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The Performance of Lot Sizing Heuristics in the Gase of Sparse 

Demand Patterns 

Gerhard Knolmayer, University of Kiel, West Germany 

1. Introduction 

Düring the last years a large number of lot sizing heuristics have 

been proposed for varying demand rates which are of special im-

portance in Material Requirements Flanning (MRP)-systems. The 

literature concentrates on procedures entitled Least-Unit-Cost, 

Least-Total-Cost (resp. Part-Period-Method) and Silver/Meal-

heuristic. Less attention has been paid to several other propo-

sals. 

A few Simulation studies identified heuristics which on the 

average produce significantly better results than their compe-

titors {4;8 ; 9;12;17 } . Although the comparisons led to rather 

similar results, an important difference in ranking the best 

procedures exists: In the study by Wemmerlöv {17} Groff's heuri-

stic performs significantly better than the Silver/Meal-procedure, 

whereas the results obtained by Knolmayer {8} show no statisti-

cally significant difference between the two procedures. One 

reason for this difference may be that Wemmerlöv considers a 

demand Situation with intermittent demand in which zero demands 

occur in one third of the problems whereas Knolmayer regards dense 

demand patterns with a positive demand in each period. 

Zero demands are particularly important in MRP-systems because lot 

sizing, e.g. for final products, may result in a Situation where 

no dependent demand for intermediate parts exists in many periods. 
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Furthermore, some MRP-applications are moving to shorter planning 

periods (e.g. one day instead of one week as time unit). In this 

case, zero demands become more important on account of the more 

detailed planning procedura. Silver/Miltenburg {14} consider zero 

demands to be important enough to design a special heuristic for 

sparse demand patterns. 

The goal of the present study is to determine whether demand 

patterns which are differently structured with respect to zero 

demands influenae the Performance of the heuristics as well in the 

degree of the error committed as in their ranking. The study aims 

at giving lot sizing recommendations for the important, but 

usually neglected sparse demand patterns. With the exception of 

zero demands, the same factors of the experiment were used as in 

the earlier comparison of lot sizing heuristics with dense de­

mands. The experiment regards 1500 randomly generated demand 

patterns for 15 problem classes distinguished by mean positive 

demand and by the ränge of deviation of Single to mean positive 

demand. Each demand pattern represents T=200 discrete demands. 

About 50 % of the demands equal zero; positive demands are uni-

formly distributed. The cost parameters used are F=1000 and h=l. 

All significance-judgements are based on an experimentwise error 

factor a =.01 for a multiple-comparison sign test described by 

Miller {11}. 



3 

2. Description and comparison of relevant heuristics 

2.1. Description 

This section describes only those heuristics which perform favou-

rably in the case of dense demand patterns or which are often 

implemented in MRP-systems. The description serves as basis for 

discussing some modifications of the heuristics in the case of 

sparse demand patterns. A more complete survey of the different 

heuristics is given in {8>. 

The discrete lot-sizing-procedures assume that each lot Covers the 

demand of several consecutive periods. For the lot arriving in 

period r one must determine the last period s the demand of which 

should be satisfied from this lot; the accompanying lot size is 

s 

x = Z d. (1) 
r ] 

j=r 

The earliest heuristic for the case of varying demand rates, the 

Least-Unit-Cost (LUC)-procedure, is still implemented in many 

MRP-systems. It determines the lot size by minimizing 

t t 

(F + h Z dj (j-r) ) / ( Z dj). (2) 
j=r j=r 

for different values of t; the minimizing index is assigned to s. 

In 1968 the Least-Total-Cost (LTC)-procedure was introduced as an 

alternative to LUC. From the very beginning, the idea of balancing 

order and inventory cost resulted in two different versions: 

DeMattheis/Mendoza {3;10} proposed a procedure in which the lot 

size is alwavs rounded off and which therefore never results in 

higher relevant inventory cost than order cost: 
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s s + 1 

E (j-r) dj < F/h < E (j-r) (3) 
j=r j=r 

The Part-Period-Method (PPM) differs from this procedura only by a 

Look-Back-Look-Ahead-refinement {3}. 

On the contrary, Gorham {5} proposed to determine the lot size in 

such a way that the absolute difference between inventory and 

order cost is minimized per cycle: 

s t 

|F/h - E (j-r) djI = Min |(F/h - E (j-r) d^)| (4) 
j=r t j=r 

The approach chosen by Gorham should be better suited than the 

version implemented by DeMattheis/Mendoza if the cost balancing 

principle is valid. However, experiments show that the DeMatt­

heis/Mendoza- version outperforms Gorham's proposal. The reason for 

this result is that the LTC-principle possesses several deficien-

cies which, however, are almost perfectly compensated by the 

DeMattheis/Mendoza-procedure. Both variants of the cost-balan-

cing-principle have been used by several other authors just as 

other authors suggested further variants which, however, did not 

improve the Performance of the DeMattheis/Mendoza-heuristic (for a 

survey see {9}). 

The Silver-Meal (SM)-heuristic {13} minimizes the relevant cost 

per period 

t 

(F + h . E (j-r) dj) / (t-r+1) 
j=r 

(5) 
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For increasing t criterion (5) may result in several local minima 

as shown in Fig. 1 for the data given in Table 1. As originally 

proposed, SM usually stops after having determined the first 

minimum. This minimum would possiblv appear only as a local one if 

additional values t were examined. Therefore, one may also select 

the global minimum. Silver/Meal assume that these two variants 

lead to very similar results and that a distinction is unneces-

sary. 

Groff {6} proposed that a new lot should arrive in period s if 

h.d .. (s-r+1) (s-r+2) ä 2F (6) s + 1 

holds. This criterion is derived from an estimation of the mar­

ginal cost effects connected with adding the demand of one ad­

ditional period. Groff's heuristic is remarkable because it 

possesses a property which one would expect from a decision theory 

point of view: If one decided to fulfil the demand in period t 

from the lot ordered in period r, the sunk cost of holding the 

demands d , ..., dfc are not relevant for deciding whether demand 

d^,, should be included in the lot x or not. t+1 r 

Wemmerlöv {16} proposed three slightlv different modifications of 

Groff's heuristic, all of which take past demands into account. 

However, these modifications do not improve the results obtained 

with Groff's heuristic. Therefore only Wemmerlöv's Rule 1 is 

described which determines the lot size by 

s 

h. ( Z dj+dg+1.(s-r+1)2) ä 2F (7) 
j=r 

and for which the comparatively best results are obtained. 

Axsäter {2} and Karni {7} indepedently proposed a heuristic 

sometimes entitled Maximum-Part-Period-Gain (MPG). They start with 

a lot-for-lot Solution and sequentially improve the Solution by 
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combining two adjacent lots in one lot. The iterative process of 

combining lots is determined by Computing the maximum cost saving. 

The computationa1 effort of this heuristic is far larger than of 

the other heuristics, especially for large T. If the decision 

raaker accepts this comparatively large computational effort to be 

worthwhile he may even consider applying the Wagner/Whitin (WW)-

algorithm {15}. 

Although the WW-algorithm provides an optimal Solution to the lot 

sizing problem described, it is usually not applied in MRP-plan-

ning. Basically the WW-algorithm is a dynamic programming proce-

dure which may need non-neglectable Computing time when applied to 

thousands of items. Furthermore, the WW-algorithm provides optimal 

solutions only if d_.=0 holds for j>T or if an independent planning 

horizon exists. Finally, the WW-algorithm is more difficult to 

understand than the heuristics described above. The WW-algorithm 

provides reference solutions for comparing the solutions obtained 

by different heuristics. 

2.2. Comparison 

Previous experimental results with these and further heuristics 

for dense demand patterns are summarized in Table 2. All heuri­

stics are evaluated on the basis of additional relevant holding 

and setup costs compared to the WW-algorithm. Thus far, good 

results were obtained especially for the heuristics proposed by 

Silver/Meal and Groff. Table 2 mentions also some heuristics which 

will be explained later in this paper; the associated results are 

given in Table 2 for a comparison with their results in Table 5 

for sparse demand patterns. Ineffective heuristics (e.g. McLaren's 

Order Moment Method and procedures immediately based on the con-

tinuous lot size model as EOQ-D and POQ and theoretically unsound 

procedures as Freeland/Colley's or Gaither's proposals and the 

ineffective LTC-variants) are not subject of this study. For a 

short description and results see e.g. {8;9;17>. 
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3. Adaption of heuristics for sparse demand patterns 

Most of the previous literature does not make provisions for 

taking zero demands into account. An obvious property of reason-

able solutions should be that each lot arrives in a period with 

positive demand. However, without special modification, several 

heuristics may violate this property and propose an inefficient 

Solution. One example is LUC: If a zero demand follows the first 

minimum, two equal cost minima exist in (2). It depends on the 

usually neglected question whether > or £ is used in the Implemen­

tation to select the lot size associated with the first or the 

second minimum. However, if the first minimum s is used, most 

implementations will assume that a lot arrives in period s+1 and 

will therefore compute avoidable holding costs in the next cycle. 

A similar problem may occur with the Periodic-Order-Quantity-Rule, 

some of Wemmerlöv's marginal rules and some LTC-variants (e.g. 

Gorham's). 

For a fair comparison, all heuristics were aajusted in such a way 

that each lot arrives in a period with positive demand. The fact 

that adjustments of the heuristics described in literature are 

necessary in the case of sparse demand leads to presume that also 

some MRP-implementations can be improved by paying special atten­

tion to sparse demand patterns. 
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4. An improved Silver/Meal-heuristic for phase 1 

In general, heuristics often consist of two different phases: In 

the first phase a preliminary Solution is constructed. This 

Solution may be changed e.g. by applying cost comparisons to 

differently modified solutions in phase 2. 

While distinguishing between local and global minima in SM is not 

very important for dense demand patterns, sparseness results in a 

more sensitive Situation. It may happen that the lot size connec­

ted with the global minimum is far larger than the one determined 

by the first local minimum. Therefore, in their modificaticn 1 

Silver/Miltenburg (14) restrict the number of demands to be 

covered by one lot by a rather lengthy procedura. An easier way of 

limiting the time between orders is to restrict the number of 

periods regarded after determining the first local minimum of (5). 

Let u be the first local minimum found in SM. Furthermore, assume 

that the search for a better minimum is prolonged until period 

u+v. In the literature, only v=l and v=T-u have been regarded thus 

far. Table 3 and Fig. 2 show the average Performance for values 

v=l,...10 in 1500 cases with sparse demand patterns; on the 

average v=4 achieves the best results. Thus on the average neither 

the myopic selection of the first local minimum nor the search for 

the global minimum leads to best results over the total planning 

horizon. As Table 3 also shows, the best value v depends on the 

mean demand per period; in the 15 problem classes with sparse 

demand patterns regarded, values 2Sv58 are optimal. 

It is remarkable that for dense demand patterns v=l leads to best 

results in 12 of 15 problem classes. The differences between the 

Performances obtained for different values of v are far smaller 

for dense demand patterns; values v>4 lead to identical results in 

all 1500 cases. Therefore it may be worthwhile to study the effect 

of the parameter v in one's individual demand patterns and deter-

mine an appropriate individual value. A global value as v=4 in 

phase 1 results in a conservative estimate for the Solution 

quality obtainable with simple heuristics. There is a small, 

insignificant advantage of the Phase-one-heuristic of Silver/ 

Miltenburg compared to the computationally less expensive heuri-

stic operating with v=4. 
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5. Improvinq Phase 2 

Aucamp/Foqarty (AF) {1} try to improve the Solution obtained in 

phase 1 by testing whether costs can be reduced if a lot's arrival 

moment is slightly shifted backward or forward. In the case of 

sparse demand patterns, only periods with positive demand are 

candidates for modified arrival moments. 

Silver/Miltenburq (SIMIL) {14} use a preliminary Solution obtained 

by a (modified) global search (v=T-u) for a minimum in (5) and 

test in phase 2 whether combining two adjacent lots in one common 

lot reduces cost. 

The Performance of these two suggestions for phase 2 cannot be 

compared with implementations of the original descriptions of the 

heuristics because of the different solutions obtained in phase 1 

of the two heuristics. For a fair comparison, both phase-two-

procedures were applied to solutions obtained with SM and v=4 

which is a well suited phase-one-procedure. 

The two basic ideas for modifying the preliminary lot sizes may 

also be combined. In the first improvement Step marginal modifica­

tions of arrival moments are evaluated as in the AF-proposal. In 

the second step the combination of two adjacent lots as in phase 2 

of SIMIL is evaluated. These two improvement steps are executed 

successively until no modifications have occurred in the last 

cycle. Usually only a small number of cycles is necessary. 

An example for the combined improvement phase is given in Table 4. 

The SM-heuristic with v=4 provides a far besser Solution than SM 

with v=l. Cost savings can be obtained from three successively 

applied AF-modifications in which the fourth, the third and again 

the fourth lot arrive earlier than in the previous Solution. 

Finally, the SIMIL-procedure is able to combine the second and the 

third lot. For the solutiön obtained at the end of phase one, such 

a combination would not have been evaluated as cost-effective. The 

Solution obtained by combined application of the improvement steps 

described above is optimal. Therefore a second improvement cycle 

cannot achieve a better Solution. 
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6. Experimental results 

In general, in the case of sparse demand patterns most heuristics 

provide far worse results than in case of exclusively positive 

demands (cf. Table 2 vs. Table 5). Therefore, executing a second 

phase is far more attractive for sparse demand patterns owing to 

the higher potential for improvement. 

The myopic SM with v=l clearly outperforms the LTC versions of 

DeMattheis/Mendoza and of Gorham for dense demand patterns; for 

sparse demand patterns the myopic SM performs better than Gorham's 

heuristic but worse than DeMattheis/Mendoza's proposal. The myopic 

SM performs very similar to Groff's heuristic for dense demand but 

operates significantly poorer for sparse demand patterns. In the 

comparisons done by Wemmerlöv, the SM-procedure is probably 

implemented with v=l. For sparse demand this may result in compa-

ratively bad results and may be the reason why Groff's heuristic 

performs significantly better than the SM-heuristic in Wemmerlöv's 

experiment. In summary, for sparse demand patterns the myopic 

cM_principle looses its widely assumed efficiency. 

For sparse demand patterns, a parameter v=T-u results in signifi-

cantly better Performance than v=l. Therefore, the SIMIL-procedure 

starts from a significantly better preliminary Solution than the 

AF-proposal applying SM with v=l in phase 1; this difference makes 

the SIMIL-solutions significantly better than the results obtained 

from the AF-procedure. 

The best average result for SM in sparse demand patterns is 

obtained with v=4. With this parameter value the disadvantage 

compared to WW-solutions is only about a third of the error 

obtained for v=l and about one half of the error resulting from 

v=T-u (cf. Table 3). 

If the Solution obtained with v=4 is used as starting point for 

different improvement heuristics, the results show that the phase 

2 suggested by AF is more powerful than the SIMIL-suggestion. The 

combined application of both improvement possibilities provides an 

even better Solution. Its error is only about one tenth of the 



error obtained from the rnyopic SM-heuristic with v=l'. The SIMIL-

modification is more extensive than the more locally oriented 

AF-proposal. The experiment showed significantly better results 

for starting with AF-modifications and considering SIMIL-changes 

only after no further AF-modification is possible than for 

applying these two proposals in the different order. 

Whereas MPG does not perform better than the heuristics of Sil-

ver/Meal and Groff in the case of dense demand patterns, it is a 

good procedure for the more difficult case of sparse demand. 

However, the new procedure provides average results which are even 

(insignificantly) better than those for MPG whereas the computa-

tional effort is far smaller than for MPG. 

7. Recommendations 

The results of the experiment lead to the following recommenda­

tions for MRP-planners: 

If sparse demand patterns are relevant in a MRP-environment, the 

usually employed heuristics may perform comparatively bad. Ran­

kings of the heuristics obtained for dense demand patterns do not 

hold for sparse demand patterns. 

For sparse demand a two-phase-procedure may be worthwhile. A good 

preliminary Solution can be obtained by a slight modification of 

the Silver/Meal-principle which compromises on the number of 

additional periods regarded after finding the first local minimum. 

In the improvement phase, a combination of slightly shifting 

backward or forward the moment when the lot arrives and of combi-

ning adjacent lots is recommended. This can be done recursively 

until no further improvement is possible. The proposed heuristic 

reduces the average increase of relevant cost to less than 1 % 

even for the difficult case of sparse demand patterns and is 

computationally far less expensive than the Wagner-Whitin-algo-

rithm. 
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AF ... Aucamp/Fogarty 

dj ... Demand in period j 

F ... Fixed setup cost 

h ... Holding cost per unit per unit time 

j ... Period j, j=l,...,T 

LTC ... Least-total-cost 

LUC ... Least-unit-cost 

MPG ... Maximum-part-period-gain 

PPM ... Part-period-method 

r ... First period of replenishment cycle 

s ... Last period of replenishment cycle 

SIMIL ... Silver/Miltenburg 

SM ... Silver/Meal 

t ... Period t 

T ... Planning horizon 

u ... Index of period in which the first local minimum is 

found with the Silver-Meal-heuristic 

v ... Parameter of the Silver-Meal-heuristic 

WW ... Wagner/Whitin 

x ... Lot size in period r 
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OtBilUim/'litnlo!! ( witli H efintifatl ( PPfll 107.91 107.43 107.55 107.44 107.24 104.94 107.17 106.9? 106.67 106.24 106.23 105,92 106.15 105.48 104.92 106.70 
6ro II 109.73 109.24 109,06 10!.14 108.00 107.61 106.66 106.34 106.19 105.£8 105.76 105.47 105.04 104.96 104.75 136.86 
DfJält!iiis/R(iids:ä (»itt.i'jt S iliMiiti,:! ( LTCI 107.91 107.92 108.39 107.46 107.4? 107.58 107.17 107.34 107.(7 106.24 106.57 106.76 106.15 105.62 105.84 107.08 
Uiiifrlo» K i:;iriil kli 2 106.20 108.52 109.04 107.75 108.16 106.99 107.13 107.55 109.10 105.60 107.54 108.(0 105.84 106.55 107.71 107.81 
Pt risdic Gr de r i aintit» 107.21 106.10 109.53 107.30 lOä.47 110.32 107.70 108.97 1:0.95 lu.08 108.43 110.41 107.08 108.34 110.64 108.72 
Wdiclif B äfsiiijl R alf 3 108.61 109.02 109.73 108.30 10?,35 109,71 108.80 109.27 110.42 108.30 109.00 109.73 108.62 108.96 109.98 109.19 Sil»(r/Hfjl l» =ll 114.43 114.53 114.74 111.43 110.79 110.82 109.53 109,50 109.26 106.08 107.44 107.56 106.14 106.71 107.10 109.67 
LUC 108.91 110.24 112.42 108.35 110.21 113.10 106.06 109.92 113.02 107.64 110.03 113.15 107.33 109.38 113.35 110.34 6orl>n ( LTCI 10?.35 10?.63 110.87 109.77 110.86 111.66 110.46 111.21 112.06 111.32 111.86 113.21 110.91 111.64 113.00 111.20 EOi-C 112.05 112.94 114.72 113.31 115.07 116.61 114.50 116.69 116.31 115.8? 1 16.55 119.04 114.57 116.95 119.61 115.80 Lot f or lo t 309.89 312.76 317.40 232.48 235.18 239.25 198.08 200.58 204.47 177.66 160.01 183.77 163.62 166.07 169.75 21?.41 

Tiilt EeIalive idivint cost is w ce'.t !s r se !<di< lot s: :t p roctdarii i n dif/frnt prt iitt dasr s il sursi imil n'.lirn. 

Results for sparse demand patterns 
Selected lot slze procedures 

Problem classes deflned fn Ta ble 5 
• New + SIMIL ö SM.v=4 A PPM X Groff 

Figure 3= Relative relevant cost for lot size procedures selected frss Table 5. 
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