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An Elementary Theory of Endogenous

Technical Change and Wage Inequality∗

Jonas Loebbing†

March 2018

This paper presents general results on the effect of endogenous technical change
on relative wages in a simple general equilibrium model that covers several more
elaborate models of technology choice. The results are based on a simple and in-
tuitive notion of complementarity between technology and labor inputs, and char-
acterize necessary and sufficient conditions for central results from the literature
on endogenous technical change. The developed theory generalizes existing work
to technologies that are not purely factor-augmenting, production functions that
are not differentiable in technology, and settings with more than two (and poten-
tially infinitely many) different types of labor. Applying the theory to assignment
models of the labor market, the paper derives new results on the endogenous
determination of automation technology, both in a closed economy and in a two
country setting with international trade, and sketches directions for future research
on endogenous technical change in assignment models.
JEL: J24, J31, O33, Keywords: Endogenous Technical Change, Wage Inequality,
Factor Demand, Automation, Assignment Model, Monotone Comparative Statics

1. Introduction

It is by now widely accepted in the empirical literature on wage inequality that technical
change is an important cause of the changes in wage inequality observed over the last three to
four decades in many developed economies.1 While many economic models treat technology

∗I thank Peter Funk for helpful comments, discussion, and guidance. Moreover, I thank Daron Acemoglu,
Raphael Flore, Tobias Foell, Anna Kerkhof, Ilse Lindenlaub and participants at various seminars for helpful
comments and discussion. Previous versions circulated under the titles “A LeChatelier Principle for Relative
Demand and Implications for Directed Technical Change” and “Relative Equilibrium Bias of Technology”.

†Center for Macroeconomic Research, University of Cologne. Website: http://cmr.uni-koeln.de/de/team/

phd-students/jonas-loebbing/. Email: loebbing@wiso.uni-koeln.de. Telephone: +49 221 470 8650.
1Early proponents of this view are Bound and Johnson (1992) and Katz and Murphy (1992), who argue that

technical change is the major reason for the increase of the wage gap between US college and high school
graduates in the 1980s. More recent work proposes and supports the idea that in many industrialized countries
the rise of computer technologies during the last decades reduced wage growth especially for workers in
routine intensive occupations, who are mostly located in the middle of the wage distribution (see Autor, Levy
and Murnane, 2003; Autor, Katz and Kearney, 2006; Goos and Manning, 2007; Autor and Dorn, 2013; Michaels,
Natraj and Van Reenen, 2014). Even more recently, Graetz and Michaels (2017), Acemoglu and Restrepo (2017),
and Dauth, Findeisen, Suedekum and Woessner (2017) find effects of robotic technologies on employment and
wages.
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as exogenous, there are good reasons to believe that it is at least partially endogenous to
the economic system: profit incentives likely affect which of the set of already developed
technologies a firm uses and which type of new technologies research and development efforts
are directed to.
The theory of endogenous technical change starts exactly from the assumption that production
technologies are determined by profit incentives. So far, the theory has uncovered several in-
teresting interactions between technology and the structure of labor supply, and applied them
in various settings.2 The central results of the theory, however, rely on highly specific func-
tional forms, most notably factor-augmenting technologies, and other strong assumptions,
arguably without a justification other than formal tractability.
Here I propose a general theory of the interaction between labor supply, technology, and
relative wages, which generates necessary and sufficient conditions for the central results of
the literature in a general class of models.
My results show that the central results of the existing literature hold under much wider
conditions than previously thought, lending credibility to existing applications. Moreover,
they are based on simple and intuitive concepts, and thus improve our understanding of
the basic economic forces behind the central effects of endogenous technical change. Finally
and most importantly, by going beyond factor-augmenting technologies my results become
applicable to a range of settings that so far have largely been outside the scope of endogenous
technical change theory. I demonstrate the last point by making a first step in the exploration
of endogenous technical change effects in assignment models of the labor market, which I
consider one of the most promising fields for future application of the theory.
A notable exception to the specificity of existing work on endogenous technical change is
given by Acemoglu (2007), who presents general results for the effects of endogenous technical
change on absolute rather than relative wages. From a theory perspective, one may view my
work as the completion of a general theory of the effects of endogenous technical change on
wages, with the first part on absolute wages given by Acemoglu (2007).
I analyze a simple static general equilibrium model with endogenous production technology
that, as shown by Acemoglu (2007), covers (reduced forms of) many more elaborate models
of technology choice.
The first central result of the literature is that with two labor inputs (say, high- and low-skilled
labor), purely factor-augmenting technology, and a homotheticity assumption on aggregate
production, any local increase in the relative supply of high-skilled labor induces skill-biased
technical change. My first result shows that the assumption of factor-augmenting technologies
can be dropped without replacement. Indeed, I also allow for non-local (or non-infinitesimal)
changes in relative skill supply, superseding differentiability assumptions, which leaves only
the homotheticity assumption in place.
This surprisingly general result carries a simple intuition: any increase in relative labor sup-

2The seminal papers on endogenous technical change, Acemoglu (1998) and Kiley (1999), analyze a model with
endogenous factor-augmenting technology to propose that the skill biased technical change supposedly re-
sponsible for the observed increase in the US skill premium is (partly) driven by the increasing relative supply
of skilled labor. Later work explores the interaction of endogenous factor-augmenting technology with inter-
national trade (Acemoglu, 2003; Thoenig and Verdier, 2003) and offshoring (Acemoglu, Gancia and Zilibotti,
2015).
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ply increases the return to technologies that are complementary to the relative labor input,
and, by symmetry of complementarity relations, using such technologies more intensively in-
creases the relative wage. Remarkably, the proof of my first main result is almost a one-to-one
translation of this intuition into formal math.
The second central existing result says that, again with two labor types and factor-augmenting
technologies, the effect of the skill-biased technical change induced by an increase in relative
skill supply dominates the direct substitution effect – such that the skill premium increases in
response to an increase in relative skill supply – if and only if the elasticity of substitution be-
tween high- and low-skilled labor is sufficiently large. Again dropping factor augmentation,
I give a generalization of this condition, which sheds new light on the type of environment
in which it can be satisfied. In particular, I show that the induced technical change effect
dominates if and only if there is a certain form of non-convexity in the aggregate production
possibilities set of the economy. Most notably, this requires that the equilibrium technology
is not the result of a joint maximization of production over technology and labor. In con-
sequence, the technical change effect cannot dominate in models where firms choose labor
demand and production technologies simultaneously and independently of the technology
decisions of other firms.
My final set of results gives a natural extension of the previous two results to settings with
an arbitrary number of labor types. I identify conditions under which a uniform increase of
relative supply over the type space – that is, every relative supply of a higher versus a lower
labor type goes up (where the order on types, that is, the definition of which of a given pair
of types is higher and which is lower, can be chosen arbitrarily) – induces technical change
uniformly biased towards higher labor types – that is, the induced technical change increases
every relative wage of a higher versus a lower type. The result is a strict generalization of the
corresponding results for the two type case and is based on the same intuitive concepts. It
allows to take the perspective of endogenous technical change to changes in wage inequality
that occur at a higher level of disaggregation than captured by a two type model. In particular,
it applies to supply changes that are potentially non-monotone along the wage distribution,
such as polarizing changes.
I use the developed theory to derive new results on endogenous automation technology – de-
fined as technology that allows for a direct substitution of labor by machines in certain tasks –
in a setting with many labor types.3 For this, I incorporate machines as an additional produc-
tion factor in the canonical continuum type assignment model by Teulings (1995), drawing on
recent progress in comparative statics analyses for this type of model by Costinot and Vogel
(2010). In line with recent forecasts on the future automation potential of different tasks (see
for example Frey and Osborne, 2017), I assume that machines have comparative advantage in
less complex tasks than labor, such that any increase in the set of tasks performed by machines
(automation) displaces low-skilled labor from some of its previous tasks.
My first result shows that, with a fully endogenous productivity schedule for machines across
tasks, any uniform increase in relative skill supply induces automation, which in turn uni-

3The results complement those of Acemoglu and Restrepo (2016), who analyze the dynamic evolution of au-
tomation technology and its response to exogenous technology shocks rather than its response to changes in
the structure of labor supply.
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formly increases skill premia over the entire type space. This extends the well-known hypoth-
esis proposed by Acemoglu (1998), that the joint upwards trend of relative skill supply and
skill premium observed in the US since the 1980s may reflect the response of technology to
the increasing relative supply of skill, from models with purely factor-augmenting technolo-
gies to a model with endogenous automation technology. The result is important because, as
noted for example in Acemoglu and Autor (2011), the model with purely factor-augmenting
technology from Acemoglu (1998) is not consistent with another important empirical fact on
the evolution of the wage distribution over this period: the stagnation or even decline of
low-skilled workers’ real wages. The automation model, in contrast, can produce such abso-
lute wage declines for low-skilled workers. Relatedly, I also show that automation can never
reduce the average wage across all workers (after adjustment of the machine stock), which
gives a general version of the productivity effect of automation discovered in a more specific
framework by Acemoglu and Restrepo (2016).
Second, I extend the analysis to the two country setting with trade in tasks studied in Costinot
and Vogel (2010). It turns out that only the world supply of labor, obtained by aggregating
efficiency units of different labor types across countries, determines the bias of technology. In
consequence, a sufficiently strong increase in the relative skill supply in a skill scarce country
– for example in an emerging economy like China – induces automation in a skill abundant
country linked to the skill scarce country via trade in tasks.
Finally, I discuss two directions for future applications of the developed theory. First, moving
beyond the assumption that machines always have comparative advantage in less complex
tasks relative to all labor types appears a promising path for future research on endogenous
technical change in assignment models.4 Second, my theoretical results facilitate analyzing
the implications of endogenous technical change for redistributive policies such as (non-linear)
income taxes, which I pursue in a companion paper.
The structure of the paper is as follows. The next section describes the static model used to
derive the main results, states the most general existing results on the effect of endogenous
technical change on relative wages (Section 2.1), and derives the main results of the paper, first
in the two type setting (Sections 2.2 and 2.3), then for multiple types (Section 2.4). I apply the
results to assignment models in Sections 3.1 (closed economy) and 3.2 (two country setting
with international trade). Section 4 discusses directions for future applications of the theory
and Section 5 concludes.

2. A General Theory of Relative Equilibrium Bias of Technology

2.1. Setup and Previous Results

I analyze a static general equilibrium model with workers who supply different types of
labor and consume a single consumption good, and a firm sector that demands labor and
transforms it into the consumption good. The production technology that transforms labor
into the consumption good is endogenous.

4This point is due to Daron Acemoglu, with whom I am currently working on an endogenous technical change
analysis in assignment models without the fixed comparative advantage assumption.
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I take labor supply as exogenous, so workers make no meaningful decisions. Aggregate
supply of labor of type i ∈ I is denoted by Li, I being the set of labor types.
I assume that the firm sector admits an aggregate production function F(L, θ), with L col-
lecting the labor inputs of all different types and θ denoting technology. Acemoglu (2007)
shows that different models of technology choice in the firm sector lead to the result that the
equilibrium technology maximizes aggregate production.5 Therefore, instead of settling for a
specific model of technology choice, I simply assume that the equilibrium technology is given
by θ?(L) := sup argmaxθ∈Θ F(L, θ), where Θ is the space of all feasible technologies.6 I present
several more detailed models of the firm sector from Acemoglu (2007), all consistent with the
aggregate assumptions made here, in Appendix A.
Labor markets are assumed to be perfectly competitive, so wages equal marginal products,
that is, denoting the wage of labor type i by wi, wi(L, θ) = ∂F(L, θ)/∂Li.
Finally, I impose the following assumptions on the aggregate production function to ensure
that wages and the equilibrium technology are always well defined.

Assumption 1. The aggregate production function is strictly increasing and continuously differen-
tiable in L, and continuous in (L, θ). The space of feasible technologies Θ is a compact topological
space.

The focus of the paper is on the effects of technical change on relative wages induced by
changes in relative labor supply. With two types of labor, L1 and L2, these effects are conve-
niently summarized by the notions of weak and strong relative equilibrium bias of technology
(see Acemoglu, 2007).

Definition 1. There is weak relative equilibrium bias of technology at labor supply L if

w1

w2

(
L′, θ?(L)

)
≤ w1

w2

(
L′, θ?(L′)

)
for any L′ with L1/L2 ≤ L′1/L′2.

Definition 2. There is strong relative equilibrium bias of technology at labor supply L if

w1

w2
(L, θ?(L)) ≤ w1

w2

(
L′, θ?(L′)

)
for any L′ with L1/L2 ≤ L′1/L′2.

In words, there is weak relative equilibrium bias of technology if any increase in the relative
supply of labor type 1 versus labor type 2 induces technical change that increases the relative

5Acemoglu (2007) considers three different models of technology choice: (i) each final good firm chooses its
technology simultaneously with its labor inputs from a given set of feasible technologies; (ii) a technology
monopolist supplies technology embodied in an intermediate good to all final good firms; (iii) oligopolistic
technology firms supply technology embodied in differentiated varieties of intermediate goods to all final
good firms. For more details see Appendix A.

6The supremum is taken for each of the results of the following sections with respect to the order defined in the
corresponding section. Whenever no such order is defined, θ? is just an arbitrary unique selection out of the
set of maximizers. Having a unique equilibrium technology is convenient for the results of the next sections,
as it gives rise to a unique equilibrium wage distribution, but similar results could be obtained for sets of
equilibrium technologies and the corresponding sets of relative wages.
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wage of labor type 1 versus type 2, that is, technical change biased towards labor type 1.
Alternatively, the type 1 bias of technology increases in the relative supply of labor type 1.
Strong relative equilibrium bias of technology requires that the effect of the induced technical
change dominates the standard substitution effect between the two types, such that the total
effect of an increase in relative supply on the relative wage is positive. Alternatively, the
endogenous technology relative wage increases in relative supply.7

To compare my results directly with previous work, I also define local versions of weak and
strong relative bias.8 These local versions require that technologies are represented by real
vectors to make use of derivatives.

Definition 3. Suppose Θ ⊂ RN and θ? is homogeneous of degree zero in L. Then, there is
local weak relative bias of technology at labor supply L if

∇θ
w1

w2
(L, θ?(L)) · dθ?(L)

dL1/L2
≥ 0.

Definition 4. Suppose Θ ⊂ RN and w1/w2(L, θ?(L)) is homogeneous of degree zero in L.
Then, there is local strong relative equilibrium bias of technology at labor supply L if

d
dL1/L2

w1

w2
(L, θ?(L)) ≥ 0.

For the derivatives with respect to relative supply to be well defined, the definitions of local
relative bias require that the equilibrium technology and the relative wage are functions of
relative labor supply only.9 Instead of discussing these requirements for each of the results on
local relative bias separately, I give a simple sufficient condition for them here.

Condition 1. The aggregate production function F(L, θ) can be written as the composition of
an inner function f (L, θ) that is linear homogeneous in L and an outer function g( f , L) that is
strictly increasing in f .

Condition 1 ensures that the equilibrium technology does not change with proportional changes
in labor supply, that is, the equilibrium technology can be written as a function of relative
supply only. If in addition L does not enter the outer function g directly, the same holds for
the endogenous technology relative wage. Note that homogeneity of F in L is sufficient for
Condition 1, even if the outer function must be independent of L.
Equipped with the above definitions, we can recapitulate the most general existing results on
relative bias. These result are restricted to settings with factor-augmenting technologies and
twice continuously differentiable production function.

7I use the term endogenous technology relative wage to refer to the relative wage w1/w2(L, θ?(L)) as a function of
L, taking into account the total effect of L on the relative wage (the partial effect plus the effect via technology).
Similarly, I refer to the aggregate production function F(L, θ?(L)) as a function of L only (taking into account
the total effect of L on F) as the endogenous technology production function.

8For brevity I will often refer to weak (strong) relative equilibrium bias of technology as weak (strong) relative
bias.

9It would also be possible to give a slightly wider definition of local weak relative bias, requiring that the
directional derivative of technology in any direction that increases relative labor supply has a positive effect on
the relative wage. The gains of doing so, however, do not appear to justify the additional notation. I comment
on this possibility at the end of Section 2.2.
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Result 1 (Theorem 1, Acemoglu 2007). Suppose that Θ = R2
+, F can be written as F(L, θ) =

G(θ1L1, θ2L2)−C(θ) with G and C twice continuously differentiable and homothetic, G strictly
increasing and concave, and C strictly decreasing and strictly convex. Then:

1. There is local weak relative equilibrium bias of technology at any labor supply L.

2. There is local strong relative equilibrium bias of technology at labor supply L if and
only if σ(L)− 2− δ(L) > 0, where σ(L) is the elasticity of substitution between the two
arguments of G at the point (θ?1 (L)L1, θ?2 (L)L2) and δ(L) is the inverse of the elasticity
of substitution between the two arguments of C at the point θ?(L).

In the following, I generalize these results to settings without specific functional form restric-
tions, without differentiability of aggregate production in technology, and provide a natural
extension to settings with multiple labor types.

2.2. Weak Relative Equilibrium Bias of Technology

The first main result of the paper identifies minimal conditions for weak relative bias accord-
ing to Definition 1. It is based on the idea that an increase in relative supply of labor type
1 versus type 2 should induce technical change that is complementary to the relative supply
increase. Since weak relative bias is defined for supply changes that span the entire labor
supply space and complementarity relationships may in principle change over the space, the
result will require complementarity relationships to be stable.
To make the notion of stable complementarity relationships precise, I define complementarity
by ordering technologies according to their bias towards labor of type 1.

Definition 5. For any two technologies θ, θ′ ∈ Θ, θ �s θ′ if and only if w1/w2(L, θ) ≤
w1/w2(L, θ′) for all labor inputs L.

Stability of complementarity relationships now requires that a technology θ that is more com-
plementary to relative labor supply (equivalently: more biased towards labor type 1) than
another technology θ′ at some labor supply L is also more complementary to relative supply
than θ′ at any other labor supply L′. This simply means that any two technologies can be
compared under the order �s, so �s must be a total order.

Condition 2. The order �s is total on the technology space Θ, that is, for any two technologies
θ, θ′ either θ �s θ′ or θ′ �s θ.

The main result on weak relative bias now says that there is weak relative bias at every labor
supply L whenever complementarity relationships are stable and the relationship between
technical change and relative labor supply is well defined.

Theorem 1. Suppose θ?(L) can be written as θ?(L1/L2) and complementarity relationships are stable
as by Condition 2. Then there is weak relative equilibrium bias of technology at any labor supply L.

Theorem 1 simply states that the function θ? is increasing, that is, any increase in relative
supply increases the type 1 bias of technology (increases technology under the order �s). The

7



result is both surprisingly general and surprisingly simple in view of the restricted scope of
existing results.
Remarkably, neither of the two conditions for weak relative bias can be relaxed in a substantial
way. When the equilibrium technology is not a function of relative supply only, a proportional
change in supply of both labor types may induce biased technical change, which immediately
contradicts weak relative bias.10 When complementarity relationships are not stable, it may be
possible to construct a supply change that induces biased technical change in line with weak
relative bias when evaluated at the initial labor supply, but not at the eventual labor supply as
required by weak relative bias.11 I give examples for violations of each of the two conditions
at the end of this subsection.
The need for stability of complementarity relationships only arises in Theorem 1 because weak
relative bias covers changes across the entire labor supply space. Once restricting attention to
local changes, complementarity relationships are automatically stable, which means that for
local weak relative bias, Condition 2 can be dropped.12

Corollary 1. Suppose θ?(L) can be written as θ?(L1/L2), Θ is a subset of RN , F is C2, and θ? is
differentiable. Then there is local weak relative equilibrium bias of technology at any labor supply L.

So, there is local weak relative bias whenever it is well defined according to Definition 3.13

The results on weak relative bias are closely related to the results on weak absolute bias in
Acemoglu (2007), where weak absolute bias means that an increase in a single type’s labor
supply induces technical change that increases this type’s absolute wage. Indeed the absolute
bias results can easily be derived along the lines of the preceding discussion of relative bias.
In particular, Acemoglu’s Theorem 3 states that there is weak absolute bias if there is an order
on the technology space such that aggregate production is supermodular in technology and
exhibits increasing differences in technology and the relevant labor type.14 Choosing the order
– analogously to the order �s above – such that any increase in technology increases the type’s
absolute wage, we get increasing differences for free (that is, without assuming it explicitly).
Then, supermodularity – analogously to quasisupermodularity in Theorem 4 in Appendix B
– ensures that complementarity relationships are stable on the set of potential equilibrium

10Indeed, the condition that a proportional change in labor supply does not change the equilibrium technology
can be replaced by the marginally weaker condition that a proportional change does not induce a biased change
in the equilibrium technology.

11Instability of complementarity relationships is actually only a problem if it concerns technologies that may be
chosen in equilibrium, that is, technologies in the image of θ?. This observation leads to a slightly more general
version of Theorem 1, which I present in Appendix B.

12Local changes in technology are represented by direction vectors in the technology space. Along these direction
vectors the type 1 bias of technology either increases or decreases, so each direction vector (and thus each local
change) can be unambiguously classified as complementary to type 1 biased technical change or not.

13One may want to adopt a slightly wider definition of local weak relative bias, which drops the requirement that
θ? is a function of relative supply only and replaces the derivative of θ? with respect to relative supply with
the directional derivative of θ? in any direction v that increases relative supply. With this definition, we could
replace the condition on θ? in Corollary 1 with the marginally weaker condition that a proportional change
in labor supply does not induce biased technical change, that is w1/w2(L̄, θ?(L)) is homogeneous of degree
zero in L (holding L̄ fixed). It is easy to check that this condition would then not only be sufficient but also
necessary for local weak relative bias according to the wider definition.

14Supermodularity means that F(L, θ̄) + F(L, θ
¯
) ≥ F(L, θ) + F(L, θ′) for any two technologies θ and θ′, where θ̄

and θ
¯

are their supremum and infimum. Moreover, F has increasing differences in (Li, θ) if F(L′i , L−i, θ) −
F(Li, L−i, θ) increases in θ for any Li ≤ L′i .
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technologies.15 One difference between the conditions for weak relative and absolute bias is
that those for relative bias are purely ordinal – that is, invariant to monotone transformations
of aggregate production – while those for absolute bias in Acemoglu (2007) are not. The
reason is clearly that absolute wages respond to such transformations but relative wages do
not.
To close the subsection, I consider two examples in each of which one of the two conditions
for weak relative bias is violated.

Example 1 (Capital-Skill Complementarity). Consider a model with skilled labor L1, unskilled
labor L2, and capital K, and let capital take the role of technology for the moment. Capital
is produced at a constant cost of κ units of output, such that aggregate production becomes
F(L1, L2, K) = G(L1, L2, K) − κK, where we make the standard assumption that G is linear
homogeneous and concave. We assume in addition that capital is complementary to relative
skill supply, such that the skill premium w1/w2 increases in capital (so, K �s K′ if and only if
K ≤ K′). Now, linear homogeneity and concavity of G imply that a proportional increase in
L1 and L2 must increase the marginal product of capital and hence K?, the capital level that
maximizes aggregate production. It follows that the equilibrium technology K? is not a well
defined function of relative labor supply, so the conditions for weak relative bias are violated.
Indeed, the capital adjustment induced by a proportional change in labor supply increases the
skill premium, which directly contradicts weak relative bias.
Nevertheless, a small change in the setup allows to give an impression of how widely appli-
cable the above results are. Suppose there is another (technology) variable θ and aggregate
production becomes F(L1, L2, K, θ) = G(L1, L2, K, θ)− κK. Suppose also that we maintain the
assumption that G, and thereby F, is linear homogeneous in (L1, L2, K) (for concreteness, think
of θ as indexing different production functions, each linear homogeneous in labor and capital,
that differ in the extent to which capital is skill biased). Now, we can write down a reduced
form production function F̃(L1, L2, θ) := F(L1, L2, K?(L1, L2, θ), θ), which clearly is linear ho-
mogeneous in (L1, L2). Although we have no idea about the specific form of the reduced form
production function – and even with a specific function G to start with, for example a nested
CES function, we would often not be able to derive an explicit solution for the reduced form
– all results from above are applicable, so we know that there is always local weak relative
bias and there is (global) weak relative bias whenever complementarity relationships between
technology and relative labor supply are stable.

Example 2 (Choice of σ). Second, consider a model in which skilled labor L1 and unskilled
labor L2 are combined via a CES production function, and let the elasticity of substitution σ

take the role of technology. The elasticity of substitution is chosen from R+, with greater val-
ues, that is, greater flexibility in production, coming at a higher cost as given by the increasing
cost function C(σ). Aggregate production can then be written as

F(L1, L2, σ) = (1− C(σ))
(

αL
σ−1

σ
1 + (1− α)L

σ−1
σ

2

) σ
σ−1

.

15More directly, supermodularity and increasing differences ensure that the equilibrium technologies chosen at
different levels of labor supply can be compared with each other under the technology order, which then gives
stability of complementarity relationships, analogous to Condition 2, on the set of equilibrium technologies.)
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Clearly, F is linear homogeneous in labor, so we know immediately that there is local weak
relative bias everywhere.
Globally however, weak relative bias fails because the complementarity relationship between
the elasticity of substitution and relative labor supply is not stable. Concretely, the skill pre-
mium w1/w2 is given by α/(1− α)(L2/L1)

(1/σ) such that σ is skill biased (or complementary
to relative skill supply) if and only if L1 is greater than L2. It follows that no pair of different
elasticities of substitution can be compared under the order �s.
Indeed, we can easily construct a change in relative labor supply for which weak relative bias
fails. Suppose the relative skill supply is initially far below one and changes to a value close
to but above one. The value of flexibility is high in the initial situation, because there are far
more unskilled than skilled workers, but low after the change when both types are in similar
supply. The change thus induces a fall in the elasticity of substitution, which, at the new labor
supply, reduces the skill premium because the relative skill supply is greater than one after
the change. So, an increase in relative skill supply induces technical change that, at the new
relative supply level, is biased against skilled labor, a contradiction to weak relative bias.

2.3. Strong Relative Equilibrium Bias of Technology

The main result on strong relative bias provides a tight link (in terms of necessary and suf-
ficient conditions) between strong relative bias and a certain form of non-convexity in the
aggregate production possibilities set. While the condition for strong relative bias may not
always be easy to check and thus may not seem a great advance over testing strong relative
bias by direct computation in applications, the condition provides interesting insights about
the type of model strong relative bias can arise in.

Theorem 2. Suppose w1/w2(L, θ?(L)) can be written as a function of L1/L2 only. Then, there is
strong relative equilibrium bias of technology at labor supply L̄ if and only if the endogenous technology
production function F(L, θ?(L)) is quasiconvex with minimum at L̄ on the line tangent to the isoquant
at L̄.

The main insight from Theorem 2 is that strong relative bias is not possible when the equilib-
rium technology is the result of a joint maximization of production over labor and technology.
More concretely, it is not possible whenever (i) there are identical firms with production func-
tions F, which (ii) choose their technologies independently from each other. In particular, the
simplest model of technology choice in Appendix A cannot feature strong relative bias, but
as soon as allowing for spillovers in technology choices across firms strong relative bias be-
comes possible (see Appendix A for details). All other models presented in Appendix A allow
for this possibility as well. The dependence on non-convexities in the aggregate production
possibilities set is not easily anticipated from the existing Result 1, which links strong relative
bias to a sufficiently large elasticity of substitution in models with purely factor-augmenting
technologies.Since both results provide necessary and sufficient conditions, Theorem 2 implies
that an aggregate production function with factor-augmenting technologies becomes (locally)
non-concave exactly when the elasticity of substitution crosses the threshold given in Result 1.
Interestingly, if the substitution elasticity is constantly above this threshold, firms that maxi-
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mize jointly over labor and technology inputs (and have production functions identical to the
aggregate) choose corner solutions, relying only on one type of labor.
As the main result for weak relative bias has its local version, also Theorem 2 has a coun-
terpart for local strong relative bias, which expresses the non-convexity condition in terms of
derivatives.

Corollary 2. Suppose w1/w2(L, θ?(L)) can be written as a function of L1/L2 only, Θ is a subset
of RN , F is C2, and θ? is differentiable. Then, there is strong relative equilibrium bias of technology
at labor input L̄ locally if and only if the second derivative of the endogenous technology production
function F(L, θ?(L)) restricted to the line tangent to the isoquant at L̄ is non-negative.

Instead of parametrizing the endogenous technology production function along the tangent
line to the isoquant and considering its second derivative, the condition for local strong rel-
ative bias can also be expressed directly in terms of the Hesse matrix of the (unrestricted,
exogenous technology) production function. Remark 2 in Appendix B shows that, for local
strong relative bias, the Hesse matrix must fail to be negative semi definite in direction of the
isoquant.
As in the case of weak relative bias, the results have a close relation to the results on strong
absolute bias from Acemoglu (2007). Acemoglu’s central theorem, Theorem 4, says that there
is local strong absolute bias if and only if the Hesse matrix fails to be negative semi definite,
which is slightly weaker than the condition of Remark 2 because it does not require concavity
of aggregate production to fail along the isoquant but in an arbitrary direction. One impli-
cation is that a production function with, after endogenous technology adjustment, locally
increasing returns to scale in labor provides for (local) strong absolute bias (since concavity
fails along rays through the origin) but not necessarily for (local) strong relative bias (since
concavity may not fail along the isoquant). More specifically and related to the difference
between weak absolute and relative bias, strong absolute bias responds to monotone transfor-
mations of aggregate production, whereas strong relative bias does not.

2.4. Extension to Multiple Inputs

Consider now a setting with multiple labor types, that is, assume L is an M-dimensional vector
or a measure on a sigma algebra over the interval [0, 1]. The central result of the section will
give sufficient conditions under which a uniform increase in relative supply over the entire
type space induces technical change that leads to a uniform increase in relative wages.16

We start again by ordering technologies according to their bias towards higher labor types.
More concretely, we construct the order �m such that a technology is greater than another if
and only if it uniformly increases relative wages compared to the other technology.

Definition 6. For any two technologies θ, θ′ ∈ Θ, θ �m θ′ if and only if wi/wj(L, θ) ≤
wi/wj(L, θ′) for all i, j with j ≤ i and for all labor inputs L.

16By a uniform increase in relative labor supply (over the entire type space), I mean a change in labor supply such
that the ratios Li/Lj increase for every i > j. Similarly, a uniform increase in relative wages (over the entire
type space) means a change in the wage distribution such that wi/wj increases for every i > j. Note that the
ordering of types is arbitrary throughout the entire section, so all results hold for any given order on the type
space.

11



The main problem in transferring the results from the two type setting is that the measure
of wage inequality by which we assess the effect of technical change is no longer a one-
dimensional object. Therefore, even if all complementarity relationships are stable – in the
sense that the direction in which a given change in technology affects a given relative wage
is the same at all points in the labor supply space – the order �m is not necessarily total on
the technology space. There may exist, for example, technical changes that increase relative
wages at the lower end of the type space, but decrease them at the upper end.
A radical solution to this problem would be to restrict the technology space such that it is
totally ordered under �m, that is, to assume directly that �m is a total order. A less restric-
tive way, which I pursue in the following, is to impose conditions on aggregate production F
to guarantee that uniform increases in relative supply always lead to changes in technology
that can be classified under the order �m.17 For that, we must impose some structure on
the complementarity relationships between different technologies, rather than only between
technologies and labor supply. We will do so by assuming that aggregate production is qua-
sisupermodular in technology.18

To see what this means, consider two technologies θ and θ′ that cannot be ordered under
�m. For concreteness, think of a three type setting, where θ implies a greater relative wage
between the high and the middle type, but the relative wage between the middle and the low
type is greater under θ′. Now, let θ

¯
be the infimum of θ and θ′, and θ̄ the supremum, that

is, under θ
¯

both relative wages (between the high and the middle and between the middle
and the low type) are smaller than under both θ and θ′, while they are greater under θ̄.
Quasisupermodularity now says that, whenever moving from θ

¯
to θ, that is, increasing the

relative wage between the high and the middle type at a low relative wage between middle
and low type, increases aggregate production, then it must also increase aggregate production
to move from θ′ to θ̄, that is, to increase the relative wage between the high and the middle
type at a high relative wage between middle and low type. Intuitively, increases in relative
wages in different regions of the type space are (weakly) complementary to each other. In
short and generally, quasisupermodularity means that, whenever F(L, θ) ≥ F(L, θ

¯
), then it

must also hold that F(L, θ̄) ≥ F(L, θ′), for any θ, θ′ and any L.19

With this complementarity structure, the technical change induced by a uniform increase in
relative supply will always affect relative wages uniformly, so we can restrict attention to
such forms of technical change. Then, the logic of complementarity between technical change
and relative supply changes from the two type setting easily carries over, and we have the

17More formally, if we endow the labor supply space with an order analogous to the technology order, such that
one labor supply is ordered above another if and only if it features uniformly greater relative supply over the
entire type space, then the imposed conditions will guarantee that the image of any chain in the labor supply
space under the equilibrium technology θ? is a chain in the technology space.

18To define quasisupermodularity in technology, the technology space (Θ,�m) must be a lattice, that is, any
two technologies must have a supremum and an infimum in the technology space. This, however, is hardly
restrictive, as it does not say anything about the profitability of the supremum and infimum technologies. In
principle, we can extend any given technology space to include suprema and infima of all technology pairs in
the space without essential loss of generality, by making all added technologies prohibitively unprofitable.

19While, as noted before, the ordering of the type space may not coincide with the types’ order in the wage distri-
bution, it may be helpful to think about this special case. Then, quasisupermodularity means intuitively that
technical change that increases inequality at the lower end of the wage distribution is weakly complementary
to technical change that increases inequality at the upper end.
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following theorem.

Theorem 3. Let F be homogeneous in L and quasisupermodular in θ, and let (Θ,�m) be a lattice.
Then,

wi

wj

(
L′, θ?(L)

)
≤ wi

wj

(
L′, θ?(L′)

)
for all i, j with j ≤ i, and for all L, L′ with Lh/Lk ≤ L′h/L′k for all k ≤ h.

There are two additional points to note about Theorem 3. First, the theorem is a strict gener-
alization of Theorem 1. Second, unlike in the two type case, the local version that could be
obtained for the multiple type case does not allow to drop the quasisupermodularity require-
ment. The reason is that the wage distribution is multidimensional here, which implies that
even locally not all directions in the labor supply space can be classified as either uniformly
increasing or decreasing relative wages. Formally, this means that the (partial) order �m can,
unlike the order �s in the two type case, not be turned into a total order locally.

3. Application to Assignment Models

3.1. Closed Economy

To apply the developed results, we have to check whether aggregate production in the model
of interest is homogeneous in labor (or, more generally, satisfies the homotheticity Condition
1) and whether the endogenous technology of interest maximizes aggregate production in
equilibrium. Here, I apply the results to assignment models with machines that can directly
replace labor in certain tasks to derive new insights about the factors behind the adoption of
automation technology. For that, I incorporate machines as an additional production factor in
the assignment model by Costinot and Vogel (2010) and endogenize the machine productivity
schedule across tasks.20

In particular, the model features a continuum of identical firms that combine tasks to produce
a single final good according to

Y =

(∫ s̄

s
¯

(B(s)Y(s))ρ ds
) 1

ρ

, (1)

where Y(s) denotes the input of task s ∈ S = [s
¯
, s̄]. The final good can either be consumed or

transformed into machines at a conversion rate of r (so one unit final good yields 1/r units
machines).
Firms choose whether to employ machines or labor out of a continuum of labor types to
perform each of the tasks. In a given task s, the productivity of labor type i ∈ [0, 1] is

20This extends the assignment model with labor-replacing machines from Acemoglu and Autor (2011) to feature a
continuum of different labor types and a CES instead of a Cobb-Douglas final good aggregator. Acemoglu and
Autor (2011) only analyze the effects of endogenous technology on absolute wages, as they only have general
results for absolute bias from Acemoglu (2007). My theory of relative bias now allows to derive corresponding
results for relative wages. The model is also similar to the automation model of Acemoglu and Restrepo
(2016) but does not impose strong restrictions on the shape of the comparative advantage schedules. Moreover,
Acemoglu and Restrepo (2016) do not analyze the effect of changes in relative labor supply on the bias of
technical change, but the long-run evolution of technology in a dynamic framework.
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given by the (exogenous) labor productivity schedule A(s, i) > 0.21 The machine productivity
schedule, denoted by Ac(s) ≥ 0, is chosen by firms from the set A. I assume that, first, labor
productivity A(s, i) strictly increases in i, so higher labor types have absolute advantage in all
tasks and will therefore earn higher wages in equilibrium. Second, higher labor types have
comparative advantage over lower types at higher tasks, while, for all machine productivity
schedules Ac ∈ A, all labor types have comparative advantage over machines in higher tasks:

Ac(s′)
Ac(s)

≤ A(s′, i)
A(s, i)

≤ A(s′, i′)
A(s, i′)

for all s ≤ s′ and i ≤ i′.

The assumption mirrors the results of recent work on the future automation potential of differ-
ent job tasks. Frey and Osborne (2017), for example, claim that the likelihood of an occupation
being automated within the next decades monotonically declines along the occupational wage
distribution, with high-paying occupations having the lowest automation probability. Analo-
gously, the assumed comparative advantage schedule implies that machines perform a range
of tasks with the lowest indexes, followed by labor types in increasing order; that is, machines
and low labor types perform tasks that are direct neighbors in the task space, such that any
increase in the range of tasks performed by machines – which I will refer to as automation –
displaces low types from their previous tasks.
More formally, we can describe the assignment of production factors to tasks by a threshold
task s̃ (the automation threshold henceforth) and an assignment function M(i), such that all
tasks below s̃ are performed by machines, and M(i) returns for each labor type the assigned
task. Since higher types perform higher tasks, the assignment function is strictly increasing.
Assuming perfectly competitive markets, taking the final good as numéraire, and denoting
the marginal product of task s by p(s), wages are then given by wi = p(M(i))A(M(i), i).
Finally, an equilibrium of the model is given by an automation threshold s̃, an assignment
M, a machine stock K, a machine productivity schedule Ac, and wages wi, such that firms
maximize profits and demand exactly the exogenous labor supply L, taking wages as given.
I will focus on symmetric equilibria in which all firms employ the same amount of labor L.
Besides their labor demand, firms choose the machine productivity schedule Ac, the automa-
tion threshold s̃ (that is, what tasks to have performed by machines), the machine quantity K,
and the assignment M of labor to tasks that are not automated. Of these choices, those of ma-
chine productivity and the automation threshold are directly related to the development and
installment of machines intended to perform tasks previously performed by labor, that is, to
automation. I will therefore treat these two objects as the endogenous technology of interest,
and analyze the effects of their endogenous adjustment on relative wages in the following; in
the notation of the previous section, I set (Ac, s̃) to θ.22

The first step towards application of Theorem 3, the appropriate theorem for models with a
continuum of labor types, is to derive aggregate production in the form F(L, θ). Accounting
for the four choices firms make and assuming symmetric labor inputs across firms, aggregate

21The labor productivity schedule is best interpreted as representing the human capital distribution over labor
types, which I take here as given to focus on the effects of endogenous technical change.

22If instead we focused on only one of the two objects, the main results of the section would go through, but in
the case of Ac, their derivation would become more complicated.
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production can here be written as

F̃(L, Ac, s̃, K, M)

:=

(∫ s̃

s
¯

(B(s)Ac(s)K(s))
ρ ds +

∫ s̄

s̃

(
B(s)A(s, M−1(s))LM−1(s)

dM−1(s)
ds

)ρ

ds

) 1
ρ

− rK,

where A(s, M−1(s))LM−1(s)dM−1(s)/ds are the effective units of labor assigned to task s under
the assignment rule M.23 Taking wages as given, firms’ choices of (Ac, s̃, K, M) will maximize
output, such that we can write aggregate production in reduced form as

F(L, Ac, s̃) := max
K,M

F̃(L, Ac, s̃, K, M).

Maintaining Ac and s̃, the endogenous technologies of interest, as arguments sets the notation
for comparative statics with respect to their response on changes in labor supply, analogous
to the comparative statics with respect to θ in the previous section.
In equilibrium firms choose Ac and s̃ to maximize output, and it is also easily verified that
F(L, Ac, s̃) is linear homogeneous in labor: scaling L and K by the same factor in F̃ leaves
marginal products of all tasks unchanged, such that the optimal assignment M is unchanged,
and the scaling of K is indeed optimal.

Observation 1. Aggregate production F(L, Ac, s̃) is linear homogeneous in labor. In equilibrium, it is
given by F(L, A?

c (L), s̃?(L)) with A?
c (L) and s̃?(L) maximizing aggregate production, (A?

c (L), s̃?(L)) =
argmaxAc,s̃ F(L, Ac, s̃).

To apply Theorem 3 it thus remains to show that F is quasisupermodular in the endogenous
technology (Ac, s̃) under the order �m, which orders technologies according to their uniform
bias towards higher labor types.
For that, first write wages in reduced form as wi(L, Ac, s̃) (assuming that labor assignment
and machine stock are always chosen optimally and can thus be suppressed, as in F(L, Ac, s̃)
above), and note that they must satisfy wi(L, Ac, s̃) = p(M(i))A(M(i), i) ≥ p(s)A(s, i) for
all s when the labor assignment M is chosen to maximize output at (L, Ac, s̃). An envelope
argument then implies that (see Lemma 2 in Costinot and Vogel, 2010)

d log wi

di
=

∂ log A(M(i), i)
∂i

, (2)

such that relative wages are fully determined by the labor assignment function. To order
technologies according to their uniform bias, now consider two technologies (Ac, s̃), (A′c, s̃′)
with s̃ ≤ s̃′. While machine productivity Ac does not affect the labor assignment directly, an
increase in the automation threshold from s̃ to s̃′ shifts all labor types towards higher tasks
– because low types are displaced from their tasks and induced to switch to the next higher
tasks, inducing the next higher types to move upwards as well, and so on – such that the
assignment function M increases everywhere (see Lemma 5 in Costinot and Vogel, 2010 for

23Effective units of labor supplied by type i are A(M(i), i)Li. The expression for the effective units at task s follows
directly from a change of variables.
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the formal argument). According to equation (2), this implies that the change from (Ac, s̃)
to (A′c, s̃′) uniformly increases relative wages over the entire type space; intuitively, all labor
types are assigned to higher tasks, where higher types have comparative advantage and thus
earn higher relative wages.24 It follows that we can order technologies totally by comparing
automation thresholds only.

Observation 2. Technology (A′c, s̃′) uniformly increases relative wages compared to technology (Ac, s̃),
(A′c, s̃′) �m (Ac, s̃), if and only if s̃′ ≥ s̃.

Observation 2 allows to reduce changes in the (high dimensional) endogenous technology to
the change in the automation threshold as the single relevant dimension; the resulting order
�m is thus total and aggregate production trivially quasisupermodular in technology under
�m. So, Theorem 3 applies, and we obtain the following result.

Proposition 1. For any uniform increase in relative labor supply, the joint adjustment of machine
productivity and the automation threshold uniformly increases relative wages over the type space.
Formally:

wi

wj

(
L′, A?

c (L), s̃?(L)
)
≤ wi

wj

(
L′, A?

c (L′), s̃?(L′)
)

for all i, j with j ≤ i, and for all L, L′ with Lh/Lk ≤ L′h/L′k for all k ≤ h.

Moreover, we know from Observation 2 that the increase in relative wages comes indeed from
automation, that is, from an increase in the range of tasks performed by machines. Proposition
1 hence implies that any uniform increase in relative labor supply induces automation, which
in turn increases relative wages.
A complementary result, which is easily obtained in the developed setting, characterizes the
effect of automation on the average wage across labor types. For this result, it does not matter
whether automation is induced by a change in labor supply or in any other parameter of
the model, so we write aggregate production as a function of some arbitrary parameter q,
machine productivity Ac, and the automation threshold s̃, that is, F(q, Ac). The parameter q
can be thought of, for example, as the set of available machine productivity schedules, some
parameter of the final good aggregator function, or, of course, labor supply.
Observe now that aggregate production is, by Euler’s theorem, equal to aggregate labor in-
come and hence proportional to the average wage w̄:25

F(q, Ac) =
∫ 1

0
wi(q, Ac)Li di =: w̄

∫ 1

0
Li di.

Since the equilibrium technology maximizes aggregate production, it must then also maximize
the average wage. This implies immediately that any joint adjustment of machine productivity
and the automation threshold, induced by a change in the arbitrary parameter q, must have a
positive effect on the average wage.

24Formally, the partial derivative of the log productivity schedule for labor with respect to i, ∂ log A(s, i)/∂i,
increases in s, so by equation (2), all relative wages increase when the assignment function goes up everywhere.

25This relies on the fact that aggregate production is defined here net of machine production, that is, F(q, Ac, s̃) =
Y(q, Ac, s̃)− rK(q, Ac, s̃) where Y is gross production (consumption plus machines).
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Proposition 2. Consider a change in some parameter q – for example a change in labor supply L or
in the set of feasible machine productivity schedules A – that causes automation, that is, an increase in
the equilibrium automation threshold s̃?(q). Then, the increase in automation has a positive effect on
the average wage.
Formally:

w̄(q′, A?
c (q), s̃?(q)) ≤ w̄(q′, A?

c (q
′), s̃?(q′))

for all q, q′ such that s̃?(q) ≤ s̃?(q′).

Proposition 2 gives a general version of the productivity effect of automation discovered in
Acemoglu and Restrepo (2016), and provides a simple intuition for it: when technology max-
imizes aggregate production taking into account the endogenous adjustment of the machine
stock, it essentially maximizes aggregate labor income and hence, at fixed labor supply, the
average wage. Every endogenous automation step must therefore, after adjustment of the
machine stock, have a positive effect on the average wage.26

To summarize, Proposition 1 shows that the logic of the factor-augmenting models analyzed in
previous work – an increase in the relative supply of some labor type induces technical change
biased towards this type – extends to models with automation technologies. This insight is
important in light of the fact that one of the most prominent applications of factor-augmenting
models with endogenous technologies has been to propose a supply-driven explanation for
the joint upwards trend in the relative supply of skilled labor and the skill premium in several
advanced economies over the last decades. While factor-augmenting models offer an interest-
ing explanation for this observation, they are inconsistent with the simultaneously observed
stagnation, or even decline, of low skilled workers’ real wages (see, for example, Acemoglu
and Autor, 2011). Since automation models are capable of producing wage reductions for
some workers – although, due to the productivity effect, not for the average worker – Propo-
sition 1 shows that it is possible to align the supply-driven explanation for the evolution of
the skill premium with stagnating or declining real wages for some worker groups.27

3.2. International Trade

Consider now two countries, West and East, that each produce a single final good as in the
assignment model discussed above. Following Costinot and Vogel (2010), the countries trade
in tasks, such that task prices p(s), measured in units of the final good of the West (the
numéraire), must be equal in both countries. The comparative advantage schedule for labor is
the same in both countries up to a scaling factor γE, so the productivity of labor type i in task

26This result crucially depends on the endogenous adjustment of the machine stock K. With fixed K, automation
may reduce the average wage, as shown in a special case of the above model by Acemoglu and Restrepo (2016).

27In the automation model discussed above, it is easy to construct extreme cases of comparative advantage sched-
ules for labor under which increases in automation reduce wages for the lowest worker types even after
adjustment of the machine stock. Take for example a case where the productivity of the lowest labor types
declines over the task space at an extremely high rate, while productivity for the majority of types is constant
or increasing. Then, at a fixed machine stock, automation induces extreme declines in the lowest types’ wages
whereas reductions for other types are modest or even positive. At some point of “extremism” of the example,
it should be clear that the adjustment of the machine stock cannot be strong enough to prevent the lowest
types’ wages from falling, as it would then have to increase wages for the majority of types enormously, which
would require extreme productivity gains from automation.
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s is A(s, i) in the West and γE A(s, i) in the East. Labor supply in West and East is denoted by
LW and LE, and the price of the East’s final good in units of the West’s is PE.
Assume now that in each country there are final good firms that transform tasks into final
goods and task producers transforming labor and machines into tasks. Task producers in
country j = W, E choose machine productivity Aj

c, the machine stock K j, the assignment of
labor to tasks Mj – all defined as in the closed economy model above – and the automation
threshold s̃j, now defined as the highest task performed by machines in country j. We can
therefore write aggregate production again as a function of labor supply and task producers’
choice variables,

F̃(LW , LE, AW
c , AE

c , s̃W , s̃E, KW , KE, MW , ME) := YW − rKW + pEYE − pErKE,

where Y j is country j’s final output gross of machines as in equation (1) in the closed econ-
omy case, and where the Y j and pE depend on the arguments of F̃, which I suppressed for
notational convenience. Also note that I already presumed that task producers divide their
output between countries to maximize profits, and hence did not include an argument repre-
senting trade flows. Since task prices equal marginal products of tasks in both countries, task
producer’s choices will maximize aggregate production. Thus, focusing on the endogenous
adjustment of the automation variables Aj

c and s̃j, we obtain aggregate production in reduced
form as

F(LW , LE, AW
c , AE

c , s̃W , s̃E) := max
KW ,KE,MW ,ME

F̃(LW , LE, AW
c , AE

c , s̃W , s̃E, KW , KE, MW , ME).

The central observation is now that the assignment of labor to tasks must be the same in both
countries for every given (Lj, Aj

c, s̃j)j=W,E: if the marginal product of labor type i is highest in
task s in the West (and hence i is assigned to s in the West), this must also hold in the East,
because task prices are equal across countries and the difference in labor productivity γE is the
same for all types. It follows directly that wages for each labor type satisfy wW

i = γEwE
i , that

is, the cross-country wage ratios are always equal to γE for each type. So first, relative wages
(across types) are equal in both countries, and all changes in the endogenous technologies
necessarily affect relative wages in East and West in the same way. Second, reduced form
aggregate production F can be written as a function of an appropriately defined world labor
supply instead of both countries’ individual supplies.28

Observation 3. Aggregate production can be written as a function of world labor supply L and the
endogenous technologies,

F(L, AW
c , AE

c , s̃W , s̃E),

with world labor supply given by L := LW + γELE.
In equilibrium, it is given by F(L, AW?

c (L), AE?
c (L), s̃W?(L), s̃E?(L)) with Aj?

c (L) and s̃j?(L), j =

28An alternative route to Observation 3 is to note that the free trade equilibrium in the present model replicates
the integrated equilibrium. That is, the model is isomorphic to a closed economy model with total labor supply
given by LW + γELE. See Costinot and Vogel (2010) for details.
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W, E, maximizing aggregate production,

(AW?
c (L), AE?

c (L), s̃W?(L), s̃E?(L)) = argmax
AW

c ,AE
c ,s̃W ,s̃E

F(L, AW
c , AE

c , s̃W , s̃E).

Finally, equal assignment of labor to tasks in both countries implies that the lowest task per-
formed by labor is given by the greater one of the two automation thresholds, that is, by
max{s̃W , s̃E}.29 With the same argument as in the closed economy case, we can then order
technologies by simply comparing their greatest automation thresholds.

Observation 4. Technology (AW′
c , AE′

c , s̃W′, s̃E′) uniformly increases relative wages compared to tech-
nology (AW

c , AE
c , s̃W , s̃E),

(AW′
c , AE′

c , s̃W′, s̃E′) �m (AW
c , AE

c , s̃W , s̃E),

if and only if s̃max′ ≥ s̃max, where s̃max := max{s̃W , s̃E} and s̃max′ is defined analogously.

Clearly, the resulting order is again total, such that aggregate production is necessarily qua-
sisupermodular in the endogenous technologies. Theorem 3 then implies the following.

Lemma 1. For any uniform increase in relative world labor supply, the adjustment of the endogenous
technologies, (AW

c , AE
c , s̃W , s̃E), uniformly increases relative wages in both countries.

Formally:

wh
i

wh
j

(
L′, AW?

c (L), AE?
c (L), s̃W?(L), s̃E?(L)

)
≤

wh
i

wh
j

(
L′, AW?

c (L′), AE?
c (L′), s̃W?(L′), s̃E?(L′)

)
for h = W, E, for all i, j with j ≤ i, and for all L, L′ with Lh/Lk ≤ L′h/L′k for all k ≤ h.

One of the most interesting ways by which world labor supply can increase uniformly is a
strong uniform increase in relative labor supply in the East.

Proposition 3. A uniform increase in relative labor supply in the East that is sufficiently strong to
uniformly increase relative world labor supply induces automation in the West, which increases relative
wages uniformly in both countries.

Proposition 3 is potentially important in light of the recent increases in education levels in
China. It predicts that strong improvements in educational attainment in emerging economies
may favor automation in advanced economies. The channel for this effect is international
trade: when the relative supply of high-educated labor increases in the emerging country,
imports of tasks intensive in low-educated labor become more expensive for the advanced
economy, creating incentives for (accelerated) automation of those tasks. Whether the positive
effect of the induced automation on relative wages dominates the negative direct effect of the
reduced import competition for low-skill workers, depends, according to the logic of Theorem
2, on the presence of non-convexities in the aggregate production possibilities set, and hence
on the details of the process of technology choice.

29Note that, if the two thresholds do not coincide, there is full specialization in some machine tasks.
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A second interesting result is obtained by noting that, when labor from the East is not pro-
ductive at all, that is, γE = 0, the two country model boils down to the closed economy model
of the West. Thus, changing γE from 0 to some strictly positive value replicates the effects of
opening international trade on the West. Such a change in γE can simply be analyzed as a
change in world labor supply L whenever γE enters the aggregate production function F only
via L. This is in turn the case whenever the two countries have identical final good production
functions.30

Proposition 4. Suppose the final good production functions of the West and the East are identical.
Then, the opening of international trade, represented by a change in the productivity of East labor from
γE = 0 to γ′E > 0, reduces automation and thereby uniformly decreases relative wages in the West.

This result does clearly not depend on the exact starting value of zero, and thus applies to
every increase of γE. Costinot and Vogel (2010) view a surge in γE as a representation of an
improvement in offshoring opportunities for Western firms, since offshoring allows them to
employ foreign labor in their technologically superior production (suppose for this argument
that γE < 1). With this interpretation, the logic of Proposition 4 applies to offshoring as well.
Proposition 4 recasts the result from Acemoglu (2003) that the opening of trade leads to low-
skill biased technical change in the skill abundant country in a framework with a continuum
of labor types and automation technology.31 It suggests that international trade (with skill
scarce countries) and offshoring (to skill scarce countries) are substitutes for automation of
low-skill intensive tasks.32

4. Further Applications

Although the central results of the paper are derived in a static model, they can be applied,
under some conditions, to steady-sates of dynamic models with endogenous technology. In-
deed, one can generalize the dynamic directed technical change models from the seminal
contributions of Acemoglu (1998) and Kiley (1999) to feature an arbitrary number of labor
types and technologies that are not purely factor-augmenting. In such a model, the main
results of the present paper, Theorems 1 to 3 and their corollaries, apply in steady-state.
In more detail, the generalized dynamic model features an aggregate production function
F(L, θ) that is linear homogeneous in the real-valued technology variables (θ1, θ2, ..., θN) = θ.
Each θi is a CES aggregate of a variety of intermediate goods that embody technologies. As in
the endogenous growth literature, investment in research and development can be targeted to

30See Costinot and Vogel (2010). They characterize the free trade equilibrium – in a version of the present model
with exogenous technology – by two differential equations where γE (γF in their notation) enters only via
world labor supply when final good production functions are identical.

31Acemoglu (2003) studies a dynamic model with factor-augmenting technologies and two labor types. He distin-
guishes between two cases, full and no enforcement of intellectual property rights in the skill scarce country. In
the case of full enforcement, the effects of trade opening on the skill bias of the factor-augmenting technology
are similar to those in Proposition 4.

32This insight may help to understand the apparent lack of correlation between offshoring and import competition
from China on the one hand and the use of industrial robots on the other hand, documented in Acemoglu and
Restrepo (2017) across commuting zones in the US.
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each of the technologies 1 to N and leads to the innovation of new, more productive versions
of existing intermediate goods.33

Being granted a patent on the production of the intermediate good embodying the innovation,
an innovator receives monopoly profits from the supply of the good at each point in time. The
relative sizes of these profits across technologies 1 to N are determined by the relative marginal
returns to the θi. In consequence, the model admits a steady-state in which all technology
variables (and aggregate production) grow at the same rate. Since aggregate production is
linear homogeneous in technology, relative wages are then fully determined by the ratios
between technology variables, and hence constant in steady-state.
Crucially, the relative steady-state technology terms θi/θj can be represented as solutions to
the static optimization problem argmaxθ∈Θ F(L, θ), where Θ is of the form {θ|g(θ) ≤ R}, with
g being strictly increasing in all variables and its exact form given by assumptions about in-
novation costs and spillovers between technologies.34 It is then easy to see that Theorems 1
to 3 apply to this static auxiliary problem, such that all results on relative supply, technical
change, and relative wages carry over to the dynamic model’s steady-state. Instead of pro-
viding formal details on these considerations here, I briefly discuss another, more substantial
application in the following.35

Since technical change is widely considered an important factor behind medium- and long-
run changes in wage inequality, it is natural to ask about the interaction between endogenous
technical change and redistributive policies. In a companion paper, I explore the implications
of endogenous technical change for the design of labor income taxes, drawing on the theory
developed in Section 2. More concretely, I study the design of non-linear income tax schedules
in the multiple type model of Section 2.4 with endogenous labor supply decisions. The re-
sulting model is a standard Mirrleesian economy with the exception of the production sector,
which incorporates endogenous technology choices by firms.
Since labor supply decisions are endogenous, the application of Theorem 3 is not straight-
forward in such a model. I solve this problem by invoking a suitably adapted version of the
principle of taxation, by which every incentive compatible allocation can be implemented via
a non-linear income tax schedule. This allows me to work on the set of incentive compatible
allocations and back out the tax schedule that implements a given allocation afterwards.
In more detail, I study two different questions. First, I ask how the welfare implications of a
given tax reform are affected by taking into account the endogenous adjustment of technol-
ogy.36 Second, I study optimal tax design with endogenous technology. For the first question,
I start by analyzing the effects of a change from one incentive compatible allocation to another,
and then back out the tax reform that implements this allocation change. For the second ques-
tion, I characterize the welfare maximizing incentive compatible allocation to derive properties
of the tax schedule that implements this allocation. In both cases, the approaches allow for a
33This follows the creative destruction version of endogenous growth models developed by Aghion and Howitt

(1992). A specification following the increasing varieties version from Romer (1990) would also be possible.
34Under the assumption that the probability of an innovation only depends on the amount of research investment

targeted to this innovation, g is linear.
35Formal details are available upon request.
36More precisely, I compare the welfare implications of a given tax reform as computed by a tax designer who

believes that technology is exogenous with those computed by designer who believes in an endogenous tech-
nology adjustment.
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direct application of Theorem 3 in the first step of the analysis, because, by choosing alloca-
tions and therewith labor supply, comparative statics results for the case of exogenous labor
supply become applicable.
Regarding the first question, I find that, under some conditions, any progressive tax reform
induces technical change that reduces wage inequality before taxes, and the designer who
takes into account the adjustment of technology always perceives the maximum welfare gain
across all progressive tax reforms to be greater than the designer who believes technology to
be exogenous. This anticipates the results of the second part, which indicate that the optimal
tax schedule becomes more progressive – that is, features higher marginal tax rates at the top
and lower rates at the bottom – when taking into account the endogeneity of technology.
For the purpose of the present paper, the application to non-linear income taxation demon-
strates that, although more involved, the developed theory can be applied with gain even to
settings with endogenous labor supply.

5. Conclusion

The paper admits four conclusions. First, weak relative bias – a positive relationship between
the relative bias of technology and relative labor supply – is fairly robust with respect to
properties of the aggregate production function. In a static general equilibrium model with
exogenous labor supply, its local version only requires a form of homotheticity in labor. The
global version needs in addition that complementarity relationships between technical change
and relative labor supply are stable.
Second, strong relative bias – a positive relationship between the endogenous technology rela-
tive wage and relative labor supply – arises in models with (a certain form of) non-convexities
in the aggregate production possibilities set, and only in these.
Third, there is a simple intuition for the effect of endogenous technical change on relative
wages, based on complementarity relationships: an increase in relative labor supply induces
technical change that is complementary to relative supply, and this in turn, by symmetry of
complementarity relationships, is relatively biased towards the labor type that becomes more
abundant. This simple logic applies whenever a proportional increase in labor supply does
not induce biased technical change.
Fourth, the results of this paper should simplify exploring the implications of endogenous
(biased) technical change in a variety of different models related to wage inequality, which
may lead to interesting new insights. Examples are, as discussed in Sections 3.1 to 4, models
with an endogenous assignment of workers to tasks both with and without international trade,
and the theory of redistributive income taxation.
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A. Models of Technology Choice

In the main text, I simply assumed with reference to Acemoglu (2007) that the equilibrium
technology is such that it maximizes aggregate production. The simplest model that gives
this result is a model in which a mass one of identical firms produces the final good using
labor under perfect competition and chooses the production technology to maximize profits
(“Economy D” in Acemoglu, 2007).
In particular, suppose each firm i produces according to F(Li, θi), θi ∈ Θ being the firm
specific technology choice. Maximizing profits while taking prices as given, each firm’s tech-
nology choice must maximize output at its profit-maximizing labor demand. Thus, in any
symmetric equilibrium for exogenous aggregate labor supply L, each firm’s technology max-
imizes F(L, θi), and hence the collective technology choice θ maximizes aggregate output
F(L, θ) =

∫ 1
0 F(L, θi)di.

Since firms maximize profits jointly over their labor inputs and technology, F must be concave
in equilibrium, which, by Theorem 2, precludes strong relative bias. A simple way to allow for
non-convexities in the aggregate production possibilities set at equilibrium points is to allow
for spillovers across firms’ technology choices. In particular, suppose that each firm produces
according to F(Li, θi, θ−i), where θ−i = {θj}j 6=i collects technology choices of all other firms
and F is homogeneous and concave in Li. Assume in addition that the spillover effects are such
that, at given prices, firms prefer a situation where all other firms choose the same technology
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as they do,37

F(Li, θi, θ−i) ≥ F(Li, θi, θ′−i) with θ−i = {θj}j 6=i, θj = θi ∀ j and for all θ′−i.

Then, with symmetric labor inputs L across all firms, the technology θ? = argmaxθ∈Θ F (L, θ, {θ})
forms an equilibrium.38,39 Moreover, writing aggregate production as F̃(L, θ) := F (L, θ, {θ}),
F̃ does not have to be concave at the equilibrium, because no firm maximizes over labor inputs
and all firms’ technologies jointly.
An alternative way to model technology choice that is closer to the endogenous growth litera-
ture is to assume that technologies are embodied in intermediate goods supplied by technol-
ogy monopolists (“Economy O” in Acemoglu, 2007).
For that, suppose aggregate production is given by

G(L, θ)α
K

∑
k=1

qk(θk)
1−α −

K

∑
k=1

κqqk,

where qk is the quantity of intermediate good k, which embodies technology θk. Each inter-
mediate good is produced by a monopolist at constant marginal cost κq from final output. The
monopolist for good k also chooses technology θk.
Deriving first final good firms’ demand for intermediates and then monopolists’ optimal
quantity decision at given technologies, one finds that the quantities qk are proportional to
G(L, θ). It follows that aggregate production is proportional to G(L, θ) as well.
In a second step, one can show that the marginal products of labor are proportional to the
partial derivatives (with respect to the corresponding labor type) of G, and hence proportional
to the marginal products of labor in aggregate production. Thus, we have an aggregate pro-
duction function in labor and technology with relative marginal products equal to relative
wages. Besides the fact that the equilibrium technology maximizes aggregate production, this
is exactly what I used to derive the results of Section 2.
Turning to the equilibrium technology, one can show that monopoly profits are also propor-
tional to G at any given technology. Hence, the technology θ? = argmaxθ∈Θ G(L, θ), with
Θ = ΠK

k=1Θk and Θk the technology choice sets of the monopolists, is an equilibrium tech-
nology (since no monopolist can increase its profits by deviating) and maximizes aggregate
output (since it maximizes G and G is proportional to aggregate output).
Acemoglu (2007) presents two further models of technology choice that lead to the results

37This captures the idea that a given firm benefits from another firm’s research and development activities the
most when the other firm develops similar technologies. Also note that the assumption only restricts the direct,
purely technological effect of spillovers, not the effects mediated via competition between firms. Concretely,
the assumption does not preclude that any given firm may wish that its competitors chose other technologies
and demand different types of labor than itself, thereby reducing its unit wage costs and allowing for greater
profits. Indeed, if the technological effect of spillovers is not very strong, any firm wishes all other firms to
choose very unproductive technologies, allowing the firm itself to produce at low labor costs for a large share
of the market.

38By {θ} I mean {θj}j 6=i with θj = θ for all j.
39To see that, fix θ−i at {θ?}, and consider the maximization problem maxLi ,θi{F(Li, θi, {θ?}) − wLi}. Suppose

there exist wages w such that (θ′, L) is a maximizer of this problem for some θ′ (L denotes as usual the
exogenous aggregate labor supply). Then, the assumption on technology spillovers implies that θ′ = θ?, which
guarantees that each individual firm maximizes profits in the proposed symmetric equilibrium.
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on aggregate production and equilibrium technology assumed in the main text. The first
is a special case of the model with intermediate goods, obtained by setting the number of
technology monopolists to 1. In the second model, technology is chosen by a socially run
research firm interested in aggregate output maximization.

B. Proofs and Additional Remarks

The following theorem is a small generalization of Theorem 1, presented in the main text.
Theorem 1 requires that complementarity relationships between technologies and relative la-
bor supply are stable over the labor supply space in the setting with two labor types. The
conditions of Theorem 4 below guarantee that complementarity relationships are stable over
the set of technologies that may actually be chosen in equilibrium, that is, over the image of
θ?. Put differently, they guarantee that the image of θ? is totally ordered.

Theorem 4. Suppose θ?(L) can be written as θ?(L1/L2), F is quasisupermodular in θ, and let (Θ,�s)

be a lattice. Then, there is weak relative equilibrium bias of technology at any labor supply L.

Proof of Theorems 1 and 4. If the order �s is total on Θ, F is quasisupermodular in θ and (Θ,�s)

is a lattice. Thus, Theorem 4 is more general than Theorem 1, and we will only proof the more
general one.
We can restrict the proof to the case where θ?(L) 6= θ?(L′). The proof is by contradiction.
Suppose θ?(L) �s θ?(L′) and let θ

¯
denote the meet and θ̄ the join of θ?(L) and θ?(L′). Then,

quasisupermodularity implies that F(L, θ?(L′)) ≤ F(L, θ̄). Since θ? is homogeneous of degree
zero, we can restrict the proof to labor inputs L and L′ with F(L, θ?(L′)) = F(L′, θ?(L′)). Then,
moving from L to L′ along the isoquant of the function F(L, θ?(L′)) increases the function
F(L, θ̄), because θ?(L′) �s θ̄ and hence w1/w2(L, θ?(L′)) ≤ w1/w2(L, θ̄) for all L. This implies
F(L′, θ?(L′)) ≤ F(L′, θ̄), a contradiction.

While Theorems 1, 4, and their proof follow the ideas of the theory of monotone comparative
statics by Milgrom and Shannon (1994), they do not make use of it directly. I elaborate on the
relationship between Milgrom and Shannon’s and my approach in the following remark.

Remark 1. The standard approach of monotone comparative statics to the result of Theorem 4
would be to start with an (unspecified) order on the technology space Θ, and assume then that
the production function F satisfies single crossing in technology and relative labor under this
order when restricted to any given (exogenous technology) isoquant.40 In contrast, I define the
order directly via the relative bias of technology, which then supersedes the single crossing
assumption (see Definition 5). In particular, whenever an order exists under which single
crossing holds, this order is the one I define; conversely, under my order, single crossing is
always satisfied. Given equivalence of the two approaches, I believe my approach to be both
simpler and more intuitive, as it directly formalizes the notion of complementarity between
technology and relative labor without referring to some unspecified order at first.

40Single crossing in (θ, L1/L2) means here that, with Fr denoting production restricted to the given isoquant,
Fr(L′1/L′2, θ) ≥ Fr(L1/L2, θ) for some L′1/L′2 ≥ L1/L2 implies that Fr(L′1/L′2, θ′) ≥ Fr(L1/L2, θ′) for any θ′ � θ.
Put differently, the difference Fr(L′1/L′2, θ)− Fr(L1/L2, θ) crosses zero at most once and, if so, from below.
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Proof of Corollary 1. The proof replicates the proof of Theorem 1 with the tools of differential
calculus. Denote the set of all direction vectors in Θ that (weakly) increase w1/w2 at (L, θ?(L))
by U1. Since θ? is homogeneous of degree zero, we can again restrict the proof to direction
vectors in the labor input space that are tangent to the isoquant at (L, θ?(L)), that is, to the
vector v = (1,−w1/w2(L, θ?(L))). Now, denote the direction of the technology adjustment
to a marginal change of labor inputs in direction v by u := (∇θ?(L) · v), and suppose that
u /∈ U1. Then:

0 >∇θ
w1

w2
(L, θ?(L)) · u

⇒ 0 >∇θw1(L, θ?(L)) · u−∇θw2(L, θ?(L)) · w1

w2
(L, θ?(L)) · u

=∇2
L1,θ F(L, θ?(L)) · u−∇2

L2,θ F(L, θ?(L)) · w1

w2
(L, θ?(L)) · u

=∇2
θ,L1

F(L, θ?(L)) · u−∇2
θ,L2

F(L, θ?(L)) · w1

w2
(L, θ?(L)) · u

=∇L (∇θ F(L, θ?(L)) · u) · v

where the last line gives the desired contradiction. Therefore, u ∈ U1, which proves the
corollary.

Proof of Theorem 2. Since w1/w2(L, θ?(L)) is homogeneous of degree zero in L, we can focus
on input changes from L̄ to L′ with L′ on the line tangent to the isoquant at L̄ (the tangent line
henceforth).
(⇒) The proof is by contradiction. Suppose there is a labor input L′ with L′1/L′2 > L̄1/L̄2 at
which the relative wage of input 1 versus input 2 is smaller than at L̄, that is: w1/w2(L′, θ?(L′)) <
w1/w2(L̄, θ?(L̄)). Then, there exists an interval around L′ on the tangent line on which the
exogenous technology function F(L, θ?(L′)) is strictly decreasing in direction of increases in L1

relative to L2. But since this exogenous technology function is a lower bound for the endoge-
nous technology function F(L, θ?(L)) and the two are equal at L′, the endogenous technology
function cannot be quasiconvex with minimum at L̄ on the tangent line.
(⇐) Take any two labor inputs L′ and L′′ on the tangent line such that the relative input
L1/L2 is greater at L′ than at L̄ and greater at L′′ than at L′. Consider the exogenous technol-
ogy functions F(L, θ?(L′′′)) for all L′′′ on the line interval between L′ and L′′. Strong relative
equilibrium bias requires that the directional derivative of these exogenous technology func-
tions along the tangent line in direction of increases in L1 relative to L2 is non-negative at the
point where they are equal to the endogenous technology function F(L, θ?(L)). Moreover, the
endogenous technology function is the upper envelope of the exogenous technology functions
on the line interval. Then, corollary 4 in Milgrom and Segal (2002) implies that the difference
between F(L′, θ?(L′)) and F(L′′, θ?(L′′)) can be written as

F(L′, θ?(L′))− F(L′′, θ?(L′′)) =
∫ 1

0
∇LF(l(τ), θ?(l(τ))) · vl dτ ≥ 0 ,

where l(τ) parametrizes the change along the tangent line from L′ to L′′, vl is the direction
vector of this change, and the inequality follows from the above noted fact that the integrand
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is non-negative everywhere. It follows that the endogenous technology function F(L, θ?(L)) is
non-decreasing on the ray starting in L̄ and following the tangent line in direction of increases
in L1 relative to L2. Analogous arguments apply to the ray starting in L̄ and following the
tangent line in the other direction.

Proof of Corollary 2. Since w1/w2(L, θ?(L)) is homogeneous of degree zero in L, we can fo-
cus on directional derivatives of the endogenous technology wage ratio w1/w2(L, θ?(L)) in
direction of the line tangent to the isoquant at L̄ (the tangent line henceforth) that increase L1.
At every point on the tangent line, the envelope theorem implies that the derivative of the
endogenous technology function F(L, θ?(L)) restricted to the tangent line (henceforth the re-
stricted endogenous technology function) equals (a multiple of)

w1(L, θ?(L))− w1(L̄, θ?(L̄))
w2(L̄, θ?(L̄))

w2(L, θ?(L)).

The second derivative of the restricted endogenous technology function is obtained by taking
the total derivative along the tangent line:

∇Lw1(L, θ?(L)) · v +∇θw1(L, θ?(L)) · (∇Lθ?(L))T · v

− w1(L̄, θ?(L̄))
w2(L̄, θ?(L̄))

∇Lw2(L, θ?(L)) · v +∇θw2(L, θ?(L)) · (∇Lθ?(L))T · v,

where v is the direction vector of the tangent line. Finally, multiplying this expression by
1/w2(L̄, θ?(L̄)) and evaluating it at L̄ yields the directional derivative of the endogenous tech-
nology wage ratio along the tangent line. Hence, this directional derivative and the sec-
ond derivative of the restricted endogenous technology production function have the same
sign.

Remark 2. The condition of Corollary 2 can also be expressed in terms of the Hessian matrix
of the aggregate production function F. Let HF(L̄, θ?(L̄)) be the Hessian of F at the point
(L̄, θ?(L̄)). The condition of Corollary 2 is satisfied if and only if the Hessian is not negative
semidefinite when restricting direction vectors such that the direction for (L1, L2) is the direc-
tion of the line tangent to the isoquant at L̄. Formally, there is local strong relative bias if and
only if

vT HF(L̄, θ?(L̄))v ≥ 0

for some v ∈ RN+2 such that v1/v2 = −w2/w1(L̄, θ?(L̄)) and there exists an ε > 0 such that
θ?(L̄) + ε · (v3, ..., vn+2) ∈ Θ.
To see this, note that the second derivative of the endogenous technology production function
restricted to the tangent line along the isoquant is given by (a multiple of) vT HF(L̄, θ?(L̄))v
for v1 = 1, v2 = w1/w2(L̄, θ?(L̄)), and (v3, ..., vN+2) = ∇θ?(L̄). If this derivative is negative,
no other feasible direction (v3, ..., vN+2) in the technology space can give a positive result for
the quadratic form of the Hesse matrix. Otherwise this other direction would allow to reach a
higher production level in a sufficiently small neighborhood of L̄ on the tangent line, but this
contradicts θ?(L) maximizing production. Thus, the condition of Corollary 2 is equivalent to
the condition on the Hesse matrix presented above.
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Proof of Theorem 3. We can restrict the proof to the case where θ?(L) 6= θ?(L′). The proof is by
contradiction. Suppose θ?(L) �m θ?(L′) and let θ

¯
denote the meet and θ̄ the join of θ?(L) and

θ?(L′). Then, quasisupermodularity implies that F(L, θ?(L′)) ≤ F(L, θ̄). By homogeneity, we
can restrict the proof to labor inputs L and L′ with F(L, θ?(L′)) = F(L′, θ?(L′)). Denote by q
the lowest labor type for which Lq ≤ L′q and let l(τ) parametrize a path from L to L′ that is
monotone in each entry Ls of L and lies in the isoquant of F(L, θ?(L′)). Then, the following
holds: 41

0 = F(L′, θ?(L′))− F(L, θ?(L′))

=
∫ 1

0
∇LF(l(τ), θ?(L′)) · dl

dτ
dτ,

and for every τ ∈ [0, 1]:

0 = ∇LF(l(τ), θ?(L′)) · dl
dτ

= w(l(τ), θ?(L′)) · dl
dτ

=
wq(l(τ), θ̄)

wq(l(τ), θ?(L′))
w(l(τ), θ?(L′)) · dl

dτ

≤ w(l(τ), θ̄) · dl
dτ

= ∇LF(l(τ), θ̄) · dl
dτ

,

where the fourth line follows from the fact that (wq(l(τ), θ̄)/wq(l(τ), θ?(L′)))wi(l(τ), θ?(L′)) ≤
wi(l(τ), θ̄) if and only if q ≤ i (because θ?(L′) �m θ̄) and the fact that 0 ≤ dli/dτ if and only
if q ≤ i. It follows that

0 =
∫ 1

0
∇LF(l(τ), θ?(L′)) · dl

dτ
dτ

≤
∫ 1

0
∇LF(l(τ), θ̄) · dl

dτ
dτ

= F(L′, θ̄)− F(L, θ̄).

This implies F(L′, θ?(L′)) ≤ F(L′, θ̄), a contradiction.
Note that the contradiction relies on the assumption that, in case of multiple maximizers of
F(L′, θ), θ?(L′) is their supremum. If θ? is an arbitrary selection from the set of maximizers,
we could assume a strict version of quasisupermodularity, or quasisupermodularity under the
strict version of �m. This would preserve the statement of Theorem 3 for strict increases in
relative skill supply, that is, for labor supply changes from L to L′ with Lh/Lk < L′h/L′k for all
k < h.

41In the continuum case ∇LF · dl/dτ should be interpreted as the Gateaux derivative of F in direction of the
signed measure dl/dτ. By the first order conditions of firms, this Gateaux derivative is equal to w · dl

dτ , which
means integration of the wage function w, assumed to be integrable, with the measure dl/dτ,

∫
I w d(dl/dτ).
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