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Abstract: When scheduling its audit-staff, the management of an auditing firm encompasses a number
of different decisions which differ markedly in terms of organizational echelon involved, length of the
planning horizon and the planning periods, degree of aggregation of the audit tasks, degree of detail of
the required information, and decision objective. We outline an hierarchical planning approach for the
audit-staff scheduling problem and demonstrate how the first level can be expressed in terms of the
MIRCPSP, which has been presented in Part I of this paper. For solving this problem, we also
demonstrate how the solution approach RAMSES, also presented in Part I of this paper, can be adapted
to it. We provide a number of different priority rules which can be employed alternatively. The results
of an extensive computational study indicate that RAMSES is capable of producing "good" solutions in
neglectable amounts of time.

Keywords: PROJECT MANAGEMENT / SCHEDULING; RESOURCE CONSTRAINTS;
PRECEDENCE / TEMPORAL CONSTRAINTS; MODE IDENTITY CONSTRAINTS; REGRET-
BASED BIASED RANDOM SAMPLING; AUDIT-STAFF SCHEDULING

1. Introduction

In Part I of this paper we presented a general time- and resource-constrained project schedul-
ing problem with mode identity constraints, together with a general parallel randomized solu-
tion approach. In Part I we will show how to use these concepts for specific real-world
scheduling problems by giving an example from the auditing environment.

When scheduling its audit-staff, the management of an auditing firm encompasses a number
of different decisions. These decisions may be grouped into several categories which differ
markedly in terms of organizational echelon involved, length of the planning horizon and the
planning periods, degree of aggregation of the audit tasks, degree of detail of the required in-

formation, and decision objective.

Traditional audit-staff scheduling models (Balachandran and Zoltners 1981, Chan and Dodin
1986, Drex1 1990 and 1991, Dodin and Chan 1991) are single-level models which try to con-
struct a direct assignment of auditors to tasks and periods. To facilitate algorithmic treatment,
all these models are more or less gross simplifications of practical planning situations. In con-
trast, the above observations led us to conduct a survey among the 200 biggest certified public
accountant (CPA) firms in Germany. Based upon its findings we formulated an hierarchical
modelling framework (Salewski and Drex] 1993, Salewski 1995) comprising three levels, viz.
a medium-term (tactical), a medium-to-short-term (tactical-operational), and a short-term
(operational) level:
- The tactical planning assigns teams of auditors to the engagements. It constructs a
schedule by determining the workload per auditor and week over a planning horizon
of between three and twelve months.
- The tactical-operational planning disaggregates the results of the tactical level for one
week and all auditors. The outcome is a schedule for each auditor that covers - on the
basis of periods of four hours - all engagements in which he is involved in the con-

sidered week.



- The operational planning is based upon the results of the tactical-operational level for
one week and one engagement. It assigns the auditors involved in the auditing of that
engagement to the corresponding audit tasks and schedules these tasks. This is done

for a period length of one hour.

In Part II of this paper we will focus on the first level of the approach. Section 2 briefly out-
lines the corresponding problem setting and provides a mathematical formalization (in terms
of the MIRCPSP) while Section 3 establishes its classification and its complexity status. In
Section 4 we demonstrate how RAMSEs can be adapted to this specific problem and provide a
number of alternative priority rules. Section 5 outlines the design of a problem specific in-
stance generator and defines the statistical model, the experimental design, and the performan-
ce measures used in an extensive computational study whose results are covered in Section 6.
Finally, Section 7 provides a brief summary of Part II of this paper, along with our conclu-

sions.

2. Formulation of the Medium-Term Audit-Staff Scheduling Problem Using Mode
Identity Constraints ‘

The Medium-Term Audit-Staff Scheduling Problem (MASSP) may be characterized by the fol-

lowing assumptions:

- A firm employs one or more auditors, which have to audit one or more engagements
within a given planning horizon of normally 13, 26, or 52 weeks.

- Each engagement is made up of one or more phases, e.g. preliminary, intermediate, and
final audit, which in turn can be decomposed into one or more subphases. Some sub-
phases may not be executed before the completion of certain other subphases
(predecessors). More exact: the phases of each engagement as well as the subphases of
each phase must be processed in a strictly linear order which implies that each subphase
except of the first subphase of the first phase of each engagement possesses exactly one
predecessor. _

- Work on some phases may not commence before a specific release time, as well as it is to
be completed by a certain deadline. ‘

- The availability of some auditors may be restricted in certain periods, e.g. due to holidays
or vacations. '

- For some periods a client may want to confine the time during which the auditing takes
place (maximum processing time), e.g. due to vacation periods or stock-taking activities.

- Often an engagement could be audited by several alternative audit teams (modes).
Different team compositions will result in different auditor processing times. Usually
some modes will be preferable to others: Factors influencing the suitability of an auditor
for a specific engagement are e.g. qualification level, industry experience, familiarity with
the clients business, and degree of difficulty of the audit tasks. The preferability of a
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mode as a whole may e.g. be linked to the total processing time needed (Drexl 1990).

Hence, a preference value will be assigned to each mode.

- Between subsequent subphases (which thus belong to the same engagement), mode-

dependent minimum and maximum time-lags are given.

Table 1

Problem Parameters of the MASSP

Problem  Definition
Parameter
A Number of auditors
a Specific auditor,a=1,...,.A
bum Preference value corresponding to the processing of engagement u in mode m
Cat Capacity of auditor a in period t
Dyt Maximum processing time of engagement u in period t
5up Deadline of phase (u,p)
kupsma Time auditor a needs to process subphase (u,p,s) in mode m (capacity usage)
A'up Release time of phase (u,p)
M, Number of modes of engagement u
m Specific mode, m = 1,..., M,
P, Number of phases of engagement u
p Specific phase, p = 1,...,P,
Qup's'psm Minimum (ﬁnish-to—start) time-lag between subsequent subphases (u,p's’) and (u,p,s)
when executing u in mode m
elup' §'psm Maximum (fmishjto-start) time-lag between subsequent subphases (u,p's’) and (u,p,s)
when executing u in mode m
Sup Number of subphases of phase (u,p). W.L.o.g. each subphase has a duration of one period.
s Specific subphase, s = l,...,Sup
T Number of periods
t Specific period, t = 1,...,T
U Number of engagements
u Specific engagement, u = 1,..,.U
Vups Set of all immediate predecessors of subphase (u,p,s)

The objective is to assign the overall best-suited teams to the engagements (mode
assignment), and to determine when the individual subphases are to be executed (subphase

scheduling).
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The definitions and the notation used in the following are summarized (in alphabetical order)
in Table 1. W.lo.g. T, A, U, as well as all My, Py, Sup, and 8yp are assumed to be positive

integers, while all other problem parameters are assumed to be nonnegative integers.

To simplify the mathematical formulation of the problem, we perform some preliminary com-

putations. First, the indices u, p, s are replaced by

u-1 Pul
u'=1p=l p'=

Thus, the parametel's Vups, qup's'psm, qup's'psm N and kupsma become Vj, qJ'Jm, Qj'jm, and
kjma.
Then, let denote f; = g(u,1,1) the first and J; = g(u,Py,Sypy) the last subphase of each engage-

mentu (1 <u<U).

Further, the maximum lags Elj-jmcan be transformed into minimum lags 9jj'm (with a corre-

sponding update of Vi) (cf. Bartusch, Mohring, and Radermacher 1988), and from the time-
lags, the release times, and the deadlines earliest and latest finish times EFJ' and LFj can be

computed, respectively.

Table 2 summarizes the derived parameters of the MASSP (in alphabetical order).

Table 2

Derived Parameters of the MASSP

Derived Definition

Parameter
EFj Earliest finishing time of activity j
ha First subphase of engagementu (1 <u<U)
' Last subphase of engagementu (1 Su<U)
LFj Latest finishing time of activity j

After these transformations, let us consider for a moment the above assumptions. The presen-
ce of minimum and (transformed) maximum time-lags between subsequent subphases, along
with their special sequence, which arises from the above mentioned decomposition process,
imply for each engagement a "chain structure” of the time lags as illustrated in Figure 1, where
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each entry has the format u,p,s (here we briefly return to the former notation to emphasize the
engagement decomposition). Each structure may be seen as being composed of arc-disjoint
cycles of length 2, one between first and second subphase, one between second and third one,
and so forth up to the last cycle between last but one and last subphase. With respect to the
classification scheme introduced in Part I, the temporal relation can be characterized as cyclic,
arbitrarily-valued, and isolating.

Figure 1

"Chain Structure” of Time Lags

2.2,1

Now the assignment of subphases to modes and periods can be represented by binary variables

Xjmt defined as

)

1, if subphase j is performed in mode m and completed in period t
X3 =
jmt 0, otherwise

This allows to formulate a binary program - using the general framework given in Pritsker,
Watters, and Wolfe (1969) - as follows:

U My LFfu

Maximize Z(x)= ¥, 3, bym 2, Xfmt (3)
u=l m=l =EFfu



subject to

My Ll:}u

Y, X Xymt =1 (1<u<U) @)
m=1 t=EF}cu

Ll::fu LFj .

Y Xfymt= ) Ximt (1<usU; fy+1 £j<y; 1 € m<My) (5)

=EFfu t=EFj

Mu LE My LFj

2 Z(t"'qj"jm) Xj'mt S Z Z(t-l) Xjmt (1<usUsfy<j<fysj'e Vj)(6)
m=] t=EFjv m=1 tzEFj

U Mu lu

Z 2 zkjmaxjmt < Cy (1<a<gA;1st<THY(@)

u=l m=l =fu
te{EFj,...,LFj}

Mu o
> Y Kima Xjmt < Dut (1<usU;1<a<A; 1<t<T)(8)
m=l  j=fu

te{EFj,...,LFj}
Xjmt € {0, 1] (1 u<U;fy <j<ly; 1 Sm<My; BFj St<LF) )

The objective function (3) maximizes the total team preference over all engagements. Due to
(4), it suffices to include only one subphase of each engagement in (3). The choice of the first
one is arbitrary. The subphase completion constraints (4) stipulate that the first subphase of
each engagement is completed exactly once in one of its modes. The mode identity constraints
(5) guarantee for each engagement that if the first subphase is completed then the other sub-
phases will be completed as well, and in the same mode as the first one. Thus, (4) and (5)
combine to ensure that all subphases of each engagement will be processed in the same mode,
and that all of them will be completed. The temporal constraints (6) represent the precedence
order on the subphases and enforce respection of the time-lags between them. The auditor
capacity constraints (7) assure that for no auditor his per-period workload exceeds his capac-
ity. In this regard, each auditor is treated as a renewable resource. The engagement capacity
constraints (8) guarantee that for no engagement and no auditor the maximum per-period

processing time is exceeded. In this regard, each engagement is treated as a renewable
resource.



3. Classification and Complexity Status

This section provides two important theoretical insights. First, a classification of the MASSP is
given by the following theorem.

Theorem 1 The MASSP is a special case of the MIRCPSP.
Proof: The MIRCPSP can be restricted to the MASSP as shown in Table 3. n

Table 3

Restriction of the MIRCPSP to the MASSP

Parameter of the Restricted to
MIRCPSP
Cum =max {bypyy 1 Su'sUA1<m SMy} -byy
djm =1
5. _foyp it @ueft.. U@ el (j = g(u.pSup))
J T, otherwise
Hy = {fyre-mbu}
X undefined, since N=0
v .
k jmn undefined, since N =0
o _ Crt» ifr<A
Krt D(r - divA,t» otherwise
k‘-) _ Kim(1+(r-1)mod A)’ if(r<A)v (J € {f(r—l) div As- - Kr-1)div A})
jmr -
0, otherwise
N S rp it @ueft 0@ el Ru}) (= g(up)
! 0,  otherwise
N =0
4§ jm" if m=m
9jjm'm " | undefined, otherwise
R =(U+1DA

Noting that EF;j-djm equals ES;, the transformations of (3) - (6) and (9) into constraints of the
MIRCPSP are mostly obvious; however, some additional explanations for the ones of (7) and
(8) seem in place. As indicated above, each auditor a (1 < a < A) corresponds to a resource r
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(1 < r < A). However, due to the fact that (8) restricts the processing time for each auditor-
engagement combination, a similar summation over all U engagements is not possible. Hence,
we introduce artificial resources, treating each combination of an engagement and an auditor
as a separate resource. Accordingly, each engagement u (1 < u < U) corresponds to resources r
(u-A+1 < 1 < (u+1)A). Finally, note that for the MASSP the summation over q = t,...,t+djm-l
(cf. (6) in Part I of the paper) is redundant since djm =1y <ishp1<sms<My).

Second, we show the MASSP to belong to the class of strongly NP-hard problems by proving
the corresponding feasibility problem Masspfeas to be strongly NP-complete. (We assume the
reader to be familiar with the issues of complexity theory. For introductory texts on this
subject cf. Garey and Johnson 1979; Papadimitriou and Steiglitz 1982; Papadimitriou 1994.)
Note that in order to do so, we have to assume for each instance that T is polynomially
boundable in the instance length. On the formal level, this assumption is necessary since
otherwise the MASSP is only solvable in exponential time. On the practical level, though, this
assumption does not restrict the practical relevance of the MASSP as the results of our survey
indicate that staff scheduling is always done for a fixed planning horizon (at most 52 weeks),
and any fixed value of T is clearly polynomially boundable. (For a more detailled discussion
cf. Schirmer 1996a and 1996b.)

Theorem 2 The Masspfeas is strongly NP-complete.
Proof:

(i) (Masspfeas ¢ NP) Using M to abbreviate max {Mu| 1 < u £ U}, the length of an
instance I of the MAsspfeas is LNGgpy(I) = O(A-J-M-T-log MAXgtp(). A certificate C
of the MAsspfeas consists of one value for each of the J-M-T decision variables; due to
their binarity MAXgrp(C) = 1 and thus LNGgrp(C) = J-M-T-(log(1)+1) = JM-T.
Therefore, reading a certificate has a time complexity of O(J-M-T) which is polynomial
in the input length. Evaluating the constraints will require O(A-J-M-T) additions and
multiplications; assuming that each operation takes constant time, the time complexity
of the total evaluation is O(A-J-M-T) as well. So, any certificate can be read and verified
in polynomial time, hence MAsspfeas js element of NP.

(i) (MIRCPsPfeas o, MAsSPeas) Due to Theorem 2 (of Part I of this paper), MIRCPspfeas is
strongly NP-complete. Due to Theorem 1, MIRCPSPfeas can be pseudo-polynomially
transformed to MAsspfeas, =

Corollary 1 The MAssP is strongly NP-hard.

Actually, one can even show a stronger result, namely that the MASSP is strongly NP-
equivalent. The general idea of such proofs is to exhibit pseudo-polynomial reductions from
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Masspfeas to MASSP and vice versa. Details of appropriate simplified proof techniques are
described in Garey and Johnson (1979) and Schirmer (1995).

4. Algorithmic Scheme and Priority Rules

We now demonstrate how RAMSES can be adapted to the MASSP. Again, the first stage assigns
one mode to each subphase while the scheduling of the subphases is done in the second stage.
In fact, the algorithmic scheme described in Part I can be used without modifications.

We describe a number of priority rules for both stages which may be used alternatively. To-
gether with the corresponding algorithmic scheme, each combination (w,x,p) of priority rules
defines one specific algorithm for the MASSP.

4.1 Priority Rules for Mode Assigning (Stage 1)

Since the mode assignment is done in two steps, i.e. selection of an engagement and selection
of an appropriate mode, we introduce the priority rules following this sequence. Let denote EE
the set of all eligible engagements, i.e. engagements to which no mode has been assigned yet.

4.1.1 Engagement Selection
Two rules will be described in the sequel.

- PRS. Pure Random Selection

This (static) rule accords to all engagements the same preference value, thus giving all of

them the same probability of being selected:
Bu=1 (ue EE) (10)

- MIN TRU MAX PRF. Minimum Total Resource Usage Maximum Preference

This (static) rule prefers those engagements where in the most preferred mode the demand

for auditor capacities is small.

Let for each eligible engagement u denote mp'® the most preferred mode, i.e. the mode m
with the highest preference value by, Ties are broken by selecting the mode with the
smaller total capacity demand, if possible; arbitrarily otherwise.

Let further denote AE,, the set of all auditors actually participating in the processing of

engagement u, which can be derived from
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ly
AEym = (al Z Kjma> 0} (ueEE; 1 <m < My) (11)

=fu
Also, let denote TRUyy, the total capacity usage incurred by processing engagement u in

mode m, i.e.

TRUpm = 2 2 Kima (ueEE; 1< m < My) (12)
j=fu aEAEum

and TRUM the maximum resource usage TRUyymax of all currently eligible

engagements when processing them in their most preferred mode:

TRU™MAX = max { TRUpymax | ue EE} (13)

Then the priority value can be computed as
@y = TRUMAX - TRU,pymax (ue EE) (14)

4.1.2 Mode Selection

Let in the following denote u the engagement under consideration, which has been selected
before.

- MAX PRF. Maximum Preference

This (static) rule uses generalized opportunity costs, reflecting the effect of the considered
mode assignment on the objective function value. For the engagement u under consideration,
let denote by the preference value of the least preferred mode:

b7 = min {bym ! 1 <m <My} (15)

In order to maximize the objective function (3), the priority values Em are calculated as the

maximum possible deterioration of the objective function value that could arise from not
processing engagement u in mode m:

min
- bu

Tm =bym (1<m <My) (16)

- MAX PRC. Maximum Preference Remaining Capacity

This (dynamic) rule tends - as well as MAX PRF - to select modes having a high preference
value. Based upon the total capacity of an auditor a, computed as the sum of all his period



11

capacities Cat, the maximum feasible demand TCA, for auditor a within the planning hori-
zon is calculated by multiplying his total capacity by a "safety factor" SF:

T
TCAa= SF ), Cy (1a<A)(17)
t=1
Relying on the results of preliminary testing, SF was set to 0.95. Due to (17), only modes
will be considered for selection where the remaining capacity RCA, of each involved
auditor a, computed as the difference between TCA, and the capacity demands incurred by
the mode assignments established so far, is not exceeded. (If no mode has a sufficient
remaining capacity, an artificial mode is selected where all capacity demands equal zero.
This reflects the practical situation where certain engagements have to be rejected due to
insufficient resource availabilities.)

Let denote u' (1 < u' < U) an arbitrary engagement and m' the corresponding mode which has
already been assigned. Then the remaining capacity RCA, of auditor a can be derived from

U Iy
RCA = TCA, - Y, D, Kim'a (1sa<A)(18)
u'=l j=fy'
u'e¢EE

and the priority values are calculated as

. lu
bum —bJ¥",  if (Vae AEym)RCA, 2 Y Kima
m = Fhy

—€, otherwise

(1= m < My) (19)

If a mode m is to be excluded from being selected because of insufficient resource
availabilities, we let TTm= -€ . In the case of B # 0 then Tm= 0 and thus %= 0 hold, in the

case of B = 0 we set T=0.

MAX RCP. Maximum Remaining Capacity

This (dynamic) rule accords the highest priority values to those modes whose assigning lea-
ves the highest average remaining capacity to the involved auditors. Again, only modes are
considered where the remaining capacity RCA, of no involved auditor a is exceeded. (In the

case of insufficient remaining capacities the proceeding is as described above.)

Let denote RCE,, the average remaining capacity of the involved auditors after mode m has

been assigned to engagement u:
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J

u
Y RCA;- Y, D Kima |/|ABum| if |AEym|>0 (1€m <M,) (20)
a€AEym  j=fua€AEym S
0, otherwise

RCEp, =

Now the priority values can be computed as

lu
- RCEy,, if (Va€AEyp)RCA32 D Kima
fom = =h

—€, otherwise

(1I<sm <My (21)

In the case of f = 0 and Em = -g, we set :m= 0 (as done for MAX PRC, above).

4.2  Priority Rules for Subphase Scheduling (Stage 2)

For the subphase scheduling, we distinguish between precedence-based, critical-path-based,
and resource-based priority rules. Let in the sequel for each engagement u denote m the mode
assigned to u and EJ the set of all eligible subphases, i.e. those subphases which could be
scheduled in the current period without violating any of the restrictions.

4.2.1 Precedence-Based Rule

Rules of this type determine priority values according to criteria which are related to the
precedence relations between the subphases. Only one rule of this type is used here.

- MTS. Most Total Successors

This (static) rule (cf. Alvarez-Valdés and Tamarit 1989) ranks the subphases according to
their number of successors. The idea is to schedule first the subphases on whom the most
successors are waiting, because delaying such a subphase would also delay all its successors.

Let for each subphase j denote Sj the set of all its - direct as well as indirect - successors.
Then the priorities are determined from

ﬁj = Sj | (e EJ) (22)
4.2.2 Critical-Path-Based Rules

These (static) rules (cf. Alvarez-Valdés and Tamarit 1989) refer to the results of the critical-
path analysis (cf. e.g. Levy, Thompson, and Wiest 1963).
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- MIN EFT. Minimum Earliest Finishing Time

This rule prefers subphases with small earliest finishing times, in order to get them "out of
the way" early. Now, instead of EF; and LF; the more exact values EFjy, and LFjy, can be
used since the mode assignment has already taken place in the first stage (cp. Section 4.2 of
Part I). In order to assign high priorities to subphases with small values of Eij, the priori-
ties are computed as

pj =T-EFjm (e EJ) (23)

- MIN LFT. Minimum Latest Finishing Time

The latest finishing time of a subphase yields a measure of its urgency, because its proces-
sing must be completed by this date. Thus, MIN LFT tries to schedule urgent subphases first.

pj =T-LFjm (e EJ) (24)

- MIN SLK. Minimum Slack

The slack of a subphase is the interval between its earliest and its latest finishing time. This
rule prefers subphases with a small slack since these are most critical with respect to delays.

pj =T - (LFjm - EFjm) (je EJ) (25)

4.2.3 Resource-Based Rules

These rules prioritize the eligible subphases j in terms of either their resource usage, the
scarcity of the resources they use (e.g. the resource "auditor"), or a combination of both.

Let for each j denote AJ; the set of all auditors involved in processing j in mode m, i.e.
AJj={aI1£aSA/\kjma>O} (e EJ) (26)

Further, let denote RUJ; the total capacity usage incurred by the processing of j in mode m,

ie.

RUJj= Y Kima | (i€ EJ) (27)
acAJ j

and RUJ™AX the maximum of the resource usages RUJ j of all currently eligible subphases:

RUJ™M@X = max {RUJ; | je EJ} (28)
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Finally let for each eligible subphase j denote RCJj the total remaining capacity over all

assigned auditors
RCJj= D RCy (e EJ) (29)
aeAJ;

where RCy; denotes the remaining capacity of auditor a in period t, considering the mode

assignments already made in stage 1.

- MAX TRU. Maximum Total Resource Usage

This (static) rule (cp. the rule GRES in Kurtulus, Davis 1982 and Kurtulus, Narula 1985, as
well as GRD in Davis, Patterson 1975 for the case of nonrenewable resources) prefers those
subphases whose processing will use large amounts of the auditor capacities.

pj =RUJ; (je EJ) (30)

- MIN TRU. Minimum Total Resource Usage

This (static) rule prefers subphases whose processing will use little of the auditor capacities.
ﬁj = RUJymax - RUJ; (je EJ) (31)

- MAX TRC. Maximum Total Remaining Capacity

This (dynamic) rule quantifies the importance of subphases in terms of the scarcity of the re-
sources used. The highest priority values are assigned to those subphases where the involved
auditors have the largest remaining capacity in the considered period.

Pj =RCj; e EJ) (32)

- MIN TRC. Minimum Total Remaining Capacity

This (dynamic) rule is based upon the same idea as MAX TRC. However, the highest priori-
ties are assigned to the subphases with the smallest total remaining capacities, i.e.

Pj =B-RCy; (ie EJ) (33)

where B € Ry is large enough to guarantee that §j is nonnegative.
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- MAX RRU. Maximum Relative Resource Usage

The (dynamic) rale MAX RRU compares the resource usage of a given subphase with the
highest resource usage RUI™@X of all currently eligible subphases. The priority values accor-
ded are the higher, the higher the relative usages are.

pj =RUJ;/RUJmax (je EJ) (34)

- MIN RRU. Minimum Relative Resource Usage

The (dynamic) rule MIN RRU is based upon the same comparison as MAX RRU. However,
the priority values accorded are the higher, the lower the relative usages are.

p; = 1- (RUJ;/ RUmax) (ieEJ) (35)

5. Experimental Performance Analysis

In the following subsections we outline the procedure followed for generating a sample of test
instances of practical relevance. We also describe the statistical model and the design of an
extensive experimental study conducted, along with the definitions of the performance measu-
res used to evaluate the results of the study.

5.1 Generation of Test Instances

Even in current literature, the systematic generation of test instances does not receive much
attention. For the well-researched field of project scheduling, Kolisch, Sprecher, and Drexl
(1996) report that "very little research concerned with the systematic generation of benchmark
instances has been published. [...] most efforts are only briefly described."

Generally, two possible approaches can be found adopted in literature when having to come
up with test instances. First, practical cases. Their strength is their high practical relevance
while the obvious drawback is the absence of any systematic structure allowing to infer any
general properties. Even the 110 instances of the widely known Patterson-set (Patterson
1984), which have become a quasi benchmark in project scheduling, have been collated from
different sources, rather than being generated from a systematic design. Thus, even if an
al gofithm performs good on some practice cases, it is not guaranteed that it will continue to do
s0 on other instances as well. Second, artificial instances. Since they are generated randomly
according to predefined specifications, their plus lies in the fact that fitting them to certain
requirements such as given probability distributions poses no problems. A detailed such
procedure for generating project scheduling instances has been proposed by Kolisch, Spre-
cher, Drex] (1996). However, they may reflect situations with little or no resemblance to any
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problem setting of practical interest. Hence, an algorithm performing well on several such

artificial instances may or may not perform satisfactorily in practice.

Therefore, we decided to devise a combination of both approaches, thereby attempting to keep
the strengths of both approaches while avoiding their drawbacks. For a start, we conducted a
survey among the 200 biggest CPA firms in Germany, asking the respective official in charge
of staff planning (if existent) or one of the firm's partners to provide details about length of
planning horizon, number of auditors, number and structure of audit engagements, auditor
working capacities (working hours per day or week) and possible variations therein (e.g. due
to vacations, training), etc. In addition, we carried out interviews with several experts in the
field of auditing to clarify our understanding of the peculiarities of the auditing sector. Then,
to ensure a systematic and consistent generation of the instances, for each of the parameters of
the MASSP a domain and a discrete distribution function on the domain were defined, based
upon the survey and the interview results. From these definitions, a test bed of representative
instances was generated randomly, using a classification scheme to build instances with speci-
fic properties. In this way we tried to construct instances reflecting the specifics of audit-staff
scheduling in the industry as closely as possible, yet to employ a systematic design for the

generation procedure.

Clearly, the performance of an algorithm cannot be evaluated from running it on infeasible
instances. It is therefore noteworthy that, in spite of the strong NP-completeness of the
associated feasibility problem, it was possible to rig up the design of the (complicated)
generation procedure in a way guaranteeing that for each constructed instance there exists at
least one provably feasible solution.

We assumed that only two instance-related factors do have a major influence on the perform-
ance of a solution method, viz. the size and the tractability of the instance attempted.
Although the size of an instance is determined by the length of the planning horizon, the num-
ber of subphases, and the number of modes, statistical analyses of the survey results found all
these to depend on the length of the planning horizon. In the sequel, three types of instances
will be distinguished with respect to their size: the planning horizon equals 13 weeks for small
instances (with up to 30 auditors, 95 engagements, and 98,800 binary variables), 26 weeks for
medium-size instances (with up to 55 auditors, 280 engagements, and 728,000 binary vari-
ables), and 52 weeks for large instances (with up to 125 auditors, 880 engagements, and
5,948,800 binary variables). In addition, very small instances (with up to 6 auditors, 10
engagements, and 10,400 binary variables) were generated. While these instances are too
small to bear practical relevance, they can be solved to optimality with standard MIP-solvers
as LINDO and OsL and thus can be used as benchmarks.

The tractability of an instance intends to reflect how easy or how difficult that particular in-
stance is to solve. In our study, the auditor capacities are assumed to be the only factor in-
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fluencing the tractability of an instance: the higher the auditor capacities are, the easier the
corresponding instance is ceteris paribus to solve since its solution space becomes larger.
Accordingly, the auditor capacities are calculated from the average expected demand, adjusted
by a multiplicative factor RS (resource strength). Throughout this work, three types of
instances will be distinguished with respect to their tractability: easy instances where RS is
taken equal to 3.5, medium instances where RS equals 2.5, and hard instances where RS is
1.5.

Detailed definitions for the remaining parameters as well as the feasibility proofs can be ob-
tained from the authors.

5.2 Statistical Model

For the purposes of this study, the execution of RAMSES is regarded as a random experiment,
the outcome of which is determined by the following factors:
- @ priority rule employed for engagement selection

- priority rule employed for mode selection

- p priority rule employed for subphase scheduling
- 0. control parameter for engagement selection

- B control parameter for mode selection

-1y control parameter for subphase scheduling

- & size of instances attempted

- T tractability of instances attempted

-1 number of iterations performed

Specifying a set of values for each factor describes over which levels it is varied during an ex-
periment, while one value for each factor determines one run of an experiment.

Definition 1: An experiment is a tuple (Q,IL.P,A,B.I’.2,T,H), where
- Q is a set of priority rules for engagement selection
- I1 is a set of priority rules for mode selection

- P is a set of priority rules for subphase scheduling
- A € Ry is a set of values for the engagement selection control parameter

- B < Ry is a set of values for the mode selection control parameter

-L c R, is a set of values for the subphase scheduling control parameter

- £ < { very small, small, medium-size, large } is a set of sizes

- T < { easy, medium, hard } is a set of tractabilities

- H < IN is a set of numbers of iterations -

Definition 2: A run of an experiment (Q,II.P,A,.B.I’.2,T.H) is a tuple
(0,7,p,0.,8,7,0,T,1) € (QXIIXPXAXBXIXZXTXH). n
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The outcome of a run is - for each instance attempted - summarized in terms of four result
variables. One, BRgrpafyon denotes the objective function value of the best solution found

in all iterations of that run. Two, SApnpoByor denotes the number of successful attempts,
i.e. the number of iterations of the run in which a feasible solution was found. Note that
SAwmpoByon does not necessarily give the number of different feasible solutions found
since the same solution may be generated more than once. Three, BSprpaByott denotes the
best, i.e. the maximum number of subphases scheduled in all iterations of that run. Four,
CPUwnpoByon denotes the average CPU-time of an iteration in a run.

These variables are regarded as random variables which are assumed to be functions of the

factors mentioned above, i.e.

BFompaByon. = fBE(0,1,p,018,7.0,7.1) + ABF gompaByon (36)
SAerposyont = f5A(@,m,p,0,8,%,0,T1) + ASAgmoaByon (37)
BSanpoByon = B5(0,%,0,0,8,7.0,7.1) + ABSgrposyon (38)
CPUpnpasyon = fCFV(m.m,p,0.8,%.0,t1) + APV pnoaByon (39)

where ABFmpaBm, ASAmpuBm, ABSmnpaBm, and ACP anpaﬁm denote the
respective random errors. It is assumed that the errors are mutually independent and drawn
from the same continuous but not necessarily normal distribution.

5.3 Experimental Design

Due to the computational effort required to attempt a sample of all sizes, the scope of the ex-
periment was limited to include only small and very small instances. Though no obstacle for
using RAMSES even on large instances, this effort prevents the undertaking of a full factorial
design experiment covering all instance classes. However, it is a widely accepted conjecture
that rules performing well on small instances are also the best-performing ones for the larger
ones (Davis and Patterson 1975, Badiru 1988, Alvarez-Valdés and Tamarit 1989). Of each in-
stance class (0,T), ten instances were considered in the experiment. They were tackled by the
following algorithms: In the first stage, the rule combinations (PRS, MAX PRF), (MIN TRU
MAX PRF, MAX PRC), and (MIN TRU MAX PRF, MAX RCP) were employed, combined
in the second stage with all rules presented above. This reduced scope of the experiment can
be justified by the following observations: First, using the static rule MAX PRF in the first
stage, all possible engagement selection rules will yield the same results. Second, regardless

of the specific mode selection rule used, the first stage will produce the same results as PRS
whenever o0 = 0.
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For each algorithm (®,7,p) we set € = 1. The control parameters o, B, and y were varied inde-
pendently over the values 0, 2, and 4. Each instance was attempted 1000 times per algorithm
and combination of control parameter values. Comprising three values each for a, B, v, three
tractabilities, two sizes, 10 instances for each instance class, and 1000 iterations for each com-
bination of these factors, this design amounts to a number of 1,620,000 iterations for each
algorithm (®,,p) or 48,600,000 iterations in total. In a more compact form, the experimental
design can be summarized as

QXII = {(PRS, MAX PRF), (MIN TRU MAX PRF, MAX PRC),
(MIN TRU MAX PRF, MAX RCP)}
{MTS, MIN EFT, MIN LFT, MIN SLK, MAX TRU, MIN TRU,
MAX TRC, MIN TRC, MAX RRU, MIN RRU}
{0, 2,4}
{0, 2,4}
{0,2,4}
{very small, small}

(v}
Il

{easy, medium, hard}
{1000}

IEP--]IMI‘;JIWIS>

5.4 Performance Measures

Based upon the result variables defined above, we introduce several performance measures
allowing to summarize the outcome of an experiment in a convenient way.

The efficiency ratio ¢prpaByot of an algorithm (o,m,p) using the control parameter values
(o,,B8,y) for an instance class (0,t) in 1 iterations is computed - as the average over all instances
of that class attempted - as the quotient of BFgrpaByom and the objective function value of
the best known solution for each instance attempted. (This measure is developing further the
rule efficiency ratio proposed by Badiru 1988.) Clearly, dompaByon € [0,1]; a ratio of one
indicates that the considered run produced the best value currently known, while a ratio of
zero reflects the fact that no feasible solution was generated at all.

The acceptance ratio XpmpoByon adjusts SAgmpoByon by the total number of iterations
performed in the run. Thus, it yields an estimate of the number of successful attempts to be
expected from a run. Again, XprpaByorn € [01); a ratio of one indicates that all iterations of
the run found a feasible solution, a ratio of zero reflects the fact that no feasible solution was

generated at all.

The feasibility ratio Wprpasyot divides BSprpaByor by the total number of subphases to
be scheduled in that run. Yempoasyon € [0,1], as well; a ratio of zero indicates that no sub-

phase has been scheduled in that run, a ratio of 1 indicates that in the best iteration all the sub-
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phases have been scheduled, in other words that the corresponding schedule is feasible. While
XonpoByor indicates how many of all iterations produced a feasible solution,
VompaByor gives an indication of how far away the best solutions found are from feasibility.

While it is common practice to use some kind of efficiency ratio to evaluate the performance
of an algorithm, we would like to expand somewhat on the other two measures. Note that a
small efficiency ratio may either indicate a low performance of the respective algorithm, i.e.
its inability to find substantial numbers of feasible solutions, or as well its difficulty to find
feasible solutions. In that situation further insight is provided by the second performance
measure: High acceptance ratios combined with low efficiency ratios indeed mark a poor
performance in terms of the quality of the solutions found whereas low values for both
measures point to the little number of feasible solutions which were found at all. In this latter
case, where in most iterations only a part of the subphases was scheduled, we found another
information to be of interest. Usually one would regard an algorithm scheduling 99 % of the
subphases as better than another one scheduling only 1 % of them. This consideration brought
up the third measure: High feasibility ratios combined with low acceptance ratios exhibit that
in most cases - even if not all - at least nearly all subphases were successfully scheduled,
while low values for both measures demonstrate that in fact the algorithm is unfit for
scheduling major proportions of subphases.

Finally, the average running time SgpnpaByor is defined as equal to CPUonpoByot-

To evaluate the effect of varying the above factors, different aggregate measures were derived
from the above definitions. These aggregations served to isolate the effects of certain factors.
We refrain, however, from the tedious task of citing the respective definitions since they use
simple averaging over all factors except of those to be tested. Clearly, the average values can
be interpreted as approximations of the expected values of the performance measures in
general.

6. Computational Results

The results of our experiment on the small instances with respect to efficiency, acceptance,
and feasibility are summarized in Tables 4, 5, and 6 where - as far as possible - the ten algo-
rithms performing best are listed in decreasing order of their performance. Regarding the hard
instances, however, only one of them was successfully solved: In 1000 iterations two algo-
rithms found a feasible solution while a third algorithm produced a feasible solution under
three different control parameter constellations. Hence, for the hard instances only the feasi-
bility ratios are given.
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From Table 4 it is obvious that the tractability has a substantial effect on the efficiency ratio.
The rather small values indicate that the algorithms produce good solutions only under certain
constellations of the control parameters. In addition, one has to be aware of the fact that also
runs which found no feasible solution at all are reflected in these values. The algorithms
(o, @, p) € {PRS} X {MAX PRF} x {MIN LFT, MIN SLK, MIN TRC} demonstrate the best

efficiency ratios.

Table 4

Rankings of the algorithms according to the efficiency ratios on the small instances

easy medium

onp ]%mpo*c Onp ];)mnpm:
RS, MAX PRF, MIN SLK | 0.6024 |PRS, MAX PRF, MIN LFT | 0.1640
ERS, MAX PRF, MIN TRC 0.592£|PRS, MAX PRF, MIN TRC | 0.1541
Ii’RS, MAX PRF, MIN LFT | 0.5925 II;RS, MAXPRF, MIN SLK | 0.1537

Ii’RS, MAX PRF, MIN EFT | 0.5636 TRU MAX PRF, MAX| 0.1528
RC, MIN TRC

RS, MAX PRF, MIN RRU | 0.5561 MIN TRU MAX PRF, MAX| 0.1505
RC, MIN LFT

RS, MAX PRF, MAX 0.5495 lﬁls, MAX PRF, MIN RRU | 0.1426
RU

IN TRU MAX PRF, MAX| 0.5489 F’ﬂN TRU MAX PRF, MAX] 0.1410
R

RC, MIN LFT C, MIN EFT
lﬁ{s, MAX PRF, MIN TRU | 0.5421 MIN TRU MAX PRF, MAX| 0.1361

CP, MIN TRC

IN TRU MAX PRF, MAX]| 0.5363 MIN TRU MAX PRF, MAX] 0.1355
RC, MIN TRC RC, MIN TRU

RS, MAX PRF, MAX TRCj 0.5328 TRU MAX PRF, MAX| 0.1334
CP, MIN SLK

The small acceptance ratios in Table 5 indicate that often a run generates only few feasible so-
lutions. Again, the tractability has a considerable effect on the performance. Table 5 shows
that the algorithm (o, &, p) = (MIN TRU MAX PRF, MAX RCP, MIN TRC) produces the
best acceptance ratios, regardless of the tractability of the instances attempted.
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Table 5

Rankings of the algorithms according to the acceptance ratios on the small instances

easy medium

wrp XOnpoT orp XonpoT

TRU MAX PRF, MAX] 0.0369 TRU MAX PRF, MAX| 0.0018
CP, MIN TRC CP, MIN TRC

k{m TRU MAX PRE, MAX] 0.0357 [PRS, MAX PRF, MIN TRC | 0.0017
C

P, MIN LFT

TRU MAX PRF, MAX| 0.0349 [PRS, MAX PRF, MIN LFT | 0.0017
CP,MIN TRU

IN TRU MAX PRF, MAX] 0.0336 MIN TRU MAX PRF, MAX| 0.0016
CP,MIN SLK RC, MIN TRC

TRU MAX PRF, MAX| 0.0323 [MIN TRU MAX PRF, MAX] 0.0016
CP, MIN RRU CP, MIN LFT

RS, MAX PRF, MIN LFT | 0.0318 MIN TRU MAX PRF, MAX| 0.0016
RC, MIN LFT

IPRS, MAX PRF, MIN TRC | 0.0308 IPRS, MAX PRF, MIN TRU | 0.0015

TRU MAX PRF, MAX]| 0.0307 [PRS, MAX PRF, MIN SLK | 0.0014
CP,MTS

TRU MAX PRF, MAX] 0.0306 TRU MAX PRF, MAX] 0.0013
RC, MIN LFT CP, MIN SLK

RS, MAX PRF, MIN SLK | 0.0298 ]MIN TRU MAX PRF, MAX| 0.0013
CP, MIN TRU

Table 6 demonstrates that the tractability of an instance does also affect the feasibility ratio.
The algorithms (®, ®, p) € {PRS} x {MAX PRF} x {MIN LFT, MIN SLK, MIN TRC},
which already demonstrated the best efficiency ratios, also show the best feasibility ratios, but
only as long as the resources are plentiful available. In fact, the scarcer the resources, i.e. the
harder the instances attempted, the worse the ranking of the static rules (o, 1) = (PRS, MAX
PRF) becomes. In other words, the harder the instances, the better do the dynamic, resource-
based rules (0, ©) € {MIN TRU MAX PRF} x {MAX RCP, MAX PRC} score against the
above static rules. For the medium and the hard instances, the algorithms (®, &, p) €
{MIN TRU MAX PRF} x {MAX RCP} x {MTS, MIN LFT, MIN TRC} are the highest
ranking ones.
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Table 6

Rankings of the algorithms according to the feasibility ratios on the small instances

easy medium hard
onp Yorpot WRp Yonrpot wrp Vaorpot,
PRS, MAX PRF, MIN|g 9943 [MIN TRUMAX PRF, |y 9376 TRU MAX PRF,
TRC AX RCP, MIN LFT 2 AX RCP, MTS 0-8041
RS, MAX PRF, MIN|) 994 [MIN TRU MAX PRF, IN TRU MAX PRF,
LK MAX RCP, MTS 0.9354 AX RCP, MIN LFT 0.8031
RS, MAX PRF, MIN 0.9941 IN TRU MAX PRF, 0.9336 IN TRU MAX PRF, 0.8017
AX RCP, MIN SLK AX RCP, MIN TRC| ~

RS, MAX PRF, MIN 0.9937 IN TRU MAX PRF, 0.9934 IN TRU MAX PRF, 0.7974
[§] AX RCP, MIN TRC AX PRC, MIN LFT

RS, MAX PRF, MIN|) 993 [PRS, MAX PRF, MINfq 93¢ [MIN TRUMAX PRF, | 7972
u FT ’ AX PRC, MTS )

RS, MAX PRF, MIN|j 9935 IPRS, MAX PRF, MTS|( 9326 F:IN TRU MAX PRF, | 7968

FT AX PRC, MIN TRC
RS, MAX PRF, MTS 0.9933 N TRU MAX PRF, 0.9318 IN TRU MAX PRF, 0.7964
AX RCP, MIN TRU| AX RCP, MIN TRU

F:QS, MAX PRF, 0.9928 TRU MAX PRF, 0.9313 IN TRU MAX PRF, 0.7944
AX TRU AX PRC, MINLFT AX RCP, MIN SLK

RS, MAX PRF, 0.9927 IN TRU MAX RCP, 0.9302 TRU MAX PRF, 0.7938
AX RRU AX RCP, MINRRUJ| AX RCP, MINRRU|

IN TRU MAX PRF, 0.9926 RS, MAX PRF, MIN 0.9298 IN TRU MAX PRF, 0.7923
AX PRC, MIN TRU| C ) AX PRC, MIN TRU[

All in all, different algorithms score differently for the above mentioned performance

measures. However, some common patterns can be derived from our results. The algorithms

(®, @, p) € {PRS} x {MAX PRF} x {MIN LFT, MIN SLK, MIN TRC} score best on the

efficiency ratio and - in the presence of nonscarce resources - on the feasibility ratio. On the

other hand, the algorithms (@, &, p) € {MIN TRU MAX PRF} x {MAX RCP} x {MTS, MIN

LFT, MIN TRC} perform - in the presence of scarce resources - best regarding the feasibility

ratio. Though the results for the acceptance ratio are rather inconclusive, it is easy to see that

the rules p € {MIN LFT, MIN TRC} rank best, regardless of the resource scarcity. We may
thus summarize some general conclusions:

- The decision of which combination of rules ®, 7t, and p to apply to a given kind of
instance can be simplified by selecting separately a combination of rules (®, ) and a
rule p.

- With respect to the efficiency ratio, the combination (®, ©) = (PRS, MAX PRF)
performs best. However, the ranking of (o, ) € {MIN TRU MAX PRF}
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x {MAX RCP, MAX PRC} improves with decreasing resource availability. We thus
conjecture that in the presence of very scarce resources the latter combinations may
yield equally good or even better efficiency values.

- With respect to the feasibility ratio, in the case of nonscarce resources the
combination (®, t) = (PRS, MAX PRF) performs best, in the case of scarce
resources the combination (®, ©) € {MIN TRU MAX PRF} X {MAX RCP, MAX

PRC} produces the best results.
- The rules p € {MIN LFT, MIN TRC} perform best with respect to all these

performance measures.

The effects of varying the values of the control parameter o, B, and ¥ were examined in a se-
parate analysis where for each ratio the above best performing rules were considered, leading
to the following observations:
- The highest efficiency ratios were obtained for o € {0, 2,4}, =0, and Y=4. Due to
the static nature of the rule MAX PRF, choosing different rules ® or varying the
values of o has no effect on the efficiency ratio. Since p = 0 implies a purely random
selection, the good results for this value indicate that MAX PRF is performing rather
poorly, producing a high percentage of infeasible solutions. The rules p € {MIN
LFT, MIN SLK, MIN TRC}, however, yield their best results for Y = 4 and thus
demonstrate their general suitability.
- The highest acceptance ratios as well as the highest feasibility ratios were reached for
o =4, =0 und y=4. It is clear that under all circumstances the consideration of
remaining capacities as done in MAX PRF and MAX PRC (cp. the second case of
equations (19) and (21), respectively) will have a positive effect on acceptance and
feasibility ratio since it guarantees that those modes are excluded from consideration
for which the remaining capacities are not sufficient such that such a mode
assignment would render the corresponding schedule infeasible. The surprising result
for B, however, allows to conclude that the specific selection strategy incorporated in
MAX PRF and MAX PRC (cp. the first case of equations (19) and (21), respectively)
is performing worse than pure random sampling.

The average running times of the best-performing algorithms are provided by Table 7. All al-
gorithms were coded in C and implemented on an IBM RS/6000 model 550. The running
times are given in terms of milliseconds. Here, also the results for the very small instances are
provided. Obviously, the running times increase with increasing instance sizes. In the first
stage, the application of dynamic rules increases the running times between three and four ti-
mes, compared to those of static rules, while the respective differences between static and dy-
namic rules in the second stage are rather small.
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Table 7

Average running times for very small and small instances and all tractabilities

Yonpo

wnp very small small
PRS, MAX PRF, MIN SLK 1.31 8.39
PRS, MAX PRF, MIN LFT 1.32 8.44
PRS, MAX PRF, MIN TRC 1.45 11.66
MIN TRU MAX PRF, MAX RCP, MTS 1.99 27.13
MIN TRU MAX PRF, MAX PRC, MTS 242 30.01
MIN TRU MAX PRF, MAX RCP, MIN TRC 2.13 30.64

In addition, we tried to solve the very small and the small instances with the scientific optimi-
zation program LINDO (Version 5.0). LINDO as well as the algorithms were able to find the
optimum solutions for all very small instances. While RAMSES took about 1,9 seconds for 1000
iterations on each instance, LINDO required between several seconds and several minutes. The

exact results are summarized in Table 8.

The differences became even more pronounced for the small and easy instances where LINDO
found within a time limit of 1500 minutes a solution for only four of the ten instances, taking
about 2, 53/4, 10 3/4, and 11 1/4 hours. In contrast, each algorithm found a feasible solution
for each instance, which was the optimum solution for each of the ones solved by LINDO. On
average, this took about 37 seconds for 1000 iterations.
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Table 8

Average running times for very small instances

RAMSES LINDO
(1000 iterations)
easy | medium | hard easy | medium | hard
Yot 0:01.95| 0:01.93| 0:01.94] 1:04.31{ 3:08.56| 3:18.10

Maximum | 0:03.50{ 0:03.40| 0:03.20] 2:52.96]| 18:13.24] 12:25.10

Std. Dev. 0:00.50| 0:00.49| 0:00.50] 0:56.86| 5:19.33| 4:18.42

Entries in the format minutes : seconds . milliseconds

In another attempt to solve the small and easy instances used in the experiment with standard
solvers, we employed OSL (Release 2). Even though OSL is genefally reported to be
considerably faster than LINDO, it solved - within the same time limit of 1500 minutes - only
two of the instances already solved by LINDO, taking about two minutes and 59 minutes,
respectively.

To summarize, we infer from the results outlined that RAMSES, using the algorithms presented,
is capable of constructing feasible solutions for at least small instances of the MASSP in
neglectable amounts of time. Moreover, the solutions produced are - at least in the presence of
non-scarce resources - near optimal. Under scarce resources, RAMSES may not always generate
a feasible solution; still, by scheduling the majority of all subphases it can contribute to a
more rational and cost-efficient way of audit-staff scheduling in praxi.

7. Summary and Conclusions

Using the medium-term audit-staff scheduling problem MASSP as an example, we demon-
strated how the solution approach RAMSES, introduced in Part I of this paper, can be tailored to
a specific scheduling problem. We outlined the design of a corresponding instance generator,
being able to produce feasible practical instances of the MASSP, along with the statistical
model, the experimental design, and the performance measures used in an extensive computa-
tional study. The results of this study demonstrate that RAMSES is in fact capable of producing
good solutions in neglectable amounts of time.
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