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Abstract 

This is the second part of a paper considering the multi-mode resource-constrained project 

scheduling problem. The first part presents an exact Solution procedure for solving several variants 

of the multi-mode resource-constrained project scheduling problem including the commonly known 

makespan minimization problem. The basic scheine is enhanced by powerful search tree reduction 

schemes considerably useful when optimizing any regulär measure of Performance. 

The second part reports the results of a thorough computational study and the experience gained 

with the algorithm's realization. 

The procedure has been coded in C and implemented on a personal Computer. Using the Standard 

project generator ProGen we have es tablished a wide ränge of instances. More than ten thousand 

problem instances have been systematically generated to evaluate the algorithm's Performance. 

The experimental investigations demonstrate a superior Performance of the exact method and 

reasonable capabilities of the truncated exact approach. The size of the projects that can be solved 

to optimality has been nearly doubled. 

The main objectives of this part are: First, to give additional Information conceming Implementa

tion of the algorithm and the bounding rules. Second, to illustrate the effect of the bounding rules. 

Third, to show the impact of th e Variation of several project characteristics on Solution time and 

quality. Fourth, to enlarge the set of project instances available for testing multi-mode procedures. 

Keywords: Project Scheduling, Resource Constraints, Multiple Modes, Branch-and-Bound, Heu-

ristic, Instance Generation, Computational Results. 

1 Introduction 

This paper is a continuation of Sprecher and Drexl (1996) (cf. [18]). There we have presented, analyzed 

and extended a precedence tree guided enumeration scheme for solving the multi-mode resource-

constrained project scheduling problem. Starting with the general description of the problem and its 

mathematical programming formulation we have worked out the precedence tree guided enumeration 

scheme and reduced it to its key mechanism. Döing so several quite general search tree reduction 

schemes have been developed and illustrated by an example. Limitations and adaptations for dealing 

with slightly changed assumptions and objectives have been discussed. 

Several benefits the approach bears make it outstanding: (1) Ease of description, (2) ease of Imple

mentation, (3) ease of generalization, and as it will turn out as a result of our study, (4) superior 

Performance of the exact method and (5) reasonable heuristic capabilities of the truncated method. 

Although the problem is known as NP-hard the strength of the influence of the Variation of project 

characteristics on Solution times is still unknown. We will dose this gap. The main objectives of 

1 



this part are: (1) To give additional Information concerning Implementation of the algorithm and the 

bounding rules. (2) To illustrate the separate and common effect of the bonnding rules. (3) To show 

the impact of the Variation of several project characteristics on Solution times. (4) To enlarge the set 

of project instances available for testing multi-mode approaches. 

We proceed as follows: Section 2 gives a brief summary of the Standard project generator ProGen. 

Section 3 reports about the computational experience we gained with the exact approach. The seperate 

and mimmnn effect of the bounding rules are iflustrated. The impact of some project characteristics 

on the Solution times are studied. In addition, results obtained by the truncated exact approach are 

presented. Section 4 draws the conclusions. 

2 Generation of Instances 

In this section we describe an algorithm for generating problem instances of the precedence- and 

resource-constrained project scheduling problem presented in the first part. It will provide us the 

instances we need for properly evaluating the sequenting algorithm proposed. 

Certainly, a Solution procedure's cababilities (efficiency) can be preliminarily tested on a set of hand-

made problem instances, but the deficieneies associated with that kind of specific problem collection 

are thorouhly studied in the literature (cf. e.g. [6]). 

On the other hand, inspite of the lack of realism, using the systematic generation scheme has multiple 

benefits: (1) Since most of the combinatorial problems under consideration are only known as NP-

hard, a worst case Solution time estimation can be seldomly reported. Using a systematic scheme the 

estimates can be improved. (2) Analyzing the Performance of an algorithm on parameter characterized 

problem settings may bring out Information for data specific Solution strategy development (as e.g. 

in [7], [16]}. The constraints may by classified into groups of simplifying and impeding constraints, 

thus giving rise to study relaxations and bound calculations. (3) A systematic examination of the 

computational time and quality of solutions can turn out benefits for particular problem classes and 

disadvantages for others. 

Therefore, we summarize the project generator ProGen developed by Kolisch et al. (cf. [8]) which 

serves as the basis of our computational studies presented in Section 3. 

The algorithm consists of four steps. Namely, Step 1, the base data generation, Step 2, the network 

construction, Step 3, the resource demand generation, and finally, Step 4, the resource availability 

generation. 

Within the generation process we use the functions round(-) and trunc(-) where the former rounds the 
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argument to an integer and the latter truncates the decimal fraction of the argument. 

Furthermore, the random fanctions rand(%, ng) and rand(»1,712) indicate randomly drawing of an 

integer and a real, respectively, out of the integer bounded interval [ni,02]- The (pseudo) random 

numbers itselves are obtained by transforming [0,1) uniformly distributed random numbers. The [0,1) 

uniformly distributed random numbers are calculated through the congruence-generator developed by 

Lehmer using the constants and Implementation as given by Schräge (cf. [14]). 

The generation of the project's base data, that is, the generation of the number of non-dummy activities 

J, the number of renewable resources |Ä|, the number of nonrenewable resources |#|, the number of 

modes \Mj\, and the activity durations djm is straightforward as displayed in Table 1. That is, the 

quantaties are determined by randomly drawn integers out of the related, user specified intervals. 

J := rand[Jm*n, Jmax] (number of non-dummy activities) 

Mj := rand[Mm,n, Mmax] (number of modes of activity j) 

djm := randftT1"1, dnax] (duration of activity j in mode m) 

\R\ := rand[Äm'n, i?moa:] (number of renewable resources) 

\N\ := rand[iVm,n, Nmax] (number of norenewable resources) 

Table 1: Base Data Generation 

The activities are labelled consecutively from 1 to J, J := J + 2, where activity 1 and J is dummy 

source and dummy sink activity, respectively. Both activities have a unique mode with a zero duration 

and do not request any resource. The modes of the remaining non-dummy activities are labelled with 

respect to non-decreasing durations: 

If the per-period availability of the renewable resources is constant and the problem is feasible with 

respect to the nonrenewable resources, an Upper bound on the optimal makespan T can be obtained 

by adding up maximal durations of the activities, i.e. T = maxüf=i{4?'m}-

A lower bound on the project's makespan is given by the MPM-duration obtained by using the modes 

of shortest duration and taking into account the project network the construction of which is presented 

in the following subsection. 

2.1 Network Generation 

The underlying idea of the network construction relies on a simple implication of the definition of a 

network. By definition, we know, that for every node v out of the Vertex set V, V = {1,and 
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axc set A, there is a (directed) path from the Single source, node 1, to v and a directed path from v 

to the Single sink, node J. That is, every node except of the sink (source) has at least one successor 

(predecessor). Therefore, the network construction is performed in three steps: First, each node is 

assigned a predecessor, second, each node is assigned a successor and, finally, further arcs are added. 

Clearly, for characterizational purpose, the network finally generated should not contain arcs giving 

no additional Information about scheduling the activities. That is, an arc considered for introducing 

to the current subgraph should not be redundant or cause a redundant precedence relation. 

By a more formal consideration, we can State that an arc (i,j) of a network G is redundant, if it is 

an element of the transitive closure G* of G = (V, ^4\{(z, j)}). Döing so, four cases of redundancy 

produced by an arc currently considered for introdudng to the current subgraph can be identified 

(cf. [8]). As a result, arcs inducing redundant precedence relations are excluded from inclusion. 

However, for a given cardinality of the set of nodes the minimal and maximal number of non-redundant 

arcs can be determined as follows (cf. [8]): Let G = (V, Ä) be a network with | V| = n. (a) Since a 

network is connected, the minimal number of non-redundant arcs Äm,n is given by Amtn = n — 1. 

(b) The maximal number of non-redundant arcs Amax in a network with n > 6 is given by Amax — 

n — 2 + 2 if n is even, and Amax = n — 2 + (W g if n is odd. 

£7»in : minimal (maximal) number of start activities 

•pmin ^pmax^j : minimal (maximal) number of finish activities 

gmax ^pmax^ : maximal number of successor (predecessor) activities of activity j, 

3 — 2,..., J — 1 

c : network complexity, i.e. the average number of non-redundant arcs 

per node (including the super-source and -sink) 

*NET : tolerated complexity deviation 

Table 2: Input Network Generation 

For the characterization of the network we use the parameters given in Table 2. The complexity as the 

average number of (non-redundant) arcs per node has been introduced by Pascoe (cf. [10]) for activity-

on-arc networks and adopted by Davis (cf. [3]) for the AON-representation. Thereby, an increasing 

complexity reflects for a fixed number of jobs, a stronger interconnectedness of the network. It has 

already been shown by Alvarez-Valdes and Tamarit (cf. [1], and confirmed by Kolisch et al. [8]) that 
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Problems become easier with an increasing complexity. This makes the term complexity somewhat 

confounding. Nevertheless, since the term has been used in a number of computational studies (cf. [5], 

[9], [11], [20], and [21]) and, therefore, has become a wellknown project summary measure we retain 

it. 

We now briefly summarize the usage of the parameters given above within the four steps of the 

construction process. In Step 1 the number of start and finish activities are drawn randomly out 

of the interva! [<Sf"n,<S™air] and [P]1™, V™ax], respectively. Ares which connect the dummy source 

with the start activities and the finish activities with the dummy sink are then incorporated into the 

network. In Step 2, beginning with the lowest indexed non-start activity, each activity is assigned a 

predecessor activity at random. Similar in Step 3, each activity which has no successor is assigned 

one. Finally, in Step 4, further arcs are added until the complexity is reached. Düring the whole 

procedure it is ensured that (1) introducing an are does not cause redundant precedence relation, 

(2) the limitation on the number of predecessor and successor activities are met. Moreover, by an 

appropriate reduction of the selectable predecessors and successors a numerically labelled network is 

generated. 

At the end of the generation process the number of arcs ActAcrcs of the network fulfills (1 — €NET) • 

J • C < Act Arcs < (1 -f €NET) • J • C. 

2.2 Resource Demand and Availability Generation 

We consider a resource type r, r 6 {Ä, N}. 

2.2.1 Resource Demand Generation 

The parameters characterizing the demand generation are displayed in Table 3. Their use will be 

summarized in the following. 

The resource demand generation requires two decisions to be made. First, the resources used or consu-

med by the job-mode combinations \j, m] have to be determined. Second, for a job-mode combination 

using or consuming a resource, the number of umts to be used or consumed have to be fixed. The 

first step is referred to as request generation and the latter as generation of demand level. 

(a) Requested Resources 

The requested resources are characterized by the resource factor (J&F), which measures the density of 

the array kjmr. It has been introduced for the single-mode ease by Pascoe (cf. [10]) and utilized in 
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Qfn(Qr?ax) minimal (maximal) number of resources of type r used by a job-mode 

combination [j, m\ 

: minimal (maximal) demand for a resource of type r 

Pr(F = l)(Pr(F = 2)) probability that demand for a resource of type T i s duration constant 

(F=l) (monotonically decreasing with the duration (F=2)) 

RFr resource factor of type r 

RSr resource strength of type r 

*RF tolerated resource factor deviation 

Table 3: Input Demand Generation 

studies by Cooper (cf. [2]) and Alvarez-Valdes and Tamarit (cf. [1]). Kolisch et al. (cf. [8]) generalized 

it to the multi-mode case: 

RF- ••= ' if%m'>0 

' i j=2 •? m=l rgT o , otherwise 

Roughly speaking, the resource factor reflects the average portion of resources requested per job/mode 

combination. It is normalized to the interval [0,1], where, obviously, a resource factor RF = 0, 

expresses the unconstrained MPM-case, and RF = 1 indicates that each job/mode combination uses 

and consumes all the resources, respectively. 

Since, by definition, the resource factor is a discrete measure for a specific base data assingnment not 

all the parameters within the interval [0,1] can be met exactly. Therefore the actual resource factor 

ARFT is controlled by ä deviation constant ejur guaranteeing the realized resource factor is out of the 

interval [RFr • (1 - eRF), RFT • (1 + 6#f)]. 

Beside the resource factors the minimal and maximal number of requested resources Q™tn and Q™ax 

are taken into account when generating the resource requests. These paraqieters ensure that a minimal 

and maximal number of resources of type r requested per job/mode combination is established. 

(b) Level of Demand 

In the previous subsection we have discussed the resource request generation, that is, the decision 

conceming the resources which are requested by the job/mode combinations. The problem now 

arising is to determine level of demand. That is, for the renewable resources the per-period demand 

and for the nonrenewable resources the total demand has to be generated. The interrelation between 

the durations of the modes and the demand for a resource r is reflected by two types of functions. 



One of which is duration independent (F = 1) and the other one is decreasing with the (in.creasi.ng) 

duration (F = 2). For each resource r € r the interrelation is defined in accordance with the type 

dependent probabilities PT(F = 1) and Pr(F = 2), that is, Fr(r) := 1 if rand[0,1] < Pr(F = 1) and 

FT(r) := 2 otherwise. 

If FT(r) = 1, then for each Job a demand U' can be randomly drawn out of the integer inter-

val U™ax] and assigned to all the modes requesting this resource. If Fr(r) = 2, then for 

each job j two levels U1 and U2 are drawn randomly out of the parameter speöfied interval, i.e. 

U1 := rand[C/Tmtn, U?ax] and Ü2 rand[*7™'n, U?ax}. Subsequently Ulem and Uhiah is defined as the 

minimum and maximum of both levels, respectively. 

Given Mj, the number of modes of job j with difFerent durations requesting resource r, we calculate 

jjhigh _ jjlom 

and yield Mj intervals 1% as f ollows: 

h := [round(Uhi9h - A k), round(Uhigh - A(k - 1))] k = l,...,~Mj. 

Since the modes are labelled with respect to nondecreasing durations, we can now draw the demand 

randomly out of the intervals corresponding to the durations. If two difFerent modes with same 

duration request a resource then their level of demand is drawn out of the same interval. 

Düring the construction process inefficiency of the modes (cf. [8] and Part I, Section 4) is controlled 

and excluded. That is, the ease of two different modes m and m with djm < dj^ and kjmT < k~r for 

all r € R and kjmr < k~r for all r € N cannot occur. 

2.2.2 Resource Availability Generation 

In order to analyze the relationship between the resource demand of the jobs and the resource availa

bility Cooper (cf. [2]) introduced the resource strength (RS). Unfortunately, it is non-normalized and 

does not take into account the underlying network struetüre. Thus, simple and difBcult problems are 

assigned identical characterizations of availability. To overcome these problems Kolisch et al. (cf. [8]) 

proposed a new definition of the resource strength. 

Using a minimal and maximal demand level K™in and K™ax the actual availability is expressed by 

a convex combination Kr := K™in + RSr{K™ax - K™n) with normalized scaling parameter RSr. 

RSr = 0 represents the lowest resource availability that can make the problem feasible with respect 

to one resource, and RSr = 1 results in the unconstrained MPM-case. 
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More precisely, for nonrenewable resources r, r € N, the minimal and maximal availabilities to 

complete the project are calculated as follows: 

J—1 1 

j=2 j=2 

For a given type dependent resource strength RSr € [0,1] the availability is then obtained by 

KVT := K™n + round(Ä5T (K?ax - K™n)). 

If the considered resource is renewable the minimal demand is 

Kf - # -

The maximal demand is calculated as the peak period demand of the precedence preserving earliest 

start schedule when performing each job in the lowest indexed mode that employs maximal per-period 

demand with respect to the resource under consideration. That is, the maximal per-period demand 

of job j with respect to resource r'is given by 

kir ••= 

and the corressponding mode with shortest duration: 

Mj 
m*jr •= = fcJJ 

Given the precedence relations of the project the earliest start schedule with the modes determined 

above can be derived. We obtain the resource dependent start time STJ and completion time CTJ of 

job j , j = 2,..., J — 1. The peak period demand is then defined by 

Kjnax max < r t=l 

J-1 

E * >=2 
STT+l<t<CTJ 

jm;rr 

and, thus, using the type dependent resource strength RSr the available amount is given by 

KP •- Kfn + round(Ä5T(ifrmai - K™n)). 

By construction we can State the following: 

Remark 1 

(a) V\T\ — 1 and RSr = 0, then the lowest resource feasible level with respect to r will be generated. 

(b) IF RST « 1 and Mj > 1, then feasibility of the problem can not be assured, because of mode 

coupling via resource constraints. 
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3 Computational Results 

In this section we present the results of our computational studies. One of the main results will be 

that, although the efficieny of the algorithm has. been substantially increased by the proposed bounding 

rules, the multi-mode resource-constrained project scheduling problem is less tractable than reported 

in the literature. Patterson et al. (cf. [13]) have generated 91 instances. The number of jobs ranged 

from 10 to 500, where 75 instances have up to 30 jobs. The instances have been characterized by 

the mean number of modes, mean activity duration, minimum/maximum activity duration, Standard 

deviation of the activity durations, critical path length (based on minimum activity durations), average 

fraction of resources used by an activity mode and network density. The procedure has been coded 

in Fortran and implemented on an IBM 4381 mainframe, which is, as has been stated, approximately 

seven times faster than a 386-based, 20 MHz PC with a numeric coprocessor. For an imposed time 

limit of 1 (10) minutes 30 (33) of the problems with up to 50 activities have been solved to optimality. 

The preponderance of the problem sizes ranged between ten and thirty jobs. 

3.1 Some Details of Implementation 

Before we start to present our computational experience with the exact method in Subsection 3.2 

and the truncated exact method in Subsection 3.3 we will air some of the secrets and problems 

concerning the Implementation of the algorithm. We hope others will follow. Especially, hints on the 

Implementation of the bounding rules are given, to ease the reimplementation of the algorithm. 

Throughout the section the point of attack is the most frequently considered makespan minimization 

problem. The algorithm has been coded in GNU C using ANSI-standard and run under OS/2 on a 

personal Computer (80486dx processor, 66 MHz clockpulse, 16 MB memory). The code requires less 

than 100 KB and the data structures at most 8 MB. 

The basic version of the algorithm has been implemented and then accelerated by the use of pointer 

arithmetic which actuaüy makes the procedure approximately two times faster than the counterpart 

employing array arithmetic. 

If the availability levels of the renewable resources are constant, then computation time can be saved 

when searching for the lowest (renewable) resource feasible start time within Sep 4 and Step 4' of the 

algorithm given in Tables 4 and 5 of Part I, respectively. Due to nondecreasing leftover capacities 

K?(PSi), t = STgi +1,..., r, r e R, resource feasibility in a period 7+1 implies resource feasibility in 

periods t,t+2,..., t+djm. That is, only the first period has to be checked for establishing (renewable) 

resource feasibilty. Döing so some ten percent of computation time reported can be saved. Moreover, 
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with the same argument, the start time of an activity currently considered for scheduling is determined 

by the minimum precedence and resource feasible start time one of the activities already scheduled 

finishes at. That is, it is only necessary to keep resource availabilities of the periods an activity 

finishes at. Although preliminary tests indicate a significant reduction of cpu-time we have ignored 

these perceptions due to major adaptations necessary for the complete exploitation of this implication. 

As already mentioned in the theoretical part the way of the bounding rules' Implementation is critical 

to success. For getting deeper insight we briefly report our experience.. 

Bounding Rule 1 (input data reduction) and Bounding Rule 2 (input data adjustment), the static 

preprocessing rules, can be straightforwardly implemented. However, if they are commonly realized, 

it is useful to apply Bounding Rule 1 first, and then Bounding Rule 2 for maximizing the common 

effect. Removing modes non-executable with respect to renewable resources, via Bounding Rule 1, 

may increase the subtractable amount of minimal consumptions in Bounding Rule 2. 

Bounding Rule 3 (non-delayability) which induces backtracking if an activity gi+i cannot be suc-

cessfully scheduled, that is, without violating the constraints, is realized by an internal variable. It 

counts the number of unsuccessful consecutive trials of scheduling that specific job on a certain level. 

Backtracking occurs if the number of consecutive trials is equal to the number of modes. Therefore, it 

has to be reinitialized even if a job/mode combination [</,+i, m5i+1] can be successfully scheduled, but 

the truncation of the related brauch is enforced by another bounding rule (cf. e.g. with the discussion 

of local left-shift rule, Bounding Rule 5). 

Bounding Rule 4 (Single enumeration), which checks if from a current paxtial schedule the same 

completions are obtainable as from paxtial schedules considered earlier, can be straightforwardly im

plemented by the use of Theorem 6, Part I. However, the internal variable mentioned in the discussion 

of Bounding Rule 3 has to be reinitialized when a brauch is truncated in accordance with Bounding 

Rule 4. 

Bounding Rule 5 (local left-shift), that exclüdes partial schedules from further extension if the 

currently considered job/mode combination [<fc+i, m5<+1] can be locally left-shifted, involves two cases 

to be distinguished. First, from the currently assigned start time 5T3i+1 determined with respect 

to Theorem 1 (a) and (b), Part I, (only) a one-period left-shift is feasible. Second, a complete 

local left-shift can be performed, that is, activity/mode combination [ffi+i,can be started at 

STgi — dgi+lTng.+j without violating the constraints. Whereas in the former case the internal variable 

mentioned in the discussion of Bounding Rule 3 has to be reinitialized it does not have to be in the 

latter. That is, in first case an (the) optimal Solution might be found by extending the current partial 

schedule by scheduling [s»+i, on a level higher than the current one. The second case means,. 



that even if an optimal schedule can be found by extending the current partiaJ schedule through 

scheduling [#+%, m5i+1 ] on a level higher than the current there is a corresponding schedule where 

[5,+i,m5i+1] is finished at or before STgi. Note, both implementations will ensure that only semi-

active schedules are generated (cf. [19]). Since the second ease will be realized through the global and 

multi-mode left-shift rule we have implemented the first ease. 

Bounding Rule 6 (global and multi-mode left shift), which examines if a global or multi-mode left-

shift can be performed on the activity considered for scheduling can be realized in several ways. First, 

we distinguish between projects with unlirnitedoverall budgets, i.e. \N\ = 0, and projects with limited 

overall budgets, i.e. JJV| > 

In the former ease we have implemented two variants. First, if, for a given i-partial schedule VS{, 

an activity gi+i is considered for scheduling for the first time on level (i + 1), then we have checked 

all the modes mgi+1, m3)+1 = 1,..., Mgi+1, if they can be scheduled in the interval determined by the 

precedence feasible start time STJ££(PSi) of activity <%+i a nd the start time STgi currently assigned 

to activity in VS{. If any of the modes can be worked off in the speeified interval, then backtracking 

is performed. Second, when stepping forward from a level i to a level (i + 1), we examine all the 

activity/mode combinations [g,m], g G lj+i, m = 1 ,...,Mg. If any of the combinations can be 

processed in the interval [max{5T|rec(7>«S,), STg^ — d gm + 1},ST5<] then we track back. Clearly, 

it is rational to. search for a feasible left-shift only if STgi_1 < STgi. The benefit of the second 

Implementation is twofold: First, a possible dominance is detected on a lower level than by the first 

variant, and, second, the length of the intervals to be considered are reduced. Inspite of the theoretical 

benefits the computational experience makes us favour the first variant. 

In the latter ease we have tested numerous variants, unfortunately, none of the implementations 

could improve the Performance of the algorithm employing all the bounding rules together. We will 

describe only six implementations. The first one implements Theorem 8 without mode change, that 

is, if an activity/mode combination [<7i+i, Tngi+1] is considered for scheduling on level (t + 1) we scan 

the interval [ST££(PSi),STgi] for a sub-intervall where [s.+i,mSi+1] can be additionally scheduled 

in. If we are successful we select the next activity/mode combination. The second one extends the 

first to all the modes that dominate the mode currently under consideration w.r.t. consumption of 

nonrenewable resources. That is, if there is a mode m, 1 < m < Mgi+1, with ^i+lTOr < ^i+imäi+1ri 

r £ JV, that can be processed in [ST^{VSi), STg>), then [gi+i, mgi+1] can be skipped. Feasibility of a 

left-shift is considered consecutively for all the modes if the acitivity is considered for scheduling 

on level (% + 1) with respect to i-partial schedule V$i for the first time. The next activity/mode is 

selected if a dominating mode can be (globally) left-shift ed. The third and fourth variant enhance 
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the first and second one by a blocking mechanism, that is, an activity /mode combination that can be 

glnhally or multi-mode left-shifted to finish at or before STgi with respect to i-partial schedule VSi 

can be left-shifted exactly the same way when considering an (i + &)-partial schedule VSi+k — VSi © 

[Äi,ra/nJ © ••• 0 [hk,mhk]- The activity/mode combination can be blocked. In the third variant, 

an activity/mode combination blocked on level (* + 1) is skipped on levels i + k, k > 1. In the 

fouxth variant, an activity/mode combination a dominating mode of which is blocked on level (i + 1) 

is skipped on levels i + k, k > 1. The fifth variant makes use of the blocking mechanism and, 

additionally, reduces the periods to be examined. Using a priority rule with attributes given in 

Remark 4, Part I, two cases are distinguished: If Ni < JVt-+1 then it seeks to schedule the unblocked 

activity /mode combination [<7,-+i, in the interval [STj£^(VSi), STgi]. Otherwise the interval 

[max{ST^(VSi), STg^ -dgi+img.+i +1}, 5TSi] is scanned. If the trial is süccessful then the job/mode 

combination is blocked for scheduling on a level i + k, k > 1. The sixth variant examines all the 

job/mode combinations [#+i,m], m = 1,..., , when <?,+1 is tried to be scheduled for the first 

time on level *4-1 with i-partial schedule VSi. The intervals are determined like in variant 5. A 

job/mode combination [ßj+i, m5i+1] is skipped if a dominating combination is blocked on level (i + 1) 

or a lower one. 

However, independently in whatever way of the ones described above, the global and multi-mode 

left-shift rule has been implemented, the schedules finally obtained need not be tight (cf. [15]). 

Note, when implementing the global (and multi-mode) left-shift rule as decribed above the local left-

shift rule is partly included. However, as already mentioned, the former rule would truncate a larger 

part of the branch-and-bound tree. 

Bounding Rule 7 (multi-mode rule) can be straightforwardly implemented. On each level of the 

branch-and-bound tree we störe for the activity currently under consideration the completion 

times obtained when using the modes m, m = 1,..., m3t+1. However, one has to take into acount the 

comments on combining the local (global) left-shift, the multi-mode and the cut-set rule. That is, the 

completion time of an activity/mode combination has to be set to infinity, if one of the shift rules is 

applied successfully in order to preserve optimality. 

Bounding Rule 8 (multi-mode cut-set rule I) can be realized in several variants as well. Clearly, it 

can be generalized tö the following remark: 

Remark 2 

Let VSi and VSj be an i-partial and a j -partial schedule, respectively, that have been detected on 

different paths of the branch-and-bound tree. Let gi+i be an activity neither scheduled in VSi nor 
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in VSj. Furthermore, let STgi+1 denote the start time of activity/mode combination [<7»+i, wfli+1] in 

P «Si+i = PSi © mai+1] ond STg. the start time of activity/mode combination [#,•,*%. ] in PSj. 

If 

(a )CS{VSi)CCS{VSj) (b) Kvr{VSi)<Kvr{VSj),r^N, 

(c) ST^ < STgi+1, (d) Kprt{VSi) < Kprt(PSj),r e R,t = ST9t+1 + 

(e) #%?(?%) < 

then, by the use of the scheduling strategy given in Theorem 1, Part I, PSi® [&+i,mff<+1] is dominated 

byVSj@[gi+i,mgi+1]. 

Proof: Obvious • 

However, obviously, in contrast to the single-mode ease (cf. e.g. [4]), in the multi-mode ease condition 

(d) of Remark 2 cannot be deduced from 

(dl) CTg < CTg, if g € CS(PSi) with CTg > STgi+1 

(d2) CTg < STgi+1, otherwise. . 

That is, in order to prevent from excessive use of storage and expensively proving the assumptions 

of Remark 2 we strengthened them to the ones given in Theorem 10, Part I. Döing so simple data 

struetures are sufficient for efficiently checking for dominance. First, by demanding identity in con

dition (a) of Remark 2, i.e. i = j and CS(PSi) = CS(PSi), we can use a binary tree for storing the 

binary coded (integer-vaiued) cut-sets obtained from already evaluated partial schedules. Döing so 

fast binary search techniques can be employed. Second, by using CTmax(PSi) < STgi+1 we can deduce 

condition (c), (d) and (e) of Remark 2 with low memory requirements and computational effort. 

Note, the fact that the proofs of Theorems 4, 5, 7, 8, 9, and 10 mainly rely on Remark 2 does not 

necessarily mean that the partial schedules which are exduded from further continuation in accordance 

with the theorems would be excluded by Remark 2 as well. This is due to the fact that, roughly 

speaking, on the one hand Remark 2 makes use of the history, that is the set of already evaluated 

partial schedules, and on the other hand the theorems make use of the history and the future of the 

enumeration process. 

As already mentioned a cut-set CS(PSi), the related maximum completion time CTmax(PSi) and 

the related left-over capacities K"(PSi) are stored when tracking back from level (i + 1) to level t. 

Thereby, it pays to störe the Information only if on level (« +1) an activity/mode combintion has been 

found having a start time at least equal to CTmax(PSi). 
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For keeping the effort of verification of cut-set dominance low we focussed on dominating cut-set 

Information. That is, considering «-partial schedules VSi and VSi with same cut-sets, the cut-set 

Information of VSi dominates the one of VSi, if K^{VSi) > K"{VSi), r G N, and CTmax(VSi) < 

CTmax(PSi). The newly obtained cut-set Information is only stored if it is not dominated be previously 

stored cut-set Information. Additionally, previously stored informations are eleminated if they are 

dominated by the new one. 

3.2 Exact Methods 

The summary of the different variants implemented is given in Table 4, where (+) denotes that the 

related bounding rule is employed and (-) that it is not. The basic variant VO matches, except for the 

corrections mentioned in Section 3, Part I, the algorithm proposed in [12] and [13]. In Bounding Rule 5 

(local left-shift rule) we have only checked feasibility of a one-period local left-shift. From the different 

variants of Bounding Rule 6 (global and multi-mode left-shift) the first one performed best when 

employing one rule at a time. The extension' of the basic variant VO by the first variant of Bounding 

Rule 6 is denoted as V61. However, when combined with the other bounding rules its use has not 

been beneficial. Bounding Rule 9 (cut-set rule II) has not been tested seperately since the calculations 

required can be directly employed for the Implementation of Bounding Rule 8 (cut-set rule I). We 

abbreviated the extension of the basic variant VO by Bounding Rule 8 to V8 and the enhancement 

through Bounding Rule 8 and 9 to V89. Moreover, due to the comments on the combination of the 

rules and its restricted use, it has not been combined with the remaining rules. The final version 

employing all the bounding rules but Bounding Rule 6 and 9 is denoted as V99. The variant V100, 

except for changes possible due to the exclusion of nonrenewable resources, matches with the basic 

variant VO. I ts enhancement by the bounding rules is denoted as V101. Thereby, Bounding Rule 6 is 

implemented in its first variant suitable when considering only renewable resources. 

In order to evaluate the effect of the bounding rules presented in Part I, Section 4, we have made use 

of the Standard project generator ProGen. 

The first set of instances comes from the evaluation of ProGen. Beside the constant parameter 

spedfication given in Table 5 we have chosen monotonicaJly decreasing functions, i.e. PR{F = 2) = 1 

(PN(F = 2) = 1) to define a negative correlation of the levels of usage (consumption) and the activity 

duration. Using the network and availability tolerances CNET and (.AVL of 0.05 we allowed at most 

200 trials to meet the requirements. 

The variable settings, as the resource factor of the renewable and nonrenewable resources RFR and 

RFN and the resource strength of the renewable and nonrenewable resources RSR and RSN are given 
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Variant 
Bounding Rule VO VI V2 V3 V4 V5 V61 V7 V8 V89 V99 V100 V101 
B1 (data reduction) - + - - - - + + 
B2 (data adjustment) - + — — 
B3 (non delayability) + + 
B4 (single enumeration) - - - — + — — — — - + • + 
B5 (local left-shift) . - - - - - + — — — - + . - + 
B6 (global left-shift) - — — — — — + - - - - + 
B7 (multi-mode rule) - — — — — — - + + 
B8 (cut-set rule I) + + + + 
B9 (cut-set rule II) — — — — — — — — + - — — 

Table 4: Variants of the Algorithm of Table 4, Part I 

J Mj dj \R\ UR QR \N\ Us QN Sx Vj % 
min 10 3 1 2 1 1 2 1 1 3 1 3 1 
max 10 3 10 2 10 2 2 10 2 3 3 3 3 

Table 5: Constant Parameter Levels under Füll Factorial Design 

in Table 6. For each combination of the variable levels ten instances have been generated. As outlined 

in [8] feasibility of all the problems cannot be guaranteed. Only 536 of the 640 problems have a feasible 

Solution. 

Parameter Levels 

RFR 0.50 1.00 

RSR 0.20 0.50 0.70 1.00 

RFN 0.50 1.00 

RSN 0.20 0.50 0.70 1.00 

Table 6: Variable Parameter Levels under Füll Factorial Design 

Table 7 displays the average computation times in seconds for the different levels of RFR, RSR, RFS 

and RSN employing one bounding rule at a time. The number of feasible problems within the dasses is 

given in the third column. For the calculation of the average CPU-times we have fixed the considered 

Parameter and left the others free. The last three rows of the table show the overall averages, the 

Overall Standard deviations and the maximum computation times the different variants required to 

solve a problem. From the table, independently of a rule being employed or not, a positive correlation 
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Feas. VO 

Variant 
VI V2 V3 V4 V5 V61 V7 V8 V89 

RFR 0.50 259 
1.00 277 

25.93 
35.87 

19.51 2.34 21.97 7.31 5.56 12.34 21.48 3.40 2.23 
24.08 3.42 29.30 11.80 14.09 21.44 27.51 3.79 2.85 

RSR 0.20 119 
0.50 139 
0.70 138 
1.00 140 

29.27 
21.04 
36.48 
37.20 

21.66 5.40 22.84 15.38 19.26 21.84 21.77 1.62 1.42 
14.95 2.09 16.83 6.17 7.37 12.78 17.76 3.41 2.44 
23.66 2.36 31.36 8.92 8.26 17.49 27.29 4.20 2.97 

27.16 2.10 31.59 8,88 6.33 16.75 31.12 4.90 3.20 

RFN 0.50 232 
1.00 304 

1.73 
53.45 

1.27 1.69 1.05 0.80 1.13 1.40 1.53 0.49 0.49 
37.60 3.82 44.62 16,37 16.71 28.98 42.20 5.98 4.12 

RSN 0.20 76 
0.50 153 

0.70 156 
1.00 151 

184.61 
13.17 

2.81 
1.10 

122.28 5.61 155.11 56.30 54.58 97.47 144.55 16.97 10.46 
12.75 4.35 10.47 4.07 5.33 8.27 11.01 3.19 2.75 

2.69 1.89 2.08 1.06 1.59 1.99 2.43 0.75 0.73 
0.40 1.11 0.61 0.63 0.86 1.00 0.88 0.24 0.25 

ßcpu 536 

<?CPU 
maXCPU 

31.06 
88.73 

1,174.94 

21.87 2.90 25.76 9.63 9.97 17.04 24.59 3.60 2.55 
58.53 6.11 78.71 27.13 29.34 46.94 64.28 9.52 6.25 

599.91 47.69 1,138.75 298.25 390.16 580.88 681.00 93.63 53.13 

Table 7: Separate Effect of t he Bounding Rules - J = 10 (80486dx, 66MHz) 

of the average Solution times and the resource factor of the renewable and nonrenewable resources 

can be observed. The strengest increase of the average Solution times is induced by an increasing 

resource factor and decreasing the strength of the nonrenewable resources, i.e. RFN and ÄSjv- It has 

to be mentioned that employing the rules has slowed down the basic variant V0 by some hundreds of 

seconds only on a few instances out of the dass of problems solvable within 0.1 seconds. 

Table 8 compares the average CPU times of the basic variant V0 with the variant V99, employing 

all the bounding rules but the global and multi-mode left-shift, on the set of problems previously 

described (J=10). Moreover, 12-job problems with the parameter spedfication given above have been 

generated and solved. A substantial improvement within all the problem dasses can be observed. The 

comparison factor of the variants V0 and V99 indicates that the enhanced algorithm solves the 10-job 

(12-job) problems on average 221.85 (1,489.43) times faster than the original variant. The frequencies 

of the Solution times are given in Table 9. 

The purpose of the following experiment is to find out the impact of the Variation of the size of the 

project on the Solution times. Using the constant parameter settings mainly given in Table 5 we have 

varied the number of non-dummy activities J, the number of modes per job Mj, the complexity C, 

the number of nonrenewable resources \N\, and the number of renewable resources |Ä| as given in 



J=10 

Feas. V0 V99 Factor 

J=12 

Feas. VO V99 Factor 
RFR 0.50 259 25.93 0.09 288.11 

1.00 277 35.87 0.18 199.27 
0.50 265 412.12 0.20 2,060.06 
1.00 282 681.68 0.52 1,310.92 

RSR 0.20 119 29.27 0.27 108.40 
0.50 139 21.04 0.13 161.84 
0.70 138 36.48 0.10 364.80 
1.00 140 37.20 0.08 465.00 

0.25 134 553.70 0.80 692.12 
0.50 141 556.26 0.37 1,503.40 
0.75 140 611.97 0.17 3,599.82 
1.00 132 478.35 0.13 3,679.61 

RFN 0.50 232 1.73 0.10 17.30 
1.00 304 53.45 0.17 314.41 

0.50 241 21.51 0.24 89.62 
1.00 306 968.18 0.47 2,059.95 

RSN 0.20 76 184.61 0.19 971.63 
0.50 153 13.17 0.22 59.86 
0.70 156 2.81 0.14 20.07 
1.00 151 1.10 0.03 36.66 

0.25 72 3,773.89 0.74 5,099.85 
0.50 158 159.04 0.59 269.55 
0.75. 158 18.46 0.30 61.53 
1.00 159 10.57 0.05 211.14 

HCPU 536 31.06 0.14 221.85 
aCpu 88.73 0.21 422.52 
maxcptj 1,174.94 2.31 508.63 

547 551.09 0.37 1,489.43 
1,939.95 0.72 2,694.37 

22,925.88 9.18 2,497.37 

Table 8: Common Effect of the Bounding Rules - J= 10, 12 (80486dx, 66MHz) 

Var. J [0;0.5] (0.5;5] (5;20] (20;100] (100;500] (500;2,000] (2,000;10,000] >10,000 

VO 10 230 131 64 54 54 3 - -

V99 10 509 27 - - - - - -

VO 12 192 89 53 77 61 32 37 6 

V99 12 439 106 2 - - — - -

Table 9: Frequencies of Solution Times, J= 10, 12 (80486dx, 66MHz) 

Table 10. The underbar denotes the Standard setting for studying the remaining variations. For 

each parameter combination we have varied the resource factor RF and the resource strength RS, 

i.e. RFN,RFR G { 0.50,1.00} and RSN,RSR € {0.25,0.50,0.75,1.00}, and generated ten instances 

per combination. That is 640 instances per combination of the size parameters have been produced. 

Clearly, minor changes of the constant parameter setting have to be made, that is, Q™tn, Q™ax, 

T € {Ä,JV}, have been adapted. The results of the experiment are given in Table 10. 

The third and the nineth column show the number of problems that have a feasible Solution. Columns 

four through six and ten through twelve give the average CPU-time, the Standard deviation of the 

CPU-time and the maximum CPU-time in seconds. As to be expected, (1) the strengest influence on 
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Feas. PCPU VCPU maxcpu Feas. l*CPU CfCPU maxcpu 

10 536 0.14 0.21 2.31 1 640 0.05 0.05 0.53 

12 547 0.37 0.72 9.18 2 551 1.06 3.81 48.68 

T 14 551 1.87 4.81 51.09 Mj 3 550 7.40 22.59 272.97 
J 

16 550 7.40 22.59 272.97 4 555 45.09 123.76 1,061.37 

18 552 47.29 170.30 1,853.06 5 558 264.65 895.37 14,165.88 

20 554 238.67 955.68 11,579.20 

1.5 551 19.97 71.36 828.10 1 637 3.54 15.18 275.90 

C L8 550 7.40 22.59 272.97 |iV| 2 550 7.40 22.59 272.97 

2.1 552 3.30 8.80 78.94 3 600 17.27 59.34 739.47 

1 553 4.42 17.85 301.00 

2 550 7.40 22.59 272.97 

|Ä| 3 557 10.87 35.03 428.03 

4 552 10.28 26.23 283.69 
5 546 15.36 56.46 979.09 

Table 10: Variation of Project Size - Variant 99 (80486dx, 66MHz) 

CPU-time is exerted by the Variation of the number of jobs and modes, respectively. CPU-times seem 

to increase exponentially with both parameters. (2) Increasing the complexity C reduces the number of 

precedence feasible schedules and therefore the number of sequences to be examined. That is, the CPU-

time required for optimally solving the problems decreases with an increasing complexitiy. (3) The 

number of renewable resources seems to influence the CPU-times linearly. On the one hand, checking 

feasibility is more time consuming if the number of renewable resources is increased, on the other hand, 

tight constraints can prevent from deeply descending the branch-and-bound tree. (4) The number of 

nonrenewable resources, too, is positively correlated with the CPU-times. But, though feasibility 

testing with respect to nonrenewable resources is less lavish than earliest start time computation with 

respect to renewable resources, the number of nonrenewable resources have a stronger impact. We 

conjecture that it is mainly reasoned by the fact that increasing the number of nonrenewable resources 

may increase the number of incomparable request levels, i.e. left-over capacities, related to a cut-set. 

That is the effect of the cut-set rule is more and more consumed by the effort spended on checking 

the assumptions. Finally, a detailed analysis of the influence of the resource factor and the resource 

strength on Solution times has confirmed, (5) the higher the resource factor RFR or RFjy is, that is, 

the higher the average portion of the resources used (consumed) per acivity/mode combination the 

more time on average is necessary to solve the problem. (6) Except for minor deviations, a neagtive 
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correlation of the average CPU-times and the availability of the resources has been established. The 

lower the resource strength is, the more time is necessary to solve the problem. 

In the next experiment we have studied projects solely employing renewable resources, i.e. |JV| = 

0. Using the fixed parameter setting of Table 5 with minor adaptations due to \N\ = 0, that is, 

\N\min = |iV|ma* = 0, Q%in = Qxax = 0 and U%in = U%ax = 0, ten instances per combination of the 

variable setting RFR = 0.50,1.00 and RSR — 0.25,0.50,0.75,1.00 have been generated. Moreover, we 

have varied the number of activities, that is, projects consisting of 10, 12, 14, 16, 18, 20 non-dummy 

activities have been produced. The results are displayed in Tables 11 through 15. The problems 

have been solved by the basic variant V100 and the bounding rule enhanced variant V101. Again, 

because of the mode coupling constraints, not all the problems have a feasible Solution. The number 

of feasible problems for the ten- and twelve-job problems are given in the fourth and nineth column of 

Table 11. The average CPU-times required to solve the feasible ten-job problems are given in column 

five and six, whereas column seven compares the average Solution times of variant V100 and variant 

V101. Similarly, columns eight through twelve show the results concerning the twelve-job problems. 

The last three rows display the overall average CPU-times, the overall Standard deviations and the 

maximum CPU-times. We extend our considerations to Table 12, where the average CPU-times of the 

RFR RSR J Feas. V100 V101 Factor J Feas. V100 V101 Factor 

0.50 0.25 10 5 1.85 Q.03 61.66 12 7 3.32 0.08 41.50 

0.50 10 0.25 0.02 12.50 10 0.52 0.02 26.00 

0.75 10 0.02 0.00 — 10 0.01 0.01 1.00 

1.00 10 0.00 0.01 — 10 0.01 0.02 0.50 

1.00 0.25 10 4.41 0.08 55.12 10 75.55 0.20 377.75 

0.50 10 0.37 0.04 9.25 10 1.51 0.07 21.57 

0.75 10 0.02 0.02 1.00 10 8.82 0.03 294.00 

*1.00 10 0.00 0.01 — 10 0.01 0.00 — 

VCPU 75 0.80 0.02 40.00 77 11.53 0.05 230.60 

<?CPU 3.03 0.03 101.00 50.38 0.07 719.71 

maxcpt/ 24.12 0.13 185.53 411.94 0.38 1,084.05 

Table 11: Computational Results - Only Renewable Resources - J =10, 12 (80486dx, 66MHz) 

basic variant V100 and the accelerated variant V101 on 14- and 16-job projects are compared. The 

frequencies of CPU-times are given in Table 13. Again, the comparison factors give a clear picture of 

the substantial improvement of the basic variant on average and worst case Performance. On average 

the basic variant is accelerated on 10- (12-, 14-, 16-) job projects by a factor of approximately 40 (230, 

19 



427, 3,322). The worst-case acceleration, i.e. the comparison factOTS of maximum Solution times, is 

about 186 (1,084,1,307, 3,722). 

RFR RSR J Feas. V100 V101 Factor J Feas. V100 V101 Factor 

0.50 0.25 14 9 112.74 0.24 469.75 16 9 232.92 0.35 665.48 

0.50 10 1.89 0.04 47.25 10 175.31 0.15 1,168.73 

0.75 10 2.76 0.03 92.00 10 0.10 0.05 2.00 

1.00 10 0.01 0.03 0.33 10 0.02 0.02 1.00 

1.00 0.25 10 253.54 0.44 576.22 10 22,062.41 4.27 4,166.84 

0.50 10 10.39 0.08 129.87 10 1,171.03 2.15 544.66 

0.75 10 0.62 0.03 20.66 10 3.53 0.10 35.30 

1.00 10 0.01 0.02 0.50 10 0.04 0.06 0.66 

PCPU 79 46.92 0.11 426.54 79 2,990.14 0.90 3,322.37 

<?CPU 232.17 0.21 1,105.57 12,665.44 3.28 3,861.41 

maxcpu 1,882.19 1.44 1,307.07 73,635.87 19.78 3,722.74 

Table 12: Computational Results - Only Renewable Resources - J =14, 16 (80486dx, 66MHz) 

Vax. J [0;0.5] (0.5;5] (5;20] (20;100] (100;500] (500;2,000] (2,000;10,000] >10,000 

V100 10 62 10 2 1 - - ' - -

V101 10 75 — - - - - - -

V100 12 49 15 5 6 2 - - -

V101 12 77 - - - - - - -

V100 14 48 11 7 9 2 2 - -

V101 14 75 4 - - - - -

V100 16 45 3 4 8 6 6 2 5 
V101 16 65 11 3 - - - - -

Table 13: Frequencies of Solution Times [sec.] (80486dx, 66MHz) 

Finally, Tables 14 and 15 show the computional results for the projects consisting of eighteen or twenty 

non-dummy activities. Comparing the average and worst ease Performance if nonrenewable resources 

are taken into account (Table 6 through Table 10) or not (Table 11 through Table 15) we can identify 

the strong impact of overall limitations on resource availability (i.e._ nonrenewable resources). The 

influence is that strong that it cannot be solely reasoned by the additional Operations to be performed. 

We conjecture, that numerous feasible partial schedules cannot be identified as incompletable with 

respect to nonrenewable resources until further continuations have been evaluated. That is, fast 
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completability checks may cause a substantial improvement of the Performance when taking into 

account nonrenewable resources. 

RFR RSR J Feas. V101 J Feas. V101 
0.50 0.25 18 10 1.63 20 9 1.57 

0.50 10 0.13 10 1.11 
0.75 10 0.14 10 0.17 
1.00 10 0.14 10 0.34 

1.00 0.25 10 22.72 10 84.94 
0.50 10 1.31 10 2.41 
0.75 10 0.07 10 0.32 
1.00 10 0.09 10 0.51 

PCPU 80 3.28 79 11.42 
crePV 15.49 65.74 
maXCPU 110.94 576.22 

Table 14: Computational Results - Only Renewable Resources - J =18, 20 (80486dx, 66MHz) 

Var. J [0;0.5] (0.5;5] (5;20] (20;100] (100;500] (500;2,000] (2,000;10,000] >10,000 
V101 18 • 58 16 4 1 1 - - -
V101 20 45 22 9 2 11 — — 

Table 15: Frequencies of Solution Times [sec.] (80486dx, 66MHz) 

3.3 Truncated Exact Methods 

In the final experiment we have examined the heuristic capabilities of the algorithm. For this purpose 

we have built the frequency distributions of tijnes necessary for optimally solving the problems of the 

former subsection by variant V99. The results are displayed in Table 16. For the majority of the 

problems an optimal Solution can be foußd and verified within twenty seconds. 

Beside the frequency distributions of Solution time the quality of the solutions that. are found after 

spending a certain amount of time pn the enumeration process is of interest. Therefore, we have let 

the enumeration process run te# seconds and one minute, respectively. The truncated exact approach 

is again based on variant Y99. ^he results are given in Table 17. Hereby, considering one of the four 

blocks, the first row displays thß uumber of feasible problems; Solved indicates the number of problems 

a feasible Solution of whjpfy j^een f ound; 0 gives the number problems no feasible Solution could 
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J [0;0.5] (0.5;5] (5;20] (20; 100] §
 

I
 

(500;2,000] (2,000;10,000] >10,000 

10 509 27 - - , -

12 439 106 2 - - - - -

14 318 188 43 7 - - -

16 254 169 78 41 8 - - -

18 197 156 72 77 39 11 - -

20 166 126 60 78 69 37 16 2 

Mj [0;0.5] (0.5;5] (5;20] (20; 100] (100;500] (500;2,000] (2,000;10,000] >10,000 

1 639 1 - - - - - -

2 394 138 14 5 - - - -

3 254 169 78 41 8 - -

4 213 131 57 98 43 13 - — 

5 188 112 43 61 84 53 16 1 

C [0;0.5] (0.5;5] (5;20] (20;100] (100;500] (500;2,000] (2,000;10,000] >10,000 

1.5 228 151 90 53 26 3 . -

M 254 169 78 41 8 - - -
2.1 301 166 65 20 - - - ' — 

|Ä| [0;0.5] (0.5;5] (5;20] (20; 100] (100;500] (500;2,000] (2,000;10,000] >10,000 
1 294 158 74 25 2 ' - - -
2 254 169 78 41 8 - - -
3 212 185 97 52 11 — - -
4 198 186 95 63 10 - - -
5 200 177 94 52 22 1 - -

|JV| [0;0.5] (0.5;5] (5;20] (20;100] (100;500] (500;2,000] (2,000;10,000] >10,000 
1 331 224 63 17 2 - - -
2 254 169 78 41 8 - — -
3 218 194 102 62 21 3 - -

Table 16: Frequencies of Solution Times by Variant V99 [sec.] (80486dx, 66MHz) 

be detenmned for, although there is one; $* represents the number of problems thfe optimal Solution 

can be found and 'verified; Best reflects the number of problems the Solution determined is optimal. 

Finally, the last two rows show the average deviation A and maximum deviation from optimality Amax 

of the solutions found. 

The results show a reasonable improvement of the quality of the solutions by spending more time 

on the enumeration. Moreover, the number of problems a feasible Solution has been found of is 

rather high. TJsually, heunstic approaches fail Unding a (good) feasible Solution if the consumption of 

nonrenewable resources is limited. 
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1—
1 

II J = 12 J = 14 J = = 16 J = = 18 J = 20 

10 sec. 10 sec. 10 sec. 1min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 

Feas. 536 547 551 551 550 550 552 552 554 554 

Solved 536 547 551 551 550 550 550 552 550 552 

0 0 0 0 0 0 0 2 0 4 2 

$* 536 547 524 551 467 535 384 481 327 405 

Best 536 547. 535 551 495 546 , 417 508 354 437 

Ä 0% 0% 0.23% 0% 0.82% 0.03% 2.87% 0.73% 6.05% 2.38% 
jynax 0% 0% 20.83% 0% 24.32% 5.56% 58.06% 29.73% 78.95% 51.61% 

Mj = 1 Mj = 2 Mj = 3 Mj = 4 Mj = 5 

10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 

Feas. 640 640 551 551 550 550 555 555 558 558 

Solved 640 640 551 551 550 550 543 551 533 545 

0 0 0 0 0 0 0 12 4 25 13 

$* 640 640 539 551 467 535 362 458 322 381 

Best 640 640 547 551 495 546 402 493 347 415 

Ä 0% 0% 0.04% 0% 0.82% 0.03% 3.53% 1.00% 6.24% 2.81% 
£max 0% 0% 9.52% 0% 24.32% 5.56% 41.03% 35.90% 57.89% 35.71% 

\R\ = 1 \R\ = 2 \R\ = 3 |Ä| = 4 \R\ = 5 

10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 

Feas. 553 553 550 550 557 557 552 552 546 546 

Solved 553 553 550 550 555 557 549 552 545 546 

0 0 0 0 0 2 0 3 0 1 0 

$* 492 547 467 535 449 532 434 528 423 512 

Best 527 551 495 546 486 540 468 540 461 526 

Ä 0.36% 0.01% 0.82% 0.03% 1.10% 0.24% 1.40% 0.15% 1.57% 0.24% 

£max 22.73% 3.57% 24.32% 5.56% 37.50% 31.03% 31.58% 17.39% 51.52% 18.18% 

C = 1.8 

|JV| = 1 • M = 2 W = 3 C = 1.5 C = 2.1 . 

10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 10 sec. 1 min. 

Feas. 637 637 550 550 600 600 551 551 552 552 

Solved 637 637 550 550 590 599 550 551 552 552 

0 0 0 0 0 10 1 1 0 0 0 

$* 585 633 467 535 464 558 430 513 503 547 

Best 607 635 495 546 508 572 471 531 527 552 

Ä 0.39% 0.03% 0.82% 0.03% 1.56% 0.38% 1.35% 0.23% 0.31% 0% 

farnax 19.44% 13.89% 24.32% 5.56% 36.84% 37.50% 33.33% 16.67% 19.23% 0% 

Table 17: Truncated Exact Approach by Variant V99 - 10 Seconds and 1 Minute (80486dx, 66MHz) 
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4 Conclusions 

We have studied the computational effect of the acceleration schemes presented in the first part 

of the paper. The results indicate a substantial improvement of computational tractability of the 

multi-mode resource-constrained project scheduling problem. The size of the projects that can be 

solved to optimality has been nearly doubled. However, although the rules presented can mainly be 

implemented in other multi-mode suitable generalizations (cf. e.g. [IT]) of single-mode algorithms (cf. 

[4], [20]) the approach presented here remains the most general one currently available. In contrast to 

the previously mentioned it covers time varying resource availabilities and can simply be generalized 

to cover time varying resources requests as well. 

By the use of the Standard project generator ProGen we have established a wide ränge of more than ten 

thousand problem instances that can serve as a basis for the experimental investigation and evaluation 

of new approaches. The results of the computational experiment reflect the intuitive expectation and 

thus confirm the quality of ProGen. Although we are fax away from solving problems sized by reality 

the results give a clear indication what we have to expect when trying to solve large projects to 

optimality. However, truncated exact approaches seem to be an appropriate tool for the heuristic 

Solution of real problems (of large size). 
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