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Abstract

The goal of this work is to introduce one of the most successful among recently

developed statistical techniques – the support vector machine (SVM) – to

the field of corporate bankruptcy analysis. The main emphasis is done on

implementing SVMs for analysing predictors in the form of financial ratios.

A method is proposed of adapting SVMs to default probability estimation.

A survey of practically and commercially applied methods is given. This

work proves that support vector machines are capable of extracting useful

information from financial data although extensive data sets are required in

order to fully utilise their classification power.

JEL classification: C14; G33; C45

Keywords: Support vector machines; Company rating; Default probability

estimation



Bankruptcy Analysis Methodology

The subject of bankruptcy analysis is an old one. It is suprising that sta-

tistical technques were introduced to the field relatively late, only with the

publications of Beaver (1966) and Altman (1968). Demand from financial

institution for investment risk estimation stimulated subsequent research.

However, despite substantial interest, the accuracy of corporate default pre-

dictions was much lower than e.g. in the private loan sector largely due to

a small number of corporate bankruptcies. Nevertheless, the situation in

bankruptcy analysis is changing dramatically. This can be attributed to

• the availability of larger data sets with the median number of failing

companies exceeding 1000 (20 years ago the median was around 40

companies) that allow making statistically significant inferrences where

no conclusion could be reached before.

• the spread of computer technologies and advances in statistical learning

techniques that allow the identification of more complex data struc-

tures. Basic methods may no longer be adequate for analysing ex-

panded data sets.

• the rapidly increased demand for advanced methods of controlling and

measuring default risks in anticipation of the New Basel Capital Ac-

cord adoption (BCBS (2003)). The Accord emphasises the importance

of risk management and encourages improvements in financial institu-

tions’ risk assessment capabilities.

In order to estimate investment risks one needs to evaluate the default

probability (PD) for a company. Each company is described by a set of
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variables (predictors) x such as financial ratios and its class y = {−1, 1}, i.e.

‘successful’ or ‘bankrupt’. Initially an unknown classifier function f : x 7→ y

is estimated on a training set of companies (xi, yi), i = 1, ..., n. The training

set represents the data for companies which are known to have survived or

gone bankrupt. Finally, f is adapted to computing default probabilities (PD)

that can be uniquely translated into a company rating.

Usual predictors are financial ratios. Their importance for company anal-

ysis was realised more than a century ago. Among the first researchers apply-

ing financial ratios for bankruptcy prediction were Ramser and Foster (1931),

Fitzpatrick (1932) and Winakor and Smith (1935). However, it was not until

the publications of Beaver (1966) and Altman (1968) that the systematic

application of the statistical analysis to bankruptcy analysis began. The

methods proposed by Beaver and Altman were univariate and multivariate

discriminant analysis respectively. Altman’s linear Z-score model became a

standard for a decade to come and is still widely used today due to its sim-

plicity. However, its assumption of equal normal distributions for both failing

and successful companies with the same covariance matrix was justly criti-

cised. This approach was further developed by Deakin (1972) and Altman

et al. (1977).

Later on the centre of research shifted towards the logit/probit models.

The original works of Martin (1977) and Ohlson (1980) were followed by

Wiginton (1980), Zavgren (1983) and Zmijewski (1984). Among other sta-

tistical methods applied for bankruptcy analysis there are the gamblers ruin

model (Wilcox (1971)), option pricing theory (Merton (1974)), recursive par-

titioning (Frydman et al. (1985)), neural networks (Tam and Kiang (1992))
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and rough sets (Dimitras et al. (1999)) to name a few.

There are three main types of models used in bankruptcy analysis. The

first one is structural or parametric models (e.g. the option pricing model,

logit/probit regression, discriminant analysis). They assume that the rela-

tionship between the input and output parameters can be described in an a

priori given logical way. Besides their fixed structure these models are fully

determined by a set of parameters. The solution requires the estimation of

these parameters on a training set.

Although structural models provide a very clear interpretation of mod-

elled processes they have a rigid structure and are not flexible enough to cap-

ture the information from the data. The non-structural or non-parametric

models (e.g. neural networks or genetic algorithms) are more flexible in de-

scribing data. They do not impose very strict limitations on the classifier

function but usually do not provide a clear interpretation either.

Between the structural and non-structural models lies the class of semi-

parametric models. These models, like the RiskCalc private company rating

model developed by Moody’s, are based on an underlying structural model

but all or some predictors enter this structural model after a non-parametric

transformation. In recent years the area of research has shifted towards non-

structural and semi-parametric models since they are more flexible and better

suited for practical purposes than purely structural ones.

Statistical models for corporate default prediction have a practical im-

portance. For example, corporate bond ratings published regularly by rating

agencies such as Moody’s or S&P strictly correspond to company default

probabilities estimated to a great extent statistically. Moody’s RiskCalc
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model for private companies (Falkenstein (2000)) is based on the probit

analysis. It is basically a probit regression estimation of the cumulative

default probability over a number of years using a linear combination of non-

parametrically transformed predictors. These non-linear transformations f1,

f2, ..., fd are estimated on univariate models. As a result, the original probit

model

E[yi,t|xi,t] = Φ (β1xi1,t + β2xi2,t + ... + βdxid,t) , (1)

is converted into

E[yi,t|xi,t] = Φ{β1f1(xi1,t) + β2f2(xi2,t) + ... + βdfd(xid,t)}, (2)

where yi,t is the cumulative default probability within the prediction horizon

for company i at time t.

Although modifications of traditional methods like probit analysis extend

their applicability, it is more desirable to base our methodology on general

ideas of statistical learning theory without making many restrictive assump-

tions.

The ideal classification machine is based on the so called expected risk

minimization principle. The expected risk

R [f ] =

∫

1

2
|f(x) − y| dP (x, y) (3)

is estimated under the distribution P (x, y), which is assumed to be known.

This is, however, never true in practical applications and the distribution

should also be estimated from the training set (xi, yi), i = 1, 2, ..., n that is
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an ill-posed problem (Tikhonov and Arsenin (1977)).

In most methods applied today that can be found in any statistical pack-

age this problem is solved by implementing another principle, namely the

principle of the empirical risk minimization, i.e. risk minimization over the

training set of companies, even when the training set is not representative.

Empirical risk defined as

R̂ [f ] =
1

n

n
∑

i=1

1

2
|f(xi) − yi| (4)

is nothing else but an average value of loss over the training set, while ex-

pected risk is the expected value of loss under the true probability measure.

The loss for iid observations is given by

1

2
|f(x) − y| = 0, if classification is correct

1, if classification is wrong.

The solutions of the problems of expected and empirical risk minimization

fopt = arg min
f∈F

(R [f ]) (5)

f̂n = arg min
f∈F

(

R̂ [f ]
)

(6)

generally do not coincide although converge as n → ∞ if F is not too large.

This situation is illustrated in Figure 1. F is the set of classifier functions

available to a classification machine.

We can not minimize expected risk directly since the distribution P (x, y)

is unknown. However, according to statistical learning theory (Vapnik (1995)),
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Figure 1: The minimisation problems of expected and empirical risk generally
give different solutions.

it is possible to estimate the so called Vapnik-Chervonenkis (VC) bound that

holds with a certain probability 1 − η:

R [f ] ≤ R̂ [f ] + φ

(

h

n
,
ln(η)

n

)

. (7)

For linear indicator functions φ is given by

φ

(

h

n
,
ln(η)

n

)

=

√

h
(

ln 2n
h

)

− ln η
4

n
, (8)

where h is the VC dimension.

The VC dimension of the set of functions F in a d dimensional space is h

if a function from F can in a general case separate h objects xi, i = 1, ..., h,

in the d dimensional space in all possible ways. For x ∈ R
d and f from the

class of linear indicator functions VC dimensionality is h if xi, i = 1, ..., h,

can be separated in all 2h possible configurations and no set xi, i = 1, ..., q,

exists where q > h that satisfies this property. For example, three points on
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Figure 2: Eight possible ways of shattering 3 points on the plane with a
linear indicator function.

a plane (d = 2) can be shattered by linear indicator functions in 2h = 23 = 8

ways, whereas 4 points can not be shattered in 2q = 24 = 16 ways. Thus, the

VC dimension of the set of linear indicator functions in a two-dimensional

space is three (Figure 2).

The expression for the VC bound (7) is a regularised functional where the

VC dimension h is a parameter controlling complexity of the classifier func-

tion. The term φ
(

h
n
, ln(η)

n

)

introduces the penalty for excessive complexity of

a classifier function. There is a trade off between the number of classification

errors on the training set and the complexity of the classifier function. If

the comlexity were not controlled, it would be possible to find such a clas-

sifier function that would make no classification errors on the training set

notwithstanding how low its generalisation ability would be.

The support vector machine is a method of classification (its application

for regression will be left outside this work) that is a practical implemen-

tation of the statistical learning theory. It has already been successfully

applied to optical character recognition, early medical diagnostics, text clas-
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sification, etc. One of the economic applications where SVMs outperformed

other methods is energy load prediction (EUNITE (2001)). SVMs produce

better classification results than such a popular and widely used technique

as neural networks and, in contrast to the latter, have very attractive prop-

erties: (i) they give a single solution characterized by the global minimum of

the optimized functional and not multiple solutions associated with the local

minima as in the case of neural networks and (ii) they do not rely so heavily

on heuristics, i.e. an arbitrary choice of the model, and have a more flexible

structure.

Importance of Risk Classification in Practice

To date in most countries only a small percentage of firms is rated. The

lack of rated firms is mainly due to two factors. Firstly, external rating is

an extremely costly procedure. Secondly, until the recent past most banks

decided on their loans to small and medium sized firms (SME) without asking

for the client’s rating figure or applying an own rating procedure to estimate

the client’s default risk. At best banks based their decision on rough scoring

models. At worst the credit decision was completely left to the loan officer.

Since learning to know its own risk is costly and until recently the lending

procedure of banks failed to set the right incentives, small and medium sized

firms in particular shied away from rating. However, regulation is about

to change the environment for borrowing and lending decisions completely.

With the implementation of the New Basel Capital Accord (Basel II) sched-

uled for the end of 2006 not only firms that issue debt securities on the market

are in need of a rating but also any ordinary firm that applies for a bank
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Rating Class (S&P) One year PD (%) Risk Premia (%)

AAA 0.01 0.75
AA 0.02 – 0.04 1.00
A+ 0.05 1.50
A 0.08 1.80
A- 0.11 2.00

BBB 0.15 – 0.40 2.25
BB 0.65 – 1.95 3.50
B+ 3.20 4.75
B 7.00 6.50
B- 13.00 8.00

CCC > 13 10.00
CC 11.50
C 12.70
D 14.00

Table 1: Rating grades and risk premia.

loan. If no external rating is available, banks have to employ an internal

rating system and deduce each client’s specific risk class. Moreover, Basel II

puts pressure on firms and banks from two sides.

First, banks have to demand risk premia in accordance to the specific

borrower’s default probability. Table 1 presents an example of how the in-

dividual risk class maps into risk premiums (Damodaran (1998)). For small

US-firms a one-year default probability of 0.11% results in a spread of 2%. Of

course, the mapping used by lenders will be different if the firm type or the

country in which the bank is located changes. However, in any case future

loan pricing has to follow the basic rule. The higher the firm’s default risk

is the more risk premium the bank has to charge.

Second, Basel II requires banks to hold client-specific equity buffers. The

magnitudes of these buffers are determined by a risk weight function defined

by the Basel Committee and a solvability coefficient (8%). The function
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Rating Class One-year Capital Capital
(S&P) DP (%) Requirements Requirements

(%) (Basel I) (%) (Basel II)

AAA 0.01 8.00 0.63
AA 0.02 – 0.04 8.00 0.93 – 1.40
A+ 0.05 8.00 1.60
A 0.08 8.00 2.12
A- 0.11 8.00 2.55

BBB 0.15 – 0.40 8.00 3.05 – 5.17
BB 0.65 – 1.95 8.00 6.50 – 9.97
B+ 3.20 8.00 11.90
B 7.00 8.00 16.70
B- 13.00 8.00 22.89

CCC > 13 8.00 > 22.89
CC 8.00
C 8.00
D 8.00

Table 2: Rating grades and capital requirements.

maps default probabilities into risk weights. Table 2 illustrates the change in

the capital requirements per unit of a loan induced by switching from Basel

I to Basel II. Apart from basic risk determinants such as default probability

(PD), maturity and loss given default (LGD) the risk weights depend also

on the type of the loan (retail loan, loan to an SME, mortgages etc.) and

the annual turnover. Table 2 refers to an SME loan and assumes that the

borrower’s annual turnover is 5 million euros (BCBS (2003)). Since the lock-

in of the bank’s equity affects the provision costs of the loan it is likely that

these costs will be handed over directly to an individual borrower.

Basel II will affect any firm that is in need for external finance. As both

the risk premium and the credit costs are determined by the default risk,

the firms’ rating will have a deeper economic impact on banks as well as on
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firms themselves than ever before. Thus in the wake of Basel II the choice

of the right rating method is of crucial importance. To avoid friction of a

large magnitude the employed method must meet certain conditions. On

one hand the rating procedure must keep the amount of misclassifications

as low as possible. On the other hand it must be as simple as possible and,

if employed by the borrower, also provide some guidance to him on how to

improve his own rating.

SVMs have the potential to satisfy both demands. First, the procedure is

easy to implement so that any firm could generate its own rating information.

Second, the method is suitable for estimating a unique default probability for

each firm. Third, the rating estimation done by an SVM is transparent and

does not depend on heuristics or expert judgements. This property implies

objectivity and a high degree of robustness against user changes. Moreover,

an appropriately trained SVM enables the firm to detect the specific impact

of all rating determinants on the overall classification. This property would

enable the firm to figure out in advance to negotiations what drawbacks it has

and how to overcome its problems. Overall, SVMs employed in the internal

rating systems of banks will improve the transparency and accuracy of the

system. Both improvements may help firms and banks to adapt to the Basel

II framework more easily.

Lagrangian Formulation of the SVM

Having introduced some elements of statistical learning and demonstrated

the potential of SVMs for company rating we can now give a Lagrangian

formulation of an SVM for the linear classification problem and generalise
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Figure 3: The separating hyperplane x⊤ · w + b = 0 and margin in a non-

separable case.

this approach for a non-linear case.

In the linear case the following inequalities hold for all i = 1, 2, ..., n

points of the training set (here yi = 1 for bankrupt companies and yi = −1

for surviving companies):

x⊤
i · w + b ≥ 1 − ξi for yi = 1,

x⊤
i · w + b ≤ −1 + ξi for yi = −1,

ξi ≥ 0,

which can be combined into two constraints

yi(x
⊤
i · w + b) ≥ 1 − ξi (9)

ξi ≥ 0. (10)
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The basic idea of the SVM classification is to find such a separating hy-

perplane that corresponds to the largest possible margin between the points

of different classes (Figure 3). We also need to introduce some penalty for

misclassification. ξi is the classification error related to the distance from a

misclassified point i to the canonical hyperplane bounding its class. If ξi > 0

an error in separating two sets occurs. The parameter C characterises the

generalisation ability of the machine. The objective function corresponding

to penalised margin maximisation is formulated as

1

2
‖w‖2 + C

(

n
∑

i=1

ξi

)υ

, (11)

where υ ≥ 1 is a positive integer controlling the sensitivity of the machine to

outliers. Under such a formulation the problem is convex. The conditional

minimisation of the objective function provides the highest possible margin

in the case when classification errors are inevitable due to the linearity of the

separating hyperplane. One can show that margin maximisation reduces the

VC dimensionality.

The Lagrange functional for the primal problem for υ = 1 is

LP =
1

2
‖w‖2 + C

n
∑

i=1

ξi −

n
∑

i=1

αi{yi

(

x⊤
i · w + b

)

− 1 + ξi} −

n
∑

i=1

µiξi, (12)

where αi ≥ 0 and µi ≥ 0 are Lagrange multipliers. The primal problem is

formulated as

min
wk,b,ξi

max
αi

LP . (13)
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Then, after substituting the Karush-Kuhn-Tucker conditions (Gale et al.

(1951)) into the primal Lagrangian, we will derive the dual Lagrangian as

LD =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyjx
⊤
i · xj (14)

and the dual problem is posed as

max
αi

LD, (15)

subject to

0 ≤ αi ≤ C, (16)
n
∑

i=1

αiyi = 0. (17)

Those points i for which the equation yi(x
⊤ · w + b) ≤ 1 holds are called

support vectors. After training the support vector machine and deriving

Lagrange multipliers (they are equal to 0 for non-support vectors) one can

classify a company described by the vector of parameters x using the classi-

fication rule

g(x) = sign
(

x⊤ · w + b
)

, (18)

where w =
∑n

i=1 αiyixi, b = 1
2
(x+1 + x−1) · w and x+1, x−1 are two support

vectors for which yi(x
⊤ ·w + b) = 1 belonging to different classes. The value

of the classification function (the score of a company) can be computed as

f(x) = x⊤ · w + b (19)
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Each value of f(x) uniquely corresponds to a default probability (PD).

The SVMs can also be easily generalised for the non-linear case. It is

worth noticng that all the training vectors appear in the dual Lagrangian

formulation only as scalar products. This means that we can apply kernels

to transform all the data into a highly dimensional Hilbert feature space and

use linear algorithms there:

Ψ : R
d 7→ H (20)

If a kernel function K exists such that K(xi, xj) = Ψ(xi)
⊤ · Ψ(xj), then

we can use this kernel without knowing the transformation Ψ explicitly. A

necessary and sufficient condition for a symmetric function K(xi, xj) to be

a kernel, the Mercer’s condition (Mercer (1909)), is that it must be positive

definite, i.e. for any data set x1, ..., xn and any real numbers λ1, ..., λn the

function K must satisfy

n
∑

i=1

n
∑

j=1

λiλjK(xi, xj) ≥ 0. (21)

Some examples of kernel functions are

• K(xi, xj) = e−‖xi−xj‖/2σ2

– isotropic Gaussian kernel;

• K(xi, xj) = e−(xi−xj)
⊤a−2Σ−1(xi−xj)/2 – stationary Gaussian kernel with

an anisotropic radial basis. We will apply this kernel in our study

setting Σ equal to the covariance matrix of the training set;

• K(xi, xj) = (x⊤
i · xj + 1)P – the polynomial kernel;

• K(xi, xj) = tanh(kx⊤
i · xj − δ) – the hyperbolic tangent kernel.
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Description of Data

For our study we selected all largest bankrupt companies with the capital-

isation of no less than $1 billion that filed for protection against creditors

under Chapter 11 of the US Bankruptcy Code in 2001-2002 i.e. following

the stock marked crash in 2000 with an exception of few ones for which data

were not complete, i.e. alltogether 42 companies. They were matched with

42 surviving companies with similar capitalisations and the same US indus-

try classification codes available through the Division of Corporate Finance

of the Securities and Exchange Commission (CF SEC (2004)).

From 84 companies 28 belonged to various manufacturing industries, 20

to telecom and IT industries, 8 to energy industries, 4 to retail industries,

6 to air transportation industries, 6 to miscellaneous service industries, 6 to

food production and processing industries and 6 to construction and con-

struction material industries. For each company the following information

was collected from the annual reports for 1998-1999, i.e. 3 years prior to

defaults of bankrupt companies (SEC (2004)):

• S – sales;

• COGS – cost of goods sold;

• EBIT – earnings before interest and taxes, in most cases equal to the

operating income;

• Int – interest payments;

• NI – net income (loss);

• Cash – cash and cash equivalents;
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• Inv – inventories;

• CA – current assets;

• TA – total assets;

• CL – current liabilities;

• STD – current maturities of the long-term debt;

• TD – total debt;

• TL – total liabilities;

• bankr – bankruptcy (1 if a company went bankrupt, −1 otherwise).

The information about the industry was summarized in the following

dummy variables:

• indprod – manufacturing industries;

• indtelc – telecom and IT industries;

• indenerg – energy industries;

• indret – retail industries;

• indair – air transportation industries;

• indserv – miscellaneous service industries;

• indfood – food production and processing industries;

• indconst – construction and construction material industries.

17



Variable Min Max Mean Std. Dev.

TA 0.367 91.072 8.122 13.602
CA 0.051 10.324 1.657 1.887
CL 0.000 17.209 1.599 2.562
TL 0.115 36.437 4.880 6.537

CASH 0.000 1.714 0.192 0.333
INVENT 0.000 7.101 0.533 1.114

LTD 0.000 13.128 1.826 2.516
STD 0.000 5.015 0.198 0.641

SALES 0.036 37.120 5.016 7.141
COGS 0.028 26.381 3.486 4.771
EBIT -2.214 29.128 0.822 3.346
INT -0.137 0.966 0.144 0.185
NI -2.022 4.013 0.161 0.628

EBIT/TA -0.493 1.157 0.072 0.002
NI/TA -0.599 0.186 -0.003 0.110
EBIT/S -2.464 36.186 0.435 3.978

EBIT/INT -16.897 486.945 15.094 68.968
TD/TA 0.000 1.123 0.338 0.236
TL/TA 0.270 1.463 0.706 0.214
SIZE 12.813 18.327 15.070 1.257

QA/CL -4.003 259.814 4.209 28.433
CASH/TA 0.000 0.203 0.034 0.041
WC/TA -0.258 0.540 0.093 0.132
CA/CL 0.041 2001.963 25.729 219.568

STD/TD 0.000 0.874 0.082 0.129
S/TA 0.002 5.559 1.008 0.914

INV/COGS 0.000 252.687 3.253 27.555

Table 3: Descriptive statistics for the companies. All data except SIZE and
ratios are given in billions of dollars. SIZE = ln(TA)
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Basing on these financial indicators the following four groups of financial

ratios were constructed and used in our study:

• profit measures: EBIT/TA, NI/TA, EBIT/S;

• leverage ratios: EBIT/Int, TD/TA, TL/TA;

• liquidity ratios: QA/CL, Cash/TA, WC/TA, CA/CL and STD/TD,

where QA is quick assets and WC is working capital;

• activity or turnover ratios: S/TA, Inv/COGS.

Computational Results

The most significant predictors suggested by the discriminant analysis belong

to profit and leverage ratios. To demonstrate the ability of an SVM to extract

information from the data, we will chose two ratios from these groups: NI/TA

from the profitability ratios and TL/TA from the leverage ratios. The SVMs,

besides their Lagrangian formulation, can differ in two aspects: (i) their

capacity that is controlled by the coefficient C in (12) and (ii) the complexity

of classifier functions controlled in our case by the anisotropic radial basis in

the Gaussian kernel transformation.

Triangulares and quadrangles in Figures 4–7 represent successful and fail-

ing companies from the training set. The intensity of the gray background

corresponds to different score values f . The darker the area, the higher the

score and the greater the probability of default. Most successful companies

lying in the bright area have positive profitability and a reasonable leverage

TL/TA of around 0.4 that makes economic sense.
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Figure 4 represents the classification results for an SVM using locally

near linear classifier functions (the anisotropic radial basis is 100Σ1/2) with

the capacity fixed at C = 1. The discriminating rule in this case can be

approximated as a linear combination of predictors and is similar to that

suggested by discriminant analysis although the coefficients of the predictors

may be different.

If the complexity of classifying functions increases (the radial basis goes

down to 2Σ1/2) as illustrated in Figure 5, we get a more detailed picture.

Now the areas of successful and failing companies become localised. If the

radial basis is decreased further down to 0.5Σ1/2 (Figure 6), the SVM will

try to track each observation. The complexity in this case is too high for the

given dataset.

Figure 7 demonstrates the effects of high capacities (C = 300) on the

classification results. As capacity is growing, the SVM localises only one

cluster of successful companies. The area outside this cluster is associated

with approximately equally high score values.

Thus, besides estimating the scores for companies the SVM also managed

to learn that there always exists a cluster of successful companies, while the

cluster for bankrupt companies vanishes when the capacity is high, i.e. a

company must possess certain characteristics in order to be successful and

failing companies can be located elsewhere. This result was obtained without

using any additional knowledge besides that contained in the training set.

The calibration of the model or estimation of the mapping f 7→ PD can

be illustrated by the following example (the SVM with the radial basis 2Σ1/2

and capacity C = 1 will be applied). We can set three rating grades: safe,
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Figure 4: Rating of companies in two dimensions. The case of a low complex-
ity of classifier functions (locally near linear functions are used, the radial
basis is 100Σ1/2). The capacity is fixed at C = 1.
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Figure 5: Rating of companies in two dimensions. The case of an average
complexity of classifier functions, the radial basis is 2Σ1/2. The capacity is
fixed at C = 1.
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Figure 6: Rating of companies in two dimensions. The case of an exces-
sively high complexity of classifier functions, the radial basis is 0.5Σ1/2. The
capacity is fixed at C = 1.
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Figure 7: Rating of companies in two dimensions. The case of a high capacity
(C = 300). The radial basis is fixed at 2Σ1/2.
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Figure 8: Power curve for the data set. An SVM is applied with the radial
basis 2Σ1/2 and capacity C = 1.
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neutral and risky which correspond to the values of the score f < −0.0115,

−0.0115 < f < 0.0115 and f > 0.0115 respectively and calculate the total

number of companies and the number of failing companies in each of the

three groups. If the training set were representative of the whole population

of companies, the ratio of failing to all companies in a group would give the

estimated probability of default. Figure 8 shows the cumulative number of

defaults as a function of the score. For the abovementioned three rating

grades we derive PDsafe = 0.24, PDneutral = 0.50 and PDrisky = 0.76.

If a sufficient number of observations is available, the model can also

be calibrated for finer rating grades such as AAA or BB by adjusting the

score values separating the groups of companies so that the estimated default

probabilities within each group equal to those of the corresponding rating

grades. Note, that we are calibrating the model on the grid deternined by

gradf = 0 or grad ˆPD = 0 and not on the orthogonal grid as in the Moody’s

RiskCalc model. In other words, we do not make a restrictive assumption

of an independent influence of predictors as in the latter model. This can

be important since, for example, the same decrease in profitability will have

different consequences for high and low leveraged firms.

For multidimensional classification the results can not be easily visualised.

In this case we will use the cross-validation technique to compute the percent-

age of correct classifications and compare it with that for the discriminant

analysis (DA). Note that both most widely used methods – the discriminant

analysis and logit regression – choose only one significant at the 5% level

predictor NI/TA when forward selection is used. Cross-validation has the

following stages. One company is taken out of the sample and the SVM
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trained on the remaining companies. Then the class of the out-of-the-sample

company is evaluated by the SVM. This procedure is repeated for all the

companies and the percentage of correct classifications calculated.

The percentage of correctly cross-validated companies (all available ra-

tios were used as predictors) is higher for the SVM than for discriminant

analysis (62% vs. 60%). However, the difference is not significant at the

5% level. This indicates that the linear function might be considered as an

optimal classifier for the number of observations in the data set we have. As

for the direction vector of the separating hyperplane, it can be estimated

differently by the SVM and DA without affecting much the accuracy since

the correlation of underlying predictors is high.

Cluster center locations as they were estimated using cluster analysis are

presented in Table 4. The results of the cluster analysis indicate that two

clusters are likely to correspond to successful and failing companies. Note

the substantial differences in the interest coverage ratios, NI/TA, EBIT/TA

and TL/TA between the clusters.

Conclusion

As we have shown SVMs are capable of extracting information from the

real life economic data sets. Moreover, they give an opportunity to obtain

the results not very obvious at first glance. They are easily adjusted with

only few parameters that makes them particularly well suited as the core

technique for a company rating methodology which can be regularly applied

for estimating investment risks by financial institutions.

Further on, SVMs are based on very few restrictive assumptions and can
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Cluster {-1} {1}

EBIT/TA 0.263 0.015
NI/TA 0.078 -0.027
EBIT/S 0.313 -0.040

EBIT/INT 13.223 1.012
TD/TA 0.200 0.379
TL/TA 0.549 0.752
SIZE 15.104 15.059

QA/CL 1.108 1.361
CASH/TA 0.047 0.030
WC/TA 0.126 0.083
CA/CL 1.879 1.813

STD/TD 0.144 0.061
S/TA 1.178 0.959

INV/COGS 0.173 0.155

Table 4: Cluster centre locations. There are 19 members in class {-1} –
successful companies and 65 members in class {1} – failing companies.

reveal effects overlooked by many other methods. They have been able to

produce accurate classification results in other areas and can become an op-

tion of choice for company rating. However, in order to create a practically

valuable methodology one needs to combine an SVM with an extensive data

set of companies and possibly turn to alternative formulations of SVMs more

suited for processing large data sets. Overall, we have a valuable tool for com-

pany rating that can answer the requirements of the new capital regulations.

References

E. Altman (1968): Financial ratios, discriminant analysis and the prediction

of corporate bankruptcy, The Journal of Finance, pp. 589–609.

E. Altman, R. Haldeman and P. Narayanan (1977): Zeta analysis: a

27



new model to identify bankruptcy risk of corporations, Journal of Banking

and Finance, pp. 29–54.

BCBS (2003): Basel Committee on Banking Supervision:

the New Basel Capital Accord, third consultative paper,

http://www.bis.org/bcbs/cp3full.pdf.

W. Beaver (1966): Financial ratios as predictors of failures. empirical re-

search in accounting: Selected studies, Journal of Accounting Research,

pp. 71–111, supplement to vol. 5.

CF SEC (2004): Division of Corporate Finance of the Securities and Ex-

change Commission: Standard industrial classification (SIC) code list,

http://www.sec.gov/info/edgar/siccodes.htm.

A. Damodaran (1998): Appled Corporate Finance: A User’s Manual, John

Wiley & Sons, New York, NY.

E. Deakin (1972): A discriminant analysis of predictors of business failure,

Journal of Accounting Research, pp. 167–179.

A. Dimitras, R. Slowinski, R. Susmaga and C. Zopounidis (1999):

Business failure prediction using rough sets, European Journal of Opera-

tional Research, pp. 263–280.

EUNITE (2001): Electricity load forecast competition of the EUro-

pean Network on Intelligent TEchnologies for Smart Adaptive Systems,

http://neuron.tuke.sk/competition/.

E. Falkenstein (2000): Riskcalc for private companies: Moody’s default

model.

28



P. Fitzpatrick (1932): A comparison of the ratios of successful industrial

enterprises with those of failed companies.

H. Frydman, E. Altman and D.-L. Kao (1985): Introducing recursive

partitioning for financial classification: The case of financial distress, The

Journal of Finance, vol. 40, 269–291.

D. Gale, H. W. Kuhn and A. W. Tucker (1951): Linear Programming and

the Theory of Games, in Activity Analysis of Production and Allocation,

T. C. Koopmans (ed.), John Wiley & Sons, New York, NY.

D. Martin (1977): Early warning of bank failure: A logit regression ap-

proach, Journal of Banking and Finance, pp. 249–276.

J. Mercer (1909): Functions of positive and negative type and their con-

nection with the theory of integral equations, Philosophical Transactions

of the Royal Society of London, vol. 209, 415–446.

R. Merton (1974): On the pricing of corporate debt: The risk structure of

interest rates, The Journal of Finance, vol. 29, 449–470.

J. Ohlson (1980): Financial ratios and the probabilistic prediction of

bankruptcy, Journal of Accounting Research, pp. 109–131.

J. Ramser and L. Foster (1931): A demonstration of ratio analysis. bul-

letin no. 40.

SEC (2004): Securities and Exchange Commission: Archive of historical

documents, http://www.sec.gov/cgi-bin/srch-edgar.

29



K. Tam and M. Kiang (1992): Managerial application of neural networks:

the case of bank failure prediction, Management Science, vol. 38, 926–947.

A. N. Tikhonov and V. Y. Arsenin (1977): Solution of Ill-posed Problems,

W. H. Winston, Washington, DC.

V. Vapnik (1995): The Nature of Statistical Learning Theory, Springer, New

York.

J. Wiginton (1980): A note on the comparison of logit and discriminant

models of consumer credit behaviour, Journal of Financial and Quantita-

tive Analysis, vol. 15, 757–770.

A. Wilcox (1971): A simple theory of financial ratios as predictors of failure,

Journal of Accounting Research, pp. 389–395.

A. Winakor and R. Smith (1935): Changes in the financial structure of

unsuccessful industrial corporations. bulletin no. 51.

C. Zavgren (1983): The prediction of corporate failure: The state of the

art, Journal of Accounting Literature, pp. 1–38.

M. Zmijewski (1984): Methodological issues related to the estimation of fi-

nancial distress prediction models, Journal of Accounting Research, vol. 20,

59–82.

30


