
Schröder, Philipp J. H.; Bitzer, Jürgen

Working Paper

Competition and innovation in a technology setting
software duopoly

DIW Discussion Papers, No. 363

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Schröder, Philipp J. H.; Bitzer, Jürgen (2003) : Competition and innovation in
a technology setting software duopoly, DIW Discussion Papers, No. 363, Deutsches Institut für
Wirtschaftsforschung (DIW), Berlin

This Version is available at:
https://hdl.handle.net/10419/18122

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/18122
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Jürgen Bitzer and
Philipp J.H. Schröder

Competition and innovation in a
technology setting software duopoly

Discussion Papers

Berlin, August 2003

Opinions expressed in this paper are those of the author and do not necessarily reflect views
of the Institute.

DIW Berlin
German Institute
for Economic Research
Königin-Luise-Str. 5
14195 Berlin,
Germany
Phone +49-30-897 89-0
Fax +49-30-897 89-200
www.diw.de

ISSN 1619-4535

Competition and innovation in a technology
setting software duopoly

Jürgen Bitzer and Philipp J.H. Schröder∗

July 2003

Abstract
Recently the software industry has experienced fundamental

changes in market structure through the entry of open source com-
petitors, e.g. Linux’s entry into the operating systems market. In a
simple model we examine the effects of such a change in market struc-
ture from monopoly to duopoly under the assumption that software
producers compete in technology rather than price or quantities. The
model includes the presence of technological progress and menu costs
of adjusting existing software, i.e. innovation. It is found that: (i)
moving from monopoly to duopoly does increase the technology level
set by firms in the software industry; (ii) a duopoly adjusts more read-
ily to global technological progress than a monopolist. Furthermore,
results are presented comparing open source versus for-profit firms in
terms of technology levels and innovation.

Keywords: open source software, strategic interaction, duopoly, menu
costs.
JEL classification: H41, L86, L31

1 Introduction

The emergence of open source software (OSS) as competing products in for-
merly monopolistic software markets has led to a discussion on the conse-
quences of competition caused by OSS on innovation and the rate of progress

∗DIW Berlin – German Institute for Economic Research and DIW Berlin and Aarhus
School of Business, Denmark, respectively. Corresponding author: Jürgen Bitzer, DIW
Berlin, Königin-Luise-Str. 5, 14195 Berlin, Germany, Tel.:+ 49 30 89789 328, Fax:+49 30
89789108, email: jbitzer@diw.de. The Authors wish to thank Zhentang Zhang for valuable
comments. The usual disclaimer applies.

1

in software technology development.1 Consider the comments of former de
facto monopolists.

“Open source is an intellectual-property destroyer, I can’t imagine
something that could be worse than this for the software business
and the intellectual-property business. (...). I’m an American, I
believe in the American Way. (...). I worry if the government
encourages open source, and I don’t think we’ve done enough
education of policy makers to understand the threat.”2

(Jim Allchin, Microsoft Group Vice President
Platforms, cited after Bloomberg, 2001)

Or the following remarks concerning the efficiency of the OSS development
process:

“The OSS development model leads to a strong possibility of un-
healthy ‘forking’ of a code base, resulting in the development of
multiple incompatible versions of programs, weakened interoper-
ability, product instability ...”

(Craig Mundie, Microsoft Senior Vice President,
talk given at New York University Stern School

of Business, cited after Microsoft, 2001).

Looking through the dust swirled up by a troubled monopolist there re-
main two economic arguments which claim that the emergence of OSS com-
petition in the software market could lead to reduced economic efficiency and
welfare: (i) OSS, as a public good, allegedly destroys intellectual property
and thus reduces incentives to innovate, with negative consequences for wel-
fare. (ii) The loose coordination of the innovation process in the development
of OSS leads to redundant developments and a less efficient method of soft-
ware production, which lowers welfare. While the first argument is derived
from competition between a commercial software enterprise and OSS devel-
opers, the second is derived from competition among OSS products. Both
suggest sluggish technological progress.

1For an introduction to the history and success of OSS see for example Stallmann
(1999), Rosenberg (2000), Feller and Fitzgerald (2002) or Hars and Ou (2002).

2In a later amendment of Mr. Allchin’s comments, Microsoft stated that it only had a
problem with the “Marxist-Leninist tool, the GNU GLP license” and not with the open
source movement as such (Chaffin, 2001). There are even harsher statements, e.g. Steve
Ballmer, Microsoft CEO, is quoted by the Chicago Sun-Times (2001) as saying that Linux
is “ (...) a cancer that attaches itself in an intellectual property sense to everything it
touches.”

2

Data on technological progress in software technologies does not lend sup-
port to either of these arguments. Rather it seems that the rate of commercial
software and OSS innovation has increased with emerging competition. The
release history3 of Microsoft’s Windows (see Table 1) shows that the intervals
between major releases have decreased continuously since the beginning of
the 1990s.

Table 1: Release history of MS Windows4

Release date Version
1985 Windows 1.0
1987 Windows 2.0
1990 Windows 3.0
1995 Windows 95
1998 Windows 98
2000 Windows ME
2001 Windows XP

Source: Information published at: [www.microsoft.com].

The same is true for competition among OSS projects, as documented in
Tables A1 and A2 for GNOME and KDE. The case of the two OSS competi-
tors GNOME and KDE shows that competition5 did not reduce the rate of
innovation. On the contrary, both branches appear to have gained momen-
tum once competition kicked in (see Figure 1).

The majority of the OSS economics literature addresses the “incentives
to innovate/participate” issue, i.e. the question of the motivation of OSS
programmers and the capacity of OSS software (a privately provided pub-
lic good) to offer viable alternatives to commercial software products. On
this, see e.g. Lerner and Tirole (2002); Johnson (2002); Raymond (2000a
b); Hars and Ou (2002); Bitzer and Schröder (2002). Furthermore, a few
papers address the competition between OSS and commercial software, e.g.

3The release history can be regarded as a suitable indicator of technological progress
in software technology. This is because the release of a new version creates costs, not
only for the software firm or OSS developer but also for the customers implementing
it. A customer will only be willing to invest in the new software version if the benefits
thereof are greater than the implementation costs. Thus, the resulting release costs will
only be justified if there is at least a certain technological improvement in newly released
software. Furthermore, it can be expected that the higher the release costs, the higher the
technological improvement necessary to offset investment.

4Further minor releases have been Windows 3.1 and Windows for Workgroups 3.11 in
1993 and Windows 98 SE in 1999.

5Another common case of competition within OSS projects is caused by forking, i.e.
the spliting of a project into two competing branches.

3

-

6

1997 1998 1999 2000 2001 2002 2003

5

10

15

�����

�

�
�
�

��
�
��
��

�

�

�
�
�

��
���

�
�

��������
���

��������
�
�����������

���

��
�

��

�

�
�
�

�

??

??

?

?????

?

?

?

?

??

?

?

?

??

??

?

??

?

??

?

Figure 1: Number of Version Releases in the Past 12 Months, Gnome:� /
KDE:? Source: Appendix Tables A1 and A2

Casadesus and Ghemawat (2003); Bitzer (2001); Dalle and Jullien (2002).6

Despite impressive progress in research on the OSS phenomenon (see also
the special issue of Research Policy on OSS, forthcoming in 2003) to the best
of our knowledge no study thus far has addressed the “sluggish technolog-
ical progress” argument mentioned above.7 The literature on OSS has not
yet dealt with the influence of an increase in competition through the emer-
gence of OSS upon the rate and level of technological advances in a software
monopoly/duopoly.

This paper addresses the impact of a change in competitive structure on
the technology development decision of for-profit firms and OSS developers
in the software market. We examine this issue both in terms of setting the
technology level of a software product, and in terms of the willingness to re-
act to external technological advances (shocks).8 To capture both OSS and

6The papers of Casadesus/Ghemawat (2003) and Bitzer (2001) focus on the question of
which software will ultimately “win” the competition and eventually displace the competi-
tor. Dalle/Jullien (2002) address the specific role of standards in the competition between
commercial software companies and OSS developers.

7By the same token, no paper has yet examined the consequences of competition (e.g.
caused by forking or branching) on the innovation activity within OSS projects.

8The paper does not deal with possible constraints to the supply of innovation, e.g.
the emergence of new firms in the software industry or the appearance of ‘forks’ in OSS

4

for-profit software producers within the same formal framework, we abstract
from profit, altruistic or job-signaling motives and use a general objective
function based on the dissemination of a software product and its techno-
logical level. Thus, producers are assumed, be they OSS or for-profit, to
value the extent to which their product is distributed/bought. The demand
for a certain piece of software, i.e. its dissemination, in turn, is assumed
to be neither a matter of price nor of available quantity, but rather to de-
pend on the technological content (level) that the software offers to users.
Thus, technology is the strategic variable of software competition, and, while
a high level of technology ensures wider dissemination, it is also associated
with a higher cost to the developer. Furthermore, software technology is
subject to exogenous technology shocks. The ‘real’ technological level of any
piece of software quickly deteriorates as externally determined technological
possibilities (processor capacity, application demands, etc.) and consumer
demands grow. Therefore the technology embedded in a developed piece of
software must be adjusted in accordance with external (global) technological
progress. In turn, these adjustments (e.g. releasing an updated software
version) entail particulare costs (e.g. development and release costs). Using
the framework of Rotemberg and Saloner (1987), these adjustment costs are
formally introduced as a menu cost.

The paper derives the following results from the formal model: First, the
transition from a monopoly to a duopoly increases the technological level cho-
sen by the enterprises. Second, the transition from a monopoly to a duopoly
increases the willingness to adjust to global technological shocks (rate of in-
novation). These findings apply both to pure commercial software and pure
OSS markets as well as to mixed markets (e.g. entry of an OSS firm into the
market of a for-profit monopolist). Third, assuming that development and
innovation costs of OSS firms are lower than those of for-profit firms, pure
OSS duopolies will display more advanced technologies and a higher rate of
innovation. Yet, for a sufficiently strong profit/payoff motive, the inverse
conclusion holds. These findings confirm the above mentioned observations
on the software industry.

The remainder of the paper is as follows. The following section introduces
the formal model and discusses its implications. Section 3 concludes the
paper.

projects reducing the number of programmers working on each individual product/project,
thus reducing the rate of innovation via a supply-side effect. This type of argument has
also not been advanced either by Microsoft or others. Hence our focus is on the ways that
strategic interactions among technology setting software firms will affect innovation, and
not on the effect of splitting the possibly limited resources in human/programming capital
among competing products.

5

2 The Model

2.1 Software competition

Competition between a profit oriented commercial software firm and an OSS
developer community follows different rules than the “standard” competi-
tion model. First, the incentives of the actors differ. Second, the strategic
variables are neither price nor quantity, but rather technology. Third, the
behavior of the market participants is strongly influenced by an exogenous
technological factor.

First, the incentives of OSS developers have recieved a great deal of at-
tention. It is widely acknowledged that, while commercial firms maximize
profit, OSS developers are interested in enhancing their reputation and/or
signalling value (e.g. Raymond, 2000a, 2000b; Torvalds and Diamond, 2001;
Lerner and Tirole, 2002). Hence, even though a profit motive can be ruled
out for OSS developers, they nevertheless maximise these other payoffs. Al-
though the incentives of the two types of software producers are different,
both incentives are positively correlated with the dissemination of their re-
spective software product. While commercial firms are interested in increas-
ing their profits by benefitting from decreasing average costs with increasing
dissemination of their software, OSS developers benefit from the dissemina-
tion of their OSS in terms of enhanced reputation and signalling value (Lerner
and Tirole, 2002). Thus, commercial firms and OSS developers can still be
assumed to maximise their respective payoffs, which depend in turn on the
dissemination of their software. To capture both types of software produc-
ers, we use a general objective function that can represent both commercial
software producers and OSS developers.

Second, the strategic variable in a software market is neither price nor
quantity. Software is an intangible good that can be duplicated at virtually
no cost, and in addition, at least one agent (the OSS developer) distributes his
product at zero price. Hence, there can be no talk of either quantity or price
competition.9 Hence, our paper starts out by formulating an (admittedly un-
conventional) model in which competition is not based on price or quantities,
but instead software providers compete in technological advancement of their
products. A high real level of technology ensures widespread dissemination
of the software, which is good for the producer, but it also raises the costs of
development and maintenance (bug fixing etc.). We apply a broad concept

9In fact also the price of most commercial software is often inessential from a consumer’s
point of view. The majority of software is sold as pre-installed, thus its ability, reliability,
compatibility, etc – in short its technological content – drives the consumer’s decision,
while the price is a matter between the soft- and hardware producer.

6

of technology including all properties which influence the user’s decision to
employ a certain software package. Depending on the type of software, the
technology therefore includes characteristics like supported hardware, ease
of use/installation, interconnectivity capabilities, range of features, state-of-
the-art functions, quality, reliability, and so on. Thus, the technology of a
software includes the entire bundle of its technological characteristics.

These considerations lead us directly to the third difference between our
model and a “standard” competition setting. The “value” of a piece of soft-
ware to a user depends strongly on how up-to-date its general functionality is
or, to put it differently, its “real” technological level. The real technological
level depends on how far each technological characteristic of the software is
behind the state of the art: the “technological frontier” of that particular
aspect of the software. Thus, the technological level of any piece of software
is defined in relation to the global technological level, which consists of all the
most advanced developments in each aspect of that software at the current
point in time.10 On the other hand, the global technological level itself is
constantly changing. It is set by the developments in the globally available
technology which influences demand for or development of software. The
global technological level is driven by developments in hardware technology,
new applications, development of new features, consumer demands and so
on.

2.2 A simple framework

Consider a heterogeneous goods duopoly operating in a software market. The
two firms a and b service the imperfectly separated market segments A and B
respectively. Instead of competing on price or quantity, the two firms compete
in the technology of their respective software products. Hence the strategic
variable is the technological level of the product, or rather, innovation and
development. At time t the technological level of firm i’s software is denoted
by τ i

t , i = a, b. Further, the global technology level, Tt, represents hardware
advances, new applications or changes in consumer demand.

The demand for software, or rather, the dissemination of the two soft-
ware products is assumed to be symmetric and to depend on the techno-
logical advance/ability of the software, and on the interdependence between
the two market segments, i.e. the two products are imperfect substitutes.
Dissemination, qi

t, of the two products a and b at time t is represented by
si

t = max{0, qi
t} , i = a, b, where

10As no single software product is at the technological frontier in terms of every one of
its technological dimensions, the technological level of any specific piece of software must
always be lower than the global technological level.

7

qa
t =

(α

2
+ β

) τa
t

Tt

− βτ b
t

Tt

(1)

qb
t =

(α

2
+ β

) τ b
t

Tt

− βτa
t

Tt

(2)

Parameter β > 0 is a measure of the substitutability of the two products

and α is a positive constant. The expressions
τ i
t

Tt
represent the “real technol-

ogy level” of firm i. Namely, how advanced the technological capability of the
software product is in relation to the hardware ability, consumer demands etc.
Thus (1) and (2) state that the extent to which a certain software producer’s
product is distributed/sold depends positively on its own real technology
level and negatively on the competitor’s real technology level. Equations (1)
and (2) also include the effect of external technological development in Tt

which devalues the real technology level and dissemination of both software
products.

Even though the model avoids profit motives and price or quantity compe-
tition, the principles of maximisation are still applicable. Assume that firms
derive some payoff from each distributed/sold unit of software. In particular
there is a gain ρ, which could represent the reputational or signaling value for
an OSS producer or more conventionally the per unit monetary reward for a
proprietary software firm. There is also a cost C which is assumed to depend
proportionally on the technology level of the product. Thus, a high real tech-
nology level is associated with high development and maintenance costs, i.e.
larger support or hotline costs, costs of bug-fixing or indeed distribution and
production costs. The latter in particular can be seen as driven by the fact
that programmers working on a more advanced software product are more
expensive than those working on an inferior software project. Postulating

C = c
τ i
t

Tt
the gain function for firm i can be stated as:

gi
t = qi

t

(
ρ− c

τ i
t

Tt

)
, i = a, b . (3)

How does this situation of software duopoly compare to that of a software
monopolist? Assume that a monopolist is servicing both market segments A
and B with the respective software products a and b. The gain-functions for
the monopolist are identical to those formulated in (3). Yet, the monopolist
is aware of the interaction of the two markets, represented by β in (1) and (2),
and takes this fact into account. In particular, due to symmetry, a monopolist
realises that τMa

t = τMb
t . Rewriting the monopolists gain function for market

i after setting in (1) and (2) respectively, gives

8

gMi
t =

α

2

τMi
t

Tt

(
ρ− c

τMi
t

Tt

)
, i = a, b . (4)

Since both markets behave identically, in subsequent analysis it suffices
to consider only one of the market segments.

2.3 Setting technology levels

In the case of a software duopoly, where firms behave noncooperatively and
simultaneously have to choose their respective technology levels to maximise
(3), the first order condition for firm a after substituting in qa

t from (1)
becomes

τa
t =

ρTt

2c
+

βτ b
t

α + 2β
, (5)

and similarly for firm b.
Given that both firms expect all future technology levels Tt+j , (j =

1, 2, . . .) to be equal to Tt, then the Nash equilibrium technology levels at
time t are

τa
t = τ b

t =
ρTt(α + 2β)

2c(α + β)
. (6)

Lemma 1. The technology level set by a software duopoly increases for a
higher payoff, ρ, a falling cost, c, and a higher degree of substitutability, β.

Thus, if we assume that an OSS duopoly has lower costs c compared to
a for-profit software duopoly, then Lemma 1 states that an OSS software
duopoly will produce a higher technological level. Similarly a duopoly with
a higher payoff ρ, which may be the case for for-profit firms will settle for a
higher technology level. Finally, once the two software products become more
homogeneous (higher β) the strategic interaction in the software duopoly
triggers firms to set a higher technology level.

Compare this to the asymmetric case. In a software duopoly with het-
erogeneous costs, ca and cb, firm a’s Nash equilibrium technology level would
become τa

t = ρTt(α+2β)(caβ+cb(α+2β))
2cacb(α2+4αβ+3β2)

, such that
∂τa

t

∂ca
< 0 and

∂τa
t

∂cb
< 0. A low

cost competitor b increases the technology level set by firm a. Thus, we
obtain:

Lemma 2. A reduction in the cost of one firm in a software duopoly increases
the individual technology levels set by both firms.

In terms of Microsoft versus OSS, Lemma 2 implies that the entry of
a low cost competitor pushes up the technology level of the for-profit firm

9

beyond the level that would have resulted from a for-profit entry with higher
costs, cb. We do not pursue this point further and stick with our assumption
of ca = cb = c for the reminder of the paper, such that the impact from
OSS on the for-profit competitor stems solely from the strategic interaction
of the two firms rather than from the possible cost advantages that an OSS
competitor may have.

Compare the above findings to a software monopolist maximising (4), and
expecting all future technology level Tt+j , j = (1, 2, . . .) to be equal to Tt.
Such monopolist has first order conditions for market segment A and B that
define the optimal technology level as

τMa
t = τMb

t =
ρTt

2c
. (7)

Lemma 3. The technology level set by a software monopolist increases for
higher payoff, ρ, and a falling cost, c, but is independent of the degree of
substitutability, β.

Thus, given that an OSS developer can be fairly assumed to have a lower
cost c, an OSS monopolist will provide a higher technology level than a for-
profit monopolist. Yet, if the for-profit monopolist has a the higher payoff ρ
compared to the payoff for the OSS developer, than the reverse conclusion
applies.

Comparing (6) to (7) leads to the following proposition.

Proposition 1. Given a global technology level Tt that can be expected to
remain constant, each firm i = a, b in a software duopoly sets a technology
level τ i

t for its respective software product that exceeds the technology level set
by a software monopolist, τMi

t .

Proposition 1 states that a monopolist will choose a lower technology level
compared to a software duopoly. The monopolist, in contrast to the duopoly,
does take into account the externality that a high technology level in one
software segment has on the dissemination of other software products in his
portfolio. Proposition 1 carries an important message concerning claims that
competition can be harmful in technology and research intensive industries.
If firms do indeed compete in technology then competition – moving from a
monopoly situation to a duopoly situation – enhances the technological level.

2.4 Technology shocks

We now examine how the above two settings react to an external shock in
technology. Assume that time t is divided into two time periods (1, 2) by

10

an unexpected technological shock ∆T > 0, such that T2 = T1 + ∆T , and
accordingly real technology levels of existing software are deteriorated. The
process of adjusting the technology level τ i

2 > τ i
1 of an existing software

product commands a cost f . In particular, f captures the cost of issuing a
new release of the software, development costs etc.

A software duopoly has to weight the gain from adjusting the technology
level τ i

2 > τ i
1 relative to the cost f .

If both firms stick to the old technology levels given in (6), then their
respective payoffs in period 2, only shown for firm a, are:

ḡa
2 =

ρ2(α + 2β)T1α (T1α + 2(α + β)∆T)

8c(α + β)2(T1 + ∆T)2
. (8)

Notice, that ḡa
2 is larger than the payoff from both firms adjusting,

i.e. setting the Nash equilibrium technology level. This can be seen by
inserting the technology levels given by (6) into (3) to arrive at payoffs

ga
2 = ga

1 = ρ2(α+2β)α2

8c(α+β)2
. The reason is that not adjusting the technology levels

brings the two firms (except for very large technology shocks, ∆T) closer to
the cooperative equilibrium, i.e. the real technology levels set by the mo-
nopolist. Yet, since firms behave non-cooperatively, non-adjusting is not an
equilibrium. Each firm has an incentive to defect and adjust its own tech-
nology level. Doing so, while assuming that the other firm sticks to the old
technology level τ b

1 given in (6) and using the maximising technology level
implied by (5), commands payoff:

ĝa
2 =

ρ2(α + 2β) (T1α + (α + β)∆T)2

8c(α + β)2(T1 + ∆T)2
. (9)

Then, as long as ∆ga = ĝa
2 − ḡa

2 > f , and likewise for firm b, the duopoly
will adjust to the technology shock. Inserting the values from the formula
above gives the following condition for the adjustment of a software duopoly
to a positive technological shock, ∆T :

∆gD = ∆ga = ∆gb =
ρ2(α + 2β)∆T 2

8c(T1 + ∆T)2
> f . (10)

In order for this adjustment to be feasible, we also have the necessary con-
dition that the actually realised Nash payoffs suffice to cover the costs f ,

in particular ga
2 = gb

2 = ρ2(α+2β)α2

8c(α+β)2
> f . This means that the duopoly firms

are able to pay the adjustment costs f , needed to achieve the technological
innovation of their software, out of their Nash profits.

From (10) we have the following result:

11

Lemma 4. A software duopoly will be more likely to adjust to a global tech-
nology shock, ∆T , the larger its payoff, ρ, the lower its costs c, the lower the
adjustment costs, f , and the closer the two products, β, are substitutes.

Thus an OSS duopoly, which can be assumed to have lower costs c and
adjustment (release) costs f , than a for-profit software duopoly, will more
readily (that is, more frequently) adjust to global technological developments,
and hence track global developments more closely.

Compare this to the incentives for a software monopolist. The monopolist
– considering market A only – achieves when adjusting, i.e. setting τMa

2 =
ρ(T1+∆T)

2c
from (7), payoff:

gMa
2 =

ρ2α

8c
. (11)

Not adjusting, i.e. sticking to the old technology level (τMa
2 = τMa

1 = ρT1

2c
),

commands payoff:

ḡMa
2 =

ρ2α(T1 + ∆T)T1

8c(T1 + ∆T)2
. (12)

Then, a software monopolist will adjust the technology of both software
products as long as ∆gMa = gMa

2 − ḡMa
2 > f . Setting in the values from above

gives the following condition for the adjustment of the software monopolist
to a technology shock:

∆gM = ∆gMa = ∆gMb =
ρ2α∆T 2

8c(T1 + ∆T)2
> f . (13)

Parallel to Lemma 4 we have:

Lemma 5. A software monopolist will be more likely to adjust to a global
technology shock, ∆T , the larger its payoff, ρ, the lower its costs c and the
lower the adjustment costs f are. Yet, the propensity to adjust the techno-
logical level is independent of the degree of substitutability β.

This implies that an OSS monopolist, which can be assumed to feature
both a lower c and f compared to a for-profit software monopolist can be
expected to adjust its software product more frequently, thus tracking the
global technological development more closely.

Comparing (10) and (13) a result on the willingness to adjust to tech-
nological developments under the two market scenarios can be derived. In
particular, it becomes clear that for any β > 0, ∆gD > ∆gM . Thus the soft-
ware duopoly will adjust for a wider range of f than a software monopolist.

12

Proposition 2. Given a global technology shock ∆T > 0 a software duopoly
adjusts the technology levels of its products more readily than a software mo-
nopolist.

Put differently, Proposition 2 states that for any situation where the
monopolist will react to a positive technological shock, the duopoly will also
adjust, but not vice versa.11 The difference between the two market forms in
their respective willingness to adjust to technological developments, becomes
more pronounced as β increases. Thus, as can be seen from (10) and as
stated in Lemma 4, when the two software products are closer substitutes, the
willingness of the duopoly to adjust to a technological shock increases, while
(13) is independent of β. Proposition 2 contains the intuitively compelling
insight that, in a duopoly setting, not only do firms adjust the technology
of their product in order to optimise their technology position with respect
to the outside technological development, they also adjust in anticipation of
the other firms adjusting and thus stealing their market share. This effect
matters more the closer substitutes the goods are, i.e. the closer competitors
the two firms are.

Finally from the above results we would expect to observe a higher fre-
quency of technological adjustments (new releases), for OSS markets and
for software markets that experience entry or forking. Thus such markets
will be tracking the technological development more closely, i.e. adjusting
to smaller shocks, while the monopolist stands still longer etc. The model
further suggests that in mixed markets with one competitor, a commercial
software enterprise, and the other an OSS developer, the chosen technologi-
cal level and the adjustment speed to technological shocks are higher than in
a pure commercial software duopoly but lower than in a pure OSS duopoly.
Thus, within the present framework, evaluated in terms of the technology
level and progress, the pure OSS duopoly dominates all other market struc-
tures treated in the paper.

Furthermore, assuming comprehensively that a higher technological level
and a faster adjustment to global technological developments are associated
with higher user utility, and given that increasing the number of software
firms meets no supply constraint in terms of programmer capacity, then our
model implies that users benefit from entry of an OSS developer into a soft-
ware market dominated by a monopolist. This holds for both cases: whether
the monopolist is a commercial software enterprise or an OSS developer as
well as for the case of forking and branching in OSS projects.

11This result is robust in relation to other forms of strategic interaction in the duopoly.
In particular, examining the above situation for a Stackelberg equilibrium one can show
that ∂(∆gD−∆gM)

∂β > 0 and limβ→+∞
∆gD

∆gM = +∞.

13

3 Conclusion

The paper analyses the influence of entry and competition by open source
software (OSS) on innovation and progress in software markets. The best
known example of such an event is the entry of Linux into the operating
systems market. Incumbent commercial software producers claim that the
technological progress in software will slow or even stop altogether as a conse-
quence of OSS entry into former highly concentrated (monopolistic) markets.
The empirical evidence available, although scarce, does not support this view.
On the contrary, the data we present suggests that increasing competition
in the software industry does, if anything, promote innovation. Based on
these observations we set up a model of software competition where produc-
ers compete in technology, rather than price or quantity. Within the model,
the development decision of the firms regarding how to set the technology
level of their software and the willingness to react – in terms of upgrading
their product – to outside technological advances, is examined.

We find that the move from monopoly to duopoly always increases the
technology level chosen by the enterprises. Also, the transition from a
monopoly to a duopoly will increase the willingness to adjust (the inno-
vation speed) to global technological shocks. These results hold no matter
if the incumbent firm is a commercial software producer (e.g. the entry of
an OSS firm into the market of a for-profit monopolist) or an OSS developer
(e.g. the case of forking within an ongoing OSS project). Furthermore, under
the assumption that the development and innovation costs of OSS firms are
lower than those of commercial firms, the model implies that a pure OSS
duopoly dominates in terms of technology levels and rate of innovation mo-
nopolies (either commercial or OSS), pure commercial duopolies and mixed
duopolies (e.g. one OSS firm and one for-profit firm).

To sum up, even though one might have to abandon the concepts of price
or quantity competition when examining software markets – since software
is an immaterial good that can be replicated in unlimited quantities and is
sold (by some producers) at price zero – this does not imply that competi-
tion is harmful. On the contrary, our approach shows that when one views
software producers as firms that compete in technology rather than price or
quantity, then OSS entry and competition will, via the strategic interaction
of firms, still have a fundamentally positive impact on firms, increasing their
willingness to innovate and heightening the overall technological level in the
industry. Thus competition is still good, also when the product is software.

14

Appendix

Table A1: Release history of KDE
Version Release Date
Beta 1 1997-10-20
Beta 2 1997-11-23
Beta 3 1998-02-01
Beta 4 1998-04-19

1.0 1998-07-12
1.1 1999-02-06

1.1.1 1999-05-05
1.1.2 1999-09-13
1.89 1999-12-15
1.90 2000-05-11
1.91 2000-06-14
1.92 2000-07-25
1.93 2000-08-23

OSS release* 2000-09-04
1.94 2000-09-15
2.0 2000-10-23

2.0.1 2000-12-05
2.1 2001-02-26

2.1.1 2001-03-27
2.2 2001-08-15

2.2.1 2001-09-19
2.2.2 2001-11-21
3.0 2002-04-03

3.0.1 2002-05-22
3.0.2 2002-07-02
3.0.3 2002-08-19
3.0.4 2002-10-09
3.0.5 2002-11-18
3.0.5a 2002-12-21
3.1 2003-01-28

3.1.1 2003-03-20
Source: www.kde.org

* KDE becomes open source software. The QT library – on which KDE is
based – was released under GLP on September 4th, 2000. Only since this
date can KDE be considered a proper open source program. We take this
event to constitute the actual entry of KDE into the market of GNOME,
which was OSS from the outset.

15

Table A2: Release history of GNOME

Version Release Date
0.00 1997-04-29
0.10 1997-09-09
0.20 1997-09-17
0.30 1997-09-18
0.40 1997-09-19
0.50 1997-09-20
0.60 1997-09-30
0.70 1997-10-03
0.80 1997-10-10
0.90 1997-11-04
0.10 1997-12-08
0.11 1998-01-07
0.12 1998-01-21
0.13 1998-03-10
0.20 1998-06-10
0.25 1998-08-06
0.27 1998-08-14
1.0.9 1999-07-24
1.2.0 2000-04-25

1.4.0.1 2001-03-28
2.0.0 2002-06-10
2.0.1 2002-06-17
2.0.2 2002-06-25
2.0.6 2002-08-09
2.0.8 2002-09-05
2.1.0 2002-09-28
2.0.10 2002-11-15
2.1.2 2002-11-04
2.1.3 2002-11-28
2.1.4 2002-12-10
2.1.5 2002-12-16
2.1.90 2003-01-06
2.2.0.1 2003-02-04
2.2.1 2003-03-11
2.3.0 2003-03-26

Source: www.gnome.org

16

References

Bitzer, Jürgen (2001): High-Tech with Zero Development Costs: LINUX
versus MICROSOFT, mimeo.

Bitzer, Jürgen and Philipp Schröder (2002): Bug-Fixing and Code-Writing:
The Private Provision of Open Source Software, DIW Discussion Pa-
pers, No. 296.

Bloomberg (2001): Bloomberg News, retrieved from http://news.cnet.com,
download date 15.04.2003.

Cassadesus-Masanell, Ramon and Pankaj Ghemawat (2003): Linux vs. Win-
dows: Modelling Competition between Open-Source and Closed Soft-
ware, mimeo.

Chaffin, Bryan (2001): Microsoft Sinks To New Low, in: The Mac Observer:
The Back Page, http://www.macobserver.com, May 4th, 2001, down-
load date 11.04.2003.

Chicago Sun-Times (2001): Interview with Steve Ballmer, in: Chicago Sun-
day Times, Cited in: Hildebrand, J.D.: Open source watch: Who needs
Free Software Anyway, SDTimes, http://www.sdtimes.com, July 15,
2001, download date 11.04.2003.

Dalle, Jean-Michel and Nicolas Jullien (2002): Open-Source vs. Proprietary
Software, mimeo.

Feller, J. and B. Fitzgerald (2002): Understanding Open Source Software
Development, Amsterdam: Addison Wesley Longman.

Hars, A. and S. Ou (2002), Working for Free? Motivations for Participating in
Open-Source Projects, International Journal of Electronic Commerce,
Vol. 6 (3), pp. 25-39.

Johnson, J. P. (2001), Open Source Software: Private Provision of a Public
Good, Journal of Economics and Management Strategy, Winter (2002),
volume 11, number 4, pp. 637-662.

Lerner, J. and J. Tirole (2002), Some Simple Economics of Open Source,
Journal of Industrial Economics, Vol. 50 (2), pp. 197-234.

Microsoft (2001): Microsoft PressPass Information for Journalists,
http://www.microsoft.com/presspass, download date 11.04.2003.

Raymond, E. S. (2000a): Homesteading the Noosphere, Revision 1.22,
2000/08/24, first version 1998.

Raymond, E. S. (2000b): The Cathedral and the Bazaar, Revision 1.51,
2000/08/24, first version 1997.

Rosenberg, D. K. (2000): Open Source: The Unauthorized White Papers,

17

B&T; IDG Books Worldwide.

Rotemberg, Julio J. and Garth Saloner (1987): The Relative Rigidity on
Monopoly Pricing, in: the American Economic Review, vol. 77, no. 5,
p. 917-926.

Stallman, R. (1999), The GNU Operating System and the Free Software
Movement, in: Open Sources: Voices from the Open Source Revolu-
tion, Chris DiBona, Sam Ockman, and Mark Stone (eds.), O’Reilly:
Sebastopol, CA.

Torvalds, L. and D. Diamond (2001), Just for Fun: The Story of an Acci-
dental Revolutionary, HarperBusiness.

18

