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Abstract

Nonlinear, non-Gaussian state space models have found wide applications in
many areas. Since such models usually do not allow for an analytical representa-
tion of their likelihood function, sequential Monte Carlo or particle filter methods
are mostly applied to estimate their parameters. Since such stochastic approxima-
tions lead to non-smooth likelihood functions, finding the best-fitting parameters of
a model is a non-trivial task. In this paper, we compare recently proposed itera-
tive filtering algorithms developed for this purpose with simpler online filters and
more traditional methods of inference. We use a highly nonlinear class of Markov-
switching models, the so called Markov-switching multifractal model (MSM), as
our workhorse in the comparison of different optimisation routines. Besides the
well-established univariate discrete-time MSM, we introduce univariate and mul-
tivariate continuous-time versions of MSM. Monte Carlo simulation experiments
indicate that across a variety of MSM specifications, the classical Nelder-Mead or
simplex algorithm appears still as more efficient and robust compared to a number
of online and iterated filters. A very close competitor is the iterated filter recently
proposed by Ionides et al. (2006) while other alternatives are mostly dominated by
these two algorithms. An empirical application of both discrete and continuous-time
MSM to seven financial time series shows that both models dominate GARCH and
FIGARCH models in terms of in-sample goodness-of-fit. Out-of-sample forecast
comparisons show in the majority of cases a clear dominance of the continuous-time
MSM under a mean absolute error criterion, and less conclusive results under a
mean squared error criterion.
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1 Introduction

State space models have found wide applications in many areas (e.g. Zeng and Wu, 2013;
Chen, 2015). Estimating parameters of such models is straightforward if both the hidden
(or latent) state variable and the observation follow linear, Gaussian processes. In this
case, the time-honored Kalman filter provides the most efficient algorithm for statisti-
cal inference (Kalman, 1960). If one or both of the processes governing the state and
observation obey some nonlinear, non-Gaussian law of motion, matters tend to become
more complicated. Early literature has concentrated mostly on developing extensions
or approximations of the Kalman filter method (c.f. Grewal and Andrews, 2008). More
recently, the availability of versatile hard- and software has shifted the focus towards
the development of simulation-based methods of inference. The perhaps most seminal
development in this area has been the invention of the so-called particle filter by Gor-
don et al. (1993) and Kitagawa (1996). The particle filter has found many applications
in diverse areas, and provides a straightforward avenue for filtering information on the
hidden variables. It can also be applied to approximate numerically the likelihood as an
input to statistical inference. The main practical obstacle here is the point-wise nature
of the approximation of various densities obtained by a particle filter. This point-wise
approximation leads to an optimization problem with a non-smooth objective function
for which the usual derivative-based optimization routines are not applicable. Malik and
Pitt (2011) have proposed a transformation of the filtering density in order to establish
a smooth approximation to the likelihood. However, their approach is restricted to uni-
variate state spaces and is also not applicable to certain classes of models for which there
is an inherent lack of smoothness of the state evolution itself (cf. Lux, 2017). Hence,
in most applications one would have to confront the task of finding the maximum of a
non-smooth, rugged objective function for parameter inference in a nonlinear state space
setting.

There exist various time-honored methods for optimization of non-smooth functions
that indeed have already been used for state-space models, e.g., the Nelder-Mead or sim-
plex method (Calvet et al., 2006; Liu and Lux, 2015) or simulated annealing (Fernández-
Villaverde and Rubio-Ramirez, 2007). Besides these classical all-purpose optimization
routines, some methods specifically tailored towards nonlinear state-space models have
been developed in recent literature. Two methods denoted Iterated Filtering have been
introduced by Ionides et al. (2006, 2011, 2015) and applied to ecological, epidemiological
and financial models by King et al. (2008), Bhadra et al. (2011), He et al. (2010) and
Bretó (2014).

The two available versions of this approach could both be demonstrated to converge to
the maximum likelihood estimate of the underlying model under very mild conditions on
the structure of the state space model. Both of these approaches are based upon earlier
versions of online filtering algorithms that attempt to identify parameters via some sort
of evolutionary dynamic selection executed in just one sweep through the data, but the
new algorithms perform this optimization repeatedly.

Given these new methods and the simpler online estimators they have been inspired
by, the applied researcher now has indeed a portfolio of numerical optimization schemes
to choose from. Unfortunately, hardly any guidance exists so far on the relative strengths
and weaknesses of different approaches. Even for single methods, not much evidence on
the quality of the estimates they deliver is available. In order to shed light on the relative
performance of different methods, we have conducted a series of Monte Carlo experiments
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on which we report in this paper. Our basic interest here is in the performance of the
novel iterated filtering approaches vis-à-vis more traditional optimizers. To this end we
have compared the efficiency of these algorithms and their computational demands with
a baseline Nelder-Mead approach using different specifications of the former. We also
pursue the question whether the iterations of the underlying filtering operations are really
adding precision, or whether a baseline online algorithm executed just once, but with more
computational effort (more particles) would achieve the same goal.

Our workhorses in the present paper are various versions of the so-called Markov-
Switching Multifractal Model (MSM) introduced by Calvet and Fisher (2001) which is
based upon Mandelbrot’s (1974) formalism for turbulent flows, but adapted to the setting
of asset returns in financial markets. MSM is a parsimoniously parameterized framework
that allows for a large number of states of the unobserved variable (which in the applica-
tions of this model is financial volatility). It is also highly nonlinear since the volatility
dynamics is modelled as a multiplicative, hierarchically structured process. MSM has
been widely applied in finance recently and has mostly been found to improve upon the
performance of the standard toolbox of GARCH-type models that conceive the volatility
dynamics as a linear process (Calvet and Fisher, 2004; Calvet et al., 2017; Lux et al.,
2014; among others, and Lux and Segnon, 2018, for a survey of this literature). We
will consider both the univariate discrete MSM of Calvet and Fisher (2004) as well as
the continuous-time version of Calvet and Fisher (2001) and multivariate versions of the
later. While for the discrete model, we can compare the performance of numerical ap-
proximations to that of full analytical maximum likelihood, no analytical solutions are
available for the continuous-time versions. Our results will, therefore, also demonstrate
that continuous MSM models can be estimated more or less as efficiently as their discrete
counterparts, even in the multivariate case. This is important because continuous-time
models are preferred in financial engineering.

The rest of this paper will consist of the following parts: Section 2 will introduce
the models, sec. 3 provides an overview over the estimation methods, and sec. 4 presents
the results of the Monte Carlo simulations. Sec. 5 provides an application to a sample of
seven important time series of financial returns. An out-of-sample forecasting competition
shows that the continuous MSM model dominates alternatives from the GARCH and
FIGARCH family in five out of seven cases for most forecasting horizons under the mean
absolute error criterion. Under a mean squared error criterion results for short horizons
are mostly inconclusive (i.e., a number of models provides sensible forecasts and none
of those can be clearly outperformed by other competitors), but the multifractal models
often turn out to provide superior forecasts over longer horizons. A comparison of different
estimators confirms the insights of the proceeding Monte Carlo studies. Sec. 6 finally
provides concluding remarks.

2 Markov-Switching Multifractal Models

Multifractal models date back to Mandelbrot’s (1974) work on cascades of energy flux
in statistical physics. The very same combinatorial approach has been proposed and
brought to fruition as a model of asset volatility twenty-five years later by Mandelbrot
et al. (1997), which meanwhile has spawned a sizable new strand of literature in financial
econometrics. Calvet and Fisher (2001) were the first to propose an iterative, causal
version of the multifractal model that overcomes the cumbersome combinatorial nature of
the original framework. Calvet and Fisher (2004) were the first to estimate a discrete-time
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version of the MSM model using standard econometric techniques.
The univariate, discrete-time MSM models asset returns, rt as

rt = σ

(

k
∏

i=1

M
(i)
t

)1/2

ut (1)

with ut following a standard Normal distribution, and σ being a constant scale factor. M
(i)
t

are volatility factors of different average lifetimes that taken together define a Markov-
switching process with 2k states. Available studies have considered values of k around 8 so
that the number of states of this model by far exceeds the numbers usually considered in
baseline Markov-switching models. The interesting dynamics of the MSM models stems
from the fact that the volatility components M

(i)
t are all renewed or preserved at any

time t with different probabilities γi and 1 − γi. A very convenient way to allow for a
large spectrum of heterogeneous mean life times is the following formulation of renewal
probabilities

γi = 2−(k−i), (2)

which actually corresponds almost exactly to the frequency of changes of multipliers in the
original Mandelbrot (1974) framework. The multipliers M

(i)
t themselves can be assumed

to be drawn from a discrete or continuous distribution. The simplest case here is a
Binomial distribution with parameters {m0, 2 −m0} that also implies the normalization

E[M
(i)
t ] = 1 ∀i, t. Other possibilities have been explored and results have been found to

differ only little across specifications (cf. Lux, 2008).
The discrete-time MSM can be estimated by full analytical maximum likelihood (cf.

Calvet and Fisher, 2004) so that the efficiency of various numerical approximations to
the likelihood function and optimization algorithms can be compared to this benchmark.
It is worthwhile to mention that despite the availability of analytical ML for this model,
numerical methods could still be of value as well. Namely, when k increases, the com-
putational demands of the analytical approach are increasing tremendously, and it would
be necessary to apply numerical approximations at some point for which the acceptable
computational effort could be chosen via some of their parameters.

In continuous-time MSM, renewals do not occur at fixed points in time, but are
modeled via Poisson processes determining the change points of all multipliers Mt(i).
Hence, the γi defined in eq. (2) would now be the parameters of Poisson processes obeyed
by each of the volatility components, and returns could not only be computed over unit
time intervals (as in eq. 1), but over any frequency. We assume nevertheless that discrete
observations of this continuous-time process would be available at equidistant time points
with unitary length. Formally, the continuous-time univariate MSM can be written as a
diffusion process switching between 2k states identified by their respective diffusion terms:

dpt = σ(st)dwt (3)

with pt denoting the log financial price, wt standard Brownian motion, σ(·) = σi if st = i

(i = 1, 2, . . . , 2k) and st a continuous-time Markov chain governed by an infinitesimal
matrix Q with intensities qij whose structure obeys the multifractal principle outlined
above (formalized in eq. 2).

As an example, with k = 2, and a Binomial distribution of volatility components with
parameters m0 and 2−m0, we obtain 22 = 4 states: m0m0, (2−m0)m0, m0(2−m0) and
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(2−m0)(2−m0) with intensity matrix

Qk=2 =









−(γ1 + γ2) γ1 γ2 0
γ1 −(γ1 + γ2) 0 γ2
γ2 0 −(γ1 + γ2) γ1
0 γ2 γ1 −(γ1 + γ2)









. (4)

For higher k, we can similarly derive the intensity matrix which would become more and
more sparse because in continuous-time processes, at most one of the volatility components
would change during an infinitesimal time step.

It is worthwhile to note that we can perform exact simulations of this process using
the celebrated Gillespie algorithm (Gillespie, 1977) to not confound approximation errors
of the underlying process with estimation uncertainty. The only attempt at estimating
the parameters of the Poisson MSM in extant literature is by Leövey (2015) who has
estimated this model via a simulated method of moments algorithm based upon the
algorithm proposed by Lux (2008) for the discrete-time version.

Multivariate MSM models have so far only been used in the form of discrete-time
processes (Calvet et al., 2006; Liu and Lux, 2015, 2017). Here we add a continuous-
time bivariate and trivariate version to the multifractal zoo. To arrive at a parsimonious
parametrization, we take our inspiration from Liu and Lux (2015). Their idea is to gener-
ate comovements in the volatility of different assets by assuming that they have a number
of low frequency volatility components in common while their higher frequency compo-
nents might be independent of each other. The motivation of their assumption is that
long-term trends in volatility could be determined by economy-wide macroeconomic fluc-
tuations while short-term fluctuations might have idiosyncratic sources. In the bivariate
case, the overall volatility process g(Mq,t) of any of two assets q = 1, 2 is then given by

g(Mq,t) =

k1
∏

i=1

M
(i)
t

k
∏

j=k1+1

M
(j)
q,t (5)

with the low-frequency components 1, . . . k1 being the same for both assets, and the high
frequency ones k1+1, . . . k being distinct and determined independently. We again assume
that at all levels the renewal processes are driven by Poisson processes with parameters
γi.

The bivariate continuous-time MSM would then formally be described by a bivariate
switching diffusion between all common and idiosyncratic states, i.e.

dp1 =σ(st, u1,t)dw1 (6)

dp2 =σ(st, u2,t)dw2 (7)

with st = i (i = 1, 2, . . . 2k1) determining the realization of the first part of the product on
the left-hand side of eq. (5), and uq,t = l (l = 1, 2, . . . 2k−k1) determining the realization
of the second part, independently for q = 1 and q = 2, but with the same probabilities
of renewal. w1 and w2 denote a bivariate Brownian motion with covariance matrix Σ
that contributes three parameters, say σ1, σ2 and ρ, to our estimation problem. We
again assume that the distribution of the volatility components is Binomial, with possibly
different parameter values {m1, 2−m1} and {m2, 2−m2} for the two individual diffusions
within the bivariate model. The extension of this setup to the trivariate case and beyond
is straightforward: We only have to increase the number of assets from q = 2 to q = 3
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or more preserving a number of k1 common components and k − k1 independent ones.
A trivariate continuous-time MSM would have a total of nine parameters: The three
Binomial parameters (say, m1, m2 and m3) and the six entries of their variance-covariance
matrix.

Fig. 1 provides an illustration of the evolution of returns of two synthetic assets fol-
lowing a continuous-time bivariate Poisson MSM with parameters m1 = 1.4, m2 = 1.6,
k = 10, k1 = 5 and covariance matrix of the innovations with σ1 = σ2 = 1 and ρ = 0.4. We
observe a certain co-movement in the volatility outbursts in agreement with the stylized
facts of financial data (e.g., Forbes and Rigobon, 2002).

In the simulation of this bivariate model, we have again assumed that the k multipliers
follow Poisson transition rates γi according to eq. (2). We could also have adopted the
more complex dependency structure of the discrete bivariate MSM of Calvet et al. (2006)
to the continuous-time case. For the sake of parsimonious parametrization, the simpler
specification (which can be seen as a special case of Calvet et al.’s) is preferred.

Figure 1: Realization of a bivariate continuous-time MSM process as a model of asset
returns. Parameters are given in the main text.
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3 Methods

Our basic goal is to compare different estimators of the parameters of the above multi-
fractal processes in terms of their efficiency and computational demands. In the center
of interest is the comparison between a statistical all-purpose optimization routine, the
Nelder-Mead or simplex algorithm, and the more recently proposed iterative filtering ap-
proaches. Both alternatives attempt to find the parameters maximizing the likelihood,
although the iterative filtering approaches pursue this goal in an unconventional manner.
We also explore whether iterating the filtering operations really adds value. To do so we
compare the iterated filtering algorithms with their online (one-time filtering) counter-
parts. Applying the filter only once, of course, saves on computation time which could be
used to invest in the precision of the filter. Such an investment would consist in an in-
crease of the number of particles used for the point-wise approximation of the conditional
densities entering the likelihood. We will, thus, compare iterated filtering with a moderate
number of particles to one-time filtering using a much larger number of particles.

In more detail, the methods applied in our Monte Carlo experiments are the following:

1. The Nelder-Mead or simplex approach is used to find the maximum of the likelihood
function. The likelihood function itself will be approximated by a particle filter
which leads to a lack of smoothness of the likelihood function because of simulation
noise. We abstain from a presentation of the details of the Nelder-Mead algorithm
which are available in every textbook on numerical optimization (e.g., Chong and
Zak, 2011). We only note that we have used the following, relatively standard
parametrization: reflection: 2.0, expansion: 1.0, contraction: 0.5, shrinkage: 0.5.
Since the numerical approximation of the likelihood is non-smooth, we have always
started the optimization with a small grid search for good initial values of the
simplex algorithm. To this end, we have varied the crucial parameter m0 (or m1,
m2 and m3 in the bivariate and trivariate cases) over the interval 1.1, . . . 1.9 with 9
equidistant steps, which in the bivariate case leads to 81 initial evaluations (729 in
the trivariate case). Initial values of the parameters of the Brownian motions have
been set equal to the standard deviation of the empirical series, and the off-diagonal
entries of Σ in the bivariate and trivariate case equal to the sample correlations.

2. Iterated filtering I (IF I) follows the algorithm proposed in Ionides et al. (2006) for
which further theoretical background was provided in Ionides et al. (2011). Both
this method and the subsequent Iterated filtering II of Ionides et al. (2011) have
been implemented in the R package pomp (King et al., 2016). We have, however,
not used their software as it would probably have confronted us with limitations of
computational speed that would not have allowed to conduct the present range of
simulations. We have rather encoded independently all the numerical algorithms
used in this paper in C.

Both IF I and IF II add the parameters to the hidden state variables of the problem
(here: the asset price volatility) which are then subjected to a filtering operation
alongside with the state variables. In more detail, the methods perform the following
operations:

Let θ be the vector of parameters, M the number of iterations of the filter and T

the length of the underlying time series. IF 1 then performs the following steps:
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Algorithm: Iterated Filtering I

1. Select starting values θ0.

2. For iterations m = 1, . . . ,M perform the following steps:

2.1. Perturb parameters at the beginning of each loop creating an initial pa-
rameter swarm with elements θ

(i)
0,m, link each vector of particles for the

parameters with another set of particles for the hidden variables, x
(i)
0,m,

drawn from their unconditional distributions.

2.2. For one filtering operation over the t = 1, . . . , T realizations of the data
perform the following steps:

2.2.1. Iterate the particles for the hidden variables from t−1 to t according to
their law of motion and perturb parameters obtaining a new parameter
swarm θt,m.

2.2.2. Use the particle filter to obtain an approximation of the conditional
density f(x

(i)
t+1,m|x

(i)
t,m, θ

(i)
t,m) with i = 1, . . . I the elements of the swarm

of particles.

2.2.3. Resample the particles for the hidden variables and parameters using
multinomial draws based on their relative likelihoods.

2.2.4. Compute the filtering mean and variance of the parameters by reweight-
ing them with their relative likelihood.

2.2.5. Update step-wise the parameters by setting

θm = θm−1 + V1,m

T
∑

t=1

V −1
t,m(θt,m − θt−1,m). (8)

In the last step θm is the starting value of the filtering process at iteration m, θt,m is
the weighted average of the resampled parameter particles as computed in step 2.2.4,
Vt,m is the prediction variance of the swarm of particles, and V1,m is the variance of
the swarm upon initialization at the beginning of iteration m in step 2.1. (cf. King
et al., 2016, Algorithm 3, for more details).

While one of the virtues of this and the following IF 2 is seen in its relatively broad
applicability without the need of any tayloring for particular applications (‘plug and
play’), a number of parameters has, nevertheless, to be set by the user. First, con-
vergence to the maximum likelihood estimator requires a decrease of the variability
of the innovations to the parameter particles. Following Ionides et al. (2006, 2011)
we used Normally distributed innovations multiplied by a factor rm ·D where rm is
geometrically decaying from 0.1 to 0.01 over 100 iterations and D is the predefined
range of the relevant parameters. This number is chosen equal to the admissible
range of those parameters that are bounded by their nature (m0, m1, m2, ρ) and
was chosen large equal to 5 for those without natural upper boundaries (σ, σ1, σ2).
The initial perturbation in each iteration was multiplied by a factor 20 to achieve
sufficient variability as recommended by Ionides et al. (2006). Variances V1,m and
Vt,m in eq. (8) were defined as univariate variances separately for each parameter.
A vectorized version of this updating equation exhibited severe convergence prob-
lems and was, therefore, not pursued further. As an alternative to eq. (8) we also
used simple averaging: θm = 1

T

∑

t θt,m−1. Initial values were either drawn randomly
from the support of the pertinent parameters (restricted to [0, 5] for the variances).
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Alternatively, σ in the univariate case, and all entries of the covariance matrix of
the Brownian motions in the bivariate and trivariate cases were chosen initially as
equal to their sample counterparts as with the Nelder-Mead approach.

We now move on to the more recently proposed second version of iterated filtering of
Ionides et al. (2015):

Algorithm: Iterated Filtering II

1. Create an initial parameter swarm.

2. For iterations m = 1, . . .M perform the following steps:

2.1. Perturb the elements of the swarm of particles at the beginning of each loop and
link each vector from the set of particles, θ

(i)
0,m, with another vector of particles

for the hidden variables, x
(i)
0,m drawn from their stationary distribution.

2.2. For one filtering operation over the t = 1, . . . T realizations of the data perform
the following steps:

2.2.1. Iterate the particles for the hidden variables from t − 1 to t and perturb
the particles for the parameters,

2.2.2. Use the particle filter to obtain I approximations of the conditional density,
f(x

(i)
t+1,m|x

(i)
t,m, θ

(i)
t,m),

2.2.3. Resample the vector of particles for parameters and hidden variables using
multinomial draws based on their relative likelihood,

2.2.4. At the end of each iteration, the current swarm of particles of the parame-
ters, θ

(i)
T,m, is simply used as the initial swarm θ

(i)
0,m+1 of the next iteration.

Iterated filtering II is somewhat simpler in structure than IF I as the initial particle
swarm is just subjected to M · T (iterations times length of time series) filtering and
resample operations without the need to compute sample statistics as in steps 2.2.4 and
2.2.5 of IF I. The decisions to be made by the users are essentially the same as with IF I.
First, the initial distribution has to be determined for the initialization of the particles for
the parameters, and the distributions for the perturbations have to be determined. In our
application, both the same initialization and the same distributions of the disturbances
have been chosen in our implementations of IF I and IF II. Again, the same decay factor
was used for the variance of disturbances in IF II. In contrast to IF I, however, no blow-
up of their variance at the start of each iteration, i.e. for θ0,m is required, but the new

initialization is simply defined as θ
(i)
0,m = θ

(i)
T,m−1.

It is worthwhile to note that when setting M = 1, iterated filtering nests well-known
online estimation algorithms as special case. In particular, IF I is close to a repeated ap-
plication of the well known Liu-West filter (Liu and West, 2001) while IF II is an iterated
version of the bootstrap filter proposed by Rios and Lopes (2013).
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Figure 2: Illustration of iterative estimation via a repeated application of the same filtering
algorithm over M = 400 iterations. The present case shows an application of IF 1 to the
univariate discrete-time MSM with parameters m0 = 1.2 and σ = 1.
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4 Results of Monte Carlo simulations

4.1 Univariate discrete-time MSM

For the univariate MF model with predetermined transition probabilities as defined in eq.
(2), the parameter set consists of the parameter m0 of the Binomial distribution of the
volatility components, and the scale factor σ. In the Monte Carlo simulations reported
in Table 1, we have set k = 8, i.e. we consider a Markov-switching model with 28 = 256
different states. In this and all subsequent cases we report the results of 100 Monte
Carlo simulations using the same underlying simulated time series for all the estimation
methods that we compare. Results are depicted by the mean, finite sample standard error
(FSSE) and root-mean squared error (RMSE) across the 100 replications of each type of
computational experiment. Discrete MSM models are amenable to maximum likelihood
estimation so that we can establish a clear benchmark for this case. The first panel of
Table 1 shows results for baseline ML estimation together with the pertinent statistics
for Simulated Maximum Likelihood (SML) based on an approximation of the likelihood
function using the particle filter for which we have attempted to find the maximum of the
likelihood function via the Nelder-Mead or simplex algorithm. The underlying simulated
time series had length T = 1, 000, and the number of particles has been B = 1, 000 and
B = 2, 000. We see that the numerical approximation gets on average very close to the
results based on the exact analytical likelihood. Indeed, for B = 2, 000, the accuracy of the
estimates of the Binomial parameter m0 is practically the same for ML and SML, and the
accuracy of the estimates of σ is only slightly inferior with SML. Computationally, ML is
much more efficient than simulated maximum likelihood in this case, but this relationship
might change with increasing k.

One also notes that the gain from doubling the number of particles is tiny, while the
computation time increases more than proportionally.1 The later feature is mainly due to
the multinomial sampling steps that have computational demands increasing more than
proportionally with the number of particles. The remaining parts of the algorithms are,
in contrast, all practically linear in computation time versus number of particles. It is
also worthwhile to point out, that the disappointingly small increase of precision when
moving from B = 1, 000 to B = 2, 000 is in no way cumbersome. Attainable precision is
mainly determined by the amount of available data which is the same (T = 1, 000) in all
simulations reported in Table 1. For T constant, increasing only B need not necessarily
lead to large improvements. It is known that a central limit theorem applies to the
approximations of the likelihood when the number of particles goes to infinity (cf. Kantas
et al., 2015), but one would certainly not expect better estimation results from SML than
ML. Hence, the asymptotic limit appears to be almost reached already at B = 2, 000
particles in the present case.

Moving on to alternative estimators, we first consider online estimators that provide
parameter inference after only one sweep through the data (i.e., setting M = 1 in iterated
filtering algorithms). These are denoted Filter 1 and Filter 2 (the later identical to the
bootstrap filter proposed by Rios and Lopes, 2013). An even simpler approach is the
so-called ‘self-organizing state space model’ (SOSM) proposed by Kitagawa (1998). In
contrast to the other filters, SOSM does not perturb the vectors of particles for the

1 Computation time refers to computations on Intel Xeon processors E5645 with 2.40 GHz. Some
additional runs with AMD EPYC 7281 processors with 2.10 GHz showed a saving of computation
time between 25 and 50 percent.
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parameters, but just works via selection of the better fitting ones. We apply all three
algorithms to our sample of 100 test series using 2, 000, 10, 000, 20, 000, and 50, 000
particles. Surprisingly, the least sophisticated algorithm, SOSM, seems the clear winner
of this competition. At B = 20, 000 it reaches the efficiency of SML (with B = 1, 000)
and at B = 50, 000 it reaches SML (with B = 2, 000). While there is only one iteration
in SOSM compared to more than 100 in SML (the maximum number of iterations of the
simplex imposed in our application), the larger number of particles comes with such a
heavy computational burden that SML appears nevertheless computationally cheaper for
a given level of accuracy.

As concerns the bootstrap filter and Filter 1 the computational demands of the more
sophisticated algorithms are only very slightly higher than those of SOSM. However, both
are almost uniformly inferior. Filter 1 remains much behind the other two in terms of
precision of m0 (arguably the more important parameter). The bootstrap filter (Filter
2) performs better than SOSM with B = 2, 000 but with higher number of particles falls
back behind the latter. Indeed, at least for parameter m0, the bootstrap and Filter 1
variants show practically no increase in accuracy between B = 2, 000 and B = 20, 000
and even a deterioration for B = 50, 000.

The obvious next question is whether iterating the filtering operations helps to improve
results. To shed light on the performance of the non-degenerate Iterated Filters 1 and 2,
we have executed those over up to M = 400 iterations. We always find that the built-
in decline of the variance of the disturbances guarantees convergence of the estimates at
some point beyond about 100 and 200 iterations. As can be seen in the examples of Fig. 2,
the estimates might undergo relatively wild variation initially. If the final estimates were
more precise, M = 1 would, of course, not be a good choice, and we should expect a
dismal performance of the online versions considered before.

We start with IF 2 or the Iterated Bootstrap Algorithm. As can be seen from the
table, iterating helps and even with B = 1, 000 generates better results than the online
version with any number of parameters. Moving on to B = 2, 000 provides a further
improvement. The table shows estimates obtained after 100, 200, 300 and 400 rounds
with practically no change happening any more beyond M = 200. At M = 100, we
end up at a precision using B = 2, 000 that ranges somewhere between that of the SML
algorithm with 1, 000 and 2, 000 particles. Since computation time is linear in M , this
precision costs about 290 seconds of computation time which is also in the range between
the two implementations of SML. Hence, the performance of both methods in terms of
efficiency and cost is about the same.

Moving finally on to IF 1, we have considered various versions of the later. First, the
baseline version (plainly denoted IF 1 in Table 1) does not perform well. It is obviously
inferior to IF 2. Our first modification consisted in replacing the original adjustment
of the parameters according to eq. (8) by a simple averaging over the time dimension:
θm = 1

T

∑

t θt,m−1. The reason is that we conjectured that the numerical derivatives in
eq. (8) can lead to instabilities. Indeed, when using eq. (8) not as single equation for each
element of the vector of parameters (i.e. estimating Vt,m as the full variance-covariance
matrix over all parameters, and not as a diagonal matrix), we often observed explosive
instabilities. As it turns out, ”Iterated Filtering 1 with averaging” indeed performs better,
with results only slightly behind those of IF 2. The outcome of another subtle change is
shown in the remainder of Table 1. Another conjecture for the initial poor performance
of IF 1 could be that with uniform draws of initial parameter estimates from [1, 2] for
m0 and [0, 5] for σ a large deviation of particularly the initial value of the scale factor
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from its ‘true’ value might be hard to overcome. This problem is more severe for IF 1 as
it starts with a specific initial value which is subsequently transformed into a swarm via
stochastic perturbations, while IF 2 starts immediately with an entire swarm. One could
argue that the large variance of the initialization of the disturbances should provide a
strong randomization force but still the Normal perturbations could have as their mean a
value potentially far from the true one. We, thus, also experimented with an initialization
using the empirical standard deviation of the data which is a plausible a priori estimate.
Results for IF 1 in its original form indeed improve tremendously and are getting close
to those of the SML estimates with B = 2, 000. Indeed, practically the same precision
was obtained for this version with B = 1, 000 and B = 2, 000. Using M = 100 would
lead to an average cost of about 90 seconds for this version with B = 1, 000 so that it
would appear more cost-efficient than SML. For “IF 1 with averaging”, in contrast, no
improvements could be obtained with fixing the initial value of σ in this way.

In conclusion, we find that Iterated Filtering 2 attains about the same profile of ac-
curacy and computational cost as SML with Nelder-Mead optimization. IF 1 can be
somewhat more efficient, but its superiority hinges on specific details of its implementa-
tion.

4.2 Univariate continuous-time MSM

The results of the previous section are confirmed to a large part by our experiments with
the continuous-time univariate MSM. For variation, we have chosen a higher multifractal
parameter, m0 = 1.4, in this case. Since no analytical solution for the likelihood function
is available for the continuous-time model, Table 2 starts with SML. While, of course, the
results are not directly comparable to those of Table 1 because of the different nature of the
process, the details confirm previous insights (cf., e.g., Lux, 2008): A higher multifractal
parameter can be estimated with more precision, but impacts negatively on the accuracy
of the estimates of the scale factor, σ, due to the higher degree of heterogeneity of the
variance dynamics.

In the evaluation of the online algorithms, we have dispensed with the largest particle
size B = 50, 000, because of the immense computational burden that comes with it. For
SOSM and the bootstrap filter, we see that their accuracy is somewhat worse than that
of SML. As with the discrete model, accuracy might approach that of SML when moving
to even higher numbers of particles, but this would then again be achieved at a much
higher cost than with SML. Quite in contrast to our results in the previous sub-section,
the online Filter 1 performs better even than SML already with B = 2, 000 particles and
it improves further when increasing B.

Moving on to the iterated filters, there is a certain difference to the results for the
discrete version in that IF 2 does not really improve upon the bootstrap filter. Indeed,
IF 2 with B = 2, 000 yields practically the same accuracy like the bootstrap filter with
B = 20, 000 while the later is definitely cheaper in computation time. The IF 1 algorithm
shows the following tendencies: Its original version gets close to SML for parameter m0,
but displays much higher variability for σ. It seems natural that this deficiency can be
remedied when choosing the initial value for the second parameter in a data-driven way
rather than randomly from a wide interval. The resulting estimates outperform SML
already for B = 1, 000 and improve slightly when increasing the number of particles to
B = 2, 000. IF 1 with averaging over the sample, in contrast, remains inferior to this
version and of about the same quality as IF 2. The main surprise is, however, that even
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the best performing version of IF 1 leads to a clear deterioration of results compared to
its online counterpart which in the present case provides the unambiguously best and also
the cheapest estimates.2

4.3 Bivariate continuous-time MSM

Since the bivariate model proposed in sec. 2 is the first continuous-time version of a
multivariate multifractal model in extant literature, this is also the first time that estima-
tion of such a model is explored. Similarly as with its univariate counterpart, analytical
maximum likelihood is infeasible because of the lack of a closed form solution to the likeli-
hood function. Hence, we can only work with numerical approximations of the likelihood
and the same algorithms as before are compared as alternative avenues to determine the
maximum of the likelihood function.

Table 3 provides the results. The underlying parameters are k1 = 5, k = 10, m1 = 1.4,
m2 = 1.6, σ1 = σ2 = 1 and ρ = 0.4. Our main interest is to see whether the increase of the
parameter space from two parameters in the univariate case to five for the bivariate model
changes the performance of the various algorithms, and whether their relative ranking in
terms of precision and computation time remains the same or not under this new model.

First, starting with simulated ML with the Nelder-Mead optimization algorithm, we
find that (i) the multifractal parameters m1 and m2, are estimated with the same or
even slightly higher precision, (ii) the scale parameters σ1 and σ2, are estimated with
somewhat lower precision, (iii) the correlation coefficient ρ for which no counterpart in
the univariate case exists, seems to have a satisfactory signal-to-noise ratio, (iv) overall,
results improve when moving from B = 1, 000 to B = 2, 000 but only by a small margin,
(v) in comparison to the univariate case, the computational demands with the same
lengths of the time series and number of particles are increasing less than proportionally
in reaction to the higher number of parameters. Overall, the traditional SML approach
appears, therefore, to provide a promising avenue also in the multivariate case.

Next, we inspect the results for the three online estimators with the number of particles
B = 2, 000, B = 10, 000 and B = 20, 000. For two of these algorithms, the SOSM and
the bootstrap filter, overall results are definitely worse than those of the SML estimates
and in relation to the results for the univariate models shown before, they all fall more
clearly behind the SML estimates. An exception is the online Filter 1. This filter even
with B = 2, 000 already gets close to the performance of SML with B = 1, 000. For
B = 10, 000 and beyond, online IF 1 outperforms SML for four out of five parameters
which is reminiscent of the findings for the univariate continuous-time model. It is also
interesting to note that for the online algorithms and their iterated versions, computation
time is almost independent of the number of parameters. This is so because all the major
computational components remain the same as in the univariate case. At B = 20, 000,
for instance the computation time of the online algorithms remains uniformly below that
of SML with B = 1, 000 particles.

For the iterated filters, we report parameter estimates after M = 200 and M = 300
rounds. The comparison of these numbers shows that convergence has taken place in all
cases at such a number of repetitions of the filtering algorithms. For IF 1, we initiate
the particle swarm again by random draws of the initial values of m1 and m2 from the
admissible interval [1, 2], and set σ1, σ2 and ρ equal to the sample standard deviation and

2 Because of this unexpected outcome, results have been checked multiple times but have always
confirmed the pattern of Table 2.
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correlation between both series. Since initialization with random draws for the parameters
of the covariance matrix always turned out to be inferior so far, we do not pursue this
alternative anymore. For IF 2, the initial swarm is chosen from uniform distributions:
m1, m2 ∈ [1, 2], σ1, σ2 ∈ [0, 5] and ρ ∈ [−1, 1].

Computation time (taking into account that only 300 iterations have been performed)
increases again only very slightly against the univariate case. Overall, with convergence
being obtained after M = 200 iterations as the latest, the computational demands of SML
and the iterated filter are roughly comparable. Overall, however, we find that iteration
does hardly improve the performance in comparison to the online execution of the same
filters.

For the iterated bootstrap filter (IF 2) and IF 1 with averaging (IF1av), the efficiency
of the estimates clearly falls behind that of SML. It is noteworthy that IF 2 has particular
problems in estimating σ1 and σ2. The only serious competitor is the original version of
IF 1 (with data-dependent choices of starting values for σ1, σ2 and ρ) which for some
parameters improves upon SML. However, in contrast to its online counterpart, we also
see gains and losses in precision for different parameters. Overall, iterating the filtering
operations does not yield a clear improvement, and, thus, we end up with a similar
conclusion as for the univariate case: online Filter 1 provides the best and cheapest way
for identification of the parameters.

4.4 Trivariate continuous-time MSM

We have seen in the preceding sections that more or less similar precision and efficiency can
be attained with the Nelder-Mead or simplex optimization algorithm and iterated filtering,
at least when the latter approach is designed appropriately using relevant information
on good starting values. Since with higher numbers of parameters, the computational
burden of the simplex method increases faster then that of online or iterated filters,
it appears interesting to go one step further and explore the efficiency of the various
methods when estimating a model with still more parameters. For that purpose, we
consider the trivariate version of the continuous-time MSM following the same principles
of construction like the previous bivariate version. We then have 9 parameters to estimate:
the three multifractal coefficients m1, m2 and m3, and the variance and covariances of the
three Brownian motions. We denote the parameters of the variance-covariance matrix as
σ1, σ2, σ3, ρ12, ρ23 and ρ13, with obvious meanings.

Table 4 shows results for various estimators of a trivariate MSM with the following
parametrization: k1 = 8, k = 15, m1 = 1.2, m2 = 1.4, m3 = 1.6, σ1 = σ2 = σ3 = 1,
ρ12 = 0.4, ρ23 = 0.7 and ρ13 = 0.2. We have skipped here the SOSM filter because
of its unsatisfactory performance in the previous applications and only report the final
outcome of the iterated filters after M = 300 iterations. As we can see in Table 4, the
computational demands of SML are increasing by a factor 3 when moving from the five
parameters of the bivariate case to the nine parameters of the trivariate case. In contrast,
the computation time of the various filters increases by less than 20 percent (of which
part is due to the higher number of multifractal multipliers k). However, none of the
online and iterated filters reaches the performance of SML. The online bootstrap filter
shows certain improvements of accuracy when increasing the number of particles, but
less so under iterated application (IF 2). It performs particularly poorly in identifying
the variances of the Brownian motion. While this weakness has already transpired with
the bivariate model, it appears even more pronounced for the trivariate model. Noting
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that the expectation and standard deviation of the initial swarm of particles are 2.5 and
1.443, respectively, it seems that both filter 2 and IF 2 are less and less able to move away
from the broad initial distribution when the parameter space increases (note that their
univariate applications did not suffer from this deficiency).

The online Filter 1 starts out better in terms of variances and much worse in terms
of multifractal parameters than Filter 2. However, it appears almost insensitive to the
number of particles. It improves, in contrast, under iterated application, but only if
estimates are averaged over the samples. The latter version is the only one that seems a
serious competitor to SML with some parameters of lower accuracy and some others with
higher precision across our 100 Monte Carlo replications.

4.5 Models with more Markov states

We proceed by investigating the performance of sequential Monte Carlo estimators when
increasing the number of states of the Markov chain further.

Table 5 provides results for the discrete-time and continuous time univariate MSM
with up to k = 15 hierarchical levels and for the continuous-time bivariate model with
k = 15 levels. Note that particularly in the later case, the estimated model has as many
as 415 ≈ 109 states. We keep the other parameters constant at their values in the previous
Monte Carlo simulations, and we confine ourselves to the estimation algorithm that had
displayed the most consistent behavior in the previous subsections, the Nelder-Mead or
simplex approach (denoted by SML). All the examples shown in Table 5 exhibit the
following characteristics: (i) the estimates of the multifractal parameters m0,m1 and m2

show hardly any change compared to the previous cases with smaller k, i.e., the precision
of their estimation remains practically insensitive to the increase in the number of Markov
states, (ii) for the scale parameter σ, RMSEs are all increasing with k which, however,
is expected as it becomes increasingly difficult for the estimators to distinguish between
very long-lived volatility components and a constant factor (cf. Lux, 2008), (iii) except for
the variances in the bivariate case, all parameters can be estimated with very little biases
(as indicated by the proximity of FSSEs and RMSEs), (iv) the correlation parameter ρ in
the bivariate case appears also to be very little affected by the higher number of states,
(v) already with B = 1, 000 the SML estimators in the discrete case are again quite close
to those obtained from exact maximum likelihood, and overall, there is hardly any clear
gain from increasing the number of particles from B = 1, 000 to B = 2, 000, (vi) the
computation time increases only slightly for SML with increasing k, while we see that at
k = 12 we approach the boundary of feasible full maximum likelihood estimation.

Overall, the results of Table 5 indicate that the sheer number of Markov states does
not necessarily constitute an obstacle to efficient estimation via sequential Monte Carlo
even though the number of particles in our application remains very small in comparison
to the number of states. This convenient lack of sensitivity is certainly owed to the fact
that the multifractal models allow for a large number of states without a proliferation of
the number of parameters.

5 Applications

In the following, we apply sequential Monte Carlo estimation to a selection of financial
returns of different asset classes. We estimate the discrete-time and continuous time
MSM and compare their in-sample and out-of-sample fit vis-à-vis each other and against
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standard GARCH and FIGARCH models. While we use the Nelder–Mead algorithm for
this analysis, we subsequently will also shed some light on how different algorithms affect
the precision of in-sample and out-of-sample results in selected cases. Applications of
multivariate MSM models are left for future research.

In order to get a broad perspective of the performance of the competing models,
we consider in the following: three stock market indices, the German DAX, the S&P
500 and the Japanese Nikkei, all extracted as daily data from Datastream over the in-
sample period 01/01/1980 to 12/31/2004. The same in-sample period is used for the
price of gold as an important precious metal that is considered to be at least as volatile
as stock indices. As another class of financial data, we include the exchange rates of
some major currencies: the US dollar against the euro with in-sample data spanning the
period 01/01/1999 to 12/31/2009, the Swiss franc - euro rate from 7/15/2003 through
12/31/2009 and the Japanese yen - dollar rate from 01/01/1986 to 21/31/2004. For the
out-of-sample analysis we use all data after the respective in-sample period through to
the end of the month 02/2015.3

Table 6 presents the in-sample parameter estimates of discrete-time and continuous-
time MSM models with k = 10 hierarchical levels for these seven time series. We can
observe that generally the parameter estimates and the likelihood values of both models
are very close to each other. The crucial parameter m0 hovers within a relatively narrow
range between 1.2 and 1.4 so that the estimated models are all relatively similar (as it is
typically found for GARCH models as well).

Table 7 shows formal test results for better fit of any of the two models (denoting
the discrete model by MF and the continous-time, Poisson multifractal model by PMF)
against each other and against the seminal GARCH and FIGARCH models.4 Since in all
pairwise comparisons, the two competitors are non-nested, we apply the model selection
test of Vuong for non-nested alternatives (Vuong, 1989). In the comparisons with GARCH
and FIGARCH, we also document the outcome of the adjusted Vuong test taking into
account the larger number of parameters of the GARCH and FIGARCH models.

Table 7 conveys the following information: except for the exchange rates. USD/EUR
and CHF/EUR, the two multifractal models are always diagnosed as superior to GARCH
and FIGARCH at standard levels of significance. For those two exchange rates, the
results of the baseline Vuong test are not conclusive in either direction, but when taking
into account the number of parameters to be estimated with the different competitors,
MF and PMF are again diagnosed as superior. We might not expect the relatively small
likelihood differences of MF and PMF to be significantly different under a formal test.
However, the Vuong test indicates a significantly different fit in four out of seven cases at
least at the 5 percent level (at the one percent level for three). All those cases indicate
a significantly better fit of the discrete-time model. To see in how far the out-of-sample
performance confirms these results, we compute mean squared errors (MSE) and mean
absolute errors (MAE) of the forecasts from the four alternative models over various
horizons. Table 8 exhibits these relative to the MSE/MAE of a näıve forecast using
historical volatility. Also shown is the outcome of tests for superior predictive ability
of Hansen (2005). This test compares the relative performance of a particular model

3 The same data sets have been used by Ghonghadze and Lux (2016) and Chen and Lux (2017) to
scrutinize the performance of an alternative class of asset-pricing models. A comparison with their
results shows that the MSM models perform throughout better than the behavioral models that are
the focus of these studies.

4 Estimated in their (1,1) specifications. Results are in agreement with typical parameter estimates
of GARCH(1,1) and FIGARCH(1,1) models in the literature.
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against a group of competitors. In the present setting, the competing models are the
remaining three time series models as well as historical volatility. The tested null is that
the pertinent model is not outperformed by any of its competitors.

The out-of-sample results are generally favorable for the MSM class of models:

• for the DAX, the continuous-time PMF dominates all other models and is unam-
biguously classified as the superior model among the four candidates under the MAE
criterion. Under the MSE criterion, GARCH, FIGARCH and MF are all not signif-
icantly outperformed by other models for horizons up to 40 days. However, when
moving from shorter to longer horizons, the relative performance of MF vis-à-vis
these competition improves more and more, and for the longest horizons of fifty
days it outperforms all alternative models. PMF, in contrast, is always dominated
by the alternatives under the MSE criterion.

• for the S&P 500 a similar pattern applies: GARCH and FIGARCH dominate the
MSM family under MSE for short horizons, but MF becomes a stronger competi-
tion for longer forecast horizons. Under MAE, the continuous-time PMF beats all
alternatives at all levels of significance for all time horizons.

• for NIKKEI, we also find GARCH and FIGARCH again performing better than
MF and PMF for horizons up to 10 days, and thereafter superiority of MF alone
under MSE. Under the MAE criterion, GARCH and FIGARCH perform worse than
historical volatility throughout, while PMF is the only model to provide a gain in
forecast precision at least up to 20 period forecast horizons,

• the EUR/USD exchange rate is a stronghold of the GARCH model. It outperforms
all other models under MAE. Under MSE it also provides the most accurate fore-
casts, but for horizons above one day MF and PMF are close followers and can not
be significantly outperformed.

• for the YEN/USD, we find PMF to perform very strongly under both the MSE
and MAE criterion. While the null hypothesis that the pertinent model cannot
be outperformed is not rejected for other models at certain forecast horizons as
well, the results are most uniform for PMF with acceptance probabilities of the null
hypothesis (the model cannot be outperformed) close to one in almost all cases.

• for the CHF/EUR, under MSE all models hardly perform better than historical
volatility with the relative best being MF, while under MAE PMF dominates all
competitors, and at all horizons. Note that while it appears generally difficult to
forecast volatility of the CHF/EUR rate, the multifractal models both provide a
slight improvement against historical volatility under both MSE and MAE while
GARCH and FIGARCH generate forecasts that are uniformly inferior to historical
volatility.

• finally, for the price of gold, we find no dear tendency under the MSE criterion, and
a clear dominance of FIGARCH under MAE. Under MSE, none of our four models
can be outperformed at any horizon beyond one day, but MF and PMF exhibit the
smallest errors at longer horizons.

Overall, the results of the out-of-sample forecast comparisons differ from the in-sample
comparisons in various ways: First, the in-sample dominance of multifractal models in
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terms of goodness-of-fit is only partially reflected in superior out-of-sample performance.
Second, a clear dominance of PMF is found for the MAE criterion in four out of seven
cases, over all forecasting horizons. In all these cases (among those all three stock markets
considered in this study) PMF not only dominates over GARCH and FIGARCH, but also
over its discrete-time counterpart. This is in contrast to the in-sample results in which MF
has been found to have higher goodness-of-fit than PMF. Under the MSE criterion, results
are mostly inconclusive or in favor of GARCH/FIGARCH at short forecasting horizons,
but become more favorable for MF or PMW at longer horizons. Given that GARCH
and FIGARCH have particular parameters geared towards short-term correlations that
are absent in the multifractal formalism such dependency on the forecast horizon appears
plausible (although it does mostly not apply under the MAE criterion).

One may note that while the estimation of the GARCH and FIGARCH models is a
deterministic process, the use of the sequential Monte Carlo approach makes the outcome
of the estimation of the MF and PMF models stochastic. With different random seeds of
the particles, a different outcome would be obtained. To assess the influence of noise in the
stochastic optimization algorithm, the estimation and forecast generation over one period
has been replicated twenty times for SML and the various filters and iterated filters of the
previous sections. Figs. 3 and 4 display the results for the case of the DAX. Fig. 3 shows
the dispersion of the resulting estimates for m0 and σ over the six algorithms together
with the unique estimates from exact ML indicated by dashed lines. It transpires that
SML and IF 1 generate estimates closest to the ML parameters and with the smallest
degree of dispersion. Particularly poor appear the estimates from Filter 2 and from SOSM
(provided one considers the ML estimates as optimal ones).

How does this translate into out-of-sample forecasts? Fig. 4 shows MSEs and AMEs
of all 120 estimations relative to those of historical volatility. Interestingly, results are
hovering around those obtained with full maximum likelihood. The large deviation of the
parameter estimates under the SOSM algorithm from the remaining ones also translates
into large deviations of its MSEs/MAEs out-of-sample. To rank the alternatives seems
hard to do as their performance under MSE and MAE seems to be negatively correlated.
The correlation between both measures is indeed −0.953 for the pooled 120 estimations.
In contrast, a high positive correlation of +0.653 applies to the estimates of m0 and σ

depicted in Fig. 3. The stochastic approximation of the likelihood and the stochastic
evolutionary algorithms applied here all have a tendency to “compensate” for deviations
of one parameter by deviations of the other in the same direction (compared to the ML
estimates). As demonstrated particularity by the results of the SOSM algorithm, a certain
trade-off exists between a good fit in terms of MSE or MAE which indicates that differ-
ent parameter values would be optimal under different loss criteria. This suggests that
further gains of precision could be obtained with appropriate extensions of the baseline
multifractal models.

Similar exercises for the other six time series provide results quite close to those for the
DAX as displayed in Figs. 3 and 4. In particular, SML and IF 1 almost always show the
smallest variation in parameter estimates and the closest proximity to estimates obtained
by full maximum likelihood. These two methods also get closest to exact ML with their
implied mean squared and mean absolute errors of the out-of-sample forecasts. Pertinent
results for the other six financial time series are available upon request.
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6 Conclusion

The present paper has adressed a number of issues. First, our main interest was in the
performance of different optimization algorithms in locating the parameters maximizing
the likelihood function of a class of highly nonlinear, non-Gaussian state-space models. As
it turned out, by and large the time-honored Nelder-Mead or simplex method proved itself
still to be the most efficient and robust approach vis-á-vis a selection of recently proposed
online and iterated filters. For problems with not too many parameters, the iterated
filtering algorithm proposed by Ionides et al. (2006) appeared very close both in precision
and computational demands, while the somewhat more straightforward, so-called iterated
Filter 2 of Ionides et al. (2010) appeared inferior to the former alternatives. Non-iterated,
online filters often turned out to be less efficient or too computation intense when trying
to compensate for their one-sweep nature by increasing the number of particles (with
the noteworthy exception of Filter 1 in some cases). When increasing the number of
parameters (as in trivariate MSM with nine parameters), all other methods seemed to
remain behind Nelder-Mead. One might argue that with a higher-dimensional parameter
space, one should allow for a longer relaxation time of the iterated filters. However,
experiments with a slower decay of the disturbances to the parameters did not yield any
immediate improvement in efficiency. Nevertheless, variations of the decay pattern and
other subtle changes to the algorithms might still be worthwhile to explore in future
research.

In terms of the underlying class of state-space models, the present paper has also
extended the zoo of MSM models to multivariate continuous-time specifications, and
it has provided the first generally applicable avenue towards estimation of continuous-
time (Poisson) multifractual models. This is important since continuous-time models are
preferred in applications in financial engineering, and continuous-time multivariate mul-
tifractal models might also prove useful in other areas of application of the multifractal
apparatus. As our empirical application has demonstrated, the Poisson MSM has even
turned out more successful in out-of-sample forecasting of volatility than its discrete-time
counterpart, and in the majority of cases it outperformed all alternatives that we con-
sidered in this paper under the mean absolute error criterion over all forecast horizons.
This successful application of the univariate continuous-time MSM should motivate em-
pirical applications of the multivariate specifications as well. We believe this should be
an important object for future research.
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Figure 3: Boxplot of parameter estimates of the discrete-time MF model with different
estimation algorithms, each repeated twenty times with different starting values. The
underlying time series is returns of the German DAX. The broken lines indicate the
parameter estimates obtained by exact maximum likelihood.
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Figure 4: Boxplot of mean squared errors (MSE) and mean absolute errors (MAE) of
out-of-sample volatility forecasts on the base of the 120 estimations of the parameters
of the discrete MF model for the German DAX illustrated in Fig. 3. The broken lines
indicate the MSE and MAE of volatility forecasts on the base of parameter estimates
obtained by exact maximum likelihood.
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Table 1: continued

m0 [100] m0 [200] m0 [300] m0 [400] σ [100] σ [200] σ [300] σ [400] t [sec]

Iterated Filter 1
B = 1, 000

MSE 1.296 1.295 1.295 1.295 1.642 1.633 1.633 1.633 348.170
FSSE 0.106 0.106 0.106 0.106 0.909 0.904 0.904 0.904 3.485
RMSE 0.143 0.141 0.141 0.141 1.109 1.100 1.100 1.100

B = 2, 000

MSE 1.294 1.293 1.293 1.293 1.619 1.609 1.609 1.609 1163.980
FSSE 0.102 0.102 0.102 0.102 0.893 0.886 0.886 0.886 11.590
RMSE 0.139 0.138 0.138 0.138 1.082 1.072 1.071 1.071

Iterated Filter 1, starting condition for σ fixed
B = 1, 000

Mean 1.209 1.208 1.208 1.208 1.006 1.002 1.003 1.003 347.690
FSSE 0.034 0.033 0.033 0.033 0.079 0.078 0.078 0.078 2.116
RMSE 0.035 0.034 0.034 0.034 0.079 0.077 0.077 0.077

B = 2, 000

Mean 1.213 1.212 1.212 1.212 1.005 1.003 1.003 1.003 1166.240
FSSE 0.033 0.033 0.033 0.033 0.076 0.076 0.076 0.076 5.364
RMSE 0.035 0.035 0.035 0.035 0.076 0.075 0.076 0.076

Iterated Filter 1av
B = 1, 000

Mean 1.194 1.197 1.197 1.197 0.990 0.993 0.992 0.992 349.140
FSSE 0.041 0.040 0.040 0.040 0.107 0.097 0.096 0.096 3.188
RMSE 0.041 0.040 0.040 0.040 0.107 0.097 0.096 0.096

B = 2, 000

Mean 1.192 1.192 1.192 1.192 0.991 0.989 0.989 0.989 1166.310
FSSE 0.038 0.037 0.037 0.037 0.083 0.087 0.088 0.088 10.585
RMSE 0.038 0.037 0.037 0.037 0.083 0.087 0.088 0.088

Iterated Filter 1av, starting condition for σ fixed
B = 1000

Mean 1.193 1.195 1.195 1.195 0.987 0.985 0.986 0.985 347.460
FSSE 0.042 0.039 0.039 0.039 0.087 0.089 0.089 0.089 2.072
RMSE 0.042 0.039 0.039 0.039 0.088 0.089 0.090 0.090

B = 2, 000

Mean 1.191 1.193 1.193 1.193 0.996 0.993 0.992 0.992 1166.030
FSSE 0.039 0.038 0.038 0.038 0.091 0.089 0.089 0.089 6.031
RMSE 0.040 0.039 0.039 0.039 0.091 0.089 0.089 0.089

Iterated Filter 2
B = 1, 000

Mean 1.193 1.195 1.194 1.194 0.991 0.997 0.997 0.997 344.110
FSSE 0.041 0.042 0.042 0.042 0.098 0.090 0.091 0.090 3.744
RMSE 0.041 0.042 0.042 0.042 0.098 0.090 0.090 0.090

B = 2, 000

Mean 1.193 1.196 1.195 1.195 0.993 0.987 0.987 0.987 1157.680
FSSE 0.037 0.039 0.039 0.039 0.073 0.080 0.081 0.081 10.459
RMSE 0.037 0.039 0.039 0.039 0.073 0.081 0.082 0.082

Note: The table shows the results of 100 Monte Carlo runs of various estimators, for different
numbers of particles B, using the same random numbers for the underlying simulated time
series. The underlying parameters of the MF model are k = 8, m0 = 1.2, and σ = 1. Results
are shown as the means, finite sample standard errors (FSSE) and root-mean squared errors
(RMSE) of parameter estimates over the 100 Monte Carlo runs. t [sec] is the computation time
in seconds per Monte Carlo replication.
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Table 2: Estimation of continuous-time univariate MSM Model

SML, B = 1, 000 SML, B = 2, 000
m0 σ t [sec] m0 σ t [sec] m0 σ t [sec]

Mean 1.390 1.091 197.540 1.391 1.081 643.440
FSSE 0.033 0.178 8.389 0.031 0.160 22.734
RMSE 0.034 0.199 0.032 0.179

SOSM, B = 2000 B = 10,000 B = 20,000

Mean 1.387 1.102 3.090 1.386 1.091 62.570 1.388 1.082 241.930
FSSE 0.069 0.304 0.288 0.040 0.229 0.807 0.031 0.195 3.391
RMSE 0.070 0.319 0.042 0.245 0.034 0.211

Filter 1
B = 2000 B = 10,000 B = 20,000

Mean 1.410 1.048 3.240 1.408 1.043 63.220 1.408 1.042 243.480
FSSE 0.022 0.145 0.429 0.017 0.130 0.836 0.017 0.124 3.043
RMSE 0.024 0.152 0.019 0.136 0.018 0.131

Filter 2
B = 2000 B = 10,000 B = 20,000

Mean 1.395 1.127 3.160 1.390 1.103 62.670 1.390 1.090 242.200
FSSE 0.046 0.258 0.368 0.040 0.190 0.911 0.035 0.180 3.094
RMSE 0.046 0.287 0.041 0.216 0.036 0.200
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Table 2: continued

Iterated Filter 1
B = 1,000 B = 2,000
m0 [300] m0 [400] σ [300] σ [400] t [sec] m0 [300] m0 [400] σ [300] σ [400] t [sec]

Mean 1.424 1.424 1.358 1.358 313.230 1.424 1.424 1.376 1.376 978.180
FSSE 0.028 0.028 0.194 0.194 3.646 0.029 0.029 0.192 0.192 10.671
RMSE 0.036 0.036 0.406 0.406 0.037 0.037 0.422 0.422

Iterated Filter 1, starting condition for σ fixed
B = 1,000

Mean 1.386 1.386 1.055 1.054 315.100 1.384 1.384 1.041 1.041 982.400
FSSE 0.029 0.029 0.157 0.157 7.283 0.027 0.027 0.138 0.138 11.183
RMSE 0.032 0.032 0.166 0.166 0.031 0.031 0.143 0.143

Iterated Filter 1av
B = 1,000

Mean 1.383 1.383 1.034 1.034 313.320 1.381 1.381 1.024 1.025 978.620
FSSE 0.040 0.040 0.179 0.180 3.556 0.037 0.037 0.162 0.162 12.969
RMSE 0.044 0.044 0.182 0.183 0.041 0.041 0.163 0.163

Iterated Filter 1av, starting condition for σ fixed
B = 1000

Mean 1.385 1.385 1.040 1.040 314.380 1.383 1.383 1.032 1.030 981.940
FSSE 0.039 0.039 0.187 0.186 3.687 0.035 0.035 0.168 0.168 11.999
RMSE 0.042 0.042 0.191 0.190 0.038 0.038 0.170 0.169

Iterated Filter 2
B = 1,000

Mean 1.390 1.390 1.066 1.061 298.800 1.382 1.383 1.048 1.049 947.480
FSSE 0.041 0.041 0.215 0.215 1.758 0.037 0.037 0.203 0.205 7.700
RMSE 0.042 0.042 0.224 0.223 0.041 0.041 0.207 0.209

Note: The table shows the results of 100 Monte Carlo runs of various estimators, for different
numbers of particles B, using the same random numbers for the underlying simulated time
series. The underlying parameters of the MF model are k = 8, m0 = 1.4, and σ = 1. Results
are shown as the means, finite sample standard errors (FSSE) and root-mean squared errors
(RMSE) of parameter estimates over the 100 Monte Carlo runs. t [sec] is the computation time
in seconds per Monte Carlo replication.
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Table 4: Estimation of continuous-time trivariate MSM Model

SML
B = 1, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

Mean 1.196 1.393 1.583 0.982 0.914 1.034 0.354 0.621 0.120 1232.710
FSSE 0.034 0.035 0.031 0.255 0.479 0.870 0.035 0.039 0.042 36.622
RMSE 0.034 0.036 0.035 0.255 0.484 0.866 0.058 0.088 0.090

B = 2, 000

Mean 1.199 1.396 1.587 0.996 0.966 1.082 0.351 0.633 0.125 3206.770
FSSE 0.033 0.036 0.029 0.264 0.524 1.008 0.034 0.035 0.039 115.443
RMSE 0.033 0.036 0.031 0.263 0.522 1.006 0.059 0.075 0.084

Filter 1
B = 2, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

Mean 1.306 1.463 1.575 2.054 2.532 2.580 0.365 0.630 0.171 5.350
FSSE 0.112 0.096 0.100 1.015 1.253 1.276 0.082 0.072 0.097 0.479
RMSE 0.154 0.114 0.102 1.460 1.975 2.027 0.089 0.101 0.101

B = 10, 000

Mean 1.263 1.452 1.605 1.601 2.445 2.750 0.368 0.656 0.221 74.490
FSSE 0.080 0.078 0.058 0.752 1.254 1.270 0.054 0.043 0.067 1.168
RMSE 0.101 0.093 0.058 0.960 1.909 2.158 0.063 0.062 0.070

B = 20, 000

Mean 1.257 1.443 1.596 1.722 2.573 3.086 0.372 0.661 0.227 266.740
FSSE 0.071 0.063 0.051 0.726 1.068 1.271 0.053 0.039 0.053 3.575
RMSE 0.091 0.076 0.051 1.021 1.898 2.439 0.060 0.055 0.060

Filter 2
B = 2, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

Mean 1.386 1.554 1.305 1.028 1.008 0.643 0.356 0.543 0.126 5.320
FSSE 0.039 0.031 0.061 0.290 0.509 0.780 0.051 0.052 0.058 0.469
RMSE 0.190 0.157 0.301 0.290 0.506 0.855 0.067 0.165 0.094

B = 10, 000

Mean 1.359 1.534 1.347 1.050 1.011 0.684 0.370 0.567 0.145 74.910
FSSE 0.033 0.031 0.057 0.307 0.475 0.780 0.032 0.038 0.040 1.264
RMSE 0.163 0.137 0.260 0.309 0.473 0.839 0.044 0.138 0.068

B = 20, 000

Mean 1.354 1.529 1.360 1.030 1.005 0.696 0.366 0.573 0.143 268.860
FSSE 0.030 0.030 0.051 0.295 0.496 0.788 0.032 0.032 0.036 3.493
RMSE 0.157 0.132 0.245 0.295 0.494 0.841 0.046 0.131 0.068
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Table 4: continued

Iterated Filter 1
B = 1, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

MSE 1.394 1.555 1.337 1.120 1.083 0.909 0.352 0.519 0.133 612.870
FSSE 0.010 0.011 0.039 0.199 0.395 0.699 0.026 0.035 0.027 4.433
RMSE 0.194 0.155 0.266 0.232 0.402 0.702 0.054 0.184 0.072

B = 2, 000

MSE 1.396 1.560 1.328 1.101 1.064 0.937 0.353 0.515 0.135 1590.380
FSSE 0.009 0.009 0.038 0.206 0.399 0.688 0.026 0.035 0.029 12.762
RMSE 0.197 0.160 0.274 0.229 0.402 0.688 0.053 0.188 0.071

Iterated Filter 1av
B = 1, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

MSE 1.194 1.422 1.603 1.066 1.330 1.566 0.398 0.642 0.183 615.980
FSSE 0.061 0.048 0.053 0.327 0.761 0.985 0.060 0.041 0.065 4.399
RMSE 0.061 0.053 0.053 0.332 0.825 1.132 0.060 0.071 0.067

B = 2, 000

MSE 1.190 1.410 1.605 1.057 1.215 1.554 0.393 0.649 0.183 1598.520
FSSE 0.050 0.043 0.035 0.285 0.657 0.925 0.046 0.036 0.047 11.343
RMSE 0.051 0.044 0.035 0.290 0.689 1.074 0.047 0.063 0.049

Iterated Filter 2
B = 1, 000
m1 m2 m3 σ1 σ2 σ3 ρ12 ρ23 ρ13 t [sec]

Mean 1.222 1.434 1.620 1.491 2.162 3.316 0.389 0.655 0.194 612.990
FSSE 0.076 0.063 0.061 0.817 1.417 1.955 0.074 0.052 0.084 7.983
RMSE 0.079 0.072 0.064 0.949 1.827 3.025 0.074 0.068 0.084

B = 2, 000

Mean 1.208 1.422 1.613 1.417 2.194 3.450 0.386 0.657 0.189 1589.720
FSSE 0.059 0.053 0.048 0.674 1.552 1.859 0.050 0.042 0.069 20.078
RMSE 0.060 0.057 0.049 0.790 1.952 3.070 0.051 0.060 0.069

Note: The table shows the results of 100 Monte Carlo runs of various estimators, for different
numbers of particles B, using the same random numbers for the underlying simulated time
series. The underlying parameters of the MF model are k = 15, k1 = 8, m1 = 1.2, m2 = 1.4,
m3 = 1.6, σ1 = σ2 = 1 and ρ12 = 0.4, ρ23 = 0.7, ρ13 = 0.2. Results are shown as the means,
finite sample standard errors (FSSE) and root-mean squared errors (RMSE) of parameter
estimates over the 100 Monte Carlo runs. t [sec] is the computation time in seconds per Monte
Carlo replication. Results of iterated filters are reported after M = 300 iterations.
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Table 5: Markov chains with higher number of states, estimation via ML and SML

Discrete-time MSM
k = 10
ML SML, B = 1, 000 B = 2, 000
m0 s t [sec] m0 s t [sec] m0 s t [sec]

Mean 1.193 0.975 478.310 1.203 1.036 177.320 1.199 1.022 589.550
FSSE 0.029 0.123 28.999 0.032 0.157 5.664 0.034 0.141 23.305
RMSE 0.030 0.125 0.032 0.160 0.033 0.142

k = 12

Mean 1.193 0.946 11063.200 1.202 1.006 185.700 1.203 1.004 614.510
FSSE 0.029 0.154 1143.582 0.030 0.195 6.320 0.030 0.202 26.304
RMSE 0.029 0.159 0.030 0.194 0.030 0.201

Continuous-time MSM
k = 10
SML, B = 1, 000 SML, B = 2, 000
m0 s t [sec] m0 s t [sec]

Mean 1.395 1.137 197.350 1.394 1.159 648.600
FSSE 0.028 0.283 6.484 0.030 0.343 20.909
RMSE 0.029 0.313 0.30 0.376

k = 15

Mean 1.400 1.107 218.750 1.403 1.162 681.910
FSSE 0.035 0.651 8.553 0.033 0.590 32.523
RMSE 0.035 0.656 0.033 0.609

Table 5: continued

Bivariate continuous-time MSM, k = 15, k1 = 8
SML, B = 1000 B = 2000
m1 m2 s1 s2 ρ t [sec] m1 m2 s1 s2 ρ t [sec]

Mean 1.408 1.598 0.862 0.794 0.359 384.740 1.406 1.589 0.875 0.782 0.367 1075.990
FSSE 0.030 0.031 0.527 0.811 0.046 16.685 0.028 0.025 0.526 0.775 0.040 44.667
RMSE 0.031 0.031 0.543 0.833 0.062 0.029 0.027 0.538 0.802 0.051

Note: The table shows the results of 100 Monte Carlo runs of various models with
higher-order Markov chains of the volatility dynamics. For the extremely time-consuming
computations of the exact maximum likelihood estimates with k = 12 only 20 replications have
been performed. Results are shown as the means, finite sample standard errors (FSSE) and
root-mean squared errors (RMSE) of parameter estimates over the 100 (20) Monte Carlo runs.
tsec is the computation time in seconds per Monte Carlo replication.
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Table 6: Estimation results for discrete-time and continuous-time multifractual models

discrete-time MSM continuous-time MSM
logL m0 σ logL m0 σ

DAX -15782.519 1.28 3.63 -15778.148 1.267 3.45
(1.27 1.29 ) (3.61 3.63 ) (1.26 1.28 ) (3.44 3.46 )

S&P -14466.052 1.30 2.59 -14477.741 1.29 2.66
(1.28 1.31 ) (2.54 2.61 ) (1.25 1.31 ) (2.54 2.68 )

Nikkei -15365.904 1.32 3.19 -15372.313 1.30 2.79
(1.31 1.33 ) (3.18 3.20 ) (1.29 1.31 ) (2.78 2.80 )

USD/EUR -5224.508 1.20 1.68 -5228.835 1.20 1.56
(1.18 1.21 ) (1.67 1.70 ) (1.18 1.20 ) (1.55 1.58 )

YEN/USD -9466.130 1.34 2.12 -9488.598 1.30 1.73
(1.33 1.35 ) (2.11 2.14 ) (1.28 1.30 ) (1.72 1.74 )

CHF/EUR -1550.838 1.27 0.85 -1551.004 1.24 0.72
(1.26 1.28 ) (0.84 0.86 ) (1.23 1.25 ) (0.71 0.74 )

Gold -13942.552 1.41 3.24 -13980.734 1.42 3.50
(1.40 1.42 ) (3.23 3.25 ) (1.41 1.43 ) (3.49 3.51 )

Note: The table presents the maximized likelihood values and the estimates of the
parameters m0 and σ for both the discrete-time and continuous-time univariate
multifractal model for a selection of seven representative financial time series. In-sample
estimation horizons are as described in the main test. In order to compute confidence
intervals for the point estimator, we have used the profile likelihood method as the lack
of continuity of the particle filter approximation prevents us from using derivative-based
methods. The profile likelihood is a function of one parameter, say θ1, with the
remaining parameters, say θ2, being obtained by maximization under the constraint that
θ1 is fixed. A 95 percent confidence interval is, then, defined by upper and lower values
θ1,± so that | l(θ̂1)− l(θ1,±) |= 1.92, with l() the log likelihood function, and θ̂1 the
globally optimal value of the pertinent parameter. Because of the computational
demands of the maximization step, we have computed the profile likelihood for integer
steps of length 0.01 around the global optimum. As it can be seen in the Table, the so
obtained confidence intervals are very narrow throughout, and often already the
immediate neighboring values of θ̂1 would give a likelihood difference outside the 95
percent interval.
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