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Abstract 
 
It is common to analyze the effects of alternative monetary policy commitments under the 
assumption of fully model-consistent expectations. This implicitly assumes unrealistic cognitive 
abilities on the part of economic decision makers. The relevant question, however, is not 
whether the assumption can be literally correct, but how much it would matter to model decision 
making in a more realistic way. A model is proposed, based on the architecture of artificial 
intelligence programs for problems such as chess or go, in which decision makers look ahead 
only a finite distance into the future, and use a value function learned from experience to 
evaluate situations that may be reached after a finite sequence of actions by themselves and 
others. Conditions are discussed under which the predictions of a model with finite-horizon 
forward planning are similar to those of a rational expectations equilibrium, and under which 
they are instead quite different. The model is used to re-examine the consequences that should 
be expected from a central-bank commitment to maintain a fixed nominal interest rate for a 
substantial period of time. Neo-Fisherian predictions are shown to depend on using rational 
expectations equilibrium analysis under circumstances in which it should be expected to be 
unreliable. 
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It has become commonplace — certainly in the scholarly literature, but also in-

creasingly in central banks and other policy institutions — to analyze the predicted

effects of possible monetary policies using dynamic stochastic general equilibrium

models, in which both households and firms are assumed to make optimal decisions

under rational expectations. Since the methodological revolution in macroeconomics

initiated by Kydland and Prescott (1982), this has come to mean assuming that eco-

nomic agents formulate complete state-contingent intertemporal plans over an infinite

future. Yet such a postulate is plainly heroic, as the implicit assumptions made about

the knowability of all possible future situations, the capacity of people to formulate

detailed plans before acting, and the ability of individuals to solve complex optimiza-

tion problems in real time are well beyond the capabilities even of economists, let

alone members of society in general.

Most if not all macroeconomists who use models of this kind probably do so

on the assumption that such models represent a useful idealization — that while

not literally correct, their predictions are approximately correct, while their logical

simplicity makes them convenient to use in thinking through a variety of thought

experiments of practical interest. Yet their use in this way requires that one have some

basis for judgment about the degree to which, and the circumstances under which,

one should expect the predictions of an admittedly idealized model to nonetheless be

approximately correct. The issue of the conditions under which an idealized model

can approximate a more complex reality deserves analysis, rather than simply being

a matter of faith (or badge of professional identity), as it too often is.

Here we propose an approach to macroeconomic analysis that makes less extreme

cognitive demands than conventional rational expectations equilibrium analysis, and

thus allows us to pose the question of the degree to which the conclusions of the

conventional analysis should be at least approximately valid even in a world in which

people are only boundedly rational. It allows us to identify circumstances under which

the predictions of the conventional analysis can be correct, or at least approximately

correct, without people having to have quite such extraordinary cognitive capacities

as the rational expectations analysis would seem on its face to require.

It can also address a conceptual problem with rational expectations analysis,

which is providing a ground for selection of a particular solution as the relevant pre-

diction of one’s model, under circumstances where an infinite-horizon model admits

a large number of potential rational expectations equilibria. The boundedly rational

solution concept proposed here is necessarily unique, and so, in cases in which it
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coincides with a rational expectations equilibrium (or approaches one as the limit on

computational complexity is relaxed), it provides a reason for using that particular

rational expectations equilibrium as the predicted effect of the policy in question.

At the same time, the proposed approach will not always result in predictions

similar to those of any rational expectations equilibria; in such cases, it provides

a reason to doubt the practical relevance of conclusions from rational expectations

analysis. In particular, we will argue that conclusions about the effects of a central-

bank “forward guidance” based on rational expectations analysis are sometimes quite

misleading, as they depend on assuming the validity of rational expectations analysis

under circumstances under which a more realistic (though still highly sophisticated)

model of human decision making would lead to quite different conclusions.

Our proposed approach proceeds from the observation that in the case of complex

intertemporal decision problems, people — even experts — are not able to “solve”

such problems using the sort of backward induction or dynamic programming ap-

proaches that are taught in economics classes. Rather than beginning by considering

all possible final situations, valuing them, and then working back from such judg-

ments about the desirability of endpoint to reach a conclusion about the best first

action to take in one’s current situation, it posits that people actually start from the

specific situation that they are in, and work forward from it to some finite extent,

considering alternative situations that can be reached through some finite sequence of

possible actions; but that they necessarily truncate this process of “forward planning”

before all of the consequences of their earlier actions have been realized.1

And rather than supposing that people should be able to deductively compute

a correct value function for possible interim situations that they might be able to

reach — through some algorithm such as value function iteration, which requires

that a decision maker begin by specifying the set of possible states for which values

must be computed — it recognizes that while people have some ability to learn

the values of particular situations by observing their average consequences over some

body of actual or simulated experience, this necessarily requires a coarse classification

of possible situations in order to make such averaging feasible. It is because of the

coarseness of the state space for which a value function can be learned, relative to

the more fine-grained information about one’s current situation that can be made

1Earlier proposed models of boundedly rational economic decision making in this spirit include

Jéhiel (1995), MacLeod (2002), and Gabaix et al. (2006).
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use of in a forward planning exercise, that forward planning is useful, even when

only feasible to some finite distance into the future. Our proposed approach makes

use of both (finite-depth) forward planning and (coarse) value-function learning, in

order to take advantage of the strengths of each while mitigating the most important

weaknesses of each.

The paper proceeds as follows. Section 1 introduces the basic approach to mod-

eling boundedly rational intertemporal decision making that we propose. Section 2

then shows how this approach can be applied to monetary policy analysis, in the

context of a simple but relatively standard micro-founded New Keynesian model. In

the analysis developed in this section, the coarse value function that decision makers

use to value potential situations at the horizon at which their forward planning is

truncated is taken as given, though motivated as one that would be optimal in a

certain kind of relatively simple environment. Section 3 applies the framework devel-

oped in section 2 to the specific problem of analyzing the effects of an announcement

that a new approach to monetary policy will be followed for a period of time, as in

recent experiments with “forward guidance,” and compares the conclusions from our

boundedly rational analysis with conventional rational expectations analyses. Sec-

tion 4 then extends the analytical framework to also consider how value functions are

learned from experience, allowing them to eventually change in response to a suffi-

ciently persistent change in either policy or fundamentals. This allows us to consider

the validity of the proposition that the Fisher equation should hold in the long run,

regardless of how inflationary or deflationary monetary policy may be, and of the

“neo-Fisherian” conclusions that are sometimes drawn from this proposition. Section

5 concludes.

1 How Are Complex Intertemporal Decisions Made?

In practice, even in highly structured environments such as the games of chess or go

— where clear rules mean that the set of possible actions in any situation can be com-

pletely enumerated, and the set of situations that can ever possibly be encountered is

also finite, so that in principle all possible strategies can be exhaustively studied —

it is not possible even for the most expert players (whether human or AIs) to discern

the optimal strategy and simply execute it. (Indeed, tournament play would not be

interesting, and the challenge of designing better programs would not continue to en-
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gage computer scientists, were this the case.) This fact reveals something about the

limitations of the kinds of computational strategies that economists use to compute

optimal decision rules in classroom exercises.

But it is also worth considering how the best players approach these problems in

practice — in particular, the approaches used by state-of-the-art artificial intelligence

programs, since these are now the best players in the world, and (more to the point)

we know how they work. If we wish to assume in economic models that the people

who make up the economy should be highly rational and do a good job of choosing

strategies that serve their interests — but not that they have magical powers — then

it would seem reasonable to assume that they make decisions using methods similar

to those used by the most effective artificial intelligence programs.2

Programs such as Deep Mind for chess (Campbell et al., 2002) or AlphaGo for the

game of go (Silver et al., 2016) have the following basic structure. Whenever it is the

computer’s turn to move, it begins by observing a precise description of the current

state of the board. Starting from this state, it considers the states that it is possible

to move to through a legal move; the possible situations that can arise as a result of

any legal responses by the opponent in any such state; the possible states that can be

moved to through a legal move from the situation created by the opponent’s move,

and so on — creating a tree structure with the current state of the board as its root.

Once the tree is created, values are assigned to reaching the different possible

terminal nodes (that is, the nodes at which the process of “tree search” is truncated).

Different hypothetical sequences of moves, extending forward until a terminal node

is reached, can then be valued according to the value of the terminal node that they

would allow one to reach. This allows the selection of a preferred sequence of moves

(a finite-horizon plan — though not a plan for the entire rest of the game). The

move that is taken is then the first move in the preferred sequence. However, the

finite-horizon plan chosen at one stage in the game need not be continued; instead,

the forward planning exercise is repeated each time another move must be selected

(looking farther into the future as the game progresses, and hence possibly choosing

a new plan that does not begin by continuing the one selected at the time of the

previous move).

2The kind of decision-making algorithm proposed here — called “planning-to-habit” by Keramati

et al. (2016) — has also been used to describe the behavior of non-expert human decision makers

in settings where less extensive training has been possible.
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Such a tree search procedure would be fully rational if the complete game tree

(terminating only at nodes at which the game has ended) were considered. But

except in special circumstances (possibly near the end of a game), this is not feasible.

Hence a tree of only a finite “depth” must be considered before choosing a current

action. The best programs use sophisticated rules to decide when to search further

down particular branches of the game tree and when to truncate the search earlier, in

order to deploy finite computational resources more efficiently. In the model proposed

below, however, we simply assume a uniform depth of search k; that is, a decision

maker is assumed to consider all of the possible states that can be reached through a

feasible sequence of actions over the next k periods. Our focus here is on comparing a

model with finite-horizon forward planning to one in which the complete (unbounded)

future is considered, and on considering how the length of the finite horizon matters.

Another crucial aspect of such a program is the specification of the function that

is used to evaluate the different terminal nodes. It is important to note that the

answer cannot be that the value assigned to a terminal node should be determined

by looking at the states farther down the game tree that can be reached from it; the

whole point of having a value function with which to evaluate terminal nodes is to

allow the program to avoid having to look farther into the future (and thus have to

consider an even larger number of possible outcomes). The value function must be

learned in advance (before a particular game is played), on the basis of an extensive

database of actual or simulated play, and represents essentially an empirical average

of the values observed to follow from reaching particular states.

If sufficient prior experience were available to allow a correct value function (taking

into account a precise description of the situation that has been reached) to be learned,

then truncation of the forward planning at a finite depth would not result in sub-

optimal decisions. Indeed, there would be no need for multi-stage forward planning

at all; one could simply consider the positions to which it is possible to move from

one’s current position, evaluate them, and choose the best move on this basis. The

only reason that forward planning (to the depth that is feasible) is useful is that in

practice, a completely accurate value function cannot be learned, even from a large

database of experience; there are too many possible states that might in principle need

to be evaluated for it to be possible to observe all of the outcomes that might result

from each one of them and tabulate the average values of each. Thus in practice, the

value function used by such a program must evaluate a situation based on a certain
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set of features, which provide a coarse description of the situation but do not uniquely

identify it.

The degree to which forward planning should be used, before resorting to the use

of a value function learned from prior experience to evaluate the situations that may

be reached under alternative finite-horizon action plans, reflects a trade-off between

the respective strengths and weaknesses of the two approaches. Evaluation of possible

situations using the value function is quick and inexpensive (once the value function

has once been learned); but it has the disadvantage that (in order for it to be feasible

to ever learn the value function) the value function can take into account only a coarse

description of each of the possible situations.

Forward planning via tree search can instead take into account very fine-grained

information about the particular situation in which one currently finds oneself, be-

cause it is only implemented for a particular situation once one is in it; but it has

the disadvantage that the process of considering all possible branches of the deci-

sion tree going forward rapidly becomes computationally burdensome as the depth of

search increases. Finite-horizon forward planning to an appropriate depth makes use

of fine-grained information when it is especially relevant and not overly costly (that

is, when thinking about the relatively near future), but switches to the use of a more

coarse-grained empirical value function to evaluate possible situations when thinking

about the farther future.

A final feature of such algorithms deserves mention. If the intertemporal decision

problem is not an individual decision problem, but instead one where outcomes for

the decision maker depend on the actions of others as well — an opponent, in the

case of chess or go, or the other households and firms whose actions determine market

conditions, in a macroeconomic model — then the algorithm must include a model

of others’ behavior, in order to deduce the consequences of choosing a particular

sequence of actions. It makes sense to assume that those others will also behave

rationally; but it will not be possible to compute their predicted behavior using an

algorithm that is as complex as the forward planning algorithm that one uses to make

one’s own decision.

In particular, if the algorithm used to choose one’s own plan of action looks

forward to possible situations after k successive moves, it cannot also model the

opponent’s choice after one’s first move by assuming that the opponent will look

forward to possible situations after k successive moves, and consider what one should
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do oneself after its first reply by simulating the result of looking forward to possible

situations after k more moves, and so on. For continuation of such a chain of reasoning

would amount to reasoning about possible situations that can be reached after many

more than just k successive moves. In order for the complexity of the decision tree

that must be considered to be bounded by looking out only to some finite depth, it

becomes necessary to assume an even shorter horizon in the forward planning that

one simulates on the part of other people whose behavior at a later stage of the tree

must be predicted. This idea is made concrete below in the context of a general

equilibrium analysis.

Our proposed approach has certain similarities to models of boundedly rational

decision making discussed by Branch et al. (2012). Branch et al. assume that deci-

sion makers use econometric models to forecast the future evolution of variables the

future values of which matter to their intertemporal decision problem, and compare

a variety of assumptions about how those forecasts may be used to make decisions; in

particular, they discuss models in which decision makers solve only a finite-horizon

problem, and hence only need to forecast over a finite horizon. A crucial difference

between their models and the one we propose here is that in those models, the same

econometric model is used both to forecast conditions during the (near-term) period

for which a finite-horizon plan is chosen and to estimate the value of reaching dif-

ferent possible terminal nodes. Instead, we emphasize that the types of reasoning

involved in finite-horizon forward planning on the one hand, and in the evaluation of

terminal nodes on the other, are quite different, and that the sources of information

that are taken into account for the two purposes are accordingly quite different. This

has important consequences for our analysis of the effects of central-bank forward

guidance — which we assume is taken into account in forward planning (based on

the decision maker’s complete information about the current situation), but not in

the value function (that necessarily classifies situations using only a limited set of

features, with which there must have been extensive prior experience).
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2 A New Keynesian DSGE Model with Finite-

Horizon Planning

We now illustrate how the proposed approach can be applied to monetary policy

analysis, by deriving the equations of a New Keynesian DSGE model similar to the

basic model developed in Woodford (2003), but replacing the standard assumption

of infinite-horizon optimal planning by a more realistic assumption of finite-horizon

planning. We begin by deriving boundedly rational analogs of the two key structural

equations of the textbook New Keynesian model — the “New Keynesian IS relation”

and the “New Keynesian Phillips curve” — and then discuss the implications of

the modified equations for an analysis of the effects of forward guidance regarding

monetary policy.

2.1 Household Expenditure with a Finite Planning Horizon

We assume an economy made up of a large number of identical households, each of

which represents a “dynasty” of individuals that share a single intertemporal budget

constraint, and earn income and spend over an infinite horizon. At any point in time

t, household i wishes to maximize its expected utility from then on,

Êi
t

∞∑
τ=t

βτ−t[u(Ci
τ ; ξτ )− w(H i

τ ; ξτ )],

where Ci
τ is the expenditure of i in period τ on a composite good, H i

τ is hours worked in

period τ , and ξτ is a vector of exogenous disturbances, that can include disturbances

to the urgency of current expenditure or the disutility of working. As usual, we

suppose that for each value of the disturbance vector, u(·; ξ) is an increasing, strictly

concave function, and that w(·; ξ) is an increasing, convex function; and that the

discount factor satisfies 0 < β < 1. The composite good is a Dixit-Stiglitz aggregate

Ci
τ ≡

[∫ 1

0

(Ci
τ (f))

θ−1
θ df

] θ
θ−1

(2.1)

of the household’s expenditure Ci
τ (f) on each of a continuum of differentiated goods

indexed by f , where θ > 1. The operator Êi
t[·] indicates the expected value under the

subjective expectations of household i at time t, which we have yet to specify.
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In the present subsection, we shall be concerned purely with the household’s

planning of its state-contingent expenditure Ci
τ on the composite good, given the

expected evolution of the price Pτ of the composite good (a Dixit-Stiglitz index of

the prices of the individual goods) and the household’s income from working and from

its share in the profits of firms. Both the question of how the household allocates

its spending across the different individual goods and how its hours of work are

determined are left for later. Here we note simply that we assume an organization

of the labor market under which each household is required to supply its share of

the aggregate labor Hτ demanded by firms; hence the expected evolution of H i
τ =

Hτ is independent of household i’s intentions with regard to spending and wealth

accumulation. Moreover, each household’s total income other than from its financial

position (saving or borrowing) will simply equal its share of the total value Yτ of

production of the composite good. The evolution of this income variable is outside

the control of an individual household i.

We further simplify the household’s problem by supposing that there is a single

kind of traded financial claim, a one-period riskless nominal debt contract, promising

a nominal interest rate iτ (that is, one dollar saved in period τ buys a claim to 1 + iτ

dollars in period τ+1) that is controlled by the central bank. We denote the financial

wealth carried into period t by household i by the variable Bi
t, defined as the nominal

value of claims maturing in period t deflated by the price index Pt−1; this definition

makes Bi
t a real variable that is purely predetermined (dependent only on decisions

made at date t− 1). The household’s financial position evolves in accordance with a

flow budget constraint

Bi
τ+1 = (1 + iτ )[B

i
τ/Πτ + Yτ − Cτ ] (2.2)

for each period τ ≥ t, where Πτ ≡ Pτ/Pτ−1 is the gross inflation rate between period

τ − 1 and period τ .

The problem considered in this subsection is the household’s choice of an intended

path of expenditure {Ci
τ}, where spending in any period τ may depend on the aggre-

gate state sτ at that time, together with the associated path for its financial position

{Bi
τ+1} implied by (2.2). (Here we use the notation sτ for the complete state vector,

including both the exogenous disturbances ξτ and any policy decisions that have been

announced as of date τ .) These are chosen to maximize the expected discounted sum

of utility from expenditure (since the disutility of working can be taken as given, for
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present purposes), given an existing financial position Bi
t and the expected evolution

of the variables {iτ ,Πτ , Yτ} in periods τ ≥ t.

2.1.1 An Optimal Finite-Horizon Plan

Rather than assuming that the household chooses a complete infinite-horizon state-

contingent expenditure plan — and that it must accordingly consider the possible

paths of the variables {iτ ,Πτ , Yτ} over an infinite future — we shall suppose that

the household engages in explicit forward planning for only k periods into the future.

This means that in period t (and given the state st at that time), the household

chooses state-contingent values {Ci
τ (sτ )} only for the possible states sτ that may be

reached at dates t ≤ τ ≤ t+ k.

This plan is chosen to maximize the finite-horizon objective

Ek
t

[
t+k∑
τ=t

βτ−tu(Ci
τ ; ξτ ) + βk+1v(Bi

t+k+1; st+k)

]
, (2.3)

where the evolution of Bi
τ+1 for t ≤ τ ≤ t + k under the finite-horizon plan is

given by (2.2), and v(Bi
t+k+1; st+k) is the value function that the household uses to

estimate the continuation value of its problem at each of the possible states st+k at

which it truncates the forward planning exercise. Here the operator Ek
t [·] indicates

the expectations at time t of a decision maker that plans k periods ahead regarding

the probabilistic evolution of the variables outside her control. The information set

of such a decision maker is assumed to include the current exogenous state st, and

the equilibrium realizations of all endogenous variables at dates t − 1 or earlier;

the conditional probabilities of future exogenous states are assumed to be correctly

known, while the values of endogenous variables at date t or later (conditional on the

exogenous state that is reached) are computed using the model’s structural equations

(as discussed further below). These expectations differ from model-consistent or

“rational” expectations only because of the truncation of the household’s planning

horizon, and so are the same for all households with planning horizon k.

The household’s finite-horizon plan will satisfy a set of first-order conditions,

uc(C
i
τ ; ξτ ) = βEk

t [((1 + iτ )/Πτ+1)uc(C
i
τ+1; ξτ+1)|sτ ] (2.4)

for each possible state sτ (given the state st at the time of the planning) at each date
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t ≤ τ ≤ t+ k − 1, and

uc(C
i
t+k; ξt+k) = β(1 + it+k) vB(Bi

t+k+1; st+k) (2.5)

for each possible state st+k at which the forward planning is truncated. (The expec-

tation operator Ek
t [·|sτ ] refers to the expectations that the decision maker at date t

expects to have, conditional on reaching state sτ .) Conditions (2.4)–(2.5) together

with the budget constraints (2.2) determine a state-contingent plan {Ci
τ , B

i
τ+1} for

periods t ≤ τ ≤ t+ k.

If we were to assume that the household’s expectations Ek
t [·] are fully model-

consistent expectations, and that the value function v(B; st+k) corresponds to the

true (model-consistent) value of the household’s continuation problem for any level

of net saving B chosen in state st+k, then this system of equations would characterize

the household’s optimal infinite-horizon expenditure plan. We assume instead that

the household’s plan is only boundedly rational, in two respects.

First, we assume that while in period t, the household chooses planned expenditure

for periods t through t+ k, it does not then implement this plan (beyond the level of

spending Ci
t chosen for the current period); and when it reoptimizes in the following

period, it will not generally choose to continue with the plan chosen in period t

(since in period t + 1, it looks forward to period t + k + 1, rather than truncating

the planning at period t + k). This is however neglected by the household when it

chooses a spending plan in period t. Indeed, we cannot assume that the household in

period t has model-consistent expectations about its spending in the different states

that may be reached in period t + 1, for this would require that the household use

the model structural equations to calculate what should be expected to happen in

period t + k + 1, rather than truncating the deductive forward planning in period

t + k. Instead, we suppose that the household calculates as if in period t + 1 it will

plan forward only k − 1 periods into the future, in period t + 2 it will plan forward

only k − 2 periods into the future, and so on.

And while we assume that the household correctly understands the equations

of the structural model (including the policy rule announced by the central bank),

and uses them in the planning exercise to deduce the values of Πτ , Yτ , and iτ that

should be expected in each possible state sτ for t ≤ τ ≤ t + k, this does not suffice

to imply model-consistent expectations of those variables. According to our model,

aggregate expenditure in period t + j (for some 1 ≤ j ≤ k) is determined by the
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planning decisions of households in period t+j that (if they have k−period planning

horizons) look forward to the anticipated model-based determination of variables as

far in the future as period t + j + k. But in order for the household’s planning

not to require it to consider what the model equations imply about states farther in

the future than period t + k, we assume that the household assumes that in period

t+ j, spending and pricing decisions will be made by households and firms with only

(k − j)-period planning horizons.

Thus if we let Πk
t , Y

k
t , i

k
t , be the model-consistent solutions for the endogenous

variables in period t (given the state st reached at that time) in a model where

all decision makers are assumed to have planning horizons of length k, then the

expectations used in period t by a household with a k-period planning horizon are

assumed to satisfy

Ek
t [Zτ ] = EtZ

t+k−τ
τ

for any endogenous variable Zτ in period τ (t ≤ τ ≤ t + k), where Et[·] now refers

to the model-consistent expectation conditional on being in state st. Similarly, we

assume that the expectations about the following period that the household expects

(in its period-t planning exercise) to hold in any future state sτ (t + 1 ≤ τ ≤ t + k)

are given by

Ek
t [Zτ+1|sτ ] = EτZ

t+k−τ
τ+1 .

Hence the household’s Euler equation (2.4) can alternatively be written

uc(C
j
τ ; ξτ ) = βEτ [((1 + ijτ )/Π

j−1
τ+1)uc(C

j−1
τ+1; ξτ+1)], (2.6)

for any planning horizon j ≥ 1. We can also use (2.5) to obtain a corresponding FOC

for a household with a zero-period planning horizon:

uc(C
0
τ ; ξτ ) = β(1 + iτ ) vB(B0

τ+1; sτ ), (2.7)

where B0
τ+1 is the wealth carried into period τ + 1 by a household with a zero-period

planning horizon in period τ . We now have a system of equations (consisting of (2.6)

for each of the periods t ≤ τ ≤ t + k, and (2.7) for period τ = t + k), now involving

only model-consistent conditional expectations, to determine the state-contingent

plan chosen in period t by a household with a k-period planning horizon.

The second respect in which we depart from fully model-consistent expectations

is that we do not assume that the value function v(B; st+k) used to evaluate possible

12



situations at the point where forward planning is truncated necessarily corresponds to

the model-implied continuation value of the household’s discounted expected utility

conditional upon reaching state st+k. As discussed above, we suppose that the value

function is learned by averaging past experience, rather than by using the model

structural equations to deduce what should happen farther in the future; and it will

not be practical to learn the value of wealth conditioning on all details of the complete

state vector st+k.

To simplify the current presentation, we suppose that the value function is not

state-contingent at all, though households are assumed to correctly learn the average

continuation value v(B) associated with a given level of real wealth B.3 In particular,

we assume in our treatment of forward guidance below that the value function v(B)

does not take any account of the consequences of any announcement by the central

bank of a change in the monetary policy that will be implemented at dates beyond

the planning horizon (though this would be part of the complete state vector st+k).

We do assume that the value function reflects one simple kind of state-dependence:

households are assumed to recognize that it is their real financial position, rather

than their nominal position, that should determine the value of their continuation

problem (so that the price level anticipated for period t+ k is taken into account).

We defer until section 4 a discussion of how the value function is assumed to be

learned from experience. We first examine the equilibrium consequences of finite-

horizon planning under the assumption of a given value function v(B), setting aside

the question of how the function should eventually shift over time in response to fur-

ther experience.4 For the sake of concreteness, we further suppose that the economy

has for a long time been in a stationary equilibrium in which there have been no real

disturbances and monetary policy has maintained a constant inflation rate Π̄; that as

a result, output and the nominal interest rate have been constant as well, with values

3It is not an essential feature of our method that the value function be so simple. The key

assumption for our analysis below of forward guidance is that we suppose that an announcement

of a new monetary policy does not change the value functions that households or firms use in their

finite-horizon planning. It is particularly plausible to suppose that the value functions should ignore

this aspect of the state, as in the case of a policy that has never been used previously, there will

have been no opportunity to learn the consequences of this kind of policy change from experience.
4The issue of the endogeneity of the value function can be abstracted from when we are concerned

only with the effects of relatively transitory disturbances, including short-lived changes in monetary

policy.
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Ȳ and ı̄ respectively; and that households and firms have eventually learned value

functions that are correct for this stationary environment. (We assume that Π̄∗ > β,

so that the implied stationary nominal interest rate ı̄ = β−1Π̄− 1 is positive.)

In such an environment, a household’s correct continuation value function is the

function v(B) that solves the Bellman equation

v(B) = maxC{u(C) + βv(B′)} s.t. B′ = β−1[B + (Ȳ − C)Π̄],

where Ȳ is the stationary equilibrium level of output when households and firms

optimize using model-consistent expectations (perfect foresight). The solution to

this problem is easily seen to be

v(B) = (1− β)−1 u(Ȳ + (1− β)B/Π̄). (2.8)

This is the value function that we shall assume that households use, until our con-

sideration of learning dynamics in section 4.

2.1.2 Log-Linear Approximation of the Optimal Plan

Suppose now that there are no real disturbances and that the central bank uses its

policy instrument to maintain the target inflation rate Π̄ at all times. If households

and firms act on the basis of finite-horizon plans, but use correct value functions,

then actions are the same as if they chose their actions on the basis of infinite-

horizon optimization, and hence all aspects of the equilibrium will be the same. If all

households start with identical financial positions (Bi
t = 0, since financial claims are

in zero net supply5), then in this equilibrium Ci
t = C̄ = Ȳ for each household at all

times.

If instead we allow for real disturbances and/or time variation in monetary policy,

equilibrium dynamics with finite-horizon planning will not generally coincide with

the predictions of rational expectations equilibrium analysis. However, in the case of

small enough departures from the assumptions of the perfect foresight steady state, we

can approximately characterize these dynamics through a perturbation of the solution

just computed in the case of zero disturbances and the constant policy. A first-order

5In the present analysis, we abstract from both government spending and government debt

issuance; extension of the model to consider the effects of fiscal policy as well is left for a future

study.

14



perturbation solution for the representative household’s finite-horizon spending plan

is obtained by linearizing the structural equations (2.2), (2.5) and (2.6) around the

stationary solution.

We write the linearized equations in terms of percentage deviations from the

stationary values of the variables, using the notation

ct ≡ log(Ct/C̄), yt ≡ log(Yt/Ȳ ), bit ≡ Bi
t/(Π̄Ȳ ),

πt ≡ log(Πt/Π̄), ı̂t ≡ log(1 + it/1 + ı̄).

Then if we let σ ≡ −uc(C̄)/(ucc(C̄)C̄) > 0 be the intertemporal elasticity of sub-

stitution of household expenditure, and parameterize disturbances to the urgency of

spending by the quantity gt such that to first order,

log(uc(C
i
t ; ξt)/uc(C̄; ξ̄)) = −σ−1(cit − gt),

(2.6) can be linearized to yield

cjτ − gτ = Eτ [c
j−1
τ+1 − gτ+1] − σ[̂ıjτ − Eτπ

j−1
τ+1]. (2.9)

Here the value of cjτ for any horizon j and period τ is understood to depend not

only on the aggregate state sτ at that time, but also on the financial position that

households with a planning horizon of j periods are assumed to start the period with.

Similarly, (2.8) implies that to a log-linear approximation, the marginal value

of wealth used in evaluating potential financial positions when forward planning is

terminated is equal to

log(v′(B0
τ+1)/v

′(B̄)) = −(1− β)σ−1b0τ+1.

Hence (2.7) can be linearized to yield

c0τ − gτ = −σı̂0τ + (1− β)b0τ+1. (2.10)

Here the solutions for c0τ , ı̂
0
τ and b0τ+1 all depend on both the aggregate state sτ and

the financial position of the household at the beginning of period τ .

Finally, the flow budget constraint (2.2) can be linearized to yield

bjτ+1 = β−1[bj+1
τ + yjτ − cjτ ] (2.11)
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for any horizon j ≥ 0. Conditions (2.9) and (2.11), setting τ = t + k − j for each

0 ≤ j ≤ k, and condition (2.10) for τ = t+k, together with model-consistent solutions

for the variables {ijt+k−j, y
j
t+k−j, π

j−1
t+k−j+1} for 0 ≤ j ≤ k, then provide a system of

simultaneous linear equations to solve for a linear approximation to the optimal plan

of a household with a k-period planning horizon in period t. The solution for optimal

expenditure in period t (the period in which the planning is undertaken) is given by

ckt = gt + (1− β)bt + (1− β)
k∑
j=0

βj Et[y
k−j
t+j − gt+j]

−σ
k−1∑
j=0

βj+1 Et [̂ı
k−j
t+j − π

k−j−1
t+j+1 ] − σβk+1 Etı̂

0
t+k, (2.12)

where bt is the household’s financial position at the beginning of period t. This is the

aspect of the plan chosen in period t that is actually implemented.

In order to determine aggregate expenditure in period t, it is also necessary to de-

termine the state-contingent values {ijt+k−j, y
j
t+k−j, π

j−1
t+k−j+1} of aggregate state vari-

ables used in the planning exercise. Let us assume for now that all households have

identical planning horizons,6 and also start with identical financial positions. Then

they make identical decisions at all times, and thus necessarily begin each period

with a financial position bt = 0. It is assumed that each household has the structural

knowledge required to deduce this, and correctly assumes that bit = 0 for each of

the other households as well. Aggregate demand (and aggregate real income) is then

given by ykt = ckt . It follows from (2.11) that bkt+1 = 0 for each household, and each

household is assumed to have the structural knowledge required to deduce that this

will be true for all other households. Thus in predicting the spending decisions of

other households in period t+ 1 (which are assumed then to have planning horizons

of only k − 1 periods), these households are each assumed to enter period t+ 1 with

financial positions bit+1 = 0. The level of spending that each is expected to choose in

period t + 1 is then given by equation (2.12), except with t replaced by t + 1 and k

replaced by k − 1, but again assuming initial financial wealth of zero.

The same argument applies in each successive period of the household’s planning

exercise. It follows that the value yk−jt+j assumed in the planning exercise (for any

1 ≤ j ≤ k and any possible state st+j) is equal to the value ck−jt+j implied by (2.12)

6The analysis is generalized to allow for heterogeneous planning horizons in section 2.3 below.
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when t replaced by t + j, k is replaced by k − j, and bt+j is set equal to zero. The

value of πk−jt+j assumed is the one implied by the model of firm planning described in

the next section, when firms assume this model of aggregate demand determination.

And finally, interest-rate expectations are assumed to be based on knowledge of

the central bank’s reaction function, which we assume also to be a log-linear relation

of the form

ı̂t = i∗t + φπ,tπt + φy,tyt, (2.13)

where the coefficients may be time-dependent (though independent of the realizations

of the endogenous variables), in order to allow for “forward guidance” experiments, as

discussed in section 3. The interest-rate expectations ı̂k−jt+j used in a forward planning

exercise at time t are thus assumed to satisfy

ı̂jτ = i∗τ + φπ,τπ
j
τ + φy,τy

j
τ , (2.14)

for any planning horizon j ≥ 0 and any date t ≤ τ ≤ t + j; in the latter expres-

sion, the time-dependent coefficients are assumed to be the ones implied by policy

announcements as of period t.

It follows that for any j ≥ 1, the aggregate expenditure of households with a

planning horizon of j periods must satisfy the recursive relationship

yjt − gt = Et[y
j−1
t+1 − gt+1] − σ (̂ıjt − Etπ

j−1
t+1), (2.15)

while the aggregate expenditure of households with a zero-period planning horizon

must satisfy

y0t − gt = −σ ı̂0t . (2.16)

These equations can be solved recursively to determine predicted aggregate de-

mand. Equation (2.16) can be solved for y0t+k, given a solution for π0
t+k and the

central bank’s reaction function (2.14). Using this solution for y0t+k, equation (2.15)

can then be solved for y1t+k−1, given solutions for π1
t+k−1 and π0

t+k and the central

bank’s reaction function. Using this solution for y1t+k−1, equation (2.15) can then be

solved for y2t+k−2, and so on. The model’s prediction for aggregate expenditure ykt in

period t is then given by the solution for ykt .

2.2 Price-Setting by Firms with a Finite Planning Horizon

We turn now to inflation determination through the price-setting decisions of firms.

Each differentiated good f is assumed to be sold by a monopolistically competitive
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producer (also indexed by f), that sets the price P f
τ of good f each period. The objec-

tive of each firm is assumed to be maximization of the average value to shareholders

of the stream of earnings generated by the firm’s pricing policy.

We assume for simplicity that shares in the firms are not traded, and that each

household i receives an equal share of the earnings of all firms. Firms are assumed

to value incremental earnings in different aggregate states in proportion to the aver-

age marginal utility of additional real income to their shareholders in those different

states, averaging the marginal utilities of the different households;7 that is, in pro-

portion to the quantity

λt ≡
∫
uc(C

i
t ; ξt)di. (2.17)

Hence a firm’s objective is assumed to be the maximization of

Êf
t

∞∑
τ=t

βτ−tλτH(P f
τ /Pτ ; Zτ ), (2.18)

where H(rfτ ; Zτ ) represents the real profits of firm f in period τ if its relative price is

rfτ ≡ P f
τ /Pτ ; Zτ is a vector of real state variables at date τ (specified below) that are

outside the control of the individual firm (under the assumption of monopolistic com-

petition) but that matter for the firm’s real profits; and the operator Êf
t [·] indicates

the expectations used by firm f in a planning exercise at date t.

2.2.1 Staggered Price Adjustment

As in the models of Calvo (1983) and Yun (1996), we assume that each period only a

fraction 1− α of all goods prices are reconsidered in any period, with the particular

prices that are reconsidered a random selection from the set of goods. In a period

t in which the price of good f is not reconsidered, we assume that P f
t = P f

t−1 · Π̄.
That is, we assume (as in Yun, 1996) that prices are automatically increased at the

target inflation rate when the optimality of this default pricing rule is not considered.

This assumption implies that in the absence of aggregate disturbances or changes

7In the exposition in the previous section, we have assumed that all households solve an identical

problem, with a k-period planning horizon; if so, in equilibrium all households value additional in-

come in the same way, and we can simply refer to the marginal utility of income of the representative

household. However, the exposition in this section allows for possible heterogeneity in households’

planning horizons, in preparation for the discussion in section 2.3.
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in monetary policy, the equilibrium prices of all goods will be the same as in a

perfect foresight equilibrium with flexible prices, despite the fact that not all prices

are reconsidered each period. Staggered pricing matters for equilibrium dynamics

only to the extent that there are disturbances and/or temporary shifts in the central

bank’s reaction function.

In a period t in which the price of good f is reconsidered, we assume that the firm

chooses a new price P f
t so as to maximize its subjective assessment of the objective

(2.18). But as in the previous section, we assume that the firm plans ahead for only

k periods, and evaluates possible situations in period t+ k using a value function to

estimate the value of its continuation problem. Furthermore, when choosing a new

price in period t, the firm need only consider the consequences for future states in

which it has not yet reconsidered its price more recently than period t. Hence P f
t is

chosen to maximize

Êf
t

[
t+k∑
τ=t

(αβ)τ−t λτH(P f
t Π̄τ−t/Pτ ; Zτ ) + (αβ)k+1ṽ(P f

t Π̄k/Pt+k; st+k)

]
, (2.19)

where ṽ(rft+k; st+k) represents the firm’s estimate of the value of discounted real profits

from period t+ k + 1 onward, conditional on reaching state st+k in period t+ k, not

reconsidering its price in any of the periods between t+ 1 and t+ k + 1, and having

a relative price of rft+k in period t+ k.

In a stationary perfect foresight equilibrium in which the central bank maintains

a constant inflation rate Π̄, the real variables Zt have constant values Z̄ that satisfy

Hr(1; Z̄) = 0, (2.20)

and the price of each good satisfies P j
t = Pt at all times. (The allocation of resources

in this stationary equilibrium is the same as in a stationary equilibrium with perfectly

flexible prices.) As in the previous section, we assume that the value function used

by firms is optimal for this stationary equilibrium (assumed to have prevailed for

some time prior to the period in which we seek to analyze the effects of a change in

monetary policy). But again we simplify by assuming that the value function is not

state-dependent; thus we assume that

ṽ(r) = (1− αβ)−1λ̄H(r; Z̄), (2.21)

where λ̄ ≡ uC(C̄; ξ̄) is the constant value of λt in the perfect-foresight steady state.
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It follows that the first-order condition for maximization of (2.19) is given by

Êf
t

[
t+k∑
τ=t

(αβ)τ−t λτHr(P
f
t Π̄τ−t/Pτ ; Zτ )

PtΠ̄
τ−t

Pτ
+

(αβ)k+1

1− αβ
λ̄Hr(P

f
t Π̄k/Pt+k; Z̄)

PtΠ̄
k

Pt+k

]
= 0.

Log-linearizing this condition around the values that hold in the perfect-foresight

steady state yields

Êf
t

{
t+k∑
τ=t

(αβ)τ−t [pft −
τ∑
s=t

πs −mτ ] +
(αβ)k+1

1− αβ
[pft −

t+k∑
s=t

πs]

}
= 0, (2.22)

using the notation

pft ≡ log

(
P f
t

Pt−1Π̄

)
, mt ≡ −Hrr(1; Z̄)−1Hr(1;Zt).

(Note that mt is a function of real variables outside the control of firm f , and is of

only first order in the deviations of these variables from their steady-state values.

To a linear approximation, it measures the percentage deviation of the average real

marginal cost of supplying output from its steady-state level.)

As in the previous section, we assume that the firm’s expectations Êf
t [·] are de-

duced from the model structural equations, but assuming that endogenous variables

determined in period τ are determined by the decisions of households and firms with

planning horizons of t+ k − τ periods, for any t ≤ τ ≤ t+ k. (The endogenous vari-

ables referred to here now include the variables Zt, along with it,Πt, and Yt.) It then

follows from (2.22) that any firm f that reconsiders its price in period t, and plans

ahead for k periods, will choose a new relative price pft = p∗kt , where the optimized

relative price is given by

p∗kt = Et

t+k∑
τ=t

(αβ)τ−t [πt+k−ττ + (1− αβ)mt+k−τ
τ ]. (2.23)

As usual, the Dixit-Stiglitz price index is defined as

Pt ≡
[∫

(P f
t )1−θdf

] 1
1−θ

.

This implies that when we log-linearize around the stationary equilibrium with con-

stant inflation rate Π̄, we obtain (to a first-order approximation)

πkt = (1− α) p∗kt .
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Equation (2.23) then implies that

πkt = (1− α) Et

t+k∑
τ=t

(αβ)τ−t [πt+k−ττ + (1− αβ)mt+k−τ
τ ].

A similar equation holds if we replace k by any horizon j ≥ 0. We then see that

the {πjt} for different finite horizons satisfy a simple recursion of the form

πjt =
(1− α)(1− αβ)

α
mj
t + β Etπ

j−1
t+1 (2.24)

for any j ≥ 1, with the special form

π0
t =

(1− α)(1− αβ)

α
m0
t (2.25)

when the planning horizon is of length zero. Equations (2.24)–(2.25) can be solved

forward to yield

πkt =
(1− α)(1− αβ)

α

t+k∑
τ=t

βτ−tEtm
t+k−τ
τ

as the solution for equilibrium inflation given expectations regarding the determina-

tion of mτ . If all firms have a k-period planning horizon, then the actual inflation

rate will be given by πt = πkt .

2.2.2 Determinants of Real Marginal Cost

It remains to discuss how the variable mt is jointly determined along with the other

variables in our model. This requires that we consider further the form of the firm’s

profit function. Real profits each period are equal to real sales revenues minus the

firm’s real wage bill. As usual, Dixit-Stiglitz preferences (2.1) imply that the demand

for good f is equal to Yt(r
f
t )−θ, where Yt is aggregate demand for the composite good;

hence the real revenues of firm f are equal to Yt(r
f
t )1−θ.

We assume that each firm produces its differentiated good using labor as the only

variable input, with a production function Yt(f) = AtHt(f)1/φ, where Ht(f) is the

labor hired by firm f , At is an exogenous common productivity factor, and φ ≥ 1

indicates the degree of diminishing returns to scale. Real labor costs are therefore

equal to Wt(Yt(f)/At)
φ, where Wt is the real wage in period t.

We assume that wages are determined in the following way. The household suppli-

ers of labor are represented in wage negotiations by representatives that each bundle
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the labor of a representative sample of the different household types in the economy,

and offer to supply a certain number of total hours by members of their group at a

given wage; when a given number of hours are agreed upon for a given wage, each

household in the group must supply that number of hours, and receives the same

wage. There are a large number of such representatives (each bargaining on behalf

of an identical group of households), so that none has any market power. The rep-

resentative chooses a number of hours Ht that the group will offer to work so as

the maximize the average utility of the households in the group; this results in a

first-order condition for optimal labor supply of the form

vH(Ht; ξt) = λtWt,

where λt is again defined by (2.17). Note that this is the relationship between wages

and hours that would hold in a representative-household model of the kind assumed in

Woodford (2003); here, as in Woodford (2013), we assume a labor market organization

that implies a similar relationship even when the subjective marginal utilities of

income of households may differ because of their boundedly-rational expectations.

Real profits are then given by

H(rjt ;Zt) ≡ Yt(r
f
t )1−θ − λ−1t w((Yt/At)

φ(rft )−θφ; ξt),

where

w(Ht; ξt) ≡ vH(Ht; ξt) ·Ht.

(The vector Zt is now seen to have as its elements the endogenous variables Yt and

λt, and the exogenous variables At and the elements of ξt that affect the disutility of

labor.)

Differentiating this profit function to obtain Hr, we can use (2.20) together with

the requirement that λ̄ = uC(Ȳ ; ξ̄) to determine the steady-state values Ȳ and λ̄. We

can also differentiate the function Hr, obtaining

mt = [1 + (φ− 1)θ]−1 ·
[
(1 + ν)φ(yt − at) − yt − λ̂t + ξmt

]
,

where

ν ≡ H̄wHH/wH > 0, at ≡ log(At/Ā), λ̂t ≡ log(λt/λ̄),

ξmt ≡ log(wH(H̄; ξt)/wH(H̄; ξ̄)).
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If all households have a planning horizon j, we have λjt = −σ−1(yjt − gt), from

which it follows that

mj
t = ξ (yjt − y∗t ),

where y∗t is a linear combination of the exogenous terms gt, at and ξmt identifying (to

a linear approximation) the percentage change in the flexible-price equilibrium level

of output,8 and

ξ ≡ (φ− 1) + νφ

1 + (φ− 1)θ
> 0.

It follows that the recursive system (2.24)–(2.25) can alternatively be written as

πjt = κ (yjt − y∗t ) + βEtπ
j−1
t+1 (2.26)

for any j ≥ 1, and

π0
t = κ (y0t − y∗t ), (2.27)

where

κ ≡ (1− α)(1− αβ)

α
· ξ > 0.

The system of equations consisting of (2.14), (2.15)–(2.16), and (2.26)–(2.27) can then

be solved recursively to obtain solutions for the evolution of the variables {ı̂jt , π
j
t , y

j
t}

for any planning horizon j ≥ 0. Finally, if the actual planning horizon of firms is

always k periods, then the model’s prediction for equilibrium inflation will be πt = πkt .

2.3 Heterogeneous Planning Horizons

Thus far, we have assumed that the planning horizon of all households and firms is of

some finite length, k periods. However, there is no reason to suppose that this must

be uniform across decision makers, or even that it must be the same each time that

a decision is made, for a given decision maker. We can easily extend the model to

allow for heterogeneity in the length of planning horizons (while still treating this as

an exogenous parameter for the decision maker, rather than another decision).

We have discussed above how to compute yjt , the overall spending that would be

undertaken by households with a planning horizon of j periods, and πjt , the average

rate of price increase in excess of the target inflation rate on the part of firms with

8Note that in a flexible-price equilibrium, one would have Hr(1;Zt) = 0 at all times, meaning

that (in a linear approximation) mt = 0 at all times, which requires that yt = y∗t to first order.
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a planning horizon of j periods, for arbitrary values of j. These calculations did

not depend on whether any households or firms actually have planning horizons of

length j. (In the discussion above, we have used the notation k for the length of actual

planning horizons; but in order to determine the behavior of households and firms with

planning horizons of length k, it has been necessary to consider the counterfactual

behavior of households and firms with planning horizons 0 ≤ j ≤ k.) In the calculation

of yjt or πjt , the fact that actual planning horizons are of length k was never used.

(Households with planning horizons of length j are assumed to expect that their

current-period income will result from the spending decisions of other households

that also have planning horizons of length j, that their income in the following period

will result from the decisions of other households whose planning decisions are all of

length j − 1, and so on — even if actual planning horizons are all of length k. This

was necessary in order to allow decisions to be made without having to think about

what anyone should think about conditions more than k periods in the future.)

Hence the equations stated above for the determination of {yjt , π
j
t , ı̂

j
t} for different

horizons j continue to apply, even if we assume that a variety of different lengths

of planning horizons are actually used. Suppose that each period, a fraction ωj of

households have planning horizons of length j (for j ≥ 0), and similarly that a fraction

ω̃j of firms have planning horizons of length j, where the sequences {ωj, ω̃j} satisfy∑
j ωj =

∑
j ω̃j = 1. The particular households with planning horizons of a given

length may or may not remain the same from period to period; what matters is that

we assume stable population fractions. Then aggregate real expenditure (and hence

real income) in period t will be given by

yt =
∑
j

ωjy
j
t , (2.28)

and the overall rate of inflation will be given by

πt =
∑
j

πjt , (2.29)

to a log-linear approximation in each case.

The assumption of heterogeneous planning horizons does introduce a complica-

tion worth mentioning, relative to the discussion above. Households with planning

horizon k will assume that they will receive income in the current period equal to ykt
(because they assume the planning horizons of others to be the same as their own),
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but they will actually receive income yt given by (2.28); and so, while if they start

with a financial position bit = 0, they choose a level of expenditure that they expect

to imply bit+1 = 0 as well, this will generally not be the case, as their income will

be different than they had expected. However, it continues to be the case that the

aggregate financial position of households will be zero, as planned. And because the

approximate expenditure rules derived above are linear in bit, the heterogeneous evo-

lution of financial positions across the population of households is of no consequence

for the evolution of aggregate demand, aggregate income, or wage setting (and hence

the evolution of real marginal costs).

It should also be noted that the existence of equilibrium requires that the sums in

(2.28)–(2.29) converge. If there exists a finite upper bound on the planning horizons

of both households and firms, then this is not an issue, since each of the individual

quantities yjt and πjt is necessarily well-defined and finite. In the case that there is no

upper bound on planning horizons, convergence of the sums depends on how yjt and

πjt behave for large j. If these quantities converge as j is made large, there is again

no problem; but it is possible to define policies (such as the case of a permanent

interest-rate peg, discussed below) under which yjt and πjt grow explosively as j is

increased. In such a case, the existence of an equilibrium depends on ωj and ω̃j

going to zero rapidly enough for large j. Since forward planning over extremely long

horizons is unlikely to be within anyone’s cognitive capacities, we regard this as a

plausible assumption, even in the case of a policy commitment of such an extreme

kind.

Allowing for potentially unbounded length of planning horizons is convenient for

at least one reason, which is that it allows us to analyze the consequences of finite

planning horizons in a case in which the state space of our model is no more complex

than under the rational expectations analysis. In the special case in which ωj = ω̃j =

(1− ρ)ρj for some 0 < ρ < 1, we can average equations (2.15)–(2.16) to obtain

yt − gt = ρEt[yt+1 − gt+1] − σ (̂ıt − ρEtπt+1). (2.30)

Similarly, we can average equations (2.26)–(2.27) to obtain

πt = κ (yt − y∗t ) + βρEtπt+1. (2.31)

These two conditions, together with a specification of the central-bank reaction func-

tion (2.13), provide a complete system of three equations per period to solve for the

evolution of the three endogenous variables {yt, πt, ı̂t}.
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Of course, while the conditions (2.30)–(2.31) are necessary conditions for given

paths to be consistent with finite-horizon optimization by households and firms, they

are not sufficient conditions. It is still necessary to validate any candidate solution

by computing the paths {yjt , π
j
t , ı̂

j
t} for each planning horizon j, and verifying that

the sums (2.28)–(2.29) converge. (This will often be the case, but need not be, as

discussed in the next section.)

The conditions (2.30)–(2.31) are quite similar to the equilibrium conditions of

the standard New Keynesian model with rational expectations (discussed further in

section 3), differing only in the appearance here of the factor ρ < 1 that decreases

the influence of the expectational terms in both equations. Exactly this kind of

modification of the standard model is also proposed by Gabaix (2017), albeit on

somewhat different grounds.9 Our proposal is not equivalent to that of Gabaix,

however, because of the requirement that the sums (2.28)–(2.29) must converge; this

leads to importantly different conclusions about the consequences of an interest-rate

peg, for example.10

3 Comparison with Rational Expectations Equi-

librium Analysis

Under the assumption of infinite-horizon optimization with rational (i.e., model-

consistent) expectations, the variables {yt, πt, ı̂t} must instead evolve in accordance

with the equations

yt − gt = Et[yt+1 − gt+1] − σ (̂ıt − Etπt+1), (3.1)

πt = κ (yt − y∗t ) + βEtπt+1 (3.2)

for all t, along with the central-bank reaction function (2.13). Solutions to this system

of equations under different assumptions about policy have been extensively discussed

(see, e.g., Woodford, 2003).

9The interpretation proposed by Gabaix is one in which people solve infinite-horizon decision

problems, but under distorted beliefs about the laws of motion of variables that need to be forecasted,

that are biased so as not to differ too much from a simpler “default” model.
10The discussion by Gabaix of how the “default” model should endogenously respond to experience

is also different from the model of learning proposed in section 4 below, and this also matters for

our conclusions about the long-run effects of a permanent policy change.
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If the limiting values

y∞t ≡ lim
k→∞

ykt , π∞t ≡ lim
k→∞

πkt , ı̂∞t ≡ lim
k→∞

ı̂kt (3.3)

are well-defined, then it follows from (2.15) and (2.26) that these limiting processes

must satisfy both of equations (3.1)–(3.2) each period; that is, they must describe a

rational expectations equilibrium. It might seem from this that standard analyses of

the rational expectations equilibria consistent with a given policy commitment are

therefore equivalent to the predictions of our model with finite-horizon planning, in

the case that planning horizons are assumed to be long.

This is not quite true, however, for two reasons. First of all, in general the equation

system consisting of (2.13) together with (3.1)–(3.2) admits of a large multiplicity of

solutions, but not all of these solutions can correspond to the large-k limit of the

predictions of the finite-horizon model, for the predictions of the finite horizon model

are always uniquely determined for any horizon k, and if the sequence converges the

limit must be unique as well. Thus in cases where the limiting values are well-defined,

these limiting values provide an interpretation of how the behavior described by a

rational expectations equilibrium can arise; but they also provide a selection criterion

that identifies a single solution among the large set of possible rational-expectations

solutions as the one that one should expect to see. This clarifies an important issue

for monetary policy analysis.

And second, it is not always the case that the sequence of finite-horizon decisions

converges as k is made large. In such a case, none of the rational-expectations so-

lutions are similar to the behavior predicted by our model, regardless of what one

might think is a realistic range of values for k.

To see why, it is useful to write our equilibrium relations in vector form. If we

use (2.13) to substitute for ı̂t in (3.1), we can write the equation system defining a

rational expectations equilibrium as a two-dimensional system,

xt = Mt · Etxt+1 + Nt · ut, (3.4)
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using the vector notation11

xt ≡

[
yt − gt
πt

]
, ut ≡

[
i∗t + φygt

gt − y∗t

]
,

and whereMt andNt are 2×2 matrices of coefficients that depend on the coefficients of

the monetary policy reaction function (but are time-invariant if the reaction function

is time-invariant).

Using the same notation, the conditions that define an equilibrium with finite-

horizon planning can be written in the form

xjt = Mt · Etx
j−1
t+1 + Nt · ut, (3.5)

for any j ≥ 1. For the case j = 0, we instead have simply

x0t = Nt · ut. (3.6)

3.1 Announcement of a Change in Monetary Policy

We can illustrate the use of this apparatus by considering our model’s predictions

about a “forward guidance” experiment of the following sort. Suppose that it is

announced at date t = 0 that from period zero until some horizon t = T, monetary

policy will follow a rule of the form (2.13) with some constant coefficients (i∗, φπ, φy);

we further suppose that i∗ 6= 0, so that the “new” policy rule is not consistent with the

steady state with inflation rate Π̄ (that we suppose has prevailed prior to the policy

experiment). However, it is also understood that from t = T onward, policy will

revert to the central bank’s “normal” rule, which involves i∗τ = 0 for all τ ≥ T . We

wish to consider the effects of announcing a new policy that will be maintained for a

specified period of time.12 Note that we will have constant matrices Mt = M,Nt = N

for all t < T. We assume for simplicity that there are no real disturbances.

For any τ ≥ T, we observe that since uτ = 0, (3.6) implies that x0τ = 0. Then,

proceeding recursively, we can use (3.5) to show that xjτ = 0 for any j ≥ 0. Hence

11We define the first element of xt to be yt−gt, rather than simply yt or the “output gap” yt−y∗t ,

for convenience in writing equation (4.30) below. Note that if we can solve the system of equilibrium

conditions for the path of yt− gt, then we also have the solution for the path of yt or yt− y∗t , simply

by adding the appropriate exogenous variable.
12See Garćıa-Schmidt and Woodford (2015) for discussion of the connection between such a

thought experiment and recent debates about the effects of forward guidance.
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regardless of the forecast horizon, for all periods τ ≥ T the outcome will be the

steady state with inflation equal to Π̄; note that this is one of the possible rational

expectations equilibria for the period after time T .

In fact, there is a unique rational expectations equilibrium with xτ = 0 for τ ≥ T,

namely the solution in which

xREt = (I +M +M2 + . . .+MT−t−1)Nu∗ = (I −MT−t)(I −M)−1Nu∗ (3.7)

for all t < T. Here the final expression is valid only in the case that I −M is non-

singular, which is true as long as

φπ +
1− β
κ

φy 6= 1;

but the first equality holds more generally. In these expressions, u∗ is the constant

value of ut for all t < T , and M,N are the constant values of the matrices Mt, Nt for

all t < T.

We can then solve the system (3.5)–(3.6) recursively for periods t < T, to show

that xjt = xREt for any j ≥ T − t− 1, while instead xjt = xRET−j−1 for any j < T − t− 1.

(The former result is also true in the case of exogenous disturbances, as long as they

are sufficiently transitory; it requires only that Etuτ = 0 for all T ≥ t. The latter

result is more special, as it relies on our assumption that uτ = u∗, a constant vector,

for all τ < T.) It follows that in the case of any temporary policy change (i.e., case

in which T is finite), the limits (3.3) exist, and are given by x∞t = xREt for all t.

Thus in the case of a policy experiment of this kind, finite-horizon planning leads to

the same predictions as a rational expectations analysis, if people’s planning horizons

are long enough (j ≥ T − t−1 for everyone), and one uses the right selection criterion

to choose from among the large set of possible rational expectations solutions. If the

policy change is relatively transitory (or at least, people are given no reason to expect

anything different from the “normal” reaction function, except over a relatively near

future), the length of people’s planning horizons need not even be very long. (And

of course, it is only necessary that most people’s planning horizons be long enough,

in order for the predicted outcome to be approximately the same as the rational

expectations prediction.)

Matters are more complex in the case of a policy change that is expected to last

for a long time. Consider the case in which (contrary to the assumption above) the
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change in policy is permanent. If the new policy satisfies the “Taylor principle,” i.e..

the coefficients of the reaction function satisfy

φπ +
1− β
κ

φy 6= 1; (3.8)

then both eigenvalues of M are inside the unit circle.13 In this case, (3.7) implies that

lim
T→∞

xREt = xREss ≡ (I −M)−1Nu∗.

This identifies one of the possible rational expectations equilibria consistent with

such a policy commitment: one in which the economy moves immediately to the new

stationary equilibrium consistent with the new policy.

It then follows as well that

lim
k→∞

xkt = xREss

as well, for all t ≥ 0 (all dates after the announcement of the permanent change in

policy). Thus we again find that the limits (3.3) are well-defined; hence we again

justify selection of a particular rational expectations equilibrium as the one that

approximates what will happen if people have only finite planning horizons, both

those horizons are sufficiently long. And it is again the case that, as long as we are

confident that most people’s planning horizons are not too short, we should expect an

outcome that is approximately the same as in a (suitably chosen) rational expectations

equilibrium. (How long horizons must be in order to be “not too short” depends on

the largest eigenvalue of M , which depends on the strength of the policy feedback

coefficients.)

If instead the inequality in (3.8) is reversed (as will be the case if neither response

coefficient is very large), the results are quite different. Because in this case M has an

eigenvalue greater than 1, the rational expectations solution xREt does not have a well-

defined limit as T is made large (it grows explosively). This is a troubling feature of

the rational expectations analysis, even when applied to the case of a policy change

of long but finite duration; it implies that the predicted outcome is very different

depending on the exact value of T , which means that changes in expected policy that

change only what is expected about policy very far in the future can have a substantial

13See Woodford (2003) or Garćıa-Schmidt and Woodford (2015) for demonstrations of this, and

further discussion.
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effect on immediate outcomes — an intuitively unappealing conclusion. Moreover,

the large eigenvalue also implies that xkt does not have a well-defined limit as k is

made large. Hence the outcome with finite-horizon planning need not be similar to

the predictions of (any) rational expectations equilibrium, even if one supposes that

the planning horizons of most households are quite long.

3.2 The Case of an Interest-Rate Peg

As a case of particular interest in which (3.8) is not satisfied, suppose that φπ = φy =

0. This is the case in which the central bank promises to fix the short-term nominal

interest rate at some level i∗ up until date T , as in the case of a central bank that

announces that its policy rate will remain at its effective lower bound for a stated

period of time. Suppose furthermore that i∗ < 0, meaning not that the nominal

interest rate is negative, but that it is lower than its level in the steady state with

constant inflation at the target rate Π̄.

In this case, Nu∗ << 0 and M >> 0, so that (3.7) implies that both elements of

xREt are positive and monotonically increasing as T is increased. Moreover, because

M has an eigenvalue that is greater than 1, both elements of xREt are predicted

to grow without bound for large enough T . This implies that a commitment to

keep the interest rate at a low level should be a stimulative policy, increasing both

output and inflation. Moreover, even if a real disturbance would (in the absence of

a countervailing change in monetary policy) significantly lower output and inflation,

and even if the shock is so severe that a contemporaneous response of monetary policy

alone cannot offset it because of the constraint imposed by the effective lower bound

on nominal interest rates, it should be possible to fully offset the contractionary effects

of the shock by committing to keep the nominal interest rate at the lower bound for

a sufficiently long time. This is because, under the rational expectations analysis, the

effects of a commitment to keep the nominal interest rate low can be unboundedly

large as long as T is long enough.

This result, however — that forward guidance should not only be effective but

should have effects that can be unboundedly large (and that grow explosively with

the length of the commitment) — has met with some skepticism, so that the results

predicted by standard models under rational expectations have been termed a “for-

ward guidance puzzle” (Del Negro et al., 2015). An analysis under the assumption
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of finite-horizon planning also predicts that forward guidance should be effective, up

to a point; as long as T ≤ t+ k + 1, the model predicts that xkt = xREt , so that both

elements of xkt will be increased by increasing T . But once T = t + k + 1, further

increases in T are predicted to have no further effect on xkt , which will be given by

xkt = (I −Mk+1)(I −M)−1Nu∗, (3.9)

for all T ≥ t+k+1. The predicted effects of forward guidance are bounded, no matter

how long the commitment might be.14 This is a more empirically plausible result; it

also avoids the uncomfortable prediction of the rational expectations analysis, that

changes in policy commitments far in the future (leaving expected policy over the

next several decades unchanged) should have any material effect on macroeconomic

outcomes now.

The conclusions from a rational expectations analysis are even more paradoxical

in the case of a thought experiment in which the central bank commits to peg the

nominal interest rate forever. Cochrane (2017) suggests that standard New Keynesian

models imply that such a policy should have perfectly well-behaved effects, on the

ground that there are well-behaved (non-explosive, stationary) rational expectations

equilibria consistent with an expectation that such a policy rule will be followed

forever. However, all of these rational expectations equilibria have the property that

at least eventually (for large enough t) the average inflation rate should be lower, the

lower the nominal interest rate that the central bank commits to maintain. And many

of them involve lower inflation immediately, and not merely in the long run; indeed,

if one uses a “minimum-state-variable criterion” to select the rational expectations

equilibrium that is expected to occur, a permanent interest-rate peg with i∗ < 0 (and

no current or expected future real disturbances) should lead to an immediate jump

to the new stationary equilibrium with a constant inflation rate and the interest rate

i∗15 — which, because of the Fisher equation, will be an inflation rate that is lower

the lower the pegged interest rate.

14The discussion here assumes a finite planning horizon k for all decision makers, but it suffices

that there be some finite upper bound on the length of planning horizons. If instead there is no

finite upper bound, but the distribution of planning horizons {ωj} is the same for both households

and firms, then the predicted effects of forward guidance will still be bounded as long as
∑

j ωjM
j

is still a convergent sum; i.e., as long as ωj approaches zero sufficiently rapidly for large j.
15See Garćıa-Schmidt and Woodford (2015) for further discussion of this argument.
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Such observations suggest that a commitment to a permanently low nominal in-

terest rate should be expected to be a deflationary policy, rather than an inflationary

one; and one might then wonder (on the principle that changes in expected policy far

in the future should make little difference in the present) if a commitment to a low

nominal interest rate for a long though finite time should not be deflationary as well.

The conclusions from an analysis that assumes that planning horizons are finite are,

however, quite different.

As indicated above, if people’s planning horizons are of some finite length k, then

a commitment to peg the nominal interest rate at a lower level than the one consistent

with the steady state with inflation rate Π̄ necessarily results in higher output and

inflation. These stimulative effects are predicted to be larger, the longer the length

T of the commitment; but once T ≥ t+ k+ 1, there are no further effects in period t

of lengthening the commitment. The predicted effects are also given by (3.9) in the

case of a commitment to a permanent interest-rate peg. These effects are positive,

though bounded; they are quite unlike the effects that should be observed under any

of the rational expectations equilibria consistent with such a commitment, at least as

regards the levels of output and inflation predicted as t increases.

Thus an analysis based on finite planning horizons provides no support for the

“neo-Fisherian” proposal that the way for an economy experiencing chronic low in-

flation to raise its inflation rate is by committing to peg the nominal interest rate at

a higher level. However, the prediction just derived for the case of a commitment to

a permanent interest-rate peg is not entirely satisfactory. It implies that the inflation

rate and nominal interest rate should fail to conform to the Fisher equation, even in

the long run, and even though (in the thought experiment just presented) both are

forever constant at levels incompatible with the Fisher equation.

How can this be? In a situation where output and inflation are given by (3.9)

each period (or by an average of this quantity for different values of k, in accordance

with the distribution of planning horizons in the population), and the interest rate is

pegged at i∗, households are modeled as choosing a constant level of expenditure each

period despite facing a constant real rate of interest that differs from their rate of time

preference. The reason that this is possible, despite their intertemporal planning, is

that they are modeled as using a value function v(B) — to evaluate potential levels

of financial wealth at times where they truncate their forward planning — that would

be sensible in a stationary equilibrium with an inflation rate of Π̄, but that does not
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represent a correct evaluation of the value to them of a given level of financial wealth,

even on average, in the environment in which they find themselves after the change

in policy.

And while we have justified our assumption of a particular value function by

assuming that prior to the policy experiment, households have had considerable ex-

perience with a regime in which inflation was kept close to Π̄ and the economy was

stable enough for them to come to have correct expectations (including a correct

estimate of the value of financial wealth) in that environment, it is not plausible to

suppose that they would continue to use this value function if the new policy regime is

maintained forever — especially if macroeconomic conditions under the new regime

are simple and predictable, as implied by the above thought experiment. A more

satisfactory analysis of the effects of long-lasting policy changes (or for that matter,

of long-lasting changes in other fundamentals, such as the effects of a permanent

change in productivity) requires that we consider how the estimated value functions

of households and firms should be shaped by further experience.

4 Learning the Value Functions

In the analysis thus far, we have treated the value functions v(B) and ṽ(r) as fixed,

and equal to the correct continuation value functions in a stationary environment with

no real disturbances and a constant inflation rate Π̄. If we are interested in analyzing

the effects of relatively transitory departures from such an environment — the effects

of transitory real disturbances and/or transitory changes in monetary policy — then

it may suffice to assume that these value functions continue to be used in the face of

such disturbances. But if we wish to analyze the effects of more persistent changes

— as in the discussion above of the consequences of a permanent interest-rate peg

— then the assumption that the value functions should remain forever equal to these

ones is unappealing.

The value functions are intended to represent values that decision makers have

learned by averaging their past experience with different states, and a sufficient

amount of experience with an environment that persistently differs from the sta-

tionary equilibrium with inflation rate Π̄ should eventually cause the value functions

to change. In particular, if a new stationary equilibrium is eventually established, it

makes sense to suppose that (at least in the long run) the value functions should be
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optimal for that new stationary equilibrium, and not for some previous stationary

equilibrium far in the past.

4.1 Updating Beliefs

We now illustrate how adaptive learning of the value functions can be incorporated

into our analysis. Again we consider first the problem of a household. We cannot

suppose that v(B) is a simple average of the household’s utility levels on previous

occasions when real wealth was equal to B. First, there is the problem that many

possible values of B (that need to be considered in the planning exercise) will never

have been previously experienced. And more importantly, there is the problem that

the value function is intended to assess the value of the household’s (infinite-horizon)

continuation problem — the expected discounted utility flow over an unbounded se-

quence of subsequent periods — and the actual value of the household’s discounted

utility over an unbounded period of time is never observed. But both of these prob-

lems can be solved by assuming that what the household averages is not its actual

discounted utility following a period in which it has a particular financial position,

but rather an estimate of its discounted utility that it computes as part of the finite-

horizon forward planning exercise.

Suppose that household i enters period t with a financial position Bi
t, learns the

current state st, and engages in forward planning using its current estimate vt(B) of its

value function. (The time subscript indicates that we no longer assume that the same

value function is used at all times.) Through this exercise (described in section 2.1), it

chooses a state-contingent expenditure plan for periods t through t+ k to maximize

the estimated value of the objective (2.3). As part of this calculation, it obtains

an estimated value for its continuation utility from period t onward, the maximized

value of (2.3). Furthermore, the household can perform this same calculation for

any hypothetical value of B. In this way, the household obtains an estimated value

function vestt (B) for any value of B. (Note that this calculation is performed only

for the particular state st in which the household finds itself, and not for all of the

possible states that it might ever be in — so that the calculation remains much less

expensive than a computation of the true value function.)

We may then suppose that the household revises its estimate of the value function

(for use in future periods’ forward planning exercises) based on a comparison of
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its new estimate vestt (B) with the assumption vt(B) used in its forward planning.16

Specifically, let us suppose that

vt+1(B) = γvestt (B) + (1− γ)vt(B), (4.1)

where the “gain parameter” 0 < γ < 1 indicates the rate at which discrepancies

between the assumed value function and the new estimate are corrected by adjusting

the assumed value function.

Similarly, suppose that a firm f that reconsiders its price in period t engages in

forward planning using its current estimate ṽt(r) of its value function. Through this

exercise (described in section 2.2), it chooses a new price to maximize the estimated

value of the objective (2.19). As part of this exercise, it must compute an estimate of

what the value of (2.19) would be for any choice of P f
t ; let this estimate be denoted

ṽestt (P f
t /(Pt−1Π̄). This then implies an estimate for the continuation value function

used in forward planning, for any value of r. We may then suppose that the firm

revises its estimate of its value function using an error-correction rule of the form

ṽt+1(r) = γ̃ṽestt (r) + (1− γ̃)ṽt(r), (4.2)

where the gain parameter γ̃ of firms need not be the same as that of households.

In the case that there are no real disturbances and monetary policy maintains a

constant inflation rate Π̄, assumption of a value function v∗(B) defined by (2.8) on

the part of households, and of a value function ṽ∗(r) defined by (2.21) on the part of

firms, will result in estimated value functions vest(B) and ṽest(r) that are also equal

to v∗(B) and ṽ∗(r) respectively. Hence the value functions (v∗, ṽ∗) constitute a fixed

point of the dynamics defined by (4.1)–(4.2), in such a situation. We wish now to

consider a local approximation to the dynamics implied by (4.1)–(4.2), through a

perturbation of this solution.

16This model of learning is related to the model of “value function learning” proposed by Evans

and McGough (2015). Like us, they assume that an estimated value function vestt is computed each

period as part of a finite-horizon forward planning calculation using the currently assumed value

function. The value function vt used in the forward planning is then estimated econometrically,

using the sequence of past calculated values {vestt−1, v
est
t−2, . . .} as data. Our specification (4.1) can be

viewed as a constant-gain recursive estimation procedure for such a problem.
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4.2 Log-Linearization of the Learning Dynamics

We first consider a local approximation to (4.1). The structural equations defining

the household’s optimal finite-horizon plan involve the derivative v′(B) of the value

function; hence a log-linear approximation to those equations, of the kind used above

to approximate the optimal plan, will involve a log-linear approximation to v′(B).

We parameterize this as

log(v′t(B)/v∗′(0)) = −σ−1 [νt + χt · b].

Using this approximation, we can as in section 2.1.2 compute a log-linear approxi-

mation to the household’s optimal finite-horizon plan in period t, as a function of

the assumed coefficients (νt, χt). This solution gives approximate values for variables

such as cit that are linear functions of bit.

If we let Ci
t(B) be the optimal expenditure plan of the household under the

counter-factual assumption Bi
t = B, then the derivative of the estimated value func-

tion will equal

vest′t (B) = Êi
t[uC(Ci

t(B); ξt)/Πt].

Hence to a log-linear approximation,

log(vest′t (B)/v∗′(0)) = −σ−1(ckt (b)− gt) − πkt ,

where k is the length of the planning horizon of the household (and the planning

horizon assumed for the firms that revise their prices in period t). Our log-linear

approximation to the optimal household plan, ckt (b) = ckt (0) + (ckt )
′ · b, allows us to

express the right-hand side of this equation as a linear function of b. Approximating

the left-hand side as −σ−1 [νestt + χestt · b], and equating coefficients, we obtain

νestt = ykt − gt + σπkt , (4.3)

χestt = (ckt )
′. (4.4)

A log-linear approximation to (4.1) can be written as

[νt+1 + χt+1b] = γ [νestt + χestt b] + (1− γ) [νt + χtb]. (4.5)

Equating coefficients on the two sides of (4.5), we obtain separate updating equations

for νt and χt.
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The implied learning dynamics for χt turn out to be independent of the pricing

behavior of firms. If the household’s planning horizon is k periods, the right-hand

side of (4.4) is equal to gk(χt), where

gk(χ) ≡ χ

βk+1 +
(

1−βk+1

1−β

)
χ
,

and (4.5) then implies that

χt+1 = γ gk(χt) + (1− γ)χt.

This is an autonomous nonlinear difference equation for the evolution of χt. One

observes furthermore that for any χ > 0, gk(χ) is greater than, less than, or equal to

χ if and only if χ is less than, greater than, or equal to 1 − β. Hence the difference

equation implies monotonic convergence of χt to the fixed point 1−β, from any initial

condition χ0 > 0; this is true for any value of the gain parameter, and is unaffected

by exogenous shocks or shifts in monetary policy.

Since there is necessarily eventual convergence of this parameter, we assume in

our analysis that convergence has already occurred, and let χt = 1 − β at all times.

With this simplification, our analysis of learning dynamics reduces to an analysis of

the adjustment of the coefficient νt. Equation (4.5) implies that

νt+1 = γ νestt + (1− γ) νt, (4.6)

where νestt is given by (4.3).

We can compute a similar local approximation to (4.2). The FOC characterizing

the firm’s optimal price adjustment depends on the derivative ṽ′(r) of the firm’s value

function, and log-linearization of this condition requires a log-linear approximation

to ṽ′(r). Suppose that we parameterize this as

ṽ′t(r) = − λ̄

1− αβ
Hrr(1; Z̄) · [ν̃t − χ̃t · log r].

The log-linearized FOC can then be solved for a linear approximation to the solution

for pft , as a function of the coefficients ν̃t and χ̃t used in the approximate value

function.

The firm’s estimated value function ṽestt (P f
t /(Pt−1Π̄)) is simply the estimated value

of the objective (2.19). The derivative ṽest′t (r) is obtained by differentiating this
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expression. Linearizing this, as in the derivation of (2.22), we obtain

ṽest′t (r) = −λ̄Hrr ·
(

1 + (αβ)k+1(χ̃t − 1)

1− αβ

)
· [p∗kt − log r],

where p∗kt is the optimal log relative price (now dependent on ν̃t and χ̃t), the value

of log r that maximizes ṽestt (r).

Then if we write ṽest′t (r) in log-linear form,

ṽest′t (r) = − λ̄

1− αβ
Hrr(1; Z̄) · [ν̃estt − χ̃estt · log r],

and equate coefficients, we obtain

χ̃estt = g̃(χt) ≡ [1 + (αβ)k+1(χ̃t − 1)], (4.7)

ν̃estt = g(χt) · p∗kt . (4.8)

Equating coefficients in a log-linear approximation to (4.2), we obtain updating

equations for the coefficients of the form

ν̃t+1 = γ̃ ν̃estt + (1− γ̃) ν̃t, (4.9)

χ̃t+1 = γ̃ χ̃estt + (1− γ̃) χ̃t. (4.10)

Substituting (4.7) into (4.10), we see that the evolution of χ̃t is determined by an

autonomous linear difference equation,

χ̃t+1 = γ̃ g̃(χ̃t) + (1− γ̃) χ̃t.

Moreover, we observe that g̃(χ̃) is greater than, less than, or equal to χ̃ if and only

if χ̃ is less than, greater than, or equal to 1. Hence the updating equation implies

monotonic convergence of χ̃t to the fixed point of 1, starting from any initial estimate

χ̃0, and regardless of the paths of exogenous disturbances or of monetary policy.

We shall accordingly assume in our analysis that convergence has already occurred,

and that χ̃t = 1 at all times. In this case, (4.8) reduces to

ν̃estt = p∗kt = (1− α)−1 πkt , (4.11)

and the dynamic evolution of ν̃t is then given by (4.9) with this substitution. The log-

linearized learning dynamics are then described by the system of equations consisting

of (4.6) and (4.9) for the evolution of νt and ν̃t respectively, where the right-hand

sides of both equations can be expressed as linear functions of the current values of

the coefficients (νt, ν̃t).
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4.3 Equilibrium Dynamics with Learning

In order to describe the complete dynamics of both actions and beliefs, we must

consider how the endogenous variables ykt and πkt (that appear in the expressions

(4.3) and (4.11) for the coefficients of the estimated value functions) are affected by

variations in the coefficients (νt, ν̃t). This requires us to review the derivations of our

log-linear approximations to the optimal decision rules, now allowing a more general

specification of the value functions.

Let the predicted equilibrium evolution of each of the endogenous variables (yjt , π
j
t , ı̂

j
t)

be expressed as a sum of two components,

yjt = ỹjt + ȳjt , πjt = π̃jt + π̄jt , ı̂jt = ı̃jt + ı̄jt ,

where in each case the tilde component means the predicted value for the variable

under the assumption that νt = ν̃t = 0 in all periods, but taking account of exogenous

shocks and policy changes, while the bar component represents the discrepancy from

this prediction as a result of variation in νt and ν̃t. The evolution of the variables

{ỹjt , π̃
j
t , ı̃

j
t} for all horizons j ≥ 0 then continues to be described by the equations

derived in section 2. It remains only to compute the values of the bar terms, i.e., the

effects on the endogenous variables of perturbation of the value functions.

The log-linear approximations to the FOCs for the household’s problem remain

as stated in section 2.1.2, except that log-linearization of (2.7) now yields

c0τ − gτ = −σı̂0τ + (1− β)b0τ+1 + νt (4.12)

as a generalization of (2.10). Here the variables all refer to state-contingent values at

date τ that are contemplated by the household in its planning exercise at date t; in

that exercise, the household assumes that all households will use the value function

parameterized by νt in evaluating terminal states, even in decisions that it imagines

them making in periods τ > t.

Because the household’s calculations incorporate the requirement that yjτ = cjτ ,

the log-linearized household Euler equations (2.9) imply that

ȳjt = ȳj−1t − σ[̄ıjt − π̄
j−1
t ] (4.13)

for each j ≥ 1. Note that the effects of νt and ν̃t on the household’s period-t calcu-

lation of yj−1τ or πj−1τ for dates τ > t are identical to the effects of those belief shifts

40



on the value of yj−1t and πj−1t ; this allows us to make reference purely to period-t

variables in (4.13).

The household’s log-linearized flow budget constraint also continues to be given by

(2.11). Because the household understands that yjτ = cjτ , the flow budget constraint

implies that in the household’s optimal plan, bjτ+1 = 0 each period. Hence (4.12)

requires that

ȳ0t = −σı̄0t + νt. (4.14)

The system consisting of (4.13)–(4.14) can be solved recursively to obtain ȳjt for any

j ≥ 0.

We turn next to optimal price-setting by firms. The FOC for the pricing decision

of a firm that reconsiders its price in period t, and has a planning horizon of k periods,

can be log-linearized as above to yield the solution

p∗kt = Ek
t

t+k∑
τ=t

(αβ)τ−t [πτ + (1− αβ)mτ ] + (αβ)k+1ṽt, (4.15)

generalizing (2.23). Now that we now use the operator Ek
t [·] rather than Et[·], because

the predictions about decisions made in periods τ > t used in the firm’s forward

planning in period t are no longer model-consistent; this is because the firm assumes

in period t that value functions parameterized by νt and ν̃t will also be used in

periods τ > t, while genuinely model-consistent expectations would take account of

the predictable evolution of beliefs.

The solution (4.15) implies as before that for any j ≥ 1,

p∗jt = Ek
t [πt + (1− αβ)mt + αβ p∗j−1t+1 ].

From this it follows that

π̄jt = κȳjt + βπ̄j−1t (4.16)

for all j ≥ 1. (Again we use the fact that the effects of νt and ν̃t on the household’s

period-t calculation of yj−1τ or πj−1τ for dates τ > t are identical to the effects of those

belief shifts on the value of yj−1t and πj−1t .) The solution (4.15) also implies that

π̄0
t = κȳ0t + (1− α)βν̃t. (4.17)

The system consisting of (4.16)–(4.17) can be solved recursively to obtain π̄jt for any

j ≥ 0.
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Finally, the central-bank reaction function (2.13) implies that

ı̄jt = φπ,tπ̄
j
t + φy,tȳ

j
t (4.18)

for any j ≥ 0. Equations (4.13)–(4.14), (4.16)–(4.17), and (4.18) form a complete

system that can be solved for the values of {ȳjt , π̄
j
t , ı̄

j
t} for all j ≥ 0, as linear functions

of νt and ν̃t. Note that these are all static relationships, as they relate purely to

the way that given perturbations of the value functions influence the calculations of

households and firms in the forward planning that takes place in a single period t.

Once we have solved for both the tilde variables and the bar variables, we have

obtained complete solutions for the variables {yjt , π
j
t , ı̂

j
t} at any point in time t, as

linear functions of the belief coefficients νt and ν̃t. Updating of the belief coefficients

then requires that we calculate the implied values of the estimates νestt and ν̃estt .

We recall that νestt is given by (4.3), if all households have planning horizons of

length k. We can, however, allow for heterogeneity in the length of planning hori-

zons; in this case, there will also be heterogeneity in the updating of value functions.

However, in the linear equations (4.14) and (4.17), it is only the population averages

of the belief coefficients νt and ν̃t that matter for the determination of aggregate

variables such as yt and πt, and we shall assume from here on that the variables νt

and ν̃t refer to these averages. The linear updating equations (4.6) and (4.9) continue

to hold when we interpret νt and ν̃t as population averages, as long as νestt and ν̃estt
are also now understood to refer to population averages.

In this case, (4.3) must be replaced by the more general form

νestt =
∑
j

ωj[y
j
t − gt + σπjt ], (4.19)

where ωj is the fraction of households each period with planning horizons of length

j. Similarly, (4.11) must be replaced by the more general form

ν̃estt = (1− α)−1
∑
j

ω̃jπ
j
t , (4.20)

where ω̃j is the fraction of firms each period with planning horizons of length j.

The complete system of equations to describe the evolution of output, inflation and

interest rates, taking into account learning dynamics, then consists of the following

sets of equations: (i) equations (2.14), (2.15)–(2.16), and (2.26)–(2.27) comprise a
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forward-looking system of equations that can however be solved recursively to obtain

solutions for the evolution of the variables {ỹjt , π̃
j
t , ı̃

j
t} as functions of the exogenous

disturbances and changes in monetary policy; (ii) equations (4.13)–(4.14), (4.16)–

(4.17), and (4.18) comprise a static system of linear equations to solve for the values

{ȳjt , π̄
j
t , ı̄

j
t} as linear functions of νt and ν̃t; (iii) equations (4.19)–(4.20) allow the

estimates νestt and ν̃estt to be computed from the solution for the evolution of the

variables {yjt , π
j
t} along with the exogenous disturbances; and (iv) equations (4.6) and

(4.9) describe the evolution of the belief variables νt and ν̃t given these estimates.

4.4 A Useful Special Case

This is in general a relatively complex and high-dimensional system of linear equa-

tions, though the causal structure is relatively simple, and (at least if there is a finite

upper bound on the planning horizons of both households and firms) there is neces-

sarily a unique solution that can be computed without inverting any large matrices.

Further insight into the kind of dynamics implied by this system can be obtained by

considering again the special case in which ωj = ω̃j = (1− ρ)ρj for some 0 < ρ < 1.

In this case, we can decompose each of our aggregate variables into two components,

yt = ỹt + ȳt, πt = π̃t + π̄t, ı̂t = ı̃t + ı̄t,

where we define ỹt ≡ (1− ρ)
∑

j ρ
j ỹjt , and similarly for the other variables.

The paths of the variables {ỹt, π̃t, ı̃t} then must satisfy equations (2.13) and (2.30)–

(2.31). This means that the actual dynamics {yt, πt, ıt} must satisfy

yt − gt − ȳt = ρEt[yt+1 − gt+1 − ȳt+1] − σ [(̂ıt − ı̄t) − ρEt(πt+1 − π̄t+1)], (4.21)

πt − π̄t = κ (yt − y∗t − ȳt) + βρEt[πt+1 − π̄t+1], (4.22)

ı̂t − ı̄t = i∗t + φπ,t(πt − π̄t) + φy,t(yt − ȳt). (4.23)

This provides a purely forward-looking system of equations to solve for the devia-

tions of the variables (yt, πt, ı̂t) from their “trend” components (ȳt, π̄t, ı̄t). In the case

that the coefficients (φπ, φy) do not vary over time, it is furthermore a linear system

with constant coefficients. Using (4.23) to substitute for ı̂t− ı̄t in (4.21), we can write

this as a two-dimensional system,

[xt − x̄t] = ρM · Et[xt+1 − x̄t+1] + N · ut, (4.24)
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using the same matrix-vector notation as in (3.4), but now also defining the vector

x̄t ≡

[
ȳt

π̄t

]
.

Similarly, we can average equations (4.13)–(4.14) over the different horizons j to

obtain

ȳt = ρȳt − σ[̄ıt − ρπ̄t] + (1− ρ)νt,

which can be written more simply as

ȳt = − σ

1− ρ
[̄ıt − ρπ̄t] + νt. (4.25)

And we can average equations (4.16)–(4.17) over the different horizons j to obtain

π̄t = κȳt + βρπ̄t + (1− ρ)(1− α)βν̃t,

which can be written more simply as

π̄t =
κ

1− βρ
ȳt +

(1− ρ)(1− α)β

1− βρ
ν̃t. (4.26)

And finally, (4.18) can be averaged to obtain

ı̄t = φπ,tπ̄t + φy,tȳt. (4.27)

This is a system of three simultaneous equations that can be solved for (ȳt, π̄t, ı̄t) as

linear functions of νt and ν̃t.

In particular, we obtain a solution of the form

x̄t = Ξ

[
νt

ν̃t

]
(4.28)

for the elements of x̄t, where (as long as φπ, φy ≥ 0) Ξ is an invertible 2× 2 matrix.

We can then write an evolution equation for the trend components x̄t through a linear

transformation of the laws of motion (4.6) and (4.9) for νt and ν̃t.

We note that the system (4.19)–(4.20) can be written in the form[
νestt
ν̃estt

]
= Φxt, (4.29)
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where Φ is a 2 × 2 matrix of coefficients. Then the evolution equation for the trend

components can be written as

x̄t+1 = Λ x̄t + Qxt, (4.30)

where

Λ ≡ Ξ[I − Γ]Ξ−1, Q ≡ ΞΓΦ,

and Γ is the 2 × 2 diagonal matrix with diagonal elements (γ, γ̃). Note that the

eigenvalues of Λ are 1− γ and 1− γ̃; thus both eigenvalues are inside the unit circle,

and if the variables xt remain constant over time, the trend variables x̄t necessarily

converge to constant values as well, though this convergence may be slow (if γ and γ̃

are small). The dynamics of xt and x̄t are then completely determined by (4.24) and

(4.30), given a specification of the exogenous disturbance processes, monetary policy,

and an initial condition for x̄0.

We thus obtain a “hybrid” New Keynesian model, in which deviations of output

and inflation from their “trend” values are determined in a purely forward-looking

way (though the system (4.24) is somewhat less forward-looking than in the standard

model, if ρ is significantly less than 1), but in which there are persistent fluctuations

in the “trend” values (quite persistent, if the revision of estimated value functions

is slow), determined in a purely backward-looking way. The model thus produces

persistent dynamics of both output and inflation, without any need for hypotheses of

habit-persistence in preferences, costs of adjusting the rate of investment spending,

or automatic indexation of prices to past inflation, of the kind often assumed in

econometric New Keynesian models. Like the models of Milani (2007) and Slobodyan

and Wouters (2012), the model proposed here generates persistence as a result of

learning from past experience. However, unlike those models, the model proposed here

does not make expectations purely backward-looking, so that forward guidance (and

other special, circumstantial sources of information) is not implied to be irrelevant.

4.5 Long-Run Equilibrium, the Fisher Equation, and the

Neo-Fisherian Fallacy

We return now to consideration of the validity of the proposition that the Fisher

equation should hold in a long-run equilibrium. In our model that has been aug-

mented to allow adaptive learning of the value functions, this proposition is correct.
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Consider a situation in which the central bank’s reaction function is constant over

time, but not necessarily consistent with the inflation rate Π̄ assumed in the sta-

tionary equilibrium around which we have log-linearized our model equations; and

suppose that all exogenous states are also constant over time (ξt = ξ̄ for all t). Given

this, let us consider whether it is possible to have a stationary equilibrium in which

the endogenous variables (yt, πt, ı̂t) are all constant over time.

If so, the values of νestt and ν̃estt will also be constant over time, from which it follows

that νt and ν̃t will necessarily converge and eventually be constant as well. This in

turn means that the “trend” components (ȳt, π̄t, ı̄t) must eventually take constant

values as well. Hence we consider the possibility of stationary solutions in which

each of these variables takes a value that is independent of time. (For simplicity, we

treat here only the case of exponentially distributed planning horizons just discussed,

though a version of the Fisher equation holds in more general cases as well.)

In such a solution, (4.21) requires that

(1− ρ)(y − ȳ) = −σ[(̂ı− ı̄) − ρ(π − π̄)]. (4.31)

In addition, (4.25) requires that

ȳ = − σ

1− ρ
[̄ı− ρπ̄] + ν.

Moreover, (4.6) requires that ν = νest, which using (4.19) can be seen to imply that

ν = y + σπ.

Using these latter two equations to substitute for ȳ and ν, we find that (4.31)

requires that

ı̂ = π.

That is, deviations of the constant inflation rate from the value Π̄ of the steady

state around which we have log-linearized must be associated with deviations of the

nominal interest rate of exactly the same size. The Fisher equation must hold in any

long-run stationary equilibrium, once we take account of the endogenous adjustment

of the beliefs that are reflected in the value function of households.

Does this mean, then, that a commitment to maintain a constant nominal interest

rate forever must, at least eventually, bring about a level of inflation consistent with

the Fisher equation — so that commitment to maintaining a low nominal interest rate
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must eventually be disinflationary or even deflationary, while commitment to keep

the nominal interest rate must eventually result in correspondingly high inflation, in

accordance with “neo-Fisherian” reasoning? No; for while we have shown that if such

a policy were to lead, at least in the long run, to a stationary equilibrium, it would

have to be one consistent with the Fisher equation, there is no reason to expect that

such a policy — however credible it may be that it will be maintained in perpetuity

— should lead to a stationary equilibrium, even in the long run.

Let us return to the thought experiment considered in section 3.2 above, in which

the central bank pegs the nominal interest permanently at a level lower than the

constant level associated with the stationary equilibrium with inflation rate Π̄; but

let us now consider the consequences of adaptation of the estimated value functions.

The outcome calculated in section 3.2 assumes that νt = ν̃t = 0. If this were to remain

true forever, then one would have a constant values for output and inflation given by

(3.9), which implies that both inflation and output are higher than their values in the

stationary equilibrium with the target inflation rate. (In fact, πkt and ykt are higher

for arbitrary k; so this conclusion is true regardless of the assumed distribution of

forecast horizons.) If this were to remain true permanently, the inflation rate and

nominal interest rate would fail to conform to the Fisher equation, even in the long

run.

But in such a situation, the estimated value functions should not remain the ones

that were appropriate to the previous steady state. As discussed in section 3.2, in

this thought experiment Nu∗ << 0. Moreover, in the case in which ρ is small enough

for the infinite sums
∑

j ωjx̃
j
t to converge, we have (I − ρM)−1 >> 0, and we can

solve (4.24) forward to obtain

[xt − x̄t] = x̃ ≡ [I − ρM ]−1Nu∗ >> 0

at each date t. Substitution of this system of equations together with (4.28) into

(4.29) yields [
νestt
ν̃estt

]
= Φ x̃ + ΦΞ ·

[
νt

ν̃t

]
(4.32)

for each date.

We further observe that in the case of an interest-rate peg, Ξ >> 0 and hence

ΦΞ >> 0. It then follows from (4.32) that in the case of any beliefs satisfying νt, ν̃t ≥
0, we must have νestt , ν̃estt > 0. Then since νt+1 is specified to be a weighted average
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of νt and νestt , we must have νt+1 > 0; and similarly for ν̃t+1. We can then show

recursively that starting from initial values ν0 = ν̃0 = 0 (beliefs consistent with the

previous steady state), we must have νt, ν̃t > 0 for all t > 0. It then follows from

(4.28) that x̄t >> 0 for all t > 0, and hence that

xt = x̃ + x̄t >> 0

for all dates t after the policy change. But this means that the levels of output and

inflation can never converge to the long-run steady state consistent with the Fisher

equation, since in this steady state both elements of xt must be negative.

Since the dynamics implied by our system of equations are linear, the fact that

there is no convergence to the unique steady state means that the dynamics must

diverge explosively. Thus once learning dynamics are taken into account, the model

predicts an explosive inflationary spiral that should continue until the interest-rate

peg is abandoned, as in the famous analysis of an interest-rate peg by Friedman

(1968). Similarly, the model implies that commitment to maintaining a fixed high

interest rate should never succeed in bringing about a correspondingly high rate of

inflation.

Similar conclusions about the instability of learning dynamics under an interest-

rate peg have been obtained in the context of New Keynesian models based on in-

tertemporal optimization by authors including Bullard and Mitra (2002), Preston

(2005), and Evans and McGough (2017).17 The present model illustrates, how-

ever, that such conclusions can be obtained without modeling expectations as purely

backward-looking, as these authors do. The present analysis does allow central-bank

announcements about intended future policy to influence behavior immediately, even

before any change in actual central-bank behavior occurs, because it is assumed that

households and firms should both take into account such information in their forward

planning exercises. But this does not imply dynamics that converge to a stationary

17Gabaix (2017) obtains a different conclusion about the long-run effects of an announced perma-

nent peg of the nominal interest rate at a different level than has prevailed in the past. However, this

is because he assumes that the interest-rate peg is accompanied by central-bank “guidance” that

directly affects people’s expectations (because their “default model” is influenced by central-bank

guidance), and that the way that this guidance, to the extent that it is accepted, implies that one

should expect the inflation rate that makes the new interest-rate peg consistent with the Fisher

equation. That is, Gabaix assumes that people’s beliefs should be at least partially neo-Fisherian,

even when their experience points in the opposite direction.

48



equilibrium consistent with the Fisher equation.

5 Conclusions

The analysis above shows that care must be used in drawing conclusions about con-

templated monetary policies using rational expectations equilibrium analysis. We do

not mean to suggest that such analysis is never useful. In some cases, the rational

expectations equilibrium outcome (with a suitable equilibrium selection) should pro-

vide a reasonable approximation to what a more realistic model with finite-horizon

forward planning would imply, at least if many people are somewhat forward-looking.

For example, this should be the case if one is interested in computing predicted

responses to economic disturbances that are (i) relatively transitory, and (ii) recurrent

enough for people to have learned their serial correlation from experience, when (iii)

the central bank’s reaction function satisfies the “Taylor Principle” (3.8). In such a

case, the decisions that result from forward planning are not very sensitive to the

length of the horizon over which people plan; and as a consequence, the limit as the

horizon length k is made unboundedly large is well-defined, and corresponds to a

particular selection from among the rational expectations equilibrium solutions.

But for some questions, there is no selection criterion under which rational expec-

tations equilibrium analysis provides reliable predictions. The question of predicting

the effects of a central-bank commitment to maintain its nominal interest-rate target

at a low level for a considerable period of time is such a case. We have seen that

in this case, finite-horizon forward planning does not result in outcomes similar to

any of the rational expectations equilibria consistent with such a policy, no matter

how long people’s planning horizons may be, or how rapidly they may adjust their

estimated value functions to reflect more recent experience.18

Avoiding misleading conclusions is only possible by considering the implications

of explicit models of boundedly rational cognition, and examining the extent to which

they lead to results similar to those of the more familiar rational expectations anal-

yses. The example provided here is intended to show how such analyses can be

tractable, in a setting that is no less general than those often used in rational ex-

18The fragility of rational expectations equilibrium results in this case is also shown by the related

work of Garćıa-Schmidt and Woodford (2015), who relax the assumption of optimization under

rational expectations in a different way.
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pectations analyses of alternative policies. It is offered in the hope that analyses in

this style will become more common in the monetary policy literature, and that more

robust conclusions about policy can be reached as a result.
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