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Abstract

The estimation of dynamic term structure models (DTSMs) turns out to be
challenging in the presence of a small sample. It is exacerbated if the sample is
characterized by a prolonged period of low interest rates near a time-varying effective
lower bound. These challenges all weigh heavily when estimating a DTSM for
the euro area OIS yield curve sample. Against this background, we propose a
shadow-rate term structure model (SRTSM) that includes a time-varying effective
lower bound accounting for the spread between the policy and short-term OIS rate
and it also allows for future changes in the effective lower bound. In addition, it
incorporates survey information in order to pin down the level of longer-term rate
expectations. The model allows to adequately assess short-term monetary policy
rate expectations and it generates far-distant rate expectations that are correlated
with an estimated equilibrium nominal short rate derived from a macroeconomic
model set-up. Our results also highlight the signaling channel of non-standard
monetary policy shocks in the run-up to asset purchases based on high frequency
identification approach. Our model outperforms DTSM specifications without above
modeling features from a statistical and economic perspective. We confirm our
findings employing a Monte Carlo simulation.
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1 Introduction

Dynamic term structure models (DTSMs) provide valuable information for policy makers.

Equipped with such models, they can infer market participants’ view on the outlook

for monetary policy and at the same time asses to what extent risk-averse investors

demand a risk premium for holding bond instruments in an environment of interest rate

uncertainty. In general, however, inference based on term structure models is accompanied

by great econometric challenges (Hamilton and Wu, 2012). In essence, these challenges

are related to the high persistence of interest rates which makes the estimation of the

model parameters of the underlying data generating process very difficult and sensitive

to model specifications. This is especially true in a small sample characterized by low

interest rate volatility. With the existence of an effective lower bound (ELB), estimation

challenges of term structure models even increase because it introduces non-linearities

into the term structure model and estimation process. Due to the absence of closed-form

solutions for bond prices, they need to be simulated or approximated analytically within

a non-linear filtering framework to extract the risk factors which may impact estimation

accuracy (Priebsch, 2013; Wu and Xia, 2016). These considerations all weigh heavily

when estimating a term structure model with a euro area data sample which only covers

a small sample period and essentially only one complete interest rate cycle (2001-08).

Moreover, the sample is characterized by a prolonged period of persistently falling interest

rates which approached the ELB in July 2012 when the Eurosystem lowered the deposit

facility rate (DFR) to 0 and subsequently adopted negative interest rate policies (NIRP).

Against this background, we develop a DTSM for the euro area OIS yield curve which

explicitly accounts for above features and fulfills two criteria, i.e. (i) a good model fit and

(ii) plausible short- and long-term rate expectations that can be used for policy analysis.

We find that given the severe small sample problem with a protracted period of low

interest rates near the time-varying ELB, a shadow short rate model specification that

incorporates actual as well as expected changes of the ELB is important from a statistical

and economic point of view. Moreover, by incorporating survey information on short-

and long-term interest rate expectations, the model is able to better pin down the future

path of short rates which is important when decomposing longer-term yields and forward

rates.

Our model is able to provide a good model fit of the yield curve across time. In the

ELB-period the mean absolute fitting error is less than 1 basis point for the one-month

rate and 2 basis points for the ten-year rate, respectively. In contrast to alternative model

specifications that do not account for a time-varying effective lower bound, our model is

able to replicate the temporarily negative slope of the yield curve which was recorded
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during the course of 2016 when market’s were expecting further DFR cuts. Accounting

for expected policy rate changes, therefore, is important to ensure a good model fit at the

short-end of the yield curve, a finding also documented by (Wu and Xia, 2017).

The model generates expected short rate paths that do not violate lower bound re-

strictions. The most likely path of the short rate follows a trajectory which is in line

with survey forecasts and which is consistent with the intended policy rate path of the

ECB’s Governing Council according to its forward guidance. As the possible lift-off of

policy rates is linked to the end of net asset purchases of the extended asset purchase pro-

gramme (APP), changes in the expected duration of net asset purchases should translate

into changes of the most likely short rate path. Our model can replicate this hypothesis

and it highlights the signaling channel of APP with the announcement of asset purchases

as a commitment device for future short rates. In particular, we estimate the impact of

monetary policy shocks on the forward curve and its components based on an external

instrument approach. We find that unconventional monetary policy shocks in the run-up

to the start of asset purchases in March 2015 considerably contributed to the drop in

long-term interest rates. Term premia as well as short rate expectations fell in response

to these monetary policy shocks.

In order to pass judgment on the economic plausibility of the level and the vari-

ability of expected short rates, we compare our model-implied expectations component

with an estimate of the equilibrium nominal short rate in the medium- to long-term de-

rived from a macroeconomic model (Holston, Laubach, and Williams, 2017). Indeed, our

model estimates resemble the level as well as the dynamics of the equilibrium nominal

rate remarkably close even though the two models do not share any information in the

estimation. Thus, long-term forward rates appear to reflect trends in key macroeconomic

variables in both real and nominal terms, which play an important role in the formation

of longer-term interest rate expectations.

Our benchmark model outperforms alternative specifications in terms of economic

plausibility. GATSM estimations generate model-implied short rate expectations that

violate lower bound restrictions and imply far-distant short rate expectations that seem

too low from an economic perspective or may even become negative. De-meaning the

pricing factors in the first place as in Adrian, Crump, and Moench (2013) at least ensures

that the unconditional mean of the short rate matches the sample mean which pushes up

the level of expected short rates. Still, model estimates fail to range at levels consistent

with long-term survey expectations or with far-distant short rate expectations derived

from a macro model. Only if surveys are incorporated, GATSMs and SRTSMs generate

survey and macro consistent short rate expectations. Interestingly, despite the small

euro area sample, our findings indicate that with respect to the considered euro area
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yield curve sample, estimated DTSMs always produce a very high persistence of the

short rate process under the P-measure. Therefore, the difference between non-bias- and

bias-corrected estimates are not substantially large. Insofar, short rate expectations in

a bias-corrected GATSM do not exhibit implausible large time variation compared to a

non-bias-corrected GATSM as partly documented for bias-corrected estimates based on

US data (Wright, 2014).

To cross-check our results, we conduct an extensive Monte Carlo exercise in which

we simulate 500 yield curve data sets with a sample period of 60 years. We ensure that

that these samples include an extended period (more than 12 months) of interest rates at

the lower bound. In our analysis we compare performance across models in identifying

the true unconditional mean and persistence of the data generating process using the

full sample as well as smaller samples comparable to the size of the euro area sample.

RESULTS TO BE ADDED.

Our paper is related to various strands in the literature. SRTSMs which focused on

US, UK and Japanese yield curve data typically assume a constant ELB set or estimated

to be close to zero. For the US, see Krippner (2015b); Christensen and Rudebusch (2015);

Bauer and Rudebusch (2016); Wu and Xia (2016); Priebsch (2013). SRTSMs based on

Japanese data are Ichiue and Ueno (2013); Kim and Singleton (2012) and for UK data

see Andreasen and Meldrum (2015). For the euro area some models likewise implemented

SRTSMs based on a fixed, but estimated ELB (see the online implementations of Wu

and Xia, 2016; Krippner, 2015b). However, given the NIRP and the subsequent steps of

the DFR into negative territory, more recent applications for the euro area implemented

a time-varying ELB (Lemke and Vladu, 2016; Kortela, 2016; Wu and Xia, 2017). With

respect to the modelling of the time-varying ELB, our model is closely related to Wu and

Xia (2017) who allow for time-varying expectations of future DFR cuts in agents’ bond

pricing.

Our work also relates to the vast amount of research that documents the challenges

with respect to the estimation of term structure models. In essence, these challenges are

most and foremost related to the very high persistence of interest rates which in combi-

nation with small samples impedes the estimation procedure and consequently the robust

revelation of the mean-reverting characteristics of the short rate process (Kim, 2008; Duf-

fee, 2011; Duffee and Stanton, 2012). Research has addressed this issue by improving

and speeding-up the estimation process (Joslin, Singleton, and Zhu, 2011; Christensen,

Diebold, and Rudebusch, 2011; Hamilton and Wu, 2012; Adrian et al., 2013), applying

bias correction (Bauer, Rudebusch, and Wu, 2012) for GATSMs or incorporating survey

information into the estimation process (Kim and Orphanides, 2012).

There are also many studies that study the impact of monetary policy shocks on the
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yield curve based on high frequency identification schemes (Kuttner, 2001; Cochrane and

Piazzesi, 2002; Gurkaynak, Sack, and Swanson, 2005; Gertler and Karadi, 2015; Abra-

hams, Adrian, Crump, Moench, and Yu, 2016; Crump, Eusepi, and Moench, 2017). Stud-

ies that focus on APP announcements on the euro area yield curve are Motto, Altavilla,

and Carboni (2015); Lemke and Werner (2017).

The paper is structured as follows: Section 2 introduces our preferred benchmark

model with a focus on modeling the time-varying ELB. Section 3 discusses or estimation

strategy. In Section 4 we present our main results with a focus on above defined crite-

ria, i.e. (i) model fit and (ii) plausible short- and long-term rate expectations that can

be used for policy analysis. Moreover, we compare our model estimates to alternative

DTSM specifications and check our results in terms of robustness and the impact of

modeling choice. Section 4.5.3 presents implications for the various estimation and model

variants based on a Monte Carlo analysis using simulated yield curve data sets that are

characterized by a protracted period in which the ELB is binding. Section 5 concludes.

2 Model

The class of SRTSMs introduces the concept of a (time-varying) effective lower bound,

lt, together with a shadow short rate, si1,t. Similar to standard GATSMs, it is assumed

that the pricing factors Xt follow a first-order Gaussian vector autoregressive process both

under the risk-neutral (Q) and the historical (P) probability measure

Xt = µQ + ρQXt−1 + Σut, utt ∼ N(0, I) (1)

Xt = µP + ρPXt−1 + Σut, ut ∼ N(0, I). (2)

The shadow short rate, si1,t, is an affine function of the pricing factors and it holds

si1,t = δ0 + δ′1Xt. (3)

The short rate, i1,t is then described as maximum of either si1,t or lt

i1,t = max(si1,t, lt). (4)

By assumption, the short rate corresponds to the shadow short rate as long as the latter

is above the lower bound. If, however, the shadow short rate falls below the lower bound,

the short rate is constrained by the lower bound. This setup allows for the possibility that
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the expected path of the short rate remains at this lower bound for an extended period

of time, provided that the shadow short rate is expected to prevail below lt.

Under the condition of no-arbitrage, the price of a zero-coupon bond with residual

maturity n is defined as

Pn,t = EQ
t

[
exp

(
−

n−1∑
i=0

i1,t+i

)]
(5)

and continuously compounded spot rates thus as

in,t = −n−1 lnPn,t. (6)

Given the lower bound restriction, the mapping of pricing factors into interest rates is

non-linear and in this case no closed-form solutions for bond prices exist. Therefore, we

follow Wu and Xia (2017) who show that generally, implied one-period forward rates h

periods ahead, fh,t, can be expressed as

fh,t ≈
∫ (

lt+h + σQ
h g

(
sfh,t − lt+h

σQ
h

))
PQ
t (lt+h) dx (7)

where g(x) = xΦ(x) +φ(x) with Φ(x) the standard normal cdf, φ(x) the standard normal

pdf and σQ
h the conditional variance of future shadow short rates. The variable sfh,t is

the shadow forward rate h-periods ahead. It is affine in the pricing factors with loadings

ãh and b̃h and computed as fh,t = ãh+ b̃hXt. Notice that in this general form, the forward

rate is calculated as the average of future short rates with known lt+h weighted by the

risk-neutral probability of lt+h.

With respect to the lower bound, we want to account for several stylized facts which

can be observed for euro area OIS rates linked to the EONIA. One of these being that the

latter can be considered as bound by the DFR.1 However, it is important to note that the

DFR does not necessarily constitute the ELB as typically the EONIA stays a few basis

points away from the DFR even in times of very high excess liquidity.2 Therefore, the

ELB can be thought of as the sum of two elements, the DFR and the minimum spread

between EONIA and the DFR. The DFR itself is subject to discrete changes over time

as, e.g., documented by subsequent cuts into negative territory in the course of 2014-2016

1Transactions underlying the computation of EONIA take place between counterparties that all have
access to the deposit facility of the Eurosystem. Thus, they are expected to have no incentive to lend
below that rate.

2In times without excess liquidity, EONIA closely follows the main refinancing rate set by the Eu-
rosystem. Then, with increasing excess liquidity, however, EONIA moves away from the that rate and
non-linearly approaches the deposit facility rate offered by the Eurosystem (Deutsche Bundesbank, 2014).
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which were to some extent expected as documented by survey evidence (see Lemke and

Vladu, 2016). Finally, the dynamics of forward rates during this period hint to the fact

that markets might have expected even further DFR cuts over and above the DFR cuts

that were largely anticipated for the respective next Governing Council meeting.

To account for these features and to preserve an approximate analytical solution for

bond prices, we specify the time-variation in the ELB in the following way:

lt+h =


0 if prior to ELB-period and ∀h = 0, 1, 2, . . .

γti
DFR
t + (1− γt)iDFRt+1 + spt if ELB-period and h = 0

min(lt, f̄t) if ELB-period and ∀h = 1, 2, . . .

(8)

with f̄t = min(ft,h) forh = [1, 2, . . . , N ]. In the period before reaching the ELB, we set

the current and expected ELB to zero. Following Wu and Xia (2017), from then onwards,

the current ELB, lt, equals the weighted average of the DFR in period t and the expected

DFR in period t+1, which in our specification is treated as known in period t, where γt is

the fraction of days between the end of month and the next Governing Council meeting in

the following month. Moreover, in order to allow for further DFR cuts to be expected by

agents in the following months, we approximate the expected ELB as the minimum of the

current ELB and the minimum forward rate 1 to N periods ahead observed in period t.

Notice that we do not explicitly model the forming of DFR expectations in an internally

consistent way as in Wu and Xia (2017).3 However, we think that our modeling approach

is a reasonable shortcut to produce a very good fit of the yield curve at shorter tenors

during the ELB period and to be able to generate short rate paths that do not violate

lower bound restrictions and are broadly in line with survey evidence (see Section 4 on

this account). With this deterministic lower bound specification we follow Wu and Xia

(2016). Equation 7 can then be approximated analytically as

fh,t ≈ lt+h + σQ
h g

(
sfh,t − lt+h

σQ
h

)
. (9)

Further, as discussed above, the high persistence of yields which are only available

in short samples for the euro area leaves the model with only little information about

the true data generating process mathbbP as well as the drift in far-distant short rate

expectations. To possibly arrive at more precise estimates of the parameters under the P-

3In order to preserve an approximative analytical solution, Wu and Xia (2017) specify PQ
t (lt+h) within

a regime-switching model in which the lower bound is modelled as two-state Markov chain to describe
the persistence and the momentum of the policy lower bound and to allow agents to be forward-looking
with respect to future lower bound changes that affect bond pricing.

6



measure, we link model-implied expectations to survey forecasts on short rate expectations

as a further central feature of our model following Kim and Singleton (2012). Given the

well known potential drawbacks that may come with incorporating survey forecasts, we

add measurement errors when we align model-implied expectations with the corresponding

survey forecasts.4 For any given survey interest rate forecast with residual maturity n in

j-periods ahead, we add the following equation to our model set-up:

isurveyn,t+j = EP
t [in,t+j] + esurveyn,t (10)

and esurveyn,t is the survey expectation measurement error.

3 Estimation

For estimation purposes, we cast our benchmark model SRTSMB in state space form

with the transition equation given by Equation 2

Xt = µP + ρPXt−1 + Σut, ut ∼ N(0, I). (11)

The measurement equation takes the form of

Ŷt = Yt + et (12)

in which Yt is the J-vector of model-implied interest rates with Yt = g(Xt, µ
Q, φQ,Σ, δ0, δ1, lbt)

and Ŷt corresponds to the J-vector of observed interest rates as well as survey forecasts

adjusted for a vector of measurement errors et (for GATSMs it holds that Yt = A+B′Xt).

As the mapping between interest rates and pricing factors in the measurement equation

is non-linear, the state space system needs to rely on a non-linear filter when maximizing

the likelihood function. We choose to estimate the model by maximum likelihood based

on the extended Kalman filter.5 With respect to the model identification, we closely

follow Bauer and Rudebusch (2016) and estimate our model with L = 3 latent pricing

4First, as pointed out by Kim and Orphanides (2012), surveys report average expectations, while
market prices are driven by marginal expectations on interest rates - a problem that might be exacerbated
by relatively low numbers of participants compared to the number of participants in the market. A
further explanation why survey-based expectations may only be an approximate reflection of market
expectations may be the potential variation in the information available to participants and the point in
time at which they submit their answers. Therefore, it can be assumed that the subjective expectations of
survey participants deviate from the objective statistical expectations held under the P-measure. Second,
there might be incentives for survey participants to not reveal their true expectations, leaving surveys
biased themselves, making them an inaccurate measure of participants’ true expectations (Cochrane and
Piazzesi, 2008; Chernov and Mueller, 2012)

5Alternative non-linear filters include the iterated extended as well as the unscented Kalman filter
(Kim and Singleton, 2012; Priebsch, 2013; Krippner, 2015c).
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factors based on the normalization of Joslin et al. (2011) with ρQ = diag(ρQ1 , ρ
Q
2 , ρ

Q
3 ) and

in Jordan form, µQ = [kQ∞, 0, 0]′, Σ is lower triangular and δ0 = 0, δ1 = [1, 1, 1]′.

In order to make the interpretation of latent pricing factors derived from our model

easier, we can also transform the factors to an equivalent representation with new latent

pricing factors Pt that resemble principal components in terms of level and dynamics along

the procedure sketched out in Lemke and Vladu (2016).6 This transformation makes it

possible to directly compare estimated parameters with those of estimated GATSMs

based on principal components used as pricing factors. Therefore, we also report param-

eter estimates in terms of δ0,P , δ1,P and µP , ρP ,ΣP both under the P- and Q-measure.

In our estimation, we use monthly overnight index swap (OIS) rates based on EONIA

for the period January 1999 to October 2017 covering the maturities M in 1,3 and 6

months as well as 1,2,3,5,7 and 10 years. Hence, our yield curve data consists of T = 226

month for J = 8 maturities of interest rates. As these rates are reliably available only

from July 2005 onwards, we follow Lemke and Vladu (2016) and augment our data set

with spread adjusted zero-coupon rates based on Euribor swaps prior to 2005. Moreover,

we follow the authors’ specification of defining the ELB period from July 2012 onwards

when the DFR hit the zero bound. We focus on the OIS term structure as in our view

OIS interest rates represent the yield curve in the euro area with the tightest link to

expected monetary policy actions priced in interest rates. First, it is risk-free in the sense

that it does not carry sovereign credit risk the pricing of which might change over time

and might distort the decomposition of interest rates. Second, as OIS rates are swap

contracts in which cash flows are swapped, they do not serve as store of value and thus,

should not be influenced by flight-to-safety and -liquidity investors to the same extent as

sovereign bonds. And finally, the OIS curve is intrinsically linked to (one of) the monetary

policy instruments(s) which the Eurosystem directly controls as one leg of the contract

is associated to the EONIA path which usually closely follows the MRO or - in times of

large excess liquidity - the DFR of the Eurosystem.

With respect to modeling the time-variation in the ELB, we specify Equation 8 the

following way. First, as confirmed by survey and estimation evidence, the DFR cuts in

June 14, December 15 and March 16 were largely expected by market participants while

the cut in September largely came as a surprise (Lemke and Vladu, 2016; Wu and Xia,

2017). Therefore, we allow the current ELB, lt, to already incorporate these DFR cuts

in the respective months previous to their realization by weighting the DFR cut with the

6An affine transformation of the latent factors Xt to the pricing factors Pt implies that Pt = AW +
WBXt where W is the weighting matrix which maps the set of observed yields into the first three principal
components; A and B represent the affine loadings from an estimated GATSM based on Joslin et al.
(2011). It then holds that µP = WBµ −WBρ(WB)−1, ρP = WBρ(WB)−1, ΣP Σ′P = WBΣΣ′(WB)′,
δ0,P = δ0 − ρ′(WB)−1WA and δ1,P = ((WB)−1)′ρ. See Joslin et al. (2011).
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parameter γt. Second, for the dynamics of the ELB h-periods ahead, we choose lt+h to

be the minimum observed one-month forward rate in 1 to 24 months.7

With respect to the use of survey information, we rely on selected Consensus Eco-

nomics interest rate forecasts of the 3-month Euribor in 12- and 24-months time (available

quarterly and semi-annually). Moreover, we also add to the survey measurement equa-

tions the long-horizon forecast for the average 3-month Euribor in 6 to 10 years which is

available on a quarterly basis since September 2016. Survey data up to the 2 year horizon

are adjusted by the Euribor-OIS spread, respectively. We exclude other available survey

information at very short horizons and intermediate horizons. We do so because survey

information might only be biased approximations of model-implied expectations and we

want to let the yield curve data speak for itself as much as possible on the parameters

governing the P-measure.

4 Results

4.1 Goodness of fit

Overall, our benchmark model (SRTSMB) performs well in terms of model fit (see Table

1, parameter estimates are reported in Table A.1). The mean absolute fitting error (MEA)

of yields over the complete sample is 2.8 basis points and 20.3 basis points for surveys

which is comparable in size with other SRTSM estimates including survey information

(see Priebsch, 2017, for US results). Notice that during the ELB period, both the yield

and survey fit improves. The MAE for the one-month rate is 1 basis points and the fit

of short-term surveys is between 6 to 10 basis points while long-term surveys range at 25

basis points.

This good average model fit is largely confirmed when depicting the model-implied

yield curve at selected dates and comparing it to observed yields (see Figure 1). However,

during the ELB-period the model fit somewhat varies depending on the specific obser-

vation dates. For instance, in October 2012 and July 2015, when the short-end of the

yield curve was very flat, our model is able to replicate this feature to a very good extent.

In February 2016, when market participants were broadly expecting a further DFR cut,

our model is able to replicate a downward sloping yield curve, but delivers higher fitting

errors up to the 2-years maturity horizon.

Our analyses show that with respect to the short rate, already small fitting errors may

generate an economically significant impact on the expected and most likely short rate

path and, thus, on assessing monetary policy expectations. Therefore, fitting the short

7f̄t = min(ft,h) forh = [1, 2, . . . , 24] months.
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Table 1: In-sample model fit of yields and survey forecasts

maturity in months 1 3 6 12 24 36 60 84 120 avg

yields
total sample: 4 3 3 3 2 3 3 2 3 3
pre-ELB sample: 5 4 3 4 3 3 3 1 3 3
ELB sample: 1 2 2 1 1 2 3 2 2 2

expected 3-month rate in months 12 24 60− 120

surveys
total sample: 12 26 19
pre-ELB sample: 15 32 −
ELB sample: 6 10 25

Note: This table shows the mean absolute errors (MAE) of model-implied yields and short
rate expectations compared to observed yields and survey forecasts for selected sample periods
in basis points. The total sample covers the period January 1999 to October 2017 while the
pre-ELB sample covers the period January 1999 to June 2012 and the ELB sample the period
July 2012 to October 2017.

rate is important when evaluating the future short rate distribution over time. In order to

do that, we explicitly allow the current spread between EONIA and the DFR in addition

to expected DFR shifts to enter the ELB in lt. This leads to a very good model fit of

the short rate during the ELB-period (see Figure 2). Closely related, our model implies

a shadow short rate which is less prone to other modeling specifications. This finding

is again mostly related to the incorporation of the spread into the ELB definition which

ensures that the ELB is binding for the model-implied short rate during the ELB-period

by construction. This modeling strategy, thus, makes the timing of when the shadow

short rate first moves below the ELB insensitive to other modeling specifications which

may affect the dynamics of the pricing factors (see Figure A.1).8

4.2 Model-implied short-term rate expectations

We start our analysis on model-implied interest rate expectations by decomposing forward

rates into short rate expectations as well as forward premia for selected short-term and

long-term maturities (panel(a) of Figure 3) based on our benchmark model. At the 1Y1Y

8For a detailed discussion on the impact of model specification on the derivation of a shadow short
rate see Krippner (2015a).
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Figure 1: Yield curve model fit at selected dates
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Note: This figure plots the model-implied yield curve based on various term structure model
specifications including SRTSMB, SRTSMDFR and GATSM up to 3 years based on selected
dates.

forward horizon (see panel a), most of the variation in forward rates stems from changes

in short rate expectations. Prior to the ELB-period, forward premia ranged between 0

and 1%. Notice that forward premia turned slightly negative by mid 2011 and remained

remarkably anchored at this level from 2012 onwards. The prominent role of short rate

expectations can also be identified when conducting a variance decomposition for the

variation in the level and the change of the 1Y 1Y rate. As shown in Table A.2, about

88% of the variation in the level is due to the expectations component over the total

sample. During the ELB-period, it even accounts for over 110% of the variation in the

monthly change of the 1Y1Y forward rate.

To add to this finding, we depict 1-month forward premia for the 1, 3, 6-months as

well as 1 and 2-year horizon (panel (b) of Figure 3). For comparability, forward premia

are scaled to unit per month and reported in basis points. The figure shows that after

turning negative in 2011, term premia for shorter maturities reduced to 0 where they have

stuck since with the DFR cut to zero. Simultaneously, forward premia up to the one and

two year horizon have stayed slightly negative with very low volatility compared to the

time before 2011. These model-implied results can be seen against the background of a

deterioration of the macroeconomic outlook with severe downside risks to price stability
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Figure 2: Model fit of the short rate
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Note: This figure plots the model-implied short rate based on various term structure model
specifications including SRTSMB,SRTSMDFR and GATSM together with the effective lower
bound (ELB) of the SRTSMB model.

and an increasing probability of a deflationary scenario. The Eurosystem responded to

these risks by introducing NIRP, strengthening its policy rate forward guidance as well

as preparing and implementing its various asset purchase programmes. In this context,

model-implied forward premia for shorter horizons show that the Eurosystem was able to

anchor short-term interest rate expectations extremely well. Moreover, our results also

seem to suggest that in addition to policy rate forward guidance which has been in place

already since July 20139, signalling its willingness to dive deeper into non-standard mon-

etary policy measures has been also important to steer short-term rate expectations and

to reduce interest rate uncertainty priced in forward premia. In this respect, our results

also emphasize the signaling channel of non-standard monetary policy measures including

asset purchases which affect both short rate expectations as well as risk compensation

demanded by market participants (see Bauer and Rudebusch, 2014, for US evidence).

9The Eurosystem’s Governing Council introduced its interest rate forward guidance in Juli 2013 by
expressing its expectations that “key interest rates will remain at present or lower levels for an extended
period of time”. In June 2014, the governing council decided to delete the word “lower” from its forward
guidance. This was only reintroduced when the council decided to link its interest rate forward guidance
to its expanded asset purchase programme (APP) by stating the expectation that “the Governing Council
expects the key ECB interest rates to remain at present or lower levels for an extended period of time,
and well past the horizon of our net asset purchases.”
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Figure 3: Short-term forward rate decomposition
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(b) (Normalized) short-term forward premia
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Note: Panel (a) plots the time-series of the decomposition of the 1y1y forward rate. Panel
(b) plots the time-series of normalized 1-month forward premia at the 1, 3, 6, 12 and 24 months
horizons. Forward premia are normalized by maturity in months. End-of-month values for
January 1999 to October 2017.

Given the asymmetry of the distribution of future short rates during the ELB-period,

our model also accounts for the wedge between the mean and the mode, i.e. the most likely,

future short rate path which is eminent at short- and medium-term horizons where the

ELB implies a truncated distribution. The wedge between these two statistical numbers is
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important when assessing monetary policy expectations that are priced in the yield curve.

The bigger the wedge the tighter the ELB constraint binds for the yield curve (Swanson

and Williams, 2014; Bauer and Rudebusch, 2016).10 To illustrate this point, we plot the

dynamics of the mean and the mode of the future short rate for a fixed-horizon forecast

in March 2019 together with the corresponding forward rate path and the expected ELB

(panel (a) of Figure 4). The figure highlights the bias when relying on the forward rate

or the expected short rate path during the ELB period. First, the forward rate path is

biased due to the existence of substantial time-variation in forward premia. Second, due

to the asymmetry, the expected short rate path shows a constant upward bias. Correct

inference with regard to monetary policy expectations can only be drawn from the modal

path of the short rate which represents the optimal forecast under absolute error loss

(Bauer and Rudebusch, 2016). Closely related, the model can inform on the median of

the lift-off distribution of the short rate which measures the time at which the short rate is

likely to cross a certain threshold level.11 Panel (b) of Figure 4 depicts the lift-off horizon

based on the modal path as well as the lift-off distribution for a specification that gives

an idea about the point in time at which market participants regard a first 10 bp rate

hike as most likely. Both indicators move fairly close to each other. With the transition

to the ELB-period, the crossing-time kept moving further out constantly. For instance,

in summer 2016, market participants did not believe to see a first 10 bp rate hike before

2020. Since then and going forward in time, both indicators signaled a gradual reduction

in the number of months until a first DFR hike is regarded as most likely. For the end of

the sample in October 2017, this assessment implies a first DFR hike in the summer of

2019.

4.3 Model-implied longer-term rate expectations

In this Section, we turn to the implications of model-implied intermediate and long-term

expectations as well as term premia based on our benchmark model. To start with,

in Table 3 we report summary statistics for the (shadow) short rate based on the P
measure. The model is estimated with an unconditional mean of 3.98% and a fairly high

10In line with Bauer and Rudebusch (2016), we define the mode of the short rate path as
max(Et[si1,t+i], lbt+i)

11The lift-off distribution is calculated by simulating a large number of short rate paths under the P
measure and then saving the future horizon at which each single path rises above a certain threshold.
While determining these future horizons, it can be accounted for the fact that some paths due to shocks
cross the threshold, but then may again fall back below. This is done by requiring a path to stay above
the threshold to be chosen for a certain amount of time, e.g. 12 months. This way it is ensured that
the inspected path has really lifted off. Ideally, the median of that distribution corresponds to the future
point in time at which the modal path crosses the threshold, but it might deviate if enough paths fall
back below the threshold too quickly after lifting off for the first time (Bauer and Rudebusch, 2016)
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Figure 4: Distribution of short rates

(a) Future short rate in March 2019
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Note: Panel (a) plots the model-implied dynamics of the expected and most likely path of
the short rate together with the forward rate for a fixed horizon in March 2019 based on the
SRTSMB model. Panel (b) plots the timing of the first DFR hike by +10 bp based on the short
rate distribution and the modal path of the short rate. End-of-month values for January 1999
to October 2017.

persistence of the pricing factor process of the transition matrix which is expressed by a

largest eigenvalue of 0.992 in φP. Indeed, a shock to the most persistent pricing factor has

a half-life of roughly 7 years. Although our model implies that the short rate will converge
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to a constant in the very long run, according to the short rate summary statistics, our

model also implies a substantial time-variation of far-distant short rate expectations up

to the 10 year horizon.

To see this, we plot the 9Y1Y forward rate together with its decomposition into the

expected short rate and forward premium component in panel (a) of Figure 5. A high

degree of the variability in forward rates can be attributed to the forward premium which

exhibits a marked decline over the sample period from close but below 2% into negative

territory, standing at about -23 bp at the end of the sample. In particular, a first large drop

can be observed in the wake of the Greenspan conundrum between June 2004 and June

2006. Following a short upward movement it then began to follow a lasting downward

trend after the outbreak of the financial crisis in 2008. The market’s anticipation of

widespread asset purchases since the beginning of 2014 then triggered another sharp drop

leading the premium into negative territory where it has remained since, although its

downward trend came to a halt. This time-variation of forward premia is also reflected at

more intermediate horizons (see panel (b) of Figure 5). Notice that at these intermediate

to long-term maturities, forward premia co-move more linearly in maturity than at shorter

maturities (see panel (b) of Figure 3). However, the decline in the long-term forward rate

reflects also the time variation in far-distant short rate expectations which have trended

downwards since the height of the financial and economic crisis in 2008.

A variance decomposition for the 9Y1Y forward rate confirms that over the total

sample roughly 53% of the variation in the level of the 9Y 1Y rate is due to the forward

premium component (see Table A.3). In the ELB period, the share of the forward premium

variation increases to roughly 56%. In terms of variation in the change in the forward rate,

69% can be attributed to the change in forward premia highlighting their prominent role

at longer tenures. At the same time, these numbers imply that the variation of long-term

forward rates in terms of level and change is explained by the expectations component,

too. Importantly, this also holds true in the run-up to the decisions of the Eurosystem

to implement large-scale asset purchases that had been increasingly anticipated since

summer 2014. Indeed, our model suggests that roughly one half of the observed decline of

the 10Y-OIS rate from September 2014 to March 2015 can be explained by changes in the

average path of the expected short rate over the 10-year horizon. This stands in contrast

to the findings of Lemke and Werner (2017) who find that almost all of the long-term

yield decline during this period was due to the decline in the term premium within the

portfolio rebalancing channel.

In order to pass judgment on the economic plausibility of the level and the variability

of the expected short-term interest rates in intermediate and long-term forward rates (and

therefore also on the forward premia), we compare the expectations component with an
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Figure 5: Long-term forward rate decomposition

(a) 9Y1Y forward rate
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(b) (Normalized) long-term forward premia
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Note: Panel (a) plots the time-series of the decomposition of the 1y1y forward rate. Panel (b)
plots the time-series of normalized 1-month forward premia at the 6, 8, 8, 9 and 10-year horizons.
Forward premia are normalized by maturity in months. End-of-month values for January 1999
to October 2017.

estimated equilibrium nominal short-term interest rate derived from a macroeconomic

model. Interest rate expectations contained in financial market prices at the long end

of the term structure should position themselves at this level if it is assumed that the

term structure reflects macroeconomic information, particularly with regard to long-term
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inflation expectations and the equilibrium real interest rate. The latter is determined by

estimating a natural rate of interest which is consistent with a permanently closed output

gap and a stable inflation rate in the medium to longer term, after the economy overcomes

from all cyclical fluctuations.12

Figure 6: 5Y5Y short rate expectations and longer-run equilibrium nominal rate
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Note: This figure plots the time-series of the SRTSMB model-implied average short rate ex-
pectations in 5 to 10 years together with an estimate of the longer-run nominal equilibrium
rate based on Holston et al. (2017). The equilibrium nominal rate is derived by adjusting the
estimated longer-run real equilibrium rate and adding longer-run inflation expectations based
on Consensus forecasts.

Indeed, 5Y5Y interest rate expectations derived from our benchmark model capture

the level and path of the nominal natural interest rate quite well. In this period, the latter

is primarily driven by the real natural interest rate path while simultaneously longer-term

inflation expectations are rather stable. This observation is interesting as the two models

do not share any information in the estimations. While SRTSMB solely contains term

12We exemplarily choose the real natural rate estimate based on Holston et al. (2017) and add medium-
to long-term inflation expectations based on Consensus forecasts to present the rate in nominal terms.
The maturity perspective of the derived natural rate of interest in this model estimation is not explicitly
defined, but refers to a longer-term perspective due to the modeling strategy and the definition of the
latent variable and shock processes: “Our definition takes a ‘longer-run’ perspective, in that it refers to
the level of real interest rates expected to prevail, say, five to ten years in the future, after the economy
has emerged from any cyclical fluctuations and is expanding at its trend rate.” (Laubach and Williams,
2016).
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structure information, the macroeconomic model only takes the inflation rate, the level of

Gross Domestic Product and the ex-ante short-term real interest rate into consideration.

Long-term forward rates thus appear to reflect trends in key macroeconomic variables in

both real and nominal terms, which play an important role in the formation of far-distant

rate expectations (see also Bauer and Rudebusch, 2017; Crump et al., 2017; Cieslak and

Povala, 2015; Dijk, Koopman, Wel, and Wright, 2014) on this assessment).

We also compare our intermediate and far-distant forward rate decomposition (5Y5Y

fwd) to US estimates based on Kim and Wright (2005) who also incorporate survey infor-

mation into their term structure model. As shown in Figure A.2, until the beginning of

2013 the expectations component in US and euro area 5y5y forward rates is similar both

in terms of level and variation. The high co-movement in US and euro area forward rates

during this period of time is also to a significant extent related to US and euro area for-

ward premia.13 From summer 2013 onwards however, initiated by the US taper tantrum

and followed by a deteriorating economic and inflation outlook as well as increasing ex-

pectations of large-scale asset purchases in the euro area, US and euro area far-distant

short rate expectations decoupled with the latter significantly falling. The same holds for

the dynamics of the euro area forward premium which was much more depressed than its

US counterpart in the run-up to the APP decision in January 2015.14

Finally, we check to what extent the asymmetry of the short rate distribution also

matters for long-term interest rates. By comparing interest rates and shadow interest

rates both under the Q- and P-measure, it is possible to compute a measure of the degree

the time-varying ELB exerts influence at the long-end of the term structure of interest

rates. Indeed, our findings suggest that it does so, in particular since the beginning of

2014 (Figure A.3). The ELB wedge widened not only under the Q-measure but also under

the P-measure, though not to the same quantitative extent. A somewhat more nuanced

picture can be observed for far-distant forward rate (Figure A.4). While under the Q-

measure the ELB wedge widened up since 2014, the mean and the mode of the short rate

under the P-measure at the 10Y 1M -horizon is essentially identical.

4.4 Assessing the impact of monetary policy

To provide evidence on how monetary policy influences the various components of the

yield curve, we investigate how forward rates, short rate expectations and term premia

respond to monetary policy shocks within our model. As these shocks are not directly

13Indeed correlation coefficients during this period are 0.9 and 0.8 for the expectations component and
the forward premium.

14Correlation coefficients declined to 0.4 and 0.6 for the expectations component and the forward
premium.
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observable, a viable workaround is to assume that high frequency changes of selected

interest rates around monetary policy announcement dates are reliable observable proxies

for monetary policy shocks which can then be used to study the response of interest

rates (Kuttner, 2001; Cochrane and Piazzesi, 2002; Gurkaynak et al., 2005; Piazzesi and

Swanson, 2008; Nakamura and Steinsson, 2018, among others). Recent applications to

estimated term structure models are Abrahams et al. (2016); Crump et al. (2017).

However, this identification strategy may run the risk only capturing part of the under-

lying monetary policy shock and they may be measured with error. It therefore typically

requires tight windows around monetary policy announcements in order to reduce en-

dogeneity and noise concerns (Gurkaynak et al., 2005; Nakamura and Steinsson, 2018).

Moreover, the literature implicitly assumes that the reaction of interest rates to monetary

policy (and other) shocks is constant over time by applying linear regression techniques.

Our benchmark model challenges this assumption as it convincingly shows that interest

rates are actually non-linear functions of the pricing factors and the reaction of interest

rates to innovations in the pricing factors crucially depends on the degree to which the

ELB is binding along the yield curve at a given point in time (ELB wedge).

To alleviate these concerns, we treat these high frequency changes in interest rates

as instrument variables and not as directly observable monetary policy shocks. This

approach has been applied in the macroeconomic proxy structural VARs literature that

aims to identify the dynamic causal effects of various macroeconomic shocks (Stock and

Watson, 2012; Mertens and Ravn, 2012; Gertler and Karadi, 2015).

Following standard terminology, we assume that the L reduced-form innovations ut

of the pricing equation 11 are L linear combinations of structural shocks. Therefore, it

holds that

ut = Hεt = [H1, . . . , HL] (ε1,t, . . . , εL,t)
′ (13)

where H1 is the first column of H and ε1,t is the first structural shock. With Ω = ΣΣ′, it

also holds that Ω = HΩεH
′. Given invertibility of the system, structural shocks can be

expressed as linear combinations of reduced-form innovations

εt = H−1ut. (14)

As discussed in Stock and Watson (2012, 2018), structural shocks and hence H can

be recovered by means of a predictive regression of the relevant instrument zt on the

innovations ut up to scale and sign. The scale and sign of the structural shock, say ε1,t and

H1, are set by normalizing the shock to have a unit current impact on a specific pricing

factor. Most importantly, while the link between the instrument and the innovations
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remains linear, the instrument approach allows us to model the reaction of yields and

forward rates in a non-linear way in line with Equation 7. Thus, monetary policy shocks

may exhibit a different impact on the yield and forward curve at a given point in time

depending on the size of the ELB wedge.

In the following we identify conventional (CMP) and unconventional monetary pol-

icy (UMP) shocks based on the instrument data set of Mandler and Scharnagl (2018).

They XX. In order to derive economically interpretable impulse response functions based

on these shocks, we rotate our benchmark model SRTSMB as described in Section 3.

Specially, we transform the three latent factors in a way that they resemble the 1M, 2Y

and 10Y (shadow) rate. We then normalize the CMP shock in sign and size so that a

10 basis point change in this shock implies an equally large change in the (shadow) short

rate. An UMP shock is normalized so that on impact this shock triggers a change in the

10Y -shadow rate by the same amount.

Results for the instantaneous response of the various components of the forward curve

to an expansionary conventional monetary policy shock during the period January 1999

to June 2014 are provided in panel (a) of Figure 7. Notice that the figure does not

depict uncertainty around the impulse responses. It merely shows the distribution of

impulse responses to monetary policy shocks at different points in time and highlights the

asymmetry of responses depending on the strength of the binding character of the ELB.

The nominal forward curve exhibits the largest response at the 1- to 2-year maturity

horizon with a negative reaction even at very long-term maturities. Hence, our model

implies a very high persistence of conventional monetary policy shocks along the forward

curve. Interestingly, at maturities up to 2 years, the decline in the forward curve is due to

both changes in the expected short rate and forward premia with the former dominating

the overall effect. At longer maturities, the effect on the forward curve can be attributed

almost entirely to the expectations component (see also Nakamura and Steinsson (2018)

for a similar result based on US data). The figure also illustrates the increasing binding

character of the ELB between mid-2012 and mid-2014 which is expressed by the muted

response of the forward rate components at the 85%-percentile.

Panel (b) of Figure 7 depicts the corresponding instantaneous response of the forward

curve together with the expected short rate and forward premium curve between July

2014 and October 2017 to UMP shocks. The median reaction at the long end is negative

and spills over to medium-term maturities. Up to the 2-year horizon, however, there is

essentially no reaction as rates are stuck at the ELB. The largest impact on the forward

curve stems from the forward premium at the 10-year maturity horizon emphasizing the

transmission of non-standard measures through duration extraction. At medium-term

maturities our model attributes a more prominent role to the expectations component.
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Figure 7: Instantaneous response to monetary policy shocks

(a) Conventional MP shock (01/99-06/14)
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(b) Unconventional MP shock (07/14-10/17)
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Note: Panel (a) plots the median instantaneous response of the forward curve and its components
with [15% − 85%]-quantiles to an conventional monetary policy shock (CMP) for the sample
period January 1999 to June 2015. Panel (b) plots the median instantaneous response of the
forward curve and its components with [15% − 85%]-quantiles to an unconventional monetary
policy shock (UMP) for the sample period July 2014 to October 2017.

However, even at very long-term maturities, the expected short rate falls in reaction to an

unconventional monetary policy shock. Therefore, our model also highlights the signaling

channel of non-standard monetary policy measures.

In Table 2, we perform a historical decomposition of the 10Y -OIS rate for various

sample periods in order to assess the contribution of UMP shocks to the change of this
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rate. Between June 2014 and the start of asset purchases in March 2015, the rate dropped

by 0.77% which is attributed almost entirely to UMP shocks according to our model esti-

mates. Thereby, both the term premium and the expectations component contributed to

this decline. In contrast, between March 2015 and September 2016, more than two thirds

of the observed decline in the 10Y -OIS rate stems from non-identified shocks affecting

mainly the expectations component. From September 2016 onwards, again UMP and

others shocks contribute to the rise of the 10Y -OIS rate by 0.6%.

Table 2: Contribution of unconventional monetary policy
shocks to change in interest rates

10Y -OIS rate total expectations term premium

07/14− 03/15: total -77 -40 -37
UMP shock -72 -34 -38
other -5 -6 1

03/15− 09/16: total -33 -32 -1
UMP shock -10 -11 1
other -23 -21 -2

09/16− 10/17: total 62 51 11
UMP shock 32 8 24
other 31 43 -13

Note: This table shows the contribution of unconventional monetary
policy shocks to the change in the 10Y-OIS rate for selected sample
periods based on the SRTSMB model and unconventional monetary
policy (UMP) shocks identified with external instruments.

Finally, we take a closer at the shadow short rate and analyze to what extent its

dynamics are related to UMP shocks (Figure A.5). It turns out that albeit these shocks

increasingly affected the shadow short rate throughout 2015 and the end of 2016 given the

high persistence of UMP shocks, much of the variation stems from other, non-identified

shocks. Therefore, its move into deep negative territory should not be interpreted as a

pure reflection of a sequence of UMP shocks.
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4.5 Specification analysis and robustness of model-implied rate

expectations

4.5.1 In-sample fit

In this Section, we compare the results of our benchmark model to those of alternative

modeling specifications. We run estimations of further DTSMs including GATSMs and

SRTSMs that do or do not account for a time-varying ELB or survey information. In par-

ticular, we estimate two additional SRTSM specifications, one in which the ELB equals

the DFR (SRTSMDFR) and one in which we implement the same ELB setup as in our

benchmark model but in which we exclude survey information (SRTSMwoS). In addition

we estimate three GATSM model variants (GATSMOLS, GATSMS, GATSMBC) based

on Joslin et al. (2011) which differ with respect to the use of surveys and with respect

to the application of bias correction to the parameters under the P-measure in line with

(Bauer et al., 2012).

We start by comparing the overall in-sample model fit. As shown in Table A.4, all

models generate a similar average model fit, ranging between 2 and 3 basis points based

on the mean absolute error. As a result, there is no model specification that performs

significantly better in terms of average model fit. However, the comparison of model-

implied yield curves with observed yields at selected dates reveals noticeable differences

across models (see Figure 1).15 The following observations stand out: Prior to the ELB-

period, all inspected models generate a similar fit of the yield curve. However, this changes

with the beginning of the ELB-period. Both SRTSMB and GATSMOLS fit the observed

data during this period slightly better than SRTSMDFR.16 We show this exemplary for

February 2016. At this time, market participants were broadly expecting a further DFR

cut at the next meeting of the ECB’s governing council. Given their downward flexibility,

both models are able to fit the negative slope of the yield curve. While in GATSMOLS

this flexibility is ensured by the absence of a lower bound, in SRTSMB accounting for

expected ELB shift is crucial to generate a satisfying yield curve fit. In contrast, a

specification that does not account for expected DFR shifts as in SRTSMDFR fails to

re-produce a downward sloping forward curve which trades below the current DFR. This

shortcoming has important implications for the distribution of short rates and yield curve

decompositions, a finding we will discuss later in Subsection 4.5.2. While the look at

the yield curve in February 2016 shows that GATSMOLS is best capable of fitting the

downward sloping yield curve at the lower bound, SRTSMB plays out its strengths vis-

a-vis GATSM whenever the short end of the yield curve is flat over an extended period

15For readability, we do not show the model variants GATSMS , GATSMBC and SRTSMwoS in Figure
1.

16This in line with findings by (Kortela, 2016; Wu and Xia, 2017)
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of time (see October 2012).

4.5.2 Short-rate summary statistics and rate expectations

Comparing the implications of different model specifications for short rate summary statis-

tics, the most notable difference is related to the model-implied unconditional mean of

the short rate (see Table 3). While the estimated models without surveys (SRTMSwoS,

GATSMOLS, GATSMBC) generate an unconditional mean between 0.79 and 1.78, the

models with surveys (SRTSMB, SRTSMDFR and GATSMS) imply values between 3.67

and 4.38 for the short rate. Clearly, the inclusion of surveys leads to markedly higher

levels of far-distant short rate expectations. To partly overcome the shortcoming of a

very low unconditional mean in a data sample that is characterized by a prolonged pe-

riod of low interest rates such as the one considered in this paper, the pricing factors

could also be de-meaned as in Adrian et al. (2013). Alternatively, it could be specified

that the unconditional mean of the pricing factors EP[Xt] must equal their sample mean

(Bauer et al., 2012). Both approaches ensure that the unconditional mean of the short

rate EP[i1,t] matches its sample mean thereby partly alleviating the small sample problem

with respect to the level of far distant expected short rates (see the result for GATMSOLS

in brackets as well as GATMSBC). Still, based on the short rate summary statistics, far-

distant short rate expectations are lower compared to survey-based estimations. Including

an ELB-specification, in contrast, does not result in a clear difference with respect to the

unconditional mean. While SRTSMB produces the highest unconditional mean, the sec-

ond highest level can be found in GATSMS followed by SRTSMDFR with the DFR as

ELB specification.

Turning to the mean reversion characteristics of the pricing factors with its impli-

cations for the persistence of the short rate process, interestingly, all estimated models

produce a rather slow mean reversion so that far-distant short rate expectations react

to shocks to the pricing factors to a significant extent. The maximum eigenvalue of the

matrix ρP in all model variants is larger than 0.99. SRTSMB and SRTSMwoS imply

the lowest half life of the most persistent factor process with 6.3 years. In contrast to

the findings of Kim and Priebsch (2013), our estimated GATSMs exhibit an even higher

persistence of the short rate process. The half life of a shock to the most persistent pric-

ing factor for the the non-bias corrected GATSM variants is between 11.6 and 10.3 years

although the models are estimated over the complete ELB-period. Also, the inclusion of

short- and long-term interest rate survey information as in GATSMS does not change

this result. Our findings indicate that with respect to the considered euro area yield curve

sample, estimated DTSMs always produce a very high persistence of the short rate process

under the P-measure. Therefore, the estimated difference in the persistence of the pricing
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Table 3: (Shadow) short rate summary statistics – P-estimates

model SRTSMB SRTSMDFR SRTSMwoS

unconditional mean EPi1: 3.976 3.672 0.743
eigenvalues under P-measure: 0.992 0.991 0.990

0.912 0.913 0.895
0.834 0.860 0.895

half life in years: 6.92 7.00 6.33

model GATSMOLS GATSMS GATSMBC

unconditional mean EPi1: −0.789 4.384 1.778
(1.778)

eigenvalues under P-measure: 0.996 0.994 0.999
0.917 0.934 0.918
0.917 0.812 0.918

half life in years: 11.58 10.33 99.50
sample mean (i1): 1.78

factors between non-biased and biased-corrected estimates up to the 10 year horizon are

not substantially large which stands in contrast to US evidence Bauer, Rudebusch, and

Wu (2014); Wright (2014).

We now turn to the derivation of model-implied near- and far-distant short rate ex-

pectations. We start with short-term horizons and check whether the inclusion of an ELB

specification has an important impact on the behavior of the short rate path at short-term

horizons. Assuming our ELB specification in SRTSMB to be a reasonable approximation

of the true ELB, we first check the number of ELB violations by counting the number of

months in which the expected short rate path falls below the (expected) ELB, lt+h, for the

various model variants (Table A.5). While ELB violations are excluded by construction

in SRTSMB and SRTSMwoS, in SRTSMDFR few violations occur in periods in which

the DFR is a binding restriction for the short rate while being below the ELB (mainly

as there exists a positive spread between the DFR and the short rate). Obviously, all

GATSM fail to respect the ELB restrictions observed in the data during the ELB period.

The violations in these models amount between 21 and 52 months.

The importance of specifying a DTSM for the euro areas as a SRTSM with an ELB

specification can also be highlighted when assessing near-term monetary policy rate expec-

tations. In Figure A.6, we simulate the median lift-off distribution of a +10 BP DFR hike
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for the various model variants.17 Clearly, GATSMs produce a wide spectrum of results.

On the one hand, the lift-off measure based on GATSMBC turns out to be highly volatile

with month-to-month changes amounting to several years which seems rather unreliable.

On the other hand, GATSMS produces almost no variation in the lift-off measure at all.

The GATSMOLS comes out in between those two extreme results, still offering a rather

high amount of variation, reacting strongly to movements in interest rates. Interestingly,

since fall 2016 variation disappears, so that the model persistently predicts a DFR hike

of 10 BP within about half a year.

Compared toGATSMBC , but also toGATSMOLS, the models SRTSMB, SRTSMDFR

and SRTSMwoS all produce less volatile lift-off series which are very similar in terms of

dynamics, but reveal larger differences in terms of level. The results suggest that survey

information on the one hand reduces the degree of stickiness of the short rate at the lower

bound in times when forward rates as well as DFR expectations were tilted to the down-

side. On the other hand this additional information also dampens the reaction of short

rate expectations to large swings in interest rates as observed during the Bund tantrum

in the beginning of 2015 or in the wake of the global hike in rates in Fall 2016. With

respect to the ELB specification and associated fitting errors of the model-implied short

rate, both features have a pronounced impact on the median distribution of the most

likely short rate path (see the simulation results for SRTSMDFR).

Regarding long-term rate expectations, Figure A.7 depicts the 10Y1M expected short

rate of our benchmark model (modal path) together with estimated confidence interval

bands based on parameter estimation and current state filter uncertainty.18 All survey-

based models lie within the confidence interval bands of SRTSMB, so that we conclude

that the results for long-term rate expectation are robust to model specification and eco-

nomically plausible as long as survey information is included. In contrast, SRTSMwoS,

17The lift-off distribution is calculated by simulating a large number of short rate paths under the
P-measure and then saving the future horizon at which each single path rises above a certain threshold.
We define the threshold for a +10 BP DFR hike as our benchmark ELB specification plus 10 BP. For
example, if currently the short rate was trading at a 5 BP spread above the DFR, the threshold for an
expected +10 BP DFR hike would be at −25 BP. Thus, the simulated lift-off horizon partly depends on
the observed spread. Alternatively one could assume a constant spread across all times. However, this
would not affect results signficantly.

18The Monte Carlo integration approach to simulate parameter and current state filter uncertainty
relies on Hamilton (1994, 898) but we exclude forecasting uncertainty with respect to the risk factors.
At first hand, what seems surprising is that estimation uncertainty with respect to the expected short
rate in 10 years significantly falls during the ELB period. However, this finding originates from the fact
that the shadow short rate which embeds both, filter and parameter uncertainty, is way below the ELB
in negative territory during the ELB period. The conditional short rate distribution is censored below
the ELB (which is itself deterministic), with a point mass of Prob(i1,t+h ≤ lt+h) at lt+h. This implies
that a significant proportion of estimation uncertainty is likewise censored below the ELB and thus is
not reflected in long-term expected short rates. Moreover, due to the incorporation of long-term survey
information, the unconditional mean of the short rate under the P-measure of 3.69% is estimated very
precisely with a standard deviation of roughly 0.3% based on parameter uncertainty.
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GATSMOLS and GATSMBC generate a significantly lower level of short rate expecta-

tions at far-distant horizons. Interestingly, up to the ELB period, far-distant short rate

expectations in GATSMBC do not exhibit implausible large time variation compared to

GATSMOLS as partly documented for bias-corrected estimates based on US data (Wright,

2014).

4.5.3 Monte Carlo exercise

To robustify our results, we conduct a Monte Carlo exercise for which we simulate interest

rates with J = 1, 3, 6, 12, 24, 36, 60, 84, 120 months of maturities based on a SRTSM with a

fixed ELB at 0%. In light of the high persistence of interest rates observed in the euro area

sample and given the high computational costs associated with non-linear estimations, in

the Monte Carlo exercise we simulate a sample length of T = 720 months (compared to

T = 226 in the euro area sample) in order to check whether our specification analysis

can also be confirmed in a much longer data sample. We estimate a total number of

50 simulated samples.19 Thereby, we ensure that these samples comprise at least 12

and not more than 60 months in which the short rate is stuck at the lower bound. In

line with Kim and Singleton (2012), we also simulate survey data by generating model-

implied expectations and adding measurement errors similar in size of those estimated

in our benchmark model. We add those surveys at quarterly frequency for 3 months

rate expectations in 12 and 24 months and in bi-annually frequency for 3 months rate

expectations in in 6 to 10 years. For each sample we run estimations based on our

SRTSMs and GATSMs specifications.

The results of this exercise confirm our finding that survey information is essential to

pin down the data generating process (DGP) in an environment of very persistent interest

rates and prolonged ELB periods. This result holds despite using long samples comprising

60 years of monthly observations (see Table 4). Indeed, only the models that include

survey information (SRTSMB,GATMSS) are able to pin down the unconditional mean

of the DGP fairly close while producing high persistence in model-implied interest rates.

GATSMOLS and GATSMBC on the other hand underestimate both the unconditional

mean and the persistence of the true DGP. While their estimate for the unconditional

mean matches the sample mean of simulated yields, the latter itself is an insufficient proxy

for the unconditional mean of the short rate because the ELB period biases the sample

mean downward.

19The small number of simulated samples is due to computational burden in the context of the esti-
mation of non-linear term structure models. If computational costs would be lower, we could also add
smaller samples similar in size to the euro area sample to the Monte Carlos exercise.
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Table 4: Simulation results (median) - long samples

model DGP SRTSMB SRTSMwoS GATSMOLS

unconditional mean EP(i1,t): 3.693 2.862
sample mean: 2.888

max eigenvalues under P: 0.992 0.976

model DGP GATSMS GATSMBC

median unconditional mean EP(i1,t): 3.693 2.880
median sample mean: 2.888

median max eigenvalues under P: 0.992 0.983

5 Concluding remarks

We propose a shadow rate term structure model for the euro area OIS yield curve that

preforms well when evaluated against two criteria (i) good model fit and (ii) the derivation

of plausible short-and long-term rate expectations which can be used for policy analysis.

Our model explicitly accounts for the specific features of the euro area yield curve sample

which can be regarded as very small and characterized by highly persistent interest rate

dynamics near or at the time-varying effective lower bound for a prolonged period of time.

To do so, our model features such a lower bound which is forward looking in the sense

that anticipated changes in the DFR are taken into account before their realization and

it considers the spread between the policy rate, i.e. the deposit facility rate in times of

negative interest rate policies, and the short rate of the OIS yield curve. To better pin

down short- and especially long-term expectations embedded in yield curve data, we also

inform the model with survey based interest rate forecasts.

We use our model to assess monetary policy expectations derived from the short end of

the yield curve by accounting for the asymmetry of the distribution of short rates during

the effective lower bound period. The forward curve itself gives an upward biased picture

with respect to future monetary policy rate decisions given negative forward premia even

at 1-year horizons. Similarly, mean estimates of future monetary policy rates are upward

biased given the truncated distribution of future short rates. Correct inference with

respect to monetary policy expectations can only be drawn from the modal, i.e. most

likely, path of future short rates.
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At far-distant horizons our model delivers short rate expectations that are highly cor-

related with an estimated nominal equilibrium short rate derived from a macroeconomic

modeling set-up even though the considered models do not share any information during

the estimations. According to our model results, long-term forward rates thus appear

to reflect trends in key macroeconomic variables in both real and nominal terms, which

play an important role in the formation of far-distant rate expectations. Moreover, non-

standard monetary policy measures together with interest rate forward guidance, not only

depressed forward premia but also the expectations component embedded in intermediate

and long-term forward rate maturities, thereby highlighting the signaling channel of asset

purchases. We confirm this narrative by assessing the impact of unconventional monetary

policy shocks based on high frequency identification external instrument approach.

We test alternative modeling specifications including shadow short rate models with

different effective lower bound definitions. We also exclude survey information from our

preferred model and we estimate various Gaussian affine term structure variants. Overall,

we find that these alternative models either exhibit an unsatisfying model fit and / or

produce implausible short- and long-term rate expectations from an economic perspective

in addition to less convincing outcomes when assessing short-term monetary policy rate

expectations. We finally confirm our findings by a Monte Carlo analysis comprising

simulated yield curve samples including prolonged periods at the effective lower bound.

Indeed, we find that when facing such samples, including survey information and an

effective lower bound is important to recover the true data generating process.
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A Appendix

Table A.1: Parameter estimates for SRTSMB

X-factor representation P -factor representation

µP 0.0322 -0.2033 0.2402 µP
P 0.3139 -0.2583 0.1494

(0.0091) (0.1065) (0.0980) (0.0489) (0.0580) (0.0405)

ρP 0.9944 0.0313 0.0321 ρPP 0.9923 -0.00877 -0.6589
(0.0019) (0.0151) (0.0163) (0.0022) (0.0200) (0.1659)

0.0300 0.9640 0.0920 -0.0019 1.0461 0.6195
(0.0331) (0.0340) (0.0358) (0.0029) (0.0409) (0.1025)
-0.0431 -0.0645 0.7882 0.0001 -0.0437 0.7082

(0.0374) (0.0151) (0.0233) (0.0019) (-0.0109) (0.0675)

µQ 0.0277 0 0 µQ
P 0.2924 -0.1897 0.0873

(0.0012) (1.4163) (0.7775) (0.1616)

ρQ 0.9970 0 0 ρQP 1.0051 -0.0402 -0.6686
(0.0002) (0.0015) (1.5669) (6.7540)

0 0.9398 0 -0.0045 1.0485 0.5011
(0.0012) 0 (0.0001) (0.0003) (0.0011)

0 0 0.9238 0.0010 -0.00291 0.8071
(0.0006) (0.0000) (-0.0000) (0.0003)

Σ 0.3034 0 0 ΣP 0.4581 0 0
(0.0188) (0.261)
-0.8556 2.3807 0 0.0553 0.2721 0

(0.1921) (0.4143) 0 (0.0206) (0.0179) 0
0.55537 -2.3788 0.1781 -0.0233 -0.0585 0.0719

(0.1851) (0.4162) (0.0277) (0.0071) (0.0066) (0.0031)

δ0 0 δ0,P -0.0690
δ1 1 1 1 δ1,P 0.3177 -0.3778 0.5159

Note: Parameter estimates of the SRTSMB based on the X-factor as well as rotated
P -factor representation. Asymptotic standard errors (based on the Hessian matrix) in
parentheses.
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Figure A.1: Shadow short rates
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Note: This figure plots the model-implied shadow short rate based on various term structure
model specifications including SRTSMB,SRTSMDFR and SRTSMwoS . End-of-month values
for January 1999 to October 2017.
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Table A.2: 1Y1Y forward rate variance decomposition

model SRTSMB SRTSMDFR SRTSMwoS

Level
total sample:

expectations 0.88 0.87 0.75
forward premium 0.12 0.13 0.25

pre-ELB sample:
expectations 0.85 0.86 0.75
forward premium 0.15 0.14 0.25

ELB sample:
expectations 1.09 1.12 0.94
forward premium −0.09 −0.12 0.06

Difference
total sample:

expectations 0.73 0.72 0.95
forward premium 0.26 −0.28 −0.05

pre-ELB sample:
expectations 0.72 0.71 0.95
forward premium 0.28 0.29 0.05

ELB sample:
expectations 0.94 0.92 1.05
forward premium 0.06 0.18 −0.05

model GATSMOLS GATSMS GATSMBC

Level
total sample:

expectations 0.82 0.87 0.87
forward premium 0.18 0.13 0.13

pre-ELB sample:
expectations 0.84 0.88 0.89
forward premium 0.16 0.12 0.11

ELB sample:
expectations 0.69 0.87 0.73
forward premium 0.31 0.13 0.27

Difference
total sample:

expectations 1.03 0.74 1.09
forward premium −0.03 0.26 −0.09

pre-ELB sample:
expectations 1.04 0.74 1.10
forward premium −0.04 0.26 −0.10

ELB sample:
expectations 0.92 0.73 0.98
forward premium 0.08 0.27 0.02
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Table A.3: 9Y1Y forward rate variance decomposition

model SRTSMB SRTSMDFR SRTSMwoS

Level
total sample:

expectations 0.47 0.48 0.29
forward premium 0.53 0.52 0.71

pre-ELB sample:
expectations 0.42 0.46 0.26
forward premium 0.58 0.54 0.74

ELB sample:
expectations 0.43 0.45 0.32
forward premium 0.56 0.55 0.68

Difference
total sample:

expectations 0.31 0.31 0.23
forward premium 0.69 0.69 0.77

pre-ELB sample:
expectations 0.29 0.31 0.22
forward premium 0.71 0.69 0.78

ELB sample:
expectations 0.36 0.40 0.26
forward premium 0.64 0.60 0.74

model GATSMOLS GATSMS GATSMBC

Level
total sample:

expectations 0.55 0.56 0.86
forward premium 0.45 0.44 0.14

pre-ELB sample:
expectations 0.57 0.59 0.88
forward premium 0.43 0.41 0.12

ELB sample:
expectations 0.36 0.40 0.56
forward premium 0.64 0.60 0.44

Difference
total sample:

expectations 0.41 0.64 0.41
forward premium 0.59 0.36 0.59

pre-ELB sample:
expectations 0.44 0.69 0.43
forward premium 0.56 0.31 0.57

ELB sample:
expectations 0.32 0.51 0.36
forward premium 0.68 0.49 0.64
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Table A.4: In-sample model fit across models

model SRTSMB SRTSMDFR SRTSMwoS

total sample: 3 3 2
pre-ELB sample: 3 3 3
ELB sample: 2 3 2

model GATSMOLS GATSMS GATSMBC

total sample: 2 3 2
pre-ELB sample: 3 3 3
ELB sample: 2 2 2

Note: This table shows the mean absolute error of model-implied
yields to observed yields for different sample periods. The total sam-
ple covers the period 1999M1-2017M10 while the pre-ELB sample
covers the period 1999M1-2012M6 and the ELB sample the period
2012M7-2017M10.

Table A.5: Lower bound violations of expected short rate paths

number of months for which EP
t [i1,t+n] < lt+h

for n = 1, 2, . . . , 120 and t = 1, 2, . . . , 226

model SRTSMB SRTSMDFR SRTSMwoS

0 14 0

model GATSMJSZ GATSMS GATSMBC

21 33 52
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Figure A.2: 5Y5Y forward rate decomposition US vs. euro area
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Note: Panel (a) plots the expectations component of the time-series of the decomposition of the
5Y5Y forward rate. Panel (b) plots the corresponding forward premium component. Based on
SRTMSB for the euro area and Kim and Wright (2005) for the US. End-of-month values for
January 1999 to October 2017.
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Figure A.3: 10Y yield and 10Y shadow yield
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Note: Panel (a) plots the 10Y yield and shadow yield under the Q-measure and panel (b) under
the P-measure based on SRTMSB. End-of-month values for January 1999 to October 2017.
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Figure A.4: 10Y1M forward rate and 10Y1M shadow forward rate
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Note: Panel (a) plots the 10Y1M forward rate and shadow forward rate under the Q-measure
and panel (b) under the P-measure based on SRTMSB. End-of-month values for January 1999
to October 2017.

42



Figure A.5: Historical decomposition of the shadow short rate

(a) level of the shadow short rate
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Note: Panel (a) plots the the shadow short rate from June 2014 to October 2017 based on
SRTSMB. Panel (b) plots the corresponding historical decomposition with a focus on uncon-
ventional monetary policy shocks.
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Figure A.6: +10 BP DFR hike (median distribution)
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Note: This figure plots the number of months of the median distribution of a +10 BP DFR hike
based on various model specification. End-of-month values January 2012 to October 2017. The
shaded area lies between the 15%- and 85%-quantile of our benchmark median distribution.
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Figure A.7: 10Y1M short rate expectations
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Note: This figure plots model-implied expected short rates based on various term structure model
specifications together with [5%,15%]- and [85%,95% ]-quantile confidence intervals based on our
preferred SRTSMB model. Confidence intervals refer to parameter estimation and current state
filter uncertainty. End-of-month values for January 1999 to October 2017.
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