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Abstraft: When scheduling its audit-staff, the management of an auditing firm encompasses a number 
of different decisions which differ markedly in terms of organizational echelon involved, length of the 
planning horizon and the planning periods, degree of aggregation of the audit tasks, degree of detail of 
the required information, and decision objective. We outline an hierarchical planning approach for the 
audit-staff scheduling problem and demonstrate how the first level can be expressed in terms of the 
MlRCPSP, which has been presented in Part I of this paper. For solving this problem, we also 
demonstrate how the Solution approach RAMSES, also presented in Part I of this paper, can be adapted 
to it. We provide a number of different priority rules which can be employed alternatively. The results 
of an extensive computational study indicate that RAMSES is capable of producing "good" solutions in 
neglectable amounts of time. 

Kevwords: PROTECT MANAGEMENT / SCHEDULING; RESOURCE CONSTRAINTS; 
PRECEDENCE / TEMPORAL CONSTRAINTS; MODE IDENTITY CONSTRAINTS; REGRET-
BASED BIASED RANDOM SAMPLING; AUDIT-STAFF SCHEDULING 

1. Introduction 

In Part I of this paper we presented a general time- and resource-constrained project schedul­

ing problem with mode identity constraints, together with a general parallel randomized Solu­

tion approach. In Part II we will show how to use these concepts for specific real-world 

scheduling problems by giving an example from the auditing environment. 

When scheduling its audit-staff, the management of an auditing firm encompasses a number 

of different decisions. These decisions may be grouped into several categories which differ 

markedly in terms of organizational echelon involved, length of the planning horizon and the 

planning periods, degree of aggregation of the audit tasks, degree of detail of the required in­

formation, and decision objective. 

Traditional audit-staff scheduling models (Balachandran and Zöllners 1981, Chan and Dodin 

1986, Drexl 1990 and 1991, Dodin and Chan 1991) are single-level models which try to con-

struct a direct assignment of auditors to tasks and periods. To facilitate algorithmic treatment, 

all these models are more or less gross simplifications of practical planning situations. In con-

trast, the above observations led us to conduct a survey among the 200 biggest certified public 

accountant (CPA) firms in Germany. Based upon its findings we formulated an hierarchical 

modelling framework (Salewski and Drexl 1993, Salewski 1995) comprising three levels, viz. 

a medium-term (tactical), a medium-to-short-term (tactical-operational), and a short-term 

(operational) level: 

The tactical planning assigns teams of auditors to the engagements. It constructs a 

schedule by determining the workload per auditor and week over a planning horizon 

of between three and twelve months. 

The tactical-operational planning disaggregates the results of the tactical level for one 

week and all auditors. The outcome is a schedule for each auditor that Covers - on the 

basis of periods of four hours - all engagements in which he is involved in the con-

sidered week. 
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The operational planning is based upon the results of the tactical-operational level for 

one week and one engagement. It assigns the auditors involved in the auditing of that 

engagement to the corresponding audit tasks and schedules these tasks. This is done 

for a period length of one hour. 

In Part II of this paper we will focus on the first level of the approach. Section 2 briefly out-

lines the corresponding problem setting and provides a mathematical formalization (in terms 

of the MIRCPSP) while Section 3 establishes its Classification and its complexity status. In 

Section 4 we demonstrate how RAMSES can be adapted to this specific problem and provide a 

number of alternative priority rules. Section 5 outlines the design of a problem specific in-

stance generator and defines the Statistical model, the experimental design, and the Performan­

ce measures used in an extensive computational study whose results are covered in Section 6. 

Finally, Section 7 provides a brief summary of Part II of this paper, along with our conclu-

sions. 

2. Formulation of the Medium-Term Audit-Staff Scheduling Problem Using Mode 

Identity Constraints 

The Mfidium-Term Audit-Staff Scheduling Eroblem (MASSP) may be characterized by the fol-

lowing assumptions: 

A firm employs one or more auditors, which have to audit one or more engagements 

within a given planning horizon of normally 13,26, or 52 weeks. 

Each engagement is made up of one or more phases, e.g. preliminary, intermediate, and 

final audit, which in tum can be decomposed into one or more subphases. Some sub-

phases may not be executed before the completion of certain other subphases 

(predecessors). More exact: the phases of each engagement as well as the subphases of 

each phase must be processed in a strictly linear order which implies that each subphase 

except of the first subphase of the first phase of each engagement possesses exactly one 

predecessor. 

Work on some phases may not commence before a specific release time, as well as it is to 

be completed by a certain deadline. 

The availability of some auditors may be restricted in certain periods, e.g. due to holidays 

or vacations. 

For some periods a dient may want to confine the time during which the auditing takes 

place (maximum processing time), e.g. due to vacation periods or stock-taking activities. 

Often an engagement could be audited by several alternative audit teams (modes). 

Different team compositions will result in different auditor processing times. Usually 

some modes will be preferable to others: Factors influencing the suitability of an auditor 

for a specific engagement are e.g. qualification level, industry experience, familiarity with 

the clients business, and degree of difficulty of the audit tasks. The preferability of a 
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mode as a whole may e.g. be linked to the total processing time needed (Drexl 1990). 

Hence, a preference value will be assigned to each mode. 

Between subsequent subphases (which thus belong to the same engagement), mode-

dependent minimum and maximum time-lags are given. 

Table 1 

Problem Parameters of the MASSP 

Problem Definition 
Parameter 

A Number of auditors 

a Specific auditor, a = 1 ,...,A 

bum Preference value corresponding to the processing of engagement u in mode m 

Cat Capacity of auditor a in period t 

Dut Maximum processing time of engagement u in period t 

8Up Deadline of phase (u,p) 

kUpsma Time auditor a needs to process subphase (u,p,s) in mode m (capacity usage) 

Release time of phase (u,p) 

Mu Number of modes of engagement u 

m Specific mode, m = 1,...,MU 

Pu Number of phases of engagement u 

p Specific phase, p = 1,...,PU 

Qup's'psm Minimum (finish-to-start) time-lag between subsequent subphases (u,p',s') and (u,p,s) 
when executing u in mode m 

q, , . _ Maximum (finish-to-start) time-lag between subsequent subphases (u,p',s') and (u,p,s) " up s psm ... 
when executing u in mode m 

SUp Number of subphases of phase (u,p). W.l.o.g. each subphase has a duration of one period. 

s Specific subphase, s = l,...,SUp 

T Number of periods 

t Specific period, t = 1,...,T 

U Number of engagements 

u Specific engagement, u = 1,...,U 

Vups Set of all immediate predecessors of subphase (u,p,s) 

The objective is to assign the overall best-suited teams to the engagements (mode 

assignment), and to determine when the individual subphases are to be executed (subphase 

scheduling). 
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The definitions and the notation used in the following are summarized (in alphabetical order) 

in Table 1. W.l.o.g. T, A, U, as well as all Mu, Pu, SUp, and 5up are assumed to be positive 

integers, while all other problem parameters are assumed to be nonnegative integers. 

To simplify the mathematical formulation of the problem, we perform some preliminary com-

putations. First, the indices u, p, s are replaced by 

u-1 Pu' P~1 
j = g(u,p,s)= % £su-p- + Isup. +s (1) 

u'=lp'=l p'=l 

Thus, the parameters Vups> Au p's'psm» Qup's'psm » an<^ ^upsma become Vj, qj'jm' and 

kjma-

Then, let denote/u = g(u,l,l) the first and /u = g(u,Pu,Supu) the last subphase of each engage­

ment u (1 <u<U). 

Further, the maximum lags qj'jmcan be transformed into minimum lags qjj-m (with a corre­

sponding update of Vj) (cf. Bartusch, Möhring, and Radermacher 1988), and from the time-

lags, the release times, and the deadlines earliest and latest finish times EFj and LFj can be 

computed, respectively. 

Table 2 summarizes the derived parameters of the MASSP (in alphabetical order). 

Table 2 

Derived Parameters of the MASSP 

Derived Definition 
Parameter 

EFj Earliest finishing time of activity j 

/u First subphase of engagement u (1 < u < U) 

/u Last subphase of engagement u (1 < u < U) 

LFj Latest finishing time of activity j 

After these transformations, let us consider for a moment the above assumptions. The presen-

ce of minimum and (transformed) maximum time-lags between subsequent subphases, along 

with their special sequence, which arises from the above mentioned decomposition process, 

imply for each engagement a "chain structure" of the time lags as illustrated in Figure 1, where 
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each entry has the format u,p,s (here we briefly return to the former notation to emphasize the 

engagement decomposition). Each structure may be seen as being composed of arc-disjoint 

cycles of length 2, one between first and second subphase, one between second and third one, 

and so forth up to the last cycle between last but one and last subphase. With respect to the 

Classification scheme introduced in Part I, the temporal relation can be characterized as cyclic, 

arbitrarily-valued, and isolating. 

Figure 1 

"Chain Structure" ofTime Lags 

i , 
1.1.11 11.1.21 11,2,11 11.2.21 11,2,3 I 

K ^ 

• -- , 
12,1,11 12.1.21 12.1,3] 12,2.1 i gÜ 

13.1.11 13.1.2 i i! 3.2.11 
/ 

Now the assignment of subphases to modes and periods can be represented by binary variables 
xjmt defined as 

{1, if subphase j is performed in mode m and completed in period t 

0, otherwise 

This allows to formulate a binary program - using the general framework given in Pritsker, 

Watters, and Wolfe (1969) - as follows: 

U Mu LFfü 
Maximize Z(x) = £ £ bum 2 x/umt (3) 

u=l m=l t=EIyu 
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subject to 

Mu LF/u 
I OS» SU) (4) 

m=l t=ER /u 

LF/u LFj 
£ %mt= Z *jmt (läuSU;/u+läjä/u;lSm<Mu)(5) 

t=EF/u t=EFj 

Mu LFj' Mu 
5 

I Ec+qj jm) xj'mt I« 
m=l t=EFj> m=l t=EFj 

U Mu kx 

E X Xkjma Xjmt - C-at 
u=l m=l j=/u 

(1 < a< A; 1 < t <T) (7) 

;e|EFj,...,LFj| 

Mu Zu 
% % ̂ jma xjmt - ̂ ut (1 < u < U; 1 < a < A; 1 < t < T) (8) 

m=l j=/u 

te|EFj,...,LFj| 

Xjmte {0,1} (1 < u < U;/u < j < Zu; 1 < m < Mu; EFj < t < LFj) (9) 

The objective function (3) maximizes the total team preference over all engagements. Due to 

(4), it suffices to include only one subphase of each engagement in (3). The choice of the first 

one is arbitrary. The subphase completion constraints (4) stipulate that the first subphase of 

each engagement is completed exactly once in one of its modes. The mode identity constraints 

(5) guarantee for each engagement that if the first subphase is completed then the other sub­

phases will be completed as well, and in the same mode as the first one. Thus, (4) and (5) 

combine to ensure that all subphases of each engagement will be processed in the same mode, 

and that all of them will be completed. The temporal constraints (6) represent the precedence 

order on the subphases and enforce respection of the time-lags between them. The auditor 

capacity constraints (7) assure that for no auditor his per-period workload exceeds his capac-

ity. In this regard, each auditor is treated as a renewable resource. The engagement capacity 

constraints (8) guarantee that for no engagement and no auditor the maximum per-period 

processing time is exceeded. In this regard, each engagement is treated as a renewable 

resource. 



3. Classification and Complexity Status 

This section provides two important theoretical insights. First, a Classification of the MASSP is 
given by the following theorem. 

Theorem 1 The MASSP is a special case of the MIRCPSP. 

Proof: The MIRCPSP can be restricted to the MASSP as shown in Table 3. • 

Table 3 

Restriction of the MIRCPSP to the MASSP 

Parameter of the 
MIRCPSP 

Restricted to 

"um 

Jm 

K, 

kv 
jmn 

K rt 

kP 
jmr 

j 

N 

qj'jm'm 

R 

= max {bu'm> ll<u'<UAl<m'< Mu>} - bum 

= 1 

_ j 5up- if (3ue{l,...,ü})(3pe{l,...,Pu})(j = g(u,p,SUp)) 
[ T, otherwise 

undefined, since N = 0 

undefined, since N = 0 

_ f Crt> if r < A 

~ [ D(r -1) div A,t' otherwise 

kjm(l+(r-l) mod A)> if (r < A) v (j e div A > • • > '(r-l) div A }) 

0, otherwise 

_ f A,up, if (3ue{l,...,U})(3pe{l,...,Pu}) (j = g(u,p,l)) 
| 0, otherwise 

= 0 

fqj'jm" ifm' = m 

[ undefined, otherwise 

= (U + 1) A 

Noting that EFj-djm equals ESj, the transformations of (3) - (6) and (9) into constraints of the 

MIRCPSP are mostly obvious; however, some additional explanations for the ones of (7) and 

(8) seem in place. As indicated above, each auditor a (1 ^ a < A) corresponds to a resource r 
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(1 < r < A). However, due to the fact that (8) restricts the processing time for each auditor-

engagement combination, a similar summation over all U engagements is not possible. Hence, 

we introduce artificial resources, treating each combination of an engagement and an auditor 

as a separate resource. Accordingly, each engagement u (1 < u < U) corresponds to resources r 

(u-A+1 < r < (u+l)A). Finally, note that for the MASSP the summation over q = t,...,t+djm-l 

(cf. (6) in Part I of the paper) is redundant since djm = 1 (fu < j < Zu; 1 < m < Mu). 

Second, we show the MASSP to belong to the class of strongly NP-hard problems by proving 

the corresponding feasibility problem MASSPfeas to be strongly NP-complete. (We assume the 

reader to be familiar with the issues of complexity theory. For introductory texts on this 

subject cf. Garey and Johnson 1979; Papadimitriou and Steiglitz 1982; Papadimitriou 1994.) 

Note that in order to do so, we have to assume for each instance that T is polynomially 

boundable in the instance length. On the formal level, this assumption is necessary since 

otherwise the MASSP is only solvable in exponential time. On the practica! level, though, this 

assumption does not restrict the practica! relevance of the MASSP as the results of our survey 

indicate that staff scheduling is always done for a fixed planning horizon (at most 52 weeks), 

and any fixed value of T is clearly polynomially boundable. (For a more detailled discussion 

cf. Schirmer 1996a and 1996b.) 

Theorem 2 The MASSPfcas is strongly NP-complete. 

Proof: 

(i) (MASSPfeas e NP) Using M to abbreviate max {Mu( 1 < u < U}, the length of an 

instance I of the MASSP^eas is LNGgYß(T) ~ 0(A J M T log MAXSTDO)- A certificate C 

of the MASSPfeas consists of one value for each of the J M T decision variables; due to 

their binarity MAXSTD(Q = 1 and thus LNGSTD(Q = JMT(log(l)+l) = JMT. 

Therefore, reading a certificate has a time complexity of O(J M T) which is polynomial 

in the input length. Evaluating the constraints will require 0(A JMT) additions and 

multiplications; assuming that each Operation takes constant time, the time complexity 

of the total evaluation is 0(A J M T) as well. So, any certificate can be read and verified 

in polynomial time, hence MASSPfeas is element of NP. 

(ii) (MiRCPSPfeas ocp MASSPfeas) Due to Theorem 2 (of Part I of this paper), MlRCPSPfeas is 

strongly NP-complete. Due to Theorem 1, MiRCPSP^eas can be pseudo-polynomially 

transformed to MASSPfeas. • 

Corollary 1 The MASSP is strongly NP-hard. 

Actually, one can even show a stronger result, namely that the MASSP is strongly NP-

equivalent. The general idea of such proofs is to exhibit pseudo-polynomial reductions from 
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MASSPfeas to MASSP and vice versa. Details of appropriate simplified proof techniques are 

described in Garey and Johnson (1979) and Schirmer (1995). 

4. Algorithmic Scheine and Priority Rules 

We now demonstrate how RAMSES can be adapted to the MASSP. Again, the first stage assigns 

one mode to each subphase while the scheduling of the subphases is done in the second stage. 

In fact, the algorithmic scheme described in Part I can be used without modifications. 

We describe a number of priority rules for both stages which may be used altematively. To-

gether with the corresponding algorithmic scheme, each combination (üO,7C,p) of priority rules 

defines one specific algorithm for the MASSP. 

4.1 Priority Rules for Mode Assigning (Stage 1) 

Since the mode assignment is done in two steps, i.e. selection of an engagement and selection 

of an appropriate mode, we introduce the priority rules following this sequence. Let denote EE 

the set of all eligible engagements, i.e. engagements to which no mode has been assigned yet. 

4.1.1 Engagement Selection 

Two rules will be described in the sequel. 

- PRS. Pure Random Selection 

This (static) rule accords to all engagements the same preference value, thus giving all of 

them the same probability of being selected: 

(Du = 1 (usEE) (10) 

- MIN TRU MAX PRF. Minimum Total Resource Usage Maximum Preference 

This (static) rule prefers those engagements where in the most preferred mode the demand 

for auditor capacities is small. 

Let for each eligible engagement u denote m™0* the most preferred mode, i.e. the mode m 

with the highest preference value bum. Ties are broken by selecting the mode with the 

smaller total capacity demand, if possible; arbitrarily otherwise. 

Let further denote AEum the set of all auditors actually participating in the processing of 

engagement u, which can be derived from 
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AE„m=(a' (ue££; 1 <m SMU) (11) 

j=/u 

Also, let denote TRUum the total capacity usage incurred by processing engagement u in 

mode m, i.e. 

*u 
TRUum = X X kjma (neEE> ^m^Mu) <12) 

j=/u aeAEum 

and TRU7"«* the maximum resource usage TRUummajc of all currently eligible 

engagements when processing them in their most preferred mode: 

TRUmax _ max {TRUummfl* I ueEE} (13) 

Then the priority value can be computed as 

©u = TRVmax - TRUum«^ (ue EE) (14) 

4.1.2 Mode Selection 

Let in the following denote u the engagement under consideration, which has been selected 

before. 

- MAX FRF. Maximum Preference 

This (static) rule uses generalized opportunity costs, reflecting the effect of the considered 

mode assignment on the objective function value. For the engagement u under consideration, 

let denote b™in the preference value of the least preferred mode: 

b™in = min {bum 11 < m < Mu} (15) 

In order to maximize the objective function (3), the priority values 7Cm are calculated as the 

maximum possible deterioration of the objective function value that could arise from not 

processing engagement u in mode m: 

TCm — bum " ̂ u (1 < m < Mu) (16) 

MAX PRC. Maximum Preference Remaining Capacity 

This (dynamic) rule tends - as well as MAX PRF - to select modes having a high preference 

value. Based upon the total capacity of an auditor a, computed as the sum of all his period 
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capacities Cat, the maximum feasible demand TCA^ for auditor a within the planning hori-

zon is calculated by multiplying his total capacity by a "safety factor" SF: 

T 
TCAa = SF £cat (1 < a < A) (17) 

t=l 

Relying on the results of preliminary testing, SF was set to 0.95. Due to (17), only modes 

will be considered for selection where the remaining capacity RCAa of each involved 

auditor a, computed as the difference between TCAa and the capacity demands ineurred by 

the mode assignments established so far, is not exceeded. (If no mode has a sufficient 

remaining capacity, an artificial mode is selected where all capacity demands equal zero. 

This reflects the practical Situation where certain engagements have to be rejected due to 

insufficient resource availabilities.) 

Let denote u1 (1 < u1 < U) an arbitrary engagement and m' the corresponding mode which has 

already been assigned. Then the remaining capacity RCAa of auditor a can be derived from 

U Zu-
RCAa=TCAa-X Xkjm'a (l<a<A)(18) 

u =1 j=/u' 
u'tEE 

and the priority values are calculated as 

7Cm — 

Zu 
^um -if (Va e A£^m) RCAa >: X^jma 

j=/u 

-e, otherwise 

(l^m<Mu) (19) 

If a mode m is to be excluded from being selected because of insufficient resource 
availabilities, we let TCm= -e . In the case of ß * 0 then rcm= 0 and thus itm= 0 hold, in the 

case of ß = 0 we set 7Cjn= 0. 

- MAX RCP. Maximum Remaining Capacity 

This (dynamic) rule accords the highest priority values to those modes whose assigning lea-

ves the highest average remaining capacity to the involved auditors. Again, only modes are 

considered where the remaining capacity RCAa of no involved auditor a is exceeded. (In the 

case of insufficient remaining capacities the proeeeding is as described above.) 

Let denote RCEm the average remaining capacity of the involved auditors after mode m has 

been assigned to engagement u: 
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RCEjn - - (1< m < Mu) (20) 
v aeA^ujjj j—/u ä£AEum 

0, otherwise 

Now the priority values can be computed as 

TCm - ' 
RCEm, if(VaeA£um)RCAa> Xkjma 

j=/u 

-e, otherwise 

(l<m<Mu)(21) 

In the case of ß = 0 and 7tm = -e, we set 7im= 0 (as done for MAX PRC, above). 

4.2 Priority Rulesfor Subphase Scheduling (Stage 2) 

For the subphase scheduling, we distinguish between precedence-based, critical-path-based, 

and resource-based priority rules. Let in the sequel for each engagement u denote m the mode 

assigned to u and EJ the set of all eligible subphases, i.e. those subphases which could be 

scheduled in the current period without violating any of the restrictions. 

4.2.1 Precedence-Based Rule 

Rules of this type determine priority values according to criteria which are related to the 

precedence relations between the subphases. Only one rule of this type is used here. 

- MTS. Most Total Successors 

This (static) rule (cf. Alvarez-Valdes and Tamarit 1989) ranks the subphases according to 

their number of successors. The idea is to schedule first the subphases on whom the most 

successors are waiting, because delaying such a subphase would also delay all its successors. 

Let for each subphase j denote Sj the set of all its - direct as well as indirect - successors. 

Then the priorities are determined from 

p j -1 Sj I (je ET) (22) 

4.2.2 Critical-Path-Based Rules 

These (static) rules (cf. Alvarez-Valdes and Tamarit 1989) refer to the results of the critical-

path analysis (cf. e.g. Levy, Thompson, and Wiest 1963). 
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- MIN EFT. Minimum Earliest Finishing Time 

This rule prefers subphases with small earliest finishing times, in order to get them "out of 

the way" early. Now, instead of EFj and LFj the more exact values EFjm and LFjm can be 

used since the mode assignment has already taken place in the first stage (cp. Section 4.2 of 

Part I). In order to assign high priorities to subphases with small values of EFjm, the priori-

ties are computed as 

Pj=T-EFjm (je£/)(23) 

- MIN LFT. Minimum Latest Finishing Time 

The latest finishing time of a subphase yields a measure of its urgency, because its proces­

sing must be completed by this date. Thus, MIN LFT tries to schedule urgent subphases first. 

Pj=T-LFjm (je£/)(24) 

- MIN SLK. Minimum Slack 

The slack of a subphase is the interval between its earliest and its latest finishing time. This 

rule prefers subphases with a small slack since these are most critical with respect to delays. 

Pj = T - (LFjm - EFjm) (je EJ) (25) 

4.2.3 Resource-Based Rules 

These rules prioritize the eligible subphases j in terms of either their resource usage, the 

scarcity of the resources they use (e.g. the resource "auditor"), or a combination of both. 

Let for each j denote AJj the set of all auditors involved in processing j in mode m, i.e. 

AJj = {all<a<AA kjma > 0} (je&/)(26) 

Further, let denote RUJj the total capacity usage incurred by the processing of j in mode m, 

i.e. 

RUJj = £kjma (je ET) (27) 

aeA/j 

and RUJmax the maximum of the resource usages RUJj of all currently eligible subphases: 

RUJmax = max {RUJj I je EJ} (28) 
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Finally let for each eligible subphase j denote RCJj the total remaining capacity over all 

assigned auditors 

RCJj = ]£RCat (je ET) (29) 

aeA/j 

where RCaj denotes the remaining capacity of auditor a in period t, considering the mode 

assignments already made in stage 1. 

- MAX TRU. Maximum Total Resource Usage 

This (static) rule (cp. the rule GRES in Kurtulus, Davis 1982 and Kurtulus, Narula 1985, as 

well as GRD in Davis, Patterson 1975 for the case of nonrenewable resources) prefers those 

subphases whose processing will use large amounts of the auditor capacities. 

Pj=RUJj (je ET) (30) 

- MIN TRU. Minimum Total Resource Usage 

This (static) rule prefers subphases whose processing will use little of the auditor capacities. 

pj = RUjmaz - RUJj (je ET) (31) 

- MAX TRC. Maximum Total Remaining Capacity 

This (dynamic) rule quantifies the importance of subphases in terms of the scarcity of the re­

sources used. The highest priority values are assigned to those subphases where the involved 

auditors have the largest remaining capacity in the considered period. 

Pj=RCJj (je ET) (32) 

- MIN TRC. Minimum Total Remaining Capacity 

This (dynamic) rule is based upon the same idea as MAX TRC. However, the highest priori-

ties are assigned to the subphases with the smallest total remaining capacities, i.e. 

pj = B - RCJj 

where B e Rs0 is large enough to guarantee that pj is nonnegative. 

(je ET) (33) 
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- MAX RRU. Maximum Relative Resource Usage 

The (dynamic) rule MAX RRU compares the resource usage of a given subphase with the 

highest resource usage RUF"** of all currently eligible subphases. The priority values accor-

ded are the higher, the higher the relative usages are. 

- MIN RRU. Minimum Relative Resource Usage 

The (dynamic) rule MIN RRU is based upon the same comparison as MAX RRU. However, 

the priority values accorded are the higher, the lower the relative usages are. 

5. Experimental Performance Analysis 

In the following subsections we outline the procedure followed for generating a sample of test 

instances of practical relevance. We also describe the Statistical model and the design of an 

extensive experimental study conducted, along with the definitions of the Performance measu-

res used to evaluate the results of the study. 

5.1 Generation of Test Instances 

Even in current literature, the systematic generation of test instances does not receive much 

attention. For the well-researched field of project scheduling, Kolisch, Sprecher, and Drexl 

(1996) report that "very little research concerned with the systematic generation of benchmark 

instances has been published. [...] most efforts are only briefly described." 

Generally, two possible approaches can be found adopted in literature when having to come 

up with test instances. First, practical cases. Their strength is their high practical relevance 

while the obvious drawback is the absence of any systematic structure allowing to infer any 

general properties. Even the 110 instances of the widely known Patterson-set (Patterson 

1984), which have become a quasi benchmark in project scheduling, have been collated from 

different sources, rather than being generated from a systematic design. Thus, even if an 

algorithm performs good on some practice cases, it is not guaranteed that it will continue to do 

so on other instances as well. Second, artificial instances. Since they are generated randomly 

according to predefined specifications, their plus lies in the fact that fitting them to certain 

requirements such as given probability distributions poses no problems. A detailed such 

procedure for generating project scheduling instances has been proposed by Kolisch, Spre­

cher, Drexl (1996). However, they may reflect situations with little or no resemblance to any 

pj =RUJj/RU jmax (je EJ) (34) 

pj = 1- (RUJj / RUJmax) QeEJ) (35) 



16 

problem setting of practical interest. Hence, an algorithm performing well on several such 

artificial instances may or may not perform satisfactorily in practice. 

Therefore, we decided to devise a combination of both approaches, thereby attempting to keep 

the strengths of both approaches while avoiding their drawbacks. For a Start, we conducted a 

survey among the 200 biggest CPA firms in Germany, asking the respective official in Charge 

of staff planning (if existent) or one of the firm's partners to provide details about length of 

planning horizon, number of auditors, number and structure of audit engagements, auditor 

working capacities (working hours per day or week) and possible variations therein (e.g. due 

to vacations, training), etc. In addition, we carried out Interviews with several experts in the 

field of auditing to clarify our understanding of the peculiarities of the auditing sector. Then, 

to ensure a systematic and consistent generation of the instances, for each of the parameters of 

the MASSP a domain and a discrete distribution function on the domain were defined, based 

upon the survey and the interview results. From these defmitions, a test bed of representative 

instances was generated randomly, using a Classification scheme to build instances with speci­

fic properties. In this way we tried to construct instances reflecting the specifics of audit-staff 

scheduling in the industry as closely as possible, yet to employ a systematic desigri for the 

generation procedure. 

Clearly, the Performance of an algorithm cannot be evaluated from running it on infeasible 

instances. It is therefore noteworthy that, in spite of the strong NP-completeness of the 

associated feasibility problem, it was possible to rig up the design of the (complicated) 

generation procedure in a way guaranteeing that for each constructed instance there exists at 

least one provably feasible Solution. 

We assumed that only two instance-related factors do have a major influence on the Perform­

ance of a Solution method, viz. the size and the tractability of the instance attempted. 

Although the size of an instance is determined by the length of the planning horizon, the num­

ber of subphases, and the number of modes, Statistical analyses of the survey results found all 

these to depend on the length of the planning horizon. In the sequel, three types of instances 

will be distinguished with respect to their size: the planning horizon equals 13 weeks for small 

instances (with up to 30 auditors, 95 engagements, and 98,800 binary variables), 26 weeks for 

medium-size instances (with up to 55 auditors, 280 engagements, and 728,000 binary vari­

ables), and 52 weeks for large instances (with up to 125 auditors, 880 engagements, and 

5,948,800 binary variables). In addition, very small instances (with up to 6 auditors, 10 

engagements, and 10,400 binary variables) were generated. While these instances are too 

small to bear practical relevance, they can be solved to optimality with Standard MlP-solvers 

as LINDO and OSL and thus can be used as benchmarks. 

The tractability of an instance intends to reflect how easy or how difficult that particular in­

stance is to solve. In our study, the auditor capacities are assumed to be the only factor in-
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fluencing the tractability of an instance: the higher the auditor capacities are, the easier the 

corresponding instance is ceteris paribus to solve since its Solution space becomes 1 arger. 

Accordingly, the auditor capacities are calculated from the average expected demand, adjusted 

by a multiplicative factor RS (resource strength). Throughout this work, three types of 

instances will be distinguished with respect to their tractability: easy instances where RS is 

taken equal to 3.5, medium instances where RS equals 2.5, and hard instances where RS is 

1.5. 

Detailed definitions for the remaining parameters as well as the feasibility proofs can be ob-

tained from the authors. 

5.2 Statistical Model 

For the purposes of this study, the execution of RAMSES is regarded as a random experiment, 

the outcome of which is determined by the following factors: 

- 0) priority rule employed for engagement selection 

- K priority rule employed for mode selection 

- p priority rule employed for subphase scheduling 

- oc control parameter for engagement selection 

- ß control parameter for mode selection 

- y control parameter for subphase scheduling 

- er size of instances attempted 

- x tractability of instances attempted 

-1 number of iterations performed 

Specifying a set of values for each factor describes over which levels it is varied during an ex­

periment, while one value for each factor determines one run of an experiment. 

Definition 1: An experiment is a tuple (fl.n.P.A.B.r.&T.H). where 

- Q is a set of priority rules for engagement selection 

- n is a set of priority rules for mode selection 

-Eis a set of priority rules for subphase scheduling 

- A £ R>o is a set of values for the engagement selection control parameter 

-gc R>Q is a set of values for the mode selection control parameter 

- £ c R>o is a set of values for the subphase scheduling control parameter 
-Ec{ very small, small, medium-size, large } is a set of sizes 

-1 £ { easy, medium, hard } is a set of tractabilities 

-HclN is a set of numbers of iterations • 

Definition 2: A run of an experiment (Q,II,E,A,fi,E,SXH) is a tuple 

(co,7i:,p,a,ß,7,o,t,i) e (OxüxPxAxfixD<2xTxH)• • 
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The outcome of a run is - for each instance attempted - summarized in terms of four result 
variables. One, BFornpaß-yati denotes the objective function value of the best Solution found 

in all iterations of that run. Two, SAGOTpafryan denotes the number of successful attempts, 

i.e. the number of iterations of the run in which a feasible Solution was found. Note that 

SA(ö7tpaß'yaTt does not necessarily give the number of different feasible solutions found 

since the same Solution may be generated more than once. Three, BS©jtpaß7axi denotes the 

best, i.e. the maximum number of subphases scheduled in all iterations of that run. Four, 

CPUoDjjpaßTcm denotes the average CPU-time of an iteration in a run. 

These variables are regarded as random variables which are assumed to be functions of the 

factors mentioned above, i.e. 

BFöOTpocßYcm = fBF(co,7C,p,a,ß,7,o,T,i) + ABFampaß7<JTi (36) 

SAconpaßTOTt = fSA(co,7t,p,a,ß,7,o,x,i) + ASAo7cpaß'yaTi (37) 

BSawtpaß-yori = fB^(o),^,p,a,ß,7,0,1,1) + ABS0)7ipcxß7axi (38) 

CPU(07cpaßTcm =fcpu(co,7t,p,a,ß,7,o,x,i) + Acpuco7tpaß7CTTi (39) 

where ABFowipaß7cm» ^SA£D7tpaß7cm.> ABSümpaß7cm. and Acpuco7cpaß7cm denote the 

respective random errors. It is assumed that the errors are mutually independent and drawn 

from the same continuous but not necessarily normal distribution. 

5.3 Experimental Design 

Due to the computational effort required to attempt a sample of all sizes, the scope of the ex-

periment was limited to include only small and very small instances. Though no obstacle for 

using RAMSES even on large instances, this effort prevents the undertaking of a füll factorial 

design experiment covering all instance classes. However, it is a widely accepted conjecture 

that rules performing well on small instances are also the best-performing ones for the larger 

ones (Davis and Patterson 1975, Badiru 1988, Alvarez-Valdes and Tamarit 1989). Of each in­

stance class (a,T), ten instances were considered in the experiment. They were tackled by the 

following algorithms: In the first stage, the rule combinations (PRS, MAX PRF), (MIN TRU 

MAX PRF, MAX PRC), and (MIN TRU MAX PRF, MAX RCP) were employed, combined 

in the second stage with all rules presented above. This reduced scope of the experiment can 

be justified by the following observations: First, using the static rule MAX PRF in the first 

stage, all possible engagement selection rules will yield the same results. Second, regardless 

of the specific mode selection rule used, the first stage will produce the same results as PRS 
whenever a = 0. 
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For each algorithm (cü,7t,p) we set e = 1. The control parameters a, ß, and y were varied inde-

pendently over the values 0, 2, and 4. Each instance was attempted 1000 times per algorithm 

and combination of control parameter values. Comprising three values each for oc, ß , y, three 

tractabilities, two sizes, 10 instances for each instance class, and 1000 iterations for each com­

bination of these factors, this design amounts to a number of 1,620,000 iterations for each 

algorithm (tö,7t,p) or 48,600,000 iterations in total. 1h a more compact form, the experimental 

design can be summarized as 

Qxü = {(PRS, MAX FRF), (MIN TRU MAX FRF, MAX PRC), 

(MIN TRU MAX PRF, MAX RCP)} 
P = {MTS, MIN EFT, MIN LFT, MIN SLK, MAX TRU, MIN TRU, 

MAX TRC, MIN TRC, MAX RRU, MIN RRU} 
Ä = {0,2,4} 
B = {0,2,4} 
r= {0,2,4} 
2 = {very small, small} 
1 = {easy, medium, hard} 
H = {1000} 

5.4 Performance Measures 

Based upon the result variables defined above, we introduce several Performance measures 

allowing to summarize the outcome of an experiment in a convenient way. 

The efficiency ratio <|>cü7tpaßycm of an algorithm (co,7i,p) using the control parameter values 

(a,ß,y) for an instance class (<J,T) in i iterations is computed - as the average over all instances 

of that class attempted - as the quotient of BFtöjtpaßYtm and the objective function value of 

the best known Solution for each instance attempted. (This measure is developing further the 

rule efficiency ratio proposed by Badiru 1988.) Clearly, ^owtpaßYcro € [0,1]; a ratio of one 

indicates that the considered run produced the best value currently known, while a ratio of 

zero reflects the fact that no feasible Solution was generated at all. 

The acceptance ratio Xowcpaßycm a4justs SAQtfCpaß'yOTi by the total number of iterations 

performed in the run. Thus, it yields an estimate of the number of successful attempts to be 

expected from a run. Again, XawtpaßyoTi e [0.1];a ratio of one indicates that all iterations of 

the run found a feasible Solution, a ratio of zero reflects the fact that no feasible Solution was 

generated at all. 

The feasibility ratio Vm%pc#m divides BS^poß^ by the total number of subphases to 

be scheduled in that run. vKöOTpaßyCTti e [0,1], as well; a ratio of zero indicates that no sub­

phase has been scheduled in that run, a ratio of 1 indicates that in the best iteration all the sub-
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phases have been scheduled, in other words that the corresponding schedule is feasible. While 

XöWtpaßTcm indicates how many of all iterations produced a feasible Solution, 

vfornpaß-yCTi gives an indication of how far away the best solutions found are from feasibility. 

While it is common practice to use some kind of efficiency ratio to evaluate the Performance 

of an algorithm, we would like to expand somewhat on the other two measures. Note that a 

small efficiency ratio may either indicate a low Performance of the respective algorithm, i.e. 

its inability to find substantial numbers of feasible solutions, or as well its difficulty to find 

feasible solutions. In that Situation further insight is provided by the second Performance 

measure: High acceptance ratios combined with low efficiency ratios indeed mark a poor 

Performance in terms of the quality of the solutions found whereas low values for both 

measures point to the little number of feasible solutions which were found at all. In this latter 

case, where in most iterations only a part of the subphases was scheduled, we found another 

Information to be of interest. Usually one would regard an algorithm scheduling 99 % of the 

subphases as better than another one scheduling only 1 % of them. This consideration brought 

up the third measure: High feasibility ratios combined with low acceptance ratios exhibit that 

in most cases - even if not all - at least nearly all subphases were successfully scheduled, 

while low values for both measures demonstrate that in fact the algorithm is unfit for 

scheduling major proportions of subphases. 

Finally, the average running time ^ompaßyozi is defined as equal to CPUmmpaß'ycm. 

To evaluate the effect of varying the above factors, different aggregate measures were derived 

from the above definitions. These aggregations served to isolate the effects of certain factors. 

We refrain, however, from the tedious task of citing the respective definitions since they use 

simple averaging over all factors except of those to be tested. Clearly, the average values can 

be interpreted as approximations of the expected values of the Performance measures in 

general. 

6. Computational Results 

The results of our experiment on the small instances with respect to efficiency, acceptance, 

and feasibility are summarized in Tables 4, 5, and 6 where - as far as possible - the ten algo-

rithms performing best are listed in decreasing order of their Performance. Regarding the hard 

instances, however, only one of them was successfully solved: In 1000 iterations two algo-

rithms found a feasible Solution while a third algorithm produced a feasible Solution under 

three different control parameter constellations. Hence, for the hard instances only the feasi­
bility ratios are given. 
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From Table 4 it is obvious that the tractability has a substantial effect on the efficiency ratio. 

The rather small values indicate that the algorithms produce good solutions only under certain 

constellations of the control parameters. In addition, one has to be aware of the fact that also 

runs which found no feasible Solution at all are reflected in these values. The algorithms 

(co, n, p) e {PRS} x {MAX PRF} x {MIN LFT, MIN SLK, MIN TRC} demonstrate the best 

efficiency ratios. 

Table 4 

Rankings of the algorithms according to the efficiency ratios on the small instances 

easy medium 

corcp §Gmp<n omp ^OOTpCTT 

PRS, MAX PRF, MIN SLK 0.6024 PRS, MAX PRF, MIN LFT 0.1640 

PRS, MAX PRF, MIN TRC 0.5925 PRS, MAX PRF, MIN TRC 0.1541 

PRS, MAX PRF, MIN LFT 0.5925 PRS, MAX PRF, MIN SLK 0.1537 

PRS, MAX PRF, MIN EFT 0.5636 MIN TRU MAX PRF, MAX 
PRC, MIN TRC 

0.1528 

PRS, MAX PRF, MIN RRU 0.5561 MIN TRU MAX PRF, MAX 
PRC, MIN LFT 

0.1505 

PRS, MAX PRF, MAX 
TRU 

0.5495 PRS, MAX PRF, MIN RRU 0.1426 

MIN TRU MAX PRF, MAX 
PRC, MIN LFT 

0.5489 MIN TRU MAX PRF, MAX 
PRC, MIN EFT 

0.1410 

PRS, MAX PRF, MIN TRU 0.5421 MIN TRU MAX PRF, MAX 
RCP, MIN TRC 

0.1361 

MIN TRU MAX PRF, MAX 
PRC, MIN TRC 

0.5363 MIN TRU MAX PRF, MAX 
PRC, MIN TRU 

0.1355 

PRS, MAX PRF, MAX TRC 0.5328 MIN TRU MAX PRF, MAX 
RCP, MIN SLK 

0.1334 

The small acceptance ratios in Table 5 indicate that often a run generates only few feasible so­

lutions. Again, the tractability has a considerable effect on the Performance. Table 5 shows 

that the algorithm (co, %, p) = (MIN TRU MAX PRF, MAX RCP, MIN TRC) produces the 

best acceptance ratios, regardless of the tractability of the instances attempted. 
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Table 5 

Rankings ofthe algorithms according to the acceptance ratios on the small instances 

easy medium 

COTtp JCGOTpOT ö)7cp XcoTcpcrc 

MIN TRU MAX PRF, MAX 
RCP, MIN TRC 

0.0369 MIN TRU MAX PRF, MAX 
RCP, MIN TRC 

0.0018 

MIN TRU MAX PRF, MAX 
RCP, MIN LFT 

0.0357 PRS, MAX PRF, MIN TRC 0.0017 

MIN TRU MAX PRF, MAX 
RCP, MIN TRU 

0.0349 PRS, MAX PRF, MIN LFT 0.0017 

MIN TRU MAX PRF, MAX 
RCP, MIN SLK 

0.0336 MIN TRU MAX PRF, MAX 
PRC, MIN TRC 

0.0016 

MIN TRU MAX PRF, MAX 
RCP, MIN RRU 

0.0323 MIN TRU MAX PRF, MAX 
RCP, MIN LFT 

0.0016 

PRS, MAX PRF, MIN LFT 0.0318 MIN TRU MAX PRF, MAX 
PRC, MIN LFT 

0.0016 

PRS, MAX PRF, MIN TRC 0.0308 PRS, MAX PRF, MIN TRU 0.0015 

MIN TRU MAX PRF, MAX 
RCP, MTS 

0.0307 PRS, MAX PRF, MIN SLK 0.0014 

MIN TRU MAX PRF, MAX 
PRC, MIN LFT 

0.0306 MIN TRU MAX PRF, MAX 
RCP, MIN SLK 

0.0013 

PRS, MAX PRF, MIN SLK 0.0298 MIN TRU MAX PRF, MAX 
RCP, MIN TRU 

0.0013 

Table 6 demonstrates that the tractability of an instance does also affect the feasibility ratio. 

The algorithms (CD, 7t, p) e {PRS} x {MAX PRF} x {MIN LFT, MIN SLK, MIN TRC}, 

which already demonstrated the best efficiency ratios, also show the best feasibility ratios, but 

only as long as the resources are plentiful available. In fact, the scarcer the resources, i.e. the 

harder the instances attempted, the worse the ranking of the static rules (co, %) = (PRS, MAX 

PRF) becomes. In other words, the harder the instances, the better do the dynamic, resource-

based rules (oo, 7t) e {MIN TRU MAX PRF} x {MAX RCP, MAX PRC} score against the 

above static rules. For the medium and the hard instances, the algorithms (co, 7t, p) e 

{MIN TRU MAX PRF} x {MAX RCP} x {MTS, MIN LFT, MIN TRC} are the highest 

ranking ones. 
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Rankings of the algorithm according to the feasibility ratios on the small instances 

easy medium hard 

(Ü7tp Vawtpcri (07Cp VüWtpcn omp Vawtpot 
PRS, MAX PRF, MIN 
TRC 

0.9943 MIN TRU MAX PRF, 
MAX RCP, MIN LFT 

0.9376 MIN TRU MAX PRF, 
MAX RCP, MTS 

0.8041 

PRS, MAX PRF, MIN 
SLK 

0.9942 MIN TRU MAX PRF, 
MAX RCP, MTS 

0.9354 MIN TRU MAX PRF, 
MAX RCP, MIN LFT 

0.8031 

PRS, MAX PRF, MIN 
LFT 

0.9941 MIN TRU MAX PRF, 
MAX RCP, MIN SLK 

0.9336 MIN TRU MAX PRF, 
MAX RCP, MIN TRC 

0.8017 

PRS, MAX PRF, MIN 
rau 

0.9937 MIN TRU MAX PRF, 
MAX RCP, MIN TRC 

0.9934 MIN TRU MAX PRF, 
MAX PRC, MIN LFT 

0.7974 

PRS, MAX PRF, MIN 
RRU 

0.9936 PRS, MAX PRF, MIN 
LFT 

0.9328 MIN TRU MAX PRF, 
MAX PRC, MTS 

0.7972 

PRS, MAX PRF, MIN 
EFT 

0.9935 PRS, MAX PRF, MTS 0.9326 MIN TRU MAX PRF, 
MAX PRC, MIN TRC 

0.7968 

PRS, MAX PRF, MTS 0.9933 MIN TRU MAX PRF, 
MAX RCP, MIN TRU 

0.9318 MIN TRU MAX PRF, 
MAX RCP, MIN TRU 

0.7964 

PRS, MAX PRF, 
MAX TRU 

0.9928 MIN TRU MAX PRF, 
MAX PRC, MIN LFT 

0.9313 MIN TRU MAX PRF, 
MAX RCP, MIN SLK 

0.7944 

PRS, MAX PRF, 
MAX RRU 

0.9927 MIN TRU MAX RCP, 
MAX RCP, MIN RRU 

0.9302 MIN TRU MAX PRF, 
MAX RCP, MIN RRU 

0.7938 

MIN TRU MAX PRF, 
MAX PRC, MIN TRU 

0.9926 PRS, MAX PRF, MIN 
TRC 

0.9298 MIN TRU MAX PRF, 
MAX PRC, MIN TRU 

0.7923 

All in all, different algorithms score differently for the above mentioned Performance 

measures. However, some common patterns can be derived from our results. The algorithms 

(ö>, n, p) € {PRS} x {MAX PRF) x {MIN LFT, MIN SLK, MIN TRC} score best on the 

efficiency ratio and - in the presence of nonscarce resources - on the feasibility ratio. On the 

other hand, the algorithms (CD, JC , p) e {MIN TRU MAX PRF} x {MAX RCP} x {MTS, MIN 

LFT, MIN TRC} perform - in the presence of scarce resources - best regarding the feasibility 

ratio. Though the results for the acceptance ratio are rather inconclusive, it is easy to see that 

the rules p e {MIN LFT, MIN TRC} rank best, regardless of the resource scarcity. We may 

thus summarize some general conclusions: 
The decision of which combination of rules to, 7t, and p to apply to a given kind of 

instance can be simplified by selecting separately a combination of rules (ö>, 7t) and a 

rule p. 

With respect to the efficiency ratio, the combination (ü), n) = (PRS, MAX PRF) 

performs best. However, the ranking of (co, 7t) e {MIN TRU MAX PRF} 
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x {MAX RCP, MAX PRC} improves with decreasing resource availability. We thus 

conjecture that in the presence of very scarce resources the latter combinations may 

yield equally good or even better efficiency values. 

- With respect to the feasibility ratio, in the case of nonscarce resources the 

combination (CD, n) = (PRS, MAX PRF) performs best, in the case of scarce 

resources the combination (ö), it) e {MIN TRU MAX PRF} x {MAX RCP, MAX 

PRC} produces the best results. 
- The rules p e {MIN LFT, MIN TRC} perform best with respect to all these 

Performance measures. 

The effects of varying the values of the control parameter a, ß, and y were examined in a se­

parate analysis where for each ratio the above best performing rules were considered, leading 

to the following observations: 

The highest efficiency ratios were obtained for a 6 {0,2,4}, ß = 0, and y = 4. Due to 

the static nature of the rule MAX PRF, choosing different rules co or varying the 

values of a has no effect on the efficiency ratio. Since ß = 0 implies a purely random 

selection, the good results for this value indicate that MAX PRF is performing rather 

poorly, producing a high percentage of infeasible solutions. The rules p e {MIN 

LFT, MIN SLK, MIN TRC}, however, yield their best results for y = 4 and thus 

demonstrate their general suitability. 

The highest acceptance ratios as well as the highest feasibility ratios were reached for 

a = 4, ß = 0 und y = 4. It is clear that under all circumstances the consideration of 

remaining capacities as done in MAX PRF and MAX PRC (cp. the second case of 

equations (19) and (21), respectively) will have a positive effect on acceptance and 

feasibility ratio since it guarantees that those modes are excluded from consideration 

for which the remaining capacities are not sufficient such that such a mode 

assignment would render the corresponding schedule infeasible. The surprising result 

for ß, however, allows to conclude that the specific selection strategy incorporated in 

MAX PRF and MAX PRC (cp. the first case of equations (19) and (21), respectively) 

is performing worse than pure random sampling. 

The average running times of the best-performing algorithms are provided by Table 7. All al­

gorithms were coded in C and implemented on an IBM RS/6000 model 550. The running 

times are given in terms of milliseconds. Here, also the results for the very small instances are 

provided. Obviously, the running times increase with increasing instance sizes. In the first 

stage, the application of dynamic rules increases the running times between three and four ti­

mes, compared to those of static rules, while the respective differences between static and dy­

namic rules in the second stage are rather small. 
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Table 7 

Average running times for very small and small instances and all tractabilities 

^ÖWCpO 

GMCp very small small 

PRS, MAX PRF, MIN SLK 1.31 8.39 

PRS, MAX PRF, MIN LFT 1.32 8.44 

PRS, MAX PRF, MIN TRC 1.45 11.66 

MIN TRU MAX PRF, MAX RCP, MTS 1.99 27.13 

MIN TRU MAX PRF, MAX PRC, MTS 2.42 30.01 

MIN TRU MAX PRF, MAX RCP, MIN TRC 2.13 30.64 

In addition, we tried to solve the very small and the small instances with the scientific optimi-

zation program LINDO (Version 5.0). LINDO a s well as the algorithms were able to find the 

Optimum solutions for all very small instances. While RAMSES took about 1,9 seconds for 1000 

iterations on each instance, LINDO required between several seconds and several minutes. The 

exact results are summarized in Table 8. 

The differences became even more pronounced for the small and easy instances where LINDO 

found within a time limit of 1500 minutes a Solution for only four of the ten instances, taking 

about 2, 5 3/4, 10 3/4, and 11 1/4 hours. In contrast, each algorithm found a feasible Solution 

for each instance, which was the Optimum Solution for each of the ones solved by LINDO. On 

average, this took about 37 seconds for 1000 iterations. 
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Table 8 

Average running times for very small instances 

(IC 

RAMSES 

>00 iterations) 

LINDO 

easy medium hard easy medium hard 

#OT 

Maximum 

Std. Dev. 

0:01.95 

0:03.50 

0:00.50 

0:01.93 

0:03.40 

0:00.49 

0:01.94 

0:03.20 

0:00.50 

1:04.31 

2:52.96 

0:56.86 

3:08.56 

18:13.24 

5:19.33 

3:18.10 

12:25.10 

4:18.42 

Entries in the format minutes : seconds . milliseconds 

In another attempt to solve the small and easy instances used in the experiment with Standard 

solvers, we employed OSL (Release 2). Even though OSL is generally reported to be 

considerably faster than LlNDO, it solved - within the same time limit of 1500 minutes - only 

two of the instances already solved by LINDO, taking about two minutes and 59 minutes, 

respectively. 

To summarize, we infer from the results outlined that RAMSES, using the algorithms presented, 

is capable of constructing feasible solutions for at least small instances of the MASSP in 

neglectable amounts of time. Moreover, the solutions produced are - at least in the presence of 

non-scarce resources - near optimal. Under scarce resources, RAMSES may not always generale 

a feasible Solution; still, by scheduling the majority of all subphases it can contribute to a 

more rational and cost-efficient way of audit-staff scheduling in praxi. 

7. Summary and Conclusions 

Using the medium-term audit-staff scheduling problem MASSP as an example, we demon-

strated how the Solution approach RAMSES, introduced in Part I of this paper, can be tailored to 

a specific scheduling problem. We outlined the design of a corresponding instance generator, 

being able to produce feasible practical instances of the MASSP, along with the Statistical 

model, the experimental design, and the Performance measures used in an extensive computa-

tional study. The results of this study demonstrate that RAMSES is in fact capable of producing 

good solutions in neglectable amounts of time. 
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