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Abstract

Players in a committee, council, or electoral college often wield asymmetric numbers of

votes. Binary decision environments are then conventionally modeled as weighted voting

games. We introduce weighted committee games in order to describe decisions on three or more

alternatives in similarly succinct fashion. We compare different voting weight configurations

for plurality, Borda, Copeland, and antiplurality rule. The respective geometries and very

different numbers of structurally non-equivalent committees have escaped notice so far. They

determine voting equilibria, the distribution of power, and other aspects of collective choice.
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1 Introduction

Consider a committee, council, corporate board, etc. that involves three players

(parties, groups, shareholders, delegations). Suppose the first wields 6 votes, the

second 5 votes, and the third 2 votes. Will their collective choices differ, ceteris

paribus, from those resulting if each player wielded 5 votes? Or, say, from outcomes

for a (48%, 24%, 28%) distribution of votes?

The way in which voting weights translate into collective decisions and how they

affect the influence of the respective decision makers are old concerns for instituti-

onal design. See Riker (1986), for instance, on reactions by delegate Luther Martin

from Maryland to the Constitutional Convention in Philadelphia in 1787. Notwith-

standing residual disagreement on which measures of power or success are the most

meaningful in a given context, the structural properties of voting are today well

understood for majority decisions on two alternatives. It is easy to see, e.g., that

for all of the above weight distributions any pair of players can jointly implement

their preferred alternative. The two form a winning coalition irrespective of whether

they have an 11 : 2, 7 : 6, 10 : 5, or 52% : 48% majority. As long as each player wields

positive but less than half the total weight, all distributions of votes among three

players are equivalent under simple majority rule. They amount to different weighted

representations of the same mathematical structure, known as a simple voting game.

The literature has formalized numerous related results.

But what if the committee is to choose from three or more candidates? Very little

is known then. Consider the simplest case: the committee uses plurality rule and

always selects the candidate who received the most votes. Now player 1 has greater

say for weights of (6, 5, 2) than for equal ones. Namely, whenever players 2 and 3 fail

to agree, player 1 is decisive and his or her favorite candidate wins with a tally of

6 : 5 : 2, 11 : 2, or 8 : 5. The same plurality winners would result for (48%, 24%, 28%),

i.e., committees with voting weights of (6, 5, 2) and (48%, 24%, 28%) are structurally

equivalent – but one with (5, 5, 5) is not. One can conceive of the former as different

weighted representations of the same committee game, referring to the combination of

a set of n players, a set of m alternatives, and a particular mapping from n-tuples of

preferences to a winning alternative.

The goal of this paper is to extend the knowledge on equivalent weighted voting

environments from two to more alternatives. We study four standard aggregation

methods: plurality, Borda, Copeland, and antiplurality rule. These can produce four

different winners for the same profile of preferences. We show that the methods also

1



differ widely in the degree to which voting weights matter. For instance, there exist

only 4 structurally different Copeland committees but 51 Borda committees when

n = m = 3. Our findings do not depend on whether sincere preference statements or

strategic votes are considered.

Committees that decide between two alternatives have received wide attention.

Von Neumann and Morgenstern (1953) started the formal analysis by introducing

simple voting games. Shapley and Shubik (1954) and Banzhaf (1965) constructed

corresponding indices of voting power. Their applications range from the US Elec-

toral College, UN Security Council, and EU Council to governing bodies of the IMF

and private corporations. See Mann and Shapley (1962), Riker and Shapley (1968),

Owen (1975), or Brams (1978) for seminal contributions. They and more recently

Barberà and Jackson (2006), Felsenthal and Machover (2013), Koriyama et al. (2013),

Kurz et al. (2017), and many others have sought to quantify the links between voting

weights and collective choices to evaluate democratic playing fields from a fairness

or welfare perspective.

The extent to which different voting weights make real rather than only cosmetic

differences has practical relevance. Weighted committee games offer the potential

to extend the respective analysis to decision bodies that face general non-binary

options. For example, voting rights among the 24 Directors of the International

Monetary Fund’s Executive Board were reformed in 2016. Is there a possibility that

this will affect any decisions, such as its choice of the next IMF Managing Director?

The Executive Board declared (IMF Press Release 2016/19) that in the future a winner

from a shortlist of at most three candidates shall be adopted “by a majority of the votes

cast”. Suppose this means (i) receiving the most votes (plurality rule). Have changes

of the distribution of IMF drawing rights, hence votes, then made a difference? And

would it make a difference to interpret the declaration as calling instead for (ii)

a two-candidate runoff if nobody gets an outright majority (plurality runoff rule)

or (iii) securing the highest number of pairwise majority wins against competitors

(Copeland rule)? Both types of questions – comparing distinct vote distributions

for a given rule or different rules for a given distribution – are about equivalences

between committees that we formalize in this paper.

Here we are not concerned with any particular voting body but a parsimonious

framework for classifying non-binary voting structures. We take different compositi-

ons of committees – monotonically related to an underlying scale such as population,

shareholdings, etc. or not – and a voting rule as primitives and investigate their equi-

valence relations. We seek to identify all structurally distinct weight distributions to
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help assessing, for instance, if nominal differences in political representation trans-

late into real ones. We provide minimal representations for all pertinent committee

games for small n and m. Comprehensive lists of games only existed for m = 2 so far.

The extensions could be applied, e.g., to establish sharp bounds on the numbers of

voters and alternatives that permit certain monotonicity violations or paradoxes (cf.

Felsenthal and Nurmi 2017); to generalize rule-specific findings on manipulability

from one to infinitely many equivalent committees (see Aleskerov and Kurbanov

1999); or to check robustness of voting equilibria to small reallocations of voting

weights (cf. Myerson and Weber 1993, Bouton 2013, or Buenrostro et al. 2013). We

also give a glimpse of the beautiful geometry of weighted committee games.

2 Related concepts

Our analysis concerns arbitrary mappings from n-tuples of preferences over m alter-

natives to a winning one. We seek to connect a given mapping to an anonymous

baseline decision rule in the same way as weighted representations of a simple vo-

ting game described by player set N and coalitional function v connect it to simple

or supermajority rule.

Simple voting games and the subclass of weighted voting games (i.e., those that

have weighted representations) received a complete chapter’s attention by von Neu-

mann and Morgenstern (1953, Ch. 10). Taylor and Zwicker (1999) devoted a full-

length monograph to them and investigations continue. See, e.g., Kurz and Tauten-

hahn (2013) on open challenges in classifying and enumerating simple voting games

in the tradition of Shapley (1962). Machover and Terrington (2014) studied simple

voting games as “mathematical objects in their own right” and have connected their

algebraic structure to seemingly unrelated areas of mathematics. Houy and Zwicker

(2014) or Freixas et al. (2017) document ongoing progress on the problem of verifying

if a given game (N, v) is weighted.

However, the literature has increasingly acknowledged that the presumption of

dichotomous decision making is a severe limitation. Many committee decisions

allow more than two outcomes. And even for binary motions, voters usually can

abstain, stay away from the ballot, express different intensities of support, etc.

This has led to generalizations of simple voting games to multiple levels of ap-

proval. For instance, Felsenthal and Machover (1997), Tchantcho et al. (2008) and

Parker (2012) have considered ternary voting games with the option to support a pro-
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posal, to abstain, or to reject it. Quaternary voting games introduced by Laruelle and

Valenciano (2012) add the possibility not to participate in a ballot. The case of an

arbitrary finite number of individual actions translating into one of finitely many

collective outcomes has been addressed by Hsiao and Raghavan (1993) and Freixas

and Zwicker (2003, 2009). In their ( j, k)-games each player expresses one of j linearly

ordered levels of approval and every resulting j-partition of player set N is mapped

to one of k ordered output levels.

Committees that determine quantities like grades, interest rates, budget sizes, etc.

can be modeled as ( j, k)-games. But the assumption of ordered actions and outcomes

is problematic for alternatives with multidimensional attributes – for instance, if

the committee is to select from several policy options, locations of a facility, job

candidates, etc. Pertinent extensions of simple voting games have been introduced

as multicandidate voting games by Bolger (1986) and taken up as simple r-games by Amer

et al. (1998). These are the most closely related concepts in the literature to weighted

committee games as far as we are aware. In particular, weighted plurality committees

(as defined below) have featured in the framework of Bolger and Amer et al. as

“simple plurality games” and “relative majority r-games”. However, the respective

analysis concerned values and power indices rather than structural investigation

of the underlying games. We seem the first to find, e.g., that there are no more

than 36 distinct “simple plurality games” with four players1 and so only 36 different

distributions of power can arise.

3 Notation and definitions

3.1 Committees and simple voting games

We consider finite sets N of n ≥ 1 players or voters such that each voter i ∈ N has strict

preferences Pi over the set A = {a1, . . . , am} of m ≥ 2 alternatives. P(A) denotes the set

of all m! strict preference orderings on A. A (resolute) social choice rule ρ : P(A)n → A

maps each profile P = (P1, . . . ,Pn) to a single winning alternative a∗ = ρ(P). The

combination (N,A, ρ) of a set of voters, a set of alternatives and a particular social

choice rule will be referred to as a committee game or just as a committee.

For given N and A, there are m(m! n) distinct rules ρ. Those that treat all voters i ∈ N

symmetrically will play a special role in our analysis: suppose preference profile P′

1Chua et al. (2002) identified the eight games that cannot generate ties for m = 3.
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results from applying a permutation π : N → N to profile P, so P′ = (Pπ(1), . . . ,Pπ(n)).

Then ρ is anonymous if for all such P, P′ the winning alternative a∗ = ρ(P) = ρ(P′) is

the same. We will write r instead of ρ if we want to highlight that a considered rule

is anonymous, i.e., we impose no restrictions on general social choice rules denoted

by ρ but require anonymity for rules denoted by r : P(A)n → A.

For m = 2 and binary alternatives a1 = 1 and a2 = 0, it is common to describe ρ

by a coalitional function v : 2N → {0, 1} with v(S) = 1 when 1 Pi 0 for all i ∈ S implies

ρ(P) = 1. Sets S ⊆ N with v(S) = 1 are called winning coalitions. The pair (N, v) is

referred to as a simple voting game.

A simple voting game (N, v) is weighted and also called weighted voting game if there

exists a non-negative vector w = (w1, . . . ,wn) of weights and a positive quota q such

that v(S) = 1 if and only if
∑

i∈S wi ≥ q. One then refers to pair (q; w) as a (weighted)

representation of (N, v) and denotes the respective game by [q; w], i.e., (N, v) = [q; w]. It

is without loss of generality to focus on integer numbers: given q ∈ R++ and w ∈ Rn
+

one can always find q′ ∈N and w′ ∈Nn
0 such that [q; w] = [q′; w′].

Somewhat involved analogues of winning coalitions and coalitional functions

exist for m > 2. For instance, Moulin (1981) introduced veto functions to succinctly

describe the outcomes that given coalitions of players could prevent if they coordi-

nated. Different types of effectivity functions clarify the power structure associated

with a rule ρ by enumerating the sets of alternatives that given coalitions of voters

can force ρ(P) to lie in. See Peleg (1984). We provide a different perspective by

investigating analogues to weightedness of a simple voting game on the domain of

general committee games.

3.2 Four anonymous social choice rules

We will define weightedness of general rules ρ relative to some fixed anonymous

rule r. For the latter we here focus on four standard social choice rules with lexico-

graphic tie breaking. Their definitions are summarized in Table 1.

Under plurality rule rP each voter names his or her top-ranked alternative and

the alternative that is ranked first by the most voters will be chosen.2 Analogously,

antiplurality rule rA selects the alternative that is ranked last by the fewest voters.

2The formal structure of a committee game is unaffected by whether voting is sincere or strategic.

The difference only lies in the interpretation of P(A)n: it refers to profiles of true preferences in the

former and stated ones in the latter case. So it is without loss of generality if we adopt the simpler

vocabulary of sincere voting and say “ranked first” instead of “named as top-ranked”.
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Rule Winning alternative at preference profile P

Anti-plurality rA(P) ∈ arg mina∈A

∣
∣
∣{i ∈ N | ∀a′ , a ∈ A : a′Pia}

∣
∣
∣

Borda rB(P) ∈ arg maxa∈A

∑

i∈N bi(a,P)

Copeland rC(P) ∈ arg maxa∈A

∣
∣
∣{a′ ∈ A | a ≻P

M a′}
∣
∣
∣

Plurality rP(P) ∈ arg maxa∈A

∣
∣
∣{i ∈ N | ∀a′ , a ∈ A : aPia

′}
∣
∣
∣

Table 1: Considered anonymous social choice rules

Borda rule rB requires each voter i to give m − 1, m − 2, . . . , 0 points to the alternative

that he or she ranks first, second, etc. These points bi(a,P) :=
∣
∣
∣{a′ ∈ A | aPia

′}
∣
∣
∣ equal

the number of alternatives that i ranks below a. The alternative with the highest total

number of points, known as its Borda score, is selected. Copeland rule rC considers

pairwise majority votes between the alternatives. They define the majority relation

a ≻P
M a′ :⇔

∣
∣
∣{i ∈ N | aPia

′}
∣
∣
∣ >
∣
∣
∣{i ∈ N | a′Pia}

∣
∣
∣ and the alternative that beats the most

others according to ≻P
M is selected. In particular, if some alternative a is a Condorcet

winner, i.e., beats all others, then rC(P) = a.

We assume that whenever there is a non-singleton set A∗ = {a∗
i1
, . . . , a∗

ik
} of op-

timizers in Table 1, the alternative a∗
i∗
∈ A∗ with lowest index i∗ = min{i1, . . . , ik} is

selected. This amounts to lexicographic tie breaking for A ⊂ {a, . . . , z, aa, ab, . . .} and

has computational advantages over working with set-valued choices. In particular,

only m(m!n) distinct mappings from preference profiles to alternatives a∗ need to be

considered, compared to (2m − 1)(m!n) if each profile were mapped to a non-empty set

A∗ ⊆ A. The former entails no loss of information as we consider all P ∈ P(A)n: the

set of alternatives tied at P is fully determined by a∗ = r(P) and the respective winners

a∗∗, a∗∗∗, . . . at profiles P′,P′′, . . . that swap a∗ with alternatives a′, a′′, . . . that might be

tied with a∗ at P.3 The considered rules rA, rB, rC, rP and their set-valued versions are

hence in one-to-one correspondence and exhibit the same structural equivalences.4

3Given r(P) = b, for example, a tie with a can directly be ruled out; one sees if b was tied with c by

checking whether r(P′) = c or b where P′ only swaps b’s and c’s position in every player’s ranking Pi.
4Analogous reasoning would apply if ties were broken in a uniform random way, i.e., for the most

basic type of probabilistic social choice. See Brandl et al. (2016) on differences between deterministic

and probabilistic frameworks.
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3.3 Weighted committee games

Committee games (N,A, ρ) that model real committees, councils, parliaments etc.

are more likely than not to involve a non-anonymous social choice rule ρ. Designa-

ted members might have procedural privileges and veto rights. Or an anonymous

decision rule r applies not at the level of voters but their respective shareholdings,

IMF drawing rights, etc. Moreover, we may take the relevant players i ∈ N in a com-

mittee game to be well-disciplined parties, factions, or interest groups with different

numbers of seats. Anonymity of the underlying rule at the level of individual voters

then is destroyed at the level of voter blocs.

The latter two cases – individual voters with different numbers of votes and

groups of voters who act as monolithic blocs – amount to the same: the corresponding

rule ρ can be viewed as the combination of an anonymous social choice rule r with integer

voting weights w1, . . . ,wn attached to the relevant players.

In the following, we let r denote the entire family of mappings from n-tuples of

linear orders over A = {a1, . . . , am} to winners a∗ ∈ A determined by the considered

rule (for all n and m). Then the indicated combination operation amounts to a simple

replication. It defines the social choice rule r|w : P(A)wΣ → A by

r|w(P) := r(P1, . . . ,P1
︸     ︷︷     ︸

w1 times

, P2, . . . ,P2
︸     ︷︷     ︸

w2 times

, . . . , Pn, . . . ,Pn
︸     ︷︷     ︸

wn times

) (1)

for a given anonymous rule r and a non-negative, non-degenerate weight vector

w = (w1, . . . ,wn) ∈ Nn
0 with wΣ :=

∑n
i=1 wi > 0. In the degenerate case w = (0, . . . , 0),

let r|0(P) ≡ a1.

We say a committee game (N,A, ρ) is r-weighted for a given anonymous social

choice rule r if there exists a weight vector w = (w1, . . . ,wn) ∈Nn
0 such that

ρ(P) = r|w(P) for all P = (P1, . . . ,Pn) ∈ P(A)n. (2)

Then – so when (N,A, ρ) = (N,A, r|w) – we refer to (N,A, r,w) as a (weighted) represen-

tation of (N,A, ρ). The corresponding game will also be denoted by [N,A, r,w].

If the anonymous rule in question is plurality rule rP, we call (N,A, rP|w) a (weig-

hted) plurality committee. Similarly, (N,A, rA|w), (N,A, rB|w), and (N,A, rC|w) are re-

spectively referred to as an antiplurality committee, Borda committee, and Copeland

committee. That such committees can crucially differ for a fixed distribution w is
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P1 P2 P3 P4

d b c c

e c e b

b e a a

a a d d

c d b e

⇒

rA|w(P) = a (a has min. bottom ranks 0)

rB|w(P) = b (b has max. Borda score 28)

rC|w(P) = c (c has max. pairwise wins 3)

rP|w(P) = d (d has max. plurality tally 5)

Table 2: Choices for preference profile P when w = (5, 3, 2, 2)

illustrated in Table 2: winning alternative a∗ all depends on the voting rule r in use.5

4 Equivalence classes of weighted committees

4.1 Equivalence of committees

Weighted representations of given committee games are far from unique. Consider,

e.g., the j-dictatorship game (N,A, ρ j) where ρ j(P) equals the alternative that is top-

ranked by P j for every P ∈ P(A)n. This coincides with [N,A, r,w] for r ∈ {rC, rP} and

any w ∈Nn
0 with w j >

∑

i, j wi.

Committees (N,A, r|w) and (N′,A′, r′|w′) evidently are equivalent if N = N′, A = A′,

and r , r′ or w , w′ but the respective mappings from preference profiles to outcomes

a∗ are the same; that is, when r|w(P) = r′|w′(P) for all P ∈ P(A)n. We will focus on

situations where r = r′ and try to capture structural equivalence in the sense that

(N,A, r|w) and (N′,A′, r|w′) reflect the same decision environment even though weights

and labels of players or alternatives might differ. The latter means there are bijective

mappingsπ : N→ N′ and π̃ : A→ A′ such that each player i ∈ N and alternative a ∈ A

has the same role in (N,A, r|w) as do player π(i) and alternative π̃(a) in (N′,A′, r|w′).

Accordingly, r-weighted committee games (N,A, r|w) and (N′,A′, r|w′) will be called

structurally equivalent (or equivalent up to isomorphism) if

{

a j Pi ak ⇔ π̃(a j) P′π(i) π̃(ak)
}

⇒ π̃
(

r|w(P)
)

= r|w′(P′) (3)

for suitable bijections π : N → N′ and π̃ : A → A′ that map every profile P of prefe-

rences Pi over A to a relabeled profile P′ of preferences P′
π(i)

over A′.

5Moreover, e wins under approval voting for suitable ballots (Brams and Fishburn 1978). See

Felsenthal et al. (1993), Leininger (1993), or Tabarrok and Spector (1999) for related case studies.
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This includes situations where N = N′ but weights w′ are a permutation of w.

For instance, the Copeland committee (N,A, rC|w) has different attractiveness to a

given player for w = (3, 1, 1), (1, 3, 1), or (1, 1, 3). However, the decision environment

is the same: it involves a dictator player whose most-preferred alternative always

wins and two null players whose preferences do not influence the outcome.

A given weight distribution w ∈ Nn
0 fixes the number of players. So as labels

of players and alternatives do not matter, we write (r,w) ∼m (r,w′) to denote that

r-committee games with m alternatives are structurally equivalent for weight distri-

butions w and w′. Relation ∼m and a suitable reference distribution w̄ ∈ Nn
0 with

w̄1 ≥ w̄2 ≥ . . . ≥ w̄n serving as index jointly define an equivalence class

Er
w̄,m :=

{

w ∈Nn
0 | (r,w) ∼m (r, w̄)

}

. (4)

Er
w̄,m is the set of all weight distributions that give rise to weighted committee games

equivalent to [N,A, r, w̄] up to isomorphism. If voters use rule r for deciding between

m alternatives, then all weight distributions w,w′ ∈ Er
w̄,m come with identical mono-

tonicity properties, voting paradoxes, manipulation incentives, strategic equilibria,

implementation possibilities, etc.

4.2 Illustration

As an example, consider Borda rule rB for m = 3 and reference weights w̄ = (5, 2, 1).

We focus on the subset EB
(5,2,1),3

⊂ ErB

(5,2,1),3
of vectors w with w1 ≥ w2 ≥ w3. Identity

of ρ = rB|(5, 2, 1) and rB|w implies two inequalities for each profile P ∈ P(A)3: the

Borda winner must beat each of the other alternatives. Writing abc in abbreviation

of aPibPic, profile P = (cab, bac, abc), for instance, implies r|w̄(P) = c and hence the

Borda score of (lexicograpically maximal) c under any equivalent weight vector w

must strictly exceed that of a and b:

2w1 > w1 + w2 + 2w3 (I)

2w1 > 2w2 + w3. (II)

P′ = (cab, abc, bac) makes a the winner. Its score must not be smaller than b’s and c’s:

w1 + 2w2 + w3 ≥ w2 + 2w3 (III)

w1 + 2w2 + w3 ≥ 2w1. (IV)
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Profiles P′′ = (abc, bca, bac) and P′′′ = (abc, bca, bca) similarly induce ρ(P′′) = a and

ρ(P′′′) = b, which implies

2w1 + w3 ≥ w1 + 2w2 + 2w3 (V)

2w1 + w3 ≥ w2 (VI)

w1 + 2w2 + 2w3 > 2w1 (VII)

w1 + 2w2 + 2w3 ≥ w2 + w3. (VIII)

Condition (VIII) is trivially satisfied for any w ∈Nn
0 . (IV) and (V) imply w1 = 2w2+w3.

This makes (I) equivalent to w2 > w3 and (VII) to w3 > 0. Combining w1 = 2w2 + w3

and w2 > w3 > 0 also verifies (II), (III) and (VI). The 212 remaining profiles P ∈ P(A)3

turn out not to impose additional constraints. Hence

w ∈ EB
(5,2,1),3 =

{

(2w2 + w3,w2,w3) ∈N3
0 : w2 > w3 > 0

}

. (5)

The full class ErB

(5,2,1),3
follows by permuting the weight distributions in EB

(5,2,1),3
. Other

equivalence classes, such as ErB

(1,1,1),3
, ErB

(2,1,1),3
, etc., can be characterized analogously.

However, determining all classes is quite involved even for n = m = 3.

4.3 Relation between equivalence classes

As the number of distinct mappings from preference profiles to outcomes is finite for

given n and m, there are only finitely many disjoint Er
w̄,m with w̄ ∈ Nn

0 for any given

rule r. They partition the infinite space Nn
0 of weight distributions into a collection

{

Er
w̄1,m
,Er

w̄2,m
, . . . ,Er

w̄ξ,m

}

of all r-weighted committees with n voters deciding on m

alternatives. We will see below that the numbers ξ of elements of such a partition –

hence the numbers of structurally distinct weighted committee games for given r, n,

and m – vary widely across rules.

Let us first gather some results on the relation between equivalence classes for

different rules r or parameters n and m; proofs are provided in Appendix A. The

degenerate weight vector w0 = 0 always forms its own equivalence class:

Lemma 1. Let m ≥ 2, r ∈ {rA, rB, rC, rP} and w , 0 ∈Nn
0 . Then (r, 0) /m (r,w).

We focus on non-degenerate weight vectors w , 0 from now on. Another straight-

forward observation is that the considered rules do not differ for m = 2:

Proposition 1. The partitions
{

Er
w̄1,2
, . . . ,Er

w̄ξ,2

}

ofNn
0 coincide for r ∈ {rA, rB, rC, rP}.

10



Furthermore, weighted committees with m = 2 are in one-to-one relation to standard

weighted voting games [q; w1, . . . ,wn] with a 50%-majority quota:

Proposition 2. Let N = {1, . . . ,n} and A = {a1, a2}. For any w , 0 ∈ Nn
0 and r ∈

{rA, rB, rC, rP}

r|w(P) = a1 ⇔ v(S) = 1

where v is the coalitional function of weighted voting game (N, v) = [q; w] with q = 1
2

∑

i∈N wi

and coalition S = {i ∈ N | a1 Pi a2} ⊆ N collects all players who prefer a1 at profile P ∈ P(A)n.

It follows that the respective partitions
{

Er
w̄1,2
, . . . ,Er

w̄ξ,2

}

ofNn
0 coincide with those for

weighted voting games with a simple majority quota. Their study and enumeration

for n ≤ 5 dates back to von Neumann and Morgenstern (1953, Ch. 10).

The remaining propositions consider equivalence classes for a fixed rule r as the

number m of alternatives is varied.

Proposition 3. For Copeland rule rC, the partitions
{

ErC

w̄1,m
, . . . ,ErC

w̄ξ,m

}

ofNn
0 coincide for all

m ≥ 2.

Proposition 4. For plurality rule rP, the partitions
{

ErP

w̄1,m
, . . . ,ErP

w̄ξ,m

}

ofNn
0 coincide for all

m ≥ n.

Proposition 5. For Borda rule rB and given m ≥ 3, every weight vector w̃j = ( j, 1, 0, . . . , 0)

with j ∈ {1, . . . ,m − 1} identifies a different class ErB

w̃j,m
.

It follows that for any fixed number of players, the number ξ of structurally distinct

Borda committees grows without bound as m goes to infinity. Borda rule differs in

this respect from Copeland, plurality, and also antiplurality plurality rule:

Proposition 6. For antiplurality rule rA, the partitions
{

ErA

w̄1,m
,ErA

w̄2,m
, . . . ,ErA

w̄ξ,m

}

ofNn
0 r {0}

consist of ξ = n equivalence classes identified by weight vectors w̄1 = (1, 0, . . . , 0), w̄2 =

(1, 1, . . . , 0), . . . , w̄n = (1, 1, . . . , 1) for all m ≥ n + 1.

The reference vectors in Propositions 5 and 6 have the lowest possible weight

sum in the respective equivalence class. Before we elaborate on this be reminded

that equivalence classes would be the same if we considered uniform tie breaking or

set-valued choices (cf. end of Section 3.2).6

6Lexicographic tie breaking can yield r|w(P) = r|w′(P) = a∗ even though the sets of alternatives

tied at P, say A∗ and A′∗, differ between r|w and r|w′. Then construct P′ as follows: if A∗ 1 A′∗, fix

an alternative a′ ∈ A∗ \ A′∗ and swap positions of a∗ and a′ in P. Now r|w(P′) = a∗ is unchanged but

r|w′(P′) , a∗. If A∗ ⊂ A′∗, consider a′ ∈ A′∗ \ A∗ analogously.
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5 Identifying weighted committee games

5.1 Minimal representations and test for weightedness

Above rules have the property that [N,A, r,w] = [N,A, r,w′] when w is a multiple

of w′. Even if w represents the actual distribution of seats or vote shares in a

given institution, it can be analytically more convenient to work with w′. More

generally, given (N,A, ρ) = (N,A, r|w), we say that (N,A, r,w) has minimum integer

sum or is a minimal representation of (N,A, ρ) if
∑

i∈N w′
i
≥
∑

i∈N wi for all representations

(N,A, r,w′) of (N,A, ρ) that involve rule r. The games in a given equivalence class

Er
w̄,m usually have a unique minimal representation.7 The corresponding minimal

weights are the focal choice for w̄. For instance, (5, 2, 1) has minimal sum among all

w ∈ ErB

(5,2,1),3
characterized in Section 4.2.

Finding minimal representations of arbitrary Copeland committees simplifies to

finding them for m = 2 by Proposition 3. And by Proposition 2 this amounts to finding

minimal representations of specific weighted voting games. Linear programming

techniques have proven helpful for this task and can be adapted to committees that

apply rules rA, rB, or rP. These all belong to the family of positional or scoring rules:

winners can be characterized as maximizers of scores derived from alternatives’

positions in P and a suitable scoring vector s ∈ Zm with s1 ≥ s2 ≥ . . . ≥ sm. Specifically,

let the fact that alternative a is ranked at the j-th highest position in ordering Pi

contribute s j points for a, and refer to the sum of all points received as a’s score.

Then score maximization for sB = (m − 1,m − 2, . . . , 1, 0) yields the Borda winner,

sP = (1, 0, . . . , 0, 0) the plurality winner, and sA = (0, 0, . . . , 0,−1) or (1, 1, . . . , 1, 0) the

antiplurality winner.

For an arbitrary scoring rule r that induces social choice rule ρ for appropriate

weights, let us denote the index of the winning alternative at profile P by ωρ(P) ∈

{1, . . . ,m}, i.e., ρ(P) = aωρ(P) ∈ A; write Sk(Pi) ∈ Z for the unweighted s-score of

alternative ak derived from its position in ordering Pi (e.g., for m = 3 and a3 = c, we

have S3(Pi) = s2 if either aPicPib or bPicPia). Then any solution to the following integer

7If m = 2, minimal representations are unique for up to n = 7 players (Kurz 2012). Multiplicities

for games with larger values of m or n arise but are rare.
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linear program yields a minimal representation (N,A, r,w) of (N,A, ρ):

min
w∈Nn

0

n∑

i=1

wi (ILP)

s.t.

n∑

i=1

Sk(Pi) · wi ≤

n∑

i=1

Sωρ(P)(Pi) · wi − 1 ∀P ∈ P(A)n ∀1 ≤ k ≤ ωρ(P) − 1,

n∑

i=1

Sk(Pi) · wi ≤

n∑

i=1

Sωρ(P)(Pi) · wi ∀P ∈ P(A)n ∀ωρ(P) + 1 ≤ k ≤ m.

The case distinction between scores of non-winning alternatives ak with index k <

ωρ(P) vs. k > ωρ(P) reflects the tie breaking assumption. If some (non-minimal)

representation (N,A, r,w′) of (N,A, ρ) is known and w′
1
≥ w′2 ≥ . . . ≥ w′n then adding

constraints wi ≥ wi+1,∀1 ≤ i ≤ n − 1, to (ILP) helps to speed up computations.

If it is not yet known whether ρ is r-weighted, (ILP) provides a decisive test for

r-weightedness for any scoring rule r.8 Namely, the constraints in (ILP) characterize a

non-empty compact set if and only if ρ is r-weighted. Checking non-emptiness of the

constraint set for a given ρ answers the question of its r-weightedness. This can be

done with optimization software (e.g., Gurobi or CPLEX) that identifies the weight

sum minimizer at little extra effort.

5.2 Algorithmic strategy

We would like to characterize all r-committee games for fixed n and m. In princi-

ple, one could do this as follows: loop over the m(m!n) different social choice rules

ρ : P(A)n → A; conduct above test for r-weightedness; if it was successful, determine

a representation (N,A, r, w̄) and characterize Er
w̄,m as in Section 4.2; continue until all

rules ρ have been covered.

The extreme growth of m(m!n) prevents a direct implementation of this idea: n =

m = 3 already gives rise to an intractable 3216 > 10103 different mappings. However,

many mappings can be dropped from consideration in large batches. If ρ(P) = a1 for

one of the (m−1)!n profiles P where a1 is unanimously ranked last, for instance, then ρ

cannot be r-weighted for r ∈ {rA, rB, rC, rP}. This rules out m(m!n−1) candidate mappings

in one go. Similarly, if weights w such that r|w(P) = a1 turn out to be incompatible

with r|w(P′) = a2 for two suitable profiles P,P′, then all m(m!n−2) mappings ρ with

ρ(P) = a1 and ρ(P′) = a2 can be disregarded at once.

8This extends to Copeland rule rC by Propositions 1 and 3.
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Branch-and-Cut Algorithm
Given n, m and r, identify every class Er

w̄k,m
by a minimal representation.

Step 1 Generate all J := (m!)n profiles P1, . . . ,PJ ∈ P(A)n for A := {a1, . . . , am}.
Set F := ∅.

Step 2 For every P j ∈ P(A)n and every ai ∈ A, check if there is any weight
vector w ∈ Nn

0 s.t. r|w(P j) = ai by testing feasibility of the implied
constraints (cf. Section 4.2). If yes, then append (i, j) to F .

Step 3 Loop over j from 1 to J.

Step 3a If j = 1, then set C1 :=
{
1 ≤ i ≤ m | (i, j) ∈ F

}
.

Step 3b If j ≥ 2, then set C j := ∅ and loop over all (p1, . . . , p j−1) ∈ C j−1 and
all p j ∈ {1, . . . ,m} with (p j, j) ∈ F . If (ILP) has a solution for the
restriction to the profiles P1, . . . ,Pj with prescribed winners ρ(Pi) =
api

for 1 ≤ i ≤ j, then append (p1, . . . , p j) to Cp.

Step 4 Loop over the elements (p1, . . . , p j, . . . , pJ) ∈ CJ and output minimal
weights w̄ such that r|w̄ ≡ ρwith ρ(Pj) = p j by solving (ILP).

Table 3: Determining the classes of r-weighted committees for given n and m

The branch-and-cut algorithm described in Table 3 operationalizes these consi-

derations. Alas, it can still require too much memory and running time. The main

alternative then is to loop over different weight distributions and check if they are

structurally distinct from those already known. Namely, start with wΣ := 0 and an

empty list Ŵ of weight vectors; increase the sum of weights wΣ in steps of 1; generate

the set WwΣ :=
{

w ∈ Nn
0

∣
∣
∣ w1 ≥ · · · ≥ wn and w1 + · · · + wn = wΣ

}

and loop over all

w ∈ WwΣ . The respective weight vector w is appended to Ŵ if for every w′ ∈ Ŵwe

have r|w(P) , r|w′(P) for at least one P ∈ P(A)n. The set Ŵ then contains a growing

list of minimal weight vectors that correspond to structurally distinct committee ga-

mes [N,A, r,w]. Search needs to be stopped manually and produces a lower bound

on the actual number of classes.9

9One can compute upper bounds on the weight sum that guarantees coverage of all equivalence

classes, analogously to bounds for minimal representation of weighted voting games (see Muroga

1971, Thm. 9.3.2.1). In our context such bounds are way too large to be practical, however.
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n,m

r Antiplurality Borda Copeland Plurality

3,2 4

4,2 9

5,2 27

6,2 138

7,2 1 663

8,2 63 764

9,2 9 425 479

3, 3 5 51 4 6

3, 4 3 505 4 6

3, 5 3 ≥ 2 251 4 6

4, 3 19 5 255 9 34

4, 4 7 ≫ 635 622 9 36

4, 5 4 ≫ 635 622 9 36

5, 3 263 ≫ 1 153 448 27 852

6, 3 ≥ 33 583 ≫ 1 153 448 138 ≫ 144 403

Table 4: Number of non-degenerate equivalence classes Er
w̄,m ⊂N

n
0
r {0}

6 Number and geometry of weighted committee games

6.1 Number of antiplurality, Borda, Copeland, and plurality games

A combination of our analytical findings and indicated computational methods

permits to identify all structurally distinct r-weighted committee games with r ∈

{rA, rB, rC, rP} for small n and m. This can be useful in several ways: demonstrating,

for instance, that a certain voting paradox does not occur for any of the 34 distinct

plurality committees with n = 4, m = 3, which we list in Appendix B, would suffice

to establish that at least five voter groups or four alternatives are needed for rP to

exhibit the paradox. A characterization of voting equilibria for, say, the 7 weight

vectors listed for antiplurality rule when n = m = 4 would automatically extend to

all distributions of votes.

Table 4 summarizes our findings. Figures do not include the degenerate class

E0,m. When less than 150 equivalence classes exist, we report a minimum sum integer
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w3

100 %
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3

Figure 1: Simplex of all distributions of relative voting weights for n = 3

representation for each in Appendix B.10 The list for m = 2 nests the one reported by

Brams and Fishburn (1996); plurality committees with m = 3 nest the tie-free games

listed by Chua et al. (2002) for n = 3, 4. The branch-and-cut approach required

excessive memory for Borda committees when m > 4 nor n = m ≥ 4. We indicate

bounds obtained via simple search by “≥ . . .” if we conjecture that these numbers are

exact, and by “≫ . . .” if we expect more computing power to yield higher numbers.11

6.2 Geometry of committee games with n=3

In principle, one could characterize the full equivalence class of committee games

for each reference distribution that we list in the appendix. We have indicated how

in Section 4.2. But computation of the respective partition of Nn
0 is very arduous –

much more than determining into which classes given games [N,A, r,w] fall.

We have done the latter to obtain a first overview of the geometry of committee

games. Our illustrations differ in content but echo the geometric approach to voting

espoused by Saari (1995, 2001). His eponymous triangles concern m = 3 alternati-

ves and consider an arbitrary number n of voters. They illuminate how collective

10When there are less than a million classes, representations will be made available on our websites.
11We mostly used 128 GB RAM and eight 3.0 GHz cores. Some instances ran for two months.
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1 2

3

Figure 2: The four Copeland equivalence classes for m ≥ 2

rankings vary with the applicable voting procedure for given preferences.

We, by contrast, assume n = 3 voter blocs and let the number m of alternatives vary.

Points in our triangles correspond to voting weight distributions; colors group them

into equivalence classes. We use the standard projection of the 3-dimensional unit

simplex of relative weights to the plane, which is illustrated in Figure 1. The weight

axes are suppressed in subsequent figures. Points of identical color correspond to

structurally equivalent weight distributions, i.e., they induce isomorphic committee

games for the voting rule r under investigation. When equivalence classes correspond

to line segments or single points, we have manually enlarged these in Figures 2–4 to

improve visibility.

6.2.1 Copeland committees

Figure 2 shows all Copeland committees with three players. The four equivalence

classes ErC

w̄,m with w̄ ∈
{

(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1)
}

, m ≥ 2, can be identified

as follows. The dark blue triangles in the corners collect all weight distributions

in ErC

(1,0,0),m
: one group with more than 50% of the votes can impose its preferred

alternative as a dictator. The green lines cover all weight distributions in ErC

(2,1,1),m
:
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1 2

3

Figure 3: The six plurality equivalence classes for m ≥ 3

one player holds 50% of the votes, the others share the rest in an arbitrary positive

proportion. The three black points depict situations in which two players have equal

positive numbers of votes while the third has no votes, i.e., ErC

(1,1,0),m
. The yellow

triangle in the middle reflects the many equivalent weight configurations in ErC

(1,1,1),m
:

each player wields a positive number of votes below half the total. As known from

the analysis of binary weighted voting games, weights do not matter inside the

central triangle: quite dissimilar distributions like (33, 33, 33) and (49, 49, 1) induce

the same pairwise majorities.

6.2.2 Plurality committees

Figure 3 illustrates the situation for m ≥ 3 when plurality rule rP is used. Weight

vectors w that belong to Copeland class ErC

(1,1,1),m
split into the plurality classes ErP

(1,1,1),m

with identical weights for all three players, ErP

(2,2,1),m
and ErP

(3,2,2),m
. The former corre-

sponds to weights on the orange lines that point to the center: two players each have

a plurality of votes. The latter class involves just one plurality player.

For non-dictatorial weight configurations, plurality rule is more sensitive to the

configuration of seats or voting rights than Copeland rule. This becomes more
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(a) m = 3 (b) m ≥ 4

1 2

3

1 2

3

Figure 4: The five or three antiplurality equivalence classes

pronounced the more players are involved: Table 4 shows that there are about four

and 32 times more structurally different committees with plurality than Copeland

rule for n = 4 and 5, respectively; we conjecture this factor exceeds 1 000 for n = 6.

6.2.3 Antiplurality committees

In Figure 4, the dark blue triangles that reflected existence of a dictator player under

rC and rP in Figures 2 and 3 shrink to the three vertices for antiplurality rule. Only the

degenerate case, in which no one else has positive weight, has outcomes determined

by one player’s preferences alone. Otherwise, even a single vote may disqualify an

alternative under rA.

Equivalence classes ErA

w̄,3 with w̄ ∈
{

(1, 0, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 2, 1)
}

differ

according to whether one (blue vertices), two (dark green edges), or all three players

have positive weight. The latter case comes with the possibility that none (yellow

center), one (orange lines), or two of them (light green triangles) have greater weight

than others and hence elevated roles if the players each vote against a different

alternative. For m = 4, this distinction becomes obsolete because there is always at

least one alternative not disapproved by anyone (Proposition 6). Then there are just

three classes ErA

w̄,4
with w̄ ∈

{

(1, 0, 0), (1, 1, 0), (1, 1, 1)
}

.
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Figure 5: The 51 Borda equivalence classes for m = 3

1 2

3

Figure 6: The 505 Borda equivalence classes for m = 4
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3

Figure 7: At least 2251 Borda equivalence classes for m = 5

6.2.4 Borda committees

Figures 2 and 5–7 show how sensitive Borda decision structures are to the underlying

vote distribution – the more alternatives, the higher the sensitivity. (Recall that

Figure 2 captures the case of m = 2 for all rules.) This does not make a big practical

difference if preference configurations P with rB|w(P) , rB|w′(P) for similar w,w′ are

rare compared to those where w and w′ result in identical outcomes.12 But from an

a priori perspective, rB involves more scope for changes in the distribution of voting

rights to induce different decisions than rA, rC and rP.

The dark blue triangles in the corners of Figures 5–7 are smaller than those in

Figures 2–3: having 50% plus one vote suffices to win all pairwise comparisons or

plurality votes but more than two thirds are needed under Borda rule.13

12Our color choices provide a rough guide to how much two mappings r|w and r|w′ differ: points

of similar color correspond to committees whose decisions differ for few profiles.
13Player 1’s relative weight must exceed (m − 1)/m to be a Borda dictator. This was already

observed by Borda in 1781. Moulin (1982) studies a more nuanced concept of veto power for Borda

and Copeland rule, which translates to lighter colors in our figures.
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7 Concluding remarks

Equivalence of different distributions of voting rights is relevant for voting bodies

such as the IMF’s Executive Board, councils of non-governmental organizations,

boards of private companies, etc. and depends highly on whether elections involve

two, three, or more candidates. Weight distributions such as (6, 5, 2), (5, 5, 5), or

(48%, 24%, 28%) are equivalent for binary majority decisions but not more generally.

Scope for weight differences to matter has been formalized and compared across

rules in this paper.

The only Condorcet method that we featured here, i.e., Copeland rule, behaves

somewhat at odds with the others: it extends the equivalences known for dichoto-

mous choice problems to arbitrarily many options (Proposition 3). This might feel

unsurprising because the rule selects winners by doing binary comparisons. Is it,

therefore, okay to apply insights and tools for binary voting, such as the Shapley-

Shubik or Banzhaf power indices, also to voting bodies that face non-binary options

as long as the pertinent rules satisfy the Condorcet winner criterion?

This conjecture is wrong. Copeland method is special insofar that it invokes

ordinal evaluations only; most other Condorcet methods also use information on

victory margins, rank positions, or distances. More alternatives then generate more

scope for decisions to be sensitive to the seat distribution. Proposition 3 fails to

generalize, for example, to the Black rule. It selects the Condorcet winner if one exists

and otherwise uses Borda scores to break cyclical majorities. Weight distributions of

(6, 4, 3) and (4, 4, 2) are equivalent for m = 2 and give rise to a cycle over A = {a, b, c}

for profile P = (cab, abc, bca). The Black winner is c for the former weight distribution,

with a score of 15; but a wins with a score of 12 for the latter. Hence they are

non-equivalent for m = 3. The same applies to Kemeny rule, which minimizes total

pairwise disagreements (Kemeny distances) between the rankings in profile P and

the collective ranking; or maximin rule, where a winner must maximize the minimum

support across all pairwise comparisons. There are more Black, Kemeny, or maximin

equivalence classes than Copeland classes although all are Condorcet methods.

There is ample choice for extending the analysis in future research. The list of

sensible single-winner voting procedures is long (see, e.g., Aleskerov and Kurbanov

1999; Nurmi 2006, Ch. 7; or Laslier 2012). We have tentatively computed equivalence

classes for scoring rules based on arbitrary s = (1, s2, 0) ∈ Q3 for n = m = 3. The

numbers of structurally distinct weight distributions are M-shaped: they increase

from 6 plurality committees to more than 160 for s2 = 0.25, fall to 51 Borda committees
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for s2 = 0.5, increase again to at least 229 for s2 = 0.9 and then drop sharply to just 5

antiplurality committees for s2 = 1.14

Whether sensitivity of a collective decision rule to weight differences is good

from an institutional perspective or bad obviously depends on context and objectives.

Higher sensitivity can give bigger incentives for parties to campaign or for investment

into voting stock. However, this needs to be weighed against other (un)desirable

properties of the applicable methods. Links between voting weights and decisions

are just one aspect of collective choice among many – but one that matters beyond

binary options.

14Illustrations of their geometry are available on request. Some reminded us of paintings, e.g., by

Bauhaus artists Paul Klee and Johannes Itten.
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Appendix A: Proofs

Proof of Lemma 1

Consider w , 0 ∈Nn
0

and the unanimous profile P = (P, . . . ,P) ∈ P(A)n with a2Pa3P . . .PamPa1.

Then r|0(P) = a1 but r|w(P) = a2 for any r ∈ {rA, rB, rC, rP}.

Proof of Proposition 1

For A = {a1, a2} and arbitrary fixed w , 0 ∈Nn
0

r|w(P) =





a2 if
∑

i : a2Pia1

wi >
∑

j : a1P ja2

w j,

a1 otherwise

for any r ∈ {rA, rB, rC, rP}. So antiplurality, Borda, Copeland and plurality rule are equivalent

and hence have the same equivalence classes.

Proof of Proposition 2

Define w(T) :=
∑

i∈T wi for T ⊆ N. If w(S) ≥ w(N r S) then rP|w(P) = a1 and v(S) = 1. If

w(S) < w(N r S) then rP|w(P) = a2 and v(S) = 0. Proposition 1 extends this to r ∈ {rA, rB, rC} .

Proof of Proposition 3

For a given set of alternatives A = {a1, . . . , am} and any subset A′ ⊆ A that preserves the order

of the alternatives, we denote the projection of preference profile P ∈ P(A)n to A′ by P↓A′

with ak Pi↓A′ al :⇔ [akPial and ak, al ∈ A′]. For instance, for P = (a1a2a3, a3a1a2, a2a3a1) and

A′ = {a1, a3} we have P↓A′= (a1a3, a3a1, a3a1). Conversely, if A′ ⊇ A is a superset of A with

A′rA = {am+1, . . . , am′}we define the lifting P↑A′ of P ∈ P(A)n to A′ by appending alternatives

am+1, . . . , am′ to each ordering Pi below the lowest-ranked alternative from A. That is, for

P = (a1a2a3, a3a1a2, a2a3a1) and A′ = {a1, a2, a3, a4} we have P↑A′= (a1a2a3a4, a3a1a2a4, a2a3a1a4).

We let ρ or r refer to whole families of mappings and, for instance, write ρ(P) = ρ(P↓A′) if the

same alternative a∗ ∈ A′ ⊂ A happens to win for both A and the smaller set A′.

Now consider A = {a1, . . . , am} for m > 2 and any w,w′ ∈Nn
0

such that (rC,w) /m (rC,w′).

So there exists P ∈ P(A)n with rC|w(P) , rC|w′(P). The w and w′-weighted versions of the

majority relation differ at P: if all pairwise comparisons produced the same winners for

weights w and w′, identical Copeland winners would follow. So a weak victory of some ak
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over some al for w turns into a strict victory of al over ak for w′, i.e.,

∑

i : akPial

wi ≥
∑

j : alP jak

w j and
∑

i : akPial

w′i <
∑

j : alP jak

w′j. (6)

Then take A′ = {ak, al} ⊂ A where |A′| = 2 and projection P↓A′ . (6) implies

∑

i : ak Pi↓A′ al

wi ≥
∑

j : al P j↓A′ ak

w j and
∑

i : ak Pi↓A′ al

w′i <
∑

j : al P j↓A′ ak

w′j. (7)

If both inequalities are strict or k < l then rC|w(P↓A′) = ak , rC|w′(P↓A′) = al and hence

(rC,w) /2 (rC,w′). If not, al wins also for w by lexicographic tie breaking but we can consider

profile P′ ∈ P(A′)n with alP
′
i
ak ⇔ akPi↓A′ al for all i ∈ N. Then rC|w(P′) = al , rC|w′(P′) = ak

and (rC,w) /2 (rC,w′).

Conversely take A = {a1, a2} and w,w′ ∈ Nn
0

such that (rC,w) /2 (rC,w′) and rC|w(P) =

a1 , rC|w′(P) = a2 for some P ∈ P(A)n. Then

∑

i : a1Pia2

wi ≥
∑

j : a2P ja1

w j and
∑

i : a1Pia2

w′i <
∑

j : a2P ja1

w′j. (8)

Consider A′ = {a1, a2, . . . , am} ⊃ A where |A′| = m and lifting P↑A′ . (8) implies

∑

i : a1 Pi↑
A′a2

wi ≥
∑

j : a2 P j↑
A′a1

w j and
∑

i : a1 Pi↑
A′a2

w′i <
∑

j : a2 P j↑
A′a1

w′j (9)

and alternatives a3, . . . , am lose all weighted majority comparisons against a1 and a2 by con-

struction of P↑A′ . So rC|w(P↑A′) = a1 , rC|w′(P↑A′) = a2. Hence (rC,w) /m (rC,w′). In

summary, (rC,w) /2 (rC,w′) ⇔ (rC,w) /m (rC,w′) and, a fortiori, (rC,w) ∼2 (rC,w′) ⇔

(rC,w) ∼m (rC,w′).

Proof of Proposition 4

Let m > n. Consider A = {a1, . . . , am} and any w,w′ ∈ Nn
0

such that (rP,w) /m (rP,w′). So

there exists P ∈ P(A)n with rP|w(P) = ak , rP|w′(P) = al. . For this P let

Â :=
{

a | ∃i ∈ N : ∀a′ , a : aPia
′
}

(10)

denote the set of all alternatives that are top-ranked by some voter. (Obviously, ak, al ∈ Â.)

Now define A′ ⊂ A as the union of Â and some arbitrary elements of Ar Â such that |A′| = n.

By construction, each a ∈ A′ has the same weighted number of top positions for projection

P↓A′ as it had for P. So rP|w(P↓A′) = ak , rP|w′(P↓A′) = al. Hence (rP,w) /n (rP,w′).
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Analogously, consider A = {a1, . . . , an} and w,w′ ∈ Nn
0

such that (rP,w) /n (rP,w′). A

profile P ∈ P(A)n with rP|w(P) = ak , rP|w′(P) = al can then be lifted to A′ = A∪{an+1, . . . , am}.

By construction, rP|w(P↑A′) = ak , rP|w′(P↑A′) = al. Hence (rP,w) /m (rP,w′). Overall, we

can conclude (rP,w) ∼m (rP,w′)⇔ (rP,w) ∼n (rP,w′).

Proof of Proposition 5

Let k > j for otherwise arbitrary j, k ∈ {1, . . . ,m}. Consider A = {a1, . . . , am} and any profile P ∈

P(A)n such that player 1 prefers a2 most and ranks all remaining alternatives lexicographically

while player 2 ranks a2 in k-th position and otherwise agrees with player 1, i.e., suppose

a2 P1 a1 P1 a3 P1 a4 . . . am and a1 P2 a3 P2 a4 . . . ak P2 a2 P2 ak+1 P2 ak+2 . . . am.

The Borda score j · (m − 2) + (m − 1) of a1 under w̃j is at least as big as the corresponding

score j · (m − 1) + (m − k) of a2. Since scores of a3, . . . , am are all strictly smaller than that of a1,

we have rB|w̃j(P) = a1. With w̃k, by contrast, a1’s weighted score k · (m− 2)+ (m− 1) is strictly

smaller than a2’s corresponding score k · (m − 1) + (m − k). Scores of a3, . . . , am remain smaller

than a1’s. So rB|w̃k(P) = a2. Hence (rB, w̃j) /m (rB, w̃k).

Proof of Proposition 6

The claim is obvious for n = 1, as each non-degenerate weight then is equivalent to w1 = 1.

So consider m ≥ n + 1 for n ≥ 2. Let A = {a1, . . . , am} and Pi ∈ P(A)n be any preference

profile where the first i players rank alternative a1 last and the remaining n − i players rank

alternative a2 last. Consider any w̄k and w̄l with k < l. Then rA|w̄k(Pk) = a2 , rA|w̄l(P
k) = a3.

So ErA

w̄1,m
,ErA

w̄2,m
, . . . ,ErA

w̄n,m
all differ.

Now assume some w ∈ Nn
0
r {0} with w1 ≥ w2 ≥ . . . ≥ wn satisfies (rA,w) /m (rA, w̄k) for

all k ∈ {1, . . . ,n}. Let l denote the index such that wl > 0 and wl+1 = 0. Then both rA|w(P) and

rA|w̄l(P) equal the lexicographically minimal element in set

Zl(P) :=
{

a ∈ A | ∀i ∈ {1, . . . , l} : ∃a′ ∈ A : aPia
′
}

(11)

that collects all alternatives not ranked last by any of the players who have positive weight.

These coincide for w and w̄l; and Zl(P) is non-empty because m ≥ n+1. This holds for arbitrary

P ∈ P(A)n. Hence rA|w ≡ rA|w̄l, contradicting the assumption that (rA,w) /m (rA, w̄k) for all

k ∈ {1, . . . ,n}. Consequently, ErA

w̄1,m
,ErA

w̄2,m
, . . . ,ErA

w̄n,m
are all antiplurality classes that exist for

m ≥ n + 1 (plus the degenerate E0,m).
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Appendix B: Minimal representations of committees

n,m Minimal w̄ for all antiplurality classes ErA

w̄,m

3, 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)

2. (1,1,0) 4. (2,1,1)

3,m ≥ 4 1. (1,0,0) 2. (1,1,0) 3. (1,1,1)

4, 3 1. (1,0,0,0) 6. (2,1,1,1) 11. (3,2,2,1) 16. (4,3,2,2)

2. (1,1,0,0) 7. (2,2,1,0) 12. (3,3,1,1) 17. (4,4,2,1)

3. (1,1,1,0) 8. (2,2,1,1) 13. (3,3,2,1) 18. (4,4,3,2)

4. (1,1,1,1) 9. (2,2,2,1) 14. (3,3,2,2) 19. (5,4,3,2)

5. (2,1,1,0) 10. (3,2,1,1) 15. (4,3,2,1)

4, 4 1. (1,0,0,0) 3. (1,1,1,0) 5. (2,1,1,1) 7. (2,2,2,1)

2. (1,1,0,0) 4. (1,1,1,1) 6. (2,2,1,1)

4,m ≥ 5 1. (1,0,0,0) 2. (1,1,0,0) 3. (1,1,1,0) 4. (1,1,1,1)

Table B-1: Minimal representations of different antiplurality committees

n,m Minimal w̄ for all Borda classes ErB

w̄,3

3, 3 1. (1,0,0) 14. (3,3,2) 27. (5,4,3) 40. (8,6,3)

2. (1,1,0) 15. (4,3,1) 28. (7,4,1) 41. (9,6,2)

3. (1,1,1) 16. (5,2,1) 29. (6,5,2) 42. (8,7,3)

4. (2,1,0) 17. (4,3,2) 30. (7,5,1) 43. (8,6,5)

5. (2,1,1) 18. (5,2,2) 31. (6,5,3) 44. (10,7,2)

6. (2,2,1) 19. (5,3,1) 32. (7,5,2) 45. (11,7,2)

7. (3,1,1) 20. (4,3,3) 33. (8,5,1) 46. (9,7,5)

8. (3,2,0) 21. (5,4,1) 34. (6,5,4) 47. (10,8,3)

9. (3,2,1) 22. (6,3,1) 35. (7,5,3) 48. (11,8,2)

10. (4,1,1) 23. (5,3,3) 36. (7,6,2) 49. (11,9,3)

11. (3,2,2) 24. (5,4,2) 37. (8,5,2) 50. (13,8,2)

12. (3,3,1) 25. (6,4,1) 38. (7,5,4) 51. (12,9,7)

13. (4,2,1) 26. (7,2,2) 39. (7,6,4)

Table B-2: Minimal representations of different Borda committees
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n Minimal w̄ for all Copeland classes ErC

w̄,m

and for all classes Er
w̄,2

when r ∈
{

rA, rB, rP
}

and for all weighted voting games [q; w] with q = 0.5
∑

wi

3 1. (1,0,0) 2. (1,1,0) 3. (1,1,1) 4. (2,1,1)

4 1. (1,0,0,0) 4. (1,1,1,1) 7. (2,2,1,1)

2. (1,1,0,0) 5. (2,1,1,0) 8. (3,1,1,1)

3. (1,1,1,0) 6. (2,1,1,1) 9. (3,2,2,1)

5 1. (1,0,0,0,0) 8. (2,1,1,1,1) 15. (3,2,2,1,0) 22. (4,3,2,2,1)

2. (1,1,0,0,0) 9. (2,2,1,1,0) 16. (4,1,1,1,1) 23. (4,3,3,1,1)

3. (1,1,1,0,0) 10. (3,1,1,1,0) 17. (3,2,2,1,1) 24. (5,2,2,2,1)

4. (1,1,1,1,0) 11. (2,2,1,1,1) 18. (3,2,2,2,1) 25. (4,3,3,2,2)

5. (2,1,1,0,0) 12. (3,1,1,1,1) 19. (3,3,2,1,1) 26. (5,3,3,2,1)

6. (1,1,1,1,1) 13. (2,2,2,1,1) 20. (4,2,2,1,1) 27. (5,4,3,2,2)

7. (2,1,1,1,0) 14. (3,2,1,1,1) 21. (3,3,2,2,2)

6 see next page . . .
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5 . . . see previous page

6 1. (1,0,0,0,0,0) 36. (3,2,2,2,2,1) 71. (5,4,3,2,1,1) 106. (5,5,4,3,3,2)

2. (1,1,0,0,0,0) 37. (3,3,2,2,1,1) 72. (5,4,3,2,2,0) 107. (6,4,4,3,3,2)

3. (1,1,1,0,0,0) 38. (3,3,2,2,2,0) 73. (5,4,4,1,1,1) 108. (6,5,4,3,2,2)

4. (1,1,1,1,0,0) 39. (3,3,3,1,1,1) 74. (6,3,2,2,2,1) 109. (6,5,4,3,3,1)

5. (2,1,1,0,0,0) 40. (4,2,2,2,1,1) 75. (6,3,3,2,1,1) 110. (6,5,5,2,2,2)

6. (1,1,1,1,1,0) 41. (4,3,2,1,1,1) 76. (7,2,2,2,2,1) 111. (7,4,4,3,2,2)

7. (2,1,1,1,0,0) 42. (4,3,2,2,1,0) 77. (5,4,3,2,2,1) 112. (7,5,3,3,2,2)

8. (1,1,1,1,1,1) 43. (4,3,3,1,1,0) 78. (4,4,3,3,2,2) 113. (7,5,4,3,2,1)

9. (2,1,1,1,1,0) 44. (5,2,2,1,1,1) 79. (4,4,3,3,3,1) 114. (7,5,5,2,2,1)

10. (2,2,1,1,0,0) 45. (5,2,2,2,1,0) 80. (5,3,3,3,2,2) 115. (8,4,3,3,2,2)

11. (3,1,1,1,0,0) 46. (3,3,2,2,2,1) 81. (5,4,3,2,2,2) 116. (6,5,4,4,3,2)

12. (2,1,1,1,1,1) 47. (4,3,2,2,1,1) 82. (5,4,3,3,2,1) 117. (6,5,5,3,3,2)

13. (2,2,1,1,1,0) 48. (4,3,3,1,1,1) 83. (5,4,4,2,2,1) 118. (7,5,4,3,3,2)

14. (3,1,1,1,1,0) 49. (5,2,2,2,1,1) 84. (5,5,3,2,2,1) 119. (7,5,4,4,2,2)

15. (2,2,1,1,1,1) 50. (3,3,2,2,2,2) 85. (6,3,3,2,2,2) 120. (7,5,5,3,3,1)

16. (2,2,2,1,1,0) 51. (3,3,3,2,2,1) 86. (6,4,3,2,2,1) 121. (7,6,4,3,2,2)

17. (3,1,1,1,1,1) 52. (4,3,2,2,2,1) 87. (6,4,3,3,1,1) 122. (7,6,4,3,3,1)

18. (3,2,1,1,1,0) 53. (4,3,3,2,1,1) 88. (6,4,4,2,1,1) 123. (7,6,5,2,2,2)

19. (3,2,2,1,0,0) 54. (4,3,3,2,2,0) 89. (7,3,3,2,2,1) 124. (8,5,4,3,2,2)

20. (4,1,1,1,1,0) 55. (4,4,2,2,1,1) 90. (7,3,3,3,1,1) 125. (8,5,5,3,2,1)

21. (2,2,2,1,1,1) 56. (4,4,3,1,1,1) 91. (5,4,3,3,3,2) 126. (9,4,4,3,2,2)

22. (3,2,1,1,1,1) 57. (5,2,2,2,2,1) 92. (5,4,4,3,2,2) 127. (7,5,5,4,3,2)

23. (3,2,2,1,1,0) 58. (5,3,2,2,1,1) 93. (5,4,4,3,3,1) 128. (7,6,5,3,3,2)

24. (4,1,1,1,1,1) 59. (5,3,3,1,1,1) 94. (5,5,3,3,3,1) 129. (8,5,5,4,2,2)

25. (2,2,2,2,1,1) 60. (5,3,3,2,1,0) 95. (5,5,4,2,2,2) 130. (8,6,4,3,3,2)

26. (3,2,2,1,1,1) 61. (6,2,2,2,1,1) 96. (6,4,3,3,2,2) 131. (8,6,5,3,3,1)

27. (3,2,2,2,1,0) 62. (4,3,3,2,2,1) 97. (6,4,4,3,2,1) 132. (9,5,5,3,2,2)

28. (3,3,1,1,1,1) 63. (5,3,3,2,1,1) 98. (6,5,3,2,2,2) 133. (7,6,5,4,4,2)

29. (3,3,2,1,1,0) 64. (4,3,3,2,2,2) 99. (6,5,3,3,2,1) 134. (8,6,5,4,3,2)

30. (4,2,1,1,1,1) 65. (4,3,3,3,2,1) 100. (6,5,4,2,2,1) 135. (8,7,5,3,3,2)

31. (4,2,2,1,1,0) 66. (4,4,3,2,2,1) 101. (7,3,3,3,2,2) 136. (9,6,5,4,2,2)

32. (5,1,1,1,1,1) 67. (5,3,2,2,2,2) 102. (7,4,3,2,2,2) 137. (9,7,5,4,3,2)

33. (3,2,2,2,1,1) 68. (5,3,3,2,2,1) 103. (7,4,4,2,2,1) 138. (9,7,6,4,4,2)

34. (3,3,2,1,1,1) 69. (5,3,3,3,1,1) 104. (7,4,4,3,1,1)

35. (4,2,2,1,1,1) 70. (5,4,2,2,2,1) 105. (8,3,3,3,2,1)

Table B-3: Minimal representation of different Copeland committees for m ≥ 2,
and of different antiplurality, Borda and plurality committees for m = 2,
and of different weighted voting games with a simple majority
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n,m Minimal w̄ for all plurality classes ErP

w̄,m

3,m ≥ 3 1. (1,0,0) 3. (1,1,1) 5. (2,2,1)

2. (1,1,0) 4. (2,1,1) 6. (3,2,2)

4, 3 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,3,1)

2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,2)

3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (6,4,3,2)

4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (6,5,3,2)

5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,5,4,2)

6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (7,4,4,2)

7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (7,6,4,2)

8. (2,2,1,1) 17. (4,2,2,1) 26. (5,3,3,2)

9. (3,1,1,1) 18. (3,3,2,2) 27. (5,4,2,2)

4,m ≥ 4 1. (1,0,0,0) 10. (2,2,2,1) 19. (4,3,2,1) 28. (5,4,2,2)

2. (1,1,0,0) 11. (3,2,1,1) 20. (4,3,2,2) 29. (5,4,3,1)

3. (1,1,1,0) 12. (3,2,2,0) 21. (4,3,3,1) 30. (5,4,3,2)

4. (1,1,1,1) 13. (3,2,2,1) 22. (4,4,2,1) 31. (5,4,4,2)

5. (2,1,1,0) 14. (3,3,1,1) 23. (5,2,2,2) 32. (6,4,3,2)

6. (2,1,1,1) 15. (3,2,2,2) 24. (4,3,3,2) 33. (6,5,3,2)

7. (2,2,1,0) 16. (3,3,2,1) 25. (5,3,3,1) 34. (6,5,4,2)

8. (2,2,1,1) 17. (4,2,2,1) 26. (4,4,3,2) 35. (7,4,4,2)

9. (3,1,1,1) 18. (3,3,2,2) 27. (5,3,3,2) 36. (7,6,4,2)

Table B-4: Minimal representations of different plurality committees
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