

λτe
−(ρ+δ)τ

(

1

pτ

)1−ε

yτdτ

+Et

∫ ∞

t

λτe
−(ρ+δ)τ

(

1

pτ

)1−ε

yτdτ
1

dt
d
(

e(ρ+δ)tp1−ε
t

)

= −λtyt + (ρ+ δ + (1− ε)πt)Et

∫ ∞

t

λτe
−(ρ+δ)(τ−t)

(

pt
pτ

)1−ε

yτdτ

or (16) in the main text. A similar procedure gives (17).

# dπt on p.19: Differentiating (18), we obtain the inflation dynamics as:

1

dt
dπt = δ (Π∗

t )
−ε 1

dt
dΠ∗

t = δ (Π∗
t )

−ε ε

ε− 1

1

dt
d

(

x2,t
x1,t

)

= δ (Π∗
t )

−ε ε

ε− 1

1

x1,t

(

1

dt
dx2,t −

x2,t
x1,t

1

dt
dx1,t

)

= δ (Π∗
t )

1−ε 1

x2,t

(

1

dt
dx2,t −

x2,t
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1
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1−ε
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((δ − επt)x2,t − λtmctyt)

x2,t
−

((δ + (1− ε)πt)x1,t − λtyt)

x1,t

)

,

= −δ (Π∗
t )

1−ε

(

πt +

(

mct
x2,t

−
1

x1,t

)

λtyt

)

which is (19) in the main text.

# dvt on p.20: Differentiating (23) with respect to time gives:

1

dt
dvt = δ (Π∗

t )
−ε +

∫ t

−∞

δ
1

dt
de−δ(t−τ )

(

piτ
pt

)−ε

dτ

= δ (Π∗
t )

−ε − δ

∫ t

−∞

δe−δ(t−τ )

(

piτ
pt

)−ε

dτ +

∫ t

−∞

δe−δ(t−τ )p−ε
iτ

1

dt
dpεtdτ

= δ (Π∗
t )

−ε − δvt +

∫ t

−∞

δe−δ(t−τ )p−ε
iτ εp

ε−1
t

1

dt
dptdτ

= δ (Π∗
t )

−ε + (επt − δ)vt,

or (24) in the main text.
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#̥t on p.20: For aggregate profits, we use the demand of intermediate producers in (22):

̥t =

∫ 1

0

(

pit
pt

−mct

)

yitdi

= yt

∫ 1

0

(

pit
pt

−mct

)(

pit
pt

)−ε

di

=

(

∫ 1

0

(

pit
pt

)1−ε

di−mctvt

)

yt

= (1−mctvt)yt

which is (25) in the main text.

#V (Zt,Xt) on p.21: The HJB equation (26) in scalar notation reads

ρV (Zt;Yt) = max
(ct,lt)

dt

{

log ct − ψ
l1+ϑ
t

1 + ϑ

}

+ ((it − πt)at − ct + wtlt + Tt +̥t)Va

+(θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))Vr +
1
2
σ2
mVrr

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vv

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρA logAt −
1
2
σ2
A)AtVA + 1

2
σ2
AA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVg +

1
2
σ2
gs

2
g,tVgg. (A.6)

#dVa(Zt,Xt) on p.22: From A.6, the concentrated HJB equation in scalar notation reads

ρV (Zt;Yt) = dt log c(Zt;Yt)− dtψ
l(Zt;Yt)

1+ϑ

1 + ϑ
+ ((it − πt)at − c(Zt;Yt) + wtl(Zt;Yt) + Tt +̥t) Va

+(θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))Vr +
1
2
σ2
mVrr

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vv

−(ρd log dt −
1
2
σ2
d)dtVd +

1
2
σ2
dd

2
tVdd

−(ρA logAt −
1
2
σ2
A)AtVA + 1

2
σ2
AA

2
tVAA

−(ρg log sg,t −
1
2
σ2
g)sg,tVg +

1
2
σ2
gs

2
g,tVgg. (A.7)
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Using the envelope theorem, we obtain the costate variable Va as:

ρVa = (it − πt)Va + ((it − πt)at − ct + wtlt + Tt +̥t)Vaa

+(θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))Vra +
1
2
σ2
mVrra

+
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

Vva

−(ρd log dt −
1
2
σ2
d)dtVda +

1
2
σ2
dd

2
tVdda

−(ρA logAt −
1
2
σ2
A)AtVAa +

1
2
σ2
AA

2
tVAAa

−(ρg log sg,t −
1
2
σ2
g)sg,tVga +

1
2
σ2
gs

2
g,tVgga. (A.8)

An alternative formulation in terms of differentials is:

(ρ− it + πt) Vadt = Vaadat + (dit − σmdBm,t)Vra +
1
2
σ2
mVrra + Vvadvt

+ (ddt − σddtdBd,t) Vda +
1
2
σ2
dd

2
tVddadt

+ (dAt − σAAtdBA,t) VAa +
1
2
σ2
AA

2
tVAAadt + (dsg,t − σgsg,tdBg,t) Vga +

1
2
σ2
gs

2
g,tVggadt

or

(ρ− it + πt) Vadt+ σddtVdadBd,t + σAAtVAadBA,t + σgsg,tVgadBg,t + σmitVradBm,t

= Vaadat + Vradit +
1
2
σ2
mi

2
tVrra + Vvadvt

+Vdaddt +
1
2
σ2
dd

2
tVdadt + VAadAt +

1
2
σ2
AA

2
tVAadt + Vgadsg,t +

1
2
σ2
gs

2
g,tVgadt.

Observe that the costate variable in general evolves according to:

dVa = Vaadat + Vradit +
1
2
σ2
mVrradt + Vvadvt

+Vdaddt +
1
2
σ2
dd

2
tVddadt+ VAadAt +

1
2
σ2
AA

2
tVAAadt+ Vgadsgt +

1
2
σ2
gs

2
g,tVggadt

= (ρ− it + πt)Vadt

+σddtVdadBd,t + σAAtVAadBA,t + σgsg,tVgadBg,t + σmVradBm,t,

which is (30) in the main text.

# ms/mt (SDF) on p.22: Starting from (30):

d lnVa =
1

Va
dVa −

1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
AA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
ga

V 2
a

dt− 1
2
σ2
m

V 2
ra

V 2
a

dt

= (ρ− it + πt)dt+ σddt
Vda
Va

dBd,t + σAAt
VAa

Va
dBA,t + σgsg,t

Vga
Va

dBg,t

+σm
Vra
Va

dBm,t −
1
2
σ2
dd

2
t

V 2
da

V 2
a

dt− 1
2
σ2
AA

2
t

V 2
Aa

V 2
a

dt− 1
2
σ2
gs

2
g,t

V 2
ga

V 2
a

dt− 1
2
σ2
m

V 2
ra

V 2
a

dt.
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For s > t, we may write:

e−ρ(s−t)Va(Zs;Ys)

Va(Zt;Yt)
=

exp









−
∫ s

t
(iu − πu)du−

1
2

∫ s

t

V 2
da

V 2
a
σ2
dd

2
udu−

1
2

∫ s

t

V 2
Aa

V 2
a
σ2
AA

2
udu

−1
2

∫ s

t

V 2
ga

V 2
a
σ2
gs

2
g,udu−

1
2

∫ s

t
V 2
ra

V 2
a
σ2
mdu

+
∫ s

t
Vda

Va
σddudBd,u +

∫ s

t
VAa

Va
σAAudBA,u +

∫ s

t

Vga

Va
σgsg,udBg,u +

∫ s

t
Vra

Va
σmdBm,u









.

which denotes the equilibrium SDF ms/mt in (31).

A.2. Obtaining the Euler equation

Using the first-order condition (27) and (30), we obtain the implicit Euler equation:

d

(

dt
ct

)

= (ρ− it + πt)

(

dt
ct

)

dt

+σddt

(

1

ct
−
dt
c2t
cd

)

dBd,t − σAAt
dt
c2t
cAdBA,t − σgsg,t

dt
c2t
cgdBg,t − σm

dt
c2t
crdBm,t.

Vad = − (dt/c
2
t ) cd + 1/ct, VAa = − (dt/c

2
t ) cA, Vga = − (dt/c

2
t ) cg, and Vra = − (dt/c

2
t ) cr are

expressed in terms of derivatives and levels of the consumption function. This equation

has a simple interpretation: the change in the marginal utility of consumption depends

on the rate of time preference minus the effective real interest rate and four additional

terms that control for the innovations to the four shocks to the economy.

Hence, by applying Itô’s formula we obtain the Euler equation:

d

(

ct
dt

)

= −

(

dt
ct

)−2 [

(ρ− it + πt)

(

dt
ct

)

dt

+σd

(

dt
ct

−
d2t
c2t
cd

)

dBd,t − σAAt
dt
c2t
cAdBA,t − σgsg,t

dt
c2t
cgdBg,t − σm

dt
c2t
crdBm,t

]

+

(

dt
ct

)−3(

σ2
d

(

d2t
c2t

− 2
d3t
c3t
cd +

d4t
c4t
c2d

)

+ σ2
AA

2
t

d2t
c4t
c2A + σ2

gs
2
g,t

d2t
c4t
c2g + σ2

m

d2t
c4t
c2r

)

dt,

which simplifies to

d

(

ct
dt

)

= −(ρ− it + πt)

(

ct
dt

)

dt

−σd

(

ct
dt

− cd

)

dBd,t + σAAtd
−1
t cAdBA,t + σgsg,td

−1
t cgdBg,t + σmd

−1
t crdBm,t

+

(

σ2
d

(

ct
dt

− 2cd +
dt
ct
c2d

)

+ σ2
AA

2
t

d−1
t

ct
c2A + σ2

gs
2
g,t

d−1
t

ct
c2g + σ2

m

d−1
t

ct
c2r

)

dt,
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or

dct = −(ρ− it + πt)ctdt+ σ2
d

d2t
ct
c2ddt + σ2

A

A2
t

ct
c2Adt + σ2

g

s2g,t
ct
c2gdt + σ2

m

1

ct
c2rdt

+σdcddtdBd,t + σAAtcAdBA,t + σgsg,tcgdBg,t + σmcrdBm,t

−ctρd log dtdt +
1
2
ctσ

2
ddt− cddtσ

2
ddt, (A.9)

which is (32), and ct = c(Zt;Yt) denotes the household’s consumption function. A similar

approach implies the Euler equation for the alternative shock process as:

dct = −(ρ− it + πt)ctdt + σ2
A

A2
t

ct
c2Adt+ σ2

g

s2g,t
ct
c2gdt + σ2

m

1

ct
c2rdt

+σAAtcAdBA,t + σgsg,tcgdBg,t + σmcrdBm,t

ctρd(dt − d̄) (1− dt) /(1− d̄)/dtdt. (A.10)

A.3. Equilibrium

We define the recursive-competitive equilibrium of the nonlinear NK model with shocks

by the sequence {λt, lt, at, mct, x1,t, x2,t,̥t, wt, it, gt, Tt, πt,Π
∗
t , vt, yt, dt, At, sg,t}

∞
t=0, which

is determined by the following equations:

• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

dct = −(ρ− it + πt − σ2
Ac̃

2
A − σ2

g c̃
2
g − σ2

mc̃
2
r + ρd log dt + (c̃d(1− c̃d)−

1
2
)σ2

d)ctdt

+σdc̃dctdBd,t + σAc̃ActdBA,t + σg c̃gctdBg,t + σmc̃rctdBm,t

Equation 2

ψlϑt ct = wt

Equation 3

dt/ct = λt

(redundant)

dat = ((it − αt − πt)at − ct + wtlt + Tt +̥t) dt
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• Profit maximization is given by:

Equation 4

Π∗
t =

ε

ε− 1

x2,t
x1,t

Equation 5

dx1,t = ((ρ+ δ − (ε− 1)πt)x1,t − λtyt) dt

Equation 6

dx2,t = ((ρ+ δ − επt) x2,t − λtytmct) dt

Equation 7

̥t = (1−mctvt)yt

Equation 8

wt = Atmct

• Government policy:

Equation 9

dit = (θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))dt+ σmdBm,t

Equation 10

gt = sgsg,tyt

(redundant)

Tt = −itat − sgsg,tyt

• Inflation evolution and price dispersion:

Equation 11

πt =
δ

1− ε

(

(Π∗
t )

1−ε − 1
)

Equation 12

dvt =
(

δ (Π∗
t )

−ε + (επt − δ)vt
)

dt
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• Market clearing on goods and labor markets:

Equation 13

yt = ct + gt (expenditure)

Equation 14

yt =
At

vt
lt (production)

(redundant)

yt = wtlt +̥t (income)

• Stochastic processes follow:

Equation 15

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt + σddtdBd,t

Equation 16

dAt = −
(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t

Equation 17

dsg,t = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt+ σgsg,tdBg,t

Note that using the household’s budget constraint, we get in equilibrium:

dat = ((αt − πt)at − ct − gt + yt)dt

= (αt − πt)atdt,

where for dat = 0 either αt = πt and/or at = 0 for all t (we use at = 0 and αt = 0).

Moreover, in equilibrium the law of motion for the discounted expected future profits,

x1,t and discounted expected future costs x2,t are not a function of the control variables:

dx1,t =
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx1,t − λtyt
)

dt

=
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx1,t − dt/(1− sgsg,t)
)

dt

and similarly:

dx2,t =
((

ε ((x2,t/x1,t)ε/(ε− 1))1−ε − 1
)

δx2,t/(ε− 1)− λtytmct
)

dt

=
(

((x2,t/x1,t)ε/(ε− 1))1−ε δx2,tε/(ε− 1)− δx2,t/(ε− 1)−mctdt/(1− sgsg,t)
)

dt

48



Note that the TVC requires that limt→∞ e−ρtE0V (Z
∗
t ) = 0, in which Z∗

t denotes the

state variables along the optimal path in line with general equilibrium conditions.

A.4. Proof of Proposition 1

We insert dct from (32) and the law of motions for the state variables

−(ρ− it + πt)ctdt+ σ2
d

d2t
ct
c2ddt + σ2

A

A2
t

ct
c2Adt + σ2

g

s2g,t
ct
c2gdt + σ2

m

1

ct
c2rdt

+σdcddtdBd,t + σAAtcAdBA,t + σgsg,tcgdBg,t + σmcrdBm,t

−ctρd log dtdt+
1
2
ctσ

2
ddt− σ2

ddtcddt

−1
2
crrσ

2
m dt− 1

2
cdd(σddt)

2dt− 1
2
cAA(σAAt)

2dt− 1
2
cgg(σgsg,t)

2dt =

ca ((it − πt)at − ct + wtlt + Tt +̥t) dt

+cr((θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))dt+ σmdBm,t)

+cv(δ(1 + πt(1− ε)/δ)
ε

1−ε + (επt − δ)vt)dt

+cA(−
(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t)

+cd(−
(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t)

+cg(−
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt+ σgsg,tdBg,t)

Collecting terms together with

ca = −dtV
−2
a Vaa

cr = −dtV
−2
a Var, crr = 2dtV

−3
a V 2

ar − dtV
−2
a Varr,

cv = −dtV
−2
a Vav

cd = V −1
a − dtV

−2
a Vad, cdd = −2V −2

a Vad + 2dtV
−3
a V 2

ad − dtV
−2
a Vadd,

cA = −dtV
−2
a VaA, cAA = 2dtV

−3
a V 2

aA − dtV
−2
a VaAA

cg = −dtV
−2
a Vag, cgg = 2dtV

−3
a V 2

ag − dtV
−2
a Vagg
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we may eliminate time (and stochastic shocks) and arrive at

−(ρ− it + πt)dtV
−1
a dt

+σ2
d

d2t
dtV −1

a

(

V −2
a − 2dtV

−2
a V −1

a Vad + d2tV
−4
a V 2

ad

)

dt

+σ2
A

A2
t

dtV −1
a

d2tV
−4
a V 2

aAdt+ σ2
g

s2g,t
dtV −1

a

d2tV
−4
a V 2

agdt + σ2
m

1

dtV −1
a

d2tV
−4
a V 2

ardt

+σd(V
−1
a − dtV

−2
a Vad)dtdBd,t − σAAtdtV

−2
a VaAdBA,t − σgsg,tdtV

−2
a VagdBg,t

−σmdtV
−2
a VardBm,t − dtV

−1
a ρd log dtdt+

1
2
dtV

−1
a σ2

ddt

−σ2
ddt(V

−1
a − dtV

−2
a Vad)dt−

1
2

(

2dtV
−3
a V 2

ar − dtV
−2
a Varr

)

σ2
m dt

−1
2

(

−2V −2
a Vad + 2dtV

−3
a V 2

ad − dtV
−2
a Vadd

)

(σddt)
2dt

−1
2

(

2dtV
−3
a V 2

aA − dtV
−2
a VaAA

)

(σAAt)
2dt

−1
2

(

2dtV
−3
a V 2

ag − dtV
−2
a Vagg

)

(σgsg,t)
2dt =

−dtV
−2
a Vaa ((it − πt)at − ct + wtlt + Tt +̥t) dt

−dtV
−2
a Var((θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))dt+ σmdBm,t)

−dtV
−2
a Vav(δ(1 + πt(1− ε)/δ)

ε
1−ε + (επt − δ)vt)dt

−dtV
−2
a VaA(−

(

ρA logAt −
1
2
σ2
A

)

Atdt+ σAAtdBA,t)

+(V −1
a − dtV

−2
a Vad)(−

(

ρd log dt −
1
2
σ2
d

)

dtdt+ σddtdBd,t)

−dtV
−2
a Vag(−

(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt + σgsg,tdBg,t)

which can be simplified to

−(ρ− it + πt)Vadt =

− ((it − πt)at − ct + wtlt + Tt +̥t) Vaadt

−(θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))Vardt−
1
2
Varrσ

2
m dt

−(δ(1 + πt(1− ε)/δ)
ε

1−ε + (επt − δ)vt)Vavdt

+
(

ρA logAt −
1
2
σ2
A

)

AtVaAdt−
1
2
VaAA(σAAt)

2dt

+Vad
(

ρd log dt −
1
2
σ2
d

)

dtdt−
1
2
Vaddσ

2
dd

2
tdt

+Vag
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt−
1
2
Vagg(σgsg,t)

2dt

such that (36) must hold as an identity.

A.5. Analytical results

Steady-state. Suppose that without shocks the economy moves towards its steady state.

Setting the variance of shocks to zero yields the deterministic steady state values.
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• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

πss = iss − ρ

Equation 2

ψlϑsscss = wss

Equation 3

dssc
−1
ss = λss

• Profit maximization is given by:

Equation 4

Π∗
ss =

ε

ε− 1

x2,ss
x1,ss

Equation 5

0 = (ρ+ δ − (ε− 1)πss)x1,ss − λssyss

Equation 6

0 = (ρ+ δ − επt)x2,ss − λssyssmcss

Equation 7

̥ss = (1−mcssvss)yss

Equation 8

wss = Assmcss

• Government policy:

Equation 9

(This equation is an identity in the steady state.)

Equation 10

gss = sgsg,ssyss

• Inflation evolution and price dispersion:

Equation 11

πss =
δ

1− ε

(

(Π∗
ss)

1−ε − 1
)

Equation 12

0 = δ (Π∗
ss)

−ε + (επss − δ)vss
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• Market clearing on goods and labor markets (one condition is redundant):

Equation 13

yss = css + gss (expenditure)

Equation 14

yss =
Ass

vss
lss (production)

(redundant)

yss = wsslss +̥ss (income)

• Stochastic processes:

Equation 15

dss = 1

Equation 16

Ass = 1

Equation 17

sg,ss = 1

Given the level of steady-state inflation, around which the model often is (log-)linearized,

we obtain the following steady-state values. Using Equation 1, we obtain:

iss = πss + ρ

Using Equation 11, we obtain the steady-state value for the price ratio:

Π∗
ss = (1− (ε− 1)(πss/δ))

1

1−ε

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

mcss = (ρ+ δ − επss) (1− sgsg,ss)x2,ss/dss

or

mcss =
(ρ+ δ − επss)

(ρ+ δ − (ε− 1)πss)
(x2,ss/x1,ss)

which by inserting Equation 4 gives:

mcss =
ρ+ δ − επss

ρ+ δ − (ε− 1)πss

ε− 1

ε
Π∗

ss
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Hence, we obtain

x1,ss = dss/((1− sgsg,ss)(ρ+ δ − (ε− 1)πss))

and

x2,ss = (1− 1/ε)x1,ssΠ
∗
ss

Using Equation 8, we obtain

wss = Assmcss

Using Equation 12 gives the steady-state value of price dispersion

vss =
δ (Π∗

ss)
−ε

δ − επss

Using Equation 14, we obtain

yss = Asslss/vss

Using Equation 13 and Equation 10 yields

yss = css/(1− sgsg,ss)

Combining the last two equations gives

Asslss/vss = css/(1− sgsg,ss)

Using Equation 2 we get

ψlϑsscss = wss

hence we can collect terms to obtain

lss =

(

wssvss
ψ(1− sgsg,ss)Ass

) 1

1+ϑ

Using Equation 7 and Equation 14 we get

̥ss = (1−mcssvss)Asslss/vss

The deterministic values, however, do not necessarily correspond to the stationary

points in the absence of shocks, i.e., the values at which the variables are expected to stay

idle in the presence of risk. Hence, the stochastic steady state values are obtained from

the conditional deterministic equations, setting the random shocks (not their variances)
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to zero. We may thus start with (7) and compute E( ddt) = 0, or

0 = −
(

ρd log dt −
1
2
σ2
d

)

dtdt ⇒ dss = exp(1
2
σ2
d/ρd)

The stochastic steady state values are similar to – but do not necessarily reflect – the first

moments of the variables. For example, the preference shock implies:

d log dt = −ρd log dtdt + σddBd,t ⇔ log dt = e−ρdt log d0 + σd

∫ t

0

eρ(s−t) dBs,

which has a long-run (or stationary) Normal distribution log dt ∼ N (0, 1
2
σ2
d/ρd).

30 Hence,

if log dt is asymptotically normally distributed, the variable dt is log-normally distributed

dt ∼ LN (0, 1
2
σ2/ρd) with expected value

E(dt) = exp(1
4
σ2
d/ρd)

Similarly, we obtain the stochastic steady states for

0 = −
(

ρA logAt −
1
2
σ2
A

)

Atdt ⇒ Ass = exp(1
2
σ2
A/ρA)

0 = −
(

ρg log sg,t −
1
2
σ2
g

)

sg,tdt ⇒ sg,ss = exp(1
2
σ2
g/ρg)

It shows that the unconditional mean value of the stationary distribution roughly coincides

with our notion of a stochastic steady state. But even if the process started at its long-run

stationary mean value d0 =
1
4
σ2
d/ρd, our derivations show that the infinitesimal change in

the variable dt at t = 0 is expected to be positive, only at the value d0 = 1
2
σ2
d/ρd, the

process is expected to stay at the same value such that E( ddt) = 0 at t = 0.

Steady-state. In the presence of uncertainty, in case the dynamic variables approach a

stochastic steady-state distribution (a stationary distribution), they also approach their

stochastic steady-state values (in the absence of further shocks). Hence, for a given infla-

tion target πss, the Euler equation (37) determines the long-run value iss.

30The moments of the stationary distribution can be obtained from

d(log dt)
2 = 2 log dt d log dt + σ2

d dt

= −ρd2 log dt log dtdt+ σd2 log dtdBd,t + σ2
d dt

the expected value reads

dE(log dt) = −ρddE(log dt)dt ⇔ E(log dt) = e−ρ
d
t log d0 ⇒ lim

t→∞

E(log dt) = 0

and
dE((log dt)

2) = −ρd2E((log dt)
2)dt+ σ2

d dt

such that
E((log dt)

2) = Var((log dt)
2) = 1

2σ
2
d/ρd
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• Euler equation, and the first-order conditions of the household:

Equation 1

πss = iss − ρ+ c̃2dσ
2
d + c̃2Aσ

2
A + c̃2gσ

2
g + c̃2rσ

2
m − 1

2
c̃ddσ

2
d −

1
2
c̃AAσ

2
A − 1

2
c̃ggσ

2
g −

1
2
c̃rrσ

2
m − c̃dσ

2
d

Equation 2

ψlϑsscss = wss

Equation 3

dssc
−1
ss = λss

• Profit maximization is given by:

Equation 4

Π∗
ss =

ε

ε− 1

x2,ss
x1,ss

Equation 5

0 = (ρ+ δ − (ε− 1)πss)x1,ss − λssyss

Equation 6

0 = (ρ+ δ − επt)x2,ss − λssyssmcss

Equation 7

̥ss = (1−mcssvss)yss

Equation 8

wss = Assmcss

• Government policy:

Equation 9

(This equation is an identity in the steady state.)

Equation 10

gss = sgsg,ssyss

• Inflation evolution and price dispersion:

Equation 11

πss =
δ

1− ε

(

(Π∗
ss)

1−ε − 1
)

Equation 12

0 = δ (Π∗
ss)

−ε + (επss − δ)vss
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• Market clearing on goods and labor markets (one condition is redundant):

Equation 13

yss = css + gss (expenditure)

Equation 14

yss =
Ass

vss
lss (production)

(redundant)

yss = wsslss +̥ss (income)

• Stochastic processes:

Equation 15

dss = exp(1
2
σ2
d/ρd)

Equation 16

Ass = exp(1
2
σ2
A/rA)

Equation 17

sg,ss = exp(1
2
σ2
g/rg)

Given an inflation target πss, Equation 1 pins down the long-run interest rate as

iss = πss + ρ− (c̃2dσ
2
d + c̃2Aσ

2
A + c̃2gσ

2
g + c̃2rσ

2
m − 1

2
c̃ddσ

2
d −

1
2
c̃AAσ

2
A − 1

2
c̃ggσ

2
g −

1
2
c̃rrσ

2
m − c̃dσ

2
d)

or

iss = πss + ρ+RPss

Using Equation 11, we obtain the steady-state value Π∗
ss

Π∗
ss = (1− (ε− 1)(πss/δ))

1

1−ε

Using Equations 5 and 6 we can solve for the steady-state value of the marginal cost:

mcss = (ρ+ δ − επss) (1− sgsg,ss)x2,ss/dss

or

mcss =
ρ+ δ − επss

ρ+ δ − (ε− 1)πss

x2,ss
x1,ss
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which by inserting Equation 4 gives:

mcss =
ρ+ δ − επss

ρ+ δ − (ε− 1)πss

ε− 1

ε
Π∗

ss

Hence, we obtain

x1,ss = dss/((1− sgsg,ss)(ρ+ δ − (ε− 1)πss))

and

x2,ss = (1− 1/ε)x1,ssΠ
∗
ss

Using Equation 8, we obtain

wss = Assmcss

Using Equation 12 gives the steady-state value of price dispersion

vss =
δ (Π∗

ss)
−ε

δ − επss

Using Equation 14, we obtain

yss = Asslss/vss

Using Equation 13 and Equation 10 yields

yss = css/(1− sgsg,ss)

Combining the last two equations gives

Asslss/vss = css/(1− sgsg,ss)

Using Equation 2 we get

ψlϑsscss = wss

hence we can collect terms to obtain

lss =

(

wssvss
ψ(1− sgsg,ss)Ass

)
1

1+ϑ

Using Equation 7 and Equation 14 we get

̥ss = (1−mcssvss)Asslss/vss
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A.6. Linear Approximations

In order to analyze local dynamics, the traditional approach is to approximate the dynamic

equilibrium system around steady-state values. We define we x̂t ≡ (xt − xss)/xss, where

xss is the steady-state value for the variable xt. Thus, we can write xt = (1 + x̂t)xss.
31

• Euler equation, the first-order conditions of the household, and budget constraint:

Equation 1

d(ct/css − 1) = −(ρ− it + πt + ρd(dt/dss − 1))dt

Equation 2

ct/css + ϑ(lt/lss − 1) = wt/wss

Equation 3

dt/dss − ct/css = λt/λss − 1

• Profit maximization is given by:

Equation 4

Π̂∗
t = x̂2,t − x̂1,t

Equation 5

d(x1,t/x1,ss − 1) = ((ρ+ a2)(x1,t/x1,ss − 1)− (ε− 1)(πt − πss)) dt

−yss(dss/css) ((yt/yss − 1) + (dt/dss − 1)− (ct/css − 1)) /x1,ss dt

Equation 6

d(x2,t/x2,ss − 1) = (a1(x2,t/x2,ss − 1)− ε(πt − πss)) dt

−mcssyss(dss/css) ((mct/mcss − 1) + (yt/yss − 1) + (dt/dss − 1)− (ct/css − 1)) /x2,ss dt

Equation 7

(1−mcssvss)(̥t/̥ss − 1) = (1−mcssvss)(yt/yss − 1)−mcssvss(mct/mcss + vt/vss)

Equation 8

wt/wss − 1 = At/Ass +mct/mcss
31In what follows we (log-)linearize around non-stochastic steady-state values, in particular, we assume

certainty equivalence (as an approximation), which amounts to setting σ2
d = σ2

A = σ2
d = σ2

m = 0.

58



• Government policy:

Equation 9

d(it − iss) = (θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss)) dt

Equation 10

gt/gss − 1 = sg,t/sg,ss + yt/yss

• Inflation evolution and price dispersion:

Equation 11

πt − πss = (δ + (1− ε)πss)(x2,t/x2,ss − x1,t/x1,ss)

Equation 12

d(vt/vss − 1) =
επss

δ + (1− ε)πss
(πt − πss)dt + (επss − δ)(vt/vss − 1)dt

• Market clearing on goods and labor markets:

Equation 13

yt/yss = ct/css + sgsg,ss/(1− sgsg,ss)(sg,t/sg,ss − 1)

Equation 14

yt/yss = At/Ass + lt/lss − vt/vss

• Stochastic processes follow:

Equation 15

d(dt/dss − 1) = −ρd(dt/dss − 1)dt

Equation 16

d(At/Ass − 1) = −ρA(At/Ass − 1)dt

Equation 17

d(sg,t/sg,ss − 1) = −ρg(sg,t/sg,ss − 1)dt
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Hence, we may summarize the local equilibrium dynamics around steady-state values as:

dit = θ(φπa2(x̂2,t − x̂1,t) + φy(ĉt + sgsg,ss/(1− sgsg,ss)ŝg,t)− (it − iss)) dt

dv̂t = επss(x̂2,t − x̂1,t)dt+ (επss − δ)v̂tdt

dd̂t = −ρdd̂tdt

dÂt = −ρAÂtdt

dŝg,t = −ρgŝg,tdt

dx̂1,t = ((ρ+ εa2)x̂1,t − (ε− 1)a2x̂2,t − yss(dss/css)(sgsg,ss/(1− sgsg,ss)ŝg,t + d̂t)/x1,ss)dt

dx̂2,t = (a1x̂2,t − εa2(x̂2,t − x̂1,t)) dt

−a1((1 + ϑ)(sgsg,ss/(1− sgsg,ss)ŝg,t + ĉt − Ât) + ϑv̂t + d̂t)dt

dĉt = ((it − iss)− a2(x̂2,t − x̂1,t)− ρdd̂t)dt

in which we define percentage deviations x̂t ≡ (xt − xss)/xss and used the definitions for

a1 ≡ ρ+ δ − επss, and a2 ≡ δ + (1− ε)πss in the main text.

In order to analyze local dynamics around the non-stochastic steady state, we need to

study the eigenvalues of the Jacobian matrix evaluated at the steady state:

d

































it − iss

v̂t

d̂t

Ât

ŝg,t

x̂1,t

x̂2,t

ĉt

































=

































a11 0 0 0 a15 a16 a17 a18

0 a22 0 0 0 a26 a27 0

0 0 a33 0 0 0 0 0

0 0 0 a44 0 0 0 0

0 0 0 0 a55 0 0 0

0 0 a63 0 a65 a66 a67 0

0 a72 a73 a74 a75 a76 a77 a78

a81 0 a83 0 0 a86 a87 0

































































it − iss

v̂t

d̂t

Ât

ŝg,t

x̂1,t

x̂2,t

ĉt

































dt
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where a11 ≡ −θ

a15 ≡ θφysgsg,ss/(1− sgsg,ss)

a16 ≡ −θφπa2

a17 ≡ θφπa2

a18 ≡ θφy

a22 ≡ επss − δ

a26 ≡ −επss

a27 ≡ επss

a33 ≡ −ρd

a44 ≡ −rA

a55 ≡ −rg

a63 ≡ −yss(dss/css)/x1,ss

a65 ≡ −yss(dss/css)sgsg,ss/(1− sgsg,ss)/x1,ss

a66 ≡ ρ+ εa2

a67 ≡ −(ε− 1)a2

a72 ≡ −a1ϑ

a73 ≡ −a1

a74 ≡ a1(1 + ϑ)

a75 ≡ −a1(1 + ϑ)sgsg,ss/(1− sgsg,ss)

a76 ≡ εa2

a77 ≡ a1 − εa2

a78 ≡ −a1(1 + ϑ)

a81 ≡ 1

a83 ≡ −ρd

a86 ≡ a2

a87 ≡ −a2

Recall that from (35) we may obtain the linearized static condition (not necessary):

m̂ct = −(1 + ϑ)(Ât − ĉ) + ϑ(v̂t + sg/(1− sg)ŝg,t)

and the output gap is defined as:

yt/y
n − 1 ≡ yss/y

n(At/Ass + lt/lss − vt/vss)− 1
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where yn is the level of potential output that would prevail under flexible prices.

A.7. New-Keynesian analysis

This section sheds some light on the implications of the NK model for both the IS-curve

and the NK Phillips-curve. We compare the implications of the nonlinear model with the

(log-)linear approximation of the model currently used in the literature.

We start with the NK forward-looking Phillips-curve, which from (19), the first-order

condition λt = dt/ct, and the market-clearing condition ct = (1− sgsg,t)yt reads:

dπt = −(δ + (1− ε)πt) (πt + (mct/x2,t − 1/x1,t) dt/(1− sgsg,t)) dt,

which together with mct = ψl1+ϑ
t (1 − sgsg,t)/vt and lt = ytvt/At, among other variables,

shows the response of inflation to the output gap.32 Hence, the linearized Phillips-curve

around (stochastic) steady-state values reads (see appendix Section A.5 for definitions)

dπt = −(δ + (1− ε)πss)(πt − πss)dt

−(δ + (1− ε)πss) (ρ+ δ − επss) (mct/mcss − 1)dt

−(δ + (1− ε)πss) (ρ+ δ + (1− ε)πss) (x1,t/x1,ss − 1)dt

+(δ + (1− ε)πss) (ρ+ δ − επss) (x2,t/x2,ss − 1)dt

+(δ + (1− ε)πss)πss(dt/dss − 1)dt

+(δ + (1− ε)πss)πss (sgsg,ss/(1− sgsg,ss)) (sg,t/sg,ss − 1)dt.

in which

πt − πss = (δ + (1− ε)πss)(x2,t/x2,ss − x1,t/x1,ss)

It shows in the NK Phillips-curve how the change in inflation depends on marginal costs.

We may insert the linearized equation for marginal cost,

mct/mcss − 1 = (1 + ϑ)(yt/yss − 1)− (1 + ϑ)(At/Ass − 1)

+ϑ(vt/vss − 1)− sgsg,ss/(1− sgsg,ss)(sg,t/sg,ss − 1)

= (1 + ϑ)(ct/css − 1)− (1 + ϑ)(At/Ass − 1)

+ϑ(vt/vss − 1) + ϑ(sgsg,ss/(1− sgsg,ss))(sg,t/sg,ss − 1)

where

yt/yss = ct/css + (sgsg,ss/(1− sgsg,ss))(sg,t/sg,ss − 1)

to obtain the NK Phillips-curve with respect to the output gap and/or consumption.

32In order to analyze local dynamics, the traditional approach is to (log-)linearize the variables. We
define x̂t ≡ (xt−xss)/xss, where xss is the steady-state value for the variable xt, such that xt = (1+x̂t)xss
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As shown, the marginal costs are related to consumption (or output gap), the prevailing

level of price dispersion, the technology shock and the government expenditure shock. A

description of the (local) dynamics includes the equation of price dispersion33

d(vt/vss − 1) =
επss

δ + (1− ε)πss
(πt − πss)dt+ (επss − δ)(vt/vss − 1)dt

From (40), the linearized Euler equation (of the conditional deterministic system) reads

d(ct/css − 1) = (it − iss − (πt − πss)− (RPt −RPss)− ρd(dt/dss − 1))dt

= (it − ρ− πt − RPt − ρd(dt/dss − 1))dt

which is readily interpreted as the (micro-founded) NK IS-curve.

To summarize, the equilibrium dynamics of the linearized model around πss = 0 are

d(ct/css − 1) = (it − ρ− πt −RPt − ρd(dt/dss − 1))dt

dπt = (ρ(πt − πss)− δ (ρ+ δ) (mct/mcss − 1)) dt

dit = (θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss))dt

d(vt/vss − 1) = −δ(vt/vss − 1)dt

where the first equation denotes the IS-curve (or linearized Euler equation), the second

the NK Phillips-curve (showing the dependence on marginal costs), and the third the

Taylor rule reflecting the interest rate responds of the monetary authority.

The (linearized) system as in Werning (2012) and Cochrane (2017b) can be obtained

by taking a long-term perspective (after transitional dynamics), by defining the natural

rate rt ≡ ρ+RPt + ρd(dt/dss − 1), assuming it to be exogenous, and xt ≡ (yt/yss − 1)

dxt = (it − rt − πt)dt

dπt = (ρ(πt − πss)− δ (ρ+ δ) (1 + ϑ)xt) dt

dit = (θφπ(πt − πss) + θφyxt − θ(it − iss))dt

where our specification of the Taylor rule is similar to Cochrane (2017b). We may restate

33The dynamics of the three shocks from the (conditional) deterministic system are

d(dt/dss − 1) =
[

−
(

ρd log dss −
1
2σ

2
d

)

− ρd
]

(dt/dss − 1)dt

= −ρd(dt/dss − 1)dt

d(At/Ass − 1) = −ρA(At/Ass − 1)dt

d(sg,t/sg,ss − 1) = −ρg(sg,t/sg,ss − 1)dt
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the NK Phillips curve (with πss = 0) by solving forward:

πt =

∫ ∞

t

e−ρ(s−t)δ(ρ+ δ)(1 + ϑ)xsds (A.11)

The implications of the model for the NK Phillips curve, however, are much richer than

suggested by the (log-)linear approximation around steady-state values with πss = 0. It

also makes it difficult to analyze policy experiments such as changing the inflation target.

A.8. Alternative Taylor principles and stability

To study the stability properties of the dynamic system, the nonlinear system

dxt ≡ f(xt)dt

is approximated by the linear system

d

dt
xt =

1

dt
dxt = A(xt − xss)

Equivalently, we may study (absolute) deviations from an equilibrium xt−xss by defining

d

dt
(xt − xss) =

d

dt
xt = A(xt − xss)

such that the Jacobian matrix is identical, or define percentage deviations x̂t ≡ xt/xss−1

for each variable and use xt = (1 + x̂t)xss such that for each variable

d

dt
x̂t = 1/xss

d

dt
xt = A(xt − xss)/xss = Ax̂t

with identical Jacobian matrix of the vector function f(xt).

For illustration, we present the minimal NK model with sg = 0. We compare feedback

rule to the partial adjustment rule. In the partial adjustment model, we have:

dit = (θφπ(πt − πss) + θφyŷt − θ(it − iss))dt

⇔ d(it − iss) = (θφπ(πt − πss) + θφyŷt − θ(it − iss))dt

⇔ eθti̇t + eθtθ(it − iss) = eθtθφπ(πt − πss) + eθtθφy ŷt

⇔ d(eθt(it − iss))/ dt = eθtθφπ(πt − πss) + eθtθφy ŷt

for t0 → −∞ ⇒ it − iss = θ

∫ t

−∞

e−θ(t−k)(φπ(πk − πss) + φyŷt) dk,

which requires θ > 0 or alternatively for the feedback rule model:

it − iss = φπ(πt − πss) + φy(yt/yss − 1), φπ > 1, φy ≥ 0.
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Note that for any given inflation target, πss, there exists an equilibrium interest rate, iss,

which leads to an admissible steady state.

A.8.1. Feedback rule

In the feedback rule in the simple NK model we have:

it − iss = φ(πt − πss), φ > 1

or more general, the feedback rule (used in the main text) with an output response:

it − iss = φπ(πt − πss) + φy(yt/yss − 1), φπ > 1, φy ≥ 0,

for example φπ ≈ 1.5 and φy ≈ 0.5 for target rates πss ≈ 0 (see Woodford, 2001).

To study the properties of the equilibrium points, define xt ≡ (yt, vt, x1,t, x2,t) such

that

f(xt) ≡ f(yt, vt, x1,t, x2,t) =













− (ρ− it + πt) yt

δ (1 + (1− ε)πt/δ)
− ε

1−ε + (επt − δ)vt

(ρ+ δ − (ε− 1)πt)x1,t − 1

(ρ+ δ − επt)x2,t − ψvϑt y
1+ϑ
t













Evaluating the Jacobian matrix at an equilibrium point xss = (yss, vss, x1,ss, x2,ss) yields

A1 =













φy 0 (1− φπ)a2yss/x1,ss −(1− φπ)a2yss/x2,ss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2













where a1 ≡ ρ+ δ − επss, and a2 ≡ δ + (1− ε)πss.

Hence, we may approximate the equilibrium dynamics by

dŷt = (it − ρ− πt)dt

dv̂t = ((επss − δ)v̂t + επss/a2(πt − πss))dt

dx̂1,t = ((ρ+ a2)x̂1,t + (1− ε)(πt − πss)) dt

dx̂2,t = (a1x̂2,t − ε(πt − πss)− (1 + ϑ)a1ŷt − ϑa1v̂t)dt

where πt − πss = a2(x2,t/x2,ss −x1,t/x1,ss) and it = φy(yt/yss− 1)+φπ(πt− πss)+ iss such

that the inflation dynamics are:

dπt = ρ(πt − πss) dt− (δ + (1− ε)πss)πss(x2,t/x2,ss − 1)dt

−κ((yt/yss − 1) + (vt/vss − 1)ϑ/(1 + ϑ))dt

65



in which κ ≡ (δ + (1− ε)πss)(1 + ϑ) (ρ+ δ − επss).

Around zero-inflation target πss = 0 and iss = ρ, the equilibrium dynamics are:

dŷt = (it − ρ− πt)dt

dv̂t = −δv̂tdt

dπt = (ρπt − (1 + ϑ)(ρ+ δ)δŷt − ϑ(ρ+ δ)δv̂t)dt

In this first-order approximation, price dispersion is no longer affected by other variables,

such that it will always converge. Analyzing equilibrium dynamics will be based on:

dŷt = (it − ρ− πt)dt

dπt = (ρπt − κŷt)dt

where κ ≡ (1 + ϑ) (ρ+ δ) δ and it = iss + φππt + φyŷt. Sometimes the linearized model

around zero inflation target is used to approximate the model around positive inflation

targets, πss > 0 (e.g., Cochrane, 2017b, eq. (4) with time-varying πss and ρ).

Based on the reduced system x = (ŷt, πt) for πss = 0, the 2× 2 Jacobian matrix reads:

A1 =

[

φy φπ − 1

−κ ρ

]

For a unique locally bounded equilibrium we need two positive eigenvalues, for the larger

system πss 6= 0 we need three positive and one negative eigenvalue.

The Jacobian matrix has tr(A1) = λ1+λ2 = φy+ρ > 0 and det(A1) = ρφy+(φπ−1)κ

is positive for φπ > 1, thus both eigenvalues have positive real parts, λ1λ2 = det(A1),

λ2 − (φy + ρ)λ+ ρφy + (φπ − 1)κ = 0

λ1,2 =
1
2
(ρ+ φy ±

√

(φy + ρ)2 − 4(ρφy + (φπ − 1)κ))

So the unique locally bounded solution is ŷt = 0 and πt = πss such that it = iss.

A.8.2. Partial adjustment

For the partial adjustment model, we need to add the dynamics of the interest rate:

d(it − iss) = (θφπ(πt − πss) + θφy ŷt − θ(it − iss))dt

It relates to Graeve, Emiris, and Wouters (2009), where the Taylor rule has lagged interest

rates and potential output (the level of output that would prevail under flexible prices).

To study the properties of the two equilibrium points, define xt ≡ (yt, vt, x1,t, x2,t, it)
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such that

f(xt) ≡ f(yt, vt, x1,t, x2,t, it) =

















− (ρ− it + πt) yt

δ (1 + (1− ε)πt/δ)
− ε

1−ε + (επt − δ)vt

(ρ+ δ − (ε− 1)πt)x1,t − 1

(ρ+ δ − επt) x2,t − ψvϑt y
1+ϑ
t

θφπ(πt − πss) + θφy(yt/yss − 1)− θ(it − iss)

















Evaluating the Jacobian matrix at equilibrium point xss = (yss, vss, x1,ss, x2,ss, iss) yields

A2 =

















0 0 a2yss/x1,ss −a2yss/x2,ss yss

0 επss − δ −επssvss/x1,ss επssvss/x2,ss 0

0 0 ρ+ εa2 −(ε− 1)a2x1,ss/x2,ss 0

−(1 + ϑ)a1x2,ss/yss −ϑa1x2,ss/vss εa2x2,ss/x1,ss a1 − εa2 0

θφy/yss 0 −θφπa2/x1,ss θφπa2/x2,ss −θ

















where a1 ≡ ρ+ δ − επss, and a2 ≡ δ + (1− ε)πss.

Hence, we may approximate the equilibrium dynamics by

dŷt = (it − ρ− πt) dt

dv̂t = ((επss − δ)v̂t + επss/a2(πt − πss)) dt

dx̂1,t = ((ρ+ a2)x̂1,t + (1− ε)(πt − πss)) dt

dx̂2,t = (a1x̂2,t − ε(πt − πss)− (1 + ϑ)a1ŷt − ϑa1v̂t)dt

dit = (θφπ(πt − πss) + θφyŷt − θ(it − iss)) dt

where πt − πss = a2(x2,t/x2,ss − x1,t/x1,ss) such that the inflation dynamics are:

dπt = (ρ(πt − πss)− a2πssx̂2,t − κŷt − ϑa1a2v̂t)dt

in which κ ≡ (1 + ϑ)(ρ+ δ − επss)(δ + (1− ε)πss).

Around zero-inflation target πss = 0 and iss = ρ, the equilibrium dynamics are:

dŷt = (it − ρ− πt) dt

dv̂t = −δv̂t dt

dπt = (ρπt − (1 + ϑ)δ(ρ+ δ)ŷt − ϑδ(ρ+ δ)v̂t)dt

dit = (θφππt + θφy ŷt − θ(it − iss)) dt

In this first-order approximation, price dispersion is no longer affected by other variables,
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such that it will always converge. Analyzing equilibrium dynamics will be based on:

dŷt = (it − ρ− πt) dt

dπt = (ρπt − κŷt)dt

dit = (θφππt + θφyŷt − θ(it − ρ)) dt

where κ ≡ (1 + ϑ) (ρ+ δ) δ.

Based on the reduced system xt = (ŷt, πt, it) for πss = 0, the 3 × 3 Jacobian matrix

reads:

A2 =







0 −1 1

−κ ρ 0

θφy θφπ −θ







For a unique locally bounded equilibrium we need two positive and one negative eigenvalue,

for the larger system πss 6= 0 we need three positive and two negative eigenvalues.

A.9. Alternative shock processes

Consider the Ornstein-Uhlenbeck (OU) process (7), also used in this paper,

d log dt = −ρd log dtdt + σddBd,t

or

ddt = −
(

ρd log dt −
1
2
σ2
d

)

dtdt + σddtdBd,t

versus the alternative of a logistic growth process (add stochastics)

ddt = ρddt (1− dt) dt (A.12)

which is the logistic growth model with carrying capacity 1.

The natural (lower) bound is zero and the turning point is 1/2. The process suggests

that if the variable is near its carrying capacity, the dynamics are just like those of the

OU process, whereas if the variable is near its natural lower bound, the dynamics are

similar to exponential growth. The parameter ρd measures the half-life. We may scale the

model such that it fits our needs to have a prolonged period of persistence of a shock at

the beginning and later to revert back to the steady state level geometrically at rate ρd

such that (similar to the OU process) the higher ρd the lower persistence, the smaller ρd

the more pronounced shocks are smeared out in time. Now consider

ddt = ρd(dt − d̄) (1− dt) /(1− d̄) dt (A.13)
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of which the solution is

dt =
dss − d̄

1 + Ce−ρdt
+ d̄

The (unique) steady state value is the solution of

0 = ρd
(

dt − d̄
) (

1−
(

dt − d̄
)

/(dss − d̄)
)

dt

where we require that dt > d̄ for all time. Linearizing about dss yields

ddt/dss = −ρd(dt/dss − 1) dt

or

dd̂t = −ρdd̂t dt

It reflects that the logistic growth model for dt − d̄ such that dt approaches dss. The

variable dt − d̄ is defined between 0 and ∞ with carrying capacity dss − d̄ and turning

point at (dss − d̄)/2, such that the original variable dt is defined between d̄ and ∞ with

turning point at 1 − (dss − d̄)/2. For d̄ = 0 we assume logistic growth for dt, whereas

d̄ → dss squeezes the admissible region lower than the steady state level towards zero, such

that d̄ denotes the lower bound for dt (typically zero in the OU case). Any (negative)

shock larger than 1− (dss − d̄)/2 induces quite different dynamics, staying there for some

time before returning to the steady state level (cf. Figure C.42). This effect only shows

up in the nonlinear version of the model. While the logistic model looks very much like an

exponential model in the beginning, around the steady state value, the linearized dynamics

are the same as for the Ornstein-Uhlenbeck process. It is important to understand that

the linear model thus will not be able to replicate those dynamics.

A.10. The yield curve

Consider a nominal (zero-coupon) bond with unity payoff at maturity N > t. We obtain

the equilibrium price in the perfect-foresight model as

P
(N)
t = (mt+N/mt)e

−
∫ t+N
t

πsds, (A.14)

where πt denotes inflation. Inserting the SDF, mt = e−ρtVK = e−ρtdt/ct we obtain that

P
(N)
t = e−ρN ((VK)t+N/(VK)t)e

−
∫ t+N
t

πsds

= e−ρN (ct/ct+N )(dt+N/dt)e
−

∫ t+N
t

πsds
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The yield of a bond is the fictional interest rate that justifies the quoted price, assuming

that the bond does not default, hence

P
(N)
t = 1/

[

Y
(N)
t

]N

or

Y
(N)
t = 1/

[

P
(N)
t

]1/N

such that the log price satisfies

y
(N)
t = −(1/N)p

(N)
t

Hence, in our model we obtain the log yield with maturity N > t as

y
(N)
t = ρ+ (1/N) log(ct+N/ct)− (1/N) log(dt+N/dt) + (1/N)

∫ t+N

t

πsds
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B. Tables and Figures

Figure 1: US federal funds rate, 10-year treasury rate and inflation rate
In this figure we show time series plots of the US Effective Federal Funds Rate (Fed Funds), the 10-Year
Treasury Constant Maturity Rate (10Y Govt), the Consumer Price Index, seasonally adjusted (Core
CPI), all at the monthly frequency. All series are obtained from the Federal Reserve Bank of St. Louis
Economic Dataset (FRED). The sample runs from January, 1990, through June, 2017.
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Figure 2: Implied 10-year treasury rate and natural rate
In this figure we show time series plots of the model-implied 10-Year Treasury Rate (Implied 10Y Govt)
and the model-implied ‘natural rate’ using the simple NK model around πss = 0, when matching the
observed US Effective Federal Funds Rate (Fed Funds) and the Consumer Price Index, seasonally adjusted,
all at the monthly frequency. The sample runs from January, 1990, through June, 2017.
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Figure 3: Solution of the linearized NK model with partial adjustment
In this figure we show (from left to right) the output gap, and the inflation rate as a function of the
(initial) interest rate for a parameterization (ρ, κ, φ, θ, πss) = (0.01, 0.8582, 4, 0.5, 0).

0 0.002 0.004 0.006 0.008 0.01

0

2

4

6

8

x 10
−3 output gap

p
e
rc

e
n
ta

g
e
 d

e
v
ia

ti
o
n
s

interest rate
0 0.002 0.004 0.006 0.008 0.01

0

1

2

3

4

5

x 10
−3 inflation

le
v
e
l

interest rate

Figure 4: Solution of the minimal NK model with partial adjustment
In this figure we show (from left to right) the output gap, and the inflation rate as a function of the (initial)
interest rate in the minimal model (blue solid), in the linearized model (dashed), and in the simple model
(around πss = 0, dotted) for a parameterization (ρ, κ, φπ, φy, θ, πss) = (0.03, 0.8842, 4, 0, 0.5, 0.02), .
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Figure 5: Responses to monetary policy shocks (temporary and permanent)
In this figure we show (from left to right, top to bottom) the simulated responses for unexpected shocks
to the (initial) interest rate (−0.025), and the inflation target rate (−0.005), with effects for the output
gap, the inflation rate, and the level and slope of the interest rate (blue solid), and the no-target rate
shock scenario in the simple model (black dashed, πss = 0.02).
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Figure 6: Simulated shock to interest rate and target rate (2007-2011), macro dynamics
In this figure we show (from left to right, top to bottom) the simulated responses for unexpected shocks
to the (initial) interest rate (−0.0475), the inflation target rate (−0.02), and preferences (−0.1), with
effects for the output gap, the inflation rate, and the level and the slope of the interest rate (blue solid),
the no-target rate shock scenario (black dashed, πss = 0.02), and the pre-shock scenario (dotted).
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Figure 7: Simulated shock to interest rate and target rate (2007-2011), yield curve
In this figure we show (from left to right) the yield curve response to unexpected shocks to the (initial)
interest rate (−0.0475), the inflation target rate (−0.02), and preferences (−0.1), with effects for the
nominal and real yields (blue solid), the no-target rate shock scenario (black dashed, πss = 0.02), and
the pre-shock scenario (dotted).
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Table 1: Summary of the solution algorithm in the policy function space

Step 1 (Initialization) Provide an initial guess for the unknown derivatives for a
given set of collocation nodes and basis functions.

Step 2 (Solution) Compute the optimal value of the controls for the set of nodal
values for the state variables.

Step 3 (Update) Update the consumption function derivatives.
Step 4 (Iteration) Repeat Steps 2 and 3 until convergence.

Table 2: Parameterization

ϑ 1 Frisch labor supply elasticity
ρ 0.03 subjective rate of time preference, ρ = −4 log 0.9925
ψ 1 preference for leisure
δ 0.65 Calvo parameter for probability of firms receiving signal, δ = −4 log 0.85
ε 25 elasticity of substitution intermediate goods
sg 0.2 share of government consumption
ρd 0.4214 autoregressive component preference shock, ρd = −4 log 0.9
rA 0.4214 autoregressive component technology shock, rA = −4 log 0.9
rg 0.4214 autoregressive component government shock, rg = −4 log 0.9
σd 0.02 variance preference shock
σA 0.02 variance technology shock
σg 0.02 variance government shock
σm 0.02 variance monetary policy shock
φπ 4 inflation response Taylor rule
φy 0 output response Taylor rule
θ 0.5 interest rate response Taylor rule
πss 0.02 inflation target rate
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Table 3: Data and NK model predictions around πss = 0

Data

FF 10Y CPI

2001-01 6% 5% 2.5%
2003-12 1% 3.5% 1%
2007-09 5% 4.5% 2%

2009-01 0.25% 2.5% 2%
2010-10a 0.25% 2.5% 0.5%

2011-06a 0% 3% 1.5%

2004-06 1% 4.5% 2%
2005-02a 2.5% 4% 2.5%

NK model (transitory)

FF 10Y TR CPI

6% 5% 2% 1.5%
1% 5% 2% 4%
5% 5% 2% 2%

0.25% 4.5% 2% 4.5%
0.25% 4.5% 2% 4%

0% 4% 2% 1%

1% 4.5% 2% 4%
2.5% 4% 2% 1%

NK model (both)

FF 10Y TR CPI

6% 5% 2% 1.5%
1% 3% 0% 1%
5% 5% 2% 2%

0.25% 3% 0% 1.5%
0.25% 2.5% 0% 1%

0% 4% 2% 1%

1% 4.5% 2% 4%
2.5% 4% 2% 1%

a) The predictions include (negative) shocks to the natural rate along with the monetary policy shocks.

Table 4: Data and NK model predictions (full model)

Data

FF 10Y CPI

2001-01 6% 5% 2.5%
2003-12 1% 3.5% 1%
2007-09 5% 4.5% 2%

2009-01 0.25% 2.5% 2%
2010-10a 0.25% 2.5% 0.5%

2011-06a 0% 3% 1.5%

2004-06 1% 4.5% 2%
2005-02a 2.5% 4% 2.5%

NK model (transitory)

FF 10Y TR CPI

6% 5% 2% 2%
1% 4.5% 2% 2.5%
5% 5% 2% 2%

0.25% 4.5% 2% 2.5%
0.25% 4% 2% 2%

0% 3% 2% 1%

1% 4.5% 2% 2.5%
2.5% 4% 2% 2%

NK model (both)

FF 10Y TR CPI

6% 5% 2% 2%
1% 3% 0% 1.5%
5% 4.5% 2% 2%

0.25% 3% 0% 2%
0.25% 2% 0% 0%

0% 3% 2% 1%

1% 4.5% 2% 2.5%
2.5% 4% 2% 2%

a) The predictions include (negative) shocks to the natural rate along with the monetary policy shocks.
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