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Abstract

The extent of market efficiency induced by rational behaviour of market participants
is central for economic research. Many economists have already examined sports-betting
markets as a laboratory to better understand trading behaviour and efficiency of stock
prices while avoiding to jointly test the hypothesis of a correct capital market model. The
following paper will investigate whether the European football betting market fulfils the
efficiency paradigm introduced by Fama (1970) with a unique dataset allowing for an
investigation of the German betting market in view of its regulatory changes recently.
The analysis contributes to the literature by conducting a variety of empirical strategy
including rational expectation frameworks and an ordered choice model to stress the
ex post market performance from a weak and semi-strong form perspective. In view of
existing market distortions as taxes, switching costs of changing betting providers and
limitation in competition, the results of the analysis are indicative of a rational market
equilibrium surprisingly close to the efficiency benchmark.1

1The analysis is based on a dataset provided by Sportradar. We are grateful to the whole Sportradar
team for their support. We also gratefully acknowledge comments on an earlier draft of this paper from
participants of the 2017 ESEA conference in Paderborn and of the 2017 IASE conference in Shanghai.
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1 Introduction
To what extent are market outcomes efficiently induced by rational behaviour of market
participants? This question is still one of the most controversially discussed in economics,
with application to many different market types. The following paper will examine one
very particular application: We will investigate whether the European football betting
market fulfils the efficiency paradigm introduced by Fama (1970).
The degree to which markets incorporate information is one of the most important

questions in economic research, especially for economists dealing with financial markets.2

. Hence, the empirical literature tried to test the degree of market efficiency extensively
within stock exchanges and other markets for financial assets (Fama (1991)). However,
as discussed by Fama, it is only possible to test the efficiency hypothesis, e.g. whether
information is properly reflected in asset prices, in the context of a correct pricing model,
the so-called Joint Hypothesis Problem. More recently, several studies examined the
performance of sports betting markets and pointed out the advantage of a fixed terminal
value of its assets realizing within an ex ante fixed period of time. Although these markets
constitute only a small part of most economies compared to other financial markets, the
characteristic of a reduced pricing problem opens up significant opportunities for economic
analysis (Sauer (1998)). Given other similarities between trading with financial assets and
wagering markets, the betting market provides even a superior setting for testing market
efficiency in general according to Thaler and Ziemba (1988).
This empirical study is based on an exclusive dataset of European online bookmaker

prices provided by Sportradar, a multinational sports data provider and institution
employed by the UEFA to monitor the football gambling market. The analysis focuses
on matches of major European leagues since they constitute one of the most liquid and
important betting markets (Vlastakis et al. (2009)). Precisely, the data contains closing
odds of 14 online bookmakers, who report price adjustments to Sportradar. While in the
betting market literature empirical studies are mainly conducted with publicly available
online databases collected at a fixed point during the week,3 this database enables to
test informational efficiency in a more rigorous way. Furthermore, the sample contains
some bookmakers mainly or only active in the German market and allows an analysis
with a special reference to the German betting market, a market characterized by a state
monopoly for betting services until 2012 and afterwards partially liberalized.
This empirical analysis will be divided in two parts. First, the informational efficiency

will be analysed by examining the unbiasedness and neutrality of betting prices. This can
be seen as a weak-form efficiency test while stressing the assumption that no abnormal
returns can be achieved using just historical price information. In the second part, the

2See on this e.g. the overview by Williams (2005)
3The main source of historical odds used in the existing literature is www.football.data.co.uk.
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efficiency of the betting market is challenged by a statistical forecasting model using
publicly available information from which betting strategies are derived. The analysis
will include the English betting market and the first two divisions within the English
football league system as well as British licensed bookmakers.4 The focus on this market
is mainly justified with its size, its tradition and its liberal market form. In addition, the
German market will be reviewed in detail, e.g. Bundesliga 1 and 2 matches and odds from
bookmakers that are available for German costumers. While the British betting market was
liberalized and experienced a reduction in betting taxes already before the first period of
historical odds (2006 - 2016) in the dataset, the German market was officially characterized
by a state monopoly until 2012 and was afterwards affected by a tax introduction on
stakes, including private bookmaker services, following a partial liberalization. Therefore,
comparing the efficiency of these two markets over time may also reveal some effects of a
change in the market structure and legal framework of betting markets. However, a clear
separation of the two markets will not be possible since we are examining online betting
odds in this analysis and wagering on foreign divisions is not excluded. Nevertheless,
bookmakers may anticipate closely the domestic betting demand for the English and
German divisions respectively.

The structure of this analysis will be as follows: First, the concept of market efficiency will
be outlined briefly in chapter 2. Subsequently, chapter 3 will provide a short introduction
to the European betting market and a theoretical perspective on gambling. This will be
followed by a literature review of efficiency analysis within betting markets (chapter 4).
The empirical analysis presented in chapter 5 will be structured in two parts, beginning
with tests of the weak-form market efficiency hypothesis, e.g. the informational efficiency of
bookmaker prices. Following this, an ordered-probit model will be estimated to challenge
the efficiency of the bookmaker market which is described with the semi-strong-form
efficiency hypothesis by deriving forecasts based on publicly available information. Finally,
the economic significance of different betting strategies will be examined and the results
of the analysis will be summarized in a conclusion (chapter 6).

4There are parallel league systems in the UK but the main divisions are the Premier League and First
League.
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2 Efficient Market Hypothesis
The Efficient Market Hypothesis (EMH) has mainly been shaped by Eugene Fama. In one
of his early speeches, he claimed the following:

In an efficient market, competition among the many intelligent participants leads to a
situation where, at any point in time, actual prices of individual securities already reflect
the effects of information based both on events that have already occurred and on events
which, as of now, the market expects to take place in the future. (Fama (1965))

This implies that prices should reflect at any time all the relevant and available in-
formation affecting the underlying security. A more economically sensitive definition is
given by Jensen (1978) where markets are characterized as efficient with respect to an
information set σt if it is impossible to make economic profits by trading based on the
respective information set σt. As a result, costly fundamental analysis of securities or
expert knowledge about market expectations lose their economic rationale. However,
Fama (1970) claims that the following sufficient conditions for market efficiency need
to be assumed. Precisely, there are no transactions costs in trading securities and the
information is costlessly available to all market participants. Additionally, it is assumed
that all agents agree on their future expectations and implications of current information.
In Grossman and Stiglitz (1980) the characteristics of an efficient market is examined
with a noisy rational expectations model and endogenous choice of being informed. The
informativity of the price system depends on the number of individuals who are informed
and on several other critical parameters in the model. Precisely, these are the cost of ac-
quiring information, how informative the price system relative to the market random noise
components is, and how informative the information obtained by an informed individual
might be. In conclusion, investors need to be attracted by some form of expected profit as
normal returns to their investment, otherwise there would be no incentive to analyse the
market and ensure its informational efficiency. Hence, an efficient amount of inefficiency
needs to be in the market to ensure a stable equilibrium close to the efficiency benchmark.
Consequently, assigning markets strict efficiency characteristics has to be seen due to

non-zero costs for transaction and information accumulation as well as heterogeneity of
expectations in reality as an approximation or benchmark case. Therefore Fama (1991)
suggests that any finding of market inefficiency is not surprising per se, but proves the
importance of measuring the extent of inefficiency within the market.
Fama (1970) adjusted the EMH by defining different information sets incorporated by

the market price whereupon the tautology of a general efficiency claims becomes empirically
falsifiable:
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• The Weak-Form Efficient Market Hypothesis, in which the information set σt
is defined to be solely the historical price information set derived from past price
history of the market at time t.

• The Semi-Strong-Form Efficient Market Hypothesis, in which σt includes all
public available information at time t extending the historical price information set.

• The Strong-Form Efficient Market Hypothesis, in which σt incorporates all
information, from public as well as private nature, at time t.

However, one of the fundamental problems of detecting inefficiencies in financial markets
is the underlying asset-pricing model defining "proper" prices to securities, given the
uncertainty about future pay-offs, even over an infinite horizon as in the stock market.
The so called Joint-Hypothesis Problem (Fama (1991)) arises since empirical tests can
fail either because one of the two hypotheses, the hypothesis that the pricing model is
correct or the market is efficient, is false or because both parts of the joint hypothesis are
incorrect (Jensen (1978)).

Efficiency Hypothesis Applied to Betting Markets

Since betting markets are defined by a fixed terminal value of bets, the markets’ assets,
realizing within an ex ante fixed period of time, the joint-hypothesis problem of other
financial markets can be neglected. Many economists have already examined sports-betting
markets as a laboratory to better understand trading behaviour and efficiency of stock
prices while avoiding to jointly test the hypothesis of a correct capital market model
(Williams (2005)).

Precisely, the betting prices should be proportional to the true probability of the
underlying event in an efficient market, since otherwise competing bookmakers with
fair odds would get the betting demand solely. Therefore, examining the informational
efficiency of bookmaker prices can be seen as a clear testing strategy of weak-form market
efficiency. Moreover, since higher potential payoffs in case of winning the bet need to
be proportional to lower probabilities of the underlying outcomes, the expected betting
returns should be identical, independently of the applied betting strategy. Consequently,
in betting markets weak-form efficiency implies that neither bookmaker nor punters can
achieve abnormal returns using historical price information, where abnormal returns are
defined by divergence from the bookmaker market takeout (Kuypers (2000)). Translating
the semi-strong-form efficiency hypothesis into the betting market setting leads to the
claim that incorporation of publicly available information should neither improve the
accuracy of outcome predictions based on bookmaker odds nor lead to superior returns.
The strong-form includes also private information to that claim. However, in football it
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is common to assume that there is no great deal of private or insider information, since
games are usually played in front of large audiences and the conditions of a team and
their individual players are extensively discussed in the media.5 Therefore, the rest of the
analysis is exclusively focusing on weak and semi-strong-form market efficiency in case of
the football betting market.

3 The Sports Betting Market
In its basic form, sports betting has been around for hundreds of years, as betting on
athletic events dates back to the Roman empire (Sauer (1998)). The market for sports
gambling has steadily gained popularity while the nature of traditional betting markets has
been strongly affected by changes in information and communication technology (Vlastakis
et al. (2006)). Nowadays, there are several market forms offering in coexistence betting
services for sport events. Hence, their individual market characteristics can be assumed to
be significantly affected by each other, as examined by Franck et al. (2010) and Vlastakis
et al. (2009). This study will focus exclusively on online betting markets, one of the
fastest growing service sectors in Europe with annual growth rates of up to 15% (Peren
and Clement (2016)). Particularly, the European market is today the largest market for
online gambling worldwide and occupies more than 47.6% per cent of the e34.6 bn online
generated global gaming gross win (stakes minus winnings) in 2015 (EGBA (2016)). Figure
1 illustrates the gross gaming revenues of the European online and offline market in 2015
and their expected evolution until 2020. It is expected that the market share of online
betting will increase from 17.5% to 22.5% while the overall market revenue will rise from
e88.2 bn to e109.2 bn.

Figure 1: EU Gross Gaming Revenue
Source: EGBA 2016

In the following, a brief description of the two main forms of betting markets will be

5See e.g. Kuypers (2000). However, some evidence from studies on match-fixing (e.g. Rebeggiani and
Rebeggiani (2013)) may suggest to be more careful on that.
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given by highlighting their differences and the suitability of online betting markets for an
efficient market analysis.

3.1 The Offline Fixed-Odd Bookmaker Market

The traditional bookmaker market is constituted by coupon betting in physical betting
shops where prices are characterized as "fixed-odds", hence the betting quotes or so-called
odds do not vary over time in response to changes in betting volumes. These offline
services are still accountable for more than two thirds of the overall gambling market
(European-Commission (2012)). Dixon and Pope (2004) describe the typical fixed-odds
pricing mechanism with a panel of professional odds compilers who meet on a weekly
basis and use their subjective judgement and expert knowledge of the football teams’
current state to set the odds on home team win, away team win and draw results one
week in advance. Therefore, it can be assumed that the fixed-odd betting lines contain less
information and more supply risk than betting prices that are dynamically adjusted until
the match starts (Vlastakis et al. (2009)). This is the case for the rising online betting
market on which we are focusing hereinafter. Another notable feature of the physical
betting market is the anonymity of the betting audience. Usually, there is no requirement
of registering in a betting shop to submit a wager, which is why bookmakers are not able
to identify the betting behaviour of individual punters over time.

3.2 The Online Bookmaker Market

Online bookmaker services perform differently from the offline fixed-odd market, even
though they provide identical assets and are mostly operated by the same service providers
(Peren and Clement (2016)). Whereas punters remain anonymous in the offline market, at
online betting platforms their identities are revealed through the requirement of a personal
account. Therefore, a punter faces switching costs including the time and cost of money
transfer by opening a new online account at a competitor’s platform. Furthermore, online
betting providers have the possibility to gather information about the trading behaviour
of individual clients and reserve the right to limit the individual maximum stakes or to
close an account in case of a history of extreme betting profits (Franck et al. (2013)).
This characteristic potentially impairs the forces of informed traders to ensure an efficient
market equilibrium and therefore has to be mentioned before conclusions across markets
in general are drawn.
However, the main advantage of the online market is its dynamic quoting process in

contrast to the offline services and thereby the ability of bookmakers to incorporate new
information in their price adjustments. This includes, besides the new information about
the contestants itself, primarily the information about the distribution of bets and thus
the expectations of the betting public (Vlastakis et al. (2006)). Apart from this, the online
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market stands out with high price transparency, whereby bettors can easily compare the
odds of various bookmakers and identify favourable price discrepancies at low searching
costs6 (Franck et al. (2011)). Being a relatively young and new market, the online gambling
sector in Europe has been steadily developing, albeit more slowly in recent years due to
increasing regulatory pressure (European-Commission (2012)). In conclusion, while so
far the literature was mainly examining fixed-odd betting prices or online odds that were
collected in advance, the following examination of closing odds, which capture the final
price of the online market’s dynamic price adjustment process, may reveal new insights.

3.3 Regulation and Market Characteristics

In most European countries gambling markets are subject to strict regulation, in some
cases they are even entirely controlled by the government (Rebeggiani (2009)). Whereby
the main justification of strict regulation and high tax burden for gambling markets is
based on pathological gambling or addiction, it suits as well as "highly significant area
for governments seeking continuous or compensatory revenue for the public purse" (Nikki-
nen (2014)). However, due to the rise of online platforms, which are based offshore but
are available for domestic costumers, the national regulation and taxation schemes have
recently come under pressure. In response to the threat of decreasing tax incomes and
a rising grey market, the UK was the first country that reformed betting taxation by
considerably lowering its effective level and declaring online betting as legal (Vlastakis
et al. (2006)). As Forrest et al. (2005) note, the removal of betting taxes potentially
improved the overall efficiency of betting markets by attracting well-informed professional
bettors who are capable of identifying mispriced bets. Nowadays, the British market is the
largest betting market in Europe and is mainly dominated by a few large service providers
like WilliamHill and Ladbrokes (Vlastakis et al. (2006)).

Moving the focus to the German market, a different framework emerges. Until 2012,
the state monopolist Oddset was the only legally accepted betting provider (Rebeggiani
(2015)). In the same year, a new gambling state treaty was adopted to open up the way
for private betting companies to enter the German market legally via state-issued licenses.
However, none of the planned licenses has been granted to any company so far, leaving
private bookmakers in a legally unregulated but tolerated “grey area” where companies
are taxed but their legal status remains uncertain (Rebeggiani (2015)). Peren and Clement
(2016) examined the German online betting market in 2014 and estimate the number of
active online betting portals for German costumers at round 130.

All in all, these two national markets are characterized by different regulation schemes
and some providers are only accessible for the betting public in one country . Nevertheless,

6There are several platforms that compare bookmaker odds as betexplorer.com and oddschecker.com or
identify arbitrage opportunities as surebet.com.
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both markets are affected by an increase in competition in view of a substantial grey
market and therefore provide an interesting setting for an efficient market analysis.

3.4 A Theoretical Background of Betting Markets

From a theoretical perspective the outcome of a football game consists of three disjunct
events ignoring the actual score result. A home victory (H), a draw (D) or an away victory
(A): Ω = ∪H ∪ D ∪ A. These outcomes provide the underlying events of the football
result online betting market, in which we are interested in the following. By quoting
odds for these individual events, bookmakers offer Arrow-Debreu securities7 denoted by
(σH , σD, σA) ∈ R3

+. In the European football betting market, decimal odds are common,
determining the payout factor including the returned stake in case of winning for each
of the match outcomes. Hence, within wagering markets, odds constitute prices supplied
by competing bookmakers who want to attract the demand of the betting audience
and act as market makers while the bet demand side is left with a take-it-or-leave-it
decision, by either hitting the market quotes and decide about the amount of stake or
refrain from participating. Therefore, bookmaker markets can be classified as quote-driven
markets in analogy to similar financial markets (Franck et al. (2010)). Moreover, in this
simple speculative market for future cash flows, transactions can be denoted as zero-
sum transactions where the bookmaker takes the reverse position to the punter. Hence,
bookmakers are confronted with a substantial risk in case of mispriced betting lines and
in presence of bettors whose skills allow them to achieve positive expected profits (Levitt
(2004)). The following will briefly provide some theoretical foundations how equilibrium
prices are determined in a market with uncertainty and state contingent assets.
If bookmakers have deep pockets such that it can be assumed that they are able to

honour their debt in each case, if they are risk neutral and if there is perfect competition
in the market, then standard General Equilibrium Theory tells us that Arrow-Debreu
securities are in perfectly elastic supply and by rational expectations correctly priced
(Mas-Colell et al. (1995)), i.e. the asset price is the inverse of the probability of the event.
The existence of these so-called rational expectation equilibria is described in Radner
(1979) as generic and defined by an equilibrium that "reveals to all traders the information
possessed by all of the traders taken together".
Alternatively, one can analyse the market from a Game Theoretic perspective. Since

the Arrow-Debreu securities are individually perfectly homogeneous, the market can be
modelled as a Bertrand competition with N firms (see Mas-Colell et al. (1995)). By
further assuming that all bookmakers share the same cost (cH , cD, cA) ∈ R3 and subjective
probability over the events (pH , pD, pA) ∈ [0, 1]3, we can write the bookmakers’ expected
profit as:

7State contingent assets which pay one unit of a numeraire, if a particular state of the world is reached
and zero otherwise, see Mas-Colell et al. (1995).
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E[πBM ] = max
σe

Q(σe, P )(1− peσe − ce) (1)

where the punters’ demand function is given by Q(σe, P ) depending on the bookmaker’s
price vector (σH , σD, σA) and their own believes about the probability distribution of the
match outcomes P .
Thus, the bookmaker’s expected profit is the money at stake minus cost of provision

and the expected payouts for each of the outcomes e ∈ {H,D,A} where the punters
receive the offered odds multiplied by their stakes Q(σe, P ). We know that in a unique
Nash-Equilibrium, price equals marginal cost:

1 = peσe + ce ⇐⇒ σe = 1− ce
pe

(2)

Hence, from this perspective we receive the same equilibrium price as we argued using
the Rational Expectations Equilibrium but adding the cost-wedge ce. The assumption of
unanimity in the subjective probability of the event pe is very strong, but there is also
a reasonable rationale for it. In the real world, as mentioned above, online bookmakers
constantly update their quotes ensuring the ability to learn from competitors’ pricing
behaviour. Since quoting "wrong" odds is a costly signal, i.e. bidders can take those odds,
we are in a costly signalling game in which bookmakers learn their competitors’ subjective
probabilities and update their own. Hence, if all competitors are symmetric, this should
aggregate to the same subjective probability across agents. There are analogous arguments
for the unanimity in cost of provision since cost differences would exclude all but the
cheapest firm from the market.8

Since bookmakers are bearing risk and transaction costs =⇒ ce 6= 0, they are charging
commission for their services implying that the sum of the inverse odds ∑e

1
σe
> 1 exceeds

the probability of a sure event Ω = ∪H ∪D ∪ A. Assuming now the costs of providing
bets are homogeneous across outcomes c = cH = cD = cA, the implied commission or
bookmaker margin is then given by:

m =
∑
e

1
σe
− 1 =

∑
e

pe
1− c − 1 = 1

1− c − 1 = c

1− c (3)

Consequently, to receive the correct implied probabilities of the bookmaker market, we
have to rescale the inverse odds by the commission charged,9 precisely:

8If agents had different beliefs and moved only simultaneously as in the fixed-odd market, there would
be a winner’s curse attached to the one with the highest odds. This bookmaker secures the whole
market but will offer too much money similar to a common value auction. Thus, one should expect
greater cost wedges there.

9In our analysis, we assume that the commission (overround) is equally distributed over the outcome
probabilities, which is in line with the literature (see Forrest et al. (2005), Franck et al. (2010)).
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P IP
e = 1

σe

1
1 +m

= 1
σe

1∑
e

1
σe

(4)

This implied probability will be used in the following as a forecast instrument, e.g. the
bookmaker prediction for outcome e, to assess the informational efficiency of the betting
market.
The exact business strategy of bookmakers is not well known and outside the scope of

this analysis. If it can be assumed that bookmakers are systematically at least as good as
the gambling audience at predicting the outcomes of games and always set the “correct”
prices in line with the true probability, the markets can be assumed to be efficient leading
to a bookmaker return or takeout in the form of the margin m.

Since the betting market is characterized by zero-sum transactions as already mentioned,
the betting audience is oppositely confronted with negative profits in expectation, which
raises questions about the rationality of sports wagering at all. Even though the punters’
participation in such an unfair game contradicts the axiomatic approach of expected utility
maximization by Von Neumann and Morgenstern (1953), there are several explanations in
the literature such as obtaining pleasure from gambling or adjusted utility frameworks
where marginal utility is not universally declining but characterized by local risk preferences.
However, for further information about gambling behaviour the reader is referred to the
literature (e.g. Sauer (1998)). The focus will now return to the bookmakers’ profit
maximization problem, assuming the punters’ decision to enter the market has already
been made.

Besides the neutral pricing strategy, bookmakers may be aware of predictable patterns
in betting behaviour by punters, including behaviour based on cognitive or judgemental
biases (Dixon and Pope 2004). If on average punters display systematic biases exploited by
the bookmakers, the market will contradict the efficiency hypothesis. Levitt (2004) briefly
sketches some profit maximizing scenarios within the bookmaker market, leading to a
deviation of an efficient market equilibrium. First, bookmakers are skilled in determining in
advance the prices σe which equalizes the quantity of money wagered on the win and losing
outcomes respectively, hence they balance the book. In this case, the bookmaker achieves
a positive return equal to the margin charged, regardless of the match outcome realization.
Consequentially, bookmakers do not need to be good at forecasting the underlying event
outcome but rather good at forecasting bettors’ demand or beliefs about the underlying
probability distribution, which implies that in case of bettor irrationality the market
implied probabilities may deviate systematically from the true probability distribution.
However, in case of skilled bettors with superior forecasting performance, bookmakers face
substantial losses if their prices do not include all relevant information and differ widely.
Alternatively, bookmakers are not only efficient in predicting game outcomes but also
anticipate bettors’ preferences and systematically set the “wrong” prices in a manner that
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takes advantage of biased irrational behaviour of the betting audience. To sum up, the
bookmaker odds are likely to be influenced by both, the true outcome probabilities and
the betting audience’s expectation and demand (Franck et al. (2010)).

4 Literature Review
There exists a considerable amount of papers dealing with market efficiency in sports
betting markets. Detailed overviews are provided e.g. by Williams (2005) and Sauer (1998).
In general most of the empirical research supports an efficiency paradigm for betting
markets. However, some anomalies have been detected and repeatedly confirmed, though
the statistical and economic significance of these inefficiencies have seemed to disappear
in more recent years, which suggests an increase in betting market efficiency, potentially
evoked by an increase in competition, price transparency and the rise of alternative betting
market forms (Vlastakis et al. (2009)).

4.1 Weak-form Efficiency Testing

The first empirical studies examining market efficiency within wagering markets were
mostly conducted in racetrack betting. This form differs from the bookmaker football
wagering markets with ex ante fixed odds, since horse race betting is characterized by a
pari-mutal betting mechanism, i.e. the potential payout is not fixed ex ante but the fraction
of the total betting pool you will receive in case of winning. However, these studies revealed
some interesting anomalies while providing mixed evidence for market efficiency in general.
Several authors have studied the relationship between the objective probabilities of winning
a race and the probability reflected by market odds (Quandt (1986)). Ali (1977) introduced
the term "favourite-longshot bias" describing the well-documented tendency of punters to
consistently overbet low probability outcomes (longshots) and underbet high probability
outcomes (favourites) relative to their observed frequency of winning. This anomaly was
confirmed also in other sports betting markets and summarized with the phenomena that
lower odds (favourites) tend to be associated with higher returns and vice versa lower
returns with higher odds (underdogs), which suggests that market prices anticipate the
irrationality in betting demand (see Woodland and Woodland (1994), Snyder (1978) and
Cain et al. (2000)). Similar biases were detected in financial markets for equity options
by Rubinstein (1985) according to which shorter maturity options (longshots) tend to be
overpriced. For the favourite-longshot bias phenomena there exist a variety of explanations
such as risk attitudes in form of risk-loving utility of gamblers (Ali (1977), Quandt (1986))
or insider trading introduced by Shin (1991, 1993). Alternatively, behavioural theories as
the Prospect Theory suggest that cognitive errors and misjudgements of probabilities may
play a role in market mispricing (Kahneman and Tversky (1979)).
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Examining more explicitly the relationship between objective probabilities of outcome
occurrence and subjective probabilities implied in quoted odds, Pope and Peel (1989)
investigate the efficiency of prices set by four UK high street bookmakers for fixed-
odds betting on English association football. A simple test of the weak-form efficiency
hypothesis is based on linear probability regression models of match outcomes against
implicit bookmaker’s probabilities. The results indicate some deviations of the implied
bookmaker probabilities from the axioms of rational expectations, though exploiting these
inefficiencies didn’t result into profitable returns. Several other studies were also not able
to reject the weak-form efficiency hypothesis (Gandar et al. (1988), Sauer et al. (1988)).
However, Golec and Tamarkin (1991) suggest that this simple form of regression tests
may not reject market efficiency because of their weak statistical power and it is shown
that economic tests in form of testing the profitability of different betting strategies reject
the EMH more often. Examining the point-spread NFL betting market10 by explicitly
testing for home as well as favourite biases, Golec and Tamarkin (1991) detect significant
deviations from the efficient market hypothesis in these two dimensions implying that bets
on underdogs or home teams win more often than bets on favourites or visiting teams,
albeit with disappearing magnitude over their sample period. Using a more general model
accommodating the symmetries and interdependence of the principal team characteristics
(favoured, underdog, home and away), Dare and MacDonald (1996) find little or no evidence
against market efficiency in their subsequent analysis. Gray and Gray (1997) apply in a
similar way a probit regression model and test for potential momentum effects including
recent performance proxies. Their results indicate that the market overreacts to a team’s
recent performance suggesting that a profitable strategy involves betting on teams that
have performed well over the season as a whole, but which have performed poorly in recent
weeks. This result has a close analogy with financial markets, in which contrarian strategies
are profitable, though the anomalies also seem to have been substantially attenuated in
recent years.
Testing for sentiment bias, Avery and Chevalier (1999) examine the dynamics of point

spread betting lines during betting periods and control for expert opinions, a hot-hand bias
as well as a bias for team prestige. The results from a sample of games from 1983 to 1994,
indicate that each set of sentiment variables serves as a significant predictor of point-spread
betting line movements but not of the actual game outcomes itself. Forrest and Simmons
(2008) examine the weak-form efficiency of the Spanish online football betting market with
respect to fan support bias besides the home-away and favourite-underdog dimensions.
They use a multivariate analysis where a proxy is included to account for the relative
numbers of supporters of the two teams. The odds appear to be influenced by the relative

10This is wagering on a range of match outcomes where the resulting payoff is based on the wager’s
accuracy.
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number of fans respectively, with supporters of the more popular team offered more
favourable terms on their wagers. Focusing on an economic testing strategy, Vlastakis
et al. (2009) assessed the international efficiency of the European football betting market
by investigating the profitability of strategies based on combined betting and detection of
arbitrage opportunities as well as betting strategies derived from regression models. Despite
the increasing competition in the betting industry recently, the results of the empirical
analysis in Vlastakis et al. (2009) suggest deviations from the standard weak-form market
efficiency assumption. In particular, combined betting across two or three bookmakers
simultaneously lead to highly profitable arbitrage opportunities. Subsequently, Franck
et al. (2013) examine inter-market arbitrage by combining bookmaker odds and odds from
a bet exchange market platform, receiving a guaranteed positive return in 19.2 % of the
matches in the top five European soccer leagues. The authors indicate that bookmakers
may set prices not only by myopic optimizing over a particular bet but also by taking the
future trading behaviour of their customers into account.

4.2 Semi-strong-form Efficiency Testing

In testing the semi-strong form efficiency of financial markets, two main approaches have
been adopted. The first one is to assess the direct impact of new public information
on prices, the other is searching for opportunities to earn systematic abnormal returns
based on publicly available information and identifiable market circumstances, so-called
market anomalies (Williams (2005)). Translating this into the betting market setting,
the semi-strong efficiency hypothesis implies that the incorporation of publicly available
information should not improve the accuracy of outcome predictions based on bookmaker
odds and not result in superior betting returns (Kuypers (2000)).

However, searching for market anomalies in betting markets including public information
raises the question how we can incorporate any information for match outcome predictions
in general. It seems evident that match results in association football are governed partly
by chance and partly by skill (Hill (1974)) since teams are not identical and each one has
its own inherent quality (Maher (1982)).
There are two main statistical approaches for modelling football match outcomes in

literature. The first one models the goal scoring process of the two opponent teams by
estimating a statistical model approximating the underlying stochastic process of a football
match. Maher (1982) is one of the first papers applying a univariate and bivariate Poisson
distribution11 with means reflecting the attacking and defensive capabilities of the two
opponents. Dixon and Coles (1997)) extend the independent Poisson distribution model
with means modelled as functions of the respective teams’ previous performances and are
able to derive forecast predictions for UK football match score results. Consecutively, the
11This is a discrete probability distribution that expresses the probability of a number of events (here:

goal scored) occurring in a fixed interval of time.
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probability forecasts of the match outcomes are obtained by aggregating the probabilities
of different permutations of the home and away team goals scored. The economic value of
these forecasts are assessed in Dixon and Pope (2004) later on. By using their advanced
statistical forecasting model, the authors find that the market is inefficient as the model
probabilities can be exploited to earn positive abnormal trading rule returns. In contrast
to the favourite-longshot bias described above, they found less-than-fair odds for favourites
and more-than-fair odds for longshots, hence surprisingly a reverse favourite-longshot bias.

The alternative approach to predict match outcomes in the literature involves modelling
the match outcomes home win, draw and away win, directly using discrete choice regression
models such as ordered probit or logit. Kuypers (2000) uses publicly available information
covariates in his ordered probit framework including difference in teams’ average points
and goals scored in preceding games of the season. With a simple forecast-ratio based
betting rule based on the received probability forecasts, he find evidence of market
inefficiency within the UK fixed odd bookmaker market. Forrest et al. (2005) test odds
for the English football seasons 1998 - 2003 with an extended ordered probit model
incorporating a large number of quantifiable variables relevant to match outcomes. The
principal team quality indicators were constructed by partitioning the teams’ win ratios in
components from the present season, the previous season and within 12 and 24 months
respectively. Additionally, the model fit was improved by including recent match results, a
proxy for the importance of the match for final season outcomes, cup involvement, the
geographical distance between the team locations and a measure for the opponents’ relative
fan attendance. The findings suggest that the bookmakers’ forecast accuracy is superior to
the model performance while the odds-setters improved over the sample period relative to
the statistical model. Nevertheless, evidence of statistically significant differences between
the forecast probabilities in three out of five seasons were found and simulation of a
selective betting strategy based on the forecast discrepancy translated into significant
superior returns. In an alternative approach Hvattum and Arntzen (2010) assigned team
ratings based on the ELO rating system, a rating system initially developed for assessing
the strength of chess players, and used the rating difference as a single covariate in an
ordered logit model specification. Although the model’s forecasting performance exceed the
previous approaches in literature, Hvattum and Arntzen also fail to outperform bookmakers’
forecast accuracy between seasons 2001-2008. The review of the forecasting approaches in
the literature is completed by a comparison between the forecasting performance of the
goal-based and result-based approach in Goddard (2005). Estimating a set of models based
on an identical dataset but different modelling approaches, the difference in performance
appeared to be small and no gain was achieved by using the more data and computational
intensive approach of the Poisson distribution models.

All in all, the informational efficiency of the bookmaker market seems to be confirmed
from a semi-strong form perspective, though several authors are able to simulate profitable
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betting strategies including their model forecasts.

5 Empirical Analysis

5.1 Data

The data used in the empirical analysis is combined from different sources, whereby the
main part is originated from an exclusive dataset provided by Sportradar. The dataset
covers all football fixtures of the English Premier League, the English second division
Championship as well as the German Bundesliga 1 and Bundesliga 2. The historical
matches are recorded over the last ten years beginning in the second half of season
2006/2007 until February 201712 with 15.400 matches in total. Besides the match results,
the data lists odds of 14 online bookmakers for each of the theoretical match outcomes
e ∈ {H,D,A}. Including price changes of online bookmakers before the match starts,
we are able to list the last pre-match price offers, the so-called closing odds, and it can
therefore be assumed that all relevant pre-match information, including the betting demand
by then, is incorporated in the examined bookmakers’ pricing decision. However, as can be
seen in Table 1, the database is not fully balanced and the sample of odds varies depending
upon the individual bookmaker.
The 14 bookmakers in this sample are anonymised by their market focus. The sample

contains 3 bookmaker with a primary focus on German speaking betting audience (German
1- 3), 6 leading bookmakers of the British betting market (UK 1- 6) and 5 bookmakers
which are characterized by a more global/ European focus and denominated by EU 1- 5.

12For convenience the football seasons, which typically run from August to May/June are identified by its
end year in the following.
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The first part of the data will be extended to enable the analysis of informational
efficiency with respect to the weak and semi-strong hypothesis. As already mentioned,
examining the semi-strong form efficiency of the bookmaker market requires publicly
available information with potential relevance for match result predictions. Since our
forecasting strategy is structured with a model estimation based on a training sample
including the five preceding seasons, we have to extend the historical match result series by
5 seasons up to season 2001. The information will be extracted from FootballData (2016),
a public database of historical match results and bookmaker odds. In addition to the
match results data, geographical distance between the opponents and relative attendance
is included in the analysis. The geographical coordinates of the team’s stadium location
are collected from GoogleMaps (2016) and the respective distance between the opponents
is calculated with the shortest path between two points on an ellipsoid. The information
regarding fan support, e.g. the relative attendance of the competing teams, is collected
from EFS (2016), whereby the average stadium attendance of the preceding season is used.

5.2 Descriptive Analysis

In the following, the descriptive statistic of the bookmaker data will be examined. The
first panel in Table 1 lists the individual implied bookmaker margins m and their standard
deviations. In the previous section it was mentioned that no bookmaker should be able to
operate at greater margins than their competitors. Surprisingly, as it can be seen, there
is a significant heterogeneity in bookmakers’ average implied margins. Especially, the
German betting provider German 1 shows a very high margin by 18.50% compared to the
average bookmaker margin of 7.94 %. Among the other bookmakers, the takeouts are more
comparable, though the global oriented provider EU 1 stands out with a very low average
commission by 2.46 % combined with the lowest standard deviation. According to their
webpage, the firm intentionally follows a reduced margin pricing model to attract higher
turnovers by reducing betting limits to safeguard against high-skilled punters. Despite
taking the standard deviations as proxy for the riskiness of the bookmakers’ pricing strategy
in general, the statistic reveals no clear picture. The highest coefficient of variation13 is
occupied by German 3, a bookmaker with moderate average margin followed by UK 3 and
EU 2. Therefore, from the descriptive analysis it is not possible to conclude that higher
margins can be seen as a compensation for higher risk taken by the bookmaker.

To examine the margin behaviour in more detail, Figure 2 plots the implied margins
by monthly averages based on Bundesliga 1 and 2 matches. First of all, there is a clear
picture that margins have decreased over time where most of the bookmakers showed
margins close to or higher than 10 % at the beginning of the observation period in 2007,

13Coefficient of variation = sd
mean .
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Figure 2: Evolution of bookmaker margins - German market

besides only German 2, German 3, EU 1 and UK 4 with lower margins. Moreover, the
plot reveals several structural breaks in the time series of monthly margins. The partial
liberalization of the German market seems to affect the bookmaker German 1 in 2014 by
a sharp decrease from roughly 21 % to below 15% whereby EU 4 and 5 as well as UK
3 and 5 reveal sharp decreases already at the beginning or mid of 2012, the year of the
introduction of the new German interstate gambling treaty. All in all, the picture seems
to support decreasing market profits within the bookmaker business, potentially induced
by an increase in competition and market liberalization.

The next panel of Table 1 examines the distribution of implied probabilities derived
from the market odds as described in section 3 relative to the true probability of the
respective outcomes. The chance of the outcome home victory as the final match result is
44.75% and vice versa 26.64% for away victory. This is in line with the so-called home-field
advantage in association football (Hill (1974)), which implies that the home team exhibits
a significant higher probability of winning than visiting teams. Comparing the bookmakers’
average implied probabilities, the market odds coincide with the underlying probability
distribution quiet well. The home win implied probabilities P IP

Home range from 43.27%
to 44.75% comprising the true probability closely. However, comparing the numbers for
away victory P IP

Away and draw P IP
Draw, the market odds tend to overestimate the first one,
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where P IP
Away ranges from 26.23% to 29.73%, while underestimating the chance of a draw

result, though the deviations are only marginal. Hence, there is no clear indication that
the home-field advantage is consistently overestimated, as frequently mentioned in the
literature for example by Vlastakis et al. (2009), but the relative proportions of draw and
away results appear not to be correctly represented by the implied bookmaker probabilities
on average. Examining the probability distribution with respect to favourite and underdog
winning probabilities sheds some light on the magnitude of a potential favourite-longshot
bias in bookmaker pricing. Teams are defined as favourites if the implied probability of
winning exceeds the opponent’s odds and for underdogs vice versa. Since there is not always
an agreement about the assignment of the favourite role between the bookmakers, the true
probabilities are defined if at least 5 betting providers agree on the favourite/underdog
status of a team. Comparing the average values of P IP

Fav by 48.02% and P IP
Und by 23.83%,

the bookmakers seem to slightly underestimate the true odds in the favourite-underdog
dimension on both sides. This raises the question whether the deviation from the true
probability distribution is continuously characterized in the relationship between implied
and actual chance of winning or in form of kinks at the boundary of the probability space
in an otherwise neutral relationship (Cain et al. (2003)).

GER 1 GER 2 GER 3 EU 1 EU 2 UK 1 UK 2 Uk 3 EU 3 EU 4 UK 4 EU 5 UK 5 UK 6 True

Prob.

∅ m 18.50 6.29 7.22 2.46 5.42 7.54 7.62 5.80 7.67 8.43 6.87 10.28 8.98 8.10

SD m 4.40 1.52 1.58 1.01 1.91 2.44 2.53 3.19 2.11 1.87 1.66 2.20 1.69 2.72

P IP
Home 43.27 44.33 44.26 44.75 44.53 43.86 44.25 44.43 44.15 44.17 44.30 43.64 44.54 44.22 44.75

P IP
Draw 26.99 26.48 26.47 26.23 26.38 26.96 26.56 26.31 26.60 26.44 26.48 26.74 26.36 26.61 28.62

P IP
Away 29.73 29.19 29.27 29.02 29.09 29.18 29.19 29.26 29.25 29.39 29.23 29.62 29.10 29.16 26.64

P IP
Fav 47.09 48.48 48.13 49.75 49.09 47.57 48.12 48.79 47.92 48.22 48.52 46.12 48.69 47.83 49.58

P IP
Und 24.48 23.55 24.06 23.70 23.79 23.70 23.76 23.91 23.87 23.94 23.92 24.09 24.17 23.58 24.29

N 10698 14927 14798 14571 15305 13360 14792 14272 15281 15348 15110 15372 12288 10921

Note: Indications are made in percent

Table 1: Descriptive statistics of implied margins and implied outcome probabilities

Examining the relationship between bookmaker’s implied probabilities and the under-
lying actual chance of the outcome more precisely, Figure 3 and 4 in the appendix use
scatter plots for grouped bets on their actual chance of winning14 categorized by their
implied probabilities. In each plot the dashed diagonal line represents neutrality, or lack of
any bias, between the mean bookmaker probabilities per group and their actual percentage

14The categories are specified by a bandwidth of 2.5 percentage points for implied probabilities and at
least 50 observations are required for each group.
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of winners. The solid line is estimated by a locally weighted polynomial regression (see
Fan et al. (1992) and Fan and Gijbels (1996)) of implied probability on actual chance of
winning using cubic polynomials, the Epanechnikov kernel and the rule of thumb bandwith
(ROT)15, so that no functional form of the relationship has to be prespecified. The grey
areas are defining the 95% confidence intervals, whereby the existence of a conventional
favourite-longshot bias would be indicated if the regression line was significantly above the
diagonal at low chance outcomes and below when the chances of winning approach unity
implying that favourites win more and underdogs less often than their betting prices imply
(Cain et al. (2000)). In case of home victory bets the regression line in Figure 4 tracks
the diagonal line for the lower and middle part of the probability space closely with only
vague deviations. Narrowing the focus to bets with implied probabilities between 10% and
40%, where a main part of the home victory bets are located, a slight local tendency to
underestimate the true odds is revealed for EU 1, UK 1 and German 3. At the upper
boundary of the probability space the implied probabilities seem to underestimate the true
odds as well, particularly for German 1, EU 4 and EU 5, supporting the evidence from
Table 1 of underestimated favourite as well as underdog probabilities in general. Figure 5
plots the relationship for away victory bets, whereby interestingly the lower boundary lacks
of any deviations from the diagonal except a slight heightened tendency in case of German
1, EU 4 and EU 5. The biases at the upper boundary of the away victory probability space
is hard to examine due to very few observations in the dataset, in which a heterogeneous
picture EU 1 overestimating high probable away victories while German 1 and EU 5
display a reverse tendency similar to Figure 3. All in all, the analysis of the relationship
between the implied probabilities and the actual chance of winning revealed no clear bias
in line with the so-called favourite-longshot or home-field bias but some indications for
slight deviations at high and low probable outcomes which are differently characterized
for home and away win bets. In the following, we will assess whether these slight de-
viations from neutrality in bookmaker prices may be exploited for superior expected returns.

Trading rules like always betting on the favourite, underdog, home or away team should
yield in expectation the same return according to the efficient market hypothesis. Table 2
states the average returns for these simple trading rules. The first line lists the average
returns a punter would have achieved by betting randomly on an individual bookmaker’s
odds in the sample. Obviously, the average returns should reflect the implied margins
from Table 1, hence we get an heterogeneous picture as well, whereby the returns are close
to the negative average overround estimate m in Table 1. The next two rows display the
betting returns for betting exclusively on home, draw or away win outcomes respectively.

15Weighted least square regression using at each point of interest x the Epanechnikov kernel as weighting
function for points within the bandwidth neighbourhood of x. The results are robust to other kernel,
bandwith or polynomial specifications.
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GER 1 GER 2 GER 3 EU 1 EU 2 UK 1 UK 2 Uk 3 EU 3 EU 4 UK 4 EU 5 UK 5 UK 6

∅Return -17.25 -6.51 -7.40 -2.35 -5.48 -7.79 -7.99 -5.80 -7.93 -8.55 -6.91 -10.84 -8.94 -8.17

∅Ret. Home -13.29 -4.96 -6.15 -2.11 -4.57 -5.45 -5.96 -4.57 -5.83 -6.60 -5.39 -7.88 -7.22 -5.38

∅Ret. Draw -18.80 -6.50 -6.28 -1.07 -4.85 -8.21 -7.52 -4.25 -7.70 -7.66 -6.53 -10.35 -7.71 -8.11

∅Ret. Away -19.66 -8.08 -9.78 -3.86 -7.01 -9.70 -10.49 -8.59 -10.27 -11.41 -8.81 -14.30 -11.90 -11.01

# Bets 10698 14927 14798 14571 15305 13360 14792 14272 15281 15348 15110 15372 12288 10921
∅Ret. Fav -11.89 -5.44 -6.32 -3.61 -5.46 -5.77 -5.64 -5.57 -6.05 -7.32 -5.94 -6.48 -7.50 -5.87

∅Ret. Und 20.59 -7.34 -9.53 -2.29 -5.98 -9.08 -10.46 -7.37 -9.78 -10.53 -8.03 -15.05 -11.35 -10.20

# Bets 10482 14613 14522 14506 15147 13024 14468 14076 14938 15045 14881 14717 12154 10620
∅Home.Fav -9.07 -4.04 -4.69 -2.47 -4.04 -4.23 -4.40 -3.82 -4.59 -5.30 -4.35 -5.07 -5.55 -4.25
# Bets 7859 10952 11039 10771 11311 9816 10978 10517 11304 11316 11195 11370 9231 8058

∅Home.Und -4.20 -0.73 -1.38 0.43 -0.72 -1.19 -1.38 -0.62 -1.24 -1.25 -0.86 -2.53 -1.75 -1.03
# Bets 2623 3661 3483 3735 3836 3208 3490 3559 3634 3729 3686 3347 2923 2562

∅Away.Fav -2.82 -1.40 -1.63 -1.14 -1.42 -1.54 -1.24 -1.74 -1.46 -2.02 -1.59 -1.41 -1.96 -1.62
# Bets 2623 3661 3483 3735 3836 3208 3490 3559 3634 3729 3686 3347 2923 2562

∅Away.Und -16.38 -6.61 -8.15 -2.72 -5.27 -7.89 -9.08 -6.75 -8.53 -9.28 -7.17 -12.52 -9.61 -9.18
# Bets 7859 10952 11039 10771 11311 9816 10978 10517 11304 11316 11195 11370 9231 8058
Note: Indications are made in percent

Table 2: Average returns for various simple betting rules

Contrarily to the findings in the bookmaker’s implied probabilities, the strategy selecting
only home team winning outcomes performs better than choosing one of the other outcomes.
From this ex-post return analysis, it seems that on average bookmakers underestimate the
occurrence of a home victory while overestimating favourable outcomes for the visiting
team. However, assessing betting strategies selectively on favourite or underdog status
results in an inconclusive picture in the next panel. Predominantly, randomly betting can
be slightly outperformed by betting exclusively on favourites while selecting underdogs
results in an inferior ex post return. Only in case of the low margin bookmaker EU 1O
there is a slight superior return by betting on underdogs. However, since home teams have
a higher probability of winning due to the home-field advantage in football, home teams
tend to be characterized as favourites more often. Therefore, a potential home-field and
favourite-longshot bias may be interconnected (Vlastakis et al. (2009)) and is examined
separately in the next panel. A different picture is now revealed. The selective betting
strategies on home teams with underdog status performed significantly better than random
betting or any of the other strategies. Noteworthy is that for bookmaker EU 1 who has
already been characterized by very low margins the ex-post return changes to positive.
Placing reverse bets on the same sample of matches, e.g. bets on favoured visiting teams,
sharply improves the average returns compared to randomly betting as well and constitutes
the best strategy for costumers of the two bookmakers German 1 and Eu 5, which are
characterized by substantially superior favourite returns as mentioned above. In conclusion,
there is some evidence of biased odds on both winning outcomes for games with a strong
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visiting team, which yields a slight positive average return in case of EU 1. Since both
winning outcome occurrences seem to be underestimated for this selection of football
matches, the implied proportion of draw results is upward biased here in contrast to the
general conclusion from the analysis in Table 1.

5.3 Weak-form Efficiency Analysis

5.3.1 Methodology

The following section will outline the methodology used for testing the informational
efficiency. In order to test the weak-form efficiency hypothesis, we will apply a rational
expectation framework and assess the predictive quality of the implied match outcome
probabilities derived from the individual bookmaker odds. In the literature the following
general model is estimated by regressing the respective match outcome Yie16 on implied
probability P ip

ie,j derived from bookmaker j’s market price σe,j as described in section 3:

Yie = G
(
β0j + β1jP

IP
ie,j + εie,j

)
(5)

where G(.) is assumed to be first a linear function (linear probability model) and in a
second specification a standard normal cumulative distribution function (probit model).
Note that the general model is assumed to be a pooled model including all available
bookmaker prices in the dataset and presupposes no heterogeneity over time in P IP

ie,j. For
the linear probability model, a test for market efficiency would then be given by the joint
null hypothesis stating that P IP

ie,j is an unbiased predictor for the match outcome e, hence
no constant effect can be added to the bookmaker forecast that is characterized by a
one-to one relationship to the underlying actual probability:

H0 : β0j = 0 and β1j = 1

Considering the fact that outcomes e (home, win, draw) are not independent from each
other but rather mutually exclusive as only one result can occur for each match i, estimating
the equation for draw, home and away win outcomes independently fails to refer to the
condition that the dependent variables have to sum up to 1 and for the interdependency
between the outcomes e and e′ resulting in a non-zero disturbance covariance Cov(εeij, εe

′
ij).

To account for that, I will use a seemingly unrelated regression framework (SUR)
introduced by Zellner (1962) and estimate the three match result probabilities per match
as a system of equations employing the condition: P IP

i,e=D,j = 1− P IP
i,e=H,j − P IP

i,e=A,j
17. The

SUR framework uses a feasible generalized least square approach which estimates the
coefficients by permitting non-zero covariances between the error terms εeij and εe

′
ij while

16Yie = 1 if match outcome e occurred, Yie = 0 else.
17This specification was inspired by Forrest and Simmons (2005).
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assuming strict exogeneity of the covariates and homoscedasticity18:

Ye=H,i = β0j + β1jP
IP
i,e=H,j + εHij

Ye=A,i = α0j + α1jP
IP
i,e=A,j + εAij

Ye=D,i = γ0j + γ1j(1− P IP
i,e=A,j − P IP

i,e=H,j) + εDij

= γ′0j + γ′1j(P IP
i,e=A,j + P ip

i,e=H,j) + εDiDj
(6)

Estimating model (6) with the SUR estimator is more efficient compared to a single
equation ordinary least square (OLS) estimation, the greater the correlation of the dis-
turbances is and the less correlation between the individual equation regressors can be
assumed (Zellner (1962)). Since the regressors used in each equation vary and it can
be expected that the disturbances across equation are significantly interconnected, this
approach seems justified. The following joint null hypothesis of informational efficiency
will then be tested for each bookmaker j:

β0j = 0, β1j = 1

H0 : α0j = 0, α1j = 1

γ′0j = 1, γ′1j = −1

applying a test statistic analogous to the F-ratio in multiple regression analysis:

F̂ = 1
6(R ˆ̂

β − q)′[R ˆV ar[ ˆ̂
β]R′]−1(R ˆ̂

β − q) ∼ F [6, n]

The statistic is only valid approximately similar to the Wald statistic, but tends to perform
better in small or moderately sized samples (see Greene (2012)). In case of rejection
of the null hypothesis and given that the marginal effects of the implied probabilities
are significantly larger or smaller than unity, we can argue in favour of a bias leading
to misperception of winning probabilities for the favourite or underdog team. However,
since the SUR model assumes a homoscedastic error structure, it only allows for different
covariances between equations and not within equation, the standard error estimates are
inconsistent due to the heteroscedastic nature of linear probability models.19 Therefore, as
robustness test an alternative approach for model (6) will be applied using less-efficient
single-equation OLS coefficient estimates but consistent heteroscedasticity as well as
inter-equation dependency robust standard errors of sandwich/robust type20.
Examining the pooled model assumption thereafter, model (6) will be estimated sea-

sonally to be able to observe potential changes in the bookmaker market efficiency over

18The SUR model estimation procedure is described in the appendix.
19Since outcome variable is binary, it follows that V ar (ε|x) = P (Y = 1|x) [1− P (Y = 1|x)] =

x
′
β
(

1− x′
β
)
, hence depends on x, see Long (1997).

20The standard errors are obtained by the suest command in Stata.
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time.
A further robustness check addresses the potential shortcomings of a linear probability

model which is not constrained to estimate fitted values within the [0,1] range of the
probability space and does not ensure consistent estimates of a non-linear relationship. This
alternative approach is based on Forrest and Simmons (2008), who develop a multivariate
analysis for the purpose of identifying separately home vs. away, longshot as well as
sentiment bias extending model (5) by using a probit model. Hereby, the observation units
are only bets that either the home or away team will win, excluding bets on draw results.
The sample size doubles and each match observation i is represented twice from both team
perspectives and combined with the forecast based on the respective Beti,e=(A,H). The
following single equation probit model is then estimated21:

Prob
(
Beti,e=(A,H) wins

)
= Φ

(
β0j + β1jProb

ip
ie + β2jHomee + β3j∆Attendi

)
(7)

where the additional dummy variable Homee = 1 if the bet e is conditional on home
teams’ victory identifying a potential home team bias. The second additional covariate
∆Attendi serves as team support proxy and is defined as the difference between teams’
preseason average home attendance. As Forrest and Simmons (2008) note, the number of
active fans, e.g. people who are buying stadium tickets, is likely to be correlated with the
number of passive fans, thus potential sentiment bettors. The null hypothesis of efficiency
claims here as well that the odds quoted by the bookmaker reflect all available information
relevant to the match outcome, hence the coefficients on Homee and ∆Attendi should
be zero and the marginal effect of the implied probabilities equal 1. Since the datasets
consists of pairs of bets, home win and away win bet for each match, the error terms
are correlated per match observation. Therefore, a clustered probit model with match
observation cluster is estimated.

5.3.2 Results

The estimation results of the pooled model (6) based on the SUR methodology are
displayed in Table 5 for each bookmaker individually. The SUR framework employs a
FGLS approach incorporating the inter-equation dependency in this setting and is justified
by a Breusch-Pagan test rejecting the null hypothesis of equation independence at all
reasonable significance levels. Overall, the coefficients appear to be predominantly close to
the null hypothesis of informational efficiency which states that the marginal coefficients
of bookmaker forecasts are equal 1, or -1 in case of draw outcome predictions, and the
absence of a constant bias captured by the intercept. From the 14 bookmakers within the
sample, the hypothesis is nevertheless rejected at a 5% significance level for German 1 and

21For G () the standard normal cumulative distribution function Φ () is used.
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EU 5 as can be seen from the p-values in the last row of Table 5. This states that the
test-statistic, characterized by an F(6,n)-distribution under H0, is significantly larger than
the respective critical values. When examining the result with respect to general forecast
unbiasedness represented by the constant terms, only the above mentioned providers reveal
a significant negative coefficient for home and away victory bets accompanied by German
3, UK 1, 2 and 5 as well as EU 3 and 4 exclusively for the latter, indicating a systematic
underestimation of the true probability despite a small magnitude.
Focusing on the size of the forecast coefficients, marginal effects significantly larger

than unity imply that the actual winning probability increases disproportionately with
the implied bookmaker probability and below unity vice versa. Hence, if we are able
to detect coefficients significantly larger than one, we can state that the odds tend to
underestimate high-probability outcomes (favourites) and overestimate low-probability
outcomes (longshots) on average in line with the favourite-longshot bias phenomena
(Franck et al. (2010)). First of all, surprisingly the forecast coefficients are identical
in all 3 outcome equations similar to the results in Forrest and Simmons (2005) but
counterintuitive to the results from the descriptive analysis. Even though the majority of
bookmakers reveal coefficients larger than one, this individual difference is only significant
in case of the betting provider German 1 and EU 5, the bookmakers already mentioned
above in the examination of the constant terms. However, as noted in the methodology
introduction, the seemingly unrelated regression model leads to valid inference only in
case of an homoscedastic error structure which is not the case in linear probability models22.

Therefore, Table 6 contains the results of an alternative specification using OLS es-
timation procedure for each equation independently combined with heteroscedasticity
and inter-equation dependency robust standard error estimates. Here, we apply a Wald
statistic characterized by a chi-squared distribution with 6 degrees of freedom when the
null hypothesis is true23. The results for the first two equations are similar to the re-
sults of the SUR specification combined with only slightly larger standard errors. The
null-hypothesis is now accepted only for 6 out of 14 bookmakers at a 5% significance
level and a significant intercept for HomeV and AwayV is revealed again for German
1 and EU 5. While the system of equations approach in the first specification leads to
identical coefficient estimates for the individual match outcome equations, estimating each
equation independently now leads to substantially more variation in the estimates per
bookmaker across match outcome. The strongest effect can be observed on coefficients
of bookmakers’ draw result forecasts, which results in substantial deviations from unity
up to a coefficient estimate of -1.423 for EU 5 combined with significant deviations from

22This is, when the Breusch-Pagan Lagrange multiplier test for overall system heteroscedasticity is
rejecting H0 for all bookmakers.

23Since the number of observations n is large, it follows that F (6, n) ≈ 1/JChi2(6) -> decision based on
F-statistic nearly identical as based on Wald-statistic.
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the in H0 assumed magnitude of the intercept. This is in line with the analysis of betting
returns in section 5.2, where the probability of draw outcomes was downward biased and
yielded significant superior returns for exclusively betting on ties. However, estimating the
equation independently needs to be evaluated with the caveat of lower estimation efficiency.

All in all, the pooled model reveals mixed evidence for slight deviations from neutrality
in bookmaker pricing, whereby the majority of betting suppliers displayed coefficients
slightly higher than unity in the pooled model, which implies a tendency that the actual
winning probability increases disproportionately with the implied bookmaker probability.
By using the OLS approach and estimating the equation for the disjunct match outcomes
independently, some deviations from neutrality were revealed for draw bets, which indicates
that most bookmakers systematically underestimate draw results in their odds pricing.
Relaxing the assumption of no heterogeneity over time in bookmaker pricing, Table 7

lists the test-statistic values for the null hypothesis based on seasonal estimation of the
above mentioned specification of model (6). Hence, the estimation sample is partitioned
in yearly subsamples containing on average one-tenth of the observations respectively.
Keeping in mind that the power of a test, e.g. the probability that it will correctly reject
a false null hypothesis, decreases when the sample size is reduced (Greene (2012)), the
scarcity of Chi2-statistic values significantly larger than their respective critical values
are nevertheless surprising. The null-hypothesis is now only consistently rejected for the
subsample of the second half of season 2007 while for most bookmakers the test-statistics
afterwards are predominantly of small magnitude. Only for the German betting provider
German 1 the null hypothesis is rejected at a 5% significance level in seasons 2008-10 and
2013-2014, for provider EU 5 in seasons 2008, 2009 and 2014. Performing the alternative
SUR specification seasonally yields similar results, even though the null hypothesis is
rejected less often similar to the pooled model. The evidence for market inefficiency seems
to be clustered, hence it cannot be concluded that market efficiency has improved over
time in general but appears to fluctuate over the sample periods.
In order to complete the weak-form efficiency analysis, the results of the clustered

probit model defined in equation (7) will be discussed now. The model specification
includes a dummy variable for bets conditional on home victory Home and a proxy for
relative fan support ∆Attend. The first row in Table 8 lists the marginal effects of the
individual bookmaker forecasts. Allowing now for a non-linear relationship between the
bookmaker forecasts and the actual underlying probability leads to coefficients primarily
larger than unity except for EU 1. However, the deviations from the null hypothesis are
negligible, as they range from 1.167 for German 1 to 0.989 in case of EU 1. In the next
row, the coefficients for the dummy variable Home are insignificant for all bookmakers
excluding UK 1 and UK 6 at 5% level. Hence we cannot unambiguously reject the null
hypothesis of neutrality in the home-away dimension. Surprisingly, also the last row
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contains only small-sized coefficient estimates, which are only significant at 5% level in
case of predominantly UK and EU oriented bookmakers.24 Contraryly to the results in
Forrest and Simmons (2008) and Franck et al. (2011), who found that posted odds of bets
on popular teams are underestimated and vice versa for less popular teams, it is thus not
possible to conclude that the pricing decisions and the implied bookmaker forecasts are
affected by the relative fan base of the opponents. All in all, the evidence of inefficiencies
with respect to the weak-form efficiency hypothesis is vague and differently characterised.

5.4 Semi-strong Efficiency Analysis

5.4.1 Methodology

The main approach to test betting market efficiency with respect to public information
besides historical prices will be based on a discrete ordered choice model. The model, which
is briefly outlined in the following, is mainly inspired by the model of Forrest et al. (2005)
and Goddard and Asimakopoulos (2004) and will produce match result forecasts based
solely on historical information that is publicly available before the start of each match.
Therefore, comparing the forecast accuracy of the statistical model with the accuracy given
by the individual bookmaker forecasts, separately for the English and German divisions,
will provide a fair test of the market’s informational efficiency. Furthermore, the estimated
probability forecasts will be used later on to derive betting rules in order to assess the
contribution of our fundamental analysis and its effect on ex-post returns. Since the
semi-strong form efficiency hypothesis claims the absence of any sort of public information
significantly affecting returns besides the market price, this constitutes a straightforward
testing strategy.
As already outlined in the literature review, there are two main approaches to pro-

duce match result forecasts based on publicly available information in order to test the
semi-strong efficiency hypothesis. While one strand uses computationally intensive sta-
tistical forecasting models based on the Poisson distribution to approximate the teams’
underlying goal scoring processes, the ordered choice model approach estimates the match
outcome directly by incorporating covariates with potential effects on the probability
of final match result occurrence. A major advantage of this approach is, besides its
computational simplicity, to avoid assumptions about the interdependence between the
home and away team scoring process (Goddard and Asimakopoulos (2004)) and to enable
the inclusion of different kinds of explanatory variables. The underlying ordered choice
approach is justified by the ordinal nature of the discrete match result outcomes home
win (1), draw (0.5) and away win (0), whereby a victory by either side is more connected
to a draw outcome than to the reverse victory simply by the underlying goal difference

24Alternative specifications with different support proxies for ∆Attend using normalized attendance
figures and different subsamples yield similar results.
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(Constantinou and Fenton (2012)). Potential alternative strategies would have been
based on individual binary forecasting models which estimate each of the three potential
match results separately or an unordered choice model25. However, using independent
forecasting models, we should expect a significant loss in estimation efficiency, while the
multinomial unordered choice approach lacks the incorporation of the outcomes’ ordinal
nature. Hence, the application of an ordered probit model in the following seems reasonable.

The outcome of the underlying football match event between home team i and opponent
j is now denoted by Yij and is assumed to depend on the unobserved continuous variable
Y ∗ij that is subject to an i.i.d normally distributed random term εij

26 representing the
unsystematic or random element in the match results data generating process (DGP).
The latent variable Y ∗ij can be interpreted as the home team’s true capability of winning
the match and hence cannot be observed directly but is assumed to depend linearly on n
observable covariates x as stated in the following matrix notation.

Y ∗ = x′β + ε (8)

The following covariates x were tested in different model specifications, whereby the
final forecasting specification is obtained by the stepwise model selection algorithm using
the Akaike Information Criterion (AIC) introduced by Akaike (1974):27

• Past Performance: Score Results {1 = win, 0.5 = draw, 0 = loss}
Xi/Xj = Team i/j’s past results moving average (last 30 games)

X2i/X2j = Team i/j’s past results moving average (last 20 games)

Xsepi = Team i’s past home results moving average (last 20 games)

Xsepj = Team j’s past away results moving average (last 20 games)

• Past Goals Scored:
Yi/Yj = Team i/j’s moving average (last 30 games) of past goals scored

Y 2i/Y 2j = Team i/j’s moving average (last 20 games) of past goals scored

Y sepi = Team i’s moving average (last 20 games) of past home goals scored

Y sepj = Team j’s moving average (last 20 games) of past away goals scored

• Recent Match Results: R1j,i, R2j,i = Teams’ result of nth (1,2) last match
25Typical models for unordered choices are the multinomial logit or probit model, see Greene (2012).
26As robustness check, a logistic framework with a logistic distribution of the error term was estimated,

but this produced similar results.
27The final forecasting model specification includes those variables that minimize the information loss

given the selection of variables determined with stepAIC in R. The selection criteria is only valid on
the same dataset, therefore all match observations with missing covariates have to be removed.
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• Last Result: Lastij = Home team i’s last result against current opponent j

• Dummy Promotion: Promi/Promj = 1 if team i/j was promoted within the
last year

• Dummy Relegation: Reli/Relj = 1 if team i/j was relegated within the last year

• Relative Attendance: Attendij =
∅Attendancei

s−1−∅Attendance
j
s−1

∅Division.Attendances−1
of preceding season

s− 1

• Log Distance: LnDistij = Logarithm of distance in km between teams’ stadium
locations

The first section of covariates captures the past performance of home team i and
away team j respectively by using moving averages of each team’s past results excluding
the current match. It can be expected that the home team performance proxy has a
positive effect on the home team’s probability of winning while in case of the opponent’s
performance an adverse effect on home win occurrence should prevail. Experimenting
with different time windows resulted in the above listed selection including the last 30
and 20 games prior to the match of interest. Alternatively, we will estimate a model
specification which separates the past performance by including only past away results
for the away team Xsepj and home results for the domestic team Xsepi to record team
strength dependency on home and away grounds more precisely.

Additionally, to include more information about the team’s offensive qualities, the next
section of covariates includes moving averages of goals scored by team i and j. Even though
these covariates are potentially closely correlated with the performance variables from
above, but they nevertheless may contain information about the teams’ offensive qualities
not captured by historical score results completely. The window and separate specification
choices are analogous to the result based variables. Following Forrest et al. (2005), the
subsequent variables R1j,i,R2j,i address the possibility of short-term persistence in match
results by including the last and second last result individually for each team. For example
Dobson and Goddard (2000) found in their analysis that sequences of consecutive results
are subject to statistically significant negative persistence effects, which contradicts the
widespread belief that a sequence of positive results improves confidence and moral. In the
context of this discussion, the media also often refers to the performance in the teams’ last
meeting, which is included by Lastij, the last match result against the visiting team from
the domestic team perspective. The following covariates Promi and Reli are capturing
the home team’s inter-division dynamic from past to current season and analogous for the
visiting team j, whereby the dummy is Promi = 1 if the team experienced a promotion and
in case of relegation Reli = 1. Besides the difference in financial strength and quality of the
squad, it can be assumed that match outcomes are likely to be affected by heterogeneity
in team incentives that are potentially correlated with inter-division dynamics.
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The last section of covariates contains information not directly linked to the team
performance. The variable Attendij serves as proxy for the relative fan support and is
based on the difference in mean home attendance in the previous season between the home
team and its opponent. Hereby, the variable may reflect the psychological influence of the
crowd on the match outcome as well as some sort of material effects resulting from the
ability of teams with larger fan base to spend more on their budget for new talents and
players (Goddard and Asimakopoulos (2004)). To capture only the relative attendance
differences within the division in which the match of interest takes place, the metric
is normalized by average overall division attendance. Last but not least, the covariate
LnDistij controls for the dependency of the so-called home advantage on the geographical
distance between the home towns of the teams participating in the match as detected
by Clarke and Norman (1995). LnDistij measures the natural logarithm of the shortest
distance between the teams’ stadium locations and may reflect the effect of increasing
intensity in competition in local derbies (Goddard (2005)).28

The description of explanatory variables is completed by mentioning omitted variables in
the analysis with potential effects on outcome probabilities. Variables accounting for player
injuries, staff rotation or other information about the team constitutions are excluded due
to the fact that constructing them requires accurate and time precise data which is not
easily available. Furthermore, Forrest et al. (2005) include a variable highlighting matches
which are characterized as important with regard to championship or relegation issues
for one team but unimportant for the other. Even though their inclusion may provide
improvements to the forecasts, their construction and incorporation is beyond the scope of
this study.
The basic model structure will be explained in the following. Even though we do not

observe Y ∗, we do observe the outcome of the game and assume that the continuous
variable Y ∗ can be linked to the outcome with some threshold parameter µ1s, µ2s in the
following ordered probit model framework (Greene (2012), Forrest et al. (2005)):

AwayWin : Yij = 0 if Y ∗ij + εij ≤ µ1s

Draw : Yij = 0.5 if µ1s ≤ Y ∗ij + εij ≤ µ2s

HomeWin : Yij = 1 if µ2s ≤ Y ∗ij + εij

(9)

where Y ∗ij depends on the covariates x as stated above. The parameters µ1s and µ2s are the
cut off values (percentiles) for the normal distribution controlling for the overall proportions
of home wins, draws and away win results in the estimation sample s and therefore have
to be estimated as well. The parameters are obtained by maximum likelihood estimation.
The target log-likelihood function is given by the sum of logarithmized probabilities for
each of the realized outcomes y = (H(1), D(0.5), A(0)):

28An alternative specification using linear instead of logarithmic distance performed poorly. Hence, a
non-linear relationship between distance and outcome probability seems more realistic.
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LnL =
∑
i,y=0

ln[Φ
(
µ1s − x

′

iβ
)
]+

∑
i,y=0.5

ln[Φ
(
µ2s − x

′

iβ
)
−Φ

(
µ1s − x

′

iβ
)
]+
∑
i,y=1

ln[1−Φ
(
µ2s − x

′

iβ
)
]

(10)
whereby the normal distributed disturbance term ε is normalized without loss of generality
by mean zero and variance one so that the standard normal cumulative distribution
function Φ can be applied (Greene (2012)).

Estimating model (8) with a fixed estimation sample, we can derive out-of-sample fitted
match result probabilities by the following rearrangement where Ŷ ∗ij is the fitted value of
the latent variable derived from the covariates x and the coefficient estimates β̂ as well as
the estimated cut-off values µ̂1s, µ̂2s:

Prob. AwayWin : P̂A
ij = Prob(εij ≤ µ̂1s − Ŷ ∗ij) = Φ

(
µ̂1s − Ŷ ∗ij

)
Prob. Draw : P̂D

ij = Prob
(
µ̂1s − Ŷ ∗ij ≤ εij ≤ µ̂2s − Ŷ ∗ij

)
= Φ

(
µ̂2s − Ŷ ∗ij

)
− Φ

(
µ̂1s − Ŷ ∗ij

)
Prob. HomeWin : P̂H

ij = Prob
(
εij ≥ µ̂2s − Ŷ ∗ij

)
= 1− Φ

(
µ̂2s − Ŷ ∗ij

)
(11)

Finally, we are able to derive match result forecasts for the seasons 2006/2007 until
2015/2016 of the bookmaker sample. The forecasting procedure is structured as follows:
At first the ordered probit model coefficients are consecutively estimated for each of the
10 seasons using the preceding 5 seasons respectively. Hence, the forecasting model for
the first season 2007 of the forecasting sample is estimated based on a training sample
including matches from season 2002 until 2006. Afterwards, the estimated models are used
for out-of-sample predictions one season ahead, thus in the above example for all matches
in season 2007. Consequentially, the coefficient estimates are adjusted after each season
by ensuring a homogeneous sample size of preceding seasons, so that the statistical model
is based exclusively on information that would have been available before each match of
interest. Forrest et al. (2005) mention in their analysis that extending the estimation
period up to 15 seasons would yield some benefits in terms of forecasting accuracy, but
due to lack of data, we are restricted to 5 estimation periods in this analysis.

However, one main assumption of ordered choice models has to be mentioned and
discussed further, as it is frequently violated (Williams (2009)). The model framework
is based on a parallel regression or so-called parallel odds assumption claiming that the
coefficients do not vary with the outcome category, hence the model has a common slope
vector β (Long (1997)):

∂P (Y ≤ 0|x)
∂x

= ∂P (Y ≤ 0.5|x)
∂x

= ∂P (Y ≤ 1|x)
∂x

(12)
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If this assumption does not hold, the estimated model is likely to be inconsistent
(Williams (2009)) and is therefore tested in the following by likelihood ratio tests allowing
one or more regression parameters to vary with the ordinal categories e29. The parallel
odds assumption was not rejected for any parameter at all usual significance levels. Hence,
the parallel regression assumption is confirmed for the model setting.

Methods for Comparison

After estimating the match result probabilities, two approaches will be used to assess the
relative efficiency of bookmaker and model forecasts. First, the forecast accuracy will be
compared by statistical scoring measures for probability forecasts based on how close the
probabilities are to the actual observed outcome. For comparison, we will make use of
two different kinds of statistical scoring rules. First, the Brier score (Brier (1950)), which
is defined as the mean squared difference between the actual outcome realization and
predictions defined separately for each match result e (home, win, draw) :

BRSe = 1
N

N∑
i=1

(
Yei − P IP

e

)2
(13)

where Ye is the actual realization of outcome e and P IP
e the implied forecasts by

bookmakers or the benchmark model. The Brier Scores are averaged over N seasonal
match observation, whereby the smaller the average squared distance appears, the better
the forecast performs. Using this measure enables to examine the performance individually
for the three match outcomes. However, Constantinou and Fenton (2012) note that the
Brier score does not address the ordinality of football match results properly by scoring
the individual forecasts separately. Therefore, they refer to a second measure called Rank
Probability Score (RPS), developed by Epstein (1969), as a more appropriate measure for
the evaluation of football forecasts, as it accounts for the ordinality by using the difference
between the cumulative distributions of outcome forecasts ∑i

j=1 P
IP
ej and their respective

realizations ∑i
j=1 Yej per match instance. Equation (14) states the RPS for a single match

observation where r is the number of potential outcomes, i.e. r = 3 possible outcomes per
match30:

RPS = 1
r − 1

r∑
i=1

 i∑
j=1

Yej −
i∑

j=1
P IP
ej

2

(14)

Second, the information contained in the statistical forecasts will be examined relatively
to the information contained in the bookmaker forecasts by including single explanatory

29The test is implemented with command nominal_test in the ordinal package in R by Christensen
(2015).

30Analogue to the Brier score, the measure will be averaged over N seasonal match observations and a
lower average RPS indicates higher forecast accuracy.
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variables for positive score results in an ordered probit regression31. Precisely, the model
and bookmaker forecasts are compared with their maximized log-likelihood values of
the regression models of match results on the implied result forecasts. Thereby, the
log-likelihood values are obtained by using Yei as dependent variable and the implicit
probabilities of bookmaker j for positive scores defined by32:

PosIPi,j = 1 ∗ P IP
e=H,j + 0.5 ∗ P IP

e=D,j (15)

as covariates in a version only including bookmaker market information and alternatively
a version based on the model forecasts respectively by:

PosMi = 1 ∗ P IP
e=H,M + 0.5 ∗ P IP

e=D,M (16)

This approach allows to assess whether each summary measure (bookmaker probability
Posipij or model probability PosMij ) contains relevant information that the other does not
contain (Forrest et al. (2005)). Finally, including both probability forecast instruments
in the regression model as explanatory variables and conducting a likelihood ratio test
for the individual significance of the coefficients reveals the degree to which our statis-
tical forecasting model contains useful information that is not already captured by the
bookmaker’s odds.

The final part of this analysis will be conducted by an economic testing strategy testing
the forecast accuracy of the model indirectly via betting profits, which are derived from
betting rules based on the discrepancy between bookmaker and model forecast.

5.4.2 Results

Statistical Benchmark Model

The coefficient estimates from several specifications of the ordered probit model are
collected in Table 9. The selection of the best model specifications is based on a training
sample including the full sample of historical matches within the German as well as English
divisions from season 2002 until 2006 and is conducted via the AIC criteria. Column (1)
lists the coefficient estimates for a parsimonious model only using the past performance,
goals scored and recent match information covariates. The past performance coefficient
signs are in line with our expectation by showing a positive effect of increasing past
home team performance on the probability of a positive home result and vice versa a
negative form for the opponent’s performance. Interestingly, the recent match result
coefficients indicate a positive persistence effect at least in the short run. Including now
in column (2) the information about the teams’ promotion or relegation histories as well
31This approach is based on Forrest et al. (2005).
32Note that the covariate is equal the expected score results conditional on the bookmaker forecast

PosIP
i,j = E[Resulti|P IP

i,j ].
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as the non-performance related covariates Attendij and LnDistij increases the model fit
significantly by a decrease in AIC from 13,204 to 13,145. The coefficient signs indicate
a positive fan base effect for home teams with superior pre-season attendance and an
increasing chance of home victory the larger the distance between the team’s origin is,
though by substantial lower magnitude compared to the performance variables. Column (3)
uses the alternative moving average window of 20 prior match observations but performed
slightly worse. Alternatively, a specification is listed in column (5) using the moving
average windows conditional on home and away ground respectively by Xsep and Y sep
but is also showing an inferior performance according to the AIC criteria. In the end,
using the forward/backward algorithm including several other specifications, the model
in column (6) is defined as the best specification given the selection of variables using a
30 match day window for past result performance, while reducing the moving average
window for the scoring rates to 20 match days. Surprisingly, excluding the variable Lasti
improved the model fit slightly, which indicates that the last meeting of the contestants
reveals no relevant information for future meetings. All coefficients are significant at a
1% significance level except for the recent match results. Nevertheless, including them
improves the model fit. Due to lack of space, the threshold estimates are not listed in
Table 9 but are given in model (6) for completeness by µ̂1s = −0.495 and µ̂2s = 0.226.

Comparison of Forecasting Performance

After estimating our statistical benchmark model and being able to derive forecasts oppos-
ing the bookmaker predictions, this section will compare the resulting forecast accuracies.
Figure 5 displays the average seasonal Rank Probability Scores (RPS) separately for the
German and English league system. The blue line plots the performance of the median
bookmaker forecasts active in the respective country and is opposed to the black line for
the RPS of the statistical model. First of all, the optimized statistical model described
above is not able to beat the median bookmaker accuracy for the entire sample period
based on the RPS scoring measure. The median bookmaker RPS is consistently below the
model RPS, which indicates a higher forecasting accuracy for odds setters, though in a
comparable range to the statistical model. For the British divisions the accuracy appears
to be more stable from season to season while the forecasting precision for German football
matches is characterized by a anticlimax in 2007 and 2010-2011, where the bookmaker
market and the model reveal a lower accuracy. Fortunately, the model follows a similar
path as the bookmaker market in general, which implies that the model fit adopts the
dynamic inter-season changes in relative team strength for the underlying divisions in
a similar way as the betting market. In Table 10 the seasonal Brier scores (BRS) and
RPS are summarized for a selection of bookmakers and the benchmark model.33 The first
33Since RPS and BRS are very similar for all bookmakers, only 8 out of 14 bookmakers are listed in Table

10.
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panel contains the BRS for home victories, whereby the average bookmaker BRS is given
by 0.22 compared to a value of 0.23 for the benchmark model. Overall, the performance
measures are very much alike across all bookmakers and there is only a slight variation
over time. The next two panels list the BRS conditional on draw and away win forecasts
respectively. It appears that the bookmakers as well as the model perform better in
forecasting draw outcomes and away victories with individual average BRS of 0.19 than a
successful outcome for the home team. Furthermore, there is no visible trend that would
indicate an improvement of the betting market’s forecasting accuracy in recent years. All
in all, ranking the individual bookmakers according to the BSC or RPS criteria is not
very successful since the performance is very homogeneous. Contrarily to the conclusion
of section 5.3.2, there is no evidence for substantial fluctuation in the accuracy measures
clustered in some periods.

Examining the difference between the model forecasts and the bookmaker predictions
more precisely now, Figure 6 plots the average discrepancy between the model and the
median bookmaker forecasts for different implied probability ranges of the bookmaker
forecasts34. The first panel plots the discrepancy for home victories of the German and
English match observations, while the second panel examines the difference for away victory
bets separately for the national league systems. First of all, there is a negative relationship
between the average discrepancy and the bookmaker market’s implied probability range. If
the implied chance for an outcome of a given match is low, the benchmark model predicts
on average a higher probability for the respective outcome. This tendency is reversing
the more the implied bookmaker forecasts approach unity. Hence, we can conclude that
low likelihood outcomes (underdog victories) are in tendency higher estimated by the
model and likely outcomes (favourite victories) lower in comparison to the bookmaker
market. For home win outcomes the individual plots for Germany and England are
very similar, while in the second panel high probable away win outcomes appear to be
slightly more overestimated by the market relative to the model forecasts in case of
German match observations. Highlighting the difference in the home-away dimension,
the discrepancy at the lower boundary of the probability space is dominated by home
victory outcomes and vice versa for the upper boundary part by the opponent’s favourable
outcome side. In conclusion, the model forecasts deviate from the bookmaker implied
probability distribution with variation in the home-away or favourite-underdog dimension
and therefore may capture potential inefficiencies in the market prices. The next section
will assess whether the statistical model contains useful information that is not captured
by the market prices.

34The discrepancy is defined by: model forecast - median bookmaker forecast. The underlying match
observations are grouped in probability intervals of 10 percentage points.
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Informational Contribution of the Model

As already outlined in the methodology section, an additional ordered probit regres-
sion model will be applied in order to test the model’s informational contribution. It
includes the expected score results of the home team given the bookmaker and model
forecasts respectively by PosIPi,j = E[Resulti|P IP

i,j ]. The first panel of Table 11 contains
the maximized log-likelihood functions which were obtained by ordered probit regressions
using the match result as dependent variable and separately PosIPi,j of each bookmaker
as the sole covariate. The sample is partitioned in two-yearly subsamples including the
incomplete season 2007 and 2017 in the first and last subsample respectively to capture
potential inter-temporal dynamics35. According to the maximised log-likelihood values, no
bookmaker can be identified as consistently best performer . The maximized log-likelihood
values of the ordered probit model using the model forecasts as covariates in regression (2)
are consistently inferior similar to the comparison in Figure 5. However, a comparison of
the log-likelihood functions including the model forecasts additional to each bookmaker
forecast may reveal nevertheless the extent of useful information that is relevant for match
outcome predictions which are not included in the bookmaker odds. The results of these
specifications are listed in Panel (3). Since the semi-strong form efficiency hypothesis
claims the absence of such information, we are able to test this hypothesis by likelihood
ratio (LR) tests for significance of the model covariate PosIPi,M in model (3). The LR
test statistics for the significance of the model forecast besides the individual bookmaker
predictions are given in the subsequent panel. All in all, the analysis of the explanatory
power of the model besides the betting prices reveales no indications for semi-strong form
informational inefficiencies embodied by consistently low test statistic values throughout
the subsamples. However, to be able to derive conclusions from the semi-strong form
perspective, it is relevant to assess whether indications of informational inefficiency can
be translated into economically significant differences in betting returns.

Economic Semi-strong Efficiency Test

The analysis will now be concluded with an economic evaluation of betting strategies
based on the statistical forecasting model. According to the efficient market hypothe-
sis, the expected return of betting at any identified odd should be identical (Williams
(2005)). Hence, performing a fundamental analysis, e.g. incorporating publicly available
information and evaluating the market prices in view of other forecasts, should not lead
to higher or even positive returns in expectation. Building on the probability forecasts
from the ordered probit model now, a more sophisticated betting strategy than the simple
trading rules like betting on home vs. away or underdog vs. favourite team respectively as
35Each subsample contains at least two seasons and a selection of bookmakers with nearly complete match

series to improve the balance of the number of matches per subsample since all match observations
with missing bookmaker prices have to be excluded from the analysis.
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descriptively examined in section 5.2 will be examined.

Precisely, the following betting rule is examined: Place 1e on outcome e of a particular
match only if the forecast of the statistical model, e.g. the fundamental analysis, exceeds
the implicit probability of the bookmaker j, hence only if:

FR =
P IP
e,Model

P IP
e,Bookmakerj

> X (17)

The ex-post mean betting returns for different values of X are collected in Table 3. These
strategies may lead to bets placed on more than one outcome in a particular game in case
the model forecast exceeds the bookmaker probability not only for one outcome. However,
alternative betting rules such as selecting only the most favourable outcome per match are
not discussed, since these may not necessarily constitute superior rules as mentioned by
Kuypers (2000). The first row in Table 3 contains betting returns of randomly betting on
each bookmaker. The sample of match observations is slightly reduced compared to the
return analysis in Table 2, as now we can only examine match observations for which the
benchmark model was able to produce result forecasts. Nevertheless, the average returns
are closely comparable.

Now, the betting strategy in the second row is given by selecting bets if the statistical
model forecast exceeds the implied chance of the offered betting price by at least 10%, which
reduces the number of placed bets significantly compared to the full sample. Comparing
the ex-post returns with randomly betting by selecting bets according to this strategy, the
returns improve for some bookmakers slightly up to an enhancement by 4.57 percentage
points in case of German 1 while the returns of betting on EU 1 and UK 2 are only
improved by less than 1 percantage point. Applying stricter values for X and selecting
bets only if the model predicts a 20% higher chance of occurrence, the returns consistently
improve for all bookmakers on average by 2.74 p.p.. Increasing the threshold X to 1.3
and 1.4 , a continuous improvement of returns is still achieved for most of the providers.
Overall, the average negative market return of randomly betting by -7.96% seems to be
improved by the selective betting strategies and even the most selective strategy (FR >
1.4) reaches an average market return by -1.72%.

In order to be able to evaluate the economic impact on seasonal returns over the sample
period more closely, Table 4 lists the percentage returns of selection criteria FR > 1.4
for each season separately. Thus, a similar picture to the results in Table 10 and 14
is revealed. Remarkably, in season 2011 and 2014 positve ex post betting returns are
clustered. Precisely, the betting strategy in season 2011 achieves a positive average market
return by 1.14%.
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GER 1 GER 2 GER 3 EU 1 EU 2 UK 1 UK 2 UK 3 EU 3 EU 4 UK 4 EU 5 UK 5 UK 6

Random Betting -17.25 -6.46 -7.36 -2.30 -5.45 -7.74 -7.95 -5.72 -7.89 -8.53 -6.87 -10.82 -8.93 -8.10
# Bets 10.411 14.521 14.403 14.219 14.899 13.016 14.408 13.875 14.874 14.940 14.721 14.964 11.956 10.590
Betting Strategies based on Forecast-ratio FR > X:
Bet if FR > 1.1 -12.68 -5.07 -5.91 -1.61 -4.16 -6.38 -6.98 -4.69 -6.08 -7.38 -4.67 -8.42 -7.89 -6.69
# Bets 6.976 9.873 9.422 10.040 10.198 8.913 9.518 9.467 9.873 9.959 9.902 9.445 7.906 7.122
Bet if FR > 1.2 -6.91 -3.39 -3.41 -0.29 -3.16 -3.95 -3.16 -3.22 -3.53 -4.08 -2.57 -4.84 -4.05 -3.71
# Bets 4.067 6.233 5.758 6.648 6.593 5.535 5.841 5.986 5.951 6.097 6.226 5.292 4.816 4.390
Bet if FR > 1.3 -4.12 -2.32 -2.29 -0.15 -1.68 -2.92 -2.51 -1.79 -2.29 -3.46 -0.91 -3.48 -3.32 -2.56
# Bets 2.319 3.924 3.477 4.390 4.257 3.449 3.613 3.833 3.670 3.775 3.952 2.973 2.956 2.752
Bet if FR > 1.4 -2.44 -1.52 -1.47 -0.79 -1.48 -1.63 -2.42 -1.41 -1.61 -2.31 -0.51 -2.19 -2.37 -1.91
# Bets 1.304 2.645 2.201 2.989 2.835 2.200 2.340 2.525 2.299 2.343 2.575 1.682 1.875 1.797
Note: Indications are made in percent

Table 3: Percentage Returns from Betting Strategies based on Model Forecasts

Finally, to be able to draw some statistical conclusions from the analysis of the above
mentioned betting strategies, a simple bootstrapping procedure (see for example Efron
(1979)) is used. By using bootstrapping methods the entire data sample is repeatedly
re-sampled with replacement yealding Monte Carlo distributions of the estimated mean
returns which can be used for the construction of return confidence intervals. Following
Dixon and Pope (2004), it can be noted that as long as the trading rule is prespecified before
the data is examined, any significant deviation from the random betting return can be
interpreted now as representative, using this technique. Figure 7 plots the observed returns
conditional on different forecast-ratios between 1.0 and 1.4 for 6 selected bookmakers out
of the sample combined with their bootstrap confidence intervals. It emerges clearly, for
all bookmakers there is a positive trend visible for increasing forecast-ratios.

GER 1 GER 2 GER 3 EU 1 EU 2 UK 1 UK 2 UK 3 EU 3 EU 4 UK 4 EU 5 UK 5 UK 6 ∅ Market

Season Betting Return based on Strategy with Forecast-ratio FR > 1.4:
2008 -3.45 -2.01 -1.96 -1.08 -0.89 -2.82 -3.92 -1.54 -1.44 -3.70 1.58 -2.47 -3.15 -5.32 -2.30
2009 -1.80 -2.72 -3.11 -1.08 -1.12 -2.77 -2.98 -3.10 -3.17 -2.27 -1.65 -1.31 -2.48 -2.58 -2.30
2010 -3.08 -6.06 -2.89 -3.69 -6.98 -3.40 -2.40 -2.98 -5.80 -4.49 -5.11 -5.25 -4.61 -3.90 -4.33
2011 0.31 0.98 1.66 0.04 0.34 2.39 0.50 2.32 2.19 -0.18 1.78 1.12 -0.44 2.94 1.14
2012 -2.38 -1.13 -0.37 -1.17 -1.39 -0.05 -3.89 -0.75 0.27 -1.48 0.33 -0.76 -0.99 0.72 -0.93
2013 -2.68 -1.99 -1.69 -0.57 -1.55 -2.66 -2.24 -0.30 -2.69 -1.26 -1.05 -3.18 -1.90 - -1.83
2014 -0.83 1.94 0.03 2.27 0.14 1.84 -0.75 -0.46 -0.23 -1.60 0.53 -1.39 -0.59 - 0.07
2015 -2.77 -1.53 -1.31 -0.98 -0.62 -3.88 -1.22 -2.46 -0.76 -3.62 -1.01 -3.04 -3.64 -1.12 -2.00
2016 -4.10 -2.63 -3.18 -0.60 -1.48 -1.14 -3.10 -1.83 -1.95 -2.45 0.85 -3.42 - -0.57 -1.97
2017 -2.91 -0.77 -4.06 -1.26 -0.27 -4.98 -5.22 -0.61 -3.50 -2.73 -2.22 -2.64 - -4.10 -2.71
Note: Indications are made in percent. The minimum number of bets per bookmaker for an individual season is 80.
Positive ex-post returns are marked in bold.

Table 4: Seasonal Returns from Strategy FR > 1.4

The dashed line represents the random betting return of the respective bookmaker and
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is significantly outperformed by the observed returns in case of German 1 and 3 as well as
EU 4,5 and UK 4 using ratios above 1.2. Especially the observed returns in case of the
the first mentioned bookmaker demonstrate a striking effect of the fundamental analysis,
revealing again the provider’s lower relative efficiency. However, none of the bookmakers’
odds provide the opportunity to achieve significant positive returns.
In conclusion, Figure 7 and Table 3 indicate that abnormal returns can be achieved

by trading strategies based on a statistical forecasting model that incorporates publicly
available information. However, it is not possible to achieve substantial positive returns
throughout the sample by applying the above mentioned sophisticated betting strategies
such that these inefficiencies could be exploited to earn positive returns in expectation.
Furthermore, taking into account that Table 3 and Table 4 contains pre-tax returns,
the figures are lower for costumers in the German market subject to a 5% tax on gross
winnings. Nevertheless, the substantial reductions in bookmakers’ take-out indicates that
the ordered probit model’s information is also economically important and could be used
to achieve superior, though still negative expected returns.

6 Conclusion
This study investigates the efficiency of the European football online betting market, a rising
gambling form which provides a great example for an examination of market rationality
in general. Overall, the results are mixed concerning the neutrality of bookmaker prices
and the market functioning in accordance to the efficient market hypothesis postulated by
Eugene Fama. However, in view of existing market distortions as taxes, switching costs of
changing betting providers and limitation in competition, the results of the analysis are
indicative of a rational market equilibrium surprisingly close to the efficiency benchmark.

Assessing the implied probability distribution of the bookmaker market and the actual
distribution of match result outcomes, the prices appear to be markedly efficient and in
line with the underlying probabilities. Furthermore, an analysis of the bookmaker margins
over time reveals a clear trend of decreasing market take-outs, potentially affected by
changes in regulation and an increase in competition. Simulating simple betting strategies,
as selectively betting on match outcomes, indicates that there is some variation in expected
betting returns conditional on the underlying outcome and match characteristics. However,
the deviations were not in line with the often quoted favourite-longshot bias, but rather
indicated anomalies in match observations with a strong visiting team or a general tendency
of the market prices to underestimate draw outcomes.
In the weak-form efficiency regression analysis, the different approaches of detecting

potential inefficiencies in the market also yielded mixed evidence. A clear home or favourite-
longshot-bias, market anomalies often detected in the literature, cannot be found. Hence
cognitive errors, risk-loving gambling behaviour or other sources for irrational behaviour
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of the betting audience seem not to be systematically exploited by the bookmakers in
their pricing decision. A test for the effects of sentiment bias in form of a fan support
proxy was also not able to reject the weak-form efficient market hypothesis. Even though
there is some evidence that many punters avoid to bet on unfavourable outcomes for their
supported team (Williams (2005)), this irrationality is not visible in the market prices.

In the second part of the empirical analysis, the forecasting performance of the bookmaker
market was challenged by a statistical model incorporating public information which would
have been available prior to each match day such as historical performance, distance
between the opponents’ locations and relative fan support. Though, the model was not
able to outperform the bookmakers’ forecasting accuracy, it was shown that by using only
a limited information set and a relatively simple statistical model, a highly comparable
forecasting performance can be achieved. Incorporating additional information about
the teams’ constitutions or measures for the relative importance of a match as well as
improving the forecast estimation procedure by updating the model more frequently
potentially improves the forecast accuracy even further. However, by examining the
model’s explanatory content besides the market prices, which by the semi-strong form
efficiency hypothesis should include all relevant information, it was not possible to beat the
explanatory power of the bookmaker prices by including the statistical model’s forecasts.
The final part of the analysis was constituted by an examination of trading strategies

based on the fundamental analysis embodied by the statistical benchmark model. By
using different ratios for model vs. bookmaker forecast, a substantial improvement in
ex-post returns was achieved for most of the bookmakers. Selecting bets only on outcomes
for which the statistical model had forecasted a 40% higher likelihood of occurrence
than the implied bookmaker probability, the overall ex-post market return was improved
from -7.96% to -1.72%. Examining the difference in ex-post returns under bootstrapping,
supported a significant influence of the statistical model on observed returns, even though
it was not able to leave the negative domain. To sum up, interpreting the stricter version of
market efficiency solely by its informational performance, the analysis revealed no doubts
that prices incorporate all relevant information, though by using this fundamental analysis
for trading it was possible to improve the ex post returns significantly.

Comparing the overall results of this analysis to the findings in the literature, the market
appears to be more efficient. This may be attributable to the different source of historical
price data and the use of a larger dataset, enabling a more rigorous examination. However,
the extension of the dataset with trading volumes or dynamic price informations would be
a good starting point for future research.
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7 Appendix

7.1 Seemingly Unrelated Regression Estimator by Zellner (1962)

Model (5) can be generalized in matrix form where Xe includes the respective covariates
for equation e abbreviated by integer 1-3. The model is based on the following principles

• Strict exogeniety of Xe: E[ε|X1, X2, X3]

• Homoscedasticity of disturbances ε = [ε′1, ε
′
2, ε

′
3] : E[εε′ ]X1, X2, X3] = σ2IN

• Correlation between disturbances across equations: E[εeε
′
e′ ]X1, X2, X3] = σee′IN

and is defined by:
y1

y2

y3

 =


X1 0 0
0 X2 0
0 0 X3

×

β1

β2

β3

+


ε1

ε2

ε3

 = Xβ + ε

and the covariance matrix of the disturbances is given by:

V (ε) =


σ11I σ12I σ13I

σ21I σ22I σ23I

σ31I σ32I σ33I

 = Σ⊗ I = Ω

Since the exact covariance matrix is unknown, the procedure by Zellner (1962) estimates
the equations first by usual single equation least-square estimation and uses the least
square residuals to estimate Ω̂. Consequentially, the feasible generalized least square
estimator ˆ̂

β (FGLS) is given by a two-stage estimation procedure with the following final
estimation step:

ˆ̂
β =


σ̂11X

′
1X1 σ̂12X

′
1X2 σ̂13X

′
1X2

σ̂21X
′
2X1 σ̂22X

′
2X2 σ̂23X

′
2X3

σ̂31X
′
3X1 σ̂32X

′
3X2 σ̂33X

′
3X3


−1

×


∑3
j=1 σ̂1jX

′
1yj∑3

j=1 σ̂2jX
′
2yj∑3

j=1 σ̂3jX
′
3yj
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7.2 Information on Betting Markets

7.3 Analysis Results

Figure 3: Implied probabilities versus outcome probabilities - Home victory

Figure 4: Implied probabilities versus outcome probabilities - Away victory
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Figure 5: Forecast accuracy comparison

Figure 6: Discrepancy of model forecasts
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Table 9: Ordered probit estimation results: Full Training sample: Seasons 2002-2006

(1) (2) (3) (4) (5) (6)
Xi 1.011∗∗∗ 0.966∗∗∗

(0.209) (0.211)
Xj −1.204∗∗∗ −1.084∗∗∗

(0.208) (0.210)
Yi 0.171∗∗ 0.164∗∗ 0.178∗∗∗

(0.072) (0.073) (0.065)
Yj −0.194∗∗∗ −0.209∗∗∗ −0.304∗∗∗

(0.071) (0.072) (0.064)
X2i 0.905∗∗∗ 1.000∗∗∗ 0.972∗∗∗

(0.185) (0.174) (0.169)
X2j −0.879∗∗∗ −1.026∗∗∗ −0.744∗∗∗

(0.182) (0.172) (0.167)
Y 2i 0.156∗∗ 0.158∗∗

(0.062) (0.062)
Y 2j −0.169∗∗∗ −0.169∗∗∗

(0.062) (0.062)
Xsepi 0.813∗∗∗

(0.189)
Xsepj −0.877∗∗∗

(0.175)
Y sepi 0.095∗

(0.057)
Y sepj −0.166∗∗

(0.068)
R1i 0.044 0.042 0.026 0.085∗∗ 0.022

(0.036) (0.036) (0.037) (0.035) (0.037)
R1j −0.061∗ −0.052 −0.048 −0.099∗∗∗ −0.048

(0.036) (0.036) (0.036) (0.035) (0.036)
R2i 0.071∗∗ 0.060∗ 0.042 0.077∗∗ 0.041

(0.035) (0.036) (0.036) (0.035) (0.036)
R2j −0.082∗∗ −0.074∗∗ −0.072∗∗ −0.096∗∗∗ −0.072∗∗

(0.036) (0.036) (0.036) (0.035) (0.036)
Lasti 0.048 0.030 0.045 0.105∗∗∗

(0.036) (0.037) (0.036) (0.035)
Promi −0.297∗∗∗ −0.252∗∗∗ −0.256∗∗∗ −0.316∗∗∗ −0.266∗∗∗

(0.074) (0.074) (0.074) (0.074) (0.075)
Reli 0.238∗∗∗ 0.219∗∗∗ 0.221∗∗∗ 0.263∗∗∗ 0.227∗∗∗

(0.063) (0.063) (0.063) (0.063) (0.063)
Promj 0.292∗∗∗ 0.251∗∗∗ 0.260∗∗∗ 0.378∗∗∗ 0.276∗∗∗

(0.077) (0.077) (0.077) (0.077) (0.078)
Relj −0.234∗∗∗ −0.200∗∗∗ −0.206∗∗∗ −0.284∗∗∗ −0.211∗∗∗

(0.061) (0.061) (0.061) (0.061) (0.061)
Attendij 0.091∗∗∗ 0.106∗∗∗ 0.107∗∗∗ 0.102∗∗∗ 0.099∗∗∗

(0.022) (0.022) (0.022) (0.022) (0.022)
LnDistij 0.027∗∗ 0.026∗∗ 0.026∗∗ 0.018 0.027∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
AIC 12882 12832 12844 12842 12877 12828
N 6,221 6,221 6,221 6,221 6,221 6,221
Log-Lik. -6,430.146 -6,398.851 -6,404.890 -6,409.044 -6,421.377 -6,398.220

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 7: Observed returns conditional on different forecast-ratios
Note: Observed returns for the full odds set from 2007-2016 derived from forecast-ratios of model probabilities on
bookmaker forecasts. The grey areas are 95% confidence Intervals obtained by bootstrapping with R = 1000. The

horizontal lines are for zero return (solid line) and the expected return under random betting (dashed line).
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Table 10: Brier Scores and RPS per Season: Full Sample
Season 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Brier Score: Home Win
GER 1 0.235 0.224 0.224 0.227 0.244 0.215 0.215 0.219 0.224 0.224 0.230
GER 2 0.234 0.222 0.222 0.223 0.244 0.212 0.213 0.217 0.223 0.223 0.229
EU 1 - 0.223 0.225 0.244 0.211 0.214 0.216 0.223 0.223 0.229 0.222
EU 3 0.231 0.223 0.223 0.225 0.244 0.212 0.213 0.217 0.224 0.223 0.229
EU 5 0.232 0.224 0.222 0.225 0.243 0.213 0.213 0.218 0.224 0.224 0.230
UK 1 0.233 0.221 0.221 0.225 0.243 0.212 0.213 0.218 0.224 0.223 0.228
UK 2 0.228 0.222 0.222 0.225 0.244 0.211 0.213 0.217 0.224 0.223 0.229
Model 0.243 0.224 0.230 0.234 0.250 0.222 0.220 0.224 0.234 0.228 0.238

Brier Score: Draw
GER 1 0.173 0.203 0.187 0.188 0.182 0.194 0.195 0.189 0.192 0.198 0.188
GER 2 0.175 0.203 0.187 0.187 0.181 0.193 0.195 0.189 0.191 0.198 0.187
EU 1 - 0.186 0.187 0.180 0.193 0.195 0.189 0.191 0.197 0.187 0.201
EU 3 0.172 0.203 0.186 0.188 0.180 0.193 0.195 0.189 0.191 0.198 0.187
EU 5 0.172 0.203 0.187 0.187 0.180 0.194 0.196 0.189 0.192 0.198 0.188
UK 1 0.168 0.204 0.186 0.188 0.180 0.193 0.195 0.190 0.191 0.197 0.188
UK 2 0.170 0.203 0.187 0.187 0.181 0.194 0.195 0.189 0.192 0.198 0.187
Model 0.171 0.204 0.187 0.187 0.182 0.195 0.197 0.190 0.193 0.198 0.189

Brier Score: Away Win
GER 1 0.218 0.178 0.174 0.192 0.196 0.185 0.186 0.197 0.190 0.190 0.194
GER 2 0.218 0.174 0.173 0.189 0.197 0.184 0.182 0.195 0.190 0.189 0.194
EU 1 - 0.174 0.191 0.197 0.184 0.182 0.194 0.190 0.189 0.195 0.173
EU 3 0.216 0.175 0.173 0.190 0.197 0.184 0.182 0.196 0.190 0.189 0.195
EU 5 0.216 0.176 0.173 0.191 0.196 0.184 0.183 0.197 0.189 0.190 0.194
UK 1 0.214 0.176 0.172 0.191 0.197 0.184 0.183 0.196 0.189 0.189 0.194
UK 2 0.213 0.175 0.173 0.191 0.197 0.182 0.183 0.195 0.190 0.189 0.194
Model 0.223 0.177 0.179 0.197 0.196 0.190 0.191 0.201 0.194 0.194 0.198

Rank Probability Score
GER 1 0.226 0.201 0.199 0.209 0.220 0.200 0.200 0.208 0.207 0.207 0.212
GER 2 0.226 0.198 0.197 0.206 0.220 0.198 0.198 0.206 0.207 0.206 0.211
EU 1 - 0.198 0.198 0.208 0.221 0.198 0.198 0.205 0.207 0.206 0.212
EU 3 0.224 0.199 0.198 0.208 0.220 0.198 0.198 0.206 0.207 0.206 0.212
EU 5 0.224 0.200 0.198 0.208 0.220 0.199 0.198 0.208 0.207 0.207 0.212
UK 1 0.224 0.198 0.196 0.208 0.220 0.198 0.198 0.207 0.206 0.206 0.211
UK 2 0.221 0.199 0.198 0.208 0.221 0.196 0.198 0.206 0.207 0.206 0.211
Model 0.233 0.201 0.204 0.216 0.223 0.206 0.205 0.212 0.214 0.211 0.218

Note: All Scoring measures are computed on same set of match observations, hence observations
with missing bookmaker forecasts are excluded. The measures are individual seasonal averages
whereby the Brier Scores are defined by: BRSe = 1

N

∑N
i=1

(
Yei − P IP

e

)2
and the Rank probability

Score by: RPS = 1
r−1

∑r
i=1

(∑i
j=1 Yej −

∑i
j=1 P

IP
ej

)2
.
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Season 2007-2009 2010-2011 2012-2013 2014-2015 2016-2017
Number of matches 2628 2581 3752 1895 2367
(1) Log-Likelihood: ordered probit regression of match results on bookmaker covariate
EU 2 -2652.4 -2630.1 -2809.6 -1915.7 -2390.6
EU 4 -2653.2 -2632.1 -2807.9 -1917.0 -2389.9
EU 5 -2654.7 -2635.8 -2809.1 -1920.2 -2395.2
UK 1 -2643.2 -2630.4 -2808.9 -1915.9 -2392.0
UK 4 -2652.4 -2632.4 -2807.7 -1916.3 -2390.8
GER 2 -2645.0 -2623.9 -2808.6 -1916.1 -2392.5
(2) Log-Likelihood: ordered probit regression of match results on model covariate
Model -2688.7 -2668.0 -2851.8 -1958.5 -2435.8
Best Performance UK 1 GER 2 UK 4 EU 2 EU 4
(3) Log-Likelihood: ordered probit regression of match results on bookmaker and model covariates
EU 2 -2651.7 -2630.0 -2809.0 -1915.6 -2389.9
EU 4 -2652.6 -2632.0 -2807.6 -1916.8 -2389.5
EU 5 -2653.9 -2635.8 -2808.8 -1920.0 -2394.6
UK 1 -2643.1 -2630.4 -2808.4 -1915.8 -2391.3
UK 4 -2651.7 -2632.4 -2807.3 -1916.2 -2390.2
GER 2 -2644.6 -2623.7 -2808.2 -1915.9 -2391.9
(4) Chi2(1) statistic of LR Test for significance of Model forecast in model (3)
EU 2 1.406 0.039 1.321 0.182 1.482
EU 4 1.047 0.047 0.651 0.326 0.853
EU 5 1.652 0.051 0.597 0.347 1.153
UK 1 0.259 0.073 0.991 0.307 1.271
UK 4 1.274 0.001 0.772 0.194 1.250
GER 2 0.834 0.398 0.787 0.433 1.271

Note: + indicates that the probability of falsely rejecting the null hypothesis

(Type I error) is p < 0.10 and for ∗ respectively p < 0.05

Table 11: Informational contribution of model forecasts
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