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Abstract 

 
Climate research suggests that global warming will lead to more frequent and more extreme 
natural disasters. Most disasters are local events with effects on local economic activity. Hence, 
assessing their economic impacts with the help of econometric country-level analysis may lead 
to biased results. Moreover, correct identification is further complicated by the possibility that 
local shocks shift production and consumption to neighboring locations. In this paper, annual 
night-time light emission data covering about 24,000 grid cells for the years 1992-2013 are 
matched to geocoded information on meteorological and geological events. Spatial econometric 
panel methods are applied to account for interdependencies between locations. Interpreting 
variation in light emissions as reflecting changes in economic activity, findings convey evidence 
for pronounced local average treatment effects and strong spatial spillovers, particularly for 
weather shocks. Moreover, substantial heterogeneity across income groups and regions is 
identified. 
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1. Introduction

A large body of research suggests that global warming is a reality and that it will result
in more frequent and more extreme natural disasters; see IPCC (2014) for a synthesis
report. Hence, it is important to improve the understanding of the economic consequences
of natural disasters around the globe. This paper provides an attempt at measuring the
average impact on local economic activity of various types of meteorological and geological
events and their spatial spillovers.
While the direct material destruction and the toll on human lives caused by disas-

ters are all too evident, measuring their economic consequences is prone to difficulties.
Early papers have investigated the relation between direct disaster damages, deaths, and
economic development (see e.g. Kahn, 2005; Anbarci et al., 2005). Building on these, a
growing literature predominantly uses aggregated cross-country data to investigate the
effect of natural disasters on economic growth.1 Findings depend heavily on the type of
disaster data, country sample, and the types of disasters studied (Raddatz, 2007; Cavallo
et al., 2013; Felbermayr and Gröschl, 2014).
Several data and specification issues explain the ambiguity of findings. First, many

studies use information on the incidence of natural disasters from databases drawn from
insurance records or news.2 This introduces severe reporting, selection and endogeneity
biases, as both insurance penetration and damage caused are correlated with development
(Felbermayr and Gröschl, 2014). In addition, such data lack information on physical inten-
sities of events that have not caused sufficient damage to qualify as a disaster (Strömberg,
2007). To tackle these issues, Felbermayr and Gröschl (2014) proposed and collected a
database with information on the exogenous physical intensities of geological and me-
teorological events from primary sources at the country-level.3 Their evidence clearly
suggests a negative impact, with a substantial growth penalty for the worst 5% of shocks.
Most papers conduct their analysis at the country level. However, mapping natural

events to countries of heterogeneous size can result in measurement error and attenuation
bias (Noy, 2009). By aggregating local events data to the country level, important infor-
mation is lost. First, similar events causing similar damage and impact on income show
up as a major shock in a small island state’s gross domestic product (GDP), whereas they
might go unnoticed in a large country.4 Second, the difference between an event striking a

1For comprehensive literature reviews, see Cavallo et al. (2011) and Klomp and Valckx (2014).
2For example, this is the case for the often used data base provided by Munich-Re (EM-DAT), the

world’s largest reinsurance firm.
3https://www.cesifo-group.de/ifoHome/facts/EBDC/Ifo-Research-Data/Ifo_GAME_Dataset.html.
4For example, Strobl (2011) illustrates that, in the United States, hurricane effects wash out at the
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densely populated coastal region or an empty desert is lost, particularly in countries with
a large territory. Third, in large economies, geographic spillover effects may disguise the
full local treatment effect. Hence, regressing country level GDP (growth) on aggregate
indicators of local natural events might yield biased estimates.
The challenge is to find a proxy of local economic activity at the same level of geograph-

ical detail as the meteorological and geological data.5 Satellite technology has produced
numerous data products that contain information on human presence and activity at a
very fine level of spatial resolution. Recent papers have started to explore these data; for a
survey see Donaldson and Storeygard (2016). Night-time light emissions have been shown
to strongly correlate with economic activity (cp., Henderson et al., 2012; Nordhaus and
Chen, 2015; Pinkovskiy and Sala-i Martin, 2016). While Henderson et al. (2012) investi-
gate the informational value of night-lights in estimating economic growth at the country
level, an emerging literature investigates even smaller sub-national units: Michalopoulos
and Papaioannou (2013, 2014) focus on ethnic homelands, Hodler and Raschky (2014)
on sub-national administrative units, Storeygard (2016) on cities, Henderson et al. (2017)
on uniform grid cells and Bleakley and Lin (2012) on locations along rivers as natural
features. The broad consensus is that growth in remotely sensed night-time light provides
a very useful proxy for GDP growth over the long-run but also accurately tracks short-run
fluctuations in economic growth.
Using night-lights as a proxy for economic activity has at least three benefits for this

research: First, while growth in lights reflects growth in economic activity, measurement
error in night-lights is not correlated with the level of income per capita.6 Second, night-
light information is available for all countries at a standard geographic resolution.7 Third,
GDP per capita statistics fail to account for an often sizable informal economy.8 In

state level and even more so at the national level, leaving no trace in economic growth rates.
5While industrialized countries record income and production for sub-national administrative units,

the same data is scarce for most other countries. The G-Econ project provides gross product per capita
data at a 1° ×1° cell level. It uses gross product data for the lowest available political subdivision. For
most low-income countries, this unit remains the national level, such that regional income estimates are
largely driven by (an often estimated) population distribution. This methodology leaves serious GDP
measurement problems unaddressed for a substantial part of the globe. As discussed by Henderson et al.
(2012), national accounts are particularly weak in low-income countries.

6This is especially relevant for studying economic impacts in developing countries, where measurement
error on the official GDP statistics is large. Henderson et al. (2012) use night-lights to find improved
measures of income growth statistics for countries with low quality national accounts.

7Thus a number of low-income countries can be included that provide no national account GDP
statistics (i.e., Myanmar or Somalia), while these countries frequently do experience extreme natural
events. This avoids selection bias stemming from samples limited by availability of national accounts for
GDP statistics.

8See, e.g., Schneider and Enste (2000); Schneider (2005) for worldwide estimates on the informal
economy and Tanaka and Keola (2017) for a study using night lights data to identify the informal sector.
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addition, natural disasters tend to affect the poorest members of society, who are often
active in the informal economy and whose activity is hard to measure (for an excellent
discussion, see World Bank and United Nations, 2010). Yet, being able to capture (part
of) the informal sector is important to identify the true effect of natural extreme events.
This study is not the first one using night-lights to assess disaster impacts at the

local level. Bertinelli and Strobl (2013) and Elliott et al. (2015) study direct hurricane
and typhoon impacts on light emission. They find reduced local light growth caused
by hurricanes in the Caribbean and typhoons in coastal China, respectively, where the
size of the effect found is twice as large compared to using GDP data at the country
level. Although both papers are limited in regional focus and evaluate the impact of a
specific disaster type, their findings strengthen the case for assessing disaster impacts at
the local level and and propose night-light emissions as a suitable proxy. In this paper, the
empirical analysis is extended to 24,000 geographical units of 0.5°×0.5° in 197 countries
over 22 years and a wide array of different natural events is studied.
Zooming in on the grid cell level risks violating the standard assumption that errors are

uncorrelated across units of observation. Especially weather shocks have a spatial extent,
often affecting multiple locations at once. Even though there is variation across these lo-
cations, exogenous treatment is potentially spatially correlated. If spatial spillover effects
exist between neighboring locations, the treatment of neighbors may have explanatory
power, such that not explicitly modeling the spatial relationship gives rise to correlated
errors and causes omitted variable bias. Another issue arises if exogenous shocks had a
spatial correlation structure which is imperfectly captured by the disaster data. While
some measurement error is certainly present, there is no evidence for a systematic spatial
pattern. However, there may still be other omitted variables such as trade or migration
between cells which imply that errors may be spatially correlated even if the treatment
of neighbors is controlled for and the intensity of natural disasters has no systematic
measurement error. Hence, the grid cell approach requires an explicit modeling of spa-
tial treatment spillovers and of spatial autocorrelation in the residuals. The direction of
these spatial spillovers depends, amongst other things, on specialization patterns: if a
neighboring region specializes in similar industries, economic activity may shift towards
it. If a neighboring region specializes in down-stream or up-stream industries, it may well
be hurt by the shock. Hence, the relationship between the two regions may be governed
by complementarity or by substitution effects.9 This paper does not explore the exact
mechanisms through which such spillovers arise, but makes a first attempt to empirically

9This logic is well known from the international trade literature, see Hsieh and Ossa (2016) for a
recent application.
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measure them.
In sum, this paper takes the analysis of economic impacts of natural disasters to global

uniform grid cell data and evaluates the local economic effects of natural shocks. For this,
a large data set of geological and meteorological events (ifo GAME Database) is updated
and matched with available data on night-time light emissions as a proxy for economic
activity. Following Costinot et al. (2016), the globe is partitioned into fields along latitude
and longitude. Along with economic variables, various disaster types (storms, extreme
precipitation, droughts, cold waves, and earthquakes) are mapped to specific grid cells
using geographical information systems. In this paper, a balanced panel of 24,184 grid cells
is created with a resolution of 0.5°×0.5° (approximately 55×55 km at the equator) spread
across 197 countries from 1992 to 2013. Using spatial econometric panel techniques, the
impact of various types of events on the growth of night-time light emissions is estimated,
controlling for cell population, a set of year- and cell fixed effects and accounting for
spatial autocorrelation in the error term.
Main results show a reduction in night-time lights after storms, cold waves and extreme

precipitation events. For these types of events, there is strong evidence for positive spatial
spillover effects within an 80 km radius. At the mean, effects are moderate and range in
the order of 0.1-0.3 percentage points. At the extremes of our disaster measures, effects are
pronounced and amount to several percentage points reduction in light growth in the short
run. More specifically, evaluated at the average estimated lights-to-GDP growth elasticity,
a one standard deviation increase in wind speeds leads to a reduction in income growth of
0.33 percentage points. With a time lag, the local effect is four times as large and spillovers
from one cell increase local lights growth by 0.08 percentage points, corresponding to an
income growth spillover of 0.13 percentage points for a one standard deviation increase
in wind. Similarly, a one standard deviation increase in excessive precipitation and cold
waves decrease income growth by 0.17 and 0.25 percentage points, respectively. With a
time lag, excessive precipitation increases income growth by 0.12 percentage points, while
the effect of cold spells persists to be negative by 0.11 percentage points. Associated
contemporaneous spillovers amount to 0.03 and 0.07 percentage points, respectively. As
droughts mostly affect agricultural outcomes, they do not seem to be associated with
light emissions. Short-run negative spatial spillovers of these events are largely driven by
rural rather than urban cells, suggesting that droughts cause indirect damages in rural
economies. Results are robust to top- and bottom-coding, increasing the spatial radius,
the temporal aggregation method and controlling for time-varying country characteristics
or the use of a global spillover specification. There is evidence for heterogeneity across
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income groups and world regions. Overall, results are mainly driven by cells in low- and
middle-income economies.
The remainder of the paper is organized as follows: Section 3 describes the econo-

metric methodology. In section 2, data sources and the construction of the data set are
discussed. Section 4 presents baseline results and shows the existence of both local treat-
ment effects as well as spillovers to neighboring cells. Results are tested with respect to
a number of measurement and specification variations. Finally, the assessment zooms in
on the heterogeneity of effects across income groups and world regions. The last section
concludes.

2. Measuring Economic Activity and Natural Disasters

at the Cell Level

2.1. Light Emissions

First, the dependent variable, growth in night-time light emissions, which is taken as a
proxy for local economic activity, is described. The data stem from the US Air Force De-
fence Meteorological Satellite Program (DMSP). They comprise yearly composite satellite
images from which the yearly mean luminosity of each pixel can be extracted as a digital
number (DN).10 To align the data with the overall setup, all lights pixels that do not cover
land surface are excluded11 and the literature is followed by masking all pixels within gas
flaring zones identified by Elvidge et al. (2009).12 Similarly, areas around volcanoes are
masked.13

In addition, years in which more than one composite night-light image is available
are dealt with. As the on-board sensors degrade over time, the DMSP launches a new

10Appendix A.1 provides supplementary information on data generation and graphical illustration.
11Even though substantial presence of light at sea exists (e.g., fishing boats or oil rigs), this economic

activity cannot directly be attributed to any location on land and is therefore excluded. Further, natural
disasters affect light emission at sea differently from that on land. At sea, lights may be mobile and
seafaring may be ceased temporarily.

12The DMSP Operational Linescan System instruments record gas flares (typically resulting from gas
disposal at oil production sites) as heavily over-glowing areas that differ markedly from areas with lights
of electric origin. This affects approximately 2,300 grid cells; 0.89% of global land area.

13Volcanic eruptions show up in light data if they involve prolonged lava flows. If they are short-lived,
they are excluded from the annual stable lights products by default. Some volcanoes (e.g., Etna in Italy
and Popocatepetl in Mexico), however, show presence of lava flows throughout the entire period observed
(1992-2013). Persistent light at all known volcanic locations is approximately circular with a consistent
radius of 3 to 5 km. Consequently, these zones are masked from the light data. Two areas with lava
flows near to Kilauea (Hawaii) and Nyiranongo (Congo, DRC) are masked manually to account for their
spatial size and shape.
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satellite every 3 to 6 years. In 12 of the 22 available years, two satellites were in orbit
simultaneously. In these cases, the satellite with the best coverage of valid nights per pixel
in a given year is selected on the basis of each respective satellite-year layer’s summary
statistics.14 If the number of valid nights for a radiance pixel is zero, it is masked from
the data. The prepared night-light layers are aggregated to mean light intensity for the
0.5°×0.5° grid cells.15

To translate light changes into economic magnitudes, Henderson et al. (2012) and
Storeygard (2016) estimate lights-to-GDP growth elasticities at the country and the Chi-
nese prefecture level, respectively. For both levels of aggregation, they find an elasticity of
approximately 0.3. Following their approach allows obtaining an elasticity for the specific
sample used in this research: Grid-cell data can be aggregated to the country level using
area-weights for the spatial aggregation. Then, the natural logarithm of country level
GDP in real currency units is regressed on the log of aggregate night-light intensity and
a full set of country and time fixed effects.
Using the full time-span from 1992 to 2013 and the set of 197 countries, estimates

suggest an aggregate lights-to-GDP growth elasticity of 0.37. The within R2 is equal
to 0.273, so that time variation in light emissions explains more than a quarter of the
variation in GDP within a country over time. Moreover, the country level elasticity of
lights to the population density (0.10) is not significantly different from the elasticity
of GDP to the population density (0.13).16 In line with recent literature connecting
population density to total factor productivity (TFP) at the grid cell level (Desmet et al.,
2018), this finding fosters the adequacy of light emissions as a proxy for gridded economic
activity. Figure 1 compares grid cell level lights growth to country level GDP growth over
time. Even without adjusting for potential systematic measurement error in the lights
data, which will be taken care of econometrically, the plots indicate substantial variation
across time and provide suggestive evidence for the co-movement of light and economic

14Typically, the lights literature takes the simple average of these images (see, e.g., Chen and Nordhaus,
2011; Henderson et al., 2012; Pinkovskiy and Sala-i Martin, 2016). However, data availability (the number
of valid nights that led to pixel construction) can be quite different across satellite-years. This introduces
missing observations even if one satellite contains valid information. It also generates potentially spurious
mean pixel values in which underlying valid nights enter the final mean with inconsistent weight or may
be double-counted. Satellite-year inspection leads to selecting the layer from the respective youngest
satellite with only one exception. There is a clear time-trend in the average number of valid nights, which
steadily improves as new satellites are launched (see Table A3 in the Appendix).

15Additionally the number of top-coded (DN63) and bottom-coded (DN0) pixels in each cell are
recorded. For robustness, top- or bottom-coded pixels are excluded in Section 5.1.

16One needs to bear in mind that this correlation is obtained by aggregating data to the country-level;
this biases the strength of the lights-GDP link downwards. Detailed results are shown in Table A4 in the
Appendix. If the regression is restricted to the same time frame as Henderson et al. (2012), the obtained
elasticity is 0.35 and the within R2 is 0.240.
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Figure 1: Growth in Lights vs. Growth in GDP

Note: Jitterplots represent annual light growth at the cell level by country. Lineplots represent annual
country level GDP growth, scaled by factor 0.2.

activity across the world.

2.2. Natural Disasters

The independent variables of interest measure the physical intensities of geological and
meteorological events. Starting from Felbermayr and Gröschl (2014), a new data set of
monthly observations is compiled from various sources at 0.5° by 0.5° grid cell resolution
for the entire globe, named the Gridded GAME (geological and meteorological events)
Database. The database covers the period 1979–2014 and captures earthquakes, storms,
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droughts, extreme precipitation and extreme temperature events.17 While this research
will ultimately be at the annual level, it is quintessential to collect primary intensity data
at the monthly level for climatic and meteorological events, the lowest common level of
disaggregation. This allows accounting for local seasonality in meteorological and climatic
patterns. The main objective is to identify extreme events, which by construction implies
identifying anomalies from local conditions. The climate science literature is followed in
defining anomalies as (extreme) deviations from monthly means for an individual cell (see
Kraus, 1977; Nicholson, 1986).
Data from the Incorporated Research Institutions for Seismology (IRIS)18 is used to

measure the locations of epicenters and magnitudes of earthquakes.19 IRIS collects data
from a vast number of seismological institutions around the world and provides global
coverage. Maximum earthquake magnitudes observed at epicenter locations are mapped
to the respective grid cell within a given month. As IRIS provides global coverage, any
missing values are set to zero.
Data on extreme precipitation events is also collected. These events may cause

damage, when precipitation exceeds the local percolation capacities.20 Monthly precip-
itation in millimeters stems from the University of East Anglia Climatic Research Unit
Timeseries (CRU TS 3.23).21 The data set is based on gauge data by weather stations.
As precipitation can be discontinuous in time and fractal in space, climate scientists
apply sophisticated reanalysis methods to produce high-quality estimates for monthly
precipitation covering all land areas (excluding Antarctica) at 0.5° resolution (see Har-
ris et al., 2014). CRU compiles and homogenizes station data from numerous sources
into a consistent format, assessing global precipitation variability and additional variables
that allow the derivation of drought indices, such as the Standardized Precipitation-
Evapotranspiration Index (SPEI). To identify extreme precipitation events by cell at the
monthly level, location-specific seasonality and systematic spatial differences are taken
into account. Following the climatological literature, standardized anomalies are calcu-
lated by subtracting the long-run (1979-2014) mean precipitation observed in a cell for

17Note that the Gridded GAME data includes records on volcanic eruptions and accompanying Vol-
canic Explosivity Index (VEI), but since continuous presence of lava at the surface emits light that is
captured in the night-light data, no use can be made of this measure in the present study.

18http://service.iris.edu/fdsnws/event/docs/1/builder/
19Magnitudes provided (e.g., Richter Scale, Moment Magnitude) differ across earthquakes, but all

follow a logarithmic scale, are valid in their respective range and can be compared with each other.
20Information on flood events (their extent and depth) at the grid cell level, as provided by the

Dartmouth Flood Observatory, would be preferred, but no such data is available with global and consistent
coverage.

21http://browse.ceda.ac.uk/browse/badc/cru/data/cru_ts/cru_ts_3.23/data.
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a given month and standardizing it with the corresponding cellular long-run standard
deviation for that month:

γpreci,m,y =
xpreci,m,y − x̄

prec
i,m

σpreci,m

, where i = cell, m = month, y = year.

This indicator measures both positive and negative precipitation extremes. As extreme
precipitation events which potentially exceed local percolation capacities are of particular
interest, the constructed monthly precipitation indicator is censored at zero.22 The re-
sulting measure records the positive deviation of precipitation from the long-run monthly
mean in a cell accounted in units of standard deviation from its mean.
To capture droughts, the SPEI is calculated from gridded data on precipitation (PRE)

and potential evapotranspiration (PET) contained in the CRU TS 3.23 data set. This
takes into account the amount of water coming in (precipitation) and the amount lost
(evapotranspiration), resulting in a climatic water balance for each cell in a given month.
(Vicente-Serrano et al., 2010) is followed23 to construct a cell-specific monthly SPEI that
has a zero mean, a standard deviation of one and is theoretically unbounded. Negative
values indicate drought events, hence, a zero-censored version of the constructed indicator
is used.24 Hot weather conditions enter the SPEI as part of potential evapotranspiration.
The drought indicator therefore includes heat waves to the extent that they are accom-
panied by dry conditions.
Cold waves can cause major disruption to both social and economic activity. To

capture these events, gridded 0.5° resolution land surface temperature in degrees Celsius
is used25, compiled by the Climate Prediction Center (CPC) of the National Oceanic
and Atmospheric Administration (NOAA). This data set combines two large sources of
station observations collected from the Global Historical Climatology Network (GHCN)
v2 and the Climate Anomaly Monitoring System (CAMS).26 To obtain global spatio-
temporal coverage and consistency, unique reanalysis methods are applied to the source
data (see Fan and Van den Dool, 2008). Again, the grid cell resolution is perfectly

22The uncensored precipitation measure is recorded in the Gridded GAME database. While negative
index values might hint at droughts, a more sophisticated index proposed in the hydrological literature
is used.

23The climatic water balance (PRE−PET) is standardized for each cell with a log-logistic distribution
function, applying the unbiased probability weighted moments method to data from the current and the
respective past n − 1 months with n ∈ [1, 3, 6, 9, 12]. The reference period to obtain the distribution
parameter is 1901–2014.

24The converse argument that positive values represent extreme precipitation events is, however, not
true.

25Mean surface temperatures provided in Kelvin is converted to Celsius: °C = °K− 273.1
26http://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html.

9

http://www.esrl.noaa.gov/psd/data/gridded/data.ghcncams.html


consistent with Gridded GAME such that observations are merged by longitude and
latitude of cells’ geographic centers. Cell-specific low temperature events at the monthly
level are identified as standardized anomalies, analogous to extreme precipitation events,
by taking location-specific seasonality and systematic spatial differences in the climatology
into account. Hence, temperature is normalized by subtracting the long-run (1979-2014)
mean temperature observed in a cell for a given month and standardizing this deviation
by the cell long-run standard deviation for that month:

γtempi,m,y =
xtempi,m,y − x̄

temp
i,m

σtempi,m

, where i = cell, m = month, y = year.

This indicator reflects both positive and negative temperature extremes. To isolate in-
formation on cold wave treatment, positive monthly anomalies are censored and negative
ones are expressed in absolute terms. The resulting cold wave indicator records negative
deviations of surface temperature from the long-run monthly mean at the cell, accounted
in units of standard deviation from this mean.
To examine storms, a combined measure is created using information on maximum

monthly sustained wind speeds from two distinct sources. The International Best Track
Archive for Climate Stewardship (IBTrACS) Version v03r0927 conveys information on
moving center-locations with respective wind speeds of tropical cyclones. The Global
Summary of the Day (GSOD) statistics28 contain wind speeds measured at weather sta-
tions. The lack of gridded data poses a challenge: The spatial spillover analysis requires
a panel which is balanced and provides at least one neighbor per grid cell. Given the
impermanence of cyclones and both the uneven spatial distribution and inter-temporal
fluctuation of stations, readily available wind speed data is insufficient to provide these
ingredients.29 Moreover, available point-location data does not accommodate the spatial
dimension of storms. Consequently, two types of spatial interpolation techniques are ap-
plied. A wind field model provided and described in detail by Geiger et al. (2017) is used to
generate continuous gridded wind field cells from IBTrACS, which provides distributions
of surface wind speeds around hurricane centers. The model uses all available information
on wind speed, pressure and direction to compute sustained winds speeds that most likely
occurred in cells surrounding available data points. Figure 2 presents hurricane Katrina

27http://www.ncdc.noaa.gov/oa/ibtracs/index.php?name=ibtracs-data.
28ftp://ftp.ncdc.noaa.gov/pub/data/gsod.
29Balancing reduces the sample to cells with at least one station or hurricane center in every period.

Simply setting cells with missing wind speed information to zero induces measurement error as a true
monthly maximum wind speed of zero is very unlikely. Figure A2 in the Appendix visualizes observational
losses resulting from balancing if wind speeds are not interpolated.
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as an example of how raw data are transformed to a wind field. To capture summer and

Figure 2: Hurricane Katrina – IBTrACS (l.) vs. Wind Field (r.)

winter storms, cells are filled with gridded non-cyclone wind speeds. GSOD data are com-
bined with a global kriging spatial interpolation algorithm (see Krige, 1951).30 Finally,
a combined wind speed measure is constructed, which prefers wind field information on
hurricanes, cyclones or typhoons – if any such event has affected the cell – to the cell’s
kriged station wind speed. The resulting wind speed indicator is the maximum sustained
wind speed for a cell-month combination, measured in knots.
As night-lights are provided annually, the monthly physical intensities are aggregated

to an annual intensity indicator for each type. Indicators distributed around zero need
to be split, such that extreme events from both tails do not cancel out. Measures of cold
waves and droughts need no further adjustment, except censoring positive index values
in the monthly data. To aggregate extreme precipitation, negative index values of the
monthly precipitation measure are censored.
A straightforward aggregation approach would be to take the simple mean over all

monthly observations in a cell for each calendar year. This would, however, introduce
measurement error and bias, as all monthly observations within each year would be given

30Haslett and Raftery (1989) were the first to adopt kriging to a wind speed context by modeling the
spatial distribution of Irish wind power resources using historical wind speed data. Using daily European
climate data, Hofstra et al. (2008) show that kriging performs best out of six interpolation methods.
Kriged predictions are based on the aerial (semi-)variance in wind speeds across locations in relation to
the distance between locations. These predictions convey more information about the spatial persistence
of observed values than alternative interpolation methods, e.g., inverse distance weighting, where a linear
decay across space is imposed as a structural assumption. The exact procedure is described in detail in
Appendix A.2.
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the same weight. Consequently, a disaster that occurred earlier in a year may have
had a different impact, with respect to the number of months in which luminosity has
been captured by the satellites after the event, than one that happened later. To take
this dynamic relationship into account, a rolling-window weighted mean for each type is
calculated, weighting it by the number of months it affected luminosity. This ensures a
uniform take on potential disaster impacts, allowing all realizations to affect light growth
for 12 consecutive months.31 The final indicators capture weighted annual averages of the
monthly indicator values from the Gridded GAME database, reflecting disaster intensity
by cell and year. Figure 3 describes the distributions of aggregated variables.

Figure 3: Kernel Densities of Annual Aggregate Physical Intensities
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Note that by construction of the weighted annual average, the range of the distributions
is smaller than at the monthly level. Table 1 provides examples of natural events and
illustrates how these are reflected in the yearly aggregates in comparison to the monthly

31It must be recognized that, in principle, longer lasting disaster impacts are possible. These are taken
into account by including a temporal lag of the treatment variable into the regressions. In the robustness
section, results are provided which use the simple annual mean as an alternative.
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input data. Corresponding cell means and cell standard deviations of the yearly aggregate
measure are provided. The examples show that extreme events lie way above the cell
means and in the tail of the cell-specific distributions. Full summary statistics on yearly
aggregates for the estimation sample are provided in Table A2 in the Appendix.

Table 1: Representation of natural events in the monthly data vs. the yearly aggregates

Event Date Place Lat Lon Month Year C-Mean C-SD

Hurricane Katrina 08/2005 New Orleans, USA 28.75 -89.25 138 kt 38.3 kt 28.9 kt 3.4
Odisha Cyclone 10/1999 Odisha, India 19.75 86.25 128 kt 24.8 kt 17.8 kt 3.2

Haiti Earthquake 01/2010 Haiti 18.25 -72.25 7.7 1.3 0.2 0.3
Kobe Earthquake 01/1995 Kobe, Japan 34.75 135.25 7.3 3.8 2.1 0.8

Extreme Rain & Flash-Flood +
Heavy Prec. (Ohio Winterstorm)

06/2013
12/2013 Maryville, Missouri, USA 35.75 -83.75 2.66

4.16 1.52 0.43 0.35

Torrential Rains 11/1994 Kairo/Nile Valley, Egypt 30.25 32.25 4.56 0.56 0.23 0.15

UK Record Winter 12/2010 Country-Wide, UK 55.25 -2.25 2.30 0.67 0.43 0.09
Heavy Coldwave 07/2003 Cuzco Region, Peru -12.75 -71.25 2.04 0.59 0.49 0.11

Drought (prolonged) 01/2012 Country-Wide, Mexico 20.25 -104.25 1.63 0.80 0.52 0.17
Drought (prolonged) 02/1992 Country-Wide, Zimbabwe -21.25 31.75 2.89 1.38 0.44 0.40

Columns Lat and Lon represent geographic coordinates of grid cell centroids for reported values. Month represents maximum index realizations
of respective events in the monthly raw data, observed in the month of occurrence. Year represents the corresponding (simple mean) aggregate
over 12 months of the year. C-Mean and C-SD refer to cell-specific distributions of yearly aggregates.

The structure of the disaster intensity variables combined with the fixed effects approach
allows letting the data decide which cell-specific events are extreme.32 It is indeed these
(extreme) deviations that form disaster events this research is ultimately interested in.33

2.3. Population

A key control variable, population at the pixel level, stem from the Gridded Population
of the World (GPW) collection provided by the Center for International Earth Science
Information Network (CIESIN). The data contain 5-year target estimates based on census
inputs gathered at the lowest administrative units available, which are redistributed from
their administrative census boundaries to a uniform pixel grid by using aerial weights.34

Pixel data are aggregated to grid cell units by summing population numbers within each
cell. To interpolate the years between the given 5-year periods, exponential population
growth is assumed.

32Note that the fixed effects essentially demean the measures, leaving deviations from the cell-mean
as the source of disaster identification.

33Note that point estimates on the respective disaster variables cannot be directly compared as mea-
sures are based on different units of account.

34Note that the GPW data applied here is not constructed using lights as an input factor; contrary to
the widely-used GRUMP population data that make use of night-light emissions to redistribute population
counts across pixels.
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3. Empirical Strategy

The aim of this research is to identify the local average treatment effect of various types of
natural events at the grid level. This requires accounting for the spatial structure of the
data both conceptually and econometrically. A grid cell approach is taken with 0.5°×0.5°
resolution. This coincides with primary data records on meteorological and climatological
events and provides a natural starting point. Superimposing this arbitrary layout has the
advantage that it intersects with actual economic units that may show a high connectivity
and clustering. Observational units are therefore entirely exogenous.35

A first somewhat naive approach that ignores potential spillovers and the spatial struc-
ture of error terms is a simple panel fixed effects growth estimation, in which within-cell
variation of year-to-year growth in average night-light emission is related to the intensity
of events in that year:36

∆`t = `t−1γt−1 +Dtβ
0
t +Xtδ

0
t + ν + π + ut (1)

where the K×1 vector ∆`t captures the growth rate in night-light emissions expressed in
yearly changes of the logarithm of mean night-light intensity `t ≡ ln

(
lightt

)
for each of

the K grid cells, ∆`t ≡ `t−`t−1. The disaster treatment variableDt is a K×P matrix of
physical intensities (and temporal lags) and Xt is a K ×N matrix of N control variables
(population) at the grid cell level in year t. π denotes a full set of year fixed effects to
capture global trends, such as technological progress, energy costs, and the global business
cycle.37 Moreover, year fixed effects address systematic time variation in the measurement
of light emissions. On-board gain settings of sensors vary across and within satellites over
time and with satellite age – yet, these effects are not documented. Accordingly, raw
satellite data is not calibrated and direct comparison of light intensities over time would

35An alternative would be to conduct estimations at the sub-national level on administrative divisions.
Economic data (e.g., income inequality) are available as control variables for some countries. However,
these variables are almost always correlated with night-lights, if not (partly) constructed using them.
Moreover, administrative units across the globe differ tremendously in size and reflect geographic and de-
mographic conditions as well as political decisions, which are often determinants of night-lights themselves
or jointly determined with it.

36As more detailed data become available, a higher level of temporal detail may be an alternative. But
studying annual averages ensures that not only short-run power outages are captured (a channel through
which disaster events might affect night-light emissions) such that the focus is on longer lasting impacts
on the emission of night-light throughout the year.

37In the sensitivity analysis, it is shown that results remain robust when including country-specific year-
effects. While this allows to control for time-varying country characteristics (e.g. institutions, policies
or overall infrastructure), it tremendously reduces the degrees of freedom and restricts identification to
countries beyond a critical geographic size.
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therefore be problematic. This issue is tackled by following Henderson et al. (2012)
and Chen and Nordhaus (2011) who propose to include time fixed effects. ν denote
cell fixed effects controlling for time-constant local unobservable variables. Cell fixed
effects absorb location-specific baseline risk, which determines to what extent disasters
occur unexpectedly and may thus affect economic responses to shocks. Consequently,
identification relies on unexpected variation in the physical intensity measure. How night-
light growth reflects GDP growth may be structurally related to historical, cultural and
political differences in the use of light. In addition, night-light emission patterns may be
systematically driven by land use. Areas dominated by agricultural use emit little to no
light as they grow (Keola et al., 2015). To the extent that these differences and land use
patterns are time-invariant, they are captured by cell fixed effects. Cell fixed effects also
control for inherent systematic measurement error in night-lights across latitude (e.g., due
to stray light, aurora, and the solar cycle) and for overall topography and other unobserved
geographic determinants. This basic model is explored first to take the analysis from
national to the grid cell level and to show very basic correlations.
However, the spatial dependence of both night-light growth and disaster intensity re-

quires relaxing the traditional independence assumption, often implicitly applied in most
work in this field. As cells intersect true economic units (e.g., cities or metropolitan ar-
eas), this makes them spatially dependent by construction. Also, weather shocks typically
do not account to only single cells but have a spatial extent of their own. Thus, despite
treatment variation across space within this extent, exogenous shocks are correlated with
shocks in neighboring cells. In addition, night-light growth in one cell is not orthogonal to
disasters occurring in neighboring cells due to potential spillover effects. Hence, treatment
of neighbors may have explanatory power and is correlated with own treatment, which
leads to omitted variable bias.
To avoid this bias and account for spatial dependence, the idea is to simultaneously

model local treatment effects and spillover effects to neighboring cells. Therefore, a spatial
Durbin error model (SDEM) (cp. Anselin, 2013; Halleck and Elhorst, 2015) with cell and
year fixed effects is chosen.38 In this model, the dependent variable may not only depend
on own covariates but also on the covariates of neighboring units. This implies that
natural shock events not only affect light growth in the cells in which they are recorded,
but also indirectly affect light growth in neighboring cells. A fully specified spatial panel

38As it is reasonable to assume that spatial spillovers from natural events are confined in their geo-
graphical extent, local rather than global spillovers are modeled explicitly. This study therefore prefers
the SDEM over the more often used spatial Durbin model (SDM) specification. For a discussion, see
Halleck and Elhorst (2015). Section 5.5 discusses SDM as an alternative specification.
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model is estimated of the form:

∆`t = `t−1γt−1 +Dtβ
0
t +Xtδ

0
t +W rDtβ

1
t +W rXtδ

1
t + ν + π + ut (2)

ut = ρW rut + εt.

where W r is a time-invariant K × K dimensional spatial weights matrix, which allows
accounting for spatial spillovers. It is specified as binary and isotropic, meaning that its
elements are equal to one for all neighboring cells within the spatial radius r around a given
cell’s center and discretely drop to zero for all cells beyond that radius, as recommended
by Conley (2008).39 In the baseline specification, a geodesic radius r of 80 km is chosen.
This implies that effectively eight adjacent cells are considered neighbors at the equator.
Using a constant metric distance ensures that the geographic area of neighbors remains
constant over latitude. This leads to the inclusion of a larger number of cells along the
longitudinal axis the further one moves away from the equator.40 Gibbons et al. (2015)
discuss requirements of imposing structure on the spatial process to disentangle treatment
effects from direct spillovers in the dependent variable. The cutoff choice is to some extent
arbitrary and it is not formally testable.41 By interacting determinants withW r, spatial
lags are obtained. The inclusion of spatial lags – similar to the inclusion of temporal lags
in time-series – allows local outcomes to depend not only on local treatment but also on
the treatment of neighbors. β1

t and δ1t are thus average local spillover effects of a marginal
change in the respective explanatory variable in one neighboring cell.
Following the econometric literature, spatial clustering and spillovers in unobserved

characteristics are accounted for by allowing for spatial auto-correlation in the error term
ut. This is crucial due to potentially high connectivity and clustering of observed values
in the spatially disaggregated data and to account for the fact that residual spatial auto-
correlation (RSA) may reflect unobserved natural or economic processes. Superimposing
an arbitrary grid cell layout implies that cells need not be independent from each other,
as cell borders may intersect true economic units (i.e., urban settlements) and share
national or regional business cycles and institutions. While the imposed spatial structure
accounts partially for the true spatial dependence, it must still be corrected for RSA,
which otherwise may bias the spatial estimates.

39This structure imposes a strict balancing restriction on the panel such that the same set of neighbors
is used for a specific cell across all 21 years in the sample.

40Due to the curvature of the earth, the metric length of 0.5° longitude decreases with latitudinal
distance to the equator, whereas the metric length of 0.5° latitude remains approximately constant.

41To test whether results are sensitive to the spatial radius chosen for the weights matrix, the distance
cutoff is increased in Section 5.2 to r = 160 km.
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The Global Moran’s I test (Moran, 1950) allows testing for residual auto-regressive
processes (ut = ρW rut + εt).42 In a spatial lag of X (SLX) regression with two-way cell
and time fixed effects, a positive and statistically significant test is observed for all disaster
categories, see Table A5. Hence, the Null is rejected in favor of positive RSA (i.e., spatial
clustering). Thus, the SDEM is preferred over the more parsimonious SLX specification.
To account for RSA, Baltagi et al. (2007) type spatial auto-correlation in the residuals
is applied.43 To model RSA and to address non-linearity in ρ, the Maximum-Likelihood
approach for spatial panel models provided by Millo and Piras (2012) and Millo (2014) is
used. This allows consistent estimation of the local economic impact of natural disasters
together with spillover effects to neighboring locations.

4. Main Results

In this section, a parsimonious panel fixed effects model is taken as a starting point to then
show how modeling the spatial dependence of grid cells changes local treatment effects.
In later sections, robustness checks are presented and heterogeneity in income groups and
across world regions is explored.

4.1. Explorative Results

Following Bertinelli and Strobl (2013) and Elliott et al. (2015), the point of departure
is a simple ordinary least squares (OLS) model including cell and year fixed effects, as
described in the methodology section. Extreme precipitation is taken as an example, as
this shows most explicitly how modeling spatial spillovers affects the results. Results are
presented in Table 2, columns (1) to (4). Not accounting for spatial dependence and
spatial autocorrelation in the simple panel fixed effects setting suggests a positive and
statistically significant effect of precipitation on night-light growth in column (1). This is
a counterintuitive finding reminiscent of earlier results in the literature; see Felbermayr

42It takes the following form

I =
N

W
·
∑

c

∑
j wcj(xc − x̄)(xj − x̄)∑

c(xc − x̄)2
.

The Null of no residual spatial auto-correlation equals E(I) = −1
N−1 .

43An SLX model excluding the spatial error component is also estimated. Results are shown in Tables
A6 to A8 in the Appendix. Furthermore, an ordinary least squares (OLS) model is estimated with
standard errors adjusted for spatial clustering following the procedure implemented by Hsiang (2010),
see Table A17.
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and Gröschl (2014) for a discussion. Controls, such as initial light levels and population
show expected negative and positive results, respectively.
As spatial dependence between grid cells is present, spatial spillovers in production and

consumption may affect surrounding locations. Thus, in column (2), Halleck and Elhorst
(2015) are followed by estimating an SLX model, which includes the spatial weights matrix
but does not account for residual spatial autocorrelation. The local average treatment
effect turns substantially negative and highly significant, while simultaneously a positive
coefficient estimate for the spatial spillover of extreme precipitation is found. Hence,
the local impact of extreme precipitation is negative, but a cell’s night-light growth is
positively affected by extreme precipitation events in neighboring cells.44 Point estimates
on lagged night-light intensity and population remain stable and highly significant. Next,
a temporal lag is added to the SLX model to allow for dynamic effects in column (3). For
lagged local treatment and spatial spillovers, highly significant point estimates suggest a
reversal of respective effects in the year of occurrence. This indicates that spillovers are,
on average, temporary and recovery occurs within two years.
The spatial spillovers modeled capture spatial dependence only partially due to the

fact that grid cells may intersect with metropolitan areas along their arbitrary borders.
Night-light growth is thus expected to be spatially correlated across contingent cells due
to unobserved characteristics which also follow a spatial pattern, so residual spatial au-
tocorrelation remains a concern.45 Therefore, in column (4), the preferred SDEM model
is estimated, which augments the SLX model with Baltagi-type spatial errors. Point es-
timates on both local and spillover effects are substantially reduced in size but remain
qualitatively similar. Note that the lagged spillover effect of extreme precipitation turns
insignificant in the SDEM specification. The spatially auto-regressive parameter ρ is pos-
itive and highly statistically significant, which is in line with the results of Moran’s I
test.
To compare obtained estimates with existing grid level studies, the storm indicator

is specifically taken under consideration (see Table 2, columns (5) to (8)). In line with
Bertinelli and Strobl (2013) and Elliott et al. (2015), local average treatment effects remain
consistently negative across all model specifications (also in the lags). Note, however, that

44Note that Bertinelli and Strobl (2013) and Elliott et al. (2015) investigate potential spatial spillovers.
However, rather than allowing for direct spillovers, they average disaster intensity over the set of a cell
and a range of its neighbors. Both studies find little evidence for spatial spillovers, while this study finds
strong evidence in favor of their existence. Note that the the size of grid cells (0.5°compared to 1 km2) is
considerably larger. Spatial spillovers in this approach are thus estimated over a much longer distance,
while their spillovers would be part of the local treatment effect in this approach.

45Absence of RSA is rejected in the SLX model for all disaster types in a Moran’s I test, with evidence
for positive spatial autocorrelation implying spatial clustering patterns.
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Table 2: Model Buildup: Impact of Precipitation and Wind on Light Growth

Dependent Variable: ∆ ln(lightst)
precip. wind

(1) (2) (3) (4) (5) (6) (7) (8)

disastert 0.0115*** −0.0613*** −0.0752*** −0.0310*** −0.0051*** −0.0102*** −0.0010 −0.0020**
(0.0029) (0.0078) (0.0081) (0.0070) (0.0003) (0.0009) (0.0010) (0.0009)

disastert−1 0.0481*** 0.0219*** −0.0143*** −0.0090***
(0.0077) (0.0069) (0.0010) (0.0009)

W · disastert 0.0114*** 0.0138*** 0.0049*** 0.0008*** −0.0002 0.0000
(0.0011) (0.0011) (0.0013) (0.0001) (0.0001) (0.0002)

W · disastert−1 −0.0079*** −0.0021 0.0015*** 0.0008***
(0.0011) (0.0013) (0.0001) (0.0002)

ln(popt) 0.0412*** 0.0250*** 0.0250*** 0.0257*** 0.0404*** 0.0238*** 0.0236*** 0.0247***
(0.0028) (0.0027) (0.0027) (0.0013) (0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0149*** 0.0149*** 0.0112*** 0.0145*** 0.0143*** 0.0108***
(0.0009) (0.0009) (0.0006) (0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4090*** −0.4123*** −0.4122*** −0.4367*** −0.4109*** −0.4146*** −0.4152*** −0.4387***
(0.0032) (0.0032) (0.0032) (0.0011) (0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.0672*** 0.0672***
(0.0000) (0.0000)

Method OLS SLX SLX SDEM OLS SLX SLX SDEM
Observations 502,026 502,026 502,026 502,026 507,864 507,864 507,864 507,864

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifications (1) to (3) and (5) to (7) are estimated by panel OLS,
(4) and (8) is estimated by Maximum Likelihood. Standard errors (in parentheses) allow for heteroskedasticity and clustering at the cell
level in specifications (1) to (3) and (5) to (7). Cell and year fixed effects included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent monthly observations.

the point estimate for the SDEM specification (column (8)) is more than half the size of
that in the OLS specification (column (5)). Contrary to the aforementioned studies, this
research finds evidence for positive and statistically significant spatial spillovers. The fact
that spillovers show up significantly only in the lagged period may be consistent with
results by Bertinelli and Strobl (2013) and Elliott et al. (2015) that suggest absence of
spatial spillovers in the contemporaneous year.
Results for all other disaster categories are reported in Tables A6 to A8 in the Appendix.

Substantial differences between the estimated local average treatment effect in OLS versus
SLX models are found for all disaster categories, and they may vary qualitatively in terms
of estimated signs and lagged effects. For all categories but earthquakes, evidence for the
presence of spatial spillovers is found. For droughts, the mirror image of precipitation
patterns is obtained, with a negative local treatment effect in the OLS, but a sign reversal
when allowing for spatial spillovers. Cold waves behave like precipitation, with the sign
of the effect reversing when moving from the simple framework to allowing for spatial
spillovers. For earthquakes, the size of the positive estimate is reduced together with sig-
nificance levels when moving from OLS to SLX and subsequently to SDEM, but a positive
local treatment effect remains. There is no evidence for consistent spatial spillovers. A
reason may be substantial measurement error in the spatial extent of earthquakes and in
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their precise location. Reported epicenters often lie at the outer edge of an earthquake’s
fault rather than at the center of distributed ground movement. Furthermore, capturing
negative light growth effects of earthquakes in the yearly response variable might gener-
ally be unfeasible: Earthquakes are sudden and short-lived, while temporary relocation
of activity into the open, such as evacuation to emergency camps, as well as reconstruc-
tion and building sites tend to increase rather than dampen light emissions. Post-impact
stimuli to the reconstruction sector are common and are frequently reported (see, e.g.,
Chang, 2010; Hallegatte and Przyluski, 2010). In addition, duration of the reconstruction
phase varies widely, depending on financial and technical constraints (see, e.g., Ghil et al.,
2011). For these reasons, further discussion of earthquake results is disregarded in the
following. Instead, focus is put on weather shocks, which can be measured with much
higher precision in this setup.

4.2. Baseline Results

The previous section clearly established the SDEM model as the preferred specification.
Table 3 presents results for each type of weather shock.
Baseline results suggest that storms, extreme precipitation events and cold waves have

negative and statistically significant local average treatment effects. Within a geodesic
radius of 80 km, significantly positive spatial spillover effects of these event types are
observed. This suggests that exogenous shocks lead to a deflection of economic activity
towards less affected neighboring regions. Persistence or reversal of treatment effects over
time is heterogeneous across disaster types.
Extreme winds that increase the yearly wind speed measure by one knot are associated

with a decline in lights growth of 0.2 percentage points on average. Applying the light-
to-GDP growth elasticity documented in Section 2.1, a one standard deviation increase
in the yearly wind speed measure leads to a reduction of income growth below its local
growth path by 0.33 percentage points on average.46 Interestingly, a large proportion of
the growth impact only kicks in with a time-lag. After one period, an increase in the
yearly wind speed measure by one knot reduces lights growth by 0.9 percentage points.
This implies that a one standard deviation increase in wind speeds reduces economic
growth in affected cells by 1.49 percentage points. On average, spatial spillover effects
of storms are insignificant in the baseline period. After one period, a positive spillover

46The GDP growth effect of a one standard deviation increase in the annual wind measure (4.49)
corresponds to a wind speed estimate of -0.0020, multiplied by 100 and translated using the lights-to-gdp
growth rate elasticity of 0.37: [−0.0020 · 100] · 0.37 · 4.49 = −0.33
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Table 3: Baseline Results

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0020** −0.0310*** 0.0083* −0.0762***
(0.0009) (0.0070) (0.0048) (0.0153)

disastert−1 −0.0090*** 0.0219*** 0.0005 −0.0326**
(0.0009) (0.0069) (0.0047) (0.0149)

W · disastert 0.0000 0.0049*** −0.0044*** 0.0218***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0021 0.0010 −0.0195***
(0.0002) (0.0013) (0.0009) (0.0026)

ln(popt) 0.0247*** 0.0257*** 0.0276*** 0.0244***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0108*** 0.0112*** 0.0115*** 0.0106***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4387*** −0.4367*** −0.4329*** −0.4379***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

effect is found which suggests an increase in local lights growth by 0.08 percentage points
if in one of the neighboring cells the yearly mean wind speed is driven up by one knot
– implying an increase in income growth by 0.13 percentage points for a one standard
deviation increase in wind.47

Monthly extreme precipitation may exceed local percolation capacities and potentially
cause flooding. A precipitation event that increases the yearly precipitation measure by
one standard deviation reduces local income growth by 0.17 percentage points. One period
later, recovery leads to a higher growth in local income by 0.12 percentage point increase in
local income growth for a one standard deviation increase in the yearly rainfall measure.
A one standard deviation increase in extreme precipitation events in one neighboring
cell within 80 km leads on average to spillovers increasing local income growth by 0.03
percentage points. Finally, there is no significant evidence that spatial spillovers persist
longer than one period after an extreme precipitation event.
Given that droughts primarily affect agricultural outcomes but agricultural production

is not associated with light emission in most parts of the world, finding evidence for a

47If a storm hits multiple cells simultaneously, aggregate spillovers from the neighborhood accumulate.
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negative local impact of droughts on the light-based outcome proxy is not to be expected.
In fact, while night-lights typically reflect industrial and services sectors (Doll et al., 2006;
Ghosh et al., 2010), as mentioned earlier agriculture (and forestry) emit less or no visible
light as they grow (Keola et al., 2015). From a macroeconomic perspective, agricultural
production also reflects intermediary inputs to light-emitting industry production and to
general consumption.48 However, while agriculture may be reflected through consumption
and intermediary industry output at the country level, the observational units defined for
this analysis are less likely to capture such negative secondary effects due to the high
geographic resolution. Instead, it is more likely that droughts in rural areas reduce con-
sumption and intermediary industry output in nearby urban areas, located in neighboring
cells. Consequently, negative spatial spillovers are expected to be driven by droughts in
mostly rural rather than urban cells.
This hypothesis is supported by the data. Estimates suggest that income growth is

reduced on average by 0.04 percentage points for each neighboring 0.5° grid cell within a
range of 80 km that experiences a one standard deviation increase in drought.To test the
hypothesis that this effect is driven by spillovers from rural to urban cells, an unsuper-
vised machine learning algorithm is combined with the pixel-level land use data from the
Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m map of global urban
extent (Schneider et al., 2009) provided by the Food and Agriculture Organization of the
United Nations (FAO), to classify the data into 0.5°×0.5° cells that are predominantly
urban (i.e., residential) or non-urban (see Appendix A.4 for more details).49 Table A1 in
the Appendix shows a decomposition of the direct and spillover effects of droughts along
this classification. Results suggest that negative spillovers from non-urban to urban cells
drive the aggregate spillover, with magnitudes about twice as large as within non-urban
neighborhoods. Spillovers within pairs of non-urban cells persist, however, potentially
due to residual urban structures in cells classified as non-urban. As expected, no evidence
is found for spillovers from urban to non-urban cells and only weak spillovers are found
within urban neighborhoods. The positive direct effect is nearly three times as large in
urban compared to non-urban cells.
A one standard deviation increase in cold waves reduces income growth by 0.25 per-

48Wu et al. (2013) use aggregate night-lights at country level to estimate the extent to which night-
time lights implicitly reflect agricultural production. In a sample of 169 countries observed from 1995 to
2009, their results suggest that the agricultural sector accounts for 25% of total light radiance.

49A simple classification approach is also provided, which does not depend on machine learning for
classification. This classification gives a 10% share of urban cells, instead of 5% obtained by the clustering
approach. It holds similar results. Note that in both cases classification provides an indication of a cell’s
key type, but does not imply that a cell is exclusively urban or non-urban.
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centage points in the base period and by 0.10 percentage points after one period. Corre-
sponding spillovers suggest that economic activity is shifted to neighboring locations in
the current year, increasing their income growth on average by 0.07 percentage points.
The spillover effect of cold waves does not persist over time; instead a sign reversal in a
similar order of magnitude is observed.
Control variables consistently show expected signs and significance levels for all weather

shocks. A 1% population increase is associated with an increase in lights growth of 2.5
percentage points on average, which implies an increase in GDP growth of 0.9 percentage
points. If population in a neighboring cell increases by 1%, local lights grow by 1.1
percentage points, with an average increase in GDP growth of 0.4 percentage points.

Figure 4: Percentile Light Growth Effects of Natural Disasters
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Note: Contemporaneous change in night-light growth as estimated in Table 3, as a function of percentile
realizations of the respective demeaned intensity measures (i.e., surprise realizations). 95% confidence
interval is plotted in shaded gray.

Next, the distribution of weather shocks is explored to evaluate growth effects at differ-
ent realizations of respective indicators. Figure 4 shows contemporaneous growth effects
along the difference in disaster intensity from its long run cell mean.50 In line with Fel-

50Disaster intensities are demeaned to calculate quantile impacts. The empirical fixed effects strategy
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bermayr and Gröschl (2014), a non-linear shape of growth effects is found for all disaster
types. This strongly resembles modeling results on the non-linear relation between phys-
ical intensity and asset losses or output losses (Hallegatte et al., 2007; Hallegatte, 2008).
For all types, the 95% smallest realizations of intensity measures imply a reduction in light
growth of less than 1 percentage point.51 The worst 5% of realizations show substantially
larger effects, with extreme shocks being located in the top 1% of realizations. The top
1% of storms decrease light growth by more than 1 percentage point, while the top 1%
realizations of extreme precipitation are associated with a reduction in light growth of
more than 2 percentage points. The top 1% of cold waves are associated with more than
3 percentage points lower light growth. Drought effects should be treated with caution
due to the features discussed above. For completeness, positive drought effects are equally
more sizable for the largest 1%, but only weakly significant.

5. Robustness

Next, issues related to measurement and alternative specifications that may affect the
baseline results are explored. A summary of robustness results is shown in Table 4.

5.1. Sensitivity to Top- and Bottom-Coding

DMSP satellite sensors are subject to saturation, resulting in top-coding of pixels for which
light emission is at or above the sensor’s detection saturation level.52 Pixels are top-coded
at DN63 and are mainly found in urban centers. The share of top-coded pixels ranges
from zero in some low and middle income economies — but also in sparsely populated
high income countries (e.g., Canada) — to around 2.5% for small but densely populated
high income areas (e.g., the Netherlands, Belgium). Notable exceptions are Singapore
and Hong Kong, both small and densely populated, and two small island states (Malta
and Trinidad and Tobago). There, the share of top-coded cells runs close to or within the
double digits as a substantial part is urban built-up area.53

identifies on surprise realizations of treatment variables. Non-demeaned physical intensities exhibit clus-
tering of non-surprises especially within the lower quantile. Since these do not contribute to identification,
demeaning is used to avoid overdrawing growth effects.

51Lower percentiles ultimately constitute positive surprise events.
52Bluhm and Krause (2017) propose a method to impute “true” light values for top-coded pixels by

assuming a Pareto distribution on top lights. Although this approach may be of great value to the general
literature, imputed measures cannot be used for studying shocks on its values.

53Gas flaring introduces areas with top-coded pixels into the raw data. These are masked by default,
as described in the Appendix Section 2.1.
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Top-coding may be a concern for identification if the change in night-time lights due to
a shock happens beyond the saturation level of the satellite sensor. To account for this,
pixels which are top-coded at least once during the observed time period are masked.
None of the 0.5° cells are fully top-coded, while 8% of cells in the sample contain some
fraction of top-coded pixels. The mean degree of top-coding is 3.7% (sd 8.4%) and for 99%
of these cells top-coding is below 50% of land area. As top-coded pixels are unresponsive
to shocks as long as light levels remain beyond the satellite sensor saturation threshold,
excluding these should – if anything – lead to larger point estimates. Table 4, Panel A
shows that results are robust to excluding top-coding from the data, with all disaster
models showing point estimates almost identical to the baseline results.54

Bluhm and Krause (2017) suggest that satellite sensor saturation starts already at pixel
values as low as DN55. While changes in the DN55-DN62 range can still be measured,
larger measurement error might be present in this range with a structural downward bias
on recorded versus true brightness. If this is the case, growth in night-light intensity is
underestimated in the upper range of pixel values, which in practice affects mostly urban
centers.55 Applying the top-coding approach to pixel values above DN55, point estimates
are similar to the baseline.56

Data quality concerns also exist at the lower end of recorded light intensity. Henderson
et al. (2012) discuss the underrepresentation of pixels below DN3. To tackle this, all pixels
below DN3 are set to zero. Estimated suggest that the baseline results are robust in Panel
B, Table 4 – except the contemporaneous treatment effect of storms turns insignificant.57

Elvidge et al. (2009) discuss in their methodology on the identification of gas flaring
that pixel values below DN8 should potentially be ignored to “eliminate background noise
present in the products”. While the number of pixels below DN3 affects 0.1% of pixels in
the data, the share of pixels between DN1 and DN8 is 7.5%. Masking all pixels in this
range affects 23% of grid cells and eliminates all low-lit areas.58 As this likely introduces
sample selection, the following results should be interpreted with caution. For storms,
contemporaneous treatment turns insignificant, lagged and spillover effects stay robust.
Results on excessive precipitation are similar to the baseline when excluding low lit areas.
For droughts, the contemporaneous positive treatment effect turns insignificant, while
the lag and spillover structure remain unchanged. As droughts mainly affect rural areas

54Table A9 in the Appendix shows full results.
55About 20 cells are lost when applying this wider masking range.
56Results are shown in Table A10 in the Appendix.
57Table A12 in the Appendix presents full results.
58See Table A3 in the Appendix for summary statistics on the DN distribution of satellite-years. Full

results for setting all pixel values below DN8 to zero are presented in Table A11 in the Appendix.
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Table 4: Sensitivity Results

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

PANEL A: Top-Coding: Excluding Top-Coded Pixels
disastert −0.0019** −0.0329*** 0.0091* −0.0752***

(0.0009) (0.0070) (0.0048) (0.0152)
disastert−1 −0.0090*** 0.0222*** 0.0012 −0.0318**

(0.0009) (0.0069) (0.0048) (0.0149)
W · disastert 0.0000 0.0052*** −0.0046*** 0.0219***

(0.0002) (0.0013) (0.0009) (0.0027)
W · disastert−1 0.0008*** −0.0023* 0.0011 −0.0200***

(0.0002) (0.0013) (0.0009) (0.0027)

PANEL B: Bottom-coding: Setting Pixels <DN3 to Zero
disastert −0.0007 −0.0265*** 0.0082* −0.0852***

(0.0009) (0.0070) (0.0048) (0.0154)
disastert−1 −0.0106*** 0.0290*** 0.0015 −0.0291*

(0.0009) −0.0069 (0.0048) (0.0150)
W · disastert −0.0001 0.0042*** −0.0041*** 0.0242***

(0.0002) (0.0013) (0.0009) (0.0027)
W · disastert−1 0.0010*** −0.0022* 0.0007 −0.0217***

(0.0002) (0.0013) (0.0009) (0.0027)

PANEL C: Radius r=160km
disastert −0.0016** −0.0249*** 0.0125*** −0.0849***

(0.0007) (0.0057) (0.0041) (0.0136)
disastert−1 −0.0052*** 0.0158*** −0.0075* −0.0129

(0.0007) (0.0057) (0.0040) (0.0133)
W · disastert 0.0000 0.0008** −0.0015*** 0.0061***

(0.0000) (0.0004) (0.0003) (0.0009)
W · disastert−1 0.0001* 0.0000 0.0005* −0.0060***

(0.0000) (0.0004) (0.0003) (0.0008)

PANEL D: Time Varying Country Characteristics
disastert 0.0004 −0.0312*** 0.0062 −0.0360**

(0.0010) (0.0070) (0.0049) (0.0179)
disastert−1 −0.0049*** 0.0117* 0.0009 −0.0390**

(0.0010) (0.0069) (0.0049) (0.0175)
W · disastert 0.0003** 0.0043*** −0.0041*** 0.0165***

(0.0002) (0.0013) (0.0009) (0.0029)
W · disastert−1 0.0009*** −0.0022* 0.0017* −0.0144***

(0.0002) (0.0013) (0.0009) (0.0028)

PANEL E: Simple Annual Mean of Disasters
disastert −0.0032*** −0.0289*** 0.0243*** −0.0613***

(0.0007) (0.0055) (0.0039) (0.0137)
disastert−1 −0.0064*** 0.0011 −0.0060 −0.0540***

(0.007) (0.0055) (0.0038) (0.0133)
W · disastert −0.0002 0.0018* −0.0037*** 0.0337***

(0.0001) (0.0010) (0.0007) (0.0025)
W · disastert−1 0.0008*** 0.0030*** 0.0000 −0.0504***

(0.0001) (0.0010) (0.0007) (0.0019)

PANEL F: Global Spillovers
disastert −0.0046*** −0.0279*** −0.0016 −0.0974***

[−0.0044] [−0.0259] [−0.0029] [−0.0794]
(0.0007) (0.0060) (0.0041) (0.0122)

disastert−1 −0.0095*** 0.0198*** 0.0017 −0.0858***
[−0.0093] [0.0189] [0.0017] [−0.0908]
(0.0007) (0.0059) (0.0041) (0.0119)

W · disastert 0.0005*** 0.0037*** −0.0010* 0.0217***
[0.0000] [0.0001] [−0.0001] [0.0010]
(0.0001) (0.0009) (0.0006) (0.0017)

W · disastert−1 0.0008*** −0.0021** −0.0001 0.0015
[0.0000] [−0.0001] [0.0000] [−0.0003]
(0.0001) (0.0009) (0.0006) (0.0017)

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM (except Global Spillovers are SDM) and are estimated
by Maximum Likelihood. Standard errors in parentheses. Cell and year fixed
effects included but not reported in all specifications. Cell and country-year
fixed effects included for the time-varying country characteristics analysis but
not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect
time-weighted rolling averages over 12 subsequent monthly observations. Sim-
ple annual mean uses non-weighted mean over all monthly observations within
a year. Global Spillovers show average effects translated with spatial multi-
plier in square brackets. Full results are shown in Tables A9 to A16 in the
Appendix.
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– typically low lit – the absence of a local treatment effect indeed suggests that it is not
possible to measure these local effects in light growth. For cold waves, contemporaneous
treatment turns insignificant, while lagged treatment and spillover effects are robust.
Overall, result remain broadly in line when considering top- and bottom-coding of night-
time light emission data.

5.2. Sensitivity to Spatial Radius

Next, the choice of the cutoff distance for the weighting matrix is addressed. Thus far, a
radial distance cutoff of 80 km has been used to define a cell’s local neighborhood. Now
the sensitivity of results to a larger search radius of 160 km is checked.
Table 4, Panel C suggest that doubling the neighborhood radius does have little effect on

local average treatment effects, while average local spillovers remain qualitatively similar
but broadly show a substantial decline in magnitude.59 Hence, adding cells beyond 80
km to the local neighborhood drives down the average spillover effect per cell observed
within this neighborhood. This indicates that spatial spillovers of weather shocks are local
phenomena that decline with distance, complying with Tobler’s first law of geography
(Tobler, 1970).

5.3. Time-Varying Country Characteristics

The baseline specification accounts for all time-constant unobservable cell characteristics
and overall global trends (technological change, business cycles). This leaves country-
specific fluctuations, such as country-wide policy decisions or institutional change, unad-
dressed. Thus, country-year fixed effects are applied to absorb unobserved country-time
specific variation. Three mechanisms potentially affecting estimates are at play: (1) The
smaller the country and hence its number of cells, the larger the share of variation in a
cell’s growth rate that is absorbed by the country-year fixed effect; (2) within cell variation
net of country-specifics only allows for identification of local treatment to the extent that
this treatment does not affect a country as a whole (e.g., events which are particularly
devastating or geographically dispersed may not be reflected in treatment estimates); and
(3) 3,927 degrees of freedom are lost, potentially making identification more difficult. (1)
and (2) point to the fact that this strategy favors larger countries over smaller ones and
may work better for events that are explicitly local by nature.60 It is known from the

59Table A13 in the Appendix shows full results.
60Note that droughts, for example, typically stretch over large areas implying that they may well be

ongoing in an entire country, albeit to a varying degree throughout its territory.
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empirical literature that the most extreme events can have negative consequences for eco-
nomic growth at the country level (Cavallo et al., 2013; Felbermayr and Gröschl, 2014).
Therefore, point estimates are expected to attenuate.
Table 4, Panel D shows that results are qualitatively robust to the inclusion of country-

year fixed effects and show an overall decline in magnitudes.61 The local effect of storms
turns insignificant. Note that hurricanes, typhoons and cyclones form the most extreme
events in this category, which often hit small island states for which the cell effect is largely
soaked up in the country-year fixed effect. Extreme precipitation results prove robust,
with the lagged local treatment effect and current spatial spillovers somewhat reduced in
size. The lagged spatial spillover turns weakly significant suggesting a higher precision of
estimation. Point estimates on local treatment and spillover effects of droughts and cold
waves are smaller – droughts turn insignificant.

5.4. Simple Annual Mean

In this part, the aggregation method is changed by taking the simple annual mean over
all months within a year instead of the rolling average. Note that this may introduce
systematic measurement error and bias by weighting events which occurred later in the
year with the same weight as those that happened earlier. Table 4, Panel E shows very
consistent results for all types of weather shocks.62 While local treatment effects decrease
slightly in magnitudes for storms, results are consistent for precipitation and increase by
factor 2.9 for droughts and by factor 1.2 for cold waves. Spillover effects are consistent
for storms, decrease slightly for precipitation and droughts and increase by one- half for
cold waves. Generally, results remain unchanged in sign and significance levels.

5.5. Global Spillover Specification

Thus far, local spillover effects have been estimated through SDEM or SLX models. The
advantage is that estimated coefficients on spatially lagged explanatory variables can be
interpreted directly and in terms of local spillover effects attributed exclusively to exoge-
nous variation within a defined neighborhood. An alternative approach, which has often
been used in the applied empirical literature, is the spatial Durbin model (SDM) with
a spatially autocorrelated dependent variable rather than a spatial error structure. As
discussed by Halleck and Elhorst (2015) and Anselin (2013), this class of model struc-
turally implies a global notion of spillover effects. With global spillovers, estimates on

61For full results, see Table A14 in the Appendix
62Table A15 in the Appendix shows full results.
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spatially lagged dependent variables do not reflect only exogenous spillovers from the
defined neighborhood, but they structurally represent both, exogenous and endogenous
spillovers, with the latter resulting as general equilibrium (GE) effects from the propaga-
tion of external effects across all contiguous locations in the universe interconnected by a
spatial multiplier.63

An advantage of the latter approach is that it explicitly enforces “global” compliance
with the stable unit treatment value assumption (SUTVA) by allowing observational units
not only to interfere within an exogenously defined neighborhood, but across all contiguous
locations. The disadvantage, however, is that exogenous local and endogenous global GE
spillover components cannot be disentangled. In this context, allowing for a propagation
of exogenous weather shocks across all contiguous cells seems inadequate given the goal
of explaining local phenomena at a very disaggregated level. Generally, SDM coefficients
on the direct and the spatially lagged explanatory variables cannot be interpreted in
a straightforward way.64 Following this, an assessment is provided of how findings are
affected in a global spillover model estimated by maximum likelihood techniques:

∆`t = `t−1γt−1 + λW r∆`t +Dtβ
0
t +Xtδ

0
t +W rDtβ

1
t +W rXtδ

1
t + ν + π + εt.

Table 4, Panel F shows consistent results in sign and overall magnitude but convey
a different meaning.65 To properly disentangle direct and spillover effects, coefficients
need to be translated applying the spatial multiplier (I − λW )−1 = I + λW + λ2W 2 +

λ3W 3 + . . . , such that the direct effect is reflected in the diagonal and the spillover
in the off-diagonal elements of (I − λW )−1[β0

t + Wβ1
t ]. Panel F includes the mean

of all diagonal elements in square brackets for the direct effects, representing the local
average treatment effect comparable to the local spillover specification in the baseline.
For direct effects, translated coefficients are similar to point estimates. In contrast, the
interpretation of translated spillover coefficients in square brackets is very different from
the local spillover baseline. The row-wise mean across all connected (non-sparse) off-
diagonal elements captures how a cell is affected on average by treatment of any other
cell which is part of its contiguously connected spatial neighborhood, also beyond the
imposed radius of 80 km.
In general, the mechanics of the global spillover model allow spillovers to propagate

63Contiguity implies that some overlap between the spatial neighborhoods of two given cells in the
W r matrix must exist.

64As stated by Halleck and Elhorst (2015), this methodological peculiarity is mostly ignored in applied
research.

65Table A16 in the Appendix shows full global spillover results.
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from one 80 km neighborhood to the next, as long as these neighborhoods are contiguously
connected. If neighborhoods are spatially disconnected by gaps larger than 80 km, the
desired propagation-effect is interrupted. This is often the case across oceans, seas, large
mountain ranges, deserts, and other uninhabited spatial areas. Comparison with Figures
A7-A10 shows that, even though the term “global spillovers” might suggest otherwise, the
cells in the sample are quite far from being contiguously connected around the world such
that the global spillovers reported do not reflect a world-wide propagation but rather a
“regional” one. Above all, the extent of such contiguous regions is heterogeneous across
space and hardly tractable.
Nevertheless, for some parts of the world, contiguous areas are of considerable size.

The small estimate for λ indicates that spillovers phase out quickly across space. As a
consequence, the mean magnitude by which a cell is affected by any other cell in its con-
tiguous neighboring region is, on average, vanishing compared to the local spillover effects
from only the next-door neighbors, estimated in the baseline. These insights essentially
support the choice of a local spillover specification to be adequate, both due to the lack
of spatial contiguity in the data and given the strong phasing-out of effects across longer
distances.

6. Zooming In on Heterogeneity

Up to this point, focus has been on the global average of local weather shock impacts. In
a next step, heterogeneity in income groups and across world regions is explored.

6.1. Income Groups

Cells are classified depending on whether they belong to high income or to low (and
middle) income countries.66 Table 5 summarizes the results by showing the combined
effects from a set of interaction regressions. Estimates suggest that negative wind effects
are driven by low income cells in the year of occurrence and thereafter. The lagged
negative effect in low income cells is nearly three times as large as in high income cells.
Positive lagged spillover effects occur in both types of cells, but are 1.5 times stronger for
those that are poorer. Negative treatment and positive spillover effects for precipitation
are entirely driven by low income cells. The positive local treatment effect on droughts

66The binary categorization of income groups follows World Bank Lending Groups from year 2000.
Cells in high income countries account for 31% of the sample, cells in low and middle income countries
account for 69%.
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shows only in cells of low income countries, as does the negative spillover effect. In line
with the baseline, cold waves show a strong negative effect on light growth in low income
cells, associated with a positive spillover effect. In high income cells, cold waves lead to
more light growth in the period of occurrence and less thereafter, with negative spillovers
in the preceding year. Overall, there is evidence that the baseline local average treatment
and spillover effects are generally driven by cells in low and middle income countries.
This relates well to findings in the literature that developing and poor countries are
particularly vulnerable to the impact of extreme natural events (Raddatz, 2007; Noy and
Nualsri, 2011).

Table 5: Income Group Heterogeneity, Combined Effects

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

high income

disastert −0.0015 0.0171 −0.0120 0.2442***
(0.0016) (0.0118) (0.0093) (0.0389)

disastert−1 −0.0042*** 0.0249** 0.0081 −0.0680*
(0.0015) (0.0117) (0.0092) (0.0384)

W · disastert −0.0001 0.0015 −0.0020 0.0077
(0.0003) (0.0021) (0.0016) (0.0059)

W · disastert−1 0.0006** −0.0040* 0.0029* −0.0224***
(0.0003) (0.0021) (0.0016) (0.0059)

low income

disastert −0.0021* −0.0534*** 0.0147*** −0.1133***
(0.0011) (0.0087) (0.0056) (0.0169)

disastert−1 −0.0119*** 0.0192** −0.0010 −0.0193
(0.0011) (0.0085) (0.0055) (0.0165)

W · disastert 0.0001 0.0064*** −0.0052*** 0.0191***
(0.0002) (0.0016) (0.0011) (0.0031)

W · disastert−1 0.0009*** −0.0007 0.0000 −0.0170***
(0.0002) (0.0016) (0.0010) (0.0030)

Observations 506,142 500,787 467,691 504,525

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Cell and
year fixed effects and controls as in baseline included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect time-weighted rolling aver-
ages over 12 subsequent monthly observations. Estimates represent combined
effects from adding up coufficients from the interaction terms, significance lev-
els are obtained with a two-sided t-test. Full regressions in Table A18.
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6.2. World Regions

Next, cells are categorized into world regions (see Figure A13). Table 6 summarizes results
from a set of split-sample regressions. Overall, results show that specific weather shocks
are driven by some world regions. In line with the baseline, wind speeds show negative
effects on night-light growth in Europe, North America, Latin America and the Caribbean
(LATAM), as well as in South-East Asia and the Pacific (SEAP). Except for Europe, the
lagged effect of wind persists throughout the following year. Middle Eastern and Northern
African (MENA) and Central Asian cells show on average a positive effect in the year
of occurrence and a negative effect with a lag. Spillover effects are generally positive
in subsequent years (except SEAP) and positive in current years in North America and
LATAM. Negative effects from excessive precipitation occur in LATAM, SEAP, MENA
and Central Asia. A negative but statistically insignificant local treatment effect is found
for Sub-Saharan Africa (SSA). Positive spillover effects stem from MENA, Central Asia
and SSA.

Table 6: Heterogeneity Across World Regions

Dependent Variable: ∆ ln(lightst)
Europe North LATAM SEAP Central Asia SSA

America & MENA

wind

disastert −0.0034* −0.0076*** −0.0048** −0.0032* 0.0061** 0.0011
disastert−1 0.0042** −0.0064*** −0.0064*** −0.0080*** −0.0108*** −0.0011
W · disastert −0.0002 0.0007* 0.0012** −0.0001 0.0008 −0.0003
W · disastert−1 0.0005* 0.0011*** 0.0009* 0.0001 0.0020*** 0.0016*

prec.

disastert 0.0116 0.0026 −0.0659*** −0.0277* −0.0348** −0.0365
disastert−1 0.0046 0.0049 0.0483*** 0.0021 −0.0305* 0.0200
W · disastert 0.0033 0.0013 −0.0022 0.0014 0.0062** 0.0134*
W · disastert−1 0.0016 −0.0037 −0.0034 0.0078* −0.0042 0.0038

drought

disastert 0.0042 −0.0245*** 0.0373*** 0.0021 −0.0176 0.0102
disastert−1 0.0011 0.0049 −0.0493*** 0.0349*** 0.0221** 0.0454***
W · disastert −0.0077*** 0.0021 −0.0008 −0.0066** −0.0024 −0.0010
W · disastert−1 0.0006 0.0045** 0.0015 −0.0047* 0.0057*** −0.0076

cold

disastert 0.0906** 0.0256*** −0.1388*** 0.1020*** −0.2588*** 0.1513**
disastert−1 −0.0858* −0.1636*** −0.0140 0.1289*** −0.4732*** −0.0437
W · disastert 0.0295*** 0.0111 0.0117** −0.0104 0.0455*** −0.0080
W · disastert−1 −0.0283*** 0.0022 0.0086* −0.0021 −0.0196** −0.0152

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM and are estimated by
Maximum Likelihood. Cell and year fixed effects and controls as in baseline included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over 12 subsequent monthly observations.
Separate regressions for each disaster type and region. Full regressions in Tables A19 – A24.

Droughts reduce night-light growth in North America, while the positive baseline effect
is driven by Latin American and Caribbean cells. Negative spillovers of droughts show up
in Europe and SEAP. Already very dry regions, such as SSA or MENA show very little
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average effects on droughts.
In Europe, North America, SEAP and SSA, cold waves show positive local effects on

night-light growth. While Europe and North America can generally afford the technology
for coping with the cold, SEAP, as well as SSA benefit from cooler weather as overall
warmer regions. Negative local effects from cold waves stem solely from LATAM, MENA
and Central Asia. Positive spillover effects from cold waves are driven by Europe, LATAM,
MENA and Central Asia.

7. Conclusion

This paper contributes to the emerging literature on the economic consequences of ex-
ogenous extreme natural events by taking the debate to the local level, asking how their
economic effects propagate across space and time. Satellite night-time light data from
1992 to 2013 are deployed to proxy for local economic activity, which are proven to be
highly correlated with GDP growth, and disaggregated seismologic, climatic and meteoro-
logic data on natural disaster events are compiled. Available economic variables, such as
light emission and population, are mapped together with the various disaster types on a
balanced 0.5°×0.5° grid. Utilizing maximum likelihood techniques, the impact of various
types of exogenous shocks on the growth of night-time light emissions is estimated in a
fixed effects setup, controlling for cell population and spatial autocorrelation in the error
term. This setup allows explicit modeling and investigation of local average treatment ef-
fects but also of spatial spillover effects in nearby locations. With this setup, the problem
of varying country sizes or subnational entities as the unit of observation is eliminated.
Results are heterogeneous across the various disaster types. Baseline results show that

storms, cold waves and extreme precipitation events reduce local light growth and have
positive contemporaneous or lagged spatial spillover effects within a geodesic radius of 80
km. Evaluated along the lights-to-GDP growth elasticity, a one standard deviation in-
crease in wind speeds reduces contemporaneous income growth by 0.33 percentage points.
In the next period, the effect quadruples and local spillovers from treatment of one neigh-
boring cell increase lights growth by 1.48 percentage points. Likewise, a one standard de-
viation increase in excessive precipitation or cold waves decreases current income growth
by 0.17 or 0.25 percentage points, respectively. In the next period, GDP growth increases
on average by 0.12 percentage points due to high precipitation, but persistently decreases
by 0.11 percentage points after a cold spell. Associated contemporaneous spillovers to-
tal 0.03 and 0.07 percentage points per neighbor treated, respectively. The link between
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light emission and droughts is rather weak as they mostly affect agricultural outcomes.
Hence, negative spatial spillover effects of droughts are largely driven by rural rather than
urban cells. Due to measurement error in the data or temporary relocation of activity
into the open combined with reconstruction after an earthquake, a consistent pattern
for earthquake events cannot be identified. Overall, results are largely robust to top-
and bottom-coding, the spatial radius, the temporal aggregation method, the inclusion of
time-varying country fixed effects or the use of a global spillover model.
Finally, some heterogeneity of disaster impacts across world regions and across income

groups is shown. In particular, estimates suggest that cells in low and middle income
countries drive the baseline results.
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A. Technical Appendix

A.1. Supplementary Information: DMSP Night-Lights Data

The United States Air Force DMSP satellites were originally used to detect moonlit
clouds, with lights from human settlements being a byproduct that is recorded by the
DMSP Operational Linescan System sensor on-board. The sensor records light intensity
with a DN between 0 and 63.
Satellites have been observing every location of the planet daily between 8.30 pm and

10 pm local time between 1992 and 2013. Each satellite orbits the earth 14 times a day
and thus ensures global coverage every 24 hours (Doll, 2008).
The satellites have a 3000 km swath, from which data of the center half is used to

produce images at a nominal resolution of 0.56 km. The data is smoothed on-board to
produce an average of 5×5 pixel blocks resulting in a data resolution of approximately
2.7 kilometers at the equator. After smoothing, the data is delivered at a resolution
of 30 arc seconds, representing half a minute, or 1/120th of a degree. This gives data
for approximately 0.86 square kilometers at the equator, with surface area decreasing in
absolute terms when moving away from the equator.
The Earth Observation Group of NOAA then processes the raw data using an advanced

algorithm, which cleans the raw data as follows: lights from the center half of the 3000
km swath are selected since these have better geolocation, are smaller and have more
consistent radiometry (Earth Observation Group, 2016).
Sunlit data and glare are then excluded based on the solar elevation angle and similarly

moonlit data is excluded on basis of the moonlit half of the lunar cycle. Subsequently only
cloud-free observations are included and lighting features from the aurora are excluded
from the data (Baugh et al., 2010). The exclusion of lighting from auroral features, which
concerns high-latitude zones, affects approximately 10,000 people or 0.0002% of the world
population (Henderson et al., 2012b, p. 998).
Finally, ephemeral events such as forest fires and other background noise are removed to

produce stable average visible light products that reflect annual average human produced
light emission into space at a 30 arc second resolution between 65°South and 75°North
(Earth Observation Group, 2016). The average number of valid nights for a given pixel
in the satellite-years is 39.2 (Keola et al., 2015) and typically ranges between 20 to 100
(Elvidge et al., 2009b).
The share of unlit pixels ranges from only 1% in the Netherlands to 99.47% and 99.89%

for the sparsely populated countries Mozambique and Canada (Henderson et al., 2012b, p.
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1000). A contrasting example to Mozambique and Canada can be found when comparing
Bangladesh and the Netherlands. Both have high population density, Bangladesh having
twice the density of the Netherlands with an average of 1,080 people per square km
between 1992-2008. Yet, average light intensity – the average digital number per country
– is only 2 for Bangladesh, whereas it is 23.5 in the Netherlands (Henderson et al., 2012,
p. 1000). With GDP per capita (purchasing power parity, constant 2005 dollars) being
35 times higher in the Netherlands, this indicates that light intensity informs not only
about whether there is human life present in a certain area, but also about these areas’
relative income per capita (see e.g., Elvidge et al, 2009; Gosh et al. 2010).

Figure A1: Night light emission of Europe and 0.5° grid cells

Night light data cleaned and prepared as described. Raw data comes from satellite F182010.

Notwithstanding, a direct comparison of average light intensity can be misleading when
not taking into account population size in a given area: The average light intensity of
Canada is lower than that of Bangladesh while income per capita is much higher in
Canada. Moreover, light usage per person may vary across countries due to cultural
differences in night light use and customs of timing of economic activity across day and
night. This is why (Henderson et al., 2012) stress that night light intensity is better used
as a proxy for income growth rather than income levels. Hence, this approach is followed.
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A.2. Interpolation of Wind Speeds

Using the algorithm by Hiemstra et al. (2008), the data are first classified into bins by
breaking up distances d between all point locations of weather stations. For each distance
bin d̄, the cross-sectional empirical (or experimental) semi-variance of observed maximum
wind speeds across its n observations at any given point in time is defined by equation (3).
z(xi) is a random function defining a set of random variables, representing the respective
wind speeds in any given location xi. By assumption, the correlation between two random
variables z(xi), z(xj) depends only on their bilateral spatial distance, irrespective of their
location (i.e., stationarity of the second moment of z(xi)). Thus, z(xi + d̄) captures the
wind speed realizations observed d̄ distance units away from location xi.

γ̂(d̄) =
1

2
· 1

n(d̄)

n(d̄)∑
i=1

(z(xi + d̄)− z(xi))
2 (3)

Since the empirical semi-variogram cannot be computed at all possible distances d,
a model function is fit for each period, for which parameters are fully determined by
the data. The best fit in line with the experimental semi-variogram is achieved by the
Stein (1999) parametrization of the Matérn model67 (4) with gamma function Γ and a
modified Bessel function Kν . The nugget (the intercept of the fit) is fixed at zero.68 σ2 is
the so-called sill of the model, which under stationarity of the second moment is simply
an estimate of the variance V ar [z(xi)]. ν and κ are non-negative smothing and range
parameters, respectively. All parameters are determined by available global wind speed
data for any given month.

γ(d) =


0 if |d| = 0

σ2

[
1− 1

2ν−1Γ(ν)

(
2 |d|
√
ν

κ

)ν
Kν

(
2 |d|
√
ν

κ

)]
if 0 < |d|, ν > 0

(4)

The resulting functional fit increases monotonically as a function of distance and is
deployed to spatially interpolate the maximum wind speed for any location on the global
grid. Note that this interpolation technique allows mapping recorded wind speeds to
surrounding locations. For areas that are very sparsely covered with weather stations, this
inevitably results in a smoothing effect over larger distances. Note that this introduces

67Five different variogram models (spherical, exponential, Gaussian, Matérn, and M. Stein’s
parametrization of the Matérn model) are tested. Note that the Matérn model includes the exponential
model as a special case and the Gaussian model as a limit case (ν lim inf).

68A zero nugget constrains deviation of predicted from preserved values at very short distances.
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a downward bias in the recorded wind speeds, such that obtained estimates may be
considered a lower bound. Full global coverage is achieved by using all stations within
a geodesic search radius of 2,000 km as predictors. Figure A3 shows the semi-variogram
obtained for June 2012. Figure A4 visualizes the corresponding spatially interpolated
maximum wind speeds and Figure A5 assesses the fit of these predicted values, using a
leave-one-out technique.

Figure A2: Balancing Windspeeds – Cells lost when balancing on non-interpolated wind
speed data are shown in red.

43



Figure A3: Semi-Variogram for June 2012. Distance is in meters, value labels report the
number of bilateral station-distance-pairs per bin.
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Figure A4: Kriged maximum wind speed in June 2012
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Figure A5: Goodness of fit – Standard deviation of Kriged maximum wind speed (in kt)
in June 2012, obtained using the ‘leave one out’ technique.
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Figure A6: Spiked pattern obtained with inverse distance weighting as alternative choice
of wind speed interpolation.
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A.3. Balancing

Figure A7: Global distribution of grid cells preserved in balanced panel. Physical indica-
tors used for balancing: Winds. Red: Dropped because of zero absolute light
emission in at least one period. Yellow: Dropped because of zero population
in at least one period. Green: Dropped because no neighbors found within 80
km radius, or because of singleton country. Black: Preserved, i.e., balanced
and consecutive with at least one neighbor each and at least two cells per
country. Number of years: 21. Number of preserved cells: 24,184.

Figure A8: Global distribution of grid cells preserved in balanced panel. Physical indica-
tors used for balancing: Temperature. Red: Dropped because of zero absolute
light emission in at least one period and because of missing values in the
physical intensity measure. Yellow: Dropped because of zero population in at
least one period. Green: Dropped because no neighbors found within 80 km
radius, or because of singleton country. Black: Preserved, i.e., balanced and
consecutive with at least one neighbor each and at least two cells per country.
Number of years: 21. Number of preserved cells: 24,097.
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Figure A9: Global distribution of grid cells preserved in balanced panel. Physical indica-
tors used for balancing: Precipitation. Red: Dropped because of zero absolute
light emission in at least one period and because of missing values in the phys-
ical intensity measure. Yellow: Dropped because of zero population in at least
one period. Green: Dropped because no neighbors found within 80 km ra-
dius, or because of singleton country. Black: Preserved, i.e., balanced and
consecutive with at least one neighbor each and at least two cells per country.
Number of years: 21. Number of preserved cells: 23,906.

Figure A10: Global distribution of grid cells preserved in balanced panel. Physical indi-
cators used for balancing: Drought. Red: Dropped because of zero absolute
light emission in at least one period and because of missing values in the
physical intensity measure. Yellow: Dropped because of zero population in
at least one period. Green: Dropped because no neighbors found within 80
km radius, or because of singleton country. Black: Preserved, i.e., balanced
and consecutive with at least one neighbor each and at least two cells per
country. Number of years: 21. Number of preserved cells: 22,294.
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A.4. Rural/Urban Classification

To test the hypothesis that the observed negative spillover effects of droughts are mainly
driven by treated non-urban (potentially rural/agricultural) cells that negatively affect
nearby urban (or residential) locations, cells must be classified into predominantly urban
vs. non-urban ones. For this purpose, the MODIS Landuse Data provided by the FAO
for year 2001 is used. This landuse data includes information on the extent of urban or
crop areas at a spatial resolution of 15 arc-seconds (i.e., roughly 500 meters), obtained
from MODIS satellite imagery using a supervised decision tree classification algorithm
with region-specific parameters (Schneider et al., 2009). Urban landuse in particular
comprises all human-constructed elements such as buildings and roads, while crop landuse
comprises all kinds of cultivated fields. Pixel locations are defined according to the type
of landuse they are dominated by (i.e., coverage of at least 50% of a given pixel unit).
In particular, urban areas follow a defined minimum mapping unit approach, considering
only contiguous patches of built-up land that are greater than one square kilometer (i.e.,
at least four adjacent pixels.). This data is aggregated to 0.5°×0.5°grid cell units by
computing the cell level shares of each landuse pixel type.
As a next step, testing the hypothesis requires classifying each cell as either “urban” or

“non-urban” in a mutually-exclusive fashion. Due to the presence of snow/ice and other
vegetation, crops and urban shares do not sum up to one at the cell level. Moreover,
cells with a relatively high share of urban pixels compared to the global distribution may
simultaneously also have a relatively high share of rural pixels, and vice versa. Conse-
quently, it is unclear ex-ante, what threshold should be imposed on landuse shares to
make a binary distinction.
To solve this classification problem, an off-the-shelve unsupervised machine leaning

algorithm provided by Scrucca et al. (2016) is applied, using three input components:
The shares of urban, crop, and snow-ice pixels (vs. other vegetation) per cell in year
2001. Using the Bayesian Information Criteria (BIC), the algorithm picks the best fit
across a range of classification models. The algorithm chooses an ellipsoidal, equal volume
and shape (EEV) Gaussian finite mixture model fitted by expectation-maximization, to
classify cells into three categories representing cells that are mostly urban (1,038), mostly
non-urban/rural (21,163), and none (93). Thus, about 5% of ever-lit cells in the sample
represent mostly urban areas. Figure A11 depicts the classification outcome along the
three input-dimensions.
Figure A12 depicts the distributions of key variables of interest for the obtained classes.

The top two graphs are dedicated to the distribution of input components used by the
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Figure A11: Classification of Rural and Urban Cells in a Gaussian finite mixture model fit-
ted by Expectation-Maximization (EM) algorithm. Ellipsoidal, equal volume
and shape (EEV) model with 3 input components: Shares of urban, crop,
and snow-ice pixels per cell in year 2001. All input components centered and
scaled by their standard deviation for efficiency reasons. Log-Likelihood:
39,242.11, number of observations: 22,294 cells, number of estimated pa-
rameters: 23, Bayesian Information Criteria (BIC): 78,253.94, Integrated
Complete-data Likelihood (ICL): 77,970.27. Best fit across range of clas-
sification models provided by ’mclust 5’ R package (Scrucca et al., 2016),
using BIC as selection criterion. 21,163 cells classified as rural (red), 1,038
as urban/residential (blue), 93 as none (green).
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classification algorithm. As it becomes clear, most cells classified as rural have no or only
small urban pixel shares. The reverse conclusion is not true however: The graph on the

49



top right suggests that cells classified as urban may simultaneously have very high crop
shares. This observation seems reasonable, given the arbitrary layout of the grid cells
combined with the fact that cultivated croplands are often located in the outskirts of
urban areas.
The lower two graphs turn to the distributions of the mean night light intensity (left)

and of population (right). Neither of these two variables has been used as inputs for
classification but are relevant for empirical identification and shall thus serve to asses
the class validity. The plots suggest that both the mean night light intensity and the
population size are overall higher for urban than for rural cells, which can be considered
a reasonable finding.
Finally, to offer a more tractable alternative to the classification with non-supervised

learning, a “simple” selection rule is tested, which baldly classifies all cells as urban that
have a share of urban pixels which is larger than zero. This approach leads to about twice
as many cells being classified as urban, potentially including also those that have only
very small urban area. While it is reasonable to assume that about 10% urbanization at
a global scale may be too high, results are qualitatively similar.
To decompose the local average treatment and spillover effects of droughts according

to cell classification, the following model is estimated:

∆`t = `t−1γt−1 +Dtβ
0
t + [Dt × urban]β1

t (5)

+W r
non-urbanDtβ

2
t + [W r

non-urbanDt × urban]β3
t

+W r
urbanDtβ

4
t + [W r

urbanDt × urban]β5
t

+Xtδ
0
t +W rXtδ

1
t + ν + π + ut

ut = ρW rut + εt.

Wurban and Wnon-urban represent mutually exclusive subsets of neighborhoods. Since
these subsets potentially have systematic differences in the number of neighbors, spillover-
components are standard-normalized to allow direct comparison of coefficient magnitudes.
Results for both classifiers (clustering and simple) are summarized in Table A1.
Results suggest that negative spillovers from non-urban to urban cells drive the aggre-

gate spillover, with magnitudes about twice as strong as from non-urban to non-urban
ones. This supports the hypothesis that negative drought spillovers are driven by the
rural-to-urban channel. Spillovers within pairs of non-urban cells still persist, however,
potentially due to residual urban structures in cells classified as non-urban. There is
no evidence for spillovers from urban to non-urban cells and only weak spillovers within
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Figure A12: Distribution of cell properties across rural/urban clusters.
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Table A1: Comparison of Drought-Effects Across Rural-Urban Neighborhoods

Dependent Variable: ∆ ln(lightst)
clustering simple

d
ir
ec
t
eff

ec
ts

non-urban cells

droughtt 0.0243*** 0.0227***
(0.0039) (0.0040)

droughtt−1 −0.0046 −0.0038
(0.0039) (0.0039)

urban cells

droughtt × urban 0.0593*** 0.0463***
(0.0172) (0.0123)

droughtt−1 × urban −0.0289* −0.0204*
(0.0172) (0.0123)

sp
il
lo
ve
r
eff

ec
ts

fr
om

n
on

-u
rb
an

ce
ll
s to non-urban cells

Wnon-urban · droughtt −0.0080*** −0.0079***
(0.0015) (0.0015)

Wnon-urban · droughtt−1 −0.0004 −0.0006
(0.0015) (0.0015)

to urban cells

Wnon-urban · droughtt × urban −0.0094* −0.0062*
(0.0051) (0.0036)

Wnon-urban · droughtt−1 × urban 0.0046 0.0037
(0.0051) (0.0036)

fr
om

u
rb
an

ce
ll
s

to non-urban cells

Wurban · droughtt −0.0012 −0.0004
(0.0011) (0.0011)

Wurban · droughtt−1 −0.0005 −0.0005
(0.0011) (0.0011)

to urban cells

Wurban · droughtt × urban −0.0042** −0.0050***
(0.0019) (0.0019)

Wurban · droughtt−1 × urban 0.0034* 0.0025
(0.0019) (0.0019)

controls

ln(popt) 0.0276*** 0.0276***
(0.0014) (0.0014)

W · ln(popt) 0.0115*** 0.0115***
(0.0006) (0.0006)

ln(lightst−1) −0.4329*** −0.4329***
(0.0011) (0.0011)

ρ 0.0676*** 0.0676***
(0.0001) (0.0000)

Observations 468,174 468,174

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors in
parentheses. Cell and year fixed effects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages over
12 subsequent monthly observations. Wurban and Wnon-urban represent mutually
exclusive subsets of neighborhoods. Spillover-Components standard-normalized
to allow comparison across subsets within regressions.
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urban neighborhoods. Finally, the positive direct effect is nearly three times as large in
urban cells compared to non-urban ones. Notably also, the relevant spillover effects from
non-urban to urban cells are about a third higher with the machine-learning clustering
approach than if the simple classification rule is used. This suggests that the distinction
between urban and non-urban cells provided by machine-learning may be more precise
but is not exclusively driving the qualitative findings.

53



B. Supplementary Appendix

B.1. Descriptive Statistics

Table A2: Summary Statistics

statistic n mean st. dev. min max

∆ ln(lights) 507,864 0.045 0.392 −8.246 8.217
∆ ln(lights NTC) 468,111 0.046 0.394 −8.139 8.109
∆ ln(lights<=DN55) 507,528 0.048 0.402 −0.030 8.002
∆ ln(lights>=DN3) 507,024 0.045 0.397 −8.246 8.217
∆ ln(lights>=DN8) 390,957 0.045 0.483 −8.311 8.424
ln(lights) 507,864 0.264 1.724 −7.090 4.142
ln(lights NTC) 468,111 0.135 1.672 −7.090 4.093
ln(popt) 507,864 10.639 2.165 −14.390 16.822

time-weighted physical intensities
wind 507,864 20.766 4.486 5.478 46.528
cold 506,037 0.412 0.089 0.000 1.271
precip. 502,026 0.385 0.151 0.000 1.697
drought 468,174 0.387 0.242 0.000 2.305
earthq. 507,864 0.121 0.395 −0.189 5.002

simple mean of yearly physical intensities
wind 507,864 20.735 4.552 4.957 48.036
cold 506,037 0.410 0.093 0.000 1.372
precip. 502,026 0.386 0.182 0.000 1.841
drought 468,174 0.386 0.277 0.000 2.322
earthq. 507,864 0.120 0.405 −0.317 5.342

Figure A13: Specification of World Regions
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Table A3: Summary Statistics of Satellite-Years for Night-time Lights

Satellite-Year DN Cloud-Free
Nights

0 1–2 3–8 9–15 16–25 26–62 63 (Mean)

F101992 84.97% 0.00% 4.00% 1.89% 0.73% 0.85% 0.09% 15.2
F101993 86.34% 0.00% 6.19% 1.65% 0.70% 0.86% 0.00% 31.2
F101994 86.39% 0.00% 6.21% 1.58% 0.69% 0.89% 0.10% 14.7
F121995 84.97% 0.00% 6.26% 1.92% 0.84% 1.08% 0.10% 40.9
F121996 84.79% 0.00% 6.58% 1.82% 0.82% 1.04% 0.09% 40.2
F121997 84.81% 0.00% 5.90% 1.99% 0.85% 1.10% 0.11% 36.3
F121998 82.93% 0.00% 6.01% 2.25% 0.93% 1.18% 0.12% 40.2
F141999 78.35% 0.03% 7.65% 1.45% 0.66% 0.89% 0.08% 37.1
F152000 84.64% 0.00% 7.19% 2.31% 0.92% 1.15% 0.11% 48.7
F152001 81.82% 0.00% 7.49% 2.11% 0.89% 1.15% 0.09% 47.1
F152002 84.02% 0.00% 7.52% 2.19% 0.91% 1.19% 0.09% 53.4
F152003 82.19% 0.19% 8.24% 1.30% 0.63% 0.86% 0.06% 45.8
F152004 84.56% 0.52% 8.57% 1.27% 0.62% 0.89% 0.05% 53.9
F152005 83.91% 0.61% 8.90% 1.37% 0.69% 0.95% 0.06% 59.4
F152006 84.23% 0.56% 8.63% 1.36% 0.67% 0.96% 0.06% 51.6
F162007 84.16% 0.00% 8.16% 1.99% 0.87% 1.20% 0.09% 53.7
F162008 84.32% 0.00% 8.08% 1.92% 0.86% 1.19% 0.10% 47.4
F162009 85.55% 0.00% 6.74% 1.90% 0.87% 1.17% 0.12% 32.0
F182010 83.11% 0.00% 6.43% 3.39% 1.47% 1.87% 0.18% 54.6
F182011 83.56% 0.00% 7.85% 2.44% 1.06% 1.44% 0.14% 54.6
F182012 84.25% 0.00% 6.06% 2.89% 1.20% 1.59% 0.17% 49.4
F182013 84.61% 0.00% 6.16% 2.83% 1.16% 1.57% 0.16% 58.8

Note: Summary statistics are provided for post-cleaning night light satellite-years. Light pixels are considered only on-land, not in
gas-flaring zones and in vicinity of volcanoes (see Data Section). Exception: The mean number of cloud-free nights is constructed
using the raw data product, as downloaded from NOAA.

Table A4: Lights to GDP Growth Rate Elasticity

Dependent Variable: ln(GDP in const. LCU) ln(pop density)

ln(light) 0.348*** 0.369*** 0.097***
(0.092) (0.069) (0.015)

ln(GDP in const. LCU) 0.132***
(0.031)

adj. R2 0.999 0.998 0.997 0.997
within R2 0.240 0.273 0.073 0.080
N 3229 4167 4156 4156

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All models use panel
OLS. Standard errors (in parentheses) are robust to heteroskedasticity. Country and year
fixed effects included but not reported. Years 1992-2008 in first column, 1992-2013 in
remaining columns. 197 countries in sample.

Table A5: Test for Residual Spatial Autocorrelation

Global Moran’s I Test for regression residuals of SLX model

wind precip. drought cold

Sample Estimates
Observed Moran’s I 0.4466 0.4496 0.4530 0.4459
Expected Moran’s I −0.0001 −0.0001 −0.0001 −0.0001

0.0000 0.0000 0.0000 0.0000

Test Statistics
Moran’s I stat. s.d. 596.16 596.66 579.01 594.28
Two-sided p-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16

Note: Global Moran’s I Test for spatial autocorrelation in the residuals of estimated
linear SLX models, compare column (3) of tables A6–A8. The Null Hypothesis of no
residual spatial autocorrelation (RSA) is overwhelmingly rejected. Observed Moran’s
I are positive throughout, suggesting positive RSA (i.e., spatial clustering).
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Figure A14: Kernel Densities of Monthly Physical Intensities
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Figure A15: Kernel Densities of Monthly Temperature and Precipitation (raw data)
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B.2. Regression Tables

Table A6: Model Buildup: Impact of Droughts on Light Growth

Dependent Variable: ∆ ln(lightst)
(1) (2) (3) (4)

droughtt −0.0229*** 0.0262*** 0.0345*** 0.0083*
(0.0021) (0.0055) (0.0057) (0.0048)

droughtt−1 −0.0296*** 0.0005
(0.0058) (0.0047)

W · droughtt −0.0080*** −0.0099*** −0.0044***
(0.0008) (0.0008) (0.0009)

W · droughtt−1 0.0073*** 0.0010
(0.0008) (0.0009)

ln(popt) 0.0432*** 0.0267*** 0.0266*** 0.0276***
(0.0030) (0.0029) (0.0029) (0.0014)

W · ln(popt) 0.0149*** 0.0149*** 0.0115
(0.0009) (0.0009) (0.0006)

ln(lightst−1) −0.4054*** −0.4086*** −0.4084*** −0.4329***
(0.0033) (0.0033) (0.0033) (0.0011)

ρ 0.676***
(0.0000)

Method OLS SLX SLX SDEM
Observations 468,174 468,174 468,174 468,174

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifica-
tions (1), (2), and (3) are estimated by panel OLS, (4) is estimated by Maxi-
mum Likelihood. Standard errors (in parentheses) allow for heteroskedasticity
and clustering at the cell level in specifications (1), (2), and (3). Cell and year
fixed effects included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent
monthly observations.

Table A7: Model Buildup: Impact of Cold Waves on Light Growth

Dependent Variable: ∆ ln(lightst)
(1) (2) (3) (4)

coldt 0.0134** −0.1765*** −0.1227*** −0.0762***
(0.0068) (0.0184) (0.0194) (0.0153)

coldt−1 −0.0293* −0.0326**
(0.0176) (0.0149)

W · coldt 0.0323*** 0.0307*** 0.0218***
(0.0025) (0.0026) (0.0027)

W · coldt−1 −0.0229*** −0.0195***
(0.0024) (0.0026)

ln(popt) 0.0409*** 0.0236*** 0.0233*** 0.0244***
(0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0148*** 0.0142*** 0.0106***
(0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4097*** −0.4141*** −0.4138*** −0.4379***
(0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.0672***
(0.0000)

Method OLS SLX SLX SDEM
Observations 506,394 506,394 506,037 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Spec-
ifications (1), (2), and (3) are estimated by panel OLS, (4) is estimated
by Maximum Likelihood. Standard errors (in parentheses) allow for het-
eroskedasticity and clustering at the cell level in specifications (1), (2), and
(3). Cell and year fixed effects included but not reported. Spatial radius is
r=80 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations.
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Table A8: Model Buildup: Impact of Earthquakes on Light Growth

Dependent Variable: ∆ ln(lightst)
(1) (2) (3) (4)

earthq.t 0.0107*** 0.0055** 0.0038 0.0044**
(0.0018) (0.0022) (0.0023) (0.0022)

earthq.t−1 0.0032 0.0011
(0.0024) (0.0022)

W · earthq.t 0.0019*** 0.0008 0.0005
(0.0005) (0.0006) (0.0008)

W · earthq.t−1 0.0018*** 0.0015*
(0.0007) (0.0008)

ln(popt) 0.0406*** 0.0243*** 0.0243*** 0.0251***
(0.0028) (0.0027) (0.0027) (0.0013)

W · ln(popt) 0.0148*** 0.0147*** 0.0111***
(0.0008) (0.0008) (0.0006)

ln(lightst−1) −0.4101*** −0.4134*** −0.4134*** −0.4378***
(0.0032) (0.0032) (0.0032) (0.0011)

ρ 0.672***
(0.0000)

Method OLS SLX SLX SDEM
Observations 507,864 507,864 507,864 507,864

Note: ***, **, * denote significance at the 1%, 5% and 10% level. Specifica-
tions (1), (2), and (3) are estimated by panel OLS, (4) is estimated by Maxi-
mum Likelihood. Standard errors (in parentheses) allow for heteroskedasticity
and clustering at the cell level in specifications (1), (2), and (3). Cell and year
fixed effects included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent
monthly observations.

Table A9: Sensitivity to Top-Coding: Excluding Top-Coded Pixels

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0019** −0.0329*** 0.0091* −0.0752***
(0.0009) (0.0070) (0.0048) (0.0152)

disastert−1 −0.0090*** 0.0222*** 0.0012 −0.0318**
(0.0009) (0.0069) (0.0048) (0.0149)

W · disastert 0.0000 0.0052*** −0.0046*** 0.0219***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0023* 0.0011 −0.0200***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0276*** 0.0286*** 0.0302*** 0.0273***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0113*** 0.0117*** 0.0119*** 0.0110***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4381*** −0.4360*** −0.4321*** −0.4373***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,780 501,942 468,111 505,953

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations. Dependent variable
excludes top-coded pixels.
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Table A10: Sensitivity to top-coding: masking all >DN55 pixels

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0019** −0.0359*** 0.0104** −0.0784***
(0.0009) (0.0070) (0.0048) (0.0153)

disastert−1 −0.0091*** 0.0227*** 0.0024 −0.0275*
(0.0002) (0.0069) (0.0047) (0.0150)

W · disastert 0.0000 0.0056*** −0.0049*** 0.0229***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0008*** −0.0026** 0.0012 −0.0209***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0301*** 0.0311*** 0.0326*** 0.0299***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0114*** 0.0118*** 0.0120*** 0.0111***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4360*** −0.4338*** −0.4300*** −0.4352***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0676***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,528 501,795 468,048 505,764

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

Table A11: Sensitivity to Bottom-Coding: Setting Pixels <DN8 to Zero

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert 0.0009 −0.0145* −0.0032 −0.0208
(0.0011) (0.0084) (0.0058) (0.0186)

disastert−1 −0.0093*** 0.0215*** 0.0063 −0.1174***
(0.0011) (0.0083) (0.0058) (0.0183)

W · disastert −0.0011*** 0.0066*** −0.0040*** 0.0172***
(0.0002) (0.0017) (0.0012) (0.0035)

W · disastert−1 0.0004** −0.0031* −0.0015 −0.0206***
(0.0002) (0.0017) (0.0012) (0.0035)

ln(popt) 0.0201*** 0.0204*** 0.0236*** 0.0188***
(0.0019) (0.0019) (0.0020) (0.0019)

W · ln(popt) 0.0158*** 0.0161*** 0.0168*** 0.0150***
(0.0009) (0.0009) (0.0009) (0.0009)

ln(lightst−1) −0.3756*** −0.3738*** −0.3700*** −0.3742***
(0.0012) (0.0012) (0.0012) (0.0012)

ρ 0.0679*** 0.0680*** 0.0684*** 0.0679***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 390,957 388,227 362,607 390,201

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.
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Table A12: Sensitivity to bottom-coding: setting pixels <DN3 to zero

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0007 −0.0265*** 0.0082* −0.0852***
(0.0009) (0.0070) (0.0048) (0.0154)

disastert−1 −0.0106*** 0.0290*** 0.0015 −0.0291*
(0.0009) −0.0069 (0.0048) (0.0150)

W · disastert −0.0001 0.0042*** −0.0041*** 0.0242***
(0.0002) (0.0013) (0.0009) (0.0027)

W · disastert−1 0.0010*** −0.0022* 0.0007 −0.0217***
(0.0002) (0.0013) (0.0009) (0.0027)

ln(popt) 0.0265*** 0.0275*** 0.0296*** 0.0262***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0108*** 0.0112*** 0.0116*** 0.0105***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4395*** −0.4376*** −0.4338*** −0.4388***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,024 501,228 467,460 505,197

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

Table A13: Sensitivity of Baseline Results to Radius r=160km

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0016** −0.0249*** 0.0125*** −0.0849***
(0.0007) (0.0057) (0.0041) (0.0136)

disastert−1 −0.0052*** 0.0158*** −0.0075* −0.0129
(0.0007) (0.0057) (0.0040) (0.0133)

W · disastert 0.0000 0.0008** −0.0015*** 0.0061***
(0.0000) (0.0004) (0.0003) (0.0009)

W · disastert−1 0.0001* 0.0000 0.0005* −0.0060***
(0.0000) (0.0004) (0.0003) (0.0008)

ln(popt) 0.0245*** 0.0252*** 0.0264*** 0.0240***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0057*** 0.0059*** 0.0061*** 0.0055***
(0.0003) (0.0003) (0.0003) (0.0003)

ln(lightst−1) −0.4375*** −0.4360*** −0.4328*** −0.4371***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0220*** 0.0221*** 0.0226*** 0.0220***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 515,130 509,166 475,083 513,282

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=160 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.
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Table A14: Sensitivity of Baseline Results to Time Varying Country Characteristics

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert 0.0004 −0.0312*** 0.0062 −0.0360**
(0.0010) (0.0070) (0.0049) (0.0179)

disastert−1 −0.0049*** 0.0117* 0.0009 −0.0390**
(0.0010) (0.0069) (0.0049) (0.0175)

W · disastert 0.0003** 0.0043*** −0.0041*** 0.0165***
(0.0002) (0.0013) (0.0009) (0.0029)

W · disastert−1 0.0009*** −0.0022* 0.0017* −0.0144***
(0.0002) (0.0013) (0.0009) (0.0028)

ln(popt) 0.0140*** 0.0145*** 0.0158*** 0.0140***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0040*** 0.0041*** 0.0044*** 0.0039***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4768*** −0.4759*** −0.4728*** −0.4764***
(0.0011) (0.0011) (0.0012) (0.0011)

ρ 0.0671*** 0.0671*** 0.0068*** 0.0671***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and country-year fixed effects (with nested year
fixed effects) included but not reported. Spatial radius is r=80 km. Yearly
disaster intensities reflect time-weighted rolling averages over 12 subsequent
monthly observations.

Table A15: Sensitivity of Baseline to Simple Annual Mean of Disasters

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0032*** −0.0289*** 0.0243*** −0.0613***
(0.0007) (0.0055) (0.0039) (0.0137)

disastert−1 −0.0064*** 0.0011 −0.0060 −0.0540***
(0.007) (0.0055) (0.0038) (0.0133)

W · disastert −0.0002 0.0018* −0.0037*** 0.0337***
(0.0001) (0.0010) (0.0007) (0.0025)

W · disastert−1 0.0008*** 0.0030*** 0.0000 −0.0504***
(0.0001) (0.0010) (0.0007) (0.0019)

ln(popt) 0.0247*** 0.0257*** 0.0276*** 0.0245***
(0.0013) (0.0013) (0.0014) (0.0013)

W · ln(popt) 0.0109*** 0.0113*** 0.0115*** 0.0107***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4385*** −0.4367*** −0.4329*** −0.4376***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 507,864 502,026 468,174 506,037

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifi-
cations are SDEM and are estimated by Maximum Likelihood. Standard errors
in parentheses. Cell and year fixed effects included but not reported. Spatial
radius is r=80 km. Yearly disaster intensities reflect non-weighted mean over
all monthly observations within a year.
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Table A16: Sensitivity of Baseline Results to Global Spillovers

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0046*** −0.0279*** −0.0016 −0.0974***
(0.0007) (0.0060) (0.0041) (0.0122)

[−0.0044] [−0.0259] [−0.0029] [−0.0794]
disastert−1 −0.0095*** 0.0198*** 0.0017 −0.0858***

(0.0007) (0.0059) (0.0041) (0.0119)
[−0.0093] [0.0189] [0.0017] [−0.0908]

W · disastert 0.0005*** 0.0037*** −0.0010* 0.0217***
(0.0001) (0.0009) (0.0006) (0.0017)
[0.0000] [0.0001] [−0.0001] [0.0010]

W · disastert−1 0.0008*** −0.0021** −0.0001 0.0015
(0.0001) (0.0009) (0.0006) (0.0017)
[0.0000] [−0.0001] [0.0000] [−0.0003]

ln(popt) 0.0228*** 0.0242*** 0.0256*** 0.0225***
(0.0014) (0.0014) (0.0015) (0.0014)
[0.0383] [0.0397] [0.0412] [0.0383]

W · ln(popt) 0.0116*** 0.0122*** 0.0121*** 0.0118***
(0.0004) (0.0004) (0.0005) (0.0004)
[0.0009] [0.0009] [0.0009] [0.0009]

ln(lightst−1) −0.3300*** −0.3270*** −0.3232*** −0.3289***
(0.0009) (0.0009) (0.0009) (0.0009)

λ 0.0671*** 0.0671*** 0.0675*** 0.0671***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 508,158 502,320 468,384 506,394

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifi-
cations are SDM and are estimated by Maximum Likelihood. Standard errors
in parentheses. Average effects translated with spatial multiplier in square
brackets. Cell and year fixed effects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations.

Table A17: Spatial Error HAC Model following Hsiang (2010)

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0010 −0.0744*** 0.0342*** −0.1219***
(0.0014) (0.0112) (0.0080) (0.0275)

disastert−1 −0.0143*** 0.0477*** −0.0292*** −0.0301
(0.0014) (0.0108) (0.0079) (0.0253)

W · disastert −0.0002 0.0137*** −0.0098*** 0.0306***
(0.0002) (0.0019) (0.0013) (0.0043)

W · disastert−1 0.0015*** −0.0079*** 0.0072*** −0.0228***
(0.0002) (0.0018) (0.0013) (0.0041)

ln(popt) 0.0237*** 0.0250*** 0.0267*** 0.0234***
(0.0020) (0.0020) (0.0021) (0.0020)

W · ln(popt) 0.0142*** 0.0149*** 0.0149*** 0.0141***
(0.0011) (0.0011) (0.0012) (0.0011)

ln(lightst−1) −0.4153*** −0.4123*** −0.4085*** −0.4139***
(0.0035) (0.0035) (0.0037) (0.0035)

−0.0018 −0.0052 −0.0058 −0.0033
(0.0050) (0.0051) (0.0053) (0.0051)

Observations 507,864 502,320 468,384 506,394

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications adapt the Spatial Error HAC Model methods by Conley (1999) as
implemented by Hsiang (2010). Standard errors (in parentheses) allow for
heteroskedasticity, spatial autocorrelation and temporal autocorrelation over 3
periods. Cell and year fixed effects included but not reported. Spatial radius
is r=80 km. Yearly disaster intensities reflect time-weighted rolling averages
over 12 subsequent monthly observations.
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Table A18: Income Interaction

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

estimate combined estimate combined estimate combined estimate combined

disastert −0.0015 0.0171 −0.0120 0.2442***
(0.0016) (0.0118) (0.0093) (0.0389)

disastert−1 −0.0042*** 0.0249** 0.0081 −0.0680*
(0.0015) (0.0117) (0.0092) (0.0384)

W · disastert −0.0001 0.0015 −0.0020 0.0077
(0.0003) (0.0021) (0.0016) (0.0059)

W · disastert−1 0.0006** −0.0040* 0.0029* −0.0224***
(0.0003) (0.0021) (0.0016) (0.0059)

disastert × low income −0.0006 −0.0021* −0.0705*** −0.0534*** 0.0267** 0.0147*** −0.3575*** −0.1133***
(0.0019) (0.0011) (0.0146) (0.0087) (0.0108) (0.0056) (0.0423) (0.0169)

disastert−1 × low income −0.0076*** −0.0119*** −0.0057 0.0192** −0.0092 −0.0010 0.0484 −0.0193
(0.0019) (0.0011) (0.0144) (0.0085) (0.0107) (0.0055) (0.0416) (0.0165)

W · disastert × low income 0.0003 0.0001 0.0049* 0.0064*** −0.0032* −0.0052*** 0.0114* 0.0191***
(0.0003) (0.0002) (0.0026) (0.0016) (0.0019) (0.0011) (0.0067) (0.0031)

W · disastert−1 × low income 0.0003 0.0009*** 0.0033 −0.0007 −0.0029 0.0000 0.0054 −0.0170***
(0.0003) (0.0002) (0.0026) (0.0016) (0.0019) (0.0010) (0.0066) (0.0030)

ln(popt) 0.0247*** 0.0258*** 0.0277*** 0.0241***
(0.0013) (0.0013) (0.0014) (0.0013))

W · ln(popt) 0.0109*** 0.0112*** 0.0115*** 0.0103***
(0.0006) (0.0006) (0.0006) (0.0006)

ln(lightst−1) −0.4386*** −0.4366*** −0.4328*** −0.4382***
(0.0011) (0.0011) (0.0011) (0.0011)

ρ 0.0672*** 0.0672*** 0.0676*** 0.0672***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 506,142 500,787 467,691 504,525

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported. Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.
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Table A19: Region: Europe

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0034* 0.0116 0.0042 0.0906**
(0.0018) (0.0161) (0.0129) (0.0442)

disastert−1 0.0042** 0.0046 0.0011 −0.0858*
(0.0018) (0.0160) (0.0128) (0.0442)

W · disastert −0.0002 0.0033 −0.0077*** 0.0295***
(0.0003) (0.0025) (0.0019) (0.0057)

W · disastert−1 0.0005* 0.0016 0.0006 −0.0283***
(0.0003) (0.0024) (0.0019) (0.0057)

ln(popt) −0.0002 0.0010 0.0076 −0.0008
(0.0054) (0.0055) (0.0062) (0.0055)

W · ln(popt) 0.0011 0.0023 0.0042** 0.0011
(0.0019) (0.0019) (0.0021) (0.0019)

ln(lightst−1) −0.5916*** −0.5919*** −0.5813*** −0.5918***
(0.0031) (0.0032) (0.0034) (0.0032)

ρ 0.0673*** 0.0673*** 0.0677*** 0.0673***
(0.0000) (0.0000) (0.0000) (0.0000)

Observations 70,539 69,447 61,236 70,014

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

Table A20: Region: North America

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0076*** 0.0026 −0.0245*** 0.0256***
(0.0020) (0.0132) (0.0091) (0.0428)

disastert−1 −0.0064*** 0.0049 0.0049 −0.1636***
(0.0020) (0.0130) (0.0090) (0.0421)

W · disastert 0.0007* 0.0013 0.0021 0.0111
(0.0004) (0.0027) (0.0019) (0.0073)

W · disastert−1 0.0011*** −0.0037 0.0045** 0.0022
(0.0004) (0.0027) (0.0019) (0.0072)

ln(popt) −0.0016 −0.0026 −0.0022 −0.0025
(0.0020) (0.0020) (0.0021) (0.0020)

W · ln(popt) 0.0013 0.0012 0.0007 0.0011
(0.0010) (0.0010) (0.0010) (0.0010)

ln(lightst−1) −0.5871*** −0.5960*** −0.5796*** −0.5865***
(0.0027) (0.0027) (0.0028) (0.0027)

ρ 0.0893*** 0.0894*** 0.0901*** 0.0892***
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 100,653 100,254 94,479 100,485

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.
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Table A21: Region: Latin America and Caribbean

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0048** −0.0659*** 0.0373*** −0.1388***
(0.0023) (0.0154) (0.0103) (0.0239)

disastert−1 −0.0064*** 0.0483*** −0.0493*** −0.0140
(0.0023) (0.0151) (0.0101) (0.0238)

W · disastert 0.0012** −0.0022 −0.0008 0.0117**
(0.0005) (0.0032) (0.0022) (0.0046)

W · disastert−1 0.0009* −0.0034 0.0015 0.0086*
(0.0005) (0.0032) (0.0022) (0.0046)

ln(popt) 0.0336*** 0.0378*** 0.0393*** 0.0339***
(0.0037) (0.0038) (0.0040) (0.0038)

W · ln(popt) 0.0178*** 0.0173*** 0.0166*** 0.0156***
(0.0020) (0.0020) (0.0021) (0.0020)

ln(lightst−1) −0.4516*** −0.4494*** −0.4474*** −0.4506***
(0.0028) (0.0028) (0.0029) (0.0028)

ρ 0.0788*** 0.0785*** 0.0784*** 0.0788***
(0.0008) (0.0008) (0.0008) (0.0008)

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

Table A22: Region: Sout-East Asia and Pacific

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert −0.0032* −0.0277* 0.0021 0.1020***
(0.0017) (0.0161) (0.0115) (0.0333)

disastert−1 −0.0080*** 0.0021 0.0349*** 0.1289***
(0.0016) (0.0159) (0.0112) (0.0324)

W · disastert −0.0001 0.0014 −0.0066** −0.0104
(0.0004) (0.0042) (0.0027) (0.0080)

W · disastert−1 0.0001 0.0078* −0.0047* −0.0021
(0.0004) (0.0042) (0.0027) (0.0078)

ln(popt) 0.0378*** 0.0388*** 0.0443*** 0.0378***
(0.0035) (0.0035) (0.0038) (0.0035)

W · ln(popt) 0.0062*** 0.0053** 0.0062*** 0.0065***
(0.0019) (0.0019) (0.0021) (0.0019)

ln(lightst−1) −0.4179*** −0.4119*** −0.4061*** −0.4166***
(0.0022) (0.0022) (0.0024) (0.0022)

ρ 0.0962*** 0.0966*** 0.0970*** 0.0963***
(0.0004) (0.0004) (0.0004) (0.0004)

Observations 112,560 110,523 100,821 112,056

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.
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Table A23: Region: MENA and Central Asia

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

disastert 0.0061** −0.0348** −0.0176 −0.2588***
(0.0026) (0.0161) (0.0108) (0.0496)

disastert−1 −0.0108*** −0.0305* 0.0221** −0.4732***
(0.0026) (0.0160) (0.0107) (0.0487)

W · disastert 0.0008 0.0062** −0.0024 0.0455***
(0.0005) (0.0032) (0.0022) (0.0081)

W · disastert−1 0.0020*** −0.0042 0.0057*** −0.0196**
(0.0005) (0.0031) (0.0022) (0.0080)

ln(popt) 0.0149*** 0.0160*** 0.0186*** 0.0146***
(0.0026) (0.0027) (0.0027) (0.0026)

W · ln(popt) 0.0101*** 0.0113*** 0.0116*** 0.0102***
(0.0011) (0.0011) (0.0012) (0.0011)

ln(lightst−1) −0.4306*** −0.4318*** −0.4332*** −0.4311***
(0.0022) (0.0022) (0.0022) (0.0022)

ρ 0.0797*** 0.0797*** 0.0828*** 0.0796***
(0.0001) (0.0001) (0.0002) (0.0001)

Observations 130,242 129,465 125,496 130,053

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All spec-
ifications are SDEM and are estimated by Maximum Likelihood. Standard
errors in parentheses. Cell and year fixed effects included but not reported.
Spatial radius is r=80 km. Yearly disaster intensities reflect time-weighted
rolling averages over 12 subsequent monthly observations.

Table A24: Region: Sub-Sahara Africa

Dependent Variable: ∆ ln(lightst)
wind precip. drought cold

Disastert 0.0011 −0.0365 0.0102 0.1513**
(0.0034) (0.0281) (0.0183) (0.0618)

Disastert−1 −0.0011 0.0200 0.0454*** −0.0437
(0.0034) (0.0274) (0.0175) (0.0588)

W ·Disastert −0.0003 0.0134* −0.0010 −0.0080
(0.0010) (0.0073) (0.0052) (0.0166)

W ·Disastert−1 0.0016* 0.0038 −0.0076 −0.0152
(0.0010) (0.0072) (0.0048) (0.0158)

ln(popt) 0.0410*** 0.0444*** 0.0385*** 0.0453***
(0.0094) (0.0094) (0.0100) (0.0094)

W · ln(popt) −0.0007 −0.0040 −0.0077 −0.0072
(0.0048) (0.0047) (0.0050) (0.0052)

ln(lightst−1) −0.4132*** −0.4131*** −0.4180*** −0.4133***
(0.0044)) (0.0045) (0.0046) (0.0044)

ρ 0.0802*** 0.0800*** 0.0815*** 0.0799***
(0.0014) (0.0014) (0.0014) (0.0014)

Observations 28,140 27,993 26,082 28,035

Note: ***, **, * denote significance at the 1%, 5% and 10% level. All specifica-
tions are SDEM and are estimated by Maximum Likelihood. Standard errors
in parentheses. Cell and year fixed effects included but not reported. Spa-
tial radius is r=80 km. Yearly disaster intensities reflect time-weighted rolling
averages over 12 subsequent monthly observations.
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