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Mobile telephony in emerging markets:
the importance of dual-SIM phones ∗

Kjetil Andersson † Daniel Göller‡

June 4, 2018

Abstract

A substantial share of customers in emerging markets use dual-SIM
phones and subscribe to two mobile networks. A primary motive for so
called multi-simming is to take advantage of cheap on-net services from
both networks. In our modelling effort, we augment the seminal model of
competing telephone networks á la Laffont, Rey and Tirole (1998b) by a seg-
ment of flexible price hunters that may choose to multi-sim. According to
our findings, in equilibrium, the networks set a high off-net price in the lin-
ear tariffs to achieve segmentation. This induces the price hunters to multi-
sim. We show that increased deployment of dual-SIM phones may induce
a mixing equilibrium with high expected on-net prices. Thus, somewhat
paradoxically, deployment of a technology that increases substitutability,
and thereby competition, may end up raising prices.

Keywords: Network competition, multi-sim, dual-SIM phones, price dis-
crimination

JEL-Classification: D43, L13, L96

1 Introduction

Most major mobile hand-set manufacturers now offer dual-sim versions of their
hand-sets, i.e. phones that support two (or more) SIM cards.1 Modern dual-SIM
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offer dual-sim versions. A notable exception at the time of writing is Apple, even though rumors
of a coming dual-SIM iPhone have appeared in the business press from time to time.



phones are typically dual-standby, that is, both SIM cards can receive calls and
messages at any time.2

The owner of a dual-SIM phone may thus subscribe to two different mobile
networks (and may have two telephone numbers), and choose either SIM for any
particular service. Dual-SIM phones are typically much more popular in emerging
markets than in mature economies. For example, a recent analysis tracking web
traffic according to hand-set type finds that in India, Nigeria, and Brazil, the per-
centage of mobile web traffic from dual SIM phones is 68, 49, and 43, respectively.
The corresponding figures for the UK and US are only 7.5 and 4.1, respectively.3

In the mobile industry, a customer who uses subscriptions from two or more net-
works is referred to as a multi-simmer, a term we adopt hereafter. Multi-simming
has been an important phenomenon in emerging markets for more than a decade.
Prior to the widespread deployment of multi-SIM phones, multi-simmers used
two single-SIM phones, or physically switched SIM cards in a single-SIM phone.
Dual-SIM phones make switching between SIMs much more convenient.

Customers in emerging markets have several reasons for using dual-SIM phones,
or more generally, for holding mobile subscriptions from two different providers.
First, and most relevant for the present paper, having two SIMs allows a cus-
tomer to choose the lowest price alternative for any particular service. This is
especially important when networks charge lower prices for on-net services, that is
calls (or texts) between customers who subscribe to the same network.4 A multi-
simmer can thus avoid making expensive off-net calls by selecting the SIM from
the same network as the recipient when originating a call. Second, being connected
to two networks is useful when the networks do not have full coverage, or when
the network quality is unstable. Moreover, having a separate private and mobile
subscriptions is more common in emerging markets than in mature markets.

In our paper, we depart from the seminal model of competing telephone net-
works by Laffont, Rey and Tirole (1998b) and Gans and King (2001), and relax
the assumption that all customers subscribe to only one network. We assume
that the networks have full coverage and hence focus on the first incentive for
multi-simming, i.e., that the customers multi-sim to avoid making expensive off-
net calls. There are two types of customers: The high types (henceforth H-types),

2See e.g. https://en.wikipedia.org/wiki/Dual SIM for a brief introduction on dual-SIM
phones.

3The figures are from 2017 Q2 and collected by DeviceAtlas, a device intelligence firm, see
https://deviceatlas.com/blog/dual-sim-smartphone-usage-2017. An illustration of multiple SIM
ownership is also given in international statistics on mobile subscription penetration, i.e. the
number of mobile subscriptions in percent of the population. About half of the countries included
in the International Telecommunication Union’s database have mobile subscription penetration
above 100 percent in 2013, and one third of the countries have had so for five years or more. The
data comprises mobile penetration rates in 229 countries measured yearly in the period from 2000
to 2013. 117 countries had penetration rates above 1 in 2013, and 75 countries had had it for 5 or
more years. The metrics are calculated from the data published at http://www.itu.int/en/ITU-
D/Statistics/Pages/stat/default.aspx.

4Large price differentials between on-net and off-net calls are frequently observed in practice
in emerging economies. For instance, the telecom regulator in India reports that off-net prices
were 5 times higher than on-net prices, see Sarma (2011).

2



who exhibit a high demand for calls, and the low types (henceforth L-types) with
a lower call demand. Moreover, the two types differ in their brand preferences.
The H-types have idiosyncratic brand preferences, whereas the L-types are price
hunters without brand preferences. The two networks offer a linear and a two-part
tariff. In our model, the L-types cannot use the two-part tariffs. Such an assump-
tion makes sense in emerging economies: The income of the L-types is not only
low, but also irregular and uncertain, see e.g. Collins et.al. (2009). Hence, signing
up to a tariff with a (in practice, recurring) subscription fee is unattractive, or
even unfeasible.

We find that a pooling equilibrium cannot exist. Intuitively this is easy to
explain since, in a pooling equilibrium, the two-part tariffs are unused. A network
could thus, as a deviation, introduce a two-part tariff with slightly lower calling
prices and a small but positive subscription fee that is as attractive to the H-types
as the linear tariff. Since our calling prices are above marginal cost, this deviation
is profitable for the deviator: Its profit increases because the positive subscription
fee and the higher call volume outweighs the loss in profit that accrues due to
the lower calling prices. In our model, the networks set the off-net calling prices
in the linear tariffs sufficiently high, so that a symmetric equilibrium emerges in
which the H-types single-sim on the networks’ two-part tariffs and the L-types
multi-sim on the networks’ linear tariffs. Intuitively, the high off-net prices act
as a segmentation device since it makes the linear tariffs unattractive for the H-
types. This is beneficial for the networks since they can siphon more profit from
the H-type segment when the H-types use the two-part tariffs.

Perhaps most importantly, our model suggests that an increased deployment of
dual-SIM phones will only initially benefit the L-types. To see this, note that the
deployment increases the substitutability of the networks’ call offerings, which in
turn increases competition. Moreover, a network’s on-net price must cater to two
types of calls: i) from the multi-simming L-types to the network’s single-simming
H-types and ii) from the multi-simmers to other multi-simmers. For the first
type of calls the network has a monopoly, whereas the second type is subject to
competition from the other network’s SIM. If using different SIMs for the second
type of calls are not too strong substitutes, the networks set the on-net price
according to a Lerner rule using the aggregate of these calls. This on-net price
becomes lower as the substitutability of the call offerings increases. However, when
the substitutability increases beyond a certain threshold, the profit the networks
can extract from the calls between the L-types becomes negligible compared to
the profit they gain from the calls from the L-types to the H-types. This implies
that it becomes optimal for a network to charge the monopoly price, effectively
giving up on the calls between the L-types. This situation can, however, not be
part of an equilibrium since the other network then has an incentive to undercut
the now high on-net price of its competitor in order to obtain a high profit from
the calls between the L-types. Finally, we can establish that a mixing equilibrium
emerges, in which the expected on-net prices are substantially higher compared to
the prices, which the networks set just before they start mixing. Thus, somewhat
paradoxically, the deployment of a technology that increases substitutability, and
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thereby competition, may end up raising prices and may thus hurt the L-types.
The literature on network competition building on the seminal works by Laf-

font, Rey and Tirole (1998a, 1998b) and Armstrong (1998) is large and covers a
range of extensions. Hurkens and Lopez (2014), Armstrong and Wright (2009),
and Hoernig (2014) are recent contributions that generalize and extend this liter-
ature. Our paper is related to Dessein [2003, 2004] who considers heterogeneous
usage and second degree price-discrimination. This literature assumes, however,
that all customers single-sim. In the equilibrium of our model, where the L-
types multi-sim and the networks use the off-net price in the linear tariff as a
segmentation device, the H-types incentive compatibility constraint is not bind-
ing. Thus, our equilibrium exhibits third-degree price discrimination, with a high
off-net price, and possibly, as explained above, mixing in the on-net price. How-
ever, since the L-types can reach every other customer on-net, the high off-net
prices do not lead to a communication breakdown as in Jeon, Laffont and Tirole
(2004). Also contrary to Hoernig (2007), our high off-net prices do not depend
on asymmetric market shares or predatory pricing. In sum, our model shows that
multi-homing may have a profound effect on how networks set linear prices. That
multi-homing seriously affects competition is well documented in the literature,
see e.g. Rochet and Tirole (2003), Doganoglu and Wright (2006) and Armstrong
and Wright (2007). In the literature on competing telecommunication networks,
single-homing has, to our knowledge, been universally assumed. This makes ex-
isting results less applicable for emerging markets where a substantial share of
customers multi-sim. Our paper aims at filling this gap.

The rest of our paper is organized as follows: In the next section we present
our model. In Section 3, we derive the networks’ equilibrium pricing and resulting
consumer-configuration. In Section 4, we discuss our results and provide a brief
application to the deployment of dual-SIM phones.

2 A model with multi-simming customers

We consider a market where subscriptions for mobile calls are offered by two
competing, interconnected mobile networks (i, j) with full coverage. There are
two types of customers; high income (H-types) and low income (L-types). The
H-types have a high demand for calls, and the L-types have low demand for calls.
Moreover, the two groups differ in their brand (network) preferences. The H-types
have idiosyncratic brand preferences à la Hotelling, i.e., they have transportation
cost, t > 0. In contrast, our L-types are price hunters without brand preferences.
They do not incur transportation cost, tL = 0. The number of H-types and L-
types are normalized to 1 and λ, respectively, both with perfectly divisible mass.
The number of H-types subscribing to networks i and j is denoted ni and, nj
respectively.

The timing of the model is as follows: At date 0, the networks negotiate, or the
regulator sets, a reciprocal termination charge, a - the fee paid by the network i
for a call to a customer at network j. At date 1, each network offers a linear and a
two-part tariff, targeted at the L-types and H-types, respectively. The customers
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observe the tariffs at date 2 and sign up to one or both tariffs. We denote the
non-linear and linear tariff offered by network i as

Ti = {ri, pi, pij} and T̄i = {p̄i, p̄ij},

respectively. Here, pi and p̄i are the prices of calls between customers connected
to the same network, hereafter called on-net calls, whereas pij and p̄ij are the
prices of calls from a customer connected to network i to a customer connected to
network j, hereafter called off-net calls. Finally, ri represents the subscription fee
in the two-part tariff offered by network i.

Before we impose further restrictions, a customer has three different homing
possibilities, with several tariff combinations within each category: i) he or she
can single-home on each of the networks’ tariffs, ii) he can multi-home on both
networks’ tariffs, and iii) he can subscribe to both tariffs offered by the same
network.5 In the following, we will refer to a customer in the second category
as a multi-simmer. In the model we are about to set up, the only motive to
multi-sim arises from different on and off-net prices. A multi-simmer can reach
all customers on-net and hence can avoid making expensive off-net calls. Note
that there cannot exist an equilibrium consumer configuration were all customers
multi-sim.6 A H-type could then save transportation cost (and one subscription
fee if he subscribes to a two-part tariff) by unsubscribing one of the tariffs, and
still be able to call all other customers at the lowest possible price. Consequently,
in a model were multi-simming occurs in equilbrium, some of the customers must
single-sim. In our model these will be the H-types. To avoid specifying an overly
complicated model, in which e.g. some H-types single-sim and some multi-sim, we
simply assume that

Assumption 1 (H-type) The H-types do not subscribe to more than one tariff.

In reality, the H-types may be wealthy customers and/or regular customers
who want to avoid the hassle of having to deal with more than one subscription.
The L-types, on the other hand, having zero transportation costs, may find it
beneficial to multi-sim if the price of off-net calls is too high. To further simplify
our model, we consider the financial situation of low-income customers in emerging
economies: Incomes are not only low, but also irregular and uncertain, see e.g.
Collins et.al. (2009). Hence, signing up to a tariff with a (in practice, recurring)
subscription fee is unattractive, or even unfeasible. We impose this stylized fact
as an assumption in our model:

Assumption 2 (L-type) The L-types cannot subcribe to a two-part tariff.

Thus, if multi-simming occurs, then it will be the L-types that multi-sim on
the linear tariffs. Finally, to rule out some particular odd calling configurations,
as for instance L-types calling each other off-net instead of on-net, we assume that

5In principle a customer has 10 different possibilities: To singlehome on T1, T2, T̄2 or T̄2; to
multi-home (multi-sim) on (T1, T2), (T1, T̄2), (T̄1, T2),or (T̄1, T̄2), and to have two SIMs on the
same network (T1, T̄1) or (T2, T̄2).

6This point is well known in the literature on multihoming, see e.g. Doganoglu and Wright
(2006).
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Assumption 3 (Price-structure) A network may not set its off-net price strictly
below its on-net price within the same tariff.

None of the assumptions above are crucial for the equilibrium we are going to
establish below. However, they considerably simplify the model’s primitives and
reduce the number of possible deviations, we have to consider in the subsequent
analysis. A H-type now has four tariff choices, i.e., to single-sim on either of the
four tariffs offered by the networks. A L-type has three choices: to single-sim
on either of the networks’ linear tariffs or to multi-sim on both networks’ linear
tariffs. Thus, the third homing category described above - having two SIMs from
the same network - cannot occur in our model.

In section 3, we explain that pooling cannot be an equilibrium in our model.
Presuming this is the case, the networks then design tariffs to induce the H-types
to self-select into the two-part tariffs. The possibility that the L-types may choose
to multi-sim generates a twist to this price-discrimination problem. In particular,
a network may use the off-net price in the linear tariff as a segmentation device.
If a network sets this price sufficiently high, it induces the L-types to multi-sim to
avoid making expensive off-net calls, and prevents the H-types to take the linear
tariff. This does not distort the consumption of the multi-simming L-types since
they can call all customers on-net. We make use of this when we present the model
below:

Remark 1 The utility functions and incentive compatibility constraints in this
section are conditional on each network using the off-net price in their respective
linear tariffs as a segmentation device, i.e. p̄ij is (much) higher than p̄i for each
network i ∈ {1, 2}. Market shares and profit functions are written given that the
H-types single-sim on the non-linear tariffs and the L-types multi-sim on the linear
tariffs.

In section 3 we will prove that - put loosely - if t is sufficiently large, and λ is
not too large, then this is indeed an equilibrium in our model.

Utilities of the L-types

The L-types may either multi-sim on (T̄i, T̄j), or single-sim on either one of these
tariffs. We asumme that a multi-simming L-type has both SIM cards active for
receiving calls, which means that either he uses a dual-sim phone or he carries two
active single-sim phones. In our subsequent specification of the L-type’s indirect
utility of making calls, we consider three cases: (i) calls from single-simming L-
types, (ii) calls from multi-simming L-types to other L-types and (iii) calls from
multi-simming L-types to H-types.

(i) A single-simming L-type’s utility from making a call is given by the indirect
utility function v(p), so that call demand is given by q(p) = −v′(p).

(ii) When a multi-simming L-type calls another multi-simmer, he can use either
the tariff of network 1 or network 2. Due to Remark 1, he will not make off-net
calls. We denote the indirect utility a L-type derives from a call to another multi-
simmer by vm(p̄1, p̄2). We assume that vm(p̄1, p̄2), is a well behaved, continuously
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differentiable, indirect utility function. The demand for using SIM 1 to call another
multi-simmer is q1(p̄1, p̄2) = −∂vm(p̄1, p̄2)/∂p̄1, and the demand for using SIM 2 to
call another multi-simmer is q2(p̄1, p̄2) = −∂vm(p̄1, p̄2)/∂p̄2. For symmetric prices,
p̄1 = p̄2 = p̄, the customer is indifferent with regard to which SIM card to use.
Her or his call utility is then identical to a single-simmer’s, and the total number
of calls is split evenly between the two SIMs, i.e.

vm(p̄, p̄) = v(p̄), q1(p̄, p̄) = q2(p̄, p̄) =
1

2
q(p̄). (1)

In the appendix we show that, for example, the Shubik-Levitan utility function,
see Shubik and Levitan (1980), satisfies (1). In principle, the indirect utility func-
tion vm(p̄1, p̄2) may exhibit any substitution patterns from indepence to perfect
substitutes. In practice, we would expect calling with SIM 1 or SIM 2 for a L-type
customer to be substitutes, where the degree of substitutablity depends on the
hassle involved in selecting the right SIM for a particular call (in a symmetric
situation it does not matter). For instance, if a customer multi-sims by carrying
two phones, we would expect substitutability to be lower than in the case of a
customer owning a dual-SIM phone. In the case where the dual-SIM phone au-
tomatically chooses the SIM with the lowest price for any particular call, the two
SIMs would be perfect substitutes.

(iii) When a multi-simming L-type calls a H-type connected to network i, he
can do so by using either the on-net price of network i, p̄i, or the off-net price of
network j, p̄ji. Recall from Remark 1 that each network sets p̄ij (much) higher
than p̄i. In our symmetric equilibrium we shall focus on in the next section, this
will then also imply that p̄ji is (much) higher than p̄i. In the specification below,
we disregard possible out-of-equilibrium asymmetric situations were this is not the
case and we assume that a multi-simming L-type always make on-net calls when
calling a H-type customer. His call-utility function is then as in (i).

In line with the literature, calls are made according to a balanced calling pat-
tern. Each customer calls all other customers (not SIM cards) with equal probabil-
ity.7 The utility of a multi-simming L-type, given that all other L-types multi-sim,
can then be written as

UL(T̄1, T̄2) = v0 + n1v(p̄1) + n2v(p̄2) + λvm(p̄1, p̄2), (2)

whereas it is given by

UL(T̄i) = v0 + (ni + λ)v(p̄i) + (1− ni)v(p̄ij), (3)

if he single-sims using network i ∈ {1, 2} given that all other L-types multi-sim.
Here, v0 is the intrinsic utility of being connected, which in our model does not
depend on whether the customer is a multi or a single-simmer. Throughout, we
assume that v0 is sufficiently large so that all customers choose to be connected
to at least one network.

7Dessein (2003, 2004) and Hoernig et al. (2014), consider network competition with non-
balanced calling patterns.

7



The second term in (2) , n1v(p̄1), is then a multi-simming L-type’s utility of
using SIM 1 to call the n1 H-types connected to network 1 at on-net price p̄1, the
third term, n2v(p̄2), is the utility of using SIM 2 to call the n2 H-types connected
to network 2 at on-net price p̄2, and the last term, λvm(p̄1, p̄2), is the utility of
calling the other multi-simming L-types. The second term in (3), (ni + λ)v(p̄i), is
the utility of a L-type who single-sims at network i and thus calls ni+λ customers
on-net, and the last term, (1−ni)v(p̄ij), is the utility of calling the (1−ni) H-types
connected to network j.

A L-type prefers to multi-sim whenever UL(T̄1, T̄2) > max[UL(T̄1), U
L(T̄2)].

Let T̄i be the tariff that provides the largest single-sim utility. A L-type will thus
prefer to multi-sim if

(1− ni)(v(p̄j)− v(p̄ij)) + λ(vm(p̄1, p̄2)− v(p̄i)) > 0. (4)

In our symmetric equilibrium with p̄j = p̄i the last term on the l.h.s of this
inequality is zero due to (1), and all L-types will then choose to multi-sim since
v(p̄j) − v(p̄ij) = v(p̄i) − v(p̄ij) > 0 due to Remark 1. Conversely, if network i
deviates to a flat linear tariff, p̄i = p̄ij, it will induce all L-types to single-sim on
its nework. In section 3, we show that deviating to a flat tariff, combined with
lowering the subscription fee in the non-linear tariff, is the optimal deviation when
termination rates are cost based. In addition, we detail the instances under which
our symmetric equilibrium is robust to this deviation.8

Utilities of the H-types

The H-types are uniformly distributed on a Hotelling line with support [0, 1]. The
networks are situated at the extremes, i.e., network 1 is located at point 0 and
network 2 is located at point 1. When a H-type located at x subscribes to a tariff
offered by network i, she incurs transportation costs of t|x−xi|, where xi ∈ {0, 1}
is the location of networks 1 and 2, respectively.

A H-type’s utility from making a call is given by the indirect utility function
vH(p) so that the demand for calls is given by qH(p) = − ∂vH/∂p. Calls are made
according to a balanced calling pattern, and the H-types have a higher call utility
than the L-types, i.e., vH(p) > v(p) and qH(p) > q(p).

We write the H-types’ utility under the presumption that condition (4) holds.
A H-type who subscribes to network i then calls the H-types connected to the
same network and the multi-simming L-types, ni + λ in total, on-net. The H-
types connected to network j, 1 − ni in total, are called off-net. Consequently, a
H-type located at x on the Hotelling line, who uses network i’s non-linear tariff,
has utility

UH(Ti) = v0 + (ni + λ)vH(pi) + (1− ni)vH(pij)− ri − t|x− xi|. (5)

If he uses network i’s linear tariff, the utility is

UH(T̄i) = v0 + (ni + λ)vH(p̄i) + (1− ni)vH(p̄ij)− t|x− xi|.
8If instead we assume that there is a cost, h > 0, of multi-simming, the condition for multi-

simming in a symmetric equilibrium would be v(p̄i)− v(p̄ij) > 2h. In that case a network would
not need to go all the way down to a flat tariff to induce single-simming.
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Hence, she will use the non-linear tariff when UH(Ti) ≥ UH(T̄i), which after
inserting from the two equations above, simplifies to

(ni + λ)(vH(pi)− vH(p̄i)) + (1− ni)(vH(pij)− vH(p̄ij)) ≥ ri. (6)

Given that ri > 0, the H-types’ incentive compatibility constraint given in (6) holds
when a H-type derives a sufficient utility gain from calling at lower prices using
the non-linear tariff. A key property of the symmetric equilibrium, we are going to
derive in the next section, is that there exist reasonable parameter configurations
for which this incentive compatibility constraint is not binding when the network
sets p̄ij at a high level, as described in Remark 1. The intuition for this is that
a high p̄ij makes the linear tariff unattractive for the H-types, who do not multi-
SIM, but does not affect the multi-simming L-types who only make on-net calls.
However, as we will show below, equation (6) will come into play when we derive
a network’s optimal deviation.

Market shares and firms’ profit

Let us consider our candidate equilibrium’s consumer configuration, in which the
H-types single-sim on the non-linear tariffs and the L-types multi-sim on the linear
tariffs. Network i’s share of H-types is found by solving UH(Ti) = UH(Tj) for the
indifferent customer, x. After rearranging, the market share of network i can be
written as

ni =
t+ rj − ri + vH(pij)− vH(pj) + λ(vH(pi)− vH(pj))

2t− vH(pi)− vH(pj) + vH(pij) + vH(pji)
, (7)

which simplifies to n1 = n2 = 1/2 in a symmetric equilibrium.9

Except for the different locations on the Hotelling line, we assume that the
networks are identical. A network’s fixed cost of serving a customer is f per
contract - this also includes the cost of issuing a SIM card for the customer’s
chosen tariff. A network has a cost of c per call it originates or terminates, such
that the marginal cost of an on-net call is 2c. Since off-net calls terminate on the
rival’s network, the originating network pays a termination fee, a, to the other
network for such a call. A network’s perceived marginal cost for an off-net call is
then a + c. It follows that a network’s margin on an incoming call from the rival
is a− c. Consequently, network i’s profit, πi, amounts to

πi = λπLi + niπ
H
i , (8)

where

πLi = −f + (niq(p̄i) + λqi(p̄1, p̄2))(p̄i − 2c), and

πHi = ri − f + (ni + λ)qH(pi)(pi − 2c) + (1− ni)(qH(pij)(pij − c− a) + qH(pji)(a− c)).

Here, πHi and πLi are the profits made on a H-type and a L-type, respectively.

9Note that we are working under the presumption that hotelling is stable, i.e., we only consider
parameter constellations in which the hotelling game does not have corner solutions, in which
one network has all customers in the H-type segment.
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3 Equilibrium pricing and consumer configura-

tion

Let us now establish that the price structure and consumer configuration described
in Remark 1 is an equilibrium. To derive our separating equilibrium, we proceed in
four steps. First, we establish that the H-types use the two-part tariffs and recall
from (4) that for symmetric prices, the L-types multi-sim on the linear tariffs.
Second, we derive the optimal pricing in both the linear and the two-part tariffs,
given what we stated in Remark 1. Third, we find the best possible deviation from
our candidate equilibrium. Fourth, we derive when this deviation is not profitable.
As it will turn out, this will crucially depend on λ. Let us begin by establishing
the following proposition:

Proposition 1 A pooling equilibrium in which both the L and the H-types use the
linear tariffs cannot exist.

The reasoning is straightforward. In a pooling equilibrium the two-part tariff
is not being used. Consequently, a network could deviate to a two-part tariff
which offers calling prices slightly below the calling prices in the linear tariff and
a subscription fee that is slightly above zero so that the H-types switch to the
two-part tariff. Then, the increase in profit due to the higher subscription fee
and the higher call volume outweighs the loss in profit that accrues due to the
lower calling price. This result is closely related to the well known result that
the subscription fee of a two-part tariff is strictly positive, see e.g. Laffont et al.
(1998b), so we do not prove it formally.

Corollary 1 In our equilibrium candidate, the two-part tariff calling prices are
p∗1 = p∗2 = 2c, and p∗12 = p∗21 = a+ c.

The rationale is similar to the one underlying Proposition 1. A situation where
one or more of the calling prices in the two-part tariff are above marginal cost
cannot be part of a symmetric equilibrium. In that case, a network can keep
its market shares, in the H-type segment, constant by simultaneously increasing
the subscription fee and decreasing a calling price. This is a profitable deviation
because the increase in profit due to the higher subscription fee and the higher
call volume outweighs the loss in profit that accrues due to the lower calling price.
Because this argument holds for any calling prices above perceived marginal cost,
we can directly conclude that p∗1 = p∗2 = 2c and p∗12 = p∗21 = a + c. Whereas the
calling prices do not depend on what is going on in the L-type segment, this is
not so for the subscription fee, ri. Let us establish that

Proposition 2 In our equilibrium candidate, the networks set r∗1 = r∗2 = r∗ =
f + t− vH(2c) + vH(a+ c)− (p̄∗on− 2c)λq(p̄∗on), where p∗on is the equilibrium on-net
price of Proposition 3.

10



PROOF: See Appendix.

Except for the last term, the expression for r∗ is identical to Laffont et al.(1998b).
Similarly to their model, the networks use the subscription fee, r, as an instru-
ment to attract the H-types. The last term, −(p̄∗on − 2c)λq(p̄∗on) is negative and
decreasing in the number of L-types. It represents that, compared to Laffont et
al.(1998b), the networks have an additional incentive to lower the subscription
fee. More precisely, this additional incentive arises due to the calls, that are be-
ing made, from the multi-simming L-types to the H-types. Thus, the existence
of multi-simmers increases competition for market shares in the H-type segment,
which results in a lower equilibrium subscription fee.

Let us now consider the linear-tariff segment. Recall from Assumption 2 that
the L-types are financially constrained. Thus they cannot use the two-part tariffs.
In the equilibrium we are going to establish, the networks set the off-net prices
sufficiently high so that it acts as a segmentation device. This allows the networks
to set the subscription fee, r, without having to worry that the H-types switch to
the linear tariffs. The high off-net prices also ensure that the networks have a quasi
monopoly on the calls from the L-types to their own H-types. This is so since it is
prohibitively expensive for the L-types to call the H-types of, say, network 1 off-net
using network 2’s sim card. The role of the on-net prices in the linear tariff segment
is twofold. First, the networks have an incentive to undercut the competitor in
order to get more calls from L-types to L-types. Thus networks have an incentive
to choose a “low” on-net price. Second, the L-types use the on-net prices to call
the H-types. Since, as mentioned, the networks have a quasi monopoly on the
calls from the L-types to their own H-types, they have an incentive to choose a
“high” on-net price. Which of these two effects dominates depends on how elastic
the call demand of the L-types is. We can establish that:

Proposition 3 There is a critical value k, such that if |∂qi(p̄i, p̄∗on)/∂p̄i)| ≤ k, the
optimal on-net price of network i, i ∈ {1, 2}, p̄∗i = p̄∗on, is implicitly defined by

p̄∗on − 2c

p̄∗on
= − (1 + λ)q(p̄∗on)

p̄∗on(q′(p̄∗on) + 2λ∂qi(p̄∗on, p̄
∗
on)/∂p̄i)

> 0. (9)

If |∂qi(p̄∗on, p̄∗on)/∂p̄i)| > k there exists a symmetric mixed strategy equilibrium,
in which the networks, i ∈ {1, 2}, choose p̄i from a probability distribution with
support [p̄∗on, p̄

M
on], where p̄Mon is implicitly defined as

p̄Mon − 2c

p̄Mon
= − q(p̄Mon)

p̄Mon(q′(p̄Mon)
>
p̄∗on − 2c

p̄∗on
.

PROOF: See Appendix.

The multi-simming L-types make two types of calls that are relevant for net-
work i, (i) to network i’s H-types and (ii) to other L-types. For the first type of
calls the network has a monopoly, whereas the second type is subject to compe-
tition from the other SIM. If using SIM i or SIM j for the second type of calls
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is perceived as ”not too close substitutes”, i.e., when |∂qi(p̄i, p̄∗on)/∂p̄i)| ≤ k, the
network sets p̄i according to a Lerner rule using the aggregate of these calls as in
(9). When the substitutability is strong, a mixed strategy equilibrium similar to
Varian (1980) emerges.

Interestingly, with increasing substitutability, the prices first decrease until the
profit from the calls to the other L-types becomes so low that it is optimal for a
network, say network 1, to deviate and charge the monopoly price. Network 1 then
gets zero revenue from the calls between the L-types but earns a substantial profit
on the calls between the L-types and its own H-types, on which it has a monopoly.
However, this situation cannot be part of an equilibrium either. Network 2 then
has an incentive to also raise its on-net price in order to get a higher profit from the
calls between the L-types. Then, network 1 has an incentive to undercut network
2’s price in order to compete for the now expensive calls between the L-types.
Since the same argument is true for network 2, we obtain that no equilibrium in
pure strategies exists and that a mixing equilibrium emerges. The expected price,
that emerges when the networks mix, is much higher than the prices the networks
set just before they begin to mix. Hence, with increasing substitutability prices
first decrease and then jump up once the networks begin to mix. In the next
section, we elaborate on this with respect to the deployment of multi-sim phones.

Above, we have established the optimal pricing for both the linear and the
two-part tariffs, given that the networks use the off net price in the linear tariffs
as a segmentation device as described in Remark 1. Let us now establish that this
equilibrium candidate is indeed an equilibrium. Since the networks can deviate
in two tariffs simultaneously, there is a multitude of possible deviations. To keep
the formulae tractable, we assume cost-based termination rates, i.e. a = c, and
fixed cost f = 0.10 Now, let us establish what is the best possible deviation for a
network, say network 1, from our candidate equilibrium. There are two cases we
need to distinguish:

Lemma 1 When rd1 < r∗1, the optimal deviation is to offer a flat linear tariff so
that

p̄d1 = p̄d12 = p̄∗on,

and to simultaneously set the subscription fee in the non-linear tariff to

rd1 = (1 + λ)(vH(2c)− vH(p̄∗on)).

The reasoning is straightforward. First, if a profitable deviation in which the
H-types use the linear tariff exists, there must also exist an even more profitable
deviation in which they use the two-part tariffs. The reasoning for this is very
similar to the one in Proposition 1 and Corollary 1. Hence, under the best possible
deviation, the L-types use the linear tariffs and the H-types use the two-part tariffs.
There are then two possible customer-tariff configurations that may be optimal
for the deviator. (i) The deviator deviates so that the L-types multisim and the

10Our main objective is to prove that our equilibrium exist even for a = c.. The long and
quite tedious general version for small deviations from cost based termination is available upon
request.
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H-types use the two-part tariffs or (ii) the deviator deviates in order to induce
the L-types to single sim on its network. We can directly conclude that the first
type cannot be a profitable deviation. Given that the L-types multisim and the
H-types use the two-part tariffs, the tariffs described in Propositions 3 , 2 and
Corollary 1 are optimal.

Let us now show that the optimal deviation of type (ii) is to deviate to the flat
tariff in Lemma 1: The deviators off-net price could potentially be used for calls
between the L-types and/or for calls from the L-types to the H-types connected
to network 2. Since we do not consider the case that a network undercuts its own
on-net price with its off-net price, Assumption (3), the only relevant question is
whether network 1’s off-net price is used for calls from the L-types to network 2’s H-
types. This is the case when network 1’s off-net price is strictly lower than network
2’s on-net price, otherwise it remains unused. From the multisim conditon, (4), we
know that reducing the off-net prices down to p̄∗on induces the L-types to single sim
on the deviator’s network. This increases call revenues for the deviator. Moreover,
it makes no sense to deviate to a linear tariff in which either only the on-net price
or both the on-net and the off-net prices are below p̄∗on. This is so, since by
deviating to the aforementioned flat tariff, the deviator already obtains all calls
from the L-types and because p̄∗on is below the monopoly price. Thus, the deviator
has no incentive to go below the flat linear tariff stated in Lemma (1).

Let us now turn to the question on how the deviator optimally sets its sub-
scription fee. To ensure that the H-types’ incentive compatibility constraint holds
under the deviation, see equation (6), the deviator has to set the fee so that
(nd1 + λ)vH(2c) + (1 − nd1)vH(2c) − rd1 = (1 + λ)vH(p̄∗on). This simplifies to rd1 in
lemma (1), where nd1 is network 1’s market share under the optimal deviation, i.e.,

nd1 =
1

2
+
r∗ − rd1

2t
. (10)

We have two cases. First, if rd1 < r∗1, the deviator has to lower its subscription fee to
rd1 in order to prevent its H-types from switching to its linear tariff. Furthermore,
it has no incentive to reduce the fee below rd1. To see this, note that this would
reduce profits since rd1 is below the monopoly level. Second, if rd1 ≥ r∗, we can
directly conclude that to deviate to the aforementioned flat tariff and to set the
subscription fee to r∗ is profitable, which means that our equilibrium does not
exist. To see this, note that the deviator deviates to a flat tariff, inducing all L-
types to single sim on its network while keeping all its H-types on the old non-linear
tariff without having to reduce its subscription fee. Then, subscription revenues
are the same but call revenues have increased. Hence, we can establish that:

Proposition 4 i) A necessary condition for the existence of an equilibrium in
which the networks use the off net price in the linear tariffs as a segmentation
device as described in Remark 1, and set the prices as described in Corrollary 1,
Proposition 2 and Proposition 3, is that

(1 + λ)(vH(2c)− vH(p̄∗on)) < t− λ(p̄∗on − 2c)q(p̄∗on) (11)
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or equivalently rd1 < r∗.

ii) If condition (11) holds and λ is not too large, deviating to the flat tariff of
Lemma 1 is not a profitable deviation.

Proof. i) As we discussed in the main text below Lemma 1, to deviate to the
flat tariff is profitable when rd1 ≥ r∗.

ii) Let us now compare the deviator’s profit at our candidate equilibrium, π∗1,
to the one under the optimal deviation , πd1 . When a = c and f = 0 these are

π∗1 =
1

2
r∗ + λ(

1

2
q(p̄∗on) + λq1(p̄

∗
on, p̄

∗
on))(p̄∗on − 2c)

and
πd1 = nd1r

d
1 + λ(1 + λ)q(p̄∗on)(p̄∗on − 2c).

Using q1(p̄
∗
on, p̄

∗
on) = q(p̄∗on)/2, we get, after some manipulation, that π∗1−πd1 > 0

when

1

2
r∗ − nd1rd1 >

λ

2
(1 + λ)(p̄∗on − 2c)q(p̄∗on). (12)

In words, the deviation is not profitable when the parameters are such that the
loss in subscription revenue, is larger than the gain in call revenues. When λ is 0,
the r.h.s. of equation (12) is zero. The l.h.s. is positive when condition (11) holds:
To see this let us define R(p̄∗on) := (p̄∗on − 2c)q(p̄∗on) and dvH := vH(2c)− vH(p̄∗on).
After some manipulation, using the expressions for r∗, rd1 and nd1, we find that

1

2
r∗ − nd1rd1 =

t− λR(p̄∗on)

2
− (1 + λ)dvH(2t− λR(p̄∗on)− (1 + λ)dvH)

2t
. (13)

The expression on the l.h.s. of equation (12) is positive when (11) holds.
In Proposition 4, we have established when our equilibrium candidate is indeed

an equilibrium. As mentioned, it is crucial that condition (11) holds since it
ensures that the deviating network loses subscription revenues by deviating, that
is, 1

2
r∗ − nd1rd1 >> 0. This loss of revenues must be large enough so that it offsets

the gain in call revenues the deviator accrues from the now single simming L-types,
λ
2
(1+λ)(p̄∗on−2c)q(p̄∗on). For a given net income per L-type, R(p̄∗on), whether this is

the case or not crucially depends on λ: When λ is not too large, the former effect
dominates the latter. When λ gets “large”, our equilibrium breaks down. The
rationale behind this is that the r.h.s. of condition (12) is continuously increasing
in λ whereas the l.h.s. depends on λ in a complicated way. How large λ can be
depends on the size of R(p̄∗on) and other parameters in our model.

4 Discussion

We have shown that there exists a symmetric separating equilibrium where the
networks use the off-net price in the linear tariff as a segmentation device when
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rd1 < r∗ and the number of low types, λ, is ”not too large”. To illustrate what
”not too large” might mean in our model, we give a numerical example, in which
we use the Shubik-Levitan (SL) utility function specified in the Appendix.

Under SL utility, the demand function for the L-types’ calls to the H-types at
network i is given by q(p̄i) = b− p̄i, and for calls to other L-types it is qi(p̄i, p̄j, z) =
(b − p̄i)/2 + (z/4(1 − z))(p̄j − p̄i). The H-types call demand is given by q(pi) =
bH − pi, where bH > b. The parameter z ∈ [0, 1) directly measures the degree of
substitutability between using SIM i and SIM j for the calls between the L-types.
When z = 0, the SIM cards are independent, and when z → 1 the SIM cards are
perfect substitutes. As we show in the Appendix, when 0 < z / 0.94, we have a
pure strategy equilibrium. Let us consider the following set of parameters: When
{a = c = 1, bH = 6, b = 3, z = 0.9, t = 4}, our equilibrium exists if λ / 1.66. If the
net income per L-type, R(p̄∗on) is smaller, for instance because b is lower or z is
larger (but still below 0.94), the critical λ will be larger. For instance, if b = 2.5,
all else equal, the critical λ where our equilibrium breaks down raises to 4.66.

Whether our model has relevance for a particular market, with multi-simming
customers, is of course an empirical question. In any case, our model shows that
if the net incomes from the multisimming segment is not too large, there exists
a separating equilibrium where the networks accomodate multisimming by using
the off-net price as a segmentation device. Our model thus gives an explanation
for high off-net prices in such markets. If, however, the net incomes from the
multi-sim segment is large, either because the margin is high and/or λ is large,
our equilibrium breaks down. To deviate to a flat linear tariff while simultanously
lowering the subscription fee then becomes profitable. Note however that a situ-
ation where both networks set a flat linear tariff, and the single-simming L-types
distribute themselves between the networks, cannot be an equilibrium either. A
network could then lower the on-net price, or both the on-net and off-net price
by a small amount, and attract all the L-types. This would be a profitable devia-
tion. We leave it to future research to describe the equilibria occurring when our
equilibrium breaks down.

Our model can be linked to the deployment of dual-SIM phones in emerging
markets. As mentioned in the introduction, countries like India have experienced
a massive increase in dual-SIM phones over the last decade. Suppose an econ-
omy starts out in a pure strategy equlibrium, and deployment of dual-SIM phones
among the λ L-types increases. We would then expect that the aggregate substi-
tutability in the L-types’ call demand function increases since multi-simming with
a dual sim phone involves less hassle. Initially then, an increased deployment of
multi-sim phones would benefit all L-types in terms of lower on-net call prices.
Paradoxically, though, if the number of dual-SIM users becomes large, the ag-
gregate substitutablity may become so large that the networks switch to mixing,
confer Proposition 3. If so, the expected price would shift up compared to the price
just before the networks start mixing. Thus, an increased deployment of multi-sim
phones might eventually hurt the poor customers (the L-types). Another possibil-
ity is that our equilibrium breaks down once the aggregate substitutability is so
large that the networks start mixing. This is so because the expected revenues in
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the L-type segment increase in the mixing case and deviating to a flat tariff might
then become a profitable option.

Much of the literature on competing mobile networks have focused on the
welfare effects of the termination rate level. For some recent analyses, see e.g.
Genakos and Valletti (2015), Armstrong and Wright (2009), Harbord and Ho-
ernig (2015) and Hurkens and Lopez (2014). In our paper we have disregarded
this question altogether and focused on cost-based termination rates in our main
proofs. Allowing a 6= c would substantially increase the complexity of our analysis,
even if small departures from a cost based reciprocal termination rate would not
alter the general conclusions.11 We leave the general analyses for future research.

Appendix

Shubik Levitan call utility

The point of this subsection is to demonstrate that the quadratic Shubik-Levitan
utility function satisfies (1). Recall that a multi-simmer makes two types of calls:
calls to single-simmers and calls to other multi-simmers. Suppose that a multi-
simmer’s utility of a call to a singlesimmer at network i is given by bq − q2/2,
where b is a positive constant so that the indirect utility amounts to v(p̄1) =
(b − p̄1)

2/2 and the call demand is q(p̄1) = b − p̄1. Moreover, suppose that for
calls to other multi-simmers the L-types have a Shubik Levitan utility function,
or more precisely u(q1, q2) = b(q1 + q2)− (z(q1 + q2)

2 + 2(1− z)(q21 + q22)). Here, q1
and q2 are the calls made with SIM 1 and SIM 2, respectively, and z is a constant
satisfying 0 ≤ z < 1. The parameter z reflects to which degree a L-type considers
the two SIMs as substitutes: Calling with SIM 1 and SIM 2 are independent
when z = 0, and perfect substitutes when z → 1. Indirect utility is given by
Max
q1,q2
{u(q1, q2)− p̄1q1 − p̄2q2}, which after some manipulation can be written as

vm(p̄1, p̄2, z) =
2b2 + p̄21 + p̄22 − 2b(p̄1 + p̄2)− z

2
(2b− p̄1 − p̄2)2

4(1− z)
.

Hence, the demand for calls with the two SIMs amounts to

q1(p̄1, p̄2, z) = −∂v
m(p̄1, p̄2, z)

∂p̄1
=
b− p̄1

2
+

z

4(1− z)
(p̄2 − p̄1), and

q2(p̄1, p̄2, z) = −∂v
m(p̄1, p̄2, z)

∂p̄2
=
b− p̄2

2
+

z

4(1− z)
(p̄1 − p̄2).

Inserting symmetric prices in the above functions, we see directly that our call
assumptions, (1), are satisfied for all z ∈ [0, 1).

In the main part of the paper we argued that with increasing substitutability
of the call offerings the on-net prices in the L-type segment first decrease before

11The proofs for the case for small departures from cost based termination rates are available
upon request.
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we arrive at a jump that occurs because the networks begin to mix. Let us now
shed some more light on this by using the Shubik-Levitan (SL) utility functions.
After some straightforward, but very tedious, algebra, it can be shown that, when
network j sets p̄∗j = p̄∗on,

πLi (p̄Mon, p̄
∗
on)− πLi (p̄∗on, p̄

∗
on) = v[2c]δ(z, λ),

where v[2c] = (b− 2c)2/2 and

δ(z, λ) = −λ2(16(1+λ)2−8z(4+7λ+3λ2)+z2(16+23λ+8λ2))/4(−4(1+λ)+z(4+3λ))2.

Thus, since v[2c] is a positive constant, whether we have a pure or a mixed
strategy equilibrium depends on δ(z, λ) only. It can be shown that for 0 < z
/ 0.94, δ(z, λ) is always negative.12 In this case, network i’s best response is to
set p̄i = p̄∗on, and we arrive at the pure strategy equilibrium of Proposition 3. For
0.95 / z < 1, δ(z, λ) is always positive. In this case, network i’s best response is
to set p̄i = p̄Mon, and we arrive at the mixed strategy equilibrium.13

Proof of Proposition 2

Proof. Given that the networks set the calling prices in the two-part tariffs
equal to perceived marginal cost, the profit of network i can be written as

ni(ri − f) + (a− c)(1− ni)niqH(a+ c) + λ(−f + (p̄∗i − 2c)(niq(p̄
∗
i ) + λqi(p̄

∗
i , p̄
∗
j)).

Let us insert the right-hand side of (7) for ni and maximize the above equation
with respect to ri. Then, we obtain the following best response function:

ri =
1

D
[(t− vH(2c) + vH(a+ c) + (a− c)qH(a+ c))rj+

(t− vH(2c) + vH(a+ c))(f + t− (p̄∗i − 2c)λq(p̄∗i )− vH(2c) + vH(a+ c))],

where D = 2(t − vH(2c) + vH(a + c)) + (a − c)qH(a + c) > 0. The best response
is upward sloping when a ≥ c since stability in the H-type segment requires
t − vH(2c) + vH(a + c) > 0. Solving the networks’ best responses yields the
equilibrium subscription fees

r∗1 = r∗2 = t+ f − vH(2c) + vH(a+ c)− (p̄∗i − 2c)λq(p̄∗i ).

Proof of Proposition 3

Proof. The proposition states that if |∂qi(p̄∗on, p̄∗on)/∂p̄i)| ≤ k, it is a best reply
for network i to charge p̄∗on, given that network j also charges p̄∗on. After taking

12The details are available upon request.
13For 0.94 / z / 0.95, the sign depends on λ in a complicated way. Details are available upon

request.
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the derivative of (8) with respect to p̄i, plugging in p̄∗on for both p̄i and p̄j and
some reorganization of terms, we obtain (9). Note that to set p̄∗i = p̄∗on is only a
local maximum of network i’s profit function, given that network j also charges
p̄∗on. There may exist a second local maximum, which may emerge when network i
sets a very high price as a best reply to p̄∗j = p̄∗on. In that case, qi(p̄i, p̄

∗
on) = 0 and

hence ∂qi(p̄i, p̄
∗
on)/∂p̄i = 0. Less formally, this means that all L-types use network

j’s tariff to call one another. However, by setting a high on-net price, network
i capitalizes on the λq(pi)/2 number of calls from the L to the H-types, where
it has a monopoly. The second local maximum (best reply candidate) is found
by maximizing πLi under the constraints that qi(p̄i, p̄j) = 0 and p̄∗j = p̄∗on. After
reorganizing terms, the optimal price p̄Mon is given by

p̄Mon − 2c

p̄Mon
= − q(p̄Mon)

p̄Mon(q′(p̄Mon)
>
p̄∗on − 2c

p̄∗on
.

Note, however, that to set p̄∗j = p̄∗on cannot be a best reply for network j,
given that network i charges p̄∗j = p̄Mon. In that case, network j could increase its
on-net price by a small amount to increase the profit it derives from the calls from
L-types to L-types, hence increasing its total profit. Likewise, p̄i = p̄Mon cannot
be a best reply to p̄∗j = p̄Mon, because a small decrease in price would yet again
increase network i’s profit. Consequently, a mixing equilibrium candidate emerges
in which the networks choose their prices from a probability distribution with
support [p̄∗on, p̄

M
on]. We can conclude that the pure strategy equilibrium emerges if

πLi (p̄∗on, p̄
∗
on) ≥ πLi (p̄Mon, p̄

∗
on)⇔

(
1

2
q(p̄∗on) + λqi(p̄

∗
on, p̄

∗
on))(p̄∗on − 2c) ≥ 1

2
q(p̄Mon)(p̄Mon − 2c).

Whether or not πLi (p̄∗on, p̄
∗
on) ≥ πLi (p̄Mon, p̄

∗
on) depends on how elastic the call

demand qi(p̄i, p̄
∗
on) is to changes in p̄i. For instance, when |∂qi(p̄∗on, p̄∗on)/∂p̄i)| ap-

proaches infinity, the margin and profits from the L-type segment approach zero,
if network i sets its on-net prepaid price according to (9). Consequently, there
exists a critical value k above which p̄Mon and not p̄∗on is a best reply to p̄∗on.
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