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Abstract

Many important decisions within public and private organizations are based on recom-
mendations from expert committees and advisory boards. A notable example is the U.S.
Food and Drug Administration’s advisory committees, which make recommendations on
new drug applications. Previously the voting procedure for these committees was se-
quential, however, due to concerns of herding and momentum effects the procedure was
changed to simultaneous voting. Exploiting a novel dataset of more than ten thousand
votes cast by experts in the FDA committees under both sequential and simultaneous
voting, we estimate a structural model that allows us to measure the magnitude and im-
portance of informational herding. We show that experts, voting on important scientific
questions, are susceptible to herd behavior; on average 46% of the members take into
consideration the sequence of previous votes when casting their vote, 17% of these voters
actually herd i.e. change their vote from what they would have voted if ignoring the
preceding votes.
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“CHAIRMAN ABRAMSON: What I’d like to do is now go to question
number 4 and take a vote as to whether the committee concurs that there
is adequate evidence to approve rofecoxib as an analgesic. . . . Let’s go
around this way. Dr. Katona.

DR. KATONA: I was hoping I wouldn’t be the first one for this difficult
question.”1

1 Introduction

Many important decisions within public and private organizations are based on non-

binding recommendations from expert committees and advisory boards. Advisory

boards composed of industry experts give strategic advice to the management of large

corporations and expert committees are used in many countries to provide regulators

with recommendations on issues such as health, climate, monetary policy, and military

conflict. In order to gauge the collective information held by the individual committee

members it is common to have a formal vote. A notable example is the U.S. Food

and Drug Administration’s advisory committees. In these committees, around a dozen

of medical experts openly discuss and vote on issues related to the approvability of

new drug applications.2 Until 2007 the voting procedure was sequential, however, due

to concerns of herding and momentum effects (with references to Banerjee (1992) and

Callander (2007)) the FDA changed the voting procedure to simultaneous (electronic)

voting.3

In this paper, we develop a model of voting in advisory committees and estimate the

model with voting data from the FDA’s committees using more than ten thousand indi-

1Extract from FDA Advisory Committee meeting on new drug application Vioxx (rofecoxib), 20
March 1999. The roll call was a unanimous “yes” with one abstention (Dr. Katona).

2These committees are purely advisory. As explained by the clinical FDA team leader at the meet-
ing of the approval of Olodaterol: “Before I close, I just wanted to mention the legal framework that
gives the FDA the ability to hold advisory committees to ask for scientific advice and recommendations
from experts in the field. As I noted previously, the FDA takes very seriously the advice of the com-
mittee. However, the Commissioner has sole discretion on actions taken with regard to drug approval,
especially since there may be other issues, such as manufacturing, not discussed at the meeting, that
impact approval decisions.”

3“There has been much discussion inside and outside FDA regarding sequential versus simultane-
ous voting...scholars and social scientists have studied the risk of “momentum” in sequential voting,
exploring whether some sequential voters may be influenced, perhaps even subconsciously, by the votes
that precede theirs, especially if those votes are nearly identical or signal a clear trend[footnote refer-
ence to Banerjee (1992) and Callander (2007)].” In Draft Guidance for FDA Advisory Committee
Members and FDA Staff: Voting Procedures for Advisory Committee Meetings (2007).
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vidual votes from both sequential and simultaneous voting. The data is gathered from

publicly available verbatim transcripts which gives us information on the exact sequence

of votes under sequential polling. Despite the importance of expert committees in many

economic situations, we are not aware of previous empirical papers studying whether,

and to what extent, expert panelists are susceptible to herd behavior when asked for

scientific advice.4 5 Moreover, our model and estimates allow us to study whether

simultaneous voting improves information aggregation, thereby potentially leading to

more informed drug approval decisions. Decisions which affect millions of users. If ben-

eficial drugs do not win approval patients miss the opportunity of improved medication

and if bad drugs are approved the consequences can be fatal.6

The formal analysis of herd behavior started with Banerjee (1992), Bikhchandani

et al. (1992), and Welch (1992). In this setting, agents choose actions sequentially

and are uncertain about the correct action, which depends on the state of the world.

Agents receive imperfect private signals about the state and may infer additional infor-

mation from observing the actions of the preceding agents. The latter effect can give

rise to herds or cascades whereby, after a number of agents have chosen the same action,

all following agents imitate their predecessor.7 Smith and Sørensen (2000) extend the

classical setup by admitting heterogeneous preferences and continuous signals. In our

model, agents receive continuous signals and we incorporate informative (expressive)

types into the herding framework. Informative types stay true to their personal judg-

ment and are never swayed by the history of actions.

More specifically, we consider advisory committees voting on independent yes/no

questions. For example, whether the benefits of a new drug outweigh the risks. On

each voting question, there is a common prior on the correct answer (the state) being

4Although not linked to herding, Meade (2005) study behaviors of the FOMC committee and show
that Greenspan’s proposals, after committee discussion, were nearly always adopted unmodified in the
formal vote, though the rate of disagreement in internal committee discussions was quite high.

5Herd behavior and observational learning have been studied in many different empirical settings.
To mention a few: presidential primaries (Knight and Schiff, 2010), restaurant dining (Cai et al., 2009),
investment recommendations (Graham, 1999), stock market trading (Cipriani and Guarino, 2014), and
movie reviews (Camara and Dupuis, 2014).

6One of the most debated FDA decisions is the approval of the painkiller Vioxx
(nytimes.com/topic/subject/vioxx-drug). According to Graham et al. (2005) Vioxx caused an es-
timated 88.000 to 140.000 excess cases of serious heart disease in the U.S. over its market life.

7The game in Bikhchandani et al. (1992) has been studied extensively in controlled laboratory
experiments, see Anderson and Holt (1997) for an early reference and Weizsäcker (2010) for a meta
analysis. See Celen and Kariv (2004) for the case of continuous signals and discrete actions and
Angrisini et al. (2017) for a social learning experiment with a continuous action space.
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“yes.” The prior contains relevant public information on the question at hand including

committee discussions and presentations leading up to the voting stage. On top of this,

each expert receives a private and independent signal about the state. To this end,

each panelist draws on his/her unique experience, intuition, and analytical skills. The

signals are heterogeneous in the sense that some members may receive extreme signal

realizations that (almost) reveal the state and others learn close to nothing. The general

precision of the signals is the same across committee members and voting questions.

Our signal structure is the same as in Cipriani and Guarino (2014) who estimate a

structural model of herd behavior with financial transaction data.

There are two types of committee members in our model. The learning type uses

the preceding votes and his/her private signal to update (Bayesian) beliefs about the

state and then seeks to match his/her vote with the true state. The informative type

automatically opts for the option which is more likely to be correct only taking his/her

private signal into consideration.8 Types are private information and distributed inde-

pendently across voters and voting questions. Herd voting occurs when a learning type

votes yes (no) whereas had he/she not observed the vote history he/she would have

voted no (yes).9 When voting is simultaneous the only premise that changes is that

the vote-history is empty for all the committee members and thus learning types act as

informative types and there is no herding.

Our structural approach and unique data, with numerous voting questions under

both voting procedures and information on the exact voting sequence under sequential

polling, allow us to pin down the proportion of learning types and separate the effect

of herd voting from changes in the prior on the state and the accuracy of the commit-

tee members’ private information. Whereas the prior on the state is identified by the

proportion of yes votes at the vote question level, the precision of private information

depends on the agreement of votes across different voting questions. To identify herd-

ing the sequence of votes under sequential voting is crucial. Intuitively, learning types

tend to be more responsive to the most recent votes when considering the sequence of

preceding votes.

8Our model is a model of statistical herding with informative types added. A closely related concept
is reputational herding where agents are motivated by appearing to be well informed about the state i.e.
having strong private signals (see Ottaviani and Sørensen (2001) for a model of reputational concerns
in committees).

9This definition of herd voting is similar to herd-buying and herd-selling in Cipriani and Guarino
(2014).
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We find that almost half of the FDA committee members are susceptible to herd

behavior. On average 46% of the committee members are learning types i.e. they take

into consideration the sequence of previous votes when casting their vote, 17% of these

voters actually herd i.e. they change their vote from what it would have been if they

had ignored the preceding votes. Thus, on average, almost 8% of all the sequential

votes are herd votes. The estimate on the accuracy of the committee members private

information is relatively high; given the state, private signals go in the wrong direction

only 20% of the time. We exploit data on individual voter characteristics such as ed-

ucational background and gender to study heterogeneity in herd behaviour. We find

that regular committee members and consumer/patient representatives are less suscep-

tible to herd behaviour. On the other hand, gender or whether or not a member has

a PhD has little impact on the likelihood that a member is influenced by the vote history.

We next consider the consequences of herding on information aggregation i.e. the

amount of information passing from the experts, through voting, to the FDA. To assess

information aggregation we consider the discrepancy between the true state and the up-

dated Bayesian beliefs about the state after all the committee members have voted. We

find that simultaneous voting improves information aggregation. In particular, given the

estimates of our model’s parameters the simultaneous procedure slightly improves the

aggregation of information compared to sequential voting, thus providing support for

the FDA’s switch to simultaneous polling. However, and perhaps surprisingly, there are

examples, typically for small committees, where sequential voting performs marginally

better. Based on our estimates, we see that once a committee of around 12 members

is established, additional committee members contribute only marginally to the infor-

mation aggregation. Finally, if we contemplate what would happen if the FDA were to

approve drugs only when a simple majority of the committee members vote in favor,

then simultaneous voting leads to more erroneous decisions if the prior on the state is

sufficiently unbalanced (different from 0.5).

Voting data from the FDA’s drug committees have been used previously to study the

connection between voting behavior and industry ties (see discussion in Camara and

Kyle (2016)). Unlike the present paper, these studies do not distinguish between the

two different voting procedures. Lurie et al. (2006) find a weak relationship between

committee members’ votes for approval and financial ties. Ackerley et al. (2009) extend

the FDA data used in Lurie et al. (2006) and show a tendency for committee members

to vote against their financial interests. Cooper and Golec (2017) find that conflicts of
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interests are not significantly related to votes in FDA committees. Using reduced-form

methods, Camara and Kyle (2016) find a small positive correlation between financial

ties and the tendency to vote in favor of a drug. They investigate this further using

a structural model to estimate each member’s skill and bias associated with financial

ties to a drug’s sponsor or its competitors. Their results suggest that members with

financial ties are more likely to vote in favor of both “good” and “bad” drugs. However,

members with financial ties also have somewhat higher estimated ability, and hence are

more favorable towards good drugs.

More broadly, our paper is related to the literature on committees and the optimal

design of voting bodies (see Gerling et al. (2005) and Li and Suen (2009) for sur-

veys and Gerardi and Yariv (2008) for a mechanism design approach). This literature

mainly focuses on committees making binding decisions in a common value setting. In

this context, studies regarding sequential versus simultaneous voting include Dekel and

Piccione (2000) and Ali et al. (2008).

On a different note, our paper is related to studies on social conformity and sequen-

tial decision making, where individuals are influenced by observing others’ actions, not

because of information revealed about an underlying state, but due to mechanisms of

social conformity. In a famous experiment by Asch (1951), seven confederates seated

before a critical subject were instructed to give an incorrect answer to an easy task on

visual perception. Around 32% of the answers from the critical subjects were the same

as the erroneous majority. For discussions on the distinction between informational

and social influence see Deutsch and Gerard (1955), Shiller (1995), and Bernheim and

Exley (2015).

The rest of the paper is organized as follows. Section 2 introduces the theoretical

model. Section 3 describes the data and Section 4 undertakes a descriptive and reduced-

form (regression) analysis of the data. Section 5 describes the estimation procedure.

Section 6 discusses the main results. Section 7 extends the model to incorporate hetero-

geneity in herd behavior across voters and Section 8 considers information aggregation.

Section 9 concludes.
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2 Model

We consider advisory committees voting on various yes/no questions. As in the case of

the FDA’s advisory committees, we can think of expert panelists polling on complex

matters regarding a specific application or scientific question. There are J voting ques-

tions and a generic voting question is denoted by j ∈ {1, ..., J}. The number of voting

members on question j is N j ≥ 2. For each voting question, j, there is a common

unobserved state θj ∈ {0, 1} that equals 1 if the correct answer to question j is “yes”

and 0 if the correct answer is “no.” For example, if the committee votes on whether to

approve a new medical drug then θ = 1 if the clinical benefits of the drug outweigh the

risks. The state is independently drawn across the J voting questions. Let µj0 ∈ (0, 1)

indicate the common prior belief that the true state is 1. On question j, we denote the

vote from committee member ij ∈ {1j, ..., N j} by vji ∈ {1, 0}, where vji = 1 is a “yes”

vote and vji = 0 is a “no” vote.

Voting procedure. The voting procedure on question j can be either sequential or

simultaneous. If voting on question j is sequential, then the panelists vote sequentially

and openly in an exogenously given order. The voting order is such that committee

member ij votes as the i’th person (i.e. member 1j votes first, then member 2j, etc.).

Let hji ≡ vj1, ..., v
j
i−1 denote the voting history observable for member ij where hj1 = {∅}.

If voting is simultaneous then the vote-history is empty for all committee members. We

indicate by ξj ∈ {simultaneous, sequential} the voting procedure for question j.

Signals. For every voting question j, each committee member ij receives a private

signal about the state. The signals are i.i.d. conditional on the state. The private signal

Sji has the following linear state-contingent densities (following Cipriani and Guarino

(2014)):

f 1(sji |θj = 1) = 1 + τ(2sji − 1)

f 0(sji |θj = 0) = 1− τ(2sji − 1)

where τ ∈ (0,∞). (See Figure 1.)

The parameter τ is a measure of the level of strength in the experts’ signals, where

a larger τ means better precision. Even for a large τ there may still be voting members

who receive signal realizations close to one half, which adds little to their assessment of
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the state. In the case of the FDA’s advisory committees, member ij’s signal realization

can be thought of as a process whereby member ij considers the results and design of

the clinical trials and draws on his/her personal experience, intuition, and analytical

skills (also allowing for randomness and misconceptions) to arrive at some private signal

realization.

When τ ≤ 1 the support of the densities is [0, 1]. For τ > 1, the support shrinks

to [ τ−1
2τ
, τ−1+2

√
τ

2τ
] for f 1 and [ τ+1−2

√
τ

2τ
, τ+1

2τ
] for f 0.10 The signals satisfy the monotone

likelihood ratio property. For committee member ij, the likelihood ratio after receiving

signal sji ,
P (θj=1)|hji ,s

j
i )

P (θj=0)|hji ,s
j
i )

=
f1(sji |θ

j=1)

f0(sji |θj=0)

P (θj=1)|hji )
P (θj=0)|hji )

, is higher than the likelihood ratio before

receiving the signal if sji >
1
2

and lower if sji <
1
2
. In this way, a signal larger than one

half is affirmative news and a signal lower than one half is negative news regarding the

yes/no question at hand. As explained in Cipriani and Guarino (2014), when τ ≥ 1

there are some signal realizations, sji , that are only possible when the state is 1 (or 0),

which then reveal the true state with certainty to member ij. In fact, when τ ≥ 1 signal

realizations higher than or equal to τ+1
2τ

are only possible when the state is 1 and signal

realizations lower than or equal to τ−1
2τ

are only possible when the state is 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Signal

0

0.5

1

1.5

2

2.5

3

D
en

si
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 = 0.4
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 = 2

Figure 1: Probability Density Function of Private Signals |θ = 1

Types and payoffs. There are two types of voters: Informative type (t = I) and

learning type (t = L). A member’s type is private information. Types are distributed

independently across voters and voting questions and the probability that a committee

member is the learning type is λ. The informative type relies on his/her own signal

10The intervals ensure that the density functions integrate to one.
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and automatically votes for the option which is more likely to line up with the true

state given his/her private signal. Such behavior could be warranted by an expressive

payoff (see Brennan and Hamlin (1998)) and may stem from the informative type’s

desire, or direct value from, expressing his/her personal judgment on the voting ques-

tion, reflected by his/her private signal realization. The learning type also strives to

match his/her vote with the true state and in addition to the private signal he/she uses

information from the vote-history to guide his/her vote. We assume that the learning

type receives payoff 1 if vji = θj and payoff 0 if vji 6= θj. In this way, type I and type II

voting-errors weight equally. We can think of esteem as the main driver behind these

payoffs (see Brennan and Pettit (2000) on the economics of esteem): When invited

as expert on an advisory board, a panelist derives both self-esteem and repute from

providing right answers to the voting questions.

We can formally characterize the voting behavior of member ij when he/she is the

informative type. Let s̄ji,t=I indicate the cutoff signal such that P (θj = 1|s̄ji,t=I) = 1/2.11

Using Bayes’ rule and the law of total probability:

P (θj = 1|s̄ji,t=I) = 1/2 ⇐⇒ s̄ji,t=I =
−2µj0 + τ + 1

2τ
(1)

The cutoff signal from equation (1) characterizes the voting behavior of informative

types: vote yes if sji > s̄ji,t=I and vote no if sji < s̄ji,t=I . Note that (1) only applies

when µj0 ∈ (1−τ
2
, 1+τ

2
), which is not guaranteed if τ < 1. When µj0 ≤ 1−τ

2
it is optimal

for member ijt=I to vote no for any signal realization (i.e. when µj0 ≤ 1−τ
2

there is no

possible signal realization such that P (θj = 1|sji ) > 1/2)). Similarly, if µj0 ≥ 1+τ
2

then

member ijt=I votes yes for any possible signal realization.

The learning type uses the history of votes, in addition to his/her private signal,

to update his/her beliefs about θj. The history of votes can be a valuable source of

information as it may reveal something about the realizations of the previous voters’

private signals. Let µji ≡ P (θj = 1|hji ) indicate member ij’s beliefs about the state

after observing the preceding votes (not yet taking his own signal into account) and

updating using Bayes’ rule. Thus, the optimal voting behavior for learning types can

be characterized by the cutoff signal, s̄ji,t=H :

11Recall that the signals satisfy the monotone likelihood ratio property, see Duggan and Martinelli
(2001) for how this translates into a voting rule characterized by a threshold crossing condition.
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P (θj = 1|s̄ji,t=L, h
j
i ) = 1/2 ⇐⇒ s̄ji,t=L =

−2µji + τ + 1

2τ
(2)

Member ijt=L votes yes if sji > s̄ji,t=L and no if sji < s̄ji,t=L. Again, (2) only holds for

µji ∈ (1−τ
2
, 1+τ

2
). If µji ≤ 1−τ

2
then member ijt=L votes no for any signal realization and if

µji ≥ 1+τ
2

he/she always votes yes. When voting is simultaneous there is no difference

between the behavior of the informative type and the learning type.

Figure 2 illustrates how the cut-off signal varies with µ and τ . For a larger µ the

cut-off signal is lower, hence there is a greater probability that the expert’s private

signal will exceed the cut-off signal and the expert will vote yes. For τ < 1, the cut-off

signal is irrelevant when µ ≤ 1−τ
2

or µ ≥ 1+τ
2

.
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Figure 2: Cut-off Signal given µ

2.1. Herd voting

We refer to the notion of local herd voting whenever a learning type is swayed by the

history of votes. That is, when the learning type, following the cutoff rule, votes yes

(no), whereas had he/she ignored the vote-history and followed the cutoff rule in (1),

like the informative type, he/she would have voted no (yes). In addition, we term it

local cascade voting if it is optimal for committee member ijt=L to vote, say yes, for any

possible private signal realization and, at the same time, had member ijt=L ignored the

vote-history he/she would have voted no after observing sji,t=L. The formal definitions

are:
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DEFINITION 1 (herd-voting): (i) Committee member ijt=L engages in herd-yes-

voting if

µji ∈ (
1− τ

2
,
1 + τ

2
) and

−2µj0 + τ + 1

2τ
> sji,t=L >

−2µji + τ + 1

2τ

(ii) Committee member ijt=L engages in herd-no-voting if

µji ∈ (
1− τ

2
,
1 + τ

2
) and

−2µj0 + τ + 1

2τ
< sji,t=L <

−2µji + τ + 1

2τ

DEFINITION 2 (cascade-voting): (i) Committee member ijt=L engages in cascade-

yes-voting if

µji ≥
1 + τ

2
and sji,t=L <

−2µj0 + τ + 1

2τ

(ii) Committee member ijt=L engages in cascade-no-voting if

µji ≤
1− τ

2
and sji,t=L >

−2µj0 + τ + 1

2τ

Unless µj0 /∈ (1−τ
2
, 1+τ

2
) or µj0 = µji (which is the case for the first voter) there will

always be some private signal realizations whereby member ijt=L engages in herd- or

cascade voting under sequential polling. Note that cascade voting is not possible when

τ ≥ 1, as there will always be some possible private signal realizations that shifts the

beliefs about which state is more likely and thus the learning type pays attention to

his/her signal. To this point, even when τ > 1 and N is large the updated prior cannot

hit 1 or 0. For τ > 1 the cutoff point for any type is within the interval ( τ−1
2τ
, τ+1

2τ
) and

we know that signal realizations sufficiently close to the cutoff point, which is within

the interval ( τ−1
2τ
, τ+1

2τ
), are possible under both states of the world. Thus, one cannot

conclude from the voting history alone that the state is certainly 1 or 0.

When µj0 /∈ (1−τ
2
, 1+τ

2
) there is no private signal realization which can overcome the

prior and informative- and learning types vote the same. In this case, learning is stuck

from the beginning. Given µj0 ∈ (1−τ
2
, 1+τ

2
) and µj0 < µji the probability that member

ijt=L engages in herd-yes-voting can be computed as the probability that sji,t=L lands

in the interval [
−2µji+τ+1

2τ
,
−2µj0+τ+1

2τ
]. Similarly when µj0 ∈ (1−τ

2
, 1+τ

2
) and µj0 > µji and

herd-no-voting is possible. Thus, a larger discrepancy between µj0 and µji implies that

the probability of a herd vote increases. However, for τ < 1 and a sufficiently extreme
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µji the learning type will ignore his/her signal and cascade vote. This does not imply

that all subsequent learning-types will cascade, as votes from informative types may

reverse the beliefs about θj. Even for τ < 1 a positive proportion of informative types

ensures that learning never ceases and is unbounded given that µj0 ∈ (1−τ
2
, 1+τ

2
).

2.2. The likelihood function

To estimate our voting model we have to specify its likelihood function. Recall that

the state is independently drawn across the voting questions j = 1, ..., J and the pri-

vate signals {sj1, ..., s
j
Nj} are independent and identically distributed conditional on θj.

Therefore, the events vj and vk 6=j are independent and the likelihood of a sequence of

votes over the set of voting questions can be written as

P ({vj}Jj=1|Φ) =
J∏
j=1

P (vj|Φ) (3)

Where Φ is the vector of parameters {µ0, τ, λ, ξ}. To demonstrate how to derive

P (vj|Φ) we consider sequential voting and any voting sequence vj = vj1, ..., v
j
Nj .

P ({vj}|Φ) = µj0

NJ∏
i=1

P (vi = 1|Φ, hji , θ = 1)viP (vi = 0|Φ, hji , θ = 1)1−vi

+(1− µj0)
NJ∏
i=1

P (vi = 1|Φ, hji , θ = 0)viP (vi = 0|Φ, hji , θ = 0)1−vi (4)

Conditional on the state and the voting history hji , the individual votes are inde-

pendent across the members. Thus, the vector of votes follows a multivariate mixture

distribution, with mixing probability µj0. The state specific voting probabilities are

calculated as follows:12

P1,i ≡ P (vji = 1|Φ, hji , θ = 1) = λP (sji > s̄ji,t=L|Φ, h
j
i , θ = 1)+(1−λ)P (sji > s̄ji,t=I |Φ, θ = 1)

P0,i ≡ P (vji = 1|Φ, hji , θ = 0) = λP (sji > s̄ji,t=L|Φ, h
j
i , θ = 0)+(1−λ)P (sji > s̄ji,t=I |Φ, θ = 0)

12By the monotone likelihood ratio property of the signals it is ensured that P1,i ≥ P0,i and we
can identify the state-specific voting probabilities. Identification in this setting is proven in a number
of papers dealing with identification of mixture models such as Allman et al. (2009). Iaryczower and
Shum (2012) use this argument to prove the identification of their structural model.
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To solve for s̄ji,t=L we need member i’s updated probability that the state is good,

given the history of votes. We do this recursively, inspired by the recursive procedure

in Cipriani and Guarino (2014), whereby using Bayes rule

µji ≡ P (θj = 1|hji ) =
µji−1P

vi−1

1,i−1(1− P1,i−1)
1−vi−1

µji−1P
vi−1

1,i−1(1− P1,i−1)1−vi−1 + (1− µji−1)P
vi−1

0,i−1(1− P0,i−1)1−vi−1

for i ≥ 2 and our base is µj1 = µj0. If voting is simultaneous we can compute P (vj) in

the same manner, with the important difference that all the committee members vote

with an empty vote-history. In this way, informative and learning types follow the same

cutoff-strategy. In Appendix D we consider and estimate the case where learning types

are “naive” as in Eyster and Rabin (2010) and (incorrectly) believe that each previous

person’s action reflects solely that person’s private information; as if everyone else is

an informative type.

3 Data

In the United States the producers of new drugs are required to win approval from the

FDA in order to market their products. The review process gives the FDA the option

to refer a matter of drug approval to one of its advisory committees. Around half of the

drugs that the FDA reviews goes to a committee - typically those where the available

data renders decision making particularly difficult or the drug or disease involved is

controversial (Moffitt, 2010). Advisory committees are intended to provide the FDA

with independent opinions and recommendations from outside experts. Although the

expert committees provide recommendations to the FDA, the FDA makes the final

decisions.13 The committee meetings usually last an entire day. At the beginning of a

meeting the FDA and the sponsor company present the data from clinical trials and

their results regarding the risks and benefits of the drug or product under consideration.

After the presentations the committee members deliberate and usually, after lengthy

discussions, vote on one or more questions set out by the FDA beforehand. These ques-

tions are generally scientific in nature and can involve a range of subjects, including the

assessment of a drug or biological product’s efficacy, safety, or overall approvability.

There are currently 18 different advisory committees under the Center for Drug Eval-

13Guidance for Industry, Advisory Committees: Implementing Section 120 of the Food and Drug
Administration Modernization Act of 1997.
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uation and Research, which handles medical drugs and some biological products.14 The

committees are specialized on a particular disease or topic e.g. the Cardiovascular and

Renal Drugs Advisory Committee or the Oncologic Drugs Advisory Committee. Each

committee typically meets 1 to 4 times per year at the request of the FDA. On average

a committee comprises of around a dozen members. Each committee has a chair, who

leads the meetings, several regular scientific members (serving 4-year terms), plus a

qualified consumer and sometimes a patient representative.15 Additional experts are

usually added as temporary voting members to serve for a specific advisory commit-

tee meeting. Like regular members, the invited temporary members have recognized

expertise in the relevant field.16 Temporary members can be invited outside experts,

members of the center’s consultancy pool, or members of other advisory committees.

Following the Draft Guidance for FDA Advisory Committees of 2007 the voting pro-

cedure changed from sequential to simultaneous voting.17 18 Under sequential voting

the polling starts at one end of the committee table, at the chair’s discretion, and con-

tinues in a stepwise fashion according to the seating plan of the meeting. The seating

plan is jointly decided by the committee’s executive secretary and the chair. In Ap-

pendix A we provide evidence that, based on observable member characteristics, there

are no clear patterns in the way that the committee members are seated. When a meet-

ing has several voting questions, which is often the case, the chair usually alternates so

that voting starts at each end of the committee table at every other voting question (on

few occasions also starting from the middle and going clockwise or counter-clockwise

around the table). The chair also votes and is seated in a central position. Often, the

members are allowed to accompany their votes with comments, motivation, or provisos.

14Approval of medical devices are reviewed by advisory committees under the Center for Devices
and Radiological Health. We only consider committees under the Center for Drug Evaluation and
Research, where meeting and voting procedures follow the same template.

15As stated by the FDA, the role of the consumer representative is to represent the consumer
perspective and serve as a liaison between the committee and interested consumers and consumer
organizations. The consumer representatives are usually experts in the field like the regular committee
members. Patient representatives have experience with the disease either as a patient, or primary
caregiver.

16Guidance for Industry, Advisory Committees: Implementing Section 120 of the Food and Drug
Administration Modernization Act of 1997.

17In the transition from sequential to electronic voting some committee meetings used voting by a
show of hands. We exclude these meetings from our analysis.

18Around the same time the voting procedure changed, the FDA Amendments Act of 2007 was
passed by Congress. The law extended the authority to levy fees on companies applying for drug
approvals, expanded clinical trial guidelines for pediatric drugs, enhanced the authorities to require
post-approval studies, and established a limit on the number of committee members with financial
conflicts.

14



Under simultaneous voting the members place their votes with electronic voting pads

and after the votes have been locked in they sequentially go on the record and state

what they voted and give comments. The order of announcements follows the seating

plan of the meeting and the chair decides at which end of the table to begin. As with

sequential voting, the chair usually alternates so that the announcements starts at each

end of the committee table at every other voting question.

The voting members also have the option to abstain, although they rarely do so.

In our data, 1.2 percent of the sequential votes are abstentions and 2.7 percent of the

simultaneous votes are abstentions. For simplicity we ignore abstentions in our analysis

(the individual abstentions drop out as if they had not been placed).

Our data source is the full set of meeting transcripts that can be downloaded via

www.fda.gov. The public records start in 1996 and we have data until June 2014. We

consider committee meetings with one or more binary voting questions on the agenda

and where the overall topic concerns approval of a new (or supplementary) drug or bi-

ological product. For sequential voting, this gives us 138 committee meetings and 375

binary voting questions with the full sequence of votes and for simultaneous voting it is

189 committee meetings and 438 voting questions. In total the data consists of 10,466

yes or no votes. A “yes” vote is always associated with a favorable assessment of the

relevant drug or biological product. This means that on a few occasions we reverse the

votes, for example on the voting question: “Does this application raise concerns about

safety findings in Vimizim in MPS IVA patients?” On average a committee comprises

of 13 members, with a minimum of 5 members and a maximum of 28 members.

For each committee meeting, we indicate whether voting is simultaneous or sequen-

tial, the name of the advisory committee, type of application and proposed trade name,

and a score on the FDA reviewer(s) assessment of efficacy, safety, and approval.19 Our

data covers 15 different topical committees. The type of application is either a New

Drug Application (NDA), a Biologic License Application (BLA), a supplemental New

Drug Application (sNDA), or a supplemental Biologic License Application (sBLA).20

19In some cases, multiple drugs or products are considered on the same day and meetings are then
split between morning and afternoon sessions.

20Companies are allowed to make changes to drugs and biological products or their labels after
they have been approved. To change a label, market a new dosage or strength, or change the way the
treatment is manufacturing, a company must submit a supplemental new drug application (sNDA) or
supplemental Biologic License Application (sBLA).
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We also record the wording of the voting question and classify it depending on

whether the question is about efficacy, safety, approval, or other (e.g. questions about

methodology, dose, or labeling). Efficacy questions concern whether a specific clinical

trial demonstrates that the treatment is effective. For example, “Based on the pre-

specified analysis, is there sufficient evidence to conclude that gabapentin is effective

in treating moderate to severe vasomotor symptoms, VMS, due to menopause?”. An

example of a safety question is, “Do the data provide sufficient evidence of safety of

Advair Diskus for the treatment of chronic obstructive bronchitis?” An example of a

risk vs. benefit question is, “Taking into consideration the overall risks and benefits of

orlistat, do you recommend that the drug be approved for marketing for the manage-

ment of obesity?”

The FDA reviewer score is based on the FDA presentations and introductory re-

marks. Before each committee meeting the FDA’s review team analyses the efficacy

and safety studies in question and prepares presentations to be held in front of the

committee. These presentations take place before the voting stage and the reviewers

are not members of the committee and do not vote. The FDA reviewer score on efficacy

(1, 0,−1) reflects the review team’s conclusions regarding efficacy of the proposed drug

or biological product. This revolves around the primary endpoints of the efficacy stud-

ies. These studies are often placebo controlled trials, but can also be non-inferiority

or superiority studies with respect to an already approved comparator. If the FDA

reviewer(s) state that all the primary endpoints were met (usually with respect to p-

values less than 0.05) in all the efficacy studies we code the efficacy score as 1. If the

efficacy results are mixed or the FDA reviewer has major methodology concerns we

code the efficacy score as 0. If the FDA reviewer concludes that the drug or product

has no effect we code the efficacy score as -1.

Similarly for safety. The FDA reviewer score on safety (1, 0,−1) reflects the review

team’s conclusions regarding safety issues and adverse events. If the reviewer concludes

that the safety profile is not worse than already approved drugs or products for the

same indication we record a score of +1. The same if the reviewer states that the

safety studies reveal no significant safety concerns. On the other hand, if the FDA

reviewer expresses serious safety concerns, also with respect to what is the standard for

the relevant indication, we code the safety score as -1. As an example: “In summary,

the safety findings reveal the incidence of toxicity across multiple organ systems, which

seems excessive for an adjuvant therapy without a survival advantage.” If neither ex-
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plicit positive or negative conclusions are drawn from the safety review we code the

safety score as 0. Finally, the approval score simply adds the efficacy score to the safety

score.21 Where the total score is 1 or higher, the FDA reviewer score for approval

questions will be 1, similarly when it is -1 or lower, the FDA reviewer score will be -1.

Questions that are classified as ‘other’ do not receive an FDA reviewer score. Table 1

indicates the frequency of voting questions in each group.

At the voting question level, we record the individual votes. For meetings with simul-

taneous voting, we order the votes in the way that the committee members announce

them as they go on the record after the votes have been locked in. For sequential vot-

ing, the votes are obviously entered according the order in which they are cast. Under

sequential voting, we have 20 voting questions with low data quality in the sense that

the voting order was interrupted during voting (11), the voting question was modified

after the first vote was given (5), or members did not precisely specify their vote (4). In

the latter case, we include a yes or no vote depending on whether the member expressed

himself/herself positively or negatively on the voting question. These voting questions

are all included in our empirical analysis.22

At the vote level, we register the name and educational background of the voter. We

also indicate the gender, whether the voter is a consumer or patient representative, and

whether the voter is a regular or temporary committee member. All this information,

except for gender, appears in the meeting transcripts or the summary minutes. Table

2 indicates the frequency of voter characteristics.

21There are some missing data for the FDA reviwer score. Specifically, meetings at the Cardiovas-
cular and Renal Drugs Advisory Committee do not use FDA presentations until the end of 2005. For
these meetings we insert reviewer scores of 0.

22None of our results or estimates significantly change depending on whether we include these these
observations or not.
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Sequential Simultaneous All

FDA Reviewer Score

-1 37 26 63

0 134 172 306

1 51 119 170

No score 153 120 273

Question type

Efficacy 75 83 158

Other 153 120 273

Risk v. Benefit 126 179 305

Safety 21 56 77

Application type

Non-supplementary 298 325 623

Supplementary 77 113 190

Product category

Drug 349 336 685

Biologic 26 102 128

Committee

Anesthetic and Life Support 1 13 14

Anti Infective 25 37 62

Anti Viral 16 16 32

Arthritis 13 31 44

Cardiovascular and Renal 76 31 107

Dermatologic and Ophthalmic 11 17 28

Endocrinologic and Metabolic 61 43 104

Gastrointestinal 24 44 68

Medical Imaging 2 3 5

Nonprescription 5 7 12

Oncologic 70 36 106

Peripheral and Central Nervous System 20 42 62

Psychopharmacologic 14 42 56

Pulmonary Allergy 16 49 65

Reproductive Health 21 27 48

Total 375 438 813

Table 1: Voting Question Characteristics
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Frequency Percent

Degree

Medical 6,160 58.86

PhD 3,160 30.19

Other degree 698 6.67

No degree 448 4.28

Gender

Male 6,863 65.6

Female 3,603 34.4

Type

Regular committee member 5,734 54.8

Temporary committee member 3,625 34.6

Consumer or patient representative 1,107 10.6

Total 10,466 100

Table 2: Voter Characteristics

4 Descriptive analysis

In this section, we present descriptive statistics and use reduced-form (regression) tech-

niques to assess whether there are indications of herd behavior in the data. Our initial

analysis is confirmatory: The main insights are that the probability of a committee

member voting the same as the person seated before him/her and the probability of a

unanimous vote outcome are significantly lower under simultaneous voting. This fur-

ther warrants a direct empirical test and estimation of our theoretical model.

To obtain precursory insights into voting outcomes under sequential and simulta-

neous voting, we construct the following variables at the voting-question level; 1) the

probability that, for a specific vote question, a member’s vote matches the preceding

vote23, 2) an indicator variable that takes the value 1 if the outcome of the vote is

unanimous, 3) the size of the majority (as a percentage), and 4) the percentage of yes

23For simultaneous and sequential voting, this is calculated as the number of votes that are identical
to the previous vote divided by the total number of votes excluding the first vote. The order we use
follows the seating order.
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votes.

Descriptive statistics for these variables are presented in Table 3. Under sequential

voting, the average probability that a member’s vote is the same as the preceding vote

is 82% whereas under simultaneous voting it is 77%. The difference is significant. Un-

der sequential voting 48% of vote outcomes are unanimous whereas under simultaneous

voting 29% of vote outcomes are unanimous. Figure 3 shows the distribution of the

percentage of yes votes for a given voting question. Clearly, there appears to be more

agreement in votes under the sequential procedure.

Mean by Voting Rule

Variable Obs. Mean Std. Dev. Min Max Sequential Simultaneous Difference

Pr(vi = vi−1) 813 0.79 0.212 0.1 1 0.817 0.766 -0.051***

Unamimous 813 0.375 0.484 0 1 0.477 0.288 -0.19***

Majority size 813 0.853 0.154 0.5 1 0.871 0.838 -0.033***

Percent yes 813 0.637 0.36 0 1 0.664 0.614 -0.05*

Notes: ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table 3: Descriptive Statistics for Vote Outcomes
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Figure 3: Agreement of Votes
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To obtain further insight into which vote characteristics are correlated with vote

outcomes we regress the vote outcome variables on vote characteristics and an indica-

tor variable that takes on the value 1 if voting is simultaneous. Table 4 presents the

regression results using ordinary least squares. Controlling for observable vote charac-

teristics, a change from sequential to simultaneous voting reduces the probability that

a member’s vote is the same as the previous vote by 6.6 percentage points. The prob-

ability of a unanimous outcome is reduced by 19 percentage points on average by the

switch to simultaneous voting. The size of the majority and percentage of yes votes are

also reduced by the change to simultaneous voting. Other than the FDA reviewer score,

vote characteristics such as committee size, committee and vote question type do not

consistently have a significant effect on the vote outcome variables. In sum, the initial

analysis provides results consistent with what we would expect if there was momentum

effects in sequential voting.

The reduced-form results suggest that there is “something going on” regarding the

voting procedure. However, we cannot rule out the possibility that voting outcomes

may be driven by more extreme priors for the voting questions under the sequential

procedure, which would lead to more agreement (regardless of the voting procedure).

This is something that our reduced form model cannot capture and even if we believe

that, on average, the priors are similar for the sequential and simultaneous voting

questions, a reduced-form model cannot speak to the mechanism that causes more

agreement in the case of sequential voting. A structural approach is invaluable in this

situation to explicitly incorporate the unobserved prior for each voting question and the

experts’ private information and provide estimates that have a clear interpretation in the

context of a model of herd behavior. Whereas in the reduced-form model we have looked

at outcomes at the voting question level, in our structural model, we use information

from the complete vote sequence to learn something about herd behavior in advisory

committees. Ultimately, using our structural model, we can also say something about

which voting procedure leads to more efficient information aggregation or outcomes

that reflect the true state.
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Dependent variable

Pr(vi = vi−1) Unamimous Majority size Percent yes

Simultaneous -0.0660*** -0.194*** -0.0443*** -0.0888***

(0.0178) (0.0400) (0.0131) (0.0341)

Committee Size 0.000343 -0.0168*** -0.00151 -0.000888

(0.00234) (0.00496) (0.00173) (0.00379)

FDA Reviewer Score = -1 -0.0974*** -0.142** -0.0564*** -0.139***

(0.0296) (0.0618) (0.0205) (0.0477)

FDA Reviewer Score = 1 0.0737*** 0.171*** 0.0611*** 0.185***

(0.0205) (0.0475) (0.0146) (0.0349)

Supplementary 0.00928 0.0162 0.00792 -0.0238

(0.0236) (0.0489) (0.0170) (0.0370)

Biologic 0.0250 0.0630 0.0214 0.0148

(0.0252) (0.0479) (0.0183) (0.0502)

Efficacy 0.0222 0.00597 0.0125 0.0363

(0.0238) (0.0510) (0.0172) (0.0396)

Risk vs. Benefit 0.0149 0.00130 0.0144 -0.0218

(0.0209) (0.0464) (0.0147) (0.0358)

Safety 0.0271 0.0525 0.00629 0.0864**

(0.0264) (0.0629) (0.0201) (0.0425)

Committee Fixed Effects yes yes yes yes

Constant 0.682*** 0.661*** 0.805*** 0.394***

(0.114) (0.217) (0.0704) (0.108)

Observations 813 813 813 813

R-squared 0.115 0.134 0.103 0.123

Notes: Standard errors are clustered by meeting. Base category is Non-supplementary, Anesthetic and

Life Support Drugs with a reviewer score of 0 or no reviewer score. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table 4: Reduced-form Results

5 Estimation and identification

In this section, we describe the specification of the prior and the estimation of our

model. To conclude, we provide some intuition on which variation in the data allows

us to identify the parameters of the model.

To make the model tractable, we place a parametric restriction on the prior. This

is in line with previous literature by Iaryczower and Shum (2012) and Camara and

Dupius (2014). We allow the prior µj0, the common belief that the correct answer to
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the voting question is yes, to depend parametrically on characteristics of the voting

question captured by Xj (e.g. FDA reviewer score and committee) via the following

logit formulation:

µj0(Xj; β) =
exp(Xj

′β)

1 + exp(Xj
′β)
∈ (0, 1) (5)

This specification implies that there are certain observable vote characteristics that

have an effect on the probability of the state being “yes” or “no”. The state for each

voting question j is determined by these characteristics and a question-specific unob-

served shock term drawn from a standard logistic distribution. In Appendix B we

elaborate on how this specification can accommodate correlation in the true state for

voting questions that are part of the same meeting.

The parameters to be estimated are β, τ and λ. To recover the parameter estimates,

we maximize the likelihood function (3) directly, using the full dataset of 10,466 in-

dividual votes. We take the log of the likelihood function and minimize the negative

log-likelihood function using the quasi-Newton algorithm for unconstrained optimiza-

tion (fminunc in Matlab). Optimization using the Nelder-Mead simplex direct search

algorithm produces the same results (fminsearch in Matlab). Results are robust to

different starting values. Standard errors are calculated by taking the square root of

the diagonal elements of the inverse estimated Hessian of the likelihood function at the

solution.24

Regarding the model’s identification, both the degree of agreement among the votes

i.e. how many yes vs. no votes, and the specific sequence of votes are important. The

common prior induces a correlation of votes; all experts tend to receive higher private

signals when the state of the world is “yes.” Hence, β is identified by the number of

yes vs. no votes at the vote question level. A higher precision of information, τ , will

also contribute towards more agreement in votes, but this effect will be identified by

agreement in votes that exists across voting questions and concerns agreement in both

directions (favorable and unfavorable). Hence, to identify τ we rely on multiple voting

questions with different priors.

The proportion of learning types λ is identified by the sequence of votes. Given

24We tested the model using simulated datasets and verified that our procedure yields reasonably
precise, unbiased estimates of the parameters of the model.
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the prior and τ , we can identify how likely it is that a voter is a learning type or a

informative type based on how they vote in response to previous voters. Intuitively, if

we see a long sequence of “yes” votes, and thereafter a voter who votes “no”, this voter

is more likely to be an informative type.25 Another important aspect for identification

is that we have both simultaneous and sequential data. The fact that we have access

to simultaneous data where we know λ is zero (no learning) helps us to better estimate

the prior and τ , hence we can more effectively disentangle the effects of µ0, τ , and λ.

6 Estimation results

In this section, we describe our results for the voting model introduced in Section 2.

We first present the estimates of the model parameters and then discuss the frequency

of herd voting.

6.1 Estimates

Table 5 presents the estimates and the standard deviations for the parameters of the

model. We use information on the FDA reviewer score and application type (supple-

mentary or non-supplementary) to characterize the prior. We find that our estimates

of λ and τ are robust to the inclusion of more vote characteristics in the specification

of the prior, e.g. inclusion of committee fixed effects and type of voting question. We

select this specification as it is parsimonious, while at same time providing a good sense

of the range of µ0. In Appendix C, we provide the parameter estimates for a model

where we estimate a prior for each meeting (327 in total).

We find that on average 46% of committee members are learning types. Thus 46%

of committee members take into consideration the vote history when placing their vote.

However, this does not mean that 46% of committee members actually herd, that is,

change their vote from what it would have been if ignoring the vote history. We discuss

our approach to quantifying herd voting in the following subsection.

Additionally, we find that the precision of information for the FDA Advisory Com-

mittees is quite high (τ = 1.28). This implies that the probability that a member gets an

incorrect signal (i.e. a signal < 0.5 when the state is 1, or a signal > 0.5 when the state

is 0) is 20%. Since we estimate a τ greater than 1, we find that cascade-voting, which

25Indeed, we see that if we scramble our actual data and re-estimate the model we get a different
estimate for lambda.
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is a theoretical possibility in our model, never occurs in the FDA Advisory Committees.

Estimates of the average common prior µ0 for categories of voting questions can

be computed using β. For example, the average prior for voting questions relating to

non-supplementary applications with an FDA reviewer score of -1 can be computed as
exp(−0.19)

1+exp(−0.19) = 0.45. Estimated average priors range from 0.37 to 0.74. As we would

expect there is a positive relationship between FDA reviewer score and the estimated

average common prior.

Parameter Estimate SD

τ 1,28 0,03

λ 0,46 0,04

βnonsupp,−1 -0,19 0,10

βnonsupp,0 0,23 0,05

βnonsupp,1 1,05 0,08

βnonsupp,other 0,26 0,06

βsupp,−1 -0,50 0,20

βsupp,0 0,17 0,10

βsupp,1 0,29 0,13

βsupp,other 0,32 0,09

Table 5: Estimation Results

6.2 Herd behavior

In this subsection, we investigate the prevalence of actual herd votes. Using our struc-

tural model and the estimated parameters we are able to construct a simulated dataset

of votes under sequential and simultaneous voting, and by comparing the simulated

individual votes under sequential and simultaneous voting we can directly identify how

many committee members herded.

We simulate a dataset of 2000 vote questions which are voted on by 13 committee

members (the average size of an FDA Advisory Committee in the data) under both

a sequential and simultaneous procedure. In total the simulated dataset comprises of

52,000 individual votes. Votes are simulated using the structural voting model and

the estimated parameters values of τ = 1.28 and λ = 0.46. Our β for all 2000 voting
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questions is 0.6 which implies an average prior of 0.65. Specifically, our simulation pro-

cedure is as follows; 1) given µ0 each voting question is assigned a state, 2) contingent

on the true state, and given τ , we draw private signals for each voter, for each voting

question, 3) with probability λ a voter is assigned to be a learning type, 4) given the

assigned signals, we simulate how voting would take place if voting was simultaneous

and finally 5) given the assigned signals, types and λ we simulate how voting would

take place if voting was sequential. Thus, what we have is essentially the same vot-

ers voting on the same voting question, once under simultaneous rule, and once under

the sequential rule. We then compare the simulated individual votes under sequen-

tial and simultaneous rule for each voting question and find that 17% of learning types

actually herd.26 This implies that, on average, almost 8% of all the votes are herd votes.

Although a completely different setting, we can compare our estimates to Cipriani

and Guarino (2014) who estimate a structural model with financial transactions data.

In their model, herding is possible due to uncertainty about whether an informational

event has occurred. If an informational event has occurred, some traders obtain private

information on whether the event is positive or negative in terms of the new asset value.

If no event has occurred, all traders are noise traders. The market maker updates the

price more slowly than an informed trader would (i.e. being informed the informed

trader knows if a shock has occurred). As a result, an informed trader may herd and

follow the previous traders even if his/her signal is contradictory. Cipriani and Guarino

(2014) estimate the informed traders’ signals to be relatively imprecise; incorrect 40% of

the time. During event days the proportion of informed traders is 42% (the remaining

are noise traders). On information-event days, 2% (4%) of informed traders herd-buy

(sell) causing informational inefficiencies in the market.

7 Heterogeneity in herd behavior

In this section, we exploit the fact that our data contains information on individual

voters and extend the model to allow for heterogeneity in herd behavior. As before,

we first undertake a reduced form analysis to obtain initial insight into how member

characteristics are correlated with measures of voting behavior. Thereafter, we adjust

the structural model in order to incorporate voter characteristics and re-estimate the

26We also construct simulated datasets with different β and find that this proportion of herding
types is fairly stable. The proportion of learners that are herders is however sensitive to τ ; specifically
a lower τ increases the proportion of herders.
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model.

7.1 Descriptive analysis

To obtain indications of herd voting at the individual level, we construct an indicator

variable that takes the value 1 when voter i votes against the prevailing majority, as

calculated up until voter i. We drop voters 1, 2, 3 and 4 from the sample on grounds

that early voters have less information on which to base their vote.27 We regress this

variable, which we call Vote against Majority, on a set of voter characteristics including

educational background, gender, whether or not the committee member is a regular

member, whether or not the committee member is a consumer or patient representative

and seat number, as well as on interactions of the these variables with an indicator

variable Sequential that takes on the value 1 when voting is conducted sequentially.

We should note here that voting with the prevailing majority under sequential voting is

only indicative of herding, as of vote clustering, and clearly voting against the majority

does not preclude herd voting (something that our structural model takes into account).

For example, if the vote sequence is yes, yes, yes, no, no then the sixth member may

herd no-vote, as the fourth and fifth votes indicate relatively strong “bad” signals.

Table 6 presents the results for a simple OLS specification.28 We first note that

voters are significantly, increasingly less likely to vote against the majority as their seat

number increases under sequential voting, this effect is not present under simultaneous

voting. Secondly, we find that the coefficient on the interaction term between Regular

Committee Member and Sequential is positive and significant. Hence, we find that

regular committee members are significantly more likely to go against the prevailing

majority as indicated by the vote history under sequential voting relative to simultane-

ous voting. This provides some initial evidence that it would be a worthwhile exercise

to incorporate voter heterogeneity into the structural model, and in particular, to make

a distinction between regular and other types of committee members.

27Results are qualitatively similar for other thresholds.
28Results are qualitatively similar if we use a Logit model, Probit model or a fixed effects model

with vote question fixed effects.
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Dep. var.: Vote against Majority

Seat 0.00190

(0.00176)

Regular -0.0222

(0.0141)

PhD 0.0275

(0.0275)

Medical 0.0135

(0.0281)

Consumer Patient Rep. 0.0613**

(0.0291)

Male 0.00523

(0.0146)

Seat × Sequential -0.00637**

(0.00301)

Regular × Sequential 0.0505**

(0.0227)

PhD × Sequential -0.0349

(0.0396)

Medical × Sequential -0.0233

(0.0396)

Consumer Patient Rep. × Sequential -0.00973

(0.0427)

Male × Sequential 0.0155

(0.0219)

Constant -0.00805

(0.0530)

Vote Characteristics yes

Observations 7,040

R-squared 0.025

Notes: OLS estimation. Standard errors are clustered by meeting.

∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table 6: Reduced-form Results - Heterogeneity

7.2 Estimation results

To incorporate differences in the probability of being a learning type across voters we

specify λ as a linear function of observable voter characteristics; λ = λ0 +∆λ · I, where

I is a vector of indicator variables for the voter characteristics (e.g regular committee

member, PhD). With this adjustment to the model, we again maximize the likelihood

28



function (3) directly. In the model, we assume learning types are aware of how λ

varies across voters. We can identify a different λ for voters with certain characteristics

by using variation in how voters with different characteristics repsond to the sequence

of previous votes under sequential voting, as well as how subsequent voters react to this.

Table 7 presents the parameter estimates and standard errors. The results from

the previous model (baseline) are included for comparison. In column 3, the estimated

intercept for λ represents the average probability that a temporary member is a learn-

ing type. On average the λ for a temporary committee members is 59%, for regular

committee members it is 43% and for consumer/patient representatives it is 29%. In

Table 8 we provide an overview of the composition of these groups under sequential

voting in terms of educational background and gender.

The low proportion of learning types among regular members compared to tem-

porary members could be due to the fact that these members regularly participate

in advisory meetings. This process would make their self-esteem and esteem as ex-

pert panelists fairly settled and potentially turn some regular “learning” members into

expressive (informative) voters. With respect to social conformity, some experiments

demonstrate that subjects are more likely to conform when grouped with strangers as

opposed to friends (McKelvey and Kerr, 1988). We also find that consumer or patient

representatives (which make up 10% of voters) are the least likely to herd. This result

may in part be driven by the fact that these voters have an inherent bias. Cooper

and Golec (2017) find consumer representatives are more likely to vote against drugs

whereas patient representatives are more likely to vote for drugs.

In column 5 we include indicator variables for Male and PhD. The results suggest

that gender and whether or not an expert has a PhD has little impact on λ. The

relationship between gender and conformity has been studied extensively in the social

conformity literature. The results are mixed, however, Eagly and Carli (1981) per-

formed a meta-analysis of 148 studies of influenceability and find that women are more

persuadable and more conforming than men in group pressure situations that involve

surveillance.
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Baseline Extension 1 Extension 2

Parameter Estimate SD Estimate SD Estimate SD

τ 1,28 0,07 1,28 0,03 1,28 0,03

λ0 0,46 0,03 0,59 0,06 0,58 0,07

∆λRegular 0,06 -0,16 0,07 -0,16 0,07

∆λConsumerPatientRep -0,30 0,11 -0,29 0,11

∆λPhD 0,04 0,06

∆λMale 0,01 0,06

βnonsupp,−1 -0,19 0,11 -0,20 0,10 -0,20 0,10

βnonsupp,0 0,23 0,10 0,22 0,05 0,22 0,05

βnonsupp,1 1,05 0,05 1,05 0,08 1,05 0,08

βnonsupp,other 0,26 0,08 0,24 0,06 0,24 0,06

βsupp,−1 -0,50 0,06 -0,44 0,20 -0,46 0,20

βsupp,0 0,17 0,20 0,16 0,10 0,16 0,10

βsupp,1 0,29 0,10 0,29 0,13 0,29 0,13

βsupp,other 0,32 0,13 0,32 0,09 0,32 0,09

Table 7: Estimation Results - Heterogeneity

Regular Temporary Cons./Pat.

Degree

Medical 62% 70% 34%

PhD 35% 25% 27%

Other degree 3% 5% 25%

No Degree 0% 0% 14%

Gender

Male 68% 69% 29%

Female 32% 31% 71%

Total 100% 100% 100%

Frequency 2,847 1,074 377

Table 8: Voter Characteristics by Type for Sequential Voting

8 Information aggregation

In this section, we consider whether the switch to simultaneous voting improved the

information aggregation in the FDA committees thereby potentially leading to more
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informed drug approval decisions. We first develop a measure of information aggregation

that focuses on how closely updated beliefs, after voting has taken place, align with

the true state. Distilling on our estimated parameter values we find that simultaneous

voting performs slightly better than sequential voting. However, it is important to

note that there exist parameter values for which the sequential procedure improves

information aggregation. Secondly, we consider how committee votes may translate

into drug approval decisions and under which voting procedure more accurate approval

decisions are made.

8.1 Updated beliefs

We refer to the notion of expected distance (ED) as our measure of information aggre-

gation. This notion captures the difference between the beliefs that a Bayesian updater

would have about the state being 1 after observing all the votes (but not the signals),

and the true state. A larger discrepancy signifies that updated beliefs are further away

from the true state, and hence signifies less accurate information aggregation. Let vjN
be a specific sequence of votes with N voters. The set V j comprises of all possible

voting sequences with N voters. We denote the updated Bayesian beliefs about the

state after N experts have voted by µjN+1(v
j
N) ≡ P (θj = 1|vjN). EDN is the weighted

absolute difference between µjN+1(v
j
N) and θ across all possible voting profiles and can

be computed analytically:

EDN(Φ) = µj0
∑
vj∈V j

Pr(vjN |Φ, θ = 1)× (1− µjN+1(v
j
N))

+(1− µj0)
∑
vj∈V j

Pr(vjN |Φ, θ = 0)× µjN+1(v
j
N)

Figure 4 shows the ED for λ = 0.46, τ = 1.28, and different values of µ0. The values

of µ0 are a selection given the estimated β’s. We see that ED is consistently lower

for simultaneous voting than sequential voting although the difference is small. While

the informational gain of adding more committee members is initially high the ED

curve quickly flattens and there is little effect from increasing committee size above 12

members. In Figure 5 we consider a lower value of τ (0.8) and show that the difference

between simultaneous and sequential voting can be quite substantial when τ is less than

1. This highlights the potential negative effects of herd voting. In the case of a lower τ

we see that adding members to the committee continues to have a significant positive

effect even for relatively large committees.
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The results above may not come as a surprise: Herd voting causing informational

inefficiencies (learning types being increasingly influenced, or dominated, by the vote

history). This is also the conclusion from the herding literature building on a binary

signal structure.29 Further, the literature studying continuous private signals mainly

focuses on asymptotic properties and whether or not erroneous herds or cascades exist.

However, in our simple model it is not difficult to find examples where sequential voting

does better than simultaneous voting in terms of information aggregation.30 We know

that the informative type’s cutoff strategy depends the common prior and there is no

guarantee that this cutoff strategy minimizes ED. In the simple case of a one person

committee, it can easily be shown that when µ0 6= 0.5 the informative type’s cutoff

point is different from the cutoff strategy which minimizes ED1. It is also worth noting

that the cutoff point which minimizes ED1 is not necessarily one half. Furthermore,

there is no guarantee, all else equal, that the cutoff point of the learning type is more

extreme (closer to the boundaries) than the cutoff point of the informative type. For

example, if the prior is unbalanced then a countervailing vote drastically changes the

cutoff point of subsequent learning types, at least temporarily, who might then become

more reliant on their own signal (i.e. voting yes for good signals and no for bad signals)

whereas informative types stick to their original cutoff point.

29An exception is Wiedman (2014) who shows that sequential voting may increase information
transmission compared to simultaneous voting in a model with binary signals and competent versus
incompetent experts.

30For example, when µ0 = 0.75, τ = 2, λ = 0.8, and N = 3.
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Figure 4: Expected Distance (τ = 1.28, λ = 0.46)
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Figure 5: Expected Distance (τ = 0.8, λ = 0.46)

8.2 Drug approvals

In this subsection we consider how committee voting could translate into correct (and

incorrect) drug approval decisions. It is a difficult task to link voting outcomes to

drug approval decisions since it is unclear how the FDA interprets votes and what

additional information and follow up data the FDA has access to. We contemplate

two distinct FDA decision rules. First, assume that the FDA approves a drug if, and

only if, µjN+1(v
j
N) > 1/2. We call this decision rule µN+1-majority. That is, the FDA

approves if, and only if, the Bayesian beliefs about the state being 1 after all the ex-

perts have voted is greater than one half. Second, we consider a simple majority rule

where the FDA approves on the matter of question j if the percentage of “yes” votes is

greater than 0.5. An important difference between these two decision rules is that the

µN+1-majority rule assumes that the FDA has a sense of the common prior and thus

can calculate an updated prior, whereas this is not the case for the simple majority rule.
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Using our simulated dataset of 52,000 votes, where we know what the actual state is,

we are able to calculate the probability (for this sample) that the committee makes the

correct (or incorrect) decision.31 Table 9 shows the percentage of voting questions that

fall into each category (correct yes, correct no, incorrect no and incorrect yes) under

each voting procedure and decision making rule for a committee of 13 members. Under

the µN+1-majority rule simultaneous voting performs better. Under the simple major-

ity decision rule, given a prior of 0.65, sequential voting narrowly performs better with

a lower probability of making an error overall (3.7% vs. 2.4%). As the prior becomes

more extreme sequential voting performs increasingly better than simultaneous voting

under a simple majority rule. To illustrate this point, suppose the prior is unbalanced,

say favoring the yes-state, and voting is simultaneous. In this case, members with a

weak “bad” signal vote yes, as it is still more likely that the state is “yes.” This makes

it unlikely that the majority of the committee votes no even if the state is no, provided

that τ is not too high. However, if voting is sequential then members with a strong

“bad” signal can turn the beliefs around and spur subsequent learning types with weak

“bad” signals to vote no and thereby cause the majority to favor no.

µN+1-majority Simple majority

Simultaneous Sequential Simultaneous Sequential

Correct yes (approval) 62.05% 61.85% 62.50% 61.85%

Correct no (rejection) 37.05% 36.85% 33.80% 35.75%

Incorrect yes (type 1) 0.45% 0.65% 3.70% 1.75%

Incorrect no (type 2) 0.45% 0.65% 0% 0.65%

Table 9: Vote Outcomes (τ = 1.28, λ = 0.46, µ = 0.65, N = 13)

To get an idea of how committee voting maps onto drug approvals in reality, we

match our dataset of voting questions to data on drug approvals from the FDA Orange

Book which provides information on all approved drugs in the U.S. We focus on the

questions that relate to risk vs. benefit, since these questions most closely capture the

committee’s overall stance regarding approval. We exclude biologicals since these prod-

ucts cannot be matched with the FDA Orange Book. This gives us a sample of 263

voting questions (117 under sequential voting and 146 under simultaneous voting). For

31We are also able to calculate these measures analytically. Analytical and simulated results are
virtually identical.
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this subset of voting questions, we can see whether the drug in question was actually

approved or not.

Interestingly, we find that what the majority of committee members recommends

more closely maps into drug approvals under simultaneous voting. Under sequential

voting, for 65% of drugs where the majority of committee members was in favor of the

drug, the drug was approved. Under simultaneous voting, this figure is 77%. Under

sequential voting, for 60% of the drugs where the majority was not in favor of the drug

or was undecided (3 cases), the drug was not approved. Under simultaneous voting this

figure is 66%. These observations square with what we find for the µN+1-majority rule:

Using our simulated dataset, we find that if drug approval decisions are made by the

µN+1-majority rule, then there will be a greater alignment of approvals (or rejections)

with the majority of votes under simultaneous voting than sequential voting. Hence,

there is some evidence suggesting that a decision rule like the µN+1-majority rule is in

place; for which simultaneous voting outperforms sequential voting.

9 Conclusion

In this paper we use data from the FDA’s advisory committees to structurally estimate

a voting model which allows us to assess the proportion of expert members who are

susceptible to herd behavior. We utilize a novel data set with information on the full

voting profiles for sequential and simultaneous polling. Our main finding is that under

sequential voting almost half of the committee members take the preceding votes into

consideration when aiming for the correct answer to the voting question. We also re-

port variation in the proportion of learning types across different member characteristics

e.g. temporary committee members are more apt to herding than regular (standing)

members. We believe that our results and analysis are relevant beyond medical expert

committees: In situations where people are assembled to provide their professional ad-

vice or vote on specific questions, from corporate supervisory boards to expert hearings

and city councils or parliaments voting on ideology neutral matters.

In future work we intent to explore the mechanisms behind our main findings and

take a closer look at different member characteristics and follow the same individuals

across different voting questions. To this end, diving into the comments and pre-vote

discussions from the FDA meeting transcripts using sentiment analysis and text mining

could be fruitful. Another array of future research that we plan to take is to study the
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FDA’s decision making process, taking into account the advisory committee votes, and

the quality of drug approval decisions. The quality of the FDA decisions can be ap-

proximated by e.g. considering drug withdrawals or decisions made by other agencies

like the European Medicines Agency. Finally, we plan to further examine how the FDA

experts update their beliefs upon observing the preceding votes. This includes testing

distinct theories, departing from pure Bayesian updating, that have so far only been

examined in controlled laboratory experiments.
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Appendix A: Seating order
In this appendix we present descriptive statistics concerning seating order under se-

quential voting. In Table A2 we split the sample of votes by voter characteristics and

calculate summary statistics on seat number for each category. Based on these statistics

it is clear that different types of committee members, e.g. those with a PhD or male

committee members, are very spread out in terms of where they sit in the sequence.

The average seat position for all groups is around 7 with a standard deviation of around

4.5. There are no clear clusters of certain types of committee members at start or end

of the voting sequence.

In Figure A1 we present a more visual depiction of how regular committee members

are spread over different seat numbers. For each seat number, we calculate the percent-

age of times a regular committee member votes in this seat number using the sample

of all sequential votes. We plot the percentage of regular members by seat number and

the frequency of each seat number under sequential voting. If we focus on the more

frequent seat numbers, the percentage of times a regular committee member votes in a

given seat is fairly stable and there is no clear trend.

Finally, we show that even individual committee members are spread out in terms

of where they sit and do not always get placed in the same seat number. Based on the

name of the committee member we can determine how often each committee member

has participated in a vote under sequential voting. We focus on the 10 most frequent

voters and provide summary statistics concerning their seating position in Table A2.

Voter Characteristic Frequency Mean Seat Std. dev. Min Max

Regular 2847 6.80 4.38 1 28

Consumer patient rep. 377 6.99 4.42 1 23

PhD 1352 6.37 4.10 1 25

Medical 2579 7.02 4.63 1 28

Other degree 266 7.32 4.64 1 26

No degree 101 7.83 5.01 1 21

Male 2782 6.63 4.47 1 28

All Sequential Votes 4298 6.85 4.50 1 28

Table A1: Summary statistics for seat no. by voter characteristics
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Figure A1: Percentage of regular members by seat no. and frequency of seat no.

Voter ID Frequency Mean Seat Std. dev. Min Max

570 62 5.10 2.29 1 11

985 46 8.91 3.44 2 15

1284 46 5.67 3.10 1 11

539 44 5.93 3.01 1 11

1141 43 7.28 5.01 1 18

1051 42 5.79 3.90 1 14

791 40 6.00 3.75 2 15

813 40 7.30 2.74 3 13

981 40 6.95 4.01 2 17

848 38 4.87 3.08 1 11

Table A2: Summary statistics for seat no. for 10 most frequent voters
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Appendix B: Correlations in vote questions part of the same
meeting
In our empirical implementation, we assume that there is an underlying (latent) variable

y∗j that determines the true state for a voting question j. We specify y∗j = X ′jβ+ εj such

that:

θj =

1 for y∗j > 0

0 for y∗j ≤ 0

We further assume εj has a standard logistic distribution which implies Pr(θj =

1|X) =
exp(Xj

′β)
1+exp(Xj

′β)
.

Given that we can have multiple voting questions taking place on the same day and

relating to the same drug (on average 2-3 voting questions per meeting), we may expect

correlation in the true state across voting questions that are part of the same meeting.

We can allow for such correlation by introducing an error term at the meeting level

εm. We now specify the underlying (latent) variable as y∗j = X ′jβ + ((1− σ)εj + σεm).

If σ is 0 this collapses to the previous specification, as σ increases there is more corre-

lation in the true state for voting questions that are part of the same meeting. Given

that private signals are state dependent, there will also be more correlation in private

signals within a meeting. Assuming εm follows the standard logistic distribution, the

new error term ((1− σ)εj + σεm) also follows the standard logistic distribution. Hence

we still have Pr(θj = 1|X) =
exp(Xj

′β)
1+exp(Xj

′β)
.

In our simulations we implement such an error structure by grouping questions into

sets of four and drawing the same εm for the set. We use a σ of 0.7. We find that

our estimates of β, λ, and τ are unbiased and very similar to what they were before

introducing the correlation.
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Appendix C: Alternative specification of the prior
In order to illustrate the robustness of our results to different specifications of the

prior, we implement a model where we estimate a prior for each committee meeting i.e.

we estimate 327 priors corresponding to the 327 committee meetings in our dataset.

In order to ease estimation of a model with so many parameters, we use constrained

minimization (fmincon in Matlab). We constrain λ and all elements in the vector of

common priors µ0 to be between 0 and 1. We constrain τ to be between 0 and 5.

Table C1 provides the parameter estimates of this model. We do not report all 327

estimated priors, rather we summarize our estimates in Table C2. As we might expect,

introducing meeting level fixed effects allows the prior to vary much more across voting

questions and so reduces our estimates of τ and λ, but not by too much. We now

find that on average 31% of committee members are learning types. Using a simulated

dataset, we find that 19% of learning types herd, hence overall almost 7% of votes are

herd votes.

Parameter Estimate SD

τ 1,15 0,04

λ 0,31 0,05

Table C1: Estimation Results

Mean by Voting Rule

Parameter Number of estimates Mean Max Min Sequential Simultaneous

µ0 327 0,61 1 0,03 0,62 0,6

SD (µ0) 327 0,12 0,24 0,03 0,14 0,11

Table C2: Estimation Results - µ0
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Appendix D: Naive herding
In this appendix, we estimate our model under the assumption that learning types

are “naive” learners. Naive learners (incorrectly) believe that each previous person’s

action reflects solely that person’s private information (see Eyster and Rabin (2010)).

In our model this translates into learning types believing that everyone before them is

an informative type. This assumption requires an adjustment to the way we calculate

the updated prior. We denote the updated prior under the assumption of naive learning

as µjN,i.

µjN,i ≡ P (θj = 1|hji ) =
µjN,i−1P

vi−1
N,1,i−1(1−PN,1,i−1)

1−vi−1

µjN,i−1P
vi−1
N,1,i−1(1−PN,1,i−1)

1−vi−1+(1−µjN,i−1)P
vi−1
N,0,i−1(1−PN,0,i−1)

1−vi−1

where,

PN,1,i ≡ P (vji = 1|Φ, hji , θ = 1) = P (sji > s̄ji,t=I |Φ, θ = 1)

PN,0,i ≡ P (vji = 1|Φ, hji , θ = 0) = P (sji > s̄ji,t=I |Φ, θ = 0)

Table D1 presents the results.

Parameter Estimate SD

τ 1,28 0,03

λ 0,52 0,04

βnonsupp,−1 -0,18 0,10

βnonsupp,0 0,20 0,05

βnonsupp,1 1,03 0,08

βnonsupp,other 0,25 0,05

βsupp,−1 -0,50 0,19

βsupp,0 0,15 0,09

βsupp,1 0,28 0,13

βsupp,other 0,34 0,09

Table D1: Estimation Results - Naive herding
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