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Forward Guidance at the Zero Lower Bound: Curse and
Blessing of Time-Inconsistency

Gregor Boehl∗, Felix Strobel

Institute for Monetary and Financial Stability, Goethe University Frankfurt

Abstract

Forward guidance as a tool of unconventional monetary policy can be highly efficient to
support aggregate demand and to steer the economy out of the zero lower bound (ZLB).
However, the effect that stimulates the economy can give rise to a time-inconsistency
problem: if the central bank promises to keep interest rates at the ZLB for long, the sub-
sequent increase in inflation and economic activity may create a motive for the central
bank to forego its promise and to exit the ZLB earlier than announced. We illustrate the
time-inconsistency problem in a New Keynesian model with hand-to-mouth consumers.
Using a novel and analytically tractable method for handling occasionally binding con-
straints, we contrast the case of commitment to forward guidance with the case in which
monetary policy allows for an early exit of the ZLB. Our method is able to provide
results on uniqueness and existence of (ZLB) equilibria. We study the equilibrium selec-
tion given different scenarios and conclude that central bankers should be careful when
choosing the number of periods with low interest rates in order to avoid the inconsistency
problem. Furthermore, we calculate government spending multipliers and argue that the
multiplier is even larger if combined with forward guidance.

Keywords: Forward Guidance, zero lower bound, occasionally binding constraints,
government spending multiplier
JEL: E63, C63, E58, E32, C62

1 Introduction

In recent years, the US as well as European economies have been gradually recovering
from the great recession and the accompanying liquidity trap. With the recovery in sight,
controversially debated questions are, when and how to return to ”normal” monetary
policy, i.e. to raise interest rates from the so-called effective zero-lower bound on nominal
interest rates (ZLB), returning to a state of affairs in which adjustments of the policy
interest rate reflect changes in economic fundamentals. During the Great Recession,
central banks have started to use forward guidance for their monetary policy actions.
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We argue that by announcing a future path of interest rates, forward guidance creates a
time-inconsistency problem that surfaces in times of economic recovery.1

This work has three central contributions. First, we illustrate the effects of Odyssian
Forward Guidance, contrasting the corresponding equilibrium time path with the case
in which the central bank simply follows the Taylor rule whenever possible and sets
rates to zero if not. Odyssian Forward Guidance (OFG) is the concept of publishing
an interest rate path for the near future, and committing to it independently of the
economic conditions at the respective time. Using a New Keynesian model with hand-
to-mouth consumers, we show that OFG can significantly dampen the negative impact
of a strong demand shock. The longer the central bank promises to keep interest rates
at the ZLB, the more effective is OFG in stimulating inflation and aggregate demand,
and, as a consequence, the earlier the economy returns to a state, in which a Taylor
rule based policy warrants a switch to positive interest rates. This is where the issue of
time-inconsistency arises: while inflation and output start to rise, policy makers might
be incentivised to raise interest rates. If such a deviation from the OFG path happens
early, it might directly lead back to the ZLB and is not optimal. If it occurs later, but
before the exit period initially announced, such response is benefiacial given the central
banks loss function, but undermines the central banks credibility in the future.

We are not the first to study the effects of forward guidance. The beneficial effects
of forward guidance in the presence of the ZLB were first pointed out by (Eggertson
and Woodford, 2003) in the context of a theoretical model. (Del Negro et al., 2015) find
empirically meaningful effects of forward guidance on macroeconomic dynamics, but raise
the issue that the effects of forward guidance are grossly overstated in theoretical models
(the so-called ”Forward Guidance Puzzle”). They attribute this to an oversensitivity of
consumption spending to future interest rates and propose a model with Perpetual Youth
households as in (Blanchard, 1985) to reduce the link between current consumption and
future interest rates. We adress this issue, by introducing hand-to-mouth consumers into
our model. While the literature on forward guidance is growing, to our knowledge, we
are the first to illustrate the issue of time-inconsistency related to OFG at the zero lower
bound.

Our second, major contribution is a novel method that allows us to study the different
equilibria induced by an occasionally binding constraint, to find the rational expectations
equilibrium and provide conditions for its existence and uniqueness. Occasionally bind-
ing constraints are an important part of economic modelling and in particular gained
importance since major central banks have been resticted in their interest policy by the
ZLB. Solution methods currently prominent in the literature either have to be solved on
a grid or are subject to partially numerically unstable numerical methods. Solutions on
the grid can normally provide a reasonably high accuracy, but are subject to the “curse
of dimensionality”, meaning that computation time increases exponentially with the size
of the state space, and high dimensional models are either only solvable with very high
computational costs (and time) or require considerable computational expertise, that is
normally not at hand. Typically both is implied and, additionally, the set-up costs are
quite high even for simpler problems. Other methods such as Guerrieri and Iacoviello

1Forward Guidance has been applied to the use of unconventional and conventional policy instru-
ments. While we focus here on the short-term interest rate and the associated zero lower bound issue,
the gist of our argument is likely to hold for announcements of quantitative easing as well.
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(2015) and Holden (2016) rely on different perturbation strategies whereas finding the
correct number of periods at the ZLB might be numerically unstable and hence may
render the results unreliable. The analytical method proposed here, when in the con-
strained system, iterates forward in time until the system is unconstrained and then
uses the solution of the unconstrained system to solve for the endogenous variables when
constrained. The problem then boils down to finding the minimal distance, i.e. the
time path until the system is unconstrained. We further provide a simple condition that
implies both existence and uniqueness of the equilibrium path from the constrained to
the unconstrained state.

Our last contribution is to study government spending multipliers across differnt
scenarios. We hereby confirm previous findings that, due to the absence of a crowding
out effect, the spending multiplier is larger than one when the economy is at the ZLB
and can potentially become very large. We further document that it becomes even
slightly larger in combination with OFG. To the extent that the values of the multipliers
generated in our analysis are in line with the existing literature,2 this exercise underscores
the reliability of the novel solution method used in our analysis.

The rest of this paper is structured as follows. In the next section we set up a small-
scale New-Keynesian model with hand-to-mouth consumers. In the section that follows
we provide the conditions under which the rational expectations equilibrium is unique
and introduce the solution method. In Section 4 we apply this method to the ZLB
problem in a simple New Keynesian framework and study the effects of forward guidance
and government spending. Section 5 concludes.

2 Model

For our analysis, we employ a small scale New Keynesian model, extended with hand-
to-mouth consumers as in (Gaĺı et al., 2007). This particular extension is suited to adress
the forward guidance puzzle, which was first raised in (Del Negro et al., 2015). While
these authors find positive effects of foward guidance announcements by the Federal
Reserve, they point out that standard DSGE models tend to grossly overestimate the
effects of forward guidance on macroeconomic dynamics. One of the reasons that rational
expectations models yield very large effects of forward guidance is the strong response
of consumption spending to future interest rates. To moderate this link, we introduce
hand-to-mouth consumers into our model. With a fraction of agents in our model being
standard Ricardian consumers and another fraction being hand-to-mouth consumers, the
response of aggregate demand to changes in future interest rates, and thus to forward
guidance is more in line with empirical results. Furthermore, the feature of hand-to-
mouth agents itself is empirically appealing, as micro data suggests that a large share
of households only has limited access to financial markets and is thus constrained in its
capability to smooth consumption via borrowing and lending as Ricardian consumers do.

This section gives a brief description of the model. Detailed derivations of the equilib-
rium equations are delegated to the appendix. The model consists of the two household
types, a monopolistically competitive firm that faces nominal rigidities as in (Calvo,

2see, e.g., (Christiano et al., 2011), (Eggertson, 2011), (Eggertson and Krugman, 2012)
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1983a), a stylized government sector and a monetary authority that sets the short-term
nominal interest rate according to a Taylor Rule.

Both household types have separable utility in consumption and leisure. The utility
function reads

Ut = E0

∞∑
t=0

βteVt

(
log(Ct)−

N1+ψ
t

1 + ψ

)
,

where parameters β and ψ are, respectively, the discount factor and the inverse of the
Frisch elasticity. Ct is consumption, Nt are the hours worked and Vt is a shock to the
discount factor of households. Within our analysis, a shock to Vt that increases the
patience of households triggers zero lower bounds episodes. The optimizing Ricardian
households earn wages Wt from their labor supply No

t and receive income from one-period
riskless zero coupon bonds Bot that yield an interest rate Rt. They spend their funds on
consumption Cot and the purchase of bonds. Their budget constraint thus reads

PtC
o
t +Bot+1 = Bot (1 +Rt) +WtN

o
t + Tt.

Here, Pt denotes the price level at time and Tt are lump sum taxes raised by the gov-
ernment to finance government spending. In contrast to Ricardian consumers, hand-
to-mouth consumers do not have access to the bond market. Their budget constraint
is

PtC
r
t = WtN

r
t ,

where Crt is consumption by hand-to-mouth consumers and Nr
t their hours worked.

Aggregate consumption and labor hours are weighted sums of the variables of the two
household types, where λ is the share of hand-to-mouth consumers in the economy.

Ĉ = λĈrt + (1− λ)Ĉot , (1)

N̂ = λN̂r
t + (1− λ)N̂o

t . (2)

Firms in the good market are in monopolistic competition, and can charge a markup
over their marginal cost. The production function of firm i reads simply Yt(i) = Nt(i).
The relation between the poduction of the individual firm and agggreate output is sum-

marised in the Dixit-Stiglitz aggregator Yt ≡
(∫ 1

0
Yt(i)

ε−1
ε di

) ε
ε−1

, with ε > 1. Each

period, firms face a constant probability of being able to optimally adjust their prices, θ.

The assumption of Calvo pricing gives rise to the price index Pt ≡
(
(1− θ)(P ∗t )1−ε + (Pt−1)1−ε) 1

1−ε

and yields a standard New Keynesian inflation equation.
The model features government spending Gt, which - for simplicty - is financed via

lump sum taxes from Ricardian consumers. Government spending is exogenous and
described by an AR(1) process. The good market clearing condition reads

Yt = Ct +Gt.

Lastly, monetary policy is modelled as a Taylor-Rule on short-term nominal interest
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rates, and takes account of the occasionally binding nature of the zero lower bound

Rt+1 = max

{
0, ρRRt + (1− ρR)

(
R+

φ1

β
πt +

φ2

β
Ŷt

)}
.

ρR is the interest smoothing parameter, and φ1 and φ2 are the coefficients, which govern
the strength of the response of interest rate policy to deviations of inflation and output
from their target level.

The derivation of the linearized equilibrium conditions is delegated to the appendix.
The equilibrium conditions, expressed in Yt, Rt, πt, Ĝt, and V̂t) can be summarized in the
following systems of equations

Ŷt −
g

Θ
Ĝt = Et[Ŷt+1 −

g

Θ
Ĝt+1]− (1− g)

Θ
[(Rt+1 −R)− πt+1 + Vt+1 − Vt], (3)

πt = βEtπt+1 + κ

((
1

1− g + ψ

)
Ŷt −

g

1− g Ĝt
)

+ Ẑt, (4)

Rt+1 = max

{
0, ρRRt + (1− ρR)

(
R+

φ1

β
πt +

φ2

β
Ŷt

)}
(5)

Ĝt = ρgĜt−1 + εgt , (6)

V̂t = ρvV̂t−1 + εvt . (7)

Ẑt = ρzẐt−1 + εzt . (8)

In this system of equations, g is the steady state share of government spending in

aggregate output. Θ =
(

1− λψ(1−g)
(1−λ)

)
is derived in the appendix. It is through this

coefficient that the share of hand-to-mouth in the economy affects equilibrium dynamics.
In an economy without hand-to-mouth consumers (i.e. λ = 0), Θ is equal to one.
Equation (3) is the New Keynesian IS Equation, (4) is the New Keynesian Phillips Curve,
(5) is the interest rate rule, and (6) and (7) are the stochastic driving forces of the model.

β g κ λ φπ φy
0.99 0.2 0.08 1/3 1.5 0.125

Table 1: Baseline calibration

The baseline calibration can be found in Table 1. The parameters of autocorrelation
(ρv, ρz, ρg) are given by 0.9, 0.9 and 0.7 respectively. Note that instead of modelling a

“classic” discount factor shock, we make use of the ad-hoc demand shock V̂t. Since this
shock does not enter the optimality conditions a less stronger shock is necessary to push
the economy to the zero lower bound.

3 Solution Stategy

Let xt be the n× 1 vector of forward looking variables and let vt be the m× 1 vector
of state variables. If a variable x1,t is both, depending on its past value x1,t−1 and on its
expected future value Etx1,t+1 let us define an auxiliary variable x2,t = x1,t−1 to keep
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the form outlined before. Every system of linear difference equations (LDE) with an
occasionally binding constraint (OBC) can then be put in the form

M

[
xt
vt

]
= P Et

[
xt+1

vt+1

]
+ c max

{
b

[
xt
vt

]
, x̄

}
+ εt (9)

where b is a 1×(n+m) row vector that together with x̄ defines the constraint and εt is a

vector of iid. shocks. The system can be constructed such that the matrix P =

[
P1 0
0 I

]
,

apart from the expectation system P1 on xt only contains zeroes and a m×m identity
matrix.3 Let us define the unconstrained system as the system that contains the steady
state and satisfies the Blanchard-Kahn conditions (Blanchard and Kahn, 1980), i.e. the
system where a rational expectations solution is determined. Alternatively, the above
system can be rewritten as

[
xt
vt

]
=



(M− cb)
−1

PEt

[
xt+1

vt+1

]
+ εt ∀ b

[
xt

vt

]
− x̄ ≥ 0

M−1PEt

[
xt+1

vt+1

]
+ M−1 cx̄+ εt ∀ b

[
xt

vt

]
− x̄ < 0.

(10)

Hence, (M− cb)
−1

P is the system matrix of the unconstrained system and N = M−1P
is likewise is the system matrix of the constraint system. The system M − cb can be
obtained readily by perturbation of the respective system around its steady state and
seperating the dependece of the constrained input into the (n + m) × 1 column vector
c, which is always nonzero unless the constraint is at the zero steady state, which would
render the model unsolvable. In mathematical terms, this is equivalent with assuming
continuity of the system mapping or consistency at the constraint. In is easy to see

that the above system satisfies this condition if it holds that b

[
xt
vt

]
= x̄ and hence

max{x̄, x̄} = x̄ and that in both systems the expectations are equal because the transition
to next period’s state vector Etvt+1 is equal.

Put differently, both systems are perturbated around the (same) unconstrained steady
state. 4

Let Etk be the expected number of periods at the constraint (i.e. in the constrained
system) in period t and denote a rational expectations solution to (9) depending on Etk
and as

xt = S(Etk,vt). (12)

3In what follows we will suppress the subscript whenever the context reveals the dimensionality of I.
4Taken separately, the constrained system generally does have a different steady state (x∗

c ,v
∗
c ),

i.e. the steady state of the constrained system is a nonzero deviation from the steady state of the
unconstrained system with [

x∗
c

v∗
c

]
= (M−P)−1 cx̄ 6= 0 =

[
x∗
u

v∗
u

]
. (11)
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In the rest of this paper we will suppress the expectations operator for better readability

and we will also occasionally use yt =

[
xt
vt

]
as a shortcut for the stacked vector of

endogenous and state variables.

Definition 1. A rational expectation solution for a expected number of periods k∗ at the
constraint is also a rational expectations equilibrium if, in expectations, the system is
constrained for exactly k∗ periods, i.e. if

bEt {yt+k∗ |S(k∗,vt),vt} − x̄ ≥ 0 > bEt {yt+k|S(k∗,vt),vt} − x̄ (13)

for k ∈ {0, 1, . . . , k∗ − 1}.

It is straightforward that the system implied by Equation (9) has a rational expecta-
tion equilibrium for a given vt if the constraint is not a repeller, i.e. if

bS(0,vt) < x̄ =⇒ bS(1,vt) < x̄. (14)

A repeller would imply that the mapping is inverted at the constraint. In that case no
solution for vt would be defined.

Let us now find a solution S and then study under which conditions an equilibrium
can exist and when such equilibrium is unique. Assume further that The forcasting error
implied by the triangle inequality is marginal, i.e. if we rewrite (9) as xt = f(vt, εt), then
Etxt+1 ≈ f(vt+1,0). It can be the case that this assumption holds true, for example due
to quite small variances in the error terms. We can however not assert that in general.

3.1 Main method

The unconstrained system with the system matrix (M− cb)−1P can be solved using
familiar methods, as for instance Eigenvalue-Eigenvector decomposition. Let us denote
this solution by the matrix Ω, where it holds that

xt = Ωvt ∀ b

[
Ω
I

]
vt − x̄ ≥ 0. (15)

Setting xt = Ωvt in the condition as well is fine since for now we are only looking
for an equilibrium without any judgement on its uniqueness. If there exists only one
equilibrium, this condition will obviously also yield the unique equilibrium.

For Q =
[
I −Ω

]
Equation (15) implies that

QEt

[
xt+k

vt+k

]
= 0 ∀ b

[
Ω
I

]
Etvt+k − x̄ ≥ 0, (16)

i.e. for every future period t+ k in which the system is expected to be unconstrained.
Assume that we are in the constrained system N at time t and will continue to until

at least in period t+ k − 1. Iterating System (10) forward tells us that[
xt
vt

]
= Nk Et

[
xt+k
vt+k

]
+ (I−N)−1(I−Nk)M−1cx̄ ∀ bEt

[
xt+k−1

vt+k−1

]
− x̄ < 0, (17)
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where (I − N)−1(I − Nk) =
∑k−1
i=0 Ni is the transformation for a geometric series of

matrices. Assuming that the system is unconstrained at t+ k we can use Equation (16)
to rewrite (10) as

QN−k
[
xt
vt

]
= QN−k(I−N)−1(I−Nk)M−1cx̄, (18)

k = 0 iff. bEt

[
xt
vt

]
− x̄ ≥ 0, (19)

k = 1 iff. bEt

[
xt+1

vt+1

]
− x̄ ≥ 0 > bEt

[
xt
vt

]
− x̄, (20)

. . . (21)

k = j iff. bEt

[
xt+j
vt+j

]
− x̄ ≥ 0 > bEt

[
xt+j−1

vt+j−1

]
− x̄, (22)

which implies a solution of the endogenous variables xt in terms of the state variables vt
given the expectation on k, i.e. in which period the system will be unconstrained again.
Since c is a vector of (known) constants, the whole RHS of (18) is a (known) vector. Let
us denote a solution implied by solving Equation (18) as suggested in Equation (12) by

S(k,vt) =

{[
xt
vt

]
: QN−k

[
xt
vt

]
= QN−k(I−N)−1(I−Nk)M−1cx̄

}
, (23)

which is a n×n matrix multiplied by vt plus a n×1 vector of constants. From Equations
(17) and (13) and given the corresponding restriction we can express the expectations of
period t+ j given the expectation that the system is at the constraint until period k as

Lj(k,vt) = N−jS(k,vt)−N−j(I−N)−1(I−Nj)M−1c (24)

= Ekt

[
xt+j
vt+j

]
. (25)

we will also use L(k,vt) and, in the proofs, L(k) as a shortcut for Lk(k,vt). Note that
L(0,vt) = S(0,vt) = Ωvt and in general L0(k,vt) = S(k,vt) since this means nothing
else than L0(k) = Ekt yt being the expectation on the current system state.

3.2 Existence and uniqueness

Let us start with a short wrap-up.

Lemma 1. For any given vector of state variables vt a rational expectations equilibrium
xt = S(k∗,vt) to the system in 9 with k∗ : bL(k∗,vt) ≥ x̄ is unique if

bNlL(k∗,vt) + b
∑

0≤i<l

Ni < x̄ ∀ l ∈ {0, 1, . . . , k∗ − 1}, (26)

i.e. that the trajectory of the k∗ equilibrium has not crossed the constraint before period

8



k∗, and

∀k′ > k∗. bL(k′,vt) ≥ x̄ ∃k < k′. bNkL(k∗,vt) + b
∑

0≤i<k

Ni ≥ x̄, (27)

i.e. that expectations are inconsistent when expecting any k larger than k∗.

Proof. See Appendix A.1 �

In order to obtain a sharper condition of existence and uniqueness it is helpful to look
at the system matrices in closer detail. Let us denote

M =

[
M1 M2

Mx Mv

]
, c =

[
cx
cv

]
and b =

[
bx

bv

]
. (28)

Theorem 1. For any given vector of state variables vt the equilibrium xt = S(k∗,vt) of
the system in 9 exists and is unique if

bx (M1 −ΩMx)
−1

(P1Ωcv − cx) ≥ 0 (29)

and the trajectory of k∗ does not return to the constraint after period k∗.

Proof. See Appendix A.2 �

Theorem 1 states the main result concerning existence and uniqueness. At the con-
straint, a force fu : cbyt is switched off. If the Blanchard-Kahn conditions are not
satisfied in the constrained system this implies that this force is essential to return to
the original steady state. It also means that at at all coordinates of the constraint, force
fc : cbx̄ is the exact force necessary to return to the steady state. Constraining this
force to remain at this level has two implications: in the unconstrained region, fc is too
high to let the system return to the steady state while in the constrained region it is to
weak. For that reason every yt in the unconstrained region will accelerate away from
the constraint. Since this also holds in anticipation, we can establish uniqueness of the
outlined solution method under the given condition: in terms of the distance spanned by
b, the matrix M1 has to be such that the expectation dynamics more than set-off the
transition dynamics of the state space, and the force induced by cx needs to more-than
set-off the impact of the constraint on the state space.

The remaining task is to actually find the equilibrium k. This is trivial since the
function L can be used to rephrase the conditions in (18) - (22) as

k∗ = min
k
k s.t. bL(k,vt)− x̄ ≥ 0, (30)

which, written more compactly, allows to specify the complete solution to the OBC
problem as

k∗ = argmaxk {f(k) sign (bL(k,vt)− x̄)} , (31)

where f : ∂|f(k)|
k < 0 can be any function that in its absolute is decreasing in k. One

example would be f(k) = exp(−k). A solution to the problem of finding k can be
implemented quite straightforwardly and more elegantly than implied by the algebra. A
suggestion is sketched in Figure B.3 in the Appendix.

9



4 Results

Let us first abstract from forward guidance and have a look at the impulse response
functions to a positive/negative productivity shock and a positive/negative demand
shock, which is captured by the shock on the discount factor in Figure 1. All four
shocks have a size of a one percent deviation from their respective steady state values.
As for the positive demand and the negative productivity shock the constraint is not
binding, the respective dynamics look familiar since they just represent the standard
rational expectations solution. Due to the nature of the solution method, the IRFs for
positive and negative shocks are symmetric around zero in the regions where the ZLB is
not binding.
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Figure 1: Impulse response functions with respect to a 1% productivity and demand shocks.

When a negative demand shock lowers the interest rate sufficiently for the ZLB to
bind, the central bank becomes unable to prevent a strong deflationary effect of the
shock by lowering the interest rate and stimulating demand. The expectations of further
deflation raises the real interest rate and stalls consumption demand. The central banks
inability to react to the shock, amplifies the negative effect of inflation and output. The
asymmetry shown in the left panels of the graph reflect the far stronger response than in
the case of a positive demand shock. In period 6 after the shock the zero lower bound is
not binding anymore and responses become attenuated, and are now proportional to the
positive shock. Note that at every point the algorithm perfectly captured and anticipated
the future equilibrium path.

We now turn to the productivity shock. At period 0, the shock hits the economy
and lowers the price level, and immediately drags inflation in the region where the ZLB
is effective. Since the central bank can not further decrease the nominal interest rate,
the real rate is very high due to low expectations on inflation, which leads to a drop in
consumption as well. As the shock slowly fades out, inflation increases, which goes hand
in hand with a decrease in the real interest rate. Now agents raise their demand above
the steady state level. Perfectly anticipating that the central bank will raise the interest
rate from period 8 onwards, the negative effect of the ZLB smoothes out and output
transitions to the normal rational expectations path.

Now lets turn to the case, in which the monetary authority conducts forward guidance
of its nominal interest rate path. By doing so, it affects the expectations of agents

10
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Figure 2: Forward Guidance over 8 periods (upper left) to 11 periods (lower right) whereas the Taylor
rule without OFG would exit the ZLB after 6 periods. The dashed lines represent the interest rate as
implied by the Taylor rule. The ZLB is caused by a strong negative demand shock.

regarding the duration of the ZLB episode. Let us have a look at Figure 2, which, given
the state vector, shows how the trajectory evolves, if the central bank ex-ante commits
to setting the interest rate to zero for the next k̄ periods. Deviations of inflation and
output are lower than at the rational expectations path with k = k∗. The Figures also
reveal why any k̄ > k∗, in the absence of any central bank commitment, can not be a
rational rational expectations equilibrium. Let us call the interest rate that is implied by
strictly following the Taylor rule to be the sunny rate. For k̄ = 9 the exit date implied
the sunny rate is roughly the same as without OFG. Given that the conditions from the
above Theorem are satisfied, still k∗ = 7 is the only true and self-fulfilling value for k
and hence any higher value can not be a rational equilibrium.

For our policy analysis this does also mean that, if central bank credibility would not
matter, at this point the central bank has an incentive to deviate from the commitment
and start raising interest rates. This effect is even stronger for k̄ = 10. Here the
anticipation of low future interest rates merely bisects the initial response of output and
inflation, and likewise the exit date implied by the sunny rate would be even earlier than
k∗. This introduces another dimension to the problem of time inconsistency: switching
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from the OFG-path back to the Taylor rule would set back the interest rate to zero and
be accompanied with drops in output and inflation.

Finally, for k̄ = 11, in the lack of any other state variables the economy would jump
upwards upon announcement with a sunny rate that is consistently not only above the
ZLB but also above equilibrium level.

Furthermore, there exists a channel that can worsen the impact of a negative demand
shock. This is the effect of uncertainty, which is not covered by our method due to its
deterministic nature. The tail distribution of future demand shocks can possibly further
prolong the ZLB period and promises further hazard. Without explicitly modelling this
channel it should be clear that OFG can help to mitigate this uncertainty on when to
exit the ZLB period.

no ZLB ZBL, no OFG 8 9 10 periods OFG
with hand-to-mouth .80 1.63 1.93 3.44 7.03
w/o hand-to-mouth .73 1.13 1.40 2.39 4.54

Table 2: Government spending multiplier for different durations of OFG. The spending shock is normal-
ized to one percent of SS government consumption. For the case without hand-to-mouth agents we use
a shock of smaller size, i.e. σv = .8 to make results comparable and obtain similar baseline impacts on
y and a k∗ = 6.

Lastly, let us now turn to the effects of government spending at the ZLB, and to the
role of OFG for the multiplier. In Table 2 we show the government spending multiplier
together with the initial responses of output and inflation to a negative demand shock.
The multiplier is small and less than one if the ZLB is not binding, a finding that is
independent of the share of hand-to-mouth households. The multiplier is larger than one
if the ZLB binds and increasing considerably when government spending is accompanied
with OFG, whereas longer announced periods of low interest rates increase the multiplier
further. This can be explained by the absence of a crowding-out effect, i.e. the Ricardian
equivalence does not hold at the ZLB. While qualitatively this result is robust to the share
of hand-to-mouth agents, a larger share of the latter also leads to higher multipliers for
the similar reason that these are non-Ricardian agents that to not smooth consumption
over time.

5 Conclusion

In this work we contrast Odyssean Forward Guidance to a monetary policy that
follows the Taylor rule as soon, as the economic recovery allows for an exit from the
zero lower bound. We find that, when facing strong negative demand shocks, the central
bank can improve economic conditions by setting interest rates low for longer. Policy
makers however face two problems. First, committing to a path of low interest rates for
too long might lead to overshooting and create unnecessarily high inflation and overheat
the economy.

Second, the central bank faces a problem of time inconsistency. While promising to
keep rates low for long boosts the economy, this boost might provide the central bank
with the option to switch back to a Taylor rule policy and to increase the interest rate
earlier than announced. We show that while in some scenarios, this switch can push
the economy right back to the zero lower bound, in others, the switch reinstates the

12



Taylor rule policy as in normal times and can potentially prevent an overshooting of the
economy. In the latter case, the central bank has a rationale to renege on its earlier
promise to keep interest rates low for long and the time-inconsistency problem emerges.

For our analyzes we present an analytical solution method for occasionally binding
constraints in linearized difference equations. Due to the nature of analytical methods,
this procedure does not rely on a grid and finds the exact solution for each point in the
state space. We show that the method is numerically robust. We also show that the
rational expectations equilibrium in our benchmark case is unique.

Time inconsistency is of particular relevance because deviating from a once promised
path of interest rates impacts on the central bank credibility. This credibility is paramount
for the functioning of the central bank, and especially so in the time after a severe crisis,
which is the focus of our analysis. In the face of future and potentially large negative
shocks, a credible commitment to forward guidance, untainted by strong incentive to
forego the commitment can be a helpful tool in the toolbox of monetary policy.
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Appendix A Proofs

Appendix A.1 Proof of Lemma 1

Using Equation 24 the function

f(y) = Njy + b
∑

0≤i<j

Ni (A.1)

traces back the trajectory of the k∗ equilibrium. For any k∗ to be the exact number of
periods at the constraint it is necessary that

i) the trajectory was never in the unconstrained region before k = k∗ (Condition 26)

ii) any other k′ for which L(k′,vt) ≥ x̄ is not an equilibrium because their trajectory
already hits the unconstrained region earlier than in period k′ (Condition 27).

Appendix A.2 Proof of Theorem 1

Let us write out the conditions in Lemma 1 in more detail. The equilibrium of k∗ is
unique iff

bL(k∗) ≥ x̄ ∧ bLk<k∗(k∗) > x̄ (A.2)

∧ bL(k∗ + 1) < x̄ ∨ bLk∗(k∗ + 1) > x̄ (A.3)

∧ bL(k∗ + 2) < x̄ ∨ bLk∗(k∗ + 2) > x̄ ∨ bLk∗+1(k∗ + 2) > x̄ (A.4)

∧ bL(k∗ + 3) < x̄ ∨ bLk∗(k∗ + 3) > x̄ ∨ bLk∗+1(k∗ + 3) > x̄ ∨ . . . (A.5)

From here it is clear that the equilibrium is unique if

i) the system is unconstrained after k periods, then it is also unconstrained after k
periods if it is expected to be unconstrained in k + 1 periods,

bL(k) ≥ x̄ =⇒ bLk(k + 1) > x̄ (A.6)

ii) the system is unconstrained in the period it is expected to be unconstrained when
it is already unconstrained one period before

bLk−1(k) ≥ x̄ =⇒ bL(k) > x̄. (A.7)

Compare the difference between the two systems for k = 1. Writing out (9) yields

M1xut + M2vt = P1Etx
u
t+1 + cx (bxxut + bvvt) (A.8)

Mxxut + Mvvt = vut+1 + cv (bxxut + bvvt) , (A.9)

for the unconstrained xut and setting xut+1 = Ωvut+1 enables to rewrite

(M1 −P1ΩMx) xut + (M2 −P1ΩMv) vt = (cx −P1Ωcv) (bxxut + bvvt) . (A.10)

Repeat the same under the assumption that yt is constrained. and again set xct+1 =
Ωvct+1 in order to get

(M1 −P1ΩMx) xct + (M1 −P1ΩMv) vt = (cx −P1Ωcv) x̄. (A.11)
14



Combine Equations A.10 and A.11 and pre-multiply by b to obtain

bxxct = bxxut + ψ (bxxut + bvvt − x̄)︸ ︷︷ ︸
>0 iff yt unconstrained

(A.12)

with ψ = bx (M1 −P1ΩMx)
−1

(cx −P1Ωcv) being a scalar. If ψ > 0 as stated in the
theorem, then condition i. holds. Since the result implies as well that the constrained
system is also moving further away from the constraint than the unconstrained system,
condition ii. also holds. Additionally this ensures the existence of a solution.

Appendix B Implementation of method

def S(k, v): # implement solution here

return (N**-k)[:m,:m].dot(...

def L(k, v): # define the function L(k)v + l(k)

...

def F(v): # the actual algorithm

k = 0

while b.dot(L(k, v)) - x_bar < 0:

k +=1

print ’Periods until unconstrained: ’, k

return S(k, v)

N, b, x_bar, ... = ... # give values to vectors and matrices

v = ... # define the vector of state variables

x = F(v)

print ’Solution vector of endogenous variables: ’, x

Figure B.3: Python-like code for the main solution method.

Appendix C Writing the model in matrix form

With xt =

[
πt
yt

]
and vt =

[
vπt
vyt

]
we can transfer this nicely into matrix notation by

M1xt =PEtxt−1 + vt, (C.1)

Rvt =vt+1 + εt, (C.2)
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and then the system matrices are given by

M =

[
M1 I
0 R

]
, N =

[
M1 I
0 R

]−1 [
P 0
0 I

]
, and c =

[
cx
0

]
.5 (C.3)

The constraint for being in the system

[
xt
vt

]
= NEt

[
xt+1

vt+1

]
is that b

[
xt
vt

]
− x̄ < 0 where

b =
[
1 0 0 0

]
and x̄ = ī. Convince yourself that the condition in the theorem is

satisfied.

Appendix D Derivation of the models equation

Appendix D.1 Households

As stated in the main text, both types of households maximize the following life-time
utility function

Ut = E0

∞∑
t=0

βteVt

(
log(Ct)−

N1+ψ
t

1 + ψ

)
We assume that Co = Cr = C and No = Nr = N hold in steady state. The budget
constraint of optimizing households is

PtC
o
t +Bot+1 = Bot (1 +Rt) +WtN

o
t + Tt.

The linearized first order conditions of the optimizing household are the Euler Equation
for its consumption, and the optimal labor supply.

Ĉot = Et[Ĉ
o
t+1]− [(Rt+1 −R)− πt+1 + Vt+1 − Vt] (D.1)

Ŵt = Ĉot + ψN̂o
t . (D.2)

The budget constraint of hand-to-mouth households is

PtC
r
t = WtN

r
t ,

and the first order conditions of the hand-to-mouth household are

Ĉrt = Ŵt + N̂r
t , (D.3)

Ŵt = Ĉrt + ψN̂r
t . (D.4)

A direct implications of the latter equations is, that the labor supply of hand-to-mouth
consumers is constant (i.e. N̂r

t ), and it holds that Ĉrt = Ŵt. Aggregating consumption
and labor hours of the two household type yields

Ĉ = λĈrt + (1− λ)Ĉot , (D.5)

N̂ = λN̂r
t + (1− λ)N̂o

t = (1− λ)N̂o
t . (D.6)

5For completeness, M1 =

[
1 −κ
0 1

]
, P =

[
β 0
1 1

]
, R =

[
1/ρπ 0

0 1/ρy

]
and cx =

[
0
−1

]
.
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The labor supply equations of both household types share can be aggregated to yield

Ŵt = Ĉt + ψN̂t. (D.7)

Appendix D.2 Firms

Firms are monopolistic competitors. The production function of firm i is simply:
Yt(i) = Nt(i). As firms face nominal rigidities as developed by (Calvo, 1983b), the
known New Keynesian Phillips Curve (NKPC) emerges

π̂t = βEt[π̂t+1] + κM̂Ct. (D.8)

Given the simple production function and the labor supply of households, one can rewrite
the NKPC as:

π̂t = βEt[π̂t+1] + κ
(
Ĉt + ψN̂t

)
. (D.9)

The linearized good market clearing condition is

Ŷt = (1− g)Ĉt + gĜt (D.10)

implies that one can write the NKPC in the following way

πt = βEtπt+1 + κ

((
1

1− g + ψ

)
Ŷt −

g

1− g Ĝt
)
. (D.11)

Appendix D.3 Further equations and simplifications

So far our full set of equilbrium equations is:

Ĉot = Et[Ĉ
o
t+1]− [(Rt+1 −R)− πt+1 + Vt+1 − Vt], (D.12)

Ŵt = Ĉt + ψN̂t (D.13)

Ĉrt = Ŵt, (D.14)

Ĉ = λĈrt + (1− λ)Ĉot , (D.15)

N̂ = (1− λ)N̂o
t (D.16)

πt = βEtπt+1 + κ

((
1

1− g + ψ

)
Ŷt −

g

1− g Ĝt
)
, (D.17)

Ŷt = N̂t (D.18)

Ŷt = (1− g)Ĉt + gĜt (D.19)

Rt+1 = max

{
0, ρRRt + (1− ρR)

(
R+

φ1

β
πt +

φ2

β
Ŷt

)}
(D.20)

Ĝt = ρgĜt−1 + εgt (D.21)

V̂t = ρgV̂t−1 + εvt (D.22)
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Replacing N̂o
t with 1

1−λN̂t, N̂t with Ŷt, and Ĉrt with Wt yields:

Ĉot = Et[Ĉ
o
t+1]− [(Rt+1 −R)− πt+1 + Vt+1 − Vt], (D.23)

Ŵt = Ĉt + ψŶt (D.24)

Ĉt = λŴt + (1− λ)Ĉot , (D.25)

πt = βEtπt+1 + κ

((
1

1− g + ψ

)
Ŷt −

g

1− g Ĝt
)
, (D.26)

Ŷt = (1− g)Ĉt + gĜt (D.27)

Rt+1 = max

{
0, ρRRt + (1− ρR)

(
R+

φ1

β
πt +

φ2

β
Ŷt

)}
(D.28)

Ĝt = ρgĜt−1 + εgt (D.29)

V̂t = ρgV̂t−1 + εvt (D.30)

Plugging (24) in (25) yields

Ĉt = λ
(
Ĉt + ψŶt

)
+ (1− λ)Ĉot (D.31)

or

Ĉot = Ĉt −
λψ

(1− λ)
Ŷt (D.32)

Thus (31) can be written as:

(Ĉt −
λψ

(1− λ)
Ŷt) = Et[Ĉt+1 −

λψ

(1− λ)
Ŷt+1]− [(Rt+1 −R)− πt+1 + Vt+1 − Vt], (D.33)

(D.34)

Lastly, one plug the aggregate good market clearing condition into the Euler Equation
for consumption and multipy both sides of the equation with (1− g) to obtain

(Ŷt − gĜt −
λψ(1− g)

(1− λ)
Ŷt) = Et[Ŷt+1 − gĜt+1 −

λψ(1− g)

(1− λ)
Ŷt+1]− (1− g)[(Rt+1 −R)− πt+1 + Vt+1 − Vt],

(D.35)

(D.36)

Rearranging the equation yields.

ΘŶt − gĜt = Et[ΘŶt+1 − gĜt+1]− (1− g)[(Rt+1 −R)− πt+1 + Vt+1 − Vt] (D.37)
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with Θ =
(

1− λψ(1−g)
(1−λ)

)
. Alternatively

Ŷt −
g

Θ
Ĝt = Et[Ŷt+1 −

g

Θ
Ĝt+1]− (1− g)

Θ
[(Rt+1 −R)− πt+1 + Vt+1 − Vt] (D.38)

Thus, our final set of equation in the Variables (Yt, Rt, πt, Ĝt, V̂t)reads:

Ŷt −
g

Θ
Ĝt = Et[Ŷt+1 −

g

Θ
Ĝt+1]− (1− g)

Θ
[(Rt+1 −R)− πt+1 + Vt+1 − Vt] (D.39)

πt = βEtπt+1 + κ

((
1

1− g + ψ

)
Ŷt −

g

1− g Ĝt
)
, (D.40)

Rt+1 = max

{
0, ρRRt + (1− ρR)

(
R+

φ1

β
πt +

φ2

β
Ŷt

)}
(D.41)

Ĝt = ρgĜt−1 + εgt (D.42)

V̂t = ρgV̂t−1 + εvt (D.43)
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