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Abstract: Constraints of different types have to be regarded in school 
timetabling. In part I of this paper we mo delled requirements for distributing 
large weekly teaching units into small peaces by the use of the multiple mode 
concept in a novel way. In addition, it has been shown that several types of 
constraints may be modelled using the unifying framework of partially 
renewable resources: no class, subject, room, and teacher overlaps; class, 
subject, room, and teacher unavailabilities; compactness constraints; preas-
signment constraints; lectures to be given simultaneously; lunch breaks, etc. 
The main contributions of part II of this paper are: We present two-phase 
parallel greedy randomized and genetic methods. In addition, we provide an 
instance generator for the generation of a representative set of instances. The 
generator along with a Statistical model is used for a thorough experimental 
evaluation of the methods. Computational results show that the methods 
solve the instances investigated close to optimality. 

Keywords: Timetabling, distribution requirements, multiple modes, mode 
identity, compactness constraints, partially renewable resources, greedy 
randomized / genetic algorithms 

1. Introduction 

The school timetabling problem requires to schedule a set of meetings between teachers and 

pupils over a set of time periods, where some resources must be available and several addi-

tional constraints have to be met. The timetabling problem includes a large variety of 

Problems on different levels of an education system. What makes the difference between 

timetabling (for schools) and course scheduling (for universities) is explained in part I of this 

paper. In addition, there our work is related to that of other researchers. 

Large weekly teaching units have to be split into small teaching pieces in school time

tabling. In addition these small pieces have to be distributed over (the days of) the week. This 

Splitting and distributing (which we summarize under the term distribution requirements) is 

modelled by the use of the multiple mode concept with mode identity constraints in a novel 

way. In addition, different constraints have to be satisfied: No class, subject, room, and 

teacher overlaps, are allowed; one has to take care of class, subject, room, and teacher 

availabilities; compactness constraints have to be taken into account; preassignment of 

lectures must be possible; some lectures have to be given simultaneously; lunch breaks have to 

be regarded, etc. Note that compactness constraints typically require no free time (other than 

lunch breaks or time to move from one building to another) between lessons for the pupils. 

Noteworthy, that most of the constraints may modelled using the unifying framework of 

partially renewable resources. 

We present greedy randomized and genetic algorithms. For the greedy randomized 

algorithms we provide several priority rules. Each basic algorithm with one of the priority 

rules and one set of control parameters yields one specific algorithm. But how to decide about 

how much CPU-time to spend in which of the algorithmic variants? We do this "automa-

tically" by sequential analysis (hypothesis testing), or in other words, we exclude inferior 

variants from further consideration based on Statistical tests. In addition, we provide an 

instance generator for the generation of a representative set of instances. The generator along 
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with a Statistical model is used for a thorough experimental evaluation of the methods. Com-

putational results show that the methods solve the instances investigated to suboptimality. 

The remainder of the paper is organized as follows: In Section 2 we present the greedy 

randomized algorithms. In Section 3 the genetic algorithms are introduced. Section 4 outlines 

the design of a problem specific instance generator and defines the Statistical model, the 

experimental design, and the Performance measures used in an extensive computational study 

whose results are covered in Section 5. Finally, Section 6 provides a brief summary and some 

conclusions. Fundamentals of sequential analysis are stated in the Appendix. 

2. Two-Phase Parallel Greedy Randomized Algorithms 

From part I of this paper it is clear, that the timetabling problem under consideration is 

NP-complete and NP-hard, respectively. Therefore, the only line of attack for tackling 

practical problem sizes comprising thousands of binary variables (cp. Section 4.1) is provided 

by approximation methods. 

Deterministic greedy priority rule-based methods have been widely adopted in scheduling 

(cp. the surveys in Haupt 1989, Panwalkar and Iskander 1977). Partial schedules are exten-

ded, starting with the empty set of scheduled jobs, i.e. the intialization x^ : = 0 for all the 

decision variables. These methods are commonly used when scheduling large problem instan

ces, yield only one Solution for an instance, even if applied several times. Having in mind that 

this Solution may be arbitrarily bad or even infeasible, determinism seems to be a major 

deficiency of such methods. Semi-greedy (cp. Hart and Shogan 1987), greedy randomized (cp. 

Feo, Resende, and Smith 1994, Laguna, Feo, and Elrod 1994), or regret-based biased random 

sampling methods (cp. Drexl 1991, Kolisch 1995) try to overcome the shortComing of deter

minism by performing the selection process randomly, but according to probabilities which are 

proportional to priority values. In this way, in each step every schedulable job may be chosen, 

though those sharing higher probabilities will have a higher probability of being selected. Due 

to their nondeterminism, repeated application of randomized methods will produce a set of 

solutions rather than one sole Solution. Usually some of these solutions will be better than the 

one found with the deterministic version of the same method. Moreover, no tiebreaker needs 

to be specified for randomized methods, since ties cannot occur. 

Generally, common priority rule-based methods for (project) scheduling are distinguished 

to be serial or parallel (cp. the early work of Kelley 1963 and the recent improvements 

obtained by Kolisch 1996). The former schedule one of the precedence-feasible jobs as early as 

possible w.r.t. resource constraints and the latter proceed chronologically over all periods of 

the planning horizon trying to schedule in each period as many jobs as possible. While the 

basic principle of both methods is simple and intuitive, some specific details have to be 

designed appropriately in order to get reliable and fast methods for the problem class under 

consideration. 
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Section 2 is organized as follows: First we give an outline of the Two-Phase Greedy 

Randomized Method (TPGRM). Second, we present the (Single) priority rule used in phase 1. 

Third, the priority rules of phase 2 are described. Finally, we give the basic ideas of sequential 

tests which allow to improve the greedy randomized algorithms. 

2.1 Outline of the Algorithimc Scheme 

The TPGRM works as follows: In phase 1 a BTU (Basic Teaching Unit) is selected and one of 

the available modes is assigned to that BTU. (Note that from a conceptual point of view we 

might distinguish between step 1 of phase 1 where a BTU is selected, while in step 2 of 

phase 1 one of the available modes is assigned to the chosen BTU. This is exactly what we do 

in the genetic algorithms described below.) In phase 2 the jobs are scheduled within a parallel 

scheduling scheme on account of priority rules. 

Let denote u) a priority rule. Whenever necessary we will use the superscripts (uP) u1 and 

u? with the following meaning: (" 0" resembles to a priority rule used within step 1 of phase 1 

for BTU-selection) " 1" points to a priority rule used within step 2 of phase 1 for mode-

selection, while "2" relates to a priority rule used within phase 2 for job-selection of the 

two-phase algorithm. Moreover, let I denote the set of (locally) available elements for which 

we want to compute priority values. 

In Kolisch 1995 it has been shown for the multiple resource-constrained project scheduling 

problem that regret-based biased random sampling methods are superior to pure and biased 

random sampling algorithms, respectively. Hence, in the following we employ the former 

which works as follows: 

Let us consider e.g. the priority rule w = SPT (Shortest Processing Time). Then from the 

local context it will be evident what I currently stands for. Let w. denote the specific 

processing time of i € I. Then 

w. : = max {| hei} - w. (Viel) 

gives a regret-based priority value, i.e. in case of a "minimizing" priority rule the point of 

reference is the alternative with the maximum entry. We modify w. to 

з. :-(& + £)' (Viel) 

and compute probabilities w. as follows: 

и. :=w. / 2 5. (Viel) 
1 hei k 

Clearly, e > 0 makes sure that each local decision alternative may be chosen with a 

positive probability; b transformes the term (.) exponentially and thus gives way to control 

the generation of probabilities. Note that 6=0 produces the priority rule RANDOM. 
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In case we have e.g. the priority rule w = LPT (Longest Processing Time) we only have 

to replace the computation of w. as follows: 

ü>. : = w. -min | hei} (Viel) 

I.e. in case of a "maximizing" priority rule the point of reference is the alternative with 

the minimum entry. 

When Computing ui. within (step 2 of) phase 1, we use the control parameter b. 

Analogously we use the control parameter c in phase 2, while the computation scheme 

remains unchanged. (Note that in Subsection 4.2 an additional control parameter a will be 

introduced within step 1 of phase 1.) 

2.2 Phase 1 Priority Rule 

Now we describe the priority rule MIN_COST_Pl, which is used for the selection of BTUs 

and modes. 

MIN COST P1 (MINimal COST in Phase 1): Select the BTU u (1 < u < U) and the mode m 

(0< m< M ) in accordance with costs c , i.e. v - u7 um 

u1 := c (l<u<U; 0<m<M ) um um \ _ J _ u7 

Note that due to the static nature of MIN_COST_Pl used within (step 1 and step 2 of) 

phase 1 the order in which the BTUs are considered is of no relevance. In the case of dynamic 

rules (cp. Subsection 4.2) the introduction of an additional rule uP for BTU selection is 

appropriate within step 1 of phase 1. 

In Drexl and Salewski 1994 two other priority rules for phase 1 have been developed and 

tested experimentally. The first one, denoted as MIN_JOB takes care of the minimum number 

of jobs j with djm # 0. The second one, denoted as MAX.JOB looks for the maximum number 

of jobs j with djm # 0. Both will not be investigated in more detail in the sequel, because they 

have been outperformed by MIN_COST_Pl. 

2.3 Phase 2 Priority Rules 

Let Uj denote the BTU the job j belongs to. Then, after phase 1 the mode m^ is known in 

which BTU Uj has to be processed. Let t denote the time instant under consideration within 

the parallel method. Moreover, let EJ denote the set of Eligible Jobs at time instant t; clearly, 

EJ consists of the set of jobs, which (i) are not finished, which (ii) do not violate the con-

straints (5) and (6) introduced in Subsection 3.1 of part I of this paper, and for which (iii) 

t + d -1 < T A (t + d. -1) i X. holds. 
Jm„; . 
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Now, a short description of the priority rules is given, which are used for the selection of 

the jobs within the parallel method. 

MIN_COST_P2 (MINimal COST in Phase 2): Selecting " cheap" jobs j (j e EJ) is preferred; 

more precisely: 

(VjeEJ) UJ2. : = c 
ujmuj 

MAX COST P2 (MAXimal COST in Phase 2): Selecting "expensive" jobs j (j e EJ) is prefer

red. 

SPT_JOB (Shortest Processing Time of JOBs): Selecting jobs j (j e EJ) with short processing 

times is preferred; more precisely: 

(J2.: = d. 
J Jmuj 

(VjeEJ) 

LPT JOB (Longest Processing Time of JOBs): Selecting jobs j (j e EJ) with long processing 

times is preferred. 

MIN TRU JOB (MINimum Total Resource Usage of JOBs): Selecting jobs j (j e EJ) with a 

minimum total resource usage is preferred. With fS] as the smallest integer greater than 6, 

more precisely we compute: 

(VjeEJ) wf:= £ 
J r=l 

k. d. 
"V Jmuj 

MAXTRUJOB (MAXimum Total Resource Usage of JOBs): Selecting jobs j (j e EJ) with a 

maximum total resource usage is preferred. 

MIN_TRU_BTU (MINimum Total Resource Usage of BTUs): Selecting BTUs u^ (jeEJ) 

with a minimum total resource usage is preferred. Recall that au. and eu. denote the flrst and 

the last job of BTU u^, respectively. Then more precisely we compute: 

„ e R 
w?:= SUJ S 

^ i=a r=l 
uj 

k. - d . im r im 
Ui Ui 

(VjeEJ) 

MAX_RRU (MAXimum Relative Resource Usage): The larger the ratio " resource demand / 

resource availability", the scarcer the resource. Therefore, selecting jobs j (j e EJ) with scarce 

resources is preferred. More precisely we define 

B(j) := S 
r=l 

k. 
3W 

t+d. —1 jm 
min{Kr5r|l<7r<n;qe?,} (VjeEJ) 

q=t 
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and then get: 

u2 := S 
J r=l 

k. • d . jm i . 
/ B(j) (V j 6 EJ) 

Note that [k. ] equals 1 by definition, if job j uses resource r in mode m (0, otherwise). 

Thus, B(j) is the sum of the minima for all the resources required by job j. 

MAX AVA (MAXimnm AVAilable jobs decrease): The smaller the decrease of the cardina-

lity of EJ after job j 6 EJ has been selected, the more preferable it is to select that job. More 

precisely we denote EJ' to be the updated set of eligible jobs and then get: 

a^:=|{i|ieEJ'}| (VjEEJ) 

MINJBTU (MNimum number of BTUs already selected): The less jobs j of BTU u. with 

duration 0 have been selected so far, the more preferable it is to select such jobs. More 

precisely we define 

A := I {i I a <i<e A # 0} | 
Ui 

and then get: 

e t+d. -l u,- im 
u?.:= SJ Sui (x. /A) (VjeEJ) 

J i=a q=t 
Uj J 

Recall that t denotes the time instant under consideration within the parallel method. 

MAXJBTU (MAXimum number of BTUs already selected): The more jobs j of BTU u^ with 

duration d^# 0 have been selected so far, the more preferable it is to select such jobs. 

Three other priority rules for phase 2 (MAX_TRU_BTU, MIN.RRU, MIN_AVA) have 

been developed and tested experimentally in Drexl and Salewski 1994. They will not be inves-

tigated, because they have been outperformed by the others. 

The following has to be noticed: Having finished phase 2 there might be some jobs which 

could not have been selected. Then constraints (3) and (4) require all jobs j of the 

corresponding BTU u^ to be reassigned to mode mu. = 0. 

2.4 Sequential Analysis 

Clearly, the Performance of the two-phase parallel method depends on the rules employed and 

the control parameters used. In fact, we get a huge variety of specific algorithms and the 

question arises how much CPU-time to spend on a specific variant for a specific problem 
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instance in order to get the "best possible" results. One answer to that question may be given 

by sequential analysis of the parameter space. 

Let denote 

Q1 = {the set of priority rules (of step 2) of phase 1} 

ft2 = {the set of priority rules of phase 2} 

as well as a/e fi1 and <j2e£22 specific rules. Note that we consider the priority rules as 

"Parameters" of the overall two-phase parallel method. Moreover, let denote B = {6 > 0} and 

C = {c > 0} the parameter spaces of both phases. In order to make the parameter spaces com-

putationally tractable we restrict them to: 

B C { {0}, {1,2} ,{3,4} } (parameter b (of step 2) of phase 1) 

C c { {0}, {1,2} ,{3,4} } (parameter c for phase 2) 

Clearly, for 6 = 0 we have random sampling. 6 G {1,2} slightly transforms the selection 

probabilities, whereas 6 6 {3,4} enforces the differences of the selection probabilities up to a 

large extent. The same holds true for the parameter c. When the cardinality of a subset equals 

2, one element is choosen randomly. 

Thus we get the overall parameter space 0 = {n^*n2*gxC}. 0 will partitioned into P 

disjoint subspaces 0^ #2,..., $T (where the case of pure random sampling in both phases is 

chosen only once). We have {w1* w2*i*c} c 0 and | - \u)2\ = |6| = |cj = 1. Moreover, 

it is 0 = Ur , 0 and 9 0 0 = (f> for 7^77. 
7=1 7 7 ? 

Now, we proceed as follows: First, we define an arbitrary total order on the supspaces. 

Second, for each subspace 30 trials are performed. Third, the q-quantil £ of each subspace is 

estimated. Fourth, perform a prespecified number of (additional) trials iteratively as follows: 

(i) Choose parameters out of the next subspace at random. (ii) Compute a schedule using the 

TPGRM-method. (iii) Perform the Sequential Probability Ratio Test (SPRT; see Appendix) 

and discard the subspace under consideration if the null-hypothesis is rejected. For the 

parameters a, ß, p°, and p1 introduced in the Appendix we set in the following a = 0.05, ß = 

0.1, po = 0.2, and p1 = 0.05, respectively. For the sake of shortness this method is abbreviated 

as TPGRM/SPRT in what follows. Note that this idea has already been successfully used for 

solving lotsizing and scheduling problems in Haase 1994 and Drexl and Haase 1996. 

3. Genetic Algorithms 

As the name suggests, genetic algorithms (GAs) are motivated by the theory of evolution. 

Early work dates back to Rechenberg 1973, Holland 1975, and Schwefel 1977; see also Gold

berg 1989, Mühlenbein, Gorges-Schleuter, and Krämer 1988, Liepins and Hilliard 1989, and 
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Michalewicz 1992. As stated by Grefenstette 1987, "GA's are not well suited for fine-tuning 

structures which are very close to optimal solutions". If a competitive GA is desired, it is 

therefore essential, to incorporate (local search) improvement operators or in other words 

domain-specific knowledge (cp. Johnson 1990). Storer, Wu, and Vaccari 1992, Bean 1994, 

Pesch 1994, and Domdorf and Pesch 1995 among others describe how to take into account 

improvement operators. Note that a GA for a timetabling problem has been recent ly provided 

by Colorni, Dorigo, and Maniezzo 1992 as well, but their model is less general then ours and 

only limited details about the method and the computational results are provided. 

Section 3 is organized as follows: First, we give a description of the GA. Second, we 

present the priority rules used for BTU-, mode- and job-selection. 

3.1 Description of the Algorithm 

To Start with, let denote 16 IN+ t he number of individuals, A e 1N+ t he population size, v e [0,1] 

the crossover rate, and ß e [0,1] the mutation rate, respectively. Now, first the basic genetic 

algorithm and the decoding of individuals are explained. Second, an appropriate representa-

tion of genes is introduced. 

random initialization of the first generation; 

for generation = 1 to i/\ do 

{ 

crossover with rate u; 

random mutation of children's genes with rate fi; 

decoding of individuals; 

reproduction where the individual with the best objective function value survives 

in any case (survival of the fittest) and the others are selected with 

probability proportional to their objective function value; 

} 

Clearly, a mutation is only allowed on the children produced by the crossover in order to 

guarantee the survival of the fittest. 

For the purpose of decoding each individual primarily consists of a number of genes each 

of which is representing one priority rule for each of the activities "selection of a BTU", 

"selection of a mode for that BTU", and for "selection of jobs of that BTU for scheduling", 

respectively. At the end of this section a gene will be defined more precisely. 

Now, a serial one-phase GA is presented. As stated in Section 2, serial means that the 

algorithm does not proceede chronologically (in contrast to parallel). Contrary to the 

two-phase algorithm presented above one-phase accounts for the fact that the activities 

outlined in the preceeding paragraph w.r.t. decoding are performed "BTU after BTU". In 
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Drexl and Salewski 1994 a two-phase serial and a two-phase parallel GA have been developed 

and tested experimentally as well. Both will not be described here, because they have been 

outperformed by the serial one-phase GA. 

Let denote EU, EM, and EJ the set of eligible BTUs, modes, and jobs, respectively. 

Moreover, let denote FJ the set of finished jobs. Finally, denotes the left-over capacity 

for all r and ir. Like in Section 2, all the decision variables are initialized to x. . : = 0. jmt 

K1 
IV 

X. . jmt 
EU 

= KrT (1 < r < R ; 1 < 7r < II); /* left-over capacities */ 

= 0 (l<u<U;au< j<eu;0<m<Mu;l<t<T); 

FJ := 4; 

g : = 1; /* number of the gene currently decoded from the considered individual */ 

while EU ^ <f> do 

{ 

u : = Select BTU (EU); 

EM := {0,...,Mu}; 

while EM t <f> do 

{ 

/* BTU-selection */ 

m u 
EJ 

= Select Mode (EM); 

= {iIau-i-eu A 
= FJ u {j | a„ < J < A d^ = 0); 

/* mode-selection */ 

FJ 

while EJ # ^ do 

{ 

j := Select Job (EJ); 

Schedule Job (j); 

EJ := EJ\{j}; 

FJ := FJ U {j}; 

update K' ; 

} 

g := g + 1; 

} 

/* job-selection */ 

/* job scheduling */ 

}; 

For the sake of clarity some explanations of the procedures have to be given: The proce-

dure " Select BTU (EU)" selects a BTU u according to priority rule w° from gene g. 

"Select Mode (EM)" selects a mode m according to priority rule w1 from gene g. The procedure 

"Select Job (EJ)" selects a job j according to priority rule u? from gene g. "Schedule Job(j)" 

schedules job j as early as possible w.r.t. resource and precedence constraints in accordance 

with the serial scheme. 
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Clearly, like in Section 2, after decoding there might be some jobs which could not have 

been scheduled due to insufficient left-over capacities KV Then constraints (3) and (4) 

introduced in Subsection 3.1 of part I of this paper require all jobs j of the corresponding BTU 

u. to be reassigned to mode m^ =0. 

Finally, an appropriate representation of genes has to be developed. Goldberg 1989 

suggested to represent a gene as a job. Clearly, when applied to problems with precedence 

constraints it is difficult to maintain feasibility of offsprings. In order to overcome this 

deficiency Dorndorf and Pesch 1995 defined a gene to be a priority rule. Unfortunately, this 

approach has some drawbacks as well. Salewski and Bartsch 1994 define a gene as a tuple 

(w, a, z) consisting of a rule w, a control parameter a, and a random number z, respectively. 

Obviously, in the case of a constant choice of a and z we get the idea of Domdorf and Pesch 

as a special case. Another special case may derived by fixing u and a (roughly speaking, this is 

the idea proposed by Bean 1994) within a run (defined as the production of t individuals) and 

coding only the random number z. Clearly, when three activities have to be encoded 

simultaneously (as it is the case here for BTU-, mode- and job-selection) this idea can be 

generalized as follows: Define a gene to be a tuple (uP, a, z°; ui1, b, z1; o?, c, z2). Then fix the 

rules uP, u1 and w2 and the corresponding control parameter a, b and c for each activity 

within a run, and encode the genes by the use of three random numbers z°, z1, and z2, 

respectively. 

3.2 Priority Rules for BTU-, Mode- and Job-Selection 

In the sequel priority rules for BTU-, mode- and job-selection will be described in this order. 

To start with two BTU-selection priority rules are presented first. 

MAX_BLK (MAXimal number of BLocKs): Selecting BTUs u (1 < u < U) with many blocks is 

preferred; more precisely: 

V„+ 1I (VueEU) 

MAXRESBTU (MAXimum number of RESources required by BTUs): Selecting BTUs u 

(1 < u< U) which require many of the resources is preferred; more precisely: 

u°:=l{rlk. mt>0>l (VueEU) 
U 11 

For the selection of mode m e EM to the already fixed BTU ü e EU only the priority rule 

w1 = MINCOSTP1 is used. Clearly, this rule is identical to the MINCOSTP1 rule descri

bed in Subsection 2.2. 
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Given the fixed BTU ü in the chosen mode m_ e EM for selecting job j € EJ two priority 

rules are employed. While the first rule is identical to the LPTJOB-rule, the second one is a 

variant of the MAX_RRU-rule. 

MAXRESJOB (MAXimum number of RESources required by JOBs): Selecting jobs j 

(V j e EJ) which require many of the resources is preferred; more precisely: 

(VjeEJ) 
Uj 

Clearly, a priori any of the rules presented in Subsection 2.3 could be used here. But, on 

account of the differences in the basic algorithmic schemes of the TPGRM and the GA, the 

two rules mentioned above provided superior results. 

4. Experimental Performance Analysis 

Before presenting the Performance measures in Subsection 4.4 the generation of test instances 

(Subsection 4.1), a Statistical model (Subsection 4.2), and the experimental design (Sub

section 4.3) are introduced. 

4.1 Generation of Test Instances 

Even in current literature, the systematic generation of test instances does not receice much 

attention. For the well-researched field of project scheduling, Kolisch, Sprecher, and Drexl 

1995 report that" very little research concerned with the systematic generation of benchmark 

instances has been published. (...) most efforts are only briefly described." 

Generally, two possible approaches can be found adopted in literature when having to 

come up with test instances. First, practical cases. Their strength is their high practical 

relevance while the obvious drawback is the absence of any systematical structure to infer any 

general properties. Thus, even if an algorithm performs well on some practical instances, it is 

not guaranteed that it will continue to do so on other instances. Second, artificial instances. 

Since they are generated randomly according to predefined specifications, their plus lies in the 

fact that fitting them to certain requirements such as given probability distributions poses no 

problem. However, they may reflect situations with little or no resemblance to any problem 

setting of practical interest. Hence, an algorithm performing well on several such artificial 

instances may or may not perform satisfactorily in practice. 
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Therefore, we decided to devise a combination of both approaches, thereby attempting to 

keep the strengths of both approaches while avoiding their drawbacks. For a Start, we carried 

out interviews with several experts in school timetabling for understanding of the peculiarities 

of the primary and secondary schools. Then, to ensure a systematic and consistent generation 

of the instances, for each of the parameters a domain and a discrete distribution function on 

the domain were defined, based on the interview results. From these definitions, a test bed of 

representative instances was generated randomly, using a Classification scheme to build 

instances with specific properties. In this way we tried to construct instances reflecting the 

specifics of timetabling in primary and secondary schools as close as possible, yet to employ a 

systematic design for the generation procedure. 

Clearly, the Performance of an algorithm cannot be evaluated from running it on 

infeasible instances. It is therefore noteworthy that, in spite of the strong NP-completeness of 

the associated feasibility problem, it was possible to rig up the design of the (complicated) 

generation procedure in a way that for each constructed instance there exists (by the 

introduction of the dummy mode 0) at least one provably feasible Solution. 

We assumed that two instance-related factors do have a major impact on the Performance 

of a Solution method, viz. the size and the tractability of the instance attempted. 

The size a of an instance is measured in terms of the number of binary variables x^mt. It 

depends on the parameters J, Mu, and T, respectively. J depends on the parameters H, F^, 

and Bhf, respectively, Mu results from the transformations of the Mfaf. An estimate of the 

number of variables is given by: 

Five instance sizes a will be considered: «#(=extra small), «5r(=tiny), o/ ( = small), Jt 

(=medium), and ( = large), respectively. The sizes Jt, and £ represent instances which 

may be observed in small- to large-sized schools in practice. The sizes JSand ST form instances 

which are solvable to optimality with commercial MlP-solvers like LINDO and OSL. The 

average relation between the sizes and the number of binary variables is approximately as 

follows: JFa 2,300; Ja 18,000; of» 54,000; Jta 122,000; Jt» 610,000. Moreover, Table 10 (cp. 

Subsection 5.3) relates the problem size to the average number of BTUs, jobs, and resources, 

respectively. 

The tractability r of an instance is intended to reflect how easy or how difficult that 

particular instance is to solve. For the purpose of this study, we take the number of feasible 

solutions disregarding the dummy mode 0 as an estimate of the tractability. The tractability 

depends (i) on the number and tightness of the resource constraints, (ii) on the number of 

forbidden periods and (iii) on the number of precedence relations 6% Three tractabilities 

will be considered: i (=easy), Jt (=medium), and <%(=hard), respectively. On the average, 

the easy instances (with resource availability four times as much as the hard ones) have 
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several feasible solutions, the medium ones (with resource availability two times as much as 

the hard ones) have a couple of them, while for the hard ones only a few feasible solutions 

exist. 

4.2 Statistical Model 

First we would like to point out that any greedy (randomized) algorithm is a special case of a 

GA, if the population size A, the crossover rate u, and the mutation rate ß equal 1 (cp. 

Salewski and Bartsch 1994). Clearly, then only one child with a completely new initialization 

is generated, and this is exactly what greedy algorithms do. On account of that, we are now 

able to provide a unifying Statistical model for the methods presented in Sections 2 and 3. 

For the purpose of this study, the execution of the TPGRM and the GA is regarded as a 

random experiment, the outcome of which is determined by the following factors: 

uP: priority rule employed for BTU-selection 

J: priority rule employed for mode-selection 

J: priority rule employed for job-selection 

a : control parameter for BTU-selection 

b : control parameter for mode-selection 

c : control parameter for job-selection 

A : population size 

ß = mutation rate 

v : crossover rate 

a : size of instances 

r : tractability of instances 

L : number of individuals 

Spedfying a set of vahies for each factor describes over which levels it is varied during an 

experiment, while one value for each factor determines one ran of an experiment. 

Definition 1: An experiment is a tuple (fi°, O1, Q2,A,B,C, £, M, 1), where 

ß° is a set of priority rules for BTU-selection 

Q1 is a set of priority rules for mode-selection 

0. is a set of priority rules for job-selection 

A c IR> Q is a set of values for the BTU-selection control parameter 



14 

B C R > Q is a set of values for the mode-selection control parameter 

C c 1R > 0 is a set of values for the job-selection control parameter 

C c IN+ i s a set of population sizes 

M c [0,1] is a continuous interval of mutation rates 

Jf c [0,1] is a continuous interval of crossover rates 

S C {extra small (&), tiny (J), small (o/), medium ( J), large (Jf)} is a set of sizes 

T c {easy ($), medium (JC), hard (<#)} is a set of tractabilities 

1 C W + i s a set of numbers of individuals • 

Definition 2: A run of an experiment (ü°,is a tuple (uP, w1, 

w2, a, b, c, A, ß, v, o, T, i) G n°xn1xfi2xi4xBxCx£x!tfx Jf*S*T*X. m 

The outcome of a run is - for each instance attempted - summarized in terms of two result 

variables. One, n , 0 , , denotes the objective function value of the best Solution (i>u u v-w* abcAfii/CTi J 

found after i individuals have been generated in that run. Two, CPU^ wldenotes 

the average CPU-time for producing (and decoding) an individual in that run. These variables 

are regarded as random variables which are assumed to be functions of the factors mentioned 

above. 

4.3 Experimental Design 

Due to the computational effort required to attempt a sample of all sizes & the scope of the 

experiment was limited to include only extra small (<#) and tiny («7) instances. Though no 

obstacle for using the developed methods even on larger instances, this effort prevents the 

undertaking of a füll factorial design experiment covering all instance classes. However, it is a 

widely accepted conjecture that algorithms performing well on smaller instances are also the 

best-performing ones for larger instances (cp. e.g. Davis and Patterson 1975 and Badiru 1988). 

All the tractabilities were considered, i.e. T = {easy (8), medium (JC), hard (<#)}. 

Of each instance class (<j,r), ten instances were considered in the experiment. After 

Pretests not further documented they were tackled by the algorithms (uP, w1, UJ2) C ( n°, 0.1, 

Q2) with 

Ö°= {MAX BLK, MAX_RES_BTU}, 

Ö1 = {MIN COST P1}, and 

fi2 = {MIN_COST_P2, MAX COST P2, SPT_JOB, LPT_JOB, 

MIN_TRU_JOB, MAX_TRU_JOB, MIN_TRU_BTU, MAXJRRU, 

MAX_AVA, MIN_BTU, MAX_BTU, MAX_RES_JOB}, 
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and the control parameter values (a, b, c) c (J, B, C) were restricted to A = B = C = {0, 1, 2, 3, 

4}. Once more, after pretests not further documented the genetic parameters (A, /JL, U ) of the 

GA were restricted to A = {1, 100}, ß = {0.01, 1.0}, and v = {0.5, 1.0}. From this it follows 

that a specific combination of algorithm and parameters can be identified by uP, LJ1, U2, a, b, 

c, A, ß, and u. In addition, e was set to 1. 

4.4 Performance Measures 

Based upon the result variables introduced above, we define two Performance measures 

allowing to summarize the outcome of an experiment in a convenient way. 

The efficiency BFwowiw2ajc>/jI/(7rt of the algorithm (uP, w1, u?) using the control parame

ter values (a, b, c) and the genetic parameter values (A, ß, u) for an instance class (er, r) after 

the individual i in a run is computed, as (i) the average over all instances of that class 

attempted, and (ii) as the ratio of the objective funetion value of the best known Solution for 

each instance attempted and ^abcX/iuan ru*e ^ciency ratio proposed by 

Badiru 1988). Clearly, BF^ ^ ahcX/lulTTl G [0,1]; a ratio of one indicates that during i 

individuals the best value currently known has been found, while a ratio of zero reflects the 

fact that no feasible ratio was generated at all. STD will be used to denote the STandard 

Deviation. CPU^ ̂ ahc)illl/ffTL denotes the average running time for producing one indivi

dual. 

To evaluate the effect of varying the above factors, different aggregate measures were 

derived from the above definitions. These aggregations served to isolate the effects of certain 

factors. We refrain, however, from the tedious task of citing the respective definitions since 

they use simple averaging over all factors except of the size of the instance and the factor to 

be tested. Clearly, the average values can be interpreted as approximations of the expected 

values of the Performance measures. 

5. Computational Results 

The methods presented in the preeeeding sections have been coded in C and implemented on 

an IBM RISC 6000 model 550 Workstation. The outline of this section is as follows: In 

Subsection 5.1 we report on the generation of benchmark solutions. Subsection 5.2 provides 

the results of the methods TPGRM and TPGRM/SPRT, while the results of the GA are 

reported in Subsection 5.3. 

5.1 Generation of Benchmark Solutions 

In order to evaluate the Performance of the heuristics their results are compared with the best 

results available. Therefore, we first tried to solve extra small (<#) and tiny (JT) instances by 
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the use of the Standard MlP-solver LINDO. Table 1 presents the results for the 30 instances 

(ff, r) with ff = £, T = {8, JC, <%}, where we generated 10 instances for each combination of 

ff and r. 

Table 1: Computational Results of the MlP-Solver 

r 8 Jt 

SOL 
CPU 

8 
69.34 

5 
193.21 

2 
590.39 

SOL denotes the number of instances which could be solved optimally within a time limit 

imposed by 1,000,000 iterations. CPU provides the average computation times in minutes. 

The results indicate that the instances become significantly harder in terms of the required 

computational effort as a function of the tractability r. 

Second, we tried to solve tiny (J) instances by the use of LINDO. The results for the 45 

instances (ff, r) with a = J, r = {£, JC, <%}, where we generated 15 instances for each 

combination of a and r, are as follows: For r = £ still 7 of the 15 instances could be solved 

optimally within the imposed time limit, whereas for r = JC (<%) only 1 (0) instance could be 

solved. Note that LINDO terminated prematurely for a = <2f when reading the MPS-file. 

5.2 Computational Results of TPGRM and TPGRM/SPRT 

In the following first we present results of the basic method TPGRM. The experimentai 

design is as follows (C = 1, M = Jf = 1.0; and A are imdefined): 

Ü1= {MIN_COST_P 1} 

Ü2 = {MIN_COST_P2, MAX_COST_P2, SPTJOB, LPT_JOB, 

MINTRUJOB, MAX_TRU_J OB, MIN_TRU_BTU, MAX_RRU, 

MAX_AVA, MIN_BTU, MAX_BTU} 

B = {0, 1, 2, 3, 4} 

c = {0, 1, 2, 3, 4} 

s - w 

l = {*, JC, <%} 

l = {10,000} 

Table 2 provides the Performance measure BF and the Standard deviation STD for one 

run of the experiment as a function of the control parameter b. The results indicate that the 

parameter values 1, 2, or 3 dominate the parameter values 0 and 4. 
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Table 2: Impact of b on BF 

b 0 1 2 3 4 

BF 0.690 0.855 0.839 0.857 0.556 
STD 0.041 0.025 0.026 0.024 0.117 

Table 3 presents the Performance measure BF and the Standard deviation STD as a 

function of the control parameter c. The results indicate that the parameter value c has some 

influence, but which value to take is not that evident. Probably there are interaction effects 

between the priority rules employed and the control parameter c; therefore, we will now have 

a closer look on the priority rules of phase 2. 

Table 3: Impact of c on BF 

C 0 1 2 3 4 

BF 0.820 0.852 0.841 0.854 0.703 
STD 0.030 0.020 0.027 0.025 0.093 

Table 4 provides the Performance measures BF and STD as well as the average CPU-

times in seconds per iteration for the different priority rules employed in phase 2. The results 

show, that the rule MAXJRRU is, on the average and irrespective of the tractability of the 

instances, the winner w.r.t. Solution quality, while it takes about twice as much CPU-time as 

the fastest rules. 

Table 4: Comparison of Phase 2 Priority Rules 

BF STD CPU 

MAX RRÜ 0.835 0.039 0.068 
LPTJOB 0.833 0.043 0.032 
MIN~COST P2 0.831 0.044 0.032 
MAX TRÜ JOB 0.826 0.041 0.032 
MAX~AVA~ 0.825 0.046 0.441 
MAX~COST P2 0.818 0.047 0.032 
MAX BTU 0.813 0.046 0.035 
SPT JOB 0.799 0.049 0.033 
MIN BTU 0.795 0.046 0.034 
MIN TRU JOB 0.790 0.053 0.033 
MIN_TRU_BTU 0.772 0.068 0.033 

Now, we analyze the Performance of the TPGRM/SPRT-method. Recall that the 

TPGRM/SPRT eliminates parameter subspaces and thus spends the effort on priority rules 

and/or parameter subspaces, which seem to be more promising while the TPGRM does not. 

The experiment is as follows: First, we take only the three best phase 2 priority rules, i.e. 

Ü2= {MAX_RRU, LPTJOB, MIN_COST_P2}. Second, B C {{0}, {1,2}, {3,4}} and 
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C c { {0}, {1,2}, {3,4} }, as motivated in Subsection 2.4. In addition, we set I = {6,000; 8,000; 

10,000} for the number of individuals. 

We expect that the TPGRM/SPRT improves over the TPGRM. Consequently, as Perfor

mance measures BF' we take the ratio BF(TPGRM/SPRT)/BF(TPGRM), i.e. the best 

objective function value of the TPGRM/SPRT related to the best objective function value of 

the TPGRM. CPU' is defined analogously. 

Table 5 presents the redefined Performance measures BF' and CPU' as functions of the 

number of individuals I. The results show considerable improvements, when the search effort 

is not equally distributed over all subspaces, but directed towards more promising rules 

and/or parameters. Obviously, these improvements have been gained w.r.t the learning which 

is built in the TPGRM/SPRT. Note that only a small additional computational effort is 

necessary in order to gain these improvements. 

Table 5: Comparisonl of TPGRM/SPRT and TPGRM 

1 6,000 8,000 10,000 

BF' 1.101 1.129 1.149 
CPU' 1.111 1.124 1.135 

Table 6 provides the redefined Performance measures BF' and CPU' as functions of the 

tractability r for I = 10,000. We see, that the improvements are quite large especially for the 

easy class of instances. 

Table 6: Comparison2 of TPGRM/SPRT and TPGRM 

r | t M «ar 

BF' I 1.238 
CPU' 1.131 

1.101 
1.142 

1.109 
1.132 

5.3 Computational Results of the GA 

In the following we present results of the GA. Based on preliminary computational results and 

in order to cut down the computational effort, the experimental design was restricted. The 

parameters a for BTU-selection and c for job-selection were set to i: = C: = {0,2}, while the 

mode-selection parameter 6 was set to ß: = {2}. Clearly, for the parameter value 0 we have 

random sampling, denoted as RANDOM. Hence, we get the following design: 

Ü° = {MAX_BLK, MAXJRESJBTU, RANDOM} 

fi1 = {MINCOSTP1} 

ü2 = {LPTJOB, MAX_RES_JOB, RANDOM} 
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A — B — C~ {2} 

L = {100} 

iL = {0.01} 

l = {0.5} 

S = {<%) 

l = {f, JC, c%} 

1 = {10,000} 

Note that C = {100} and 1 = {10,000} imply that 100 generations have been produced. 

In addition to the Performance measures BF and STD already introduced in 

Subsection 5.1 we report in the following the average deviation AVE between the objective 

function value of an individual and the best known objective function value known for the 

instance under consideration. 

Tables 7, 8, and 9 provide computational results for the easy, medium, and hard 

instances, respectively. In each case the six most promising combinations of priority rules are 

report ed. The priority rule combinations are sorted in nonincreasing order of AVE. For the 

sake of shortness fi1 = MIN COST P 1 is omitted in all tables. 

Table 7: Results for the Easy Instances 

Ü° 
n2 BF AVE STD 

MAX RES BTU RANDOM 1.0 0.95 0.18 
RANDOM LPT JOB 1.0 0.95 0.18 
RANDOM RANDOM 1.0 0.95 0.18 
MAX BLK LPT JOB 1.0 0.94 0.18 
MAX RES BTU LPT JOB 1.0 0.94 0.18 
MAX BLK RANDOM 1.0 0.93 0.18 

Every procedure, i.e. combination of priority rules, has at least once computed the best 

known objective function value. Hence, a discrimination between "good" and "even better" 

procedures w.r.t. this Performance measure is impossible. But the AVE Performance measure 

provides more or less promising procedure candidates. For the easy instances the procedure 

(ö°, fl1, n2) = (MAX_RES_BTU, MIN_COST_Pl, RANDOM) performs best, while for the 

hard ones (RANDOM, MIN_COST_Pl, LPTJOB) is the winner. 
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Table 8: Results for the Medium Instances 

n° 
fi2 BF AVE STD 

RANDOM RANDOM 1.0 0.95 0.26 
MAX BLK LPT JOB 1.0 0.86 0.26 
RANDOM LPT JOB 1.0 0.86 0.26 
MAX RES BTU LPT JOB 1.0 0.85 0.26 
MAX RES BTU RANDOM 1.0 0.85 0.26 
MAX_BLK RANDOM 1.0 0.85 0.27 

Table 9: Results for the Hard Instances 

n° 
BF AVE STD 

RANDOM LPT JOB 1.0 0.98 0.04 
RANDOM RANDOM 1.0 0.95 0.13 
MAX RES BTU RANDOM 1.0 0.94 0.13 
MAX RES BTU LPT JOB 1.0 0.94 0.14 
MAX BLK RANDOM 1.0 0.93 0.14 
MAX BLK LPT JOB 1.0 0.92 0.16 

Table 10 provides the CPU-times in seconds required per individual as a function of the 

problem size S. # BTUs, # Jobs, # Res, and CPU denotes the average number of BTUs, jobs, 

resources, and CPU-seconds required. As expected the computational effort increases 

drastically with increasing problem size. Clearly, for the large instances one has to spend 

hours of computation for the generation and evaluation of hundreds of individuals. 

Table 10: CPU-times as a Function of the Problem Size 

S # BTUs # Jobs # Res CPU 

extra small {>56) 11 35 26 0.04 
tiny (&) 25 88 40 0.05 
small (of) 69 239 105 0.43 
medium ( M) 180 624 402 3.98 
large (Jf) 623 2124 1149 42.07 

6. Summary and Conclusions 

In this paper we propose a new model for timetabling which addresses most of the items which 

are relevant for applications: Lectures of different length; precedence relations; availability of 

rooms of different size and equipment; changeover times between rooms; compactness and 

distribution requirements. In addition, we present greedy randomized and genetic algorithms. 

We provide an instance generator for the generation of a representative set of instances. The 

generator along with a Statistical model is used for a thorough experimental evaluation of the 
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methods. Computational results show that the methods solve the instances investigated close 

to optimality. 

In the future first specialized exact methods for solving larger problem instances to 

optimality should be developed. Second, exchange (cp. Ferland and Lavoie 1992) or local 

search methods have to be improved, whereas among the most promising meta-heuristics tabu 

search (cf. Glover 1989, 1990, Hertz 1992, Alvarez-Valdes, Martin, and Tamarit 1994, Costa 

1994) has to be considerd. Third, the methods have to be incorporated into a decision support 

system with database access (cp. Johnson 1993) and easy-to-use dialog capabilities. 

Appendix: Fundamentals of Sequential Analysis 

Let Y be a Bemoulli distributed (discrete) random variable, i.e. 

fy(y; p) : = py (i-p)1_y (0 < p < 1 ) 

with p being a probability. In addition let Y2 Y^ represent n identical independent 

Bemoulli distributed random variables. Denoting with y. a realization of Y., the random 

variable 

is binomially distributed, denoted as f_ (s ; n, p), with distribution function: 
an n 

p^ - (1 — p)n ^ , for f = 0,1,...,n 

%(?; n, p) 

n 
L ? 

0 , otherwise 

Moreover, let fz(z) denote the distribution function of a continuous random variable Z, 

the p%-quantile of fz(z) and z^ z2 ,..., ZQ a sample of f^(z). Then the transformation 

Yi : = 
r i, if z. < ( 

1 p for i = 1, 2, ..., n 
. 0, otherwise 

n 
yields S = S y. with distribution function f_ (s ; n, p). n ,=1 i Sn n 

Suppose that it is desired to test whether is less than or equal a specified value, say £. 

This leads to 

%= fp* S f versus t 

where ^ is called the null-hypothesis, being tested, and the alternative hypothesis. This 

test, concerning the quantile f^(z), may be transformed into the following hypothesis testing 

Problem, 
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%'• P l P* versus 5^: p < p* , 

concerning the probability fY(y; p) with 0 < p * < 1 . We 

accept £jQ , if SQ/n is "large" or 

reject ^ , if Sn/n is "small" 

where " large" and " small" obviously depend on p*. 

From sequential analysis several tests are known with which hypotheses testing may be 

performed; cf. e.g. Siegmund 1985. Among them are curtailed tests, repeated significance tests 

as well as sequential probability ratio tests. In Haase 1994 these tests have been compared via 

Simulation with respect to their capability of approximating the power function (probability 

of rejecting SjQ , expected number of repetitions of the test; both as a function of p*). As a 

result the sequential probability ratio test (SPRT) seems to be most suited. 

The SPRT, which is based on the likelihood ratio, originally has been designed for simple 

hypotheses only. Thus for our composite hypothesis we have to make the following 

transformations: 

%• P > P * =» %'• P = P° 

: p < p* => p = p1 with p1 < p* < p ° 

Using the conventional symbols, i.e. a denotes the type I error (significance level) and ß 

the type II error, we get the following stopping and decison rules for the SPRT: 

Stopping rule: Stop at 3 = min { i | b. i (A, B)}, where 

K 
Sir 

p°. 

A i=S aad B := 

Decision rule: Reject , if > B ; accept , if bj < A. 
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