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Abstract 
An interaction in a fixed effects (FE) regression is usually specified by demeaning the product 
term. However, this strategy does not yield a genuine within estimator. Instead, an 
estimator is produced that reflects unit-level differences of interacted variables whose 
moderators vary within units. This is desirable if the interaction of one unit-specific and one 
time-dependent variable is specified in FE, but it may yield problematic results if both 
interacted variables vary within units. Then, as algebraic transformations show, the FE 
interaction estimator picks up unit-specific effect heterogeneity of both variables. 
Accordingly, Monte Carlo experiments reveal that it is biased if one of the interacted 
variables is correlated with an unobserved unit-specific moderator of the other interacted 
variable. In light of these insights, we propose that a within interaction of two time-
dependent variables be estimated by first demeaning each variable and then demeaning the 
product term. This “double-demeaned” estimator is not subject to bias caused by 
unobserved effect heterogeneity. It is, however, less efficient than standard FE and only 
works with T>2. 
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1. Introduction 

Fixed effects (FE) regressions for estimators of variables with intra-unit variation are 
routinely employed by empirical social scientists, especially when analyzing panel data (see, 
e.g., the literature surveys in Giesselmann et al. 2015 and in Young and Johnson 2015). The 
main reason for the popularity of this estimator is its potential to improve causal 
interpretations (Gangl 2010; Morgan and Winship 2007): because the FE estimator is based 
solely on variation within units, it automatically controls for all observable and unobservable 
unit-specific characteristics (Allison 2009; Wooldridge 2010).  

Many scholars have dealt with the analytical properties of the FE estimator (e.g., Baltagi 
2005; Brüderl and Ludwig 2015; Cameron and Trivedi 2005), with different approaches to its 
specification in regression frameworks (Andreß et al. 2013; Firebaugh, Warner, and 
Massoglia 2013; Mandlak 1978), and with its theory-into-practice problems (Halaby 2004; 
Plümper, Troeger, and Manow 2005). Here, we focus on an issue that has not been dealt 
with in greater detail, yet; namely the proper specification of interactions in an FE 
regression. Specifically, we focus on the interaction of two independent variables with intra-
unit variation, such as number of children and income (as modeled by Kühhirt 2012 to 
explain variations in couples’ division of labor). In this article, we refer primarily to the case 
of FE with longitudinal microdata, although the mechanisms enlightened here also apply to 
other types of FE models with clustered data. 

Basically, an interaction measures how the effect of the independent variable changes with 
the size of a moderator variable. In ordinary regression frameworks, it is usually tested by 
including a product term (Allison 1977; Jaccardi and Turrisi 2003). The standard way of 
specifying such an interaction in an FE regression is to treat the product term as any other 
variable and, accordingly, to demean it: each realization of the term is subtracted by its unit-
specific mean before entering the regression. This strategy is widely used in empirical 
practice; not only for interactions with one time-constant variable, but also if both 
interacted variables show variation within units (e.g., Abendroth et al. 2014; Killewald and 
Gough 2013; Kühhirt 2012; Oesch and Lipps 2013; Schofer and Longhofer 2011). It is also 
computed by default by statistical programs (Cameron and Trivedi 2009), introduced as 
desirable specification in methodological discourses (Schunck 2013), and automatically 
reproduced by an OLS estimation with unit dummies. However, this strategy does not 
produce a within estimator of the interaction. Hence, it does not control for effect 
heterogeneity and does not exhibit the desirable statistical properties of FE estimators.i It 
requires the assumption that specified moderators Z of a variable x are not correlated with 
time-constant unobserved moderators of x. 
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2. Why Demeaning an Interaction Does Not Yield a Within Estimator: Some Intuitive 
Considerations 

The purpose of a within estimator of an interaction between x and z on y is to determine 
how the within effect of x on y increases as z changes within units. Or, in more technical 
terms: it shall measure how the intra-unit association between x and y is related to intra-unit 
variation in a moderator z. The integration of the demeaned interaction term (𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 − (𝑧𝑧𝑧𝑧)������𝑖𝑖) 
in an FE regression framework yields a coefficient𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧), which is, however, not a within 
estimator—it is still identifiable when one of the two variables exhibits only between-unit 
variance. Thus, the most straightforward “proof” that 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) measures between-unit 
variance is that a unit-specific characteristic z (i.e., a variable that is constant within units) 
can be integrated (and estimated) as moderator of a variable x.   

Technically, this can be explained by the fact that each realization of a demeaned product 
term depends on both factors’ unit-specific levels: although the term’s mean on the unit 
level is zero, its intra-unit variance depends on the factors’ unit-specific means. Specifically, 
the higher the unit-specific level of one factor, the more strongly the idiosyncrasies of the 
other are spread in the product term. Thus, the demeaned product describes a distribution 
of realizations that reflects both the size of the unit-specific components and the 
idiosyncrasies of the interacted variables.  

This algebraic feature of demeaned products allows us to differentiate within-unit effects 
across categories (or levels) of time-constant characteristics in FE regressions. Therefore, 
integrating the demeaned product of one time-constant variable and one time-dependent 
variable into a (FE) regression framework is a standard application of empirical practitioners 
working with clustered data. However, this feature also defines 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) as a between-unit 
estimator if both interacted variables show intra-unit variation. 

 

3. Formal Decompositions of FE Interactions 

In this section, we support insight on the basis of decompositions of demeaned product 
terms. 

For any measurement {i,t}, the demeaned interaction term 𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 − (𝑧𝑧𝑧𝑧)������𝑖𝑖 can be written as 

(1) (𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖) −
∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
, 

with every 𝑧𝑧𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖 consisting of a unit-specific component (𝑧𝑧𝑖̅𝑖. and 𝑥̅𝑥𝑖𝑖.) and a 
measurement-specific component or, rather, “idiosyncrasy” (𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) and 𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)). 

Now let us consider three different constellations of variation patterns among the factors z 
and x: (1) both factors show no intra-unit variation, (2) only one factor shows intra-unit 
variation, or (3) both factors show intra-unit variation. How does the (transformed) 
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demeaned interaction term look in these cases and what does this reveal about the 
properties of its coefficient 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥)? 

 

3.1 Case 1: Both Factors x and z Are Unit-Specific Variables Without Any Intra-Unit 
Variation 

In this case, 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥̅𝑥𝑖𝑖. and 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖̅𝑖. for each measurement {i,t}. Therefore, equation (1) can be 
written as 

(2) (𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖.) −
𝑇𝑇𝑖𝑖(𝑧̅𝑧𝑖𝑖.𝑥̅𝑥𝑖𝑖.)

𝑇𝑇𝑖𝑖
= 0 for each {i,t}. 

Thus, demeaning an interaction term with two unit-specific variables eliminates all between-
unit variation of both variables, so no moderating influence of z on the effect of x can be 
estimated. 

 

3.2 Case 2: Only One Factor Exhibits Intra-Unit Variation, While the Other Is Unit-Specific 

Let z be constant within units and, therefore, 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖̅𝑖. for all {i,t}. In this case, equation (1) 
can be written as 

(3) (𝑧𝑧𝑖̅𝑖.𝑥𝑥𝑖𝑖𝑖𝑖) −
∑ 𝑧̅𝑧𝑖𝑖.𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖
𝑡𝑡=1
𝑇𝑇𝑖𝑖

. 

For each measurement {i,t}, 𝑧𝑧𝑖𝑖. is a factor in all added terms in the subtrahend of equation 
(3). Therefore, it can be factored out, and equation (3) can be written as 

(4) (𝑧𝑧𝑖̅𝑖.𝑥𝑥𝑖𝑖𝑖𝑖) − (𝑧𝑧𝑖̅𝑖. ∑
𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖

𝑇𝑇𝑖𝑖
𝑡𝑡=1 ) 

(5) = 𝑧𝑧𝑖̅𝑖.(𝑥𝑥𝑖𝑖𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑇𝑇𝑖𝑖

𝑇𝑇𝑖𝑖
𝑡𝑡=1 ) 

(6) = 𝑧𝑧𝑖̅𝑖.(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖.) 

(7) = 𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖). 

Thus, if factor x of a product term shows intra-unit variation and factor z does not, the 
demeaned term measures between-unit differences of z and within-unit differences of x. 
Specifically, equation (7) reveals that 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) in this case estimates how the within-unit 
effect of x differs according to between-unit levels of z. As noted, this is nothing new and is a 
characteristic of FE that is widely used in empirical practice. However, comparing cases 1 and 
2 reveals a surprising property of demeaned interaction terms: although z does not show 
within-unit variation, the demeaned term contains the unit-specific level of z in case 2, 
whereas it is completely eliminated in case 1. Obviously, in case 2, within-unit variation of x 
activates the unit-specific component of z in the demeaned interaction term. This insight has 
substantial consequences for case 3. 
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3.3 Case 3: Both Factors x and z Exhibit Intra-Unit Variation 

We have seen that two unit-specific variables are completely eliminated in a demeaned 
interaction term. As soon as one variable shows intra-unit variation, however, this within-
unit variation is related to the unit-specific component of the other variable by the 
demeaning procedure, as shown in equation (7). Therefore, within-unit variation of one 
factor will cause unit-specific heterogeneity of the time-constant factor to enter into the 
standard FE estimation of an interaction. Thus, if both variables vary within units, the 
identification of 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) will be based on the moderating effects of the unit-specific levels of 
both variables. 

If both variables are time-dependent, each measurement 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑖𝑖 can be regarded as 
consisting of a unit-specific component (𝑧𝑧𝑖̅𝑖. and 𝑥̅𝑥𝑖𝑖.) and a measurement-specific component 
(𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)). Thus, equation (1) can be written as 

(8) (𝑧𝑧𝑖̅𝑖. + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)) ∗ (𝑥̅𝑥𝑖𝑖. + (𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)) − 
∑ (𝑧̅𝑧𝑖𝑖.+𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)) ∗(𝑥̅𝑥𝑖𝑖.+(𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖))𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
. 

By expanding equation (8), we obtain 

(9) 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. + 𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) + 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) −

 
∑ 𝑧̅𝑧𝑖𝑖.𝑥𝑥𝑖𝑖.+𝑧̅𝑧𝑖𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)+𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑚𝑚(𝑧𝑧𝑖𝑖𝑖𝑖)+ 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
. 

By fractional arithmetic, equation (9) can be transformed into 

(10) 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. + 𝑧𝑧𝑖𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) + 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) −
∑ 𝑧̅𝑧𝑖𝑖.𝑥̅𝑥𝑖𝑖.
𝑇𝑇𝑖𝑖
𝑡𝑡=1
𝑇𝑇𝑖𝑖

−

∑ 𝑧̅𝑧𝑖𝑖.
𝑇𝑇𝑖𝑖
𝑡𝑡=1 𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)

𝑇𝑇𝑖𝑖
−

∑ 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
−

∑ 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
. 

 
Factoring out all factors that are constant for each i, equation (10) can be written as  
 

(11) 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. + 𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) + 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. − 𝑧𝑧𝑖̅𝑖.
∑ 𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
−

𝑥̅𝑥𝑖𝑖.
∑ 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑇𝑇
𝑡𝑡=1

𝑇𝑇𝑖𝑖
− ∑ 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇

𝑡𝑡=1
𝑇𝑇𝑖𝑖

. 

As the sum of demeaned values on the unit level is zero, equation (11) can be reduced to  

(12) 𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) + 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) −
∑ 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
. 

The final transformation in equation (12) reveals that, for each measurement {i,t}, the size of 
a demeaned interaction term with two variables z and x showing intra-unit variation 
depends on the unit-specific levels of both z and x. Specifically, we see that the size of the 
demeaned interaction term depends on the products of (a) the unit-specific mean in z and 
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the demeaned value of x; (b) the unit-specific mean in x and the demeaned value of z; and 
(c) both demeaned values of x and z. In addition, it subtracts the unit-specific mean of (c). 
Thus, 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) measures a combination of (a) the moderating influence of level differences in 
z on within variation in x, (b) the moderating influence of level differences in x on within 
variation in z, and (c) the moderating influence of within-unit differences in z on within-unit 
variation in x. This means that the coefficient of a demeaned interaction term 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) does 
not control for, but includes effect heterogeneity across units.ii  

4. Obtaining the Within Coefficient If Both Variables Vary Within Units 

How can we obtain a genuine within estimator of the interaction between two variables z 
and x with intra-unit variation? In this case, rather than the demeaned product of two 
variables, one needs to include a product term of two demeaned variables, as illustrated in 
equation (13): 

(13) (𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖.) ∗ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖.). 

This term relates intra-unit idiosyncrasies of x to intra-unit idiosyncrasies of z. Consequently, 
its coefficient 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥) measures how the within-unit association between x and y 
changes with intra-unit variation of z. This strategy eliminates unit-specific levels of z and x, 
thus systematically controlling for effect heterogeneity. However, there is one good reason 
to object to this conclusion (see, e.g., Schunck 2013), because equation (13) can be 
expanded and written as 

(14) 𝑧𝑧𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖.𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖.𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖.. 

From this perspective, it does not appear at first glance that unit-specific means actually are 
eliminated in the product of demeaned values—but they are. This is revealed once we again 
regard each measurement 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑧𝑧𝑖𝑖𝑖𝑖 as consisting of a unit-specific component (𝑥̅𝑥𝑖𝑖. and 𝑧𝑧𝑖̅𝑖.) 
and a measurement-specific component (𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) and 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑡𝑡)). Then, equation (14) can be 
written as 

(15) (𝑧𝑧𝑖̅𝑖. + 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖))(𝑥̅𝑥𝑖𝑖.+𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)) − 𝑧𝑧𝑖̅𝑖.(𝑥̅𝑥𝑖𝑖.+𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)) − 𝑥̅𝑥𝑖𝑖.(𝑧𝑧𝑖̅𝑖.+𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)) + 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖.. 

Using elementary algebra, equation (15) can be written as 

(16) 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. + 𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖) + 𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)+𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) − 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖.−𝑧𝑧𝑖̅𝑖.𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) −
𝑥̅𝑥𝑖𝑖.𝑧𝑧𝑖̅𝑖.−𝑥̅𝑥𝑖𝑖.𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)) + 𝑧𝑧𝑖̅𝑖.𝑥̅𝑥𝑖𝑖. 

 
(17) = 𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖). 

Transformations in equations (13) to (17) may seem recursive, but they reveal that 
expanding the product of two demeaned variables leads back to a term that is independent 
of unit-specific mean values. 
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Still, there is one substantial problem with 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥): the demeaned product of two time-
dependent variables does not have a unit-specific mean value of zero (unless the two 
variables are uncorrelated). Thus, equation (13) still reflects a unit-specific characteristic: 
because the size of the mean of a product term depends on the degree of covariation among 
the factors, the unit mean of equation (13) depends on the unit-specific degree of intra-
individual correlation among x and z. Therefore, if an unobserved moderator is related to 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖(𝑥𝑥, 𝑧𝑧), its effect will be transported in 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥); in order to obtain a within 
estimator, the product of the demeaned variables must also be demeaned. Then, we arrive 
at a specification that is functionally equivalent to a specification introduced by Balli and 
Sørensen (2013) in the context of cross-country analysis: 

(18) (𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖.) ∗ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥̅𝑥𝑖𝑖.) −
∑ (𝑧𝑧𝑖𝑖𝑖𝑖−𝑧̅𝑧𝑖𝑖.)∗(𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑖𝑖.)
𝑇𝑇𝑖𝑖
𝑡𝑡=1

𝑇𝑇𝑖𝑖
. 

Alternatively, equation (18) can be written as 

(19) 𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖)𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖)). 

Equations (18) and (19) describe a genuine within transformation: unit-specific mean values 
of the interacted variables are completely eliminated in the transformed term, and, at the 
same time, its mean value on the unit level is zero. As a result, heterogeneity in levels, 
effects, and covariances is completely controlled for in 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥)), which therefore 
qualifies as an accurate within estimator of interactions with two time-dependent variables. 
Unlike the standard FE estimator of an interaction, it does not transport the effect of 
unobserved correlated effect heterogeneity in the interacted variables. However, compared 
with standard FE, a substantial part of variance in the moderators is excluded. Thus, the cost 
of reducing bias may be imprecise estimates. This is also emphasized by the Monte Carlo 
experiments detailed in the next section. 

 

5. Simulations of Different Specifications of FE Interactions 
5.1 Simulation Setup 

We simulated data using the following basic data-generating process (DGP): 

(20) 𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑧𝑧1𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑥𝑥𝑖𝑖𝑖𝑖𝑧𝑧1𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝑧𝑧2𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝑥𝑥𝑖𝑖𝑖𝑖𝑧𝑧2𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

where 𝛽𝛽0 = 0, 𝛽𝛽1 = 𝛽𝛽2 = 𝛽𝛽4 = 1 and 𝛽𝛽3 = −1. 

𝛽𝛽5 varies across conditions, as will be explained further below. This data-generating model is 
a standard unobserved effects model with three variables in its fixed part: x, z1, and z2. Each 
of these variables consists of a unit-specific component (xi, z1i, and z2i), varying only between 
units i, and a within-unit component varying within units over time (dm(xit), dm(z1it), and 
dm(z2it)).iii Thus, 
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(21) 𝑥𝑥𝑖𝑖𝑖𝑖  = 𝑥𝑥𝑖𝑖 + 𝑑𝑑𝑑𝑑(𝑥𝑥𝑖𝑖𝑖𝑖) 
(22) 𝑧𝑧1𝑖𝑖𝑖𝑖 = 𝑧𝑧1𝑖𝑖 + 𝑑𝑑𝑑𝑑(𝑧𝑧1𝑖𝑖𝑖𝑖) 
(23) 𝑧𝑧2𝑖𝑖𝑖𝑖 = 𝑧𝑧2𝑖𝑖 + 𝑑𝑑𝑑𝑑(𝑧𝑧2𝑖𝑖𝑖𝑖). 

All these components—xi, z1i, z2i, dm(xit), dm(z1it), and dm(z2it)—as well as the unit-specific 
and the idiosyncratic error terms (ui and eit), are drawn from a joint multivariate standard 
normal distribution and have a mean of 0 and a standard deviation of 1, except for the error 
terms, which have a standard deviation of 4. Both error terms are uncorrelated with each 
other and with all other variables in the model. The correlations among the variables x, z1, 
and z2 vary across conditions, as explained below.  

The DGP contains two interactions with the variable x, one with z1, and another one with z2. 
The variable z1 takes the role of an observed variable, whereas z2 represents an unobserved 
variable. Thus, the effect of the variable x is moderated by an observed moderator (z1) and 
an unobserved moderator (z2). Accordingly, the models fitted to the generated data use only 
the variables x and z1.  

What varies between the different DGPs in the basic setting are: 

1. The effects of 𝜷𝜷𝟓𝟓. 𝛽𝛽5 takes the values 0, −0.5, and −1. If 𝛽𝛽5 takes the value 0, 
there is no unobserved moderation of the effect of x. For 𝛽𝛽5 = −0.5 the 
unobserved moderator effect is half as strong as the observed effect, and for 
𝛽𝛽5 = −1 it is of the same strength. 

2. The correlations between the specified and the unobserved unit-specific 
moderators z1i and z2i. Corr(z1i, z2i) takes the values 0, 0.4, and 0.8, representing 
nonexistent, moderate, and strong correlations, respectively. 

3. The correlations between the specified and unobserved within-unit 
components dm(z1it) and dm(z2it). Corr(dm(z1it), dm(z2it)) also takes the values 0, 
0.4, and 0.8, again representing nonexistent, moderate, and fairly strong 
correlations, respectively.  

For each combination of these conditions we generate data based on the above-mentioned 
DGP and fit to it a model using the standard FE transformation—as in equation (1), getting 
the standard FE estimator 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥)—and a model in which the variables are first demeaned 
then interacted and then demeaned again (as in equation (18), thus obtaining the estimator 
𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥)), which we propose to use instead of the standard FE estimator). For each 
combination of conditions we simulate a population with 1,000,000 observations consisting 
of 100,000 units, each observed 10 times. From these populations we draw 1,000 samples to 
which we fit the two different models. Each sample consists of 100 units and 1,000 
observations (10 observations per unit).  

In an additional simulation, we further vary the number of observations T per unit. T takes 
the values 3, 10, and 30. To this additional condition we fit an estimator as in equation (13) 

(𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑚𝑚(𝑥𝑥)), where the two interacting variables are first demeaned and then multiplied, 
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but not demeaned again, and then compare it with the estimator from equation (18) 
(𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥))), where the two demeaned variables are interacted and their product is 
demeaned again. The purpose of these additional simulations is to show why it is necessary 
to demean the product of two demeaned variables in order to get an unbiased within 
estimator—that is, why the estimator from equation (18) and not the estimator from 
equation (13) should be used in practice.  

 

5.2 The Proposed vs. the Standard FE Estimator of Interactions 

 

<Figure 1 about here> 

 

Figure 1 shows the results of the simulation study. We present only the estimated 
interaction effect 𝛽̂𝛽3, as this effect is the sole interest of our paper. The top panel in Figure 1 
shows the standard FE estimator and the bottom panel shows the proposed estimator of the 
demeaned product term of demeaned variables. The correlation between the within-unit 
components of the specified and the unobserved moderator, dm(z1it) and dm(z2it), varies 
over the columns of Figure 1. The x-axes of the single graphs show the correlation between 
the unit-specific components of the specified and the unobserved moderators, z1 and z2. The 
y-axes give the estimated effect 𝛽̂𝛽3, where the true effect equals −1. Finally, each graph 
contains three lines representing the different true values of 𝛽𝛽5—that is, the different 
strengths of the unobserved moderator effect. 

As can be seen in the upper panel of Figure 1, the standard FE estimator gives an unbiased 
estimate of the interaction between x and z1 under two conditions: (a) if there is no 
interaction between x and the unobserved variable z2 (𝛽𝛽5 = 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥2 = 0), and (b) if the 
unobserved moderator variable z2 is not correlated with z1, the observed moderator. If there 
is an unobserved interaction between x and z2 (𝛽𝛽5 = 𝛽𝛽𝑥𝑥𝑥𝑥𝑥𝑥2 ≠ 0) and z1 and z2 are correlated, 
the standard FE estimator is biased, because it carries part of the unobserved effect. In our 
specific setting there is a negative bias, as the unobserved interaction effect is negative but 
the correlation between the two moderators z1 and z2 is positive. This bias increases both 
with the correlation of unit-specific components Corr(z1i,z2i) and of within-unit components 
Corr(dm(z1it), dm(z2it)). 

In contrast, the estimator proposed in equation (18) (bottom panel of Figure 1) is not biased 
if the correlation between the observed moderator z1 and the unobserved moderator z2 
originates solely from the between-unit components of these variables (left graph). 
However, if the correlation between z1 and z2 originates from the within-unit components of 
these variables, the estimator will also be biased.  
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Nevertheless, the unbiasedness of the proposed estimator under conditions where the 
standard FE estimator is biased does come at a price: the standard FE estimator is more 
efficient than the estimator from equation (18).iv This is not surprising given that the 
standard FE estimator uses available between-unit variance in the effect of x on y, whereas 
the proposed estimator of demeaned variables does not. Thus, this situation resembles the 
typical within/between estimator conflict, well known in comparisons of main effects from 
FE and RE. Likewise, the conclusion is the same: in situations in which time-constant, 
unobservable moderators are supposed to be correlated with one of the specified 
moderators x or z, the standard FE estimator is biased but the proposed estimator is not, so 
the latter would be the appropriate choice. However, in situations in which the assumption 
of no correlated, time-constant, unobservable moderators is justified, the standard FE 
estimator is also unbiased and thus would be the better choice, according to our 
simulations.v Even so, we like to point out that the idea of using a within estimator usually 
originates from the indication of existing correlated unit-level unobservables. Therefore, an 
assumption preferring the standard FE estimator of an interaction is somewhat inconsistent 
with the usual motivation behind using panel data and the respective longitudinal methods 
(see also Halaby 2004). 

 

5.3 The Proposed FE Estimator Without Additional Demeaning of the Term: Why Not Make 
It Simpler?  

Finally, we want to compare the statistical properties of the proposed FE estimator, 
𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥)), with an estimator of an undemeaned product term with demeaned 

variables, 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥), as in equation (13). In the simulations outlined in Figure 2, we 

estimate 𝛽𝛽�𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥) and vary the number of observations per unit. To keep it simple, we do 

not vary the other parameters. Specifically, we consider only the scenario where Corr(z1i,z2i) 
and Corr(dm(z1it), dm(z2it) equal 0 and the true effect 𝛽𝛽5 equals −1—that is, a scenario in 
which both the standard FE and our proposed estimator gave unbiased results.vi  

 

<Figure 2 about here> 

 

Obviously, the estimator 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥) is biased even if the unobserved moderator z2i is 
not correlated with the observed moderator z1i. The bias diminishes in size with an 
increasing number of observations per unit. It occurs because the unit-specific mean value of 
a term obtained by multiplying two demeaned variables is not necessarily zero, even if the 
idiosyncrasies of the interacted variables are not correlated (and therefore Corr(dm(x1it), 
dm(z1it)) = 0). It would be zero if the condition Corr(dm(x1it), dm(z1it)) = 0 were true for each 
unit, but with only a few observations per unit (e.g., T = 3), it is not even approximately true. 
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With a growing number of observations per unit (T = 10, 30), the data observed within each 
unit become increasingly representative of the complete data—that is, they reflect 
Corr(dm(x1it), dm(z1it)) = 0. In other words, the smaller the number of observations per unit, 
the more the unit-specific means of the interaction term dm(x1it)*dm(z1it) deviates from 0 by 
chance. This adds random variance to the realizations of the interaction term, thus evoking a 
bias toward 0, similar to what has been termed attenuation bias (also known as regression 
dilution), which occurs because of random measurement errors in the independent variables 
(Frost and Thompson 2000; Spearman 1904). Note that the proposed estimator in Figure 1 
does not show this kind of bias, because an additional demeaning of the product term will 
eliminate the random variance in unit-level differences.  

In addition to the bias toward zero, there may also be a systematic bias in the 
estimator𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥). This can be the case if the product of the two demeaned variables 
systematically differs from zero (see section 4). Additional simulations, which are not 
presented here, indicate that such systematic bias occurs once the strength of the intra-
individual correlation of z and x is correlated with an unobserved variable. Compared with 
the bias toward zero, however, this systematic bias appears to be of minor importance.  

In sum, our additional simulation shows that the term dm(x1it)*dm(z1it) does indeed need to 
be demeaned in order to obtain a genuine, unbiased within estimator. The estimator 
𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥) is subject to a bias toward zero owing to random variation in its mean. It can 
also be subject to omitted variable bias if the correlation between dm(x1it) and dm(z1it) 
depends on the level of an unobserved effect. 

 

6. A Note on FE Interactions with Categorical Variables 

After their transformation into (sets of) dummy variables, independent categorical variables 
are usually treated and interpreted in ways similar to continuously scaled variables in FE 
regression frameworks (Allison 2009). Therefore, the standard FE estimator of an interaction 
of categorical variables exhibits the same problems as those outlined for continuous 
independent variables. Accordingly, genuine within estimators of interactions of dummy 
variables can be obtained only by demeaning the dummies before they enter the product 
term. 

However, researchers might regard the combinations of two categorical variables as 
realizations of a new variable—a perspective that is supported by what are referred to in 
modern statistical software as “factor variables” commands (see, e.g., StataCorp 2015). 
Instead of multiplicative terms, such commands integrate indicators for each combination of 
the categories of the variables. In an FE framework, this strategy will naturally result in 
genuine within estimators of the respective (combined) dummy variables, measuring strictly 
intra-individual outcome differences relative to the reference category. The fact that these 
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estimators are reproduced by coefficients of standard FE interactions—which are, as argued, 
no genuine within estimators—may seem paradoxical, but it is not:  

Generally, differences in within estimators of main effects may originate from interactions of 
unit-specific characteristics, so relations between main (within) effects of combined 
indicators allow no inference regarding the within estimator of the underlying interaction. 
Consequently, although a comparison of FE coefficients of combined indicators reveals 
differences in a factor’s within effects (across categories of the other factor), the differences 
themselves should not be interpreted as within comparisons. As shown, these differences 
may be a result of moderating properties of the unit-specific parts of the involved factor.  

In other words, intra-individual outcome differences between categories of a combined 
variable (e.g., the satisfaction gap of a single person between phases of parenthood vs. 
nonparenthood) may have been produced by moderating features of time-constant 
characteristics (e.g., by social skills, as a relevant unit-specific determinant of the partnership 
status). A difference in the satisfaction gap between a single and a nonsingle person 
therefore is disqualified as a within estimator of an interaction, because it does not strictly 
relate the within-unit differences in one factor (single vs. nonsingle) to the within-unit 
changes in the association between the second factor (parent vs. nonparent) and the 
dependent variable. 

 

7. Discussion 

By using empirical considerations, formal arguments, and Monte Carlo experiments we have 
shown that the standard way of specifying an FE interaction of two variables x and z with 
intra-unit variation does not always yield an estimator with desirable properties: the 
coefficient 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑧𝑧𝑧𝑧) is not a genuine within estimator, because it measures a combination of 
several between-unit and within-unit interactions (see Eq. 12). It will be biased in presence 
of correlated effect heterogeneity, that is if there is an unobserved time-constant moderator 
of z correlated with x, or of x correlated with z. In contrast, by first demeaning the factors 
and then demeaning the product term (“double demeaning”), unit-specific elements in the 
products are completely eliminated. Consequently, the estimator 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥)) is a true 
within-unit estimator, automatically controls for effect heterogeneity, and therefore yields 
more consistent results in the presence of correlated unit-specific unobservable moderators. 
However, its implementation comes at a price—namely, a loss of efficiency compared with 
standard FE (as illustrated by our Monte Carlo experiments). This is not surprising given that 
the standard FE estimator uses available between-unit variation in the effects of the 
independent variables to construct the interaction coefficient (as shown in Eq. 12), whereas 
the proposed estimator of demeaned variables discards this source of variance. Additionally, 
it absorbs one additional degree of freedom per unit. Therefore, double demeaning yields 
imprecise estimates if the interacted variables’ within-unit variation is small or the average 
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number of measures on unit level is low. Also, it works only for interactions of time-varying 
variables and requires more than two measures on the unit level. Such problems are well 
known from methodological discourses on within-unit estimators (e.g., Allison 2009, p. 23.), 
but appear to be noticeably severe in the context of interactions; specifically, owing to the 
omission of all units with T < 3 from the estimation of the interaction.vii 

If we return to the example presented in the introduction, we see in light of this insight that 
an FE coefficient of the demeaned product of the variables number of children and income 
(explaining, e.g., couples’ division of labour) is not a within estimator. In addition to intra-
individual interdependencies, the standard FE coefficient will also reflect how the within 
effect of number of children on couples’ division of labour varies among persons with 
different levels of income, and vice versa. Therefore, it transports the moderating influence 
of income related time-constant unobservables (e.g., class, milieu, cognitive and 
noncognitive skills, etc.) on the effect of having children on couples’ division of labour.  

In the empirical literature, these problems of standard FE estimators are rarely addressed. 
One exception is a study by Schober and Stahl (2016). Focusing on the interaction of two 
time-dependent variables in a panel regression framework, these authors used the unit-
specific mean 𝑧𝑧𝑖̅𝑖. instead of the measurement-specific value 𝑧𝑧𝑖𝑖𝑖𝑖 as moderator. In the example 
discussed above, this coefficient would tell us how the within effect of having children on 
division of labour varies across persons at different income levels. In the presence of effect 
heterogeneity in a panel design, clearly this strategy does not yield a consistent estimator of 
the time-dependent moderator (it does so only of its unit-specific part). However, as shown 
in equation (7), it uses only within-unit variance of the unfixed variable, offering a clear and 
technically accurate interpretation of the coefficient. Thus, although Schober and Stahl 
(2016) did not specify a within estimator of the interaction, they found a practical solution to 
the difficulties of testing an interaction in an FE framework. In addition, they offered a 
technically consistent interpretation and description of their estimator. When we reviewed 
the major sociological journals, we did not find any other articles that either used a genuine 
within estimator of interactions or discussed the limitations of the standard FE interaction 
coefficient accurately. Schofer and Longhofer (2011), for example, measured the effects of 
policy indicators on the number of associations using a standard FE model. They introduced 
their estimator as exploiting only “‘within-case’ variability over time” (p. 559), which is, as 
shown, not correct for the outlined coefficient of the interaction between degree of 
democracy and state expansion. Similarly, Abendroth et al. (2014) asserted that their FE 
model on determinants of mothers’ occupational status “provide stringent tests of within-
person change” (p. 10). However, their hypothesis that mothers’ age influences the effect of 
higher-order births was tested by a demeaned interaction term and is therefore not based 
solely on within-unit variation.  

Finally, we would like to emphasize that a nonlinear (e.g., quadratic) variable can be 
regarded as special case of an interaction. Therefore, the mechanisms revealed in this article 
also apply in such cases: demeaning the product of a quadratic term in an FE framework will 
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cause the influence of the unit-specific levels on the variable’s idiosyncrasies to reenter the 
model,viii as shown in equation (12). To obtain a genuine within estimator, the variable must 
similarly be demeaned before being transformed into its nonlinear form. 

  



14 
 

 

Notes

                                                           
i Basically, the insight that heterogeneity in effects is not automatically controlled for in FE, is 
not new (e.g. Allison 2009: 29). Here, we reveal the consequences of this omission for 
interactions. 
ii This explains algebraically why Balli and Sørensen (2013) find standard FE interactions to be 
biased in the presence of unobservable unit heterogeneity. 
iii With regard to the formulas above, the variables xi, z1i, and z2i (i.e., the between-unit 
components) are equivalent to the unit-specific means (𝑥̅𝑥𝑖𝑖., 𝑧𝑧𝑖̅𝑖.); however, we use a different 
notation here as they are not derived as means from single observations but are generated 
directly. 
iv The standard deviation of the estimated coefficients 𝛽̂𝛽𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑥𝑥))from the 1,000 
samplings is about twice as high for the proposed estimator as for the standard FE estimator. 
More precisely, on average, over all conditions, the standard deviation is 2.14 times larger 
for the proposed estimator when compared with the standard FE estimator (min = 1.89, 
max = 2.47). 
v In scenarios in which unobserved and observed within components are more strongly 
correlated than the respective between components, the standard FE estimator even 
performs better in terms of consistency. However, such scenarios, in which between-unit 
comparisons provide better counterfactual measures than do within-unit comparisons, are 
empirically and statistically implausible. 
vi However, we checked the robustness of findings in additional simulations in which we used 
different values for the correlation parameters Corr(z1i,z2i) and Corr(dm(z1it), dm(z2it).  
vii We thank our colleague Conrad Ziller (University of Cologne) for leading us to the insight 
that double demeaning does not work with T=2. 
viii We are aware that this problem of quadratic terms in FE frameworks was previously 
revealed in a working paper by McIntosh and Schlenker (2006). 
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Figure 1: Standard FE Estimator vs. Proposed Estimator 
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Figure 2: Effect of varying Ts on estimator without additional demeaning  
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