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Highlights

• We formulate a simple quantum decision theory model that is param-
eter free, explains the Ellsberg paradox and is in conformity with the
evidence.

• The forecasts of our quantum model are not statistically significantly
different from the forecasts of the source dependent model.

• We provide a simple introduction to quantum decision theory.

1 Introduction

Situations of ambiguity are pervasive in decision making. In this paper we
investigate the potential of quantum decision theory (QDT) to provide an ex-
planation. We concentrate on the canonical example of ambiguity, namely,
the Ellsberg paradox (Keynes, 1921; Ellsberg 1961, 2001). The Ellsberg
paradox has proved to be a particularly useful vehicle for testing models of
ambiguity. In addition, there are many real-world situations that appear sim-
ilar to the Ellsberg paradox. One example is that of home-bias in investment
(French and Poterba, 1991, Obstfeld and Rogoff, 2000). Investors are often
observed to prefer investing in a domestic asset over a foreign asset with the
same return and the same riskiness.

A simple quantum model of the Ellsberg paradox was formulated by
al-Nowaihi & Dhami (2017). Their derivation of quantum probabilities is
parameter-free. Thus, their explanation of the Ellsberg paradox is more
parsimonious, hence more refutable, than all the other explanations. Their
predicted matching probabilities, based on their quantum model, are close
to those empirically observed by Dimmock et al. (2015). The question then
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arises “is this agreement an accident?”1 To test this, we performed a new
experiment using a very different data set from Dimmock et al. (2015) and a
different methodology.2 To compare with the evidence reported in Dimmock
et al. (2015), we chose the same probabilities as they did: p = 0.1, 0.5 and
0.9. Another reason for choosing these probabilities is that the greatest dif-
ference between the predictions of the various models of the Ellsberg paradox
lie in the tails of the distribution. Hence, we have concentrated our resources
(over 250 subjects) on the region that is most likely to refute our model.

We found the predictions of our quantum model to be in agreement with
the evidence. This is the first main contribution of this paper.

The second main contribution of our paper is to compare the predictive
power of our quantum model with that of probably the most successful non-
quantum model of ambiguity, namely, the source dependence (Abdellaoui et
al., 2011; Kothiyal et al., 2014; Dimmock et al., 2015).3 For this purpose
we performed three Diebold-Mariano forecasting tests (Diebold & Mariano,
1995, Diebold, 2014).4 For each test, the difference between the predictive
performance of the source dependent model and our quantum model was not
statistically significant. However, the source dependent model requires the
specification of probability weighting functions. In fact, the source dependent
model can fit any data set depending on the choice of probability weighting
functions. On the other hand, our quantum model makes no recourse to
probability weighting functions. This suggests that much of what has been
attributed to probability weighting might actually be due to quantum prob-
ability.

This paper incorporates the results of al-Nowaihi and Dhami (2017). We
take the opportunity here to clarify the role played by the quantum law of
reciprocity in deriving quantum probabilities (Proposition 7, below). This
was left implicit in al-Nowaihi and Dhami (2017).

The rest of the paper is organized as follows. Our model is formulated
is section 2. Section 3 reviews standard (Kolmogorov) probability theory.
Sections 4-7 briefly review decision theories that are based on standard (Kol-
mogorov) probability theory, with particular reference to the Ellsberg para-
dox. Section 8 reviews the elements of quantum probability theory needed

1We are grateful to Jerome Busemeyer for raising this issue.
2Dimmock et al. (2015) use 666 Dutch subjects from the non-student population. Our

subjects were 295 undergraduate students from Qingdao Agricultural University in China.
3We are grateful to Stefan Trautmann for suggesting this to us.
4We are grateful to Wojciech Charemza for suggesting this test to us.
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for this paper. Our quantum analysis of the Ellsberg paradox is given in
section 9. Section 10 explains how we elicit certainty equivalents of lotteries
and from these infer matching probabilities. Section 11 gives our experimen-
tal design. Our experimental results are in section 12. Section 13 compares
the forecasting performance of our quantum model with that of the source
dependent model. Section 14 summarizes. Our experimental instructions are
given in Appendix A. Appendix B gives our post-experimental questionnaire.

2 Formulation

2.1 An Ellsberg experiment and the Ellsberg paradox

We consider the following version of the Ellsberg experiment (Dimmock et
al., 2015). This involves two urns: The known urn (K) contains nk balls
of n different colors and k balls of each color. The unknown urn (U) also
contains nk balls of the same n colors as urn K but in unknown proportions.
The subject is presented with the following bet. Suppose l of the n colors are
chosen to be winning colors (hence, urn K contains lk balls of the winning
colors). The subject wins a prize if a randomly drawn ball from an urn
is of the winning color. The question we address is “which urn would a
subject choose?” The classical answer is that a subject should be indifferent
between the two urns, they should exhibit ambiguity neutrality. However,
the evidence is that subjects prefer the known urn (K) for medium and high
probabilities but prefer the unknown urn (U) for low probability. Thus, the
evidence is that subjects exhibit ambiguity aversion for medium and high
probabilities but ambiguity seeking for low probabilities. This behavior is
known as insensitivity. Thus, classical theory predicts ambiguity neutrality
while the evidence reveals insensitivity. This is known as the Ellsberg paradox.

2.2 Matching probabilities

Consider subject i. Let p be the probability with which subject i draws a
ball of a winning color from urn K. Keep the contents of urn U fixed, but
construct a new known urn, Ki, with a known number, Mi, of balls of the
winning colors such that subject i is indifferent between urns Ki and U . Let
mi (p) be the probability with which that subject draws a ball of a winning
color from urn Ki. Then mi (p) is the matching probability of p for subject i.
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2.3 Utility

Let ui be the utility of subject i, assumed to be strictly increasing and nor-
malized so that ui (0) = 0.

2.4 Quantum probability theory (Assumption Q)

Our main assumption (Q) is that subjects’ behavior is determined by quan-
tum probability theory (von Neumann, 1955, original German, 1932), rather
than standard Kolmogorov probability theory (Kolmogorov, 1950, original
German, 1933). See section 9. However, we shall need further auxiliary
assumptions, which we now introduce.

2.5 A behavioral assumption on how urn U is con-
structed in a subject’s mind (Assumption B)

The framing of information is vital in choices. Subjects often simplify com-
plex problems before solving them (Dhami, 2016). For Ellsberg experiments,
subjects are typically told that urn U contains the same number of balls of
the same colors as urn K, but in unknown proportions. However, the term
“unknown proportions” is not defined any further, which raises the question
of how subjects perceive this term. There is strong evidence that this is
too cognitively challenging for subjects and that subjects do not consider all
possible distributions of balls in urn U (Pulford & Colman, 2008).

We conjecture (Assumption B) that subjects model “unknown propor-
tions” in a simple way (al-Nowaihi & Dhami, 2017) as described below.

1. We replace colors by numerals. Furthermore, we consider only two
numerals: 1 and 2. The known urn K contains kn balls, kl of which
are labeled “1” and kn−kl are labeled “2”. Ball 1 is drawn from K with
probability p and ball 2 is drawn from K with probability 1− p. How
p is related to l and n will be discussed in subsection 2.7, below. This
transformation is only for analytic convenience. In our experiments
subjects are always presented with colored balls whose ratios match
the probabilities.

2. Point 1 allows us to consider urn K as having just two balls. One of
the balls, the winning ball, labeled “1”, is drawn with probability p.
The other ball, labeled “2”, is drawn with probability 1− p. Likewise
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urn U will also have two balls labeled 1 and 2 but the proportions will
be unknown, as the following construction shows.

3. Urn K has two balls, labeled 1 and 2, while urn U is initially empty.
We conjecture that in the mind of a subject urn U is constructed as
follows. In two successive and independent rounds, a ball is drawn at
random from urn K and placed in urn U without revealing the labels, 1
or 2, to the subject. At the end of each of the two rounds, the ball that
was drawn from urn K is replaced with an identically labeled ball. At
the end of the two rounds, urn U contains two balls. The possibilities
are that both could be labeled 1, both could be labeled 2, or one could
be labeled 1 and the other labeled 2.

4. A ball is drawn at random from whichever urn the subject chooses (K
or U). The subject wins a monetary prize v > 0 if ball 1 is drawn but
wins nothing if ball 2 is drawn.

Based on the above construction, we may define the following states of
urn U :

1. s1 is the state where ball 1 is drawn in each of the two rounds (each
with probability p).

2. s2 is the state where ball 1 is drawn in round one (probability p), then
ball 2 is drawn in round two (probability 1− p).

3. s3 is the state where ball 2 is drawn in round one (probability 1 − p),
then ball 1 is drawn in round two (probability p).

4. s4 is the state where ball 2 is drawn in each of the two rounds (each
with probability 1− p).

Concerning the rationality of assumption (B), we can take one of two
positions. We could view this as an error on behalf of the subjects or we
could view this as a consequence of their bounded rationality. We prefer
the latter. As an example, consider engineers. They use a finite decimal
expansion of π. From a logical point of view, this is an error, because π
is irrational. However, we do not view this as caused by irrationality of
engineers (although they do make errors) but as a simplification necessitated
by their bounded rationality.
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2.6 Projective expected utility (L)

We need to relate the quantum probabilities predicted by our model (Propo-
sition 7 of section 9) to matching probabilities (subsection 2.2, above, and
Proposition 8 of section 9, below). The appropriate decision theory is pro-
jective expected utility (La Mura, 2009). This is essentially expected utility
theory but with quantum probabilities replacing Kolmogorov probabilities.
Since all the lotteries we consider have only two outcomes: a zero outcome
and a positive outcome, projective expected utility appears entirely adequate
for our purposes.

2.7 The heuristic of insufficient reason (Assumption I)

In both classical (Kolmogorov) probability theory and quantum probability
theory any probabilities (provided they are non-negative and sum to 1) can
be assigned to the elementary events. To make a theory predictive, some
heuristic rule is needed to assign a’ priori probabilities. The heuristic com-
monly used is that of insufficient reason or equal a’ priori probabilities (we
call this a heuristic because it does not follow from either classical or quantum
probability theory).

As an application of the heuristic of insufficient reason, consider the Ells-
berg experiment of subsection 2.1, above. The known urn (K) contains nk
balls of n different colors and k balls of each color. Suppose l of the n colors
are chosen to be winning colors, hence, urn K contains lk balls of the winning
colors. Since subject i has no reason to think that one color is more likely
than another, subject i should assign the probability p = lk

nk
= l

n
to drawing

a ball of a winning color from urn K.
To be sure, this heuristic is not without problems. See, for example,

Gnedenko (1968) sections 5 and 6, pp. 37-52. This heuristic is crucial in de-
riving the Maxwell-Boltzmann distribution in classical statistical mechanics
and the Bose-Einstein and Fermi-Dirac distributions in quantum statistical
mechanics. See Tolman (1938) section 23, pp. 59-62, for a good early dis-
cussion.
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2.8 A power function form for the utility function (As-
sumption P)

The mechanism used by Dimmock et al. (2015) is not incentive compatible.
Specifically, Dimmock et al. (2015) constructed urn Ki as follows. The ratio
of the colors (whatever they are) in U were kept fixed. However, the ratio
in Ki was varied until subject i declared indifference between Ki and U . It
turns out that in this method of eliciting matching probabilities subjects have
the incentive to declare a preference for U over Ki, even when the reverse is
true. However Dimmock et al. (2015) found no evidence in their data that
this occurred. Dimmock et al. (2015, pp. 26): “In chained questions, where
answers to some questions determine subsequent questions, subjects may an-
swer strategically (Harrison, 1986). In our experiment, this is unlikely. First,
our subjects are less sophisticated than students. Second, it would primarily
have happened in the end (only after discovery), at the 0.9 probability event,
where it would increase ambiguity seeking. However, here we found strong
ambiguity aversion”.

In this paper, we use the incentive compatible mechanism of Fox & Tver-
sky (1995), study 2. Specifically, we elicit certainty equivalents of lotteries,
then infer the corresponding matching probabilities (Proposition 9 of sec-
tion 10, below). However, his method requires the specification of a utility
function, ui, for each subject, i. This is not required by the Dimmock et al.
(2015) mechanism. We use the power function form5

ui(x) = xσi , x ≥ 0, σi > 0. (1)

This introduces a free parameter, σi. Note, however, that σi is only used to
give a parsimonious description of the behavior of subjects. In particular,
σi is not chosen to make the predictions of the theory fit the evidence. The
matching probabilities predicted by the theory are parameter-free and are
based on assumptions (Q), (B) and (L) only (see Propositions 7 and 8 of
section 9, below).

2.9 Discussion

The first assumption (Q) is the main assumption. However, no mathemati-
cal structure on its own will yield empirically testable predictions; auxiliary

5The power form of the utility function is a popular choice. See Tversky Kahneman
(1992), Prelec (1998) and Vincent et al. (2017), to mention just three examples.
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assumptions are need. For example, in Newtonian mechanics, in addition to
Newton’s second law of motion and law of gravity, we need initial conditions
and simplifying assumptions. Calculus on its own will not yield empirically
testable predictions. In quantum mechanics we need, for example, the mo-
mentum operator to be px = −i h

2π
∂
∂x

and we need to specify a Hamiltonian
for the system. Hilbert space on its own is insufficient. In this respect this
paper is no exception. In addition to the assumptions of quantum probability
theory, we employ the two auxiliary assumptions (B) and (L). These three
assumptions (Q&B&L) are sufficient to theoretically derive the matching
probabilities (Propositions 7 and 8 of section 9).

Testing any theory requires further assumptions. For example, to test
Newton’s prediction of the orbits of the planets we need to make assumptions
about the human eye, the telescope and the atmosphere. We have added
assumptions (I) and (P) for the purpose of testing the theory. Thus, our test
is a test of the conjunction Q&B&L&I&P. If we reject this conjunction, then
this is a rejection of, at least, one of them, but we would not know which.
On the other hand, since Q&B&L&I&P is true if, and only if, all of these are
true, then a confirmation is a confirmation of each one of them. However, a
confirmation is not a proof. It is merely a failure to reject. Hence further
tests may lead to a rejection. No number of confirmations, however large,
can prove a theory. The most we can say about a theory, any theory, is that
it has so far survived the tests.

3 Standard (Kolmogorov) probability theory

In this section we give a brief review of standard probability theory, also
known as Kolmogorov probability theory after Kolmogorov (1950), original
German (1933). We do this for two reasons. First, because it is fundamental
to all decision theories. Second, to make clear the similarities and differences
with quantum probability (section 8). Probabilities can be either objective,
in the sense that they are the same for all decision makers, or they can be
subjective in the sense that they can differ across decision makers. In the
latter case, they can be elicited from a decision maker’s observed choices,
given the decision theory under consideration (Wakker, 2010).
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3.1 Sample space

In the standard approach we have a non-empty set, Ω, called the sample
space, and a σ-algebra, S, of subsets of Ω. The elements of S are called events.
S has the following properties: ∅ ∈ S, X ∈ S ⇒ Ω−X ∈ S (hence, Ω ∈ S),
{Xi}∞i=1 ⊂ S ⇒ ∪∞i=1Xi ∈ S (hence, ∩∞i=1Xi ∈ S). Note that the distributive
laws hold: X ∩

(
∪∞j=1Yj

)
= ∪∞j=1 (X ∩ Yj) and X ∪

(
∩∞j=1Yj

)
= ∩∞j=1 (X ∪ Yj).

3.2 Probability measures

A probability measure is then defined as a function, P : S → [0, 1] with
the properties that P (∅) = 0, P (Ω) = 1 and if Xi ∩ Xj = ∅, i 6= j, then
P (∪∞i=1Xi) =

∑∞
i=1 P (Xi).

3.3 Conditional probabilities, Bayes’ law and the law
of total probability

Let X, Y ∈ S. Define P (X|Y ) = P (X∩Y )
P (Y )

, if P (Y ) 6= 0 and P (X|Y ) = 0, if

P (Y ) = 0. P (X|Y ) is called the probability of X conditional on Y . From

this we can derive Bayes law : P (X|Y ) = P (Y |X)P (X)
P (Y )

, for P (Y ) 6= 0, and its

other equivalent forms. Let Y ∈ S, then P (X|Y ) is a probability measure on
the set {X ∈ S : X = Z ∩ Y , for some Z ∈ S}. Importantly, the law of total
probability holds: Let X ∈ S and let {Yi}ni=1 be a partition of Ω, so Yi ∈ S,
Yi 6= ∅, ∪ni=1Yi = Ω, Yi∩Yj = ∅ for i 6= j; then P (X) =

∑n
i=1P (X|Yi)P (Yi).

3.4 Random variables

A random variable is a mapping, f : Ω → R satisfying: For each r ∈ R,
{x ∈ Ω : f (x) ≤ r} ∈ S. A random variable, f , is non-negative if f (x) ≥ 0
for each x ∈ Ω. For two random variable, f, g, we write f ≤ g if f (x) ≤ g (x)
for each x ∈ Ω. A random variable, f , is simple if its range is finite. For
any random variable, f , and any x ∈ Ω, let f+ (x) = max {0, f (x)} and
f− (x) = −min {0, f (x)}. Then, clearly, f+ and f− are both non-negative
random variables and f (x) = f+ (x)− f− (x), for each x ∈ Ω. We write this
as f = f+ − f−.

Let f be a simple random variable with range {f1, f2, ..., fn}. Let Xi =
{x ∈ Ω : f (x) = fi}. Then, Xi ∈ S, Xi ∩Xj = ∅ for i 6= j and Un

i=1Xi = Ω.
The expected value of the simple random variable, f , is E (f) =

∑n
i=1 fiP (Xi).
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The expected value of the non-negative random variable, g, is
E (g) = sup {E (f) : f is a simple random variable and f ≤ g}. Note that
E (g) may be infinite. If f = f+ − f− is an arbitrary random variable such
that not both E (f+) and E (f−) are infinite, then the expected value of f
is E (f) = E (f+)−E (f−). Note that E (f) can be −∞, finite or ∞. How-
ever, if both E (f+) and E (f−) are infinite then E (f) is undefined (because
∞−∞ is undefined).

3.5 The Ellsberg paradox under Kolmogorov probabil-
ity theory

Our behavioral assumption, Assumption B (subsection 2.5, above), about
how a subject mentally constructs urn A will play an essential role in our
quantum explanation of the Ellsberg paradox. The question then arises
whether this behavioral assumption can also explain the Ellsberg paradox
when combined with classical (Kolmogorov) probability theory. Proposition
1, below, establishes that this is not the case.

Proposition 1 : Assume (B). If the probability of drawing a winning ball
from the known urn K is p, then the classical probability of drawing a winning
ball from the ambiguous urn A is also p.

Proof of Proposition 1: Let X be the event where a winning ball
(ball 1) is drawn from urn A. Let Yi be the event that urn A is in state si,
i = 1, 2, 3, 4, defined in subsection 2.5, above. By the law of total probability,
we then have:

P (X) = P (X|Y1)P (Y1)+P (X|Y2)P (Y2)+P (X|Y3)P (Y3)+P (X|Y4)P (Y4) .
(2)

We have P (Y1) = p2, P (Y2) = p (1− p), P (Y3) = (1− p) p, P (Y4) =
(1− p)2, P (X|Y1) = 1, P (X|Y2) = 1

2
, P (X|Y3) = 1

2
, P (X|Y4) = 0. Hence,

from (2), we get:
P (X) = p. (3)

Hence, if the probability of drawing ball 1 from the known urn K is p,
then the classical probability of drawing ball 1 from the ambiguous urn A is
also p. �
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Thus, even with our behavioral assumption (B), the classical (Kolmogorov)
probability treatment gives the same probability, p, of winning whether a sub-
ject chooses urn K or urn A. Hence, a subject has no reason to prefer U over
K or K over U on probabilistic grounds.

Keynes (1921) pointed out that there is a difference in the strength or
quality of the evidence. Subjects may reason that, although the assignment
of the same probability to each color is sound, they are more confident in the
correctness of this judgement in the case of K than in the case of U . Hence,
they prefer K to U . Thus their preference works through the utility channel
rather than the probability channel. However, this explanation appears to
be contradicted by the evidence of Dimmock et al. (2015) that subjects are
ambiguity seeking for low probabilities.

4 Expected utility theory (EU)

It will be sufficient for our purposes to consider a partition of Ω into a finite set
of exhaustive and mutually exclusive events: Ω = ∪ni=1Xi, Xi 6= ∅, Xi∩Xj =
∅ for i 6= j, i = 1, 2, ..., n. A decision maker can take an action a ∈ Λ that
results in outcome oi (a) ∈ O and utility u (oi (a)) if the event Xi occurs,
where u : O → R. The decision maker chooses an action, a ∈ Λ, before
knowing which event, Xi, will occur or has occurred. Let pi be the probability
with which event Xi occurs. Then the decision maker’s expected utility from
choosing the action a ∈ A is Eu (a) =

∑n
i=1piu (oi (a)). The decision maker

prefers action a ∈ Λ over action b ∈ Λ if Eu (a) ≥ Eu (b). The preference is
strict if Eu (a) > Eu (b). The decision maker is indifferent between a and b
if Eu (a) = Eu (b). The probabilities pi, i = 1, 2, ..., n, can either be objective
(the same for all decision makers, von Neumann and Morgenstern, 1947)
or subjective (possibly different for different decision makers, Savage, 1954).
In the latter case, it follows from Savage’s axioms that these probabilities
can be uniquely elicited from the decision maker’s behavior. Note that the
action a ∈ Λ results in the lottery (o1 (a) , X1; o2 (a) , X2; ...; on (a) , Xn), i.e.,
the lottery that results in outcome oi (a) if the event Xi occurs. In terms of
probabilities this lottery can be written as (o1 (a) , p1; o2 (a) , p2; ...; on (a) , pn),
i.e., the lottery that results in outcome oi (a) with probability pi. Sometimes
it is more convenient to write the lottery explicitly rather than the action
that gave rise to it.

12



4.1 The Ellsberg paradox under expected utility the-
ory

We now apply expected utility theory to the Ellsberg experiment.

Proposition 2 : Under, expected utility theory a subject should be ambiguity
neutral.

Proof of Proposition 2: The subject can choose either K or A. From
Proposition 1, we see that either action results in the outcome v > 0 with
probability p or 0 with probability 1 − p. Recalling that u(0) = 0, the
subject’s expected utility, in either case, is Eu(K) = Eu(A) = pu(v). Hence,
the subject is ambiguity neutral. �

However, the evidence indicates that subjects exhibit insensitivity.

5 The smooth ambiguity model (SM)

The smooth ambiguity model (Klibanoff et al., 2005) is currently the most
popular theory in economics for modelling ambiguity. It encompasses several
earlier theories as special limiting cases. These include von Neumann and
Morgenstern (1947), Hurwicz (1951), Savage (1954), Luce and Raiffa (1957),
Gilboa and Schmeidler (1989) and Ghirardato et al. (2004). Conte and Hey
(2013) find it provides the most satisfactory account of ambiguity6.

For our purposes, it will be sufficient to consider the following special
case of the smooth model. Recall that under expected utility theory (sec-
tion 4), a decision maker chooses an action a ∈ Λ that results in the out-
come, oj (a), with probability, qj, j = 1, 2, ..., n. The outcome, oj (a), yields
the utility u (oj (a)) to the decision maker. Hence, her expected utility is
Eu (a) =

∑n
j=1qju (oj (a)). Now suppose that the decision maker is unsure

of the probability distribution (q1, q2, ..., qn). Furthermore, she believes that
the distribution (qi1, qi2, ..., qin) will occur with probability pi, i = 1, 2, ...,m.
To characterize the decision maker’s attitude to ambiguity, a new function,
ϕ : R→ R, is introduced and is assumed to be increasing. Then the decision
maker’s expected utility under the smooth model that results from choosing

the action a ∈ Λ is SU (a) =
∑m

i=1piϕ
(∑n

j=1qiju (oj (a))
)

. Thus, the se-

quence of moves is as follows. First, the decision maker chooses the action

6However, Kothiyal et al. (2014) disagree, see below.
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a ∈ Λ, then nature chooses the distribution (qi1, qi2, ..., qin) with probabil-
ity pi. Finally, nature moves again and chooses the out come oj (a) with
probability qij.

The smooth model reduces to expected utility theory in the following
two cases: (1), m = 1, so there is no ambiguity, (2), ϕ is positive affine (i.e.,
ϕ (x) = βx, β > 0, x ∈ R).

Suppose m > 1, so we do have genuine ambiguity. If ϕ is strictly con-
cave, then the smooth model can explain ambiguity aversion. It can explain
ambiguity seeking, if ϕ is strictly convex. But it cannot explain insensitivity
(i.e., ambiguity seeking for low probabilities and ambiguity aversion for high
probabilities) because ϕ cannot be both strictly concave and strictly convex.

6 Rank dependent expected utility theory (RDU)

The considerable refutations of EU have motivated many developments.
One of the most popular of these is rank dependent expected utility theory
(RDU). Recall that in EU (section 4) probabilities enter the objected func-
tion, Eu (a) =

∑n
i=1piu (oi (a)), linearly. However, in RDU, probabilities

enter the objective function in a non-linear, though precise, way. We start
with a probability weighting function, which is a strictly increasing function

w : [0, 1]
onto→ [0, 1], hence w (0) = 0 and w (1) = 1. Typically, low probabil-

ities are overweighted and high probabilities are underweighted. The prob-
ability weighting function is applied to the cumulative probability distribu-
tion. Hence, it transforms it into another cumulative probability distribution.
Hence, we may view RDU as EU applied to the transformed probability dis-
tribution. The attraction of this is that the full machinery of risk analysis
developed for EU can be utilized by RDU (Quiggin, 1982, 1993). We now
give the details.

Consider a decision maker who can take an action, a ∈ Λ, that results in
outcome, oi (a) ∈ O, with probability pi, i = 1, 2, ..., n, pi ≥ 0,

∑n
i=1 pi = 1.

The decision maker has a utility function, u : O → R. The decision maker
has to choose her action before the outcome is realized. Order outcomes in
increasing magnitude. Assuming an increasing utility function, this gives:
u (o1 (a)) ≤ u (o2 (a)) ≤ ... ≤ u (on (a)). Define decision weights, πi, i =

1, 2, ..., n, as follows. πn = w (pn), πi = w
(∑n

j=i pj

)
− w

(∑n
j=i+1 pj

)
, i =

1, 2, ..., n− 1. The decision maker’s rank dependent expected utility is then
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RDU (a) =
∑n

i=1 πiu (oi (a)). Expected utility theory (EU) is obtained by
taking w (p) = p. Empirical evidence shows that typically w (p) is inverse-
S shaped, so low probabilities are overweighted but high probabilities are
underweighted. Probabilities in the middle range are much less affected. It is
important to note that this need not be because decision makers misperceive
probabilities (although that does happen). Rather, the weights people assign
to utilities are much more sensitive to probability changes near 0 and near 1
compared to probability changes in the the middle range.7

If a subject chooses urn K, then her rank dependent expected utility
is RDU (K) = w (p)u (v). If she chooses urn A, then her rank dependent
expected utility is RDU (A) = w (p)u (v) = RDU (K). Hence, a decision
maker obeying RDU will exhibit ambiguity neutrality. Thus, just like EU,
RDU is not consistent with insensitivity.

Two important extensions of RDU that we do not review here are cumula-
tive prospect theory (Tversky and Kahneman, 1992) and Choquet expected
utility (Gilboa 1987, 2009, Schmeidler, 1989). Cumulative prospect the-
ory extends RDU by including reference dependence and loss aversion from
Kahneman and Tversky (1979). Choquet expected utility extends RDU by
replacing probability weighting functions with more general capacities (Cho-
quet, 1953-1954). Like a probability measure, a capacity is defined on a
σ-algebra of subsets of a set. However, unlike a probability measure, a ca-
pacity need not be additive. By contrast, the quantum probability measure is
an additive measure but defined on the lattice of closed subspaces of a Hilbert
space, rather than a σ-algebra of subsets of a set. Further extensions of both
are reviewed in Wakker (2010). Despite their importance, these extensions
are not immediately relevant to the results of this paper.

7 The source dependent model (SDM)

The source dependent model (SDM) is probably the most successful classical
(i.e., non-quantum) model of ambiguity (Abdellaoui et al., 2011; Kothiyal
et al., 2014; Dimmock et al., 2015). It requires, for each subject i, the
specification of two probability weighting functions, wiK and wiU , one for urn
K and one for urn U . A probability weighting function is a strictly increasing

function, w : [0, 1]
onto→ [0, 1]. The resulting source dependent expected utility

7This feature enables RDU to account for the Allais paradox.
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from urns K and U are, respectively (recall that ui (0) = 0),

Eui (K) = wiK (p)ui (v) , for urn K, (4)

Eui (U) = wiU (p)ui (v) , for urn U . (5)

Proposition 3 : Let p be the probability of drawing a winning ball from Urn
K. Let m∗i (p) be the matching probability predicted by the source dependent
model. Let wiK, wiU be the probability weighting functions for urns K and
U , respectively, then
(a) wiK (m∗i (p)) = wiU (p).
(b) Subject i is ambiguity averse, ambiguity neutral or ambiguity seeking
according to
(i) Eui (K) T Eui (U),

(ii) wiK (p)ui (v) T wiU (p)ui (v),

(iii) wiK (p) T wiU (p),

(iv) wiK (p) T wiK (m∗i (p)),

(v) p T m∗i (p).

Proof of Proposition 3: From Proposition 1 it follows that p is also the
probability of drawing a winning ball from Urn U . From (4), (5) and the defi-
nition of matching probability (subsection 2.2), it follows that wiK (m∗i (p))ui (v) =
wiU (p)ui (v). Since ui (v) > 0, it follows that wiK (m∗i (p)) = wiU (p). This
establishes (a). Part (i) of (b) follows from the definitions of ambiguity aver-
sion, ambiguity neutrality and ambiguity seeking. Part (ii) then follows from
(4) and (5). Part (iii) follows since ui (v) > 0. Part (iv) follows from parts
(a) and (iii). Part (v) follows because wiK is strictly increasing. �

From Proposition 3 b(iii) it follows that if wiK = wiU , then subject i is
ambiguity neutral for all p, contrary to the evidence. Hence, for the source
dependent model to explain the Ellsberg paradox, we must have wiK 6= wiU .

For the Prelec (1998) probability weighting functions, we have:

wiK (p) = e−βiK(− ln p)αiK , αiK > 0, βiK > 0, p ∈ (0, 1) , (6)

wiU (p) = e−βiU (− ln p)αiU , αiU > 0, βiU > 0, p ∈ (0, 1) , (7)

Proposition 4 : Let p be the probability of drawing a winning from urn U
and m∗i (p) the matching probability predicted by the source dependent model.
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Let wiK and wiU be the Prelec probability weighting functions for urns K and
U , respectively ((6) and (7)). Then

− ln (− lnm∗i (p)) =
ln βiK − ln βiU

αiK
+
αiU
αiK

(− ln (− ln p)) .

Proof of Proposition 4: Follows from (4), (5) and Proposition 3(a). �

Proposition 5 (Attitudes to ambiguity): Let p be the probability of drawing
a winning ball from urn K. Let wiK and wiU be the Prelec probability weight-
ing functions for urns K and U , respectively ((6) and (7)).
(a) Suppose αiU = αiK. Then subject i is

universally ambiguity averse, if βiK < βiU ,

universally ambiguity neutral, if βiK = βiU ,

universally ambiguity seeking, if βiK > βiU .

(b) Suppose αiU < αiK. Then subject i is

ambiguity averse for − ln (− ln p) >
ln βiK − ln βiU
αiK − αiU

,

ambiguity neutral for − ln (− ln p) =
ln βiK − ln βiU
αiK − αiU

,

ambiguity seeking for − ln (− ln p) <
ln βiK − ln βiU
αiK − αiU

.

(c) Suppose αiU > αiK. Then subject i is

ambiguity averse for − ln (− ln p) <
ln βiK − ln βiU
αiK − αiU

,

ambiguity neutral for − ln (− ln p) =
ln βiK − ln βiU
αiK − αiU

,

ambiguity seeking for − ln (− ln p) >
ln βiK − ln βiU
αiK − αiU

.

Proof of Proposition 5: Follows from part b(v) of Proposition 3 and
Proposition 4. �

From Proposition 5, it is clear that, for the Prelec probability weighting
functions (6) and (7), the source dependent model is consistent with univer-
sal ambiguity aversion, universal ambiguity neutrality, universal ambiguity
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seeking, ambiguity aversion for low probabilities and ambiguity seeking for
high probabilities or the reverse. It all depends on the values of the parame-
ters αiK , βiK , αiU , βiU , which have to be estimated from the data the model
seeks to explain.

Next, we wish to relate the matching probabilities, m∗i (p), predicted by
the source dependent model, to the certainty equivalents we inferred under
Assumption P (subsection 2.8).

Proposition 6 : Let p be the probability of drawing a winning from urn U
and m∗i (p) the matching probability predicted by the source dependent model.
Let wiK and wiU be the Prelec probability weighting functions for urns K and
U , respectively ((6) and (7)). Let v be the monetary payment to a subject if
a winning ball is drawn. Let p be the probability of selecting a winning ball
from the known urn (K). The monetary valuation of the known urn (K) to
subject i is denoted by viK and the monetary valuation of the unknown urn
(U) to subject i is denoted by viU . In addition, assume (P). Then

− ln (− lnm∗i (p)) = − ln (− ln p) +
1

αiK
ln

(
ln v − ln viK
ln v − ln viU

)
. (8)

Proof of Proposition 6:
Firstly, for the known urn (K), we have

(viK)σi = wiK (p) (v)σi . (9)

Solve (9) for σi, to get

σi =
− lnwiK (p)

ln v − ln viK
. (10)

By definition of matching probability, we have

(viU)σi = wiK (m∗i (p)) (v)σi . (11)

Solve (11) for wiK (m∗i (p)), to get

wiK (m∗i (p)) =
(viU
v

)σi
. (12)

Substitute from Equation (10) into Equation (12) to get

wiK (m∗i (p)) =
(viU
v

)− lnwiK (p)

ln v−ln viK . (13)
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Taking logs of (13), and some rearranging, we get

lnwiK (m∗i (p)) =
lnwiK (p)

ln v − ln viK
(ln v − ln viU). (14)

From the Prelec function (6), we get

lnwiK (p) = −βiK (− ln p)αiK , (15)

lnwiK (m∗i (p)) = −βiK (− lnm∗i (p))αiK . (16)

From (14)-(16), and some rearranging, we get (8). �

8 Elements of Quantum Probability Theory

8.1 Preamble

Expected utility theory (EU) is probably still the most popular decision
theory in economics. On the other hand, Luce and Raiffa (1957, p35) stated
that “reported preferences almost never satisfy the axioms” and, on p37,
stated that the evidence against EU is “now bolstered by a staggering amount
of empirical data”. Since then, the evidence against EU has multiplied several
fold. Hence, the hunt is on for a decision theory more in accord with the
evidence.

However, the (non-quantum) alternatives that have been proposed are
obtained from expected utility theory by relaxing one, or more, of its as-
sumptions. For example, Segal (1990) proposed dropping the reduction ax-
iom. The smooth ambiguity model relaxes the assumption of linearity of the
utility function in probabilities by introducing the function ϕ, which has to be
determined from the data (section 5). Rank dependent expected utility theory
(section 6) and source dependent probability theory (section 7) relax the as-
sumption of linearity of the utility function in probabilities using probability
weighting functions. But neither of these theories determine the probability
weighting functions they use, which have to be chosen to fit the empirical ev-
idence. Unfortunately, such weakening of EU produces incomplete theories,
they introduce greater flexibility at the cost of reducing predictive power.

Quantum decision theory (QDT) originated with Aerts and Aerts (1994)
who noticed similarities between paradoxes of human behavior (e.g., those
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empirical observations that contradict the predictions of expected utility the-
ory) and paradoxes of quantum mechanics (i.e., those empirical observations
that contradict the predictions of classical mechanics).

The paradoxes of quantum mechanics led von Neumann (1955, original
German 1932) to devise a new mathematical structure in which quantum
mechanics can be given a consistent formulation, Hilbert Space and quan-
tum probability. Events are vector subspaces of Hilbert space, and quantum
probability is an additive (though not distributive) measure on these.

In quantum decision theory (QDT), unlike all other decision theories,
events are not distributive, and this is the main difference between the two.
Thus, in QDT the event “X and (Y or Z )” need not be equivalent to the
event “(X and Y ) or (X and Z )”. On the other hand, in all other decision
theories, these two events are equivalent. This non-distributive nature of
QDT is the key to its success in explaining paradoxes of behavior that other
decision theories find difficult to explain. For example, order effects, the
Linda paradox, the disjunction fallacy, the conjunction fallacy and the failure
of the sure-thing principle. See Busemeyer & Bruza (2012); in particular,
their sections 1.2, 4.1-4.3, 5.2 and 10.2.3. As a result of the non-distributive
nature of QDT, the law of total probability does not generally hold. Instead,
we use the Feynman rules and the law of reciprocity. See Busemeyer & Bruza
(2012), pp. 5, 13, 39.

Quantum probability theory is complete in the following sense. Once
probabilities are assigned to the elementary events (by, say, the heuristic of
insufficient reason, or by the observation of relative frequencies) quantum
theory then uniquely determines the probabilities of all events.

In fact, more can be said. Just as the Kolmogorov probability measure is
the unique additive measure on subsets of a set (Billingsley, 1995, Theorem
3.1, p.36), so the quantum probability measure is the unique additive measure
on subspaces of a vector space (Gleason, 1957).

Thus, we have a choice of two probability measures: Kolmogorov or quan-
tum. The latter is more general in the sense that any phenomenon that can
be explained by the former can also be explained by the latter, but the re-
verse is not true. So, maybe, the need to use probability weighting functions
is just a symptom that we should be using quantum probability theory rather
than Kolmogorov probability theory. One can take either of the following
two positions:

1. Rational beings should follow Kolmogorov probability theory. The
more general quantum probability would then give a systematic account of
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irrational human behavior.
2. Kolmogorov probability theory is simply inadequate to describe

human behavior (just as it is not adequate to explain behavior of material
objects; we do not say that material objects are irrational because they
disobey classical probability theory). We need a more general probability
theory, such as quantum probability or Choquet capacity (Choquet, 1953-
1954).

We prefer the second position.
A number of quantum models of the Ellsberg paradox have been devel-

oped.
Busemeyer and Bruza (2012, section 9.1.2) applied projective expected

utility theory (Subsection 2.6) to explain the Ellsberg paradox. Their model
has a free parameter, a. If a > 0 we get ambiguity aversion, if a = 0, we
get ambiguity neutrality, and if a < 0 we get ambiguity seeking. However, it
cannot explain the simultaneous occurrence in the same subject of ambiguity
seeking (for low probabilities), ambiguity neutrality and ambiguity aversion
(for medium and high probabilities), because a cannot be simultaneously
negative, zero and positive.

Aerts et al. (2014) formulate and study a quantum decision theory (QDT)
model of the Ellsberg paradox. They consider one of the standard versions
of the Ellsberg paradox. They consider a single urn with 30 red balls and
60 balls that are either yellow or black, the latter in unknown proportions.
They use the heuristic of insufficient reason (subsection 2.7) for the known
distribution (red) but not for the unknown distribution (yellow or black).
They prove that in their mode, the Ellsberg paradox reemerges if they use
the heuristic of insufficient reason for the unknown distribution. They, there-
fore, abandon this heuristic. They choose the ratio of yellow to black to fit
the evidence from their subjects. However, other theories can explain the
Ellsberg paradox if we abandon insufficient reason. Thus, the explanation
of Aerts et al. (2014) is not specifically quantum, although it is expressed in
that language.

Khrennikov and Haven (2009) provide a general quantum-like framework
for situations where Savage’s sure-thing principle (Savage, 1954) is violated;
one of these being the Ellsberg paradox. Their quantum-like or contextual
probabilistic (Växjö) model is much more general than either the classical
Kolmogorov model or the standard quantum model (see Khrennikov, 2010,
and Haven and Khrennikov, 2013). By contrast, our approach is located
strictly within standard quantum theory. Furthermore, in their formulation,
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the Ellsberg paradox reemerges if one adopts (as we do) the heuristic of
insufficient reason.8 On the other hand, although abandoning the heuris-
tic of insufficient reason gives models extra flexibility, it also reduces their
predictive power.

Thus, some of the quantum models that have been proposed do explain
the Ellsberg paradox, but at the cost of introducing a considerable degree
of flexibility. However, when non-quantum models are granted the same de-
gree of flexibility, they too can explain the Ellsberg paradox. Busemeyer &
Bruza (2012) section 9.1.2 conclude “In short, quantum models of decision
making can accommodate the Allais and Ellsberg paradoxes. But so can
non-additive weighted utility models, and so these paradoxes do not point
to any unique advantage for the quantum model”. By contrast, when we re-
place quantum probability by Kolmogorov probability in our model, then the
Ellsberg paradox reemerges. This is because our underlying decision theory,
projective expected utility (La Mura 2009) reduced to expected utility the-
ory when quantum probabilities are replaced with Kolmogorov probabilities,
leading to the emergence of the Ellsberg paradox (recall Propositions 1 and
2). Hence, we make essential use of quantum probability theory.

By contrast, our model (section 9, below) provides a parameter-free deriva-
tion of quantum probabilities and can explain the simultaneous occurrence in
the same subject of ambiguity seeking (low probabilities), ambiguity neutral-
ity and ambiguity aversion (medium and high probabilities). Its predictions
are in good agreement with the empirical evidence in Dimmock et al. (2015).
Thus, our application of projective expected utility theory has a clear advan-
tage over all other decision theories. Furthermore, projective expected utility
can be extended to include reference dependence and loss aversion, to yield
projective prospect theory, where decision weights are replaced with quan-
tum probabilities. This would have a clear advantage over all the standard
(non-quantum) versions of prospect theory.

For papers examining the limits of standard quantum theory when applied
to cognitive psychology, see Khrennikov et al. (2014), Basieva & Khrennikov
(2015), and Asano et al. (2016).

8Khrennikov and Haven (2009), subsection 4.6, p386.
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8.2 Vectors

For our purposes (as we shall show), it is sufficient to use a finite dimensional
real vector space Rn (in fact, with n = 4). A vector, x ∈ Rn, is represented
by an n × 1 matrix (n rows, one column). Its transpose, x†, is then the
1 × n matrix (one row, n columns) of the same elements but written as a
row.9. The zero vector, 0, is the vector all of whose components are zero.
Let r ∈ R and x,y ∈ Rn with components xi and yi, respectively. Then
rx is the vector whose components are rxi and x + y is the vector whose
components are xi + yi. y ∈ Rn is a linear combination of x1,x2, ...,xm ∈ Rn

if y =
∑m

i=1rixi for some real numbers r1, r2, ..., rm. The inner product of
x and y is x†y =

∑n
i=1xiyi, where xi, yi are the components of x and y,

respectively.10 If x†y = 0, then x is said to be orthogonal to y and we write
x ⊥ y. Note that x ⊥ y if, and only if, y ⊥ x. The norm, or length, of x is
‖x‖ =

√
x†x. x is normalized if ‖x‖ = 1.11 X ⊂ Rn is a vector subspace (of

Rn) if it satisfies: X 6= ∅, x,y ∈ X ⇒ x + y ∈ X and r ∈ R,x ∈ X ⇒ rx ∈
X. Let L be the set of all vector subspaces of Rn. Then {0} ,Rn ∈ L. Let
X, Y ∈ L. Then X ∩ Y ∈ L and X + Y = {x + y : x ∈ X,y ∈ Y } ∈ L. If
X1, X2, ..., Xm ∈ L, then

∑m
i=1Xi = {

∑m
i=1xi : xi ∈ Xi} ∈ L. The orthogonal

complement of X ∈ L is X⊥ = {y ∈ Rn : y ⊥ x for each x ∈ X}. We have

X⊥ ∈ L,
(
X⊥
)⊥

= X, X∩X⊥ = {0}, X+X⊥ = Rn. Let z ∈ Rn and X ∈ L,
then there is a unique x ∈ X such that ‖z− x‖ ≤ ‖z− y‖ for all y ∈ X. x is
called the orthogonal projection of z onto X. Let δii = 1 but δij = 0 for i 6= j.
s1, s2, ..., sm form an orthonormal basis for X ∈ L if si†sj = δij and if any
vector x ∈ X can be represented as a linear combination of the basis vectors:
x =

∑m
i=1xisi, where the numbers x1, x2, ..., xm are uniquely determined by

x and s1, s2, ..., sm. The choice of an orthonormal basis for a vector space is
arbitrary. However, the inner product of two vectors is independent of the
orthonormal basis chosen. We shall refer to a normalized vector, s ∈ Rn,
as a state vector. In particular, if s1, s2, ..., sn form an orthonormal basis for
Rn, then we shall refer to these as eigenstates. Note that if s =

∑n
i=1sisi,

9More generally, in Cn, x† is the adjoint, of x. For example, in C2, if x =

[
r1e

iθ1

r2e
iθ2

]
,

where r1, θ1, r2, θ2 are real and i =
√
−1, then x† =

[
r1e
−iθ1 r2e

−iθ2
]
.

10More generally, in Cn, x†y =
∑n
i=1x

∗
i yi, where, if x = reiθ, r, θ ∈ R, then x∗ = re−iθ.

11In Dirac notation, x = |x〉, x† = 〈x|, x†y = 〈x|y〉, ‖x‖ =
√
x†x =

√
〈x|x〉. Physicists

are, of course, very familiar with the Dirac notation. On the other hand, most economists
are not. Therefore, we use standard algebraic notation, with whish they are familiar.
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then s is a state vector if, and only if, ‖s‖ = 1, equivalently, if, and only
if, s†s =

∑n
i=1sisi = 1. Let X ∈ L. Let s1, s2, ..., sm form an orthonormal

basis for X. Extend s1, s2, ..., sm to an orthonormal basis, s1, s2, ..., sm, ..., sn,
for Rn (this can always be done). Then sm+1, ..., sn form an orthonormal
basis for the the orthogonal complement, X⊥, of X. Let z =

∑n
i=1zisi ∈ Rn.

Then
∑m

i=1zisi is the orthogonal projection of z onto X and
∑n

i=m1zisi is the
orthogonal projection of z onto X⊥.

We will represent the state of the ambiguous Ellsberg urn (A) by a nor-
malized vector in R4. We have checked that adopting the complex vector
space, C4, changes none of our results.

8.3 State of a system, events and quantum probability
measures

The state of a system (physical, biological or social) is represented by a
normalized vector, s ∈ Rn, i.e., ‖s‖ = 1. The set of events is the set,
L, of vector subspaces of Rn. {0} is the impossible event and Rn is the
certain event. X⊥ ∈ L is the complement of the event X ∈ L. If X, Y ∈
L then X ∩ Y is the conjunction of the events X and Y ; X + Y is the
event where either X occurs or Y occurs or both (if X, Y ∈ L then, in
general, X ∪ Y /∈ L). Recall that in a σ-algebra of subset of a set, the
distributive law: X ∩ (Y UZ) = (X ∩ Y ) ∪ (X ∩ Z), and its dual12, hold.
However, its analogue for L: X ∩ (Y + Z) = (X ∩ Y ) + (X ∩ Z), and its
dual13, fail to hold in general. Consequently, the law of total probability also
fails to hold in general. The failure of the distributive laws to hold in L
has profound consequences. This non-distributive nature of L is the key to
explaining many paradoxes of human behavior. F : L → [0, 1] is additive if
F (
∑m

i=1Xi) =
∑m

i=1 F (Xi), where Xi ∈ L and Xi ∩Xj = {0} for i 6= j. A
quantum probability measure is an additive measure, P : L → [0, 1], such that
P ({0}) = 0, P (Rn) = 1. If a number can be interpreted as either a classical
probability or a quantum probability, then we shall simply refer to it as a
probability. Otherwise, we shall refer to it as either a classical probability or
a quantum probability, whichever is the case.

12X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
13X + (Y ∩ Z) = (X + Y ) ∩ (X + Z)
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8.4 Random variables and expected values

Let L be the set of all vector subspaces of Rn. A random quantum variable is
a mapping, f : Rn → R satisfying: {ϕ ∈ Rn : f (ϕ) ≤ r} ∈ L for each r ∈ R.

A random quantum variable, f , is non-negative if f (ϕ) ≥ 0 for each ϕ ∈
Rn. For two random quantum variables, f, g, we write f ≤ g if f (ϕ) ≤ g (ϕ)
for each ϕ ∈ Rn. A random quantum variable, f , is simple if its range is
finite. For any random quantum variable, f , and any ϕ ∈ Rn, let f+ (ϕ) =
max {0, f (ϕ)} and f− (ϕ) = −min {0, f (ϕ)}. Then, clearly, f+ and f− are
both non-negative random quantum variables and f (ϕ) = f+ (ϕ) − f− (ϕ),
for each ϕ ∈ Rn. We write this as f = f+ − f−.

Let f be a simple random quantum variable with range {f1, f2, ..., fn}.
Let Xi = {ϕ ∈ Rn : f (ϕ) = fi}. Then Xi ∈ L, Xi ∩ Xj = {0} for i 6= j
and

∑n
i=1Xi = Rn. Then the expected value of the simple random quantum

variable, f , is E (f) =
∑n

i=1 fiP (Xi). The expected value of the non-negative
random quantum variable, g, is
E (g) = sup {E (f) : f ≤ g is a simple random quantum variable}. Note that
E (g) may be infinite. If f = f+ − f− is an arbitrary random quantum vari-
able such that not both E (f+) and E (f−) are infinite, then the expected
value of f is E (f) = E (f+)−E (f−). Note that E (f) can be −∞, finite or
∞. However, if E (f+) and E (f−) are both infinite then E (f) is undefined
(because ∞−∞ is undefined).

8.5 Transition amplitudes and probabilities

Suppose ϕ, χ ∈ Rn are two states (thus, they are normalized: ‖ϕ‖= ‖χ‖=1).
ϕ → χ symbolizes the transition from ϕ to χ. Then, by definition, the
amplitude of ϕ → χ is given by A (ϕ→ χ) = ϕ†χ. Its quantum probability
is P (ϕ→ χ) = (ϕ†χ)2.14

Consider the state ϕ ∈ Rn (‖ϕ‖=1). The occurrence of the event X ∈ L
causes a transition, ϕ → ψ. The new state, ψ (‖ψ‖=1), can be found as
follows. Let π be the orthogonal projection of ϕ onto X (recall subsection
8.2). Suppose that π 6= 0 (if π = 0, then π and X are incompatible, that is,
if X occurs then the transition ϕ → ψ is impossible). Then ψ = π

‖π‖ is the
new state conditional on X.

14In Cn, P (ϕ→ χ) = (ϕ†χ) (ϕ†χ)
∗
. However, as we are working in Rn, (ϕ†χ) = (ϕ†χ)

∗
.
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8.6 Born’s rule

We can now give the empirical interpretation of the state vector. Consider
a physical, biological or social system. On measuring a certain observable
pertaining to the system, this observable can take the value vi ∈ R with
probability pi ≥ 0,

∑n
i=1pi = 1. To model this situation, let s1, s2, ..., sn form

an orthonormal bases for Rn. Take si to be the state (eigenstate) where the
observable takes the value (eigenvalue) vi for sure. Consider the general state
s =

∑n
i=1sisi. If the act of measurement gives the value vi for the observable,

then this implies that the act of measurement has caused the transition s→
si. The probability of the transition s→ si is P (s→ si) = (s†si)2 = s2i = pi.
Thus, in the representation of the state of the system by s =

∑n
i=1sisi, s

2
i is

the probability of obtaining the value vi on measurement15

8.7 Feynman’s first rule (single path)

See Busemeyer and Bruza (2012), section 2.2, for the Feynman rules.
Let ϕ, χ, ψ be three states. ϕ → χ → ψ symbolizes the transition from

ϕ to χ followed by the transition from χ to ψ. The amplitude of ϕ→ χ→ ψ
is then the product, A (ϕ→ χ→ ψ) = A (ϕ→ χ)A (χ→ ψ) = (ϕ†χ) (χ†ψ),
of the amplitudes of ϕ → χ and χ → ψ. The quantum probability of the
transition, ϕ → χ → ψ, is then P (ϕ→ χ→ ψ) = (A (ϕ→ χ→ ψ))2 =
((ϕ†χ) (χ†ψ))2 = (ϕ†χ)2 (χ†ψ)2, i.e., the product of the respective probabil-
ities. This can be extended to any number of multiple transitions along a
single path.

8.8 Feynman’s second rule (multiple indistinguishable
paths)

Suppose that the transition from ϕ to ψ can follow any of two paths:
ϕ→ χ1 → ψ or ϕ→ χ2 → ψ. Furthermore, and this is crucial, assume that
which path was followed is not observable. First, we calculate the amplitude
of ϕ→ χ1 → ψ, using Feynman’s first rule. We also calculate the amplitude
of ϕ → χ2 → ψ, using, again, Feynman’s first rule. To find the amplitude
of ϕ → ψ (via χ1 or χ2) we add the two amplitudes. The amplitude of
ϕ → ψ is then (ϕ†χ1) (χ1†ψ) + (ϕ†χ2) (χ2†ψ). Finally, the probability of

15More generally, if we use Cn, then s∗i si, is the probability of obtaining the value vi on
measurement.
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the transition ϕ → ψ (via χ1 or χ2) is ((ϕ†χ1) (χ1†ψ) + (ϕ†χ2) (χ2†ψ))2 =
(ϕ†χ1)

2 (χ1†ψ)2 + (ϕ†χ2)
2 (χ2†ψ)2 + 2 ((ϕ†χ1) (χ1†ψ) (ϕ†χ2) (χ2†ψ)).

8.9 Feynman’s third rule (multiple distinguishable paths)

Suppose that the transition from ϕ to ψ can follow any of two paths:
ϕ → χ1 → ψ or ϕ → χ2 → ψ. Furthermore, and this is crucial, assume
that which path was followed is observable (although it might not actually
be observed). First, we calculate the quantum probability of ϕ → χ1 → ψ,
using Feynman’s first rule. We also calculate the quantum probability of
ϕ → χ2 → ψ, using, again, Feynman’s first rule. To find the total quantum
probability of ϕ → ψ (via χ1 or χ2) we add the two probabilities. The
quantum probability of ϕ→ ψ is then (ϕ†χ1)

2 (χ1†ψ)2 + (ϕ†χ2)
2 (χ2†ψ)2.

Comparing the last expression with its analogue for Feynman’s second
rule, we see the absence here of the term 2 ((ϕ†χ1) (χ1†ψ) (ϕ†χ2) (χ2†ψ)).
This is called the interference term. Its presence or absence has profound
implications in both quantum physics and quantum decision theory.

The Feynman rules play a role in quantum probability theory analogous
to the rule played by Bayes’ law and the law of total probability in classical
theory.

8.10 An illustration

We give a simple example where it is clear which Feynman rule should be
used. Consider an Ellsberg urn containing two balls. One ball is marked 1
and the other ball is marked 2. If a ball is drawn at random then, in line
with the heuristic of insufficient reason, we assign probability 1

2
to ball 1

being drawn and probability 1
2

to ball 2 being drawn. Call this initial state
s. Let the state where ball 1 is drawn be s1 and let s2 be the state if ball 2 is
drawn. Now, suppose a ball is drawn but returned to the urn. This should
not change the initial state of the urn. Both classical reasoning and quantum
reasoning should give a probability of 1 to the transition s→ s.

8.10.1 Classical treatment

Consider the transition s → s. This can occur via one of the two paths:
s → s1 → s or s → s2 → s : either ball 1 is drawn then returned to the urn
or ball 2 is drawn then returned to the urn. The classical treatment gives

27



a probability 1
2

to the transition s → s1. Since returning ball 1 restores the
original state of the urn, the classical probability of the transition s1 → s is
1. Hence, the classical probability of the transition s→ s1 → s is 1

2
× 1 = 1

2
.

Similarly, the classical probability of the transition s → s2 → s is also 1
2
.

Hence, the classical probability of the transition s → s via either paths
s→ s1 → s or s→ s2 → s is 1

2
+ 1

2
= 1.

8.10.2 Quantum treatment

We use R2. Let s1 =

[
1
0

]
be the state if ball 1 is drawn and let s2 =

[
0
1

]
be the state if ball 2 is drawn. Take the initial state of the urn be s =√

1
2
s1 +

√
1
2
s2 =

 √1
2√
1
2

. Let us check to see if this is a reasonable assign-

ment. s1 and s2 form an orthonormal basis for R2. ‖s‖ =
√

s†s = 1. Hence,

s is a state vector. The amplitude of the transition s → s1 is s†s1 =
√

1
2
.

The amplitude of the transition s1 → s is s1†s =
√

1
2
. Hence, by Feyn-

man’s first rule (single path), the amplitude of the transition s → s1 → s
is A (s→ s1 → s) = A (s→ s1)A (s1 → s) = 1

2
, in agreement with our in-

tuitive reasoning. Similarly, the amplitude of the transition s → s2 → s
is A (s→ s2 → s) = 1

2
. We now compare the results from applying Feyn-

man’s second rule with the results from applying Feynman’s third rule. Since
P (s→ s) = (A (s→ s))2 = (s†s)2 = (1)2 = 1, the correct rule is the one
that gives this result.

Feynman’s second rule (multiple indistinguishable paths) Here we
add the amplitudes of the transitions s → s1 → s and s → s2 → s to
get the amplitude of the transition s → s : A (s→ s) = A (s→ s1 → s) +
A (s→ s2 → s) = 1

2
+ 1

2
= 1. Hence, the quantum probability of the tran-

sition s → s, through all paths, is P (s→ s) = (A (s→ s))2 = (1)2 = 1, in
agreement with our intuitive analysis.

Feynman’s third rule (multiple distinguishable paths) Here we cal-
culate the quantum probabilities of the transitions s → s1 → s and s →
s2 → s. This gives P (s→ s1 → s) = (A (s→ s1 → s))2 =

(
1
2

)2
= 1

4
and
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P (s→ s2 → s) = (A (s→ s2 → s))2 =
(
1
2

)2
= 1

4
. Then we add these quan-

tum probabilities to get P (s→ s) = P (s→ s1 → s) + P (s→ s2 → s) =
1
4
+ 1

4
= 1

2
. This is a contradiction, since P (s→ s) = (A (s→ s))2 = (s†s)2 =

(1)2 = 1. Hence Feynman’s third rule is not the correct rule to apply. The
transition from s back to s via s1 should be treated as indistinguishable from
the transition from s back to s via s2.

9 A simple quantum model of the Ellsberg

paradox

Urn U (unknown composition) contains two balls both labeled 1 if it is in
state s1 (recall subsection 2.5). It contains one ball labeled 1 and the other
labeled 2 if it is either in state s2 or in state s3. In state s4 both balls are
labeled 2. We represent these states in R4 by the orthonormal basis:

s1 =


1
0
0
0

 , s2 =


0
1
0
0

 , s3 =


0
0
1
0

 , s4 =


0
0
0
1

 .

Let s give the initial state of urn U . Then Born’s rule leads to:

s = ps1 +
√
p (1− p)s2 +

√
(1− p) ps3 + (1− p) s4, (17)

where there is a probability p2 that ball 1 is drawn in each round (state s1),
a probability p (1− p) that ball 1 is drawn in round 1 then ball 2 is drawn
in round 2 (state s2), a probability (1− p) p that ball 2 is drawn in round 1
then ball 1 is drawn in round 2 (state s3) and, finally, a probability (1− p)2
that ball 2 is drawn in each round (state s4).

In quantum mechanics, the construction described by (17) is called a state
preparation and p in (17) is both a classical and a quantum probability. They
can be given by the heuristic of insufficient reason or by relative frequencies.
In particular, p2 + p (1− p) + (1− p) p + (1− p)2 = 1. By contrast, the
action of extracting a ball from urn K or urn U is known as a measurement.
The probabilities there are quantum probabilities (which may or may not be
numerically equal to classical probabilities, may or may not add up to 1, but
are never negative).

Let the event that ball 1 is drawn from urn U be denoted by t. We now
calculate the probability of event t.
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Proposition 7 (al-Nowaihi & Dhami, 2017, section 5): Assume (Q) and
(B). If the probability of drawing a winning ball (a ball labeled 1) from the
known urn K is p, then the quantum probability of drawing a winning ball (a
ball labeled 1) from the unknown urn U is

Q (p) =
5p3 − 8p2 + 4p

2− p
. (18)

Proof of Proposition 7: The role played by the law of reciprocity was
only implicit in al-Nowaihi & Dhami (2017). Here we make it explicit. We
take the opportunity to further clarify other points.

In general, the law of total probability, recall (2) above, is not valid in
quantum probability theory. See Busemeyer & Bruza (2012), chapter 1,
pp. 5. Instead, we use the Feynman’s rules (see Busemeyer & Bruza (2012),
chapter 1, pp. 13) and the law of reciprocity (see Busemeyer & Bruza (2012),
chapter 2, pp. 39). In our case, working in the Hilbert space C4 gives the
same results as working in R4, as can be verified by direct calculation. Hence,
for simplicity, we shall work in the Hilbert space R4. Recall that the state
of a quantum system is given by normalized vector, s, in Hilbert space, i.e.,
s†s = (s†) s = 1, where s† is the conjugate transpose of s (in our case, simply
the transpose of s, since we are working in R4). We give the proof in several
stages.

Reciprocity
Let t be the state where ball 1 is drawn from U . We wish to calculate

the probability, P (s→ t), of the transition s → t. By the quantum law of
reciprocity, P (s→ t) = P (t→ s), both being equal to (s†t)2. Recall we are
working in a real Hilbert space. For a complex Hilbert space, we would have
P (s→ t) = P (t→ s) = (s†t) (s†t)∗, where (s†t)∗ is the complex conjugate
of s†t. But P (t→ s) is the probability of the state of U conditional on
drawing ball 1 from U . Let w be this state. To find w, we first project s
onto the subspace spanned by {s1, s2, s3}, then normalize. This gives

w =

√
p

2− p
s1 +

√
1− p
2− p

s2 +

√
1− p
2− p

s3. (19)

Feynman’s rules
To arrive at the state, w, the state of urn U conditional on ball 1 being

drawn, we must follow one of the three paths:

1. s→ s1 → w,
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2. s→ s2 → w.

3. s→ s3 → w.

Using Feynman’s first rule (single path), A (s→ si → w)
= A (s→ si)A (si → w), the relevant transition amplitudes are:

A (s→ s1) = s†s1 = p, A (s1 → w) = s1†w =
√

p
2−p , A (s→ s1 → w) =√

p3

2−p .

A (s→ s2) = s†s2 =
√
p (1− p), A (s2 → w) = s2†w =

√
1−p
2−p , A (s→ s2 → w)

= (1− p)
√

p
2−p .

A (s→ s3) = s†s3 =
√
p (1− p), A (s3 → w) = s3†w =

√
1−p
2−p , A (s→ s3 → w)

= (1− p)
√

p
2−p .

We shall treat the paths s→ s2 → w and s→ s3 → w as indistinguish-
able from each other but both distinguishable from path s→ s1 → w. Our
argument for this is as follows. The path s→ s1 → w results in urn U
containing two balls labeled 1. This is clearly distinguishable from paths
s→ s2 → w and s→ s3 → w, each of which result in urn U containing one
ball labeled 1 and one ball labeled 2. From examining urn U , it is impossible
to determine whether this arose by selecting ball 1 first (path s→ s2 → w),
then ball 2 (path s→ s3 → w), or the other way round.

We apply Feynman’s second rule (multiple indistinguishable paths) to find
the amplitude of the transition s → w, via s2 or via s3. We add the ampli-
tudes of these two paths. Thus, A (s→ w), via s2 or s3 is A (s→ s2 → w) +

A (s→ s3 → w) = 2 (1− p)
√

p
2−p . The probability of this transition is(

2 (1− p)
√

p
2−p

)2
= 4p(1−p)2

2−p . The probability of the transition s→ s1 → w

is
(√

p3

2−p

)2
= p3

2−p . We apply Feynman’s third rule (multiple distinguishable

paths) to get the total probability of the transition s→ w, via all paths. We

add the two probabilities. This gives P (s→ w) = p3

2−p+ 4p(1−p)2
2−p = 5p3−8p2+4p

2−p .
Quantum probability
Recall that s is the initial state of urn U , t is the state in which ball 1 is

drawn and w is the state of urn U conditional on ball 1 having been drawn.
We wish to calculate the probability, P (s→ t), of the transition s→ t. By
the quantum law of reciprocity, P (s→ t) = P (t→ s). But P (t→ s) is the
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probability of the state of U conditional on drawing ball 1 from U . We have
already calculated this to be 5p3−8p2+4p

2−p .
Thus, if the probability of drawing ball 1 from the known urn K is p,

then the quantum probability of drawing ball 1 from the unknown urn U is

Q (p) =
5p3 − 8p2 + 4p

2− p
.

This completes the proof of Proposition 7. �
The next proposition gives a simple result that is, nevertheless, crucial to

this paper. Note that (18) of Proposition 7 is not used in deriving Proposition
8, below.

Proposition 8 : Assume (Q), (B) and (L). Then quantum probabilities are
matching probabilities, i.e.,

mi (p) = Q (p) , (20)

or, equivalently,

− ln (− lnmi (p)) = − ln (− lnQ (p)) . (21)

Proof of Proposition 8: Let p be the probability of drawing a winning
ball from the known (risky) urn K (recall that p is both a classical, or Kol-
mogorov, probability and also a quantum probability). Hence, by Proposition
7, the quantum probability of drawing a winning ball from the unknown urn
U is Q (p).

Let ui be the utility function of subject i participating in the Ellsberg
experiment as perceived by that subject (recall subsection 2.3, ui is strictly
increasing and normalized so that ui (0) = 0). The subject wins the sum of
money, v > 0, if a winning ball (a ball labeled 1) is drawn from the unknown
urn U , but zero if a losing ball (a ball labeled 2) is drawn from that same
urn. Hence, by our assumption (L), her projective expected utility in the
sense of La Mura (2009) is

Q (p)ui (v) . (22)

Suppose the contents of the unknown urn U are kept fixed but a new
known (risky) urn, Ki, is constructed so that subject i is indifferent between
U and Ki. Then, by definition, the probability of drawing a winning ball from
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Ki is the matching probability mi (p). This gives subject i the projective
expected utility

mi (p)ui (v) . (23)

Since the subject is indifferent between U andK, we must haveQ (p)ui (v) =
mi (p)ui (v). Since ui (v) > 0, we get mi (p) = Q (p). �

From Equation (18), we get

Q(0.1) = 0.17105, Q(0.5) = 0.41667, Q(0.9) = 0.69545

in close agreement with the evidence given by Dimmock et al. (2015) and
our own evidence given in section 12, below.

Note that Q (0.5) + Q (0.5) < 1. This is because quantum probability
theory is more general than classical (Kolmogorov) probability theory. Al-
though quantum probabilities are never negative, they may, or may not, sum
to 1. This may give an insight into why quantum probability theory can
explain the Ellsberg paradox. Suppose the probability of drawing a ball of
a winning color from urn K is p = 0.5. Then, by Proposition 1 of section
7, the classical probability of drawing a ball of a winning color from urn U
is also p = 0.5. Hence, the subject has no reason to prefer K to U or U to
K on probabilistic grounds. However, the quantum probability of drawing
a ball of a winning color from urn U is Q (p) = 0.41667. Thus quantum
probability theory correctly predicts that a subject would choose K over U ;
and the agreement with the evidence is quantitative as well as qualitative.

Recall how source dependent theory (section 7) explained the Ellsberg
paradox. For p = 0.5, the source dependent model predicted that the proba-
bility of drawing a ball of a winning color from K or U is p = 0.5. However,
in the source dependent model, probabilities enter the utility function non-
linearly ; with different weights given to p = 0.5 in the two urns. Unlike
the quantum model, these weights have to be determined ex post to fit the
evidence.

The following result is easily established from (18) and Proposition 8.

p < 0.4⇒ Q (p) > p⇒ ambiguity seeking,

p = 0.4⇒ Q (p) = p⇒ ambiguity neutrality,

p > 0.4⇒ Q (p) < p⇒ ambiguity aversion.

Thus, our model is in agreement with the empirically observed insensitivity.
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Note that Q (p) is not a probability weighting function. It should not be
interpreted as p being the true porbability while Q (p) is its over or under
evaluation by subjects. The correct interpretation is that p is the probability
(both classical and quantum) of drawing a winning ball from the known urn,
K, p is also the classical probability that a winning ball will be drawn from
the unknown urn U (Proposition 1 of section 7) and Q (p) is the quantum
probability with which a winning ball is drawn from urn U (Proposition 7,
above).

On the other hand, classical explanations of the Ellsberg paradox start
with the wrong probability, p, of drawing a winning ball from urn U , then
transform it using a probability weighting function, w (p), so as to fit the
evidence. By contrast, quantum probability theory predicts the correct prob-
ability, Q (p), of drawing a winning ball from urn U , without recourse to the
device of a probability weighting function.

10 Inferring matching probabilities from cash

equivalents

To find the matching probability from the cash equivalents that we obtained,
it is necessary to assume a form for the utility function. This is necessary
in the methodology in study 2 of Fox & Tversky (1995); which is incentive
compatible. It is not necessary in the methodology of Dimmock et al. (2015).
However, the latter is not incentive compatible. We use the power function
(Assumption P, subsection 2.8) for the utility of player i,

Note that Assumption P is used in the proof of Proposition 9, below, but
has not been used before. On the other hand, Proposition 7 is not used in
deriving Proposition 9, below. In particular, the matching probabilities in-
ferred from the observed cash equivalents using Proposition 9 may well reject
the matching probabilities predicted by our quantum model (Propositions 7
and 8, above).

Proposition 9 : Assume (L) and (P). Let v be the monetary payment to
a subject if a winning ball is drawn. Let p be the probability of selecting a
winning ball from the known urn (K). The monetary valuation of the known
urn (K) to subject i is denoted by viK and the monetary valuation of the
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unknown urn (U) to subject i is denoted by viU . Then

mi (p) = p
ln v−ln viU
ln v−ln viK , (24)

or, equivalently,

− ln (− lnmi (p)) = ln

(
ln v − ln viK
ln v − ln viU

)
− ln (− ln p) . (25)

Proof of Proposition 9:
Firstly, for the known urn (K), we have

(viK)σi = p(v)σi . (26)

Solve (26) for σi, to get

σi =
− ln p

ln v − ln viK
, (27)

where all quantities on the right hand side are known. Therefore, σi can be
calculated using known quantities. Specifically, in our experiments, v is 10
Yuan, p = 0.1, p = 0.5 or p = 0.9 and viK is the cash equivalent that we
determined from the experiment.

Similarly, for the unknown urn (U), we have

(viU)σi = mi (p) (v)σi . (28)

Solve (28) for mi (p), to get

mi (p) =
(viU
v

)σi
. (29)

Substitute from Equation (27) into Equation (29) to get

mi (p) =
(viU
v

) − ln p
ln v−ln viK , (30)

which is equivalent to (24). The latter, in turn, is equivalent to (25). �
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11 Experimental design

Our subjects were 295 undergraduate students from Qingdao Agricultural
University in China. They attended 8 sessions; no one participated in more
than one session. The experimental instructions are given in the Appendix
A. We obtained the ethics approval from University of Leicester: The Uni-
versity Ethics Sub-Committee for Sociology; Politics and IR; Lifelong Learn-
ing; Criminology; Economics and the School of Education (Ethics Reference:
7274-mw323-economics).

Our treatment was a paper-based classroom experiment. There were
three tasks, Task 1, Task 2 and Task 3, that were, respectively, designed to
implement the three cases p = 0.5, p = 0.1, p = 0.9. Each task required two
tables to be completed. The materials for each task were handed out at the
beginning of that task and collected before the next task started.

In each task, there is one known urn (Box K) and one unknown urn (Box
U). The composition of the 100 colored balls of k different colors in Box
K is known; varying this composition gives us the three cases p = 0.5, 0.1,
0.9. Box U contains 100 colored balls of the same colors as in Box K, but in
unknown proportions. The composition of Box U is randomly decided at the
end of the experiment in the following way. Each ball is equally likely to be
drawn. The random draw follows the uniform distribution. For example, in
Task 2, there are in total 10 different colors. A priori, each color is equally
likely to be drawn. Thus, at each stage of the construction of Box U , each
color has a probability 0.1 of being the color of the next ball to be placed in
Box U . There can be from 0 to 100 balls of any particular color but subject
to the restriction that the total number of balls in Box U is 100 balls. The
prize for drawing a winning-color ball is 10 Yuan whether it is drawn from
Box K or Box U . We now explain the three tasks.

1. In Task 1, there are 50 purple balls and 50 yellow balls in Box K, and
purple is the winning color (p = 0.5, by Assumption I). These are the
same colors as chosen by Dimmock et al. (2015). The decision maker
is shown two tables. In Table I, the choices are to express a preference
to receive a monetary amount x for sure or express a preference for
betting that a purple ball will be drawn from Box K. A third choice is
also offered, namely, to express indifference between x or betting that a
purple ball will be drawn from Box K. The monetary amount is varied
from x = 0 to x = 10 and subjects have to state a choice in each case.
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The experiments were conducted in China, so the monetary amount is
in units of Chinese Yuan. Box U has 100 balls that are either purple
or yellow but the proportions are unknown; as explained above. Table
II replaces Box K in Table I with Box U but it is otherwise identical.
At the end of the experiment, one of the choices from Task 1 is picked
at random to be played for real.

2. In Task 2, there are 10 different colors (including purple) in Box K,
and purple is the winning color (p = 0.1, by Assumption I). Box U
has 100 balls of the same 10 colors but in unknown proportions. The
remaining procedure is as described in Task 1.

3. In Task 3, there are 10 different colors (including purple) in Box K,
and the winning color is any ball that is not purple (p = 0.9, by As-
sumption I). Box U has 100 balls of the same 10 colors but in unknown
proportions. The remaining procedure is as described in Task 1.

12 Experimental results

12.1 Aggregate data analysis

Consider a sample of N subjects. Choose a probability, p, for drawing a
winning ball from urn K. Find the matching probability, mi (p), for each
subject, i, i = 1, 2, ..., N . Let the sample average be m (p) = 1

N

∑N
i=1mi (p).

Even if our quantum model is correct, it might not be surprising to see
much unsystematic variability in the matching probabilities, mi (p), across
the sample. Specifically, let mi (p) = Q (p) + εi, where E (εi) = 0, i =
1, 2, ..., N and εi and εj are identically and independently for i 6= j. Let

s2 = 1
N−1

∑N
i=1 (mi (p)−m (p))2 and t = m(p)−Q(p)

s/
√
N

. For sufficiently large N ,

we would expect t to be approximately normally distributed with mean 0 and
variance 1. See, for example, Chapter 5 of Wooldridge (2015). For ease of
reference, we give the critical values for each of the conventional significance
levels (10%, 5%, 1%) for a two-tailed test for the standard normal distribution
in Table 1, below.

We collected in total 19470 (= 11× 2× 3× 295) data points. This comes
from 11 data points (for the 11 rows of Tables I and II, see Appendix A),
two tables corresponding to the known and unknown urns (Tables I and II
in Appendix A), 3 tasks (Task 1, Task 2, and Task 3) and 295 subjects in
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Table 1: Significance levels and the corresponding critical values.
Significance level Critical value

10% ±1.64
5% ±1.96
1% ±2.58

the experiment. There were 259, 262 and 263 consistent decision makers
for the p = 0.1, p = 0.5 and p = 0.9 cases, respectively. We discarded
the inconsistent decision makers from the analysis as follows. We discarded
data with the following two patterns: Firstly, choosing more than once in
the “Indifference” column in the table. Secondly, choosing back and forth in
any two or three columns. For the first case, we cannot identify the unique
cash equivalent. In the second case, it seems that the subjects don’t have
consistent preferences. This left us with over 250 subjects.

We estimated the cash equivalents for the decisions in the two tables in
Appendix A in the following way. If there is one unique tick in the “Indif-
ference” column in the table, then the cash equivalent is the corresponding
amount of money s/he receives for sure (x); On the other hand, if there is
no tick in the “Indifference” column, then the cash equivalent is estimated
by the midpoint between the lowest amount of money that is preferred to
the uncertain bet, and the highest amount of money for which the bet was
preferred; we are following the methodology in study 2 of Fox & Tversky
(1995).

Since all quantities on the right hand side of (24) are known, the matching
probability can be found (recall viK and viU are the cash equivalents and v is
the prize). Following this approach, we find the mean matching probabilities,
m (p), and standard deviations, which are listed in Table 2, below. The fifth
column of Table 2 shows the theoretical predictions for the three matching
probabilities, Q(0.1), Q(0.5), and Q(0.9), respectively. The theoretically
predicted values are found by substituting the values of p, 0.1, 0.5, 0.9 into
(18). One subject chose viK = v = 10, for p = 0.9. Since the denominator
in ln v−ln viU

ln v−ln viK
of (24) would then be zero for these values, we discarded this

observation.
Table 2, below, shows that the theoretically predicted matching proba-

bilities are quite close to the mean values we obtained from our experiments.
Our null and alternative hypotheses are: H0 : m (p) = Q (p) and H1 :

m (p) 6= Q (p). From Tables 1 and 2, 1.4758, 1.4437, 2.3906 are all less than
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Table 2: t-test for the means.

Matching
probability

Mean
Standard
deviation

Sample
size

Quantum
probability Q

t-stat

m (0.1) 0.1864 0.1708 259 0.1711 1.4437
m (0.5) 0.4038 0.1416 262 0.4167 −1.4758
m (0.9) 0.7258 0.2056 263 0.6955 2.3906

2.58. Thus, our experimental results fail to reject our quantum model at the
1% level of significance. Since m (0.1) > 0.1, m (0.5) < 0.5, m (0.9) < 0.9,
we find ambiguity seeking for the low probability but ambiguity aversion for
the medium and high probabilities.

12.2 Demographic results

In their answers to question 8 on the post-experimental questionnaire (Ap-
pendix B), only 4 out of the 295 subjects reported that color affected their
decisions. In their answers to question 6, almost none reported prior expe-
rience with similar experiments in the past. In their answers to question 4,
Degree of study, all students simply gave “undergraduate”, thus giving us
no useful information. From the answers to question 3 (Field of study), we
obtained the data for economics/non-economics. Not surprisingly, we found
high colinearity between year of study and age, so we have not reported the
latter.

12.2.1 Mann-Whitney U tests

We used two-sided Mann-Whitney U test (nonparametric test) to examine
if the demographic characteristics in Appendix B affected the subjects’ re-
ported matching probabilities for p = 0.1, p = 0.5 and p = 0.9 in our
treatment. The results are shown in Table 3. At the 1% level, no signif-
icant differences were found between any of the two groups (male/female;
economics/non-economics students; statistics/non-statistics students).

Note: In Table 3, “No” denotes no significant difference at 1%; “No∗”
denotes difference significant at 5% but not at 1%; “No∗∗” denotes difference
significant at 10% but not at 1% nor 5%.
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Table 3: Mann-Whitney U test results.
Group Matching probability MWU p-value Sig diff

Male vs. Female
m (0.1)
m (0.5)
m (0.9)

0.9533
0.2825
0.5205

No
No
No

Econ vs. Non-econ
m (0.1)
m (0.5)
m (0.9)

0.8941
0.7529
0.1230

No
No
No

Stats vs. Non-stats
m (0.1)
m (0.5)
m (0.9)

0.0496
0.2053
0.7413

No*
No
No

Year 1 vs. Year 2
m (0.1)
m (0.5)
m (0.9)

0.2944
0.3981
0.0546

No
No

No**

Year 2 vs. Year 3
m (0.1)
m (0.5)
m (0.9)

0.6826
0.8746
0.0245

No
No
No*

Year 1 vs. Year 3
m (0.1)
m (0.5)
m (0.9)

0.0998
0.2693
0.4442

No**
No
No
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12.2.2 t-tests

For each demographic group, we also performed a t-test to see if the average
reported matching probability, m (p), differed significantly from the predicted
value of the quantum probability, Q (p). We report the results in Table 4,
below. The only group that showed a significant difference was the group of
students with prior training in statistics.

To keep things in perspective, we report in Table 5 how well the classical
prediction fairs against the evidence.

Since the absolute values of the t-statistics in Table 5 are large relative to
the critical values (Table 1), it follows that the classical prediction is strongly
rejected even for students trained in statistics.

13 Comparing the quantum model with the

source dependent model

Here we compare the predictive success of our quantum model (section 9)
with that of the source dependent model (section 7) using the Diebold-
Mariano (1995) forecasting test (see, also, Diebold, 2014). We divide our
data into three subsamples. We use each pair of subsamples to estimate the
parameters α and β of the source dependent model (37), below, then we
forecast for the third subsample. The quantum model has no parameters to
estimate. In each case, we find the predictive performance of the two models
to be statistically insignificantly different from each other.

13.1 Data

In total, we have 784 data points. Of these, we had to exclude five data
points because their matching probabilities, mi, were zero and, hence, cannot
be used to forecast for the source dependent model; see (32), (37), below.
Thus we had a total of 779 usable data points, as given in Table 6, below,
where p is the probability of selecting a winning ball from the known urn K.

Let mi be the matching probabilities inferred from the elicited certainty
equivalents (Proposition 9) and let
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Table 4: t-test results.

Group
Matching

probability
Mean

Standard
deviation

Sample
size

t-stat
Sig
diff

Econ
m (0.1)
m (0.5)
m (0.9)

0.1786
0.4080
0.7603

0.1296
0.1706
0.2315

23
23
20

0.2789
−0.2449
1.2531

No
No
No

Non-econ
m (0.1)
m (0.5)
m (0.9)

0.1871
0.4126
0.7227

0.1429
0.1712
0.2036

236
239
243

1.7275
−0.3662
2.0881

No
No
No

Male
m (0.1)
m (0.5)
m (0.9)

0.1829
0.4239
0.7319

0.1362
0.1738
0.2046

116
120
124

0.9371
0.4557
1.9838

No
No
No

Female
m (0.1)
m (0.5)
m (0.9)

0.1892
0.4023
0.7199

0.1462
0.1682
0.2071

143
142
139

1.4846
−1.0181
1.3919

No
No
No

Year 1
m (0.1)
m (0.5)
m (0.9)

0.1773
0.4204
0.7195

0.1465
0.1729
0.2136

171
173
172

0.5579
0.2838
1.4763

No
No
No

Year 2
m (0.1)
m (0.5)
m (0.9)

0.1817
0.4070
0.7820

0.0939
0.1357
0.1799

27
29
28

0.5893
−0.3837
2.5457

No
No
No

Year 3
m (0.1)
m (0.5)
m (0.9)

0.2150
0.3909
0.7134

0.1576
0.1816
0.1930

60
59
62

2.1601
−1.0900
0.7323

No
No
No

Stat
m (0.1)
m (0.5)
m (0.9)

0.2076
0.4043
0.7398

0.1555
0.1653
0.1710

126
128
130

2.638
−0.847
2.957

Yes (1%)
No

Yes (1%)

Non-stat
m (0.1)
m (0.5)
m (0.9)

0.1663
0.4198
0.7117

0.1243
0.1762
0.2344

133
134
133

−0.441
0.206
0.800

No
No
No

Table 5: Comparison with classical probabilities.
Matching

probability
Mean

Standard
deviation

Sample
size

Classical
probability

t-stat
Sig
diff

m (0.1) 0.2076 0.1555 126 0.1 7.7672 Yes
m (0.5) 0.4043 0.1653 128 0.5 −6.55 Yes
m (0.9) 0.7398 0.1710 130 0.9 −10.682 Yes
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Table 6: Task information.
i = 1− 257 p = 0.1 Task 2
i = 258− 517 p = 0.5 Task 1
i = 518− 779 p = 0.9 Task 3

Xi = (− ln (− ln pi)) , i = 1, 2, ..., 779, (31)

Yi = (− ln (− lnmi)) , i = 1, 2, ..., 779. (32)

13.2 The quantum model

Let Q (pi) be the quantum probability of drawing a winning ball from urn U
(Proposition 7). Let m̃i the matching probability predicted by the quantum
model. By Proposition 8, m̃i = Q (pi). Hence, − ln (− ln m̃i) = − ln (− lnQ (pi)).

Letting Ỹi = − ln (− ln m̃i), the quantum model can be written as

Ỹi = − ln (− lnQ (pi)) , i = 1− 779, (33)

and the squares of the forecast errors (recall (32)) are

ẽ2i =
(
Yi − Ỹi

)2
, i = 1− 779. (34)

13.3 The source dependent model

The definition of matching probabilities (subsection 2.2) is operational, and
does not depend on the underlying decision theory assumed. However, elic-
iting matching probabilities does require assumptions (as is the case with all
observations in science, recall the discussion in subsection 2.9). For example,
Dimmock et al. (2015) used an incentive incompatible method but assumed
that their subjects did not exploit this (and their evidence supported this).
We used the incentive compatible method of Fox and Tversky (1995). This
was carried out in two steps. First we elicited certainty equivalents (section
11 and Appendix A). Then, from these, we inferred matching probabilities
(section 10).

In particular, mi (p) was derived under the assumption (viU)σi = mi (p) (v)σi

(recall (28) of the proof of Proposition 9). On the other hand, m∗i (p) was
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derived under the assumption (viU)σi = wiK (m∗i (p)) (v)σi (recall (11) of the
proof of Proposition 6). Hence, m∗i (p) need not be the same as mi (p). To
compare the forecasting performance of two models, we have to compare
them on the same data set. In particular, we have to compare their forecasts
for the same dependent variable. Proposition 10, immediately below, derives
the prediction of the source dependent model (section 7) for the matching
probability, mi (p).

Proposition 10 : Let mi (p) be the matching probability. Let Xi and Yi be
as in (31), (32). Let

αi = ln βiK − ln βiU , (35)

βi = 1 + αiU − αiK, (36)

then, under Assumption (P), the source dependent model (subsection 7) im-
plies that

Yi = αi + βiXi. (37)

Proof of Proposition 10: From Propositions 4 and 6, we get

ln βiK − ln βiU
αiK

+
αiU
αiK

(− ln (− ln p)) = − ln (− ln p)+
1

αiK
ln

(
ln v − ln viK
ln v − ln viU

)
.

(38)
Substituting from (25) of Proposition 9 into (38), and rearranging, gives

− ln (− lnmi (p)) = ln βiK − ln βiU + (1 + αiU − αiK) (− ln (− ln p)) . (39)

Substituting from (35) and (36) into (39) gives (37). �
Let m̂i be the matching probability predicted by the source dependent

model and let Ŷi = − ln (− ln m̂i). Let ê2i =
(
Yi − Ŷi

)2
, i = 1 − 779. From

Proposition 10, we get

Ŷi = α̂ (1) + β̂ (1)Xi, i = 1− 257,

Ŷi = α̂ (2) + β̂ (2)Xi, i = 258− 517,

Ŷi = α̂ (3) + β̂ (3)Xi, i = 518− 779,

where α̂ (1), β̂ (1) are estimated from the data for i = 258− 779; α̂ (2), β̂ (2)

are estimated from the data for i = 1 − 257, i = 518 − 779 and α̂ (3), β̂ (3)
are estimated from the data for i = 1− 517.
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13.4 The Diebold-Mariano forecasting test (DM)

Let di = ẽ2i − ê2i , i = 1− 779 and let

d (1) =
1

257

257

i=1
di, σ̂

2 (1) =
1

257

257

i=1

(
di − d (1)

)2
;

d (2) =
1

260

517

i=258
di, σ̂

2 (2) =
1

260

517

i=258

(
di − d (2)

)2
;

d (3) =
1

262

779

i=518
di, σ̂

2 (3) =
1

262

779

i=518

(
di − d (3)

)2
.

Thus, ê2i is the square of the forecast error for observation i for the source
dependent model and ẽ2i is the square of the forecast error for observation i
for the quantum model, di is the difference between these two errors, d is the
sample average of these differences and σ̂2 is a consistent estimator of the
variance of the difference between the two forecasts.

If d > 0 then, on average for the sample considered, the quantum model
forecasts better than the source dependent model (and, conversely, if d < 0).
However, we would like to find out more. We would like to know, is this
difference significant? In particular, we would like to know if this difference
is significantly different from zero, i.e., we want to carry out the following
hypothesis test:

H0 : E (di) = 0, H1 : E (di) 6= 0.

Assuming covariance stationarity, Diebold and Mariano (1995) proved
that under H0, d has an asymptotically normal distribution. More precisely,
the distribution of d

σ̂
converges, in distribution, to the standard normal as

the sample size goes to ∞: z = d
σ̂

D→ N (0, 1).

13.5 Results

Table 7, below, summarizes our results. α̂, β̂ are the estimated values of α
and β for the source dependent model (7). The last column gives the values
of the z-statistic.

From the above table, we see that the quantum model forecasts better
than the source dependent model for the two subsamples i = 1 − 257 and
i = 258 − 517 but worse for the subsample i = 518 − 779. However, more
importantly, the difference is statistically insignificant for each of the three
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Table 7: DM results.
i p Task α̂ β̂ z-statistic

1− 257 0.1 2 −1.006 1.336 −0.606
258− 517 0.5 1 0.581 0.226 −0.430
518− 779 0.9 3 −0.103 0.585 0.273

subsamples. In particular, the z-statistic, in each case, is well within the
acceptance region [−1.96, 1.96] at the 5% level.

In other words, our data show that the quantum model and the source
dependent model have no statistically significant difference in predictive ac-
curacy.

14 Summary and suggestions for further re-

search

In this paper we considered a simple quantum decision model of the Ellsberg
paradox. We reported the results of an experiment we performed to test the
matching probabilities predicted by this model using an incentive compatible
method. We found that the theoretical predictions of the model were in
conformity with our experimental results.

The source dependent model is probably the most successful non-quantum
model of ambiguity. Our forecasting tests showed that there were no statisti-
cally significant differences between the predictions of the source dependent
model and our quantum model. However, and unlike our quantum model,
the source dependent model requires the specification of probability weight-
ing functions in order to fit the evidence. This suggests that much of what is
normally attributed to probability weighting may actually be due to quantum
probability.

Immediately below, we mention three of the directions in which the work
of this paper can be extended.

Our assumption of how the unknown (or ambiguous urn) U is constructed
in the minds of the subjects (assumption B) is consistent with the evidence
reported in Pulford & Colman (2008). However, it deserves further indepen-
dent testing.

We elicited the certainty equivalents of risky and unknown lotteries (as in,
for example, Fox and Tversky, 1995). Then we inferred the matching proba-
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bilities using a simple specification of the utility function. An alternative is
for each unknown lottery to elicit the equivalent risky lottery, as in Kocher
et al. (2018).16 The Kocher et al. (2018) method is incentive compatible
and does not require the specification of a utility function. Nevertheless,
it is interesting that three different methodologies applied to three different
data sets (Dimmock et al., 2015, Kocher et al., 2018 and this paper) yielded
similar matching probabilities.

We considered only lotteries with zero or positive outcomes. Future work
can consider lotteries with gains, lotteries with losses and mixed lotteries
with gains and losses (as in Kocher et al., 2018). This would allow us to
test what we called projective prospect theory. The latter introduces refer-
ence dependence and loss aversion into projective expected utility (La Mura,
2009).
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15 Appendix A: Experimental Instruction (trans-

lation from Chinese instruction)

General information on the experiment
You are now participating in an economic experiment. If you read the

following explanations carefully, you may be able to earn some money de-
pending on your decisions. You will receive 5 Yuan for participation. This
is irrespective of your decisions in the experiment. During the experiment
you are not allowed to communicate with other participants in any way. If
you have questions, please raise your hand, and the experimenter will come
to your desk. The experiment will be carried out only once.

This experiment is paper based. there are three tasks: Task 1, Task 2
and Task 3. In each task, there are two boxes- Box K and Box U , and each
box contains 100 colored balls. The composition of the balls is known for
Box K but unknown for Box U . After you complete a task, the experimenter
will collect the materials for that task and you will receive the materials for
the next task.

Task 1:
There are 50 purple balls and 50 yellow balls in Box K. For each of the

eleven rows in Table I, tick exactly one of the following boxes: “Receive x
Yuan for sure”, “Indifferent” or “Play Box K”.

Box U contains 100 balls (purple or yellow) but in unknown proportions.
Thus Box U can contain any number of purple balls from 0 to 100 and any
number of yellow balls from 0 to 100 provided the sum of balls (purple plus
yellow) is 100. The composition of Box U will be randomly decided at the
end of the experiment. For each of the eleven rows in Table II, tick exactly
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one of the following boxes: “Receive x Yuan for sure”, “Indifferent” or “Play
Box U”.

In each table, if you believe that you are indifferent between the choice in
the left column and the right column, you may tick the box under the middle
column “Indifferent”.

At the end of the experiment, one of the eleven rows of Table I or one
of the eleven rows of Table II will be selected at random and played for real
money. In Table I, you will receive x Yuan for sure if you have ticked the
box under “Receive x Yuan for sure” or, if you have ticked the box under
“Play Box K”, you will win 10 Yuan if a purple ball is drawn from Box K
(otherwise you win nothing). In Table II, you will receive x Yuan for sure
if you have ticked the box under “Receive x Yuan for sure” or, if you have
ticked the box under “Play Box U” you will win 10 Yuan if a purple ball is
drawn from Box U (otherwise you win nothing). In each table, if you have
ticked “Indifferent” in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.

Table I
Receive x Yuan for sure Indifferent Play Box K

x = 10

x = 9

x = 8

x = 7

x = 6

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

After you complete Task 1, the experimenter will collect the materials for
Task 1 and you will receive the materials for Task 2.

Task 2:
There are 100 balls of 10 different colors (including purple) in Box K.

There are exactly 10 balls of each color. For each of the eleven rows in
Table I, tick exactly one of the following boxes: “Receive x Yuan for sure”,
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Table II
Receive x Yuan for sure Indifferent Play Box U

x = 10

x = 9

x = 8

x = 7

x = 6

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

“Indifferent” or “Play Box K”.
Box U contains 100 balls of the same colors as in Box K but in unknown

proportions. Thus, Box U could contain any number of purple balls from 0 to
100. And similarly for each of the other 9 colors (provided the sum of balls
of all colors is 100). The composition of Box U will be randomly decided
at the end of the experiment. For each of the eleven rows in Table II, tick
exactly one of the following boxes: “Receive x Yuan for sure”, “Indifferent”
or “Play Box U”.

In each table, if you believe that you are indifferent between the choice in
the left column and the right column, you may tick the box under the middle
column “Indifferent”.

At the end of the experiment, one of the eleven rows of Table I or one
of the eleven rows of Table II will be selected at random and played for real
money. In Table I, you will receive x Yuan for sure if you have ticked the
box under “Receive x Yuan for sure”. However, if you have ticked “Play
Box K”, then you shall win 10 Yuan if a purple ball is drawn from Box K
(otherwise you win nothing). In Table II, you will receive x Yuan for sure
if you have ticked the box “Receive x Yuan for sure”. However, if you have
ticked the box “Play Box U” then you win 10 Yuan if a purple ball is drawn
from Box U (otherwise you win nothing). In each table, suppose that you
ticked “Indifferent” in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.
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After you complete Task 2, the experimenter will collect the materials for
Task 2 and you will receive the materials for Task 3.

Task 3:
As in task 2, there are 100 balls in Box K of 10 different colors (including

purple). There are exactly 10 balls of each color. For each of the eleven rows
in Table I, tick exactly one of the following boxes: The box “Receive x Yuan
for sure”, “Indifferent” or “Play Box K”.

As with task 2, Box U contains 100 balls of the same colors as in Box
K but in unknown proportions. For each of the eleven rows in Table II,
tick exactly one of the following boxes: The box “Receive x Yuan for sure”,
“Indifferent” or “Play Box U”.

In each table, if you believe that you are indifferent between the choice in
the left column and the right column, you may tick the box under the middle
column “Indifferent”.

At the end of the experiment, one of the eleven rows of Table I or one
of the eleven rows of Table II will be selected at random and played for
real money. In Table I, you will receive x Yuan for sure if you tick the box
under “Receive x Yuan for sure”. However, now if you have ticked “Play
Box K”, then you shall win 10 Yuan if a non-purple ball is drawn from Box
K (otherwise you win nothing). In Table II, you will receive x Yuan for sure
if you tick the box “Receive x Yuan for sure”. However, if you have ticked
the box “Play Box U” then you win 10 Yuan if a non-purple ball is drawn
from Box U (otherwise you win nothing). In each table, suppose that you
tick “Indifferent” in the randomly selected row, then one of the left or right
cells in this selected row will be randomly chosen to play for real.

After you have completed Task 3, the experimenter will collect the ma-
terials for Task 3 and the experiment will terminate.

16 Appendix B: Post-experimental Question-

naire

1. Age: years old

2. Gender: (female/male)

3. Field of study:

4. Degree of study:
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5. Year of study:

6. Have you participated in similar experiments in the past? (Yes/No)

7. Did you have statistics course(s) before? (Yes/No)

8. Does your preference of some particular color(s) affect your decisions?

A. No. B. Yes. Please specify how your preference of some particular
color(s) affected your decisions below.

56


	7158abstract.pdf
	Abstract


