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Abstract 

Trade secrets and innovation: Evidence from the “inevitable disclosure” 
doctrine* 
 
 
Does heightened employer-friendly trade secrecy protection help or hinder inno-
vation? By examining U.S. state-level legal adoption of a doctrine allowing em-
ployers to curtail inventor mobility if the employee would “inevitably disclose” 
trade secrets, we investigate the impact of a shifting trade secrecy regime on in-
dividual-level patenting outcomes. Using a difference-in-differences design tak-
ing un-affected U.S. inventors as the comparison group, we find strengthening 
employer-friendly trade secrecy adversely affects innovation. We then investigate 
why. We do not find empirical support for diminished idea recombination from 
suppressed inventor mobility as the operative mechanism. While shifting intellec-
tual property protection away from patenting into trade secrecy has some explan-
atory power, our results are consistent with reduced individual-level incentives 
to signaling quality to the external labor market. 
 
 
Keywords: innovation, trade secrets, knowledge workers, labor markets, inter-firm 
mobility 
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Introduction 

When surveyed about the most common modality for appropriating returns from both their 

product and process innovations, industrial managers most frequently respond that trade secrecy 

and the closely-related mechanism of lead time advantage are by far the most important channels 

(e.g., Cohen, et al., 2000). Despite the stated importance of the secrecy channel, the empirical 

social science literature has predominately focused on patents, which are rated as far less important 

in the surveys as a means of appropriating returns from innovation. The likely reason for this 

mismatch is observability, a prerequisite for empirical analysis: patent protection is granted in 

exchange for detailed disclosure, while managers have an economic incentive to keep trade secrets 

secret (discovering trade secrets via legal channels such as accidental disclosure, independent 

discovery, and backward engineering invalidates them).1 The empirical literature on trade secrecy 

has therefore been understandably sparse2, even while the theoretical literature suggests that the 

most important commercial business ideas are likely to be protected via trade secrets, especially 

in weak property rights regimes (Anton and Yao, 2004). 

A law and economics perspective of trade secrecy law suggests its evolution arising from 

the need to balance efforts to protect trade secrets (e.g., Friedman, Landes & Posner, 1991), and 

more specifically the interests of employers (in appropriating returns from their human capital 

investments) with those of employees (in self-determining career choice) (e.g., Fisk, 2001). This 

																																																								
1 Patent-based intellectual property protection is a useful contrast. To obtain a patent in the U.S., an invention should 
be novel (compared to the “prior art”), non-obvious, and useful. The quid pro quo of 20 years of patent protection of 
an invention is granted in exchange for detailed, codified invention disclosure. By comparison, trade secrets can apply 
beyond technical domains, and may include a broad spectrum of dimensions of business competitiveness (and so the 
scope of what could be protected by trade secrecy is much wider). Trade secrets protection against unlawful 
procurement can extend indefinitely and is adjudicated at the U.S. state level, as compared to patents, which are of 
fixed length and enforced at the federal level. 
2 See Moser (2012), Castellaneta, Conti & Kacperczyk (2017), and Png (2017b) for recent exceptions. 
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balance likely affects innovation processes and incentives. However, it is not theoretically clear 

how shifts in trade secrecy protection strength might impact innovation outcomes.  

On one hand, a more employer-friendly trade secrecy regime may incentivize employers 

to increase their investments in employee firm-specific human capital since the frictions to 

employee mobility are enhanced. This may boost innovation outcomes. On the other hand, the 

innovation literature has stressed the need for idea recombination for innovation outcomes (e.g., 

Fleming, 2001). To the extent that employer-friendly trade secrecy regimes place frictions on the 

circulation of individuals and ideas across technical, organizational and geographic boundaries, 

innovation outcomes may consequently be dampened (e.g., Hellmann and Perotti, 2011). Another 

set of theories, rooted in labor market dynamics, also predicts a negative relation between a more 

employer-friendly trade secrecy regime and innovation outcomes. This is due to, among other 

things, muting employees’ ability to use the external labor market to signal their quality (which 

could otherwise be useful in obtaining improved employment terms). Higher thresholds for labor 

market mobility stemming from an employer-friendly trade secrecy regime may therefore be 

associated with diminished employee innovation effort and outcomes.  

Because the theoretical relationship between trade secrecy regime and innovation 

outcomes is ambiguous (in large part because the production function of innovation is complex, 

multi-dimensional, and uncertain), we seek to examine it empirically. We do so by exploiting a 

context afforded by shifting trade secrecy legal regimes (outside of contractual agreements) in a 

set of U.S. states to estimate the effect of trade secrecy environment on innovation outcomes. The 

“inevitable disclosure” doctrine (IDD) holds that courts may enjoin an employee from switching 

employers for a certain period of time if plaintiffs can show that it would not be possible for the 

employee to perform her job without inevitably disclosing the prior employer’s trade secret (more 
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on this in the next section). The prior literature on inventor human capital and organizations has 

tended to focus on contract law, either non-disclosure agreements or covenants not to compete, 

though that literature has not clearly established the effect on innovation outcomes. By contrast, 

we examine trade secrecy law in part because there are a range of circumstances tied to competitive 

situations in which contractual agreements are typically not struck between or among parties. This 

is due to, among other things, differences in corporate strategies and possible difficulties in 

governing such arrangements.  

Using a difference-in-differences empirical design, we find that the average effect of IDD 

on innovation quality, as measured by forward-citation-weighted patent counts, is negative, both 

at the inventor-year and U.S. state-year levels of analysis. We then explore the mechanisms that 

may be driving this effect. We first examine whether this negative effect is driven by a substitution 

away from the less effective appropriation channel (patenting) and into the strengthened channel 

(trade secrecy). We then analyze the salience of two theories predicting a negative relationship, 

mitigated inventor idea circulation resulting in lower idea recombination and muted inventor 

incentives arising from frictions to labor market mobility. By presenting empirical evidence on a 

sub-sample of data in which substitution between patenting and trade secrecy is unlikely, we 

suggest that the negative effect is not entirely driven by changing intellectual property protection 

strategy from patenting to secrecy.3 While we are unable to provide a sharp test of the operative 

mechanisms, our additional analyses are most consistent with the dampened labor market 

incentives mechanism, not the recombination channel.  

																																																								
3 We also contextualize the other part of the sample which may be subject to intellectual property substitution in the 
face of altered trade secrecy business environments, and discuss (in the Appendix) why the decline in innovation 
outcomes in the remainder of the sample is unlikely to be predominantly driven by secrecy substitution for patenting. 
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The remainder of the paper takes the following form. Section 2 discusses the institutional 

context: U.S. trade secrecy law and IDD. Section 3 summarizes the theoretical perspectives that 

may impact the relationship between IDD and innovation outcomes. Section 4 describes the 

dataset. Section 5 presents the main analyses and empirical tests of possible mechanisms. A final 

section concludes by discussing limitations and implications. 

 

U.S. Trade Secrecy Law and the Inevitable Disclosure Doctrine  

A critical period in the evolution of U.S. legal thought on trade secrecy law was in the 1890 

to 1920 time-frame. The norm in the antebellum U.S. was to presume that workers owned the 

rights to their ideas, unless there was an express contractual covenant to the contrary, under the 

thought that employer property was confined to physical manifestations of employer knowledge 

such as laboratory notebooks and physical equipment (Fisk, 2001). This sentiment started to 

change in the 1890s, and eventually shifted so that employer trade secrets expanded from discrete 

items to more inchoate employee know-how (Fisk, 2001). 

The Uniform Trade Secrets Act (UTSA) of 1979 (and amended in 1985) was an attempt to 

bring some degree of national uniformity to the law of trade secrets (encompassing the definition 

of a trade secret, the requirements for protection, and the remedies for misappropriation) since the 

historical origins of the U.S. law arises from English common law – and so there was little 

uniformity across states in the definition and application of trade secrecy (National Conference of 

Commissioners on Uniform State Laws, 1985). According to the UTSA, which as of 2013 had 

been ratified by 47 state legislatures (albeit over a prolonged time span), a trade secret is a piece 

of information (including formulas, patterns, compilations, programs, devices, methods, 

techniques, or processes) that (1) derives economic value, actual or potential, from not being 
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generally known to persons outside the organization and (2) is the subject of efforts that are 

reasonable under the circumstances to maintain its secrecy. While both parts of the definition are 

subject to interpretation, the second part is particularly so. For example, the standard for 

misappropriation is not whether a trade secret was discovered via illegal means.4  

An early expression of the legal theory of “inevitable disclosure” – the idea that a departing 

employee will “inevitably” disclose trade secrets, even without the intent of disclosing trade 

secrets (due to the inherent difficulty of compartmentalizing know-how), was a ruling by an early 

20th century court: “equity has no power to compel a man who changes employers to wipe clean 

the slate of his memory.” (Peerless Pattern Co. v. Pictorial Review Co., 132 N.Y.S. 37, 39 (App. 

Div. 1911) cited in Fisk, 2001: 494).  

The key contemporary case applying the inevitable disclosure doctrine is PepsiCo, Inc. v. 

Redmond (1995), which is widely-acknowledged as a legal turning point in the application of IDD. 

The PepsiCo case is interpreted as broadening the scope of the IDD doctrine beyond technical 

trade secrets, which was the traditional domain (e.g., Kahnke, Bundy & Liebman, 2008; Wiesner, 

2012). In the case, William Redmond, a sports drink manager at PepsiCo in the early 1990s, 

accepted a job at a competing sports drink company, Quaker, in 1994. PepsiCo filed suit in the 7th 

District Court in Illinois, arguing that Redmond had access to its strategic and operating plans 

(trade secrets related to pricing, distribution, packaging, and marketing), and that he could not 

perform his new job at Quaker without inevitably disclosing PepsiCo’s trade secrets. In the words 

of the court: unless “Redmond possessed an uncanny ability to compartmentalize information, he 

would necessarily be making decisions about Gatorade and Snapple by relying on his knowledge 

																																																								
4 One notable case, DuPont v. Christopher (431 F.2d 1012, 5th Circuit, 1970), involved a low-flying aircraft taking 
aerial pictures of an under-construction DuPont methanol manufacturing plant which was fenced-off on the ground. 
The court held that while not illegal to take aerial pictures, the defendant had wrongfully misappropriated DuPont’s 
trade secrets through their photographic industrial espionage.   
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of trade secrets.”5 Redmond did not have a non-compete clause in place with PepsiCo (he was an 

employee at-will), and Redmond had an explicit confidentiality agreement in place with Quaker 

prohibiting him from disclosing others’ trade secrets. Despite these contractual agreements, in 

December 1994, the court enjoined Redmond from taking the new position through May 1995.  

Before describing our data and analysis on the impact of IDD on innovation, we first review 

the theories which may impact the relationship between an altered trade-secrecy regime and 

individual-level innovation. 

 

Theoretical Background 

The theoretical literature relating trade secrecy strength to innovation outcomes suggests 

opposing predictions. A positive relation may arise if employers are incentivized to enhance their 

investments in employee skill development and human capital as a result of the greater cost of 

employee departure under an employer-friendly trade secrecy regime. Firms may be differentially 

incentivized to invest in their employee’s human capital development depending on the re-

deployability of the resulting skills. On the one hand, if skills are largely specific to the focal 

organization (in that re-use of those skills in another organization is difficult or ineffective), 

employers may be willing to incur such investments in general (Becker, 1964; Gibbons and 

Waldman, 1999). Furthermore, this investment incentive might be bolstered when there are 

barriers to employee mobility in the labor market. On the other hand, employers may be hesitant 

to invest in general employee human capital, skills which are interchangeable and equally 

applicable across organizations. Without labor market frictions, it may be difficult for firms to 

appropriate the returns from general human capital investment (Becker, 1964). However, the 

																																																								
5 U.S. Court of Appeals for the Seventh Circuit - 54 F.3d 1262 (7th Cir. 1995). 
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presence of labor market frictions, which raise the expected returns from these investments, may 

create organizational incentives to invest, even in the case of general human capital. Since these 

two forms of human capital investments may be critical inputs to the innovation process, and 

because employer-friendly trade secrecy regimes heighten frictions in the employee labor market, 

if this mechanism is salient, we would expect to observe a positive relation between an employer-

friendly IDD regime and innovation outcomes. Consistent with this explanation, Png (2017b), for 

example, finds that R&D expenditures for larger firms which are in more technology-intensive 

areas are positively related to state-level enactment of the Uniform Trade Secrets Act (UTSA) 

discussed above in our institutional background. 

On the other hand, a more employer-friendly trade secrecy regime may dampen innovation 

through two channels: reducing the potential of idea recombination and diminishing employees’ 

incentives to innovate. First, the much-discussed mechanism of idea recombination as an important 

precursor to innovation may result not only because of the possible need to gather feedback about 

idea quality from diverse knowledge sources (e.g., Hellmann and Perotti, 2011), but also because 

the recombination process itself may generate novel configurations (e.g., Fleming, 2001). Since 

an employer-friendly trade secrecy regime raises the employee costs of circulating in the labor 

market, thus diminishing the potential for idea recombination, innovation might be consequently 

hampered.  

The second channel is less explored by the management literature. Individual-level 

innovation incentives stem in part from the competitive labor market, because employment terms 

are also driven by the employee’s value, including innovation potential, in the labor market (e.g., 

Doeringer and Piore, 1971; Bulow and Summers, 1986). An employer-friendly trade secrecy 

environment may hamper the operation of that competitive external labor market, and so raises the 
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possibility of dampened individual incentives for innovation. In Becker’s (1964) framework, 

strengthened employer trade secrecy protection through legal doctrines such as IDD converts 

potentially general employees’ skills into the firm-specific domain in function. As a consequence, 

employees may be less incentivized to acquire such skills in the first place, in part due to the 

diminished ability of employees to use the secondary labor market to bargain for better terms with 

the current employer. The net result is diminished inventor productivity.6 Acharya et al. (2013), 

for example, find that strengthened employee-friendly wrongful-discharge employment protection 

acts to spur innovation through reducing the potential of employer holdup. 

An additional individual inventor response to an employer-friendly trade secrecy regime 

would be to shift the nature of her innovation efforts. Importantly, the preceding theory pertains 

only to the situation of employees wishing to continue working within the domain she has worked 

within under the original employer (consistent with the remedies available under IDD). If the 

employee were hired to conduct work in a different domain, the employer’s argument for applying 

IDD to enjoin the employee would be considerably less compelling in court. Yet at the same time, 

it is likely that the new potential employer is interested in hiring the employee precisely because 

of her specialized knowledge and experience within a domain (for otherwise there would be a high 

degree of human capital substitution available – and likely without the potential legal 

encumbrances). We therefore posit that IDD incentivizes inventors to signal their skills and quality 

																																																								
6 To understand this mechanism more precisely, consider the behavior of inventors in the context of a signaling game 
(Spence, 1973) with incomplete information in which the workers differ in their productive ability, i.e. their ability to 
generate high-quality patents, and face a market of potential employers who set wages (Gibbons et al., 2005). Here, 
talented inventors have an incentive to produce patents of high quality that could not be generated by lower ability 
inventors (either for their lack of skill or because the investment would be inefficient). The empirical prediction of 
these signaling models is that firms of different types emerge, so inventors will move across firms and sort themselves 
into employment for high or low ability inventors, with a wage premium for high-skill inventors. However, with 
mobility frictions, as may exist under IDD, highly-skilled inventors no longer have an incentive to signal their talent 
to the market as they cannot sort themselves into employment and wages by skill level, and so invention quality 
consequently suffers. 
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in other, non-competing markets and domains. An empirical prediction is that inventors under an 

employer friendly trade secrecy regime will be more likely to produce innovations which can be 

used across a wider spectrum of purposes (general-purpose technologies) relative to before 

exposure to such a regime. 

In summary, while the firm-specific investment channel predicts a positive effect of IDD 

on innovation, both the idea recombination- and the labor market signaling-views predict a 

negative relation. 

 

Data, Measures and Empirical Strategy 

To empirically assess these theories, we follow the classification of IDD rulings published 

in Castellaneta et al. (2016), which in turn is based on a number of legal sources. These rulings are 

made at the U.S. state level, and are coded as rulings for and against the IDD (with one case being 

equivocal).7 The 1995 Illinois PepsiCo case discussed above was a watershed case, and the first in 

the sequence of pro-IDD rulings. Figure 1 graphically illustrates the cumulative number of states 

with each type of ruling over time. 

[INSERT FIGURE 1 ABOUT HERE] 

Patent data are sourced from the NBER (Hall et al., 2001) and Harvard IQSS Patent 

Network Dataverse (Li et al., 2014). These sources together allow us to construct firm and 

individual-level characteristics. We use utility patents and patent citations to develop measures of 

inventor-level innovation, inventor location, and inventor affiliation. The SIC-patent class 

																																																								
7 The states ruling in favor of IDD are: Illinois (1995), New York (1997), Washington (1997), Utah (1998), Iowa 
(2002), Delaware (2006), and Pennsylvania (2010). The states ruling against IDD are: California (1944), Louisiana 
(1967), North Carolina (1976), New Jersey (1980), Minnesota (1992), Massachusetts (1995), Virginia (1999), Florida 
(2001), and Maryland (2004). The classification we follow interprets the IDD as a substitute for a noncompetition 
agreement, which accords with legal accounts of the doctrine, especially as exemplified in the PepsiCo case.  
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concordance data is obtained from Silverman (1999), while state-level data come from the U.S. 

Bureau of Economic Analysis. The final sample includes 353,889 distinct inventors from all 50 

U.S. states (and Washington, D.C.), observed up to 28 years (1976-2003), for a total of up to 

2,772,278 inventor-year observations.8 

Our main dependent variable is the count of eventually-granted patents weighted by 

forward citations (inspired by Trajtenberg, 1990 and follow-on work). As is common in the 

literature, we use the natural logarithm of these measures, calculated as log (1+x), to diminish the 

impact of outliers. Because innovation is a long-term process, we include a temporal lag structure 

in our analysis to capture the possible delayed effect on innovation following the legal regime 

shift. The main independent variables are the post-IDD positive and negative regime dummies, 

which takes the value 1 for individual-year observations when a state had a legal precedent for 

IDD in place (“IDD positive”), or when a state court had ruled against IDD (“IDD negative”), and 

0 otherwise. We use a parsimonious set of time-varying variables to control for other inputs to the 

innovation production function, including variables at the individual-level (log number of years 

since first patent and log patent stock during the previous four years), organization-level (log age 

and log number of inventors), industry-level (log number of firms), and state-level (log total wage). 

Table 1 provides definitions and descriptive statistics of all the variables used in the analysis. 

[INSERT TABLE 1 ABOUT HERE] 

Our main specification is a difference-in-differences design using ordinary least squares 

regressions on an inventor-year panel dataset, in which the first difference is the IDD regime, and 

the second difference is the year of “treatment.” In all specifications at this level of analysis, we 

																																																								
8 We build our sample from the patent data. We retain patents for which both assignee and inventor information is 
available. We then build an inventor-year panel dataset where each inventor is present in the time window between 
her first patent and her last patent. We drop inventors who are present only in a single year in order to use inventor-
level fixed effects in our empirical analyses. 
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use standard errors clustered at the state level 9  to account for potential serial correlation of 

observations within the same state (Bertrand et al., 2004). We also visually check the parallel path 

assumption prior to treatment through an analysis of year-specific treatment effects, following 

Acharya et al. (2013, Figure 4), available on request.  

 

Empirical Results  

Main results. Table 2 reports our main estimates of IDD regime and innovation.  

[INSERT TABLE 2 ABOUT HERE] 

Panel A conducts the analysis at the inventor-year level of analysis, and reports the 

innovation relationship at annual time lags ranging from two to five years after IDD regime onset. 

While all specifications contain inventor and year fixed effects for each time lag, we report 

specifications with and without the control variables. We find a robust empirical pattern: an IDD 

positive regime is consistently negatively associated with log citation-weighted patent counts 

through the four-year time lag (and becomes non-significant at the five-year lag).10 The estimates 

suggest a four-six percent decrease in the inventor-level innovation outcome measure following 

ascension to an employer-friendly trade secrecy regime.  

																																																								
9 Using less conservative approaches such as individual-level clustered standard errors enhance the statistical 
significance of the estimated coefficients. 
10 Given our use of inventor fixed effects, the IDD effect is a within estimate, based entirely on inventors who 
experienced a change in IDD status. In order to estimate the effect N years after the change in IDD, the inventor had 
to be in our data prior to the change and N years after as well (please recall that we build our sample including inventors 
between their first and last patents, as is common in the literature). In our data, 23,527 inventors contribute to the t+2 
within estimation but the number drops to 11,777 for t+5. Therefore, estimating temporally distant effects implies 
lower statistical power since fewer inventors contribute to the estimation, thus mechanically increasing the standard 
errors. Shorter lags are therefore more precisely estimated. In addition, over the longer run, individuals may adjust 
their behavior and effort to the new legal environment, which can also help explain the temporal effects. Finally, we 
restrict our analysis to five years post-event, since all of the IDD positive events take place in the final eight years of 
our dataset. 
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Meanwhile, the IDD negative regime is not significant in any of the time lags. Because a 

negative ruling on IDD is essentially not changing the status quo trade secrecy environment, we 

are not surprised with this non-result. Naturally, if the labor market environment does not change, 

there is no reason to expect individual behavioral changes either.11  

Panel B of Table 2 repeats the analysis at the state-year level of analysis. All specifications 

include state and year fixed effects, and the standard errors are clustered at the state level. The 

empirical results remain consistent: each lag through five years, especially the specifications 

containing the control variables, is significant, and suggest an approximately twenty-five 

percentage point innovation decline for a discrete change into an IDD positive trade secrecy 

regime. The state level effects are higher since an important source of innovation is individual-

level heterogeneity (including the composition of inventors in a state), which can only be captured 

with inventor fixed effects in the individual-level analysis. In addition, aggregating individual-

level data to the state-level involves a variety of sample design choices; these in turn may impact 

the estimates. Finally, a cautionary note: our ability to control for time-varying state-level effects 

is limited due to the high degree of collinearity between our available state-level control variables, 

and the estimate of the IDD negative effect can vary depending on which control variables enter 

the specification. Consequently, we are unable to strongly interpret the IDD negative effect from 

this state-level analysis. The coefficient on the IDD positive variable, however, remains weakly 

negative throughout the temporal specifications, consistent with our main findings from the more 

precisely estimated inventor-year analysis (Table 2, Panel A). 

																																																								
11 One might argue that reaffirming that IDD is not in place could itself change inventor behavior. We believe that 
unlike the extremely visible 1995 landmark Illinois case (an IDD positive decision), IDD negative decisions are not 
as likely to receive substantial media coverage, a necessary condition for economic agents to act on an updated legal 
environment. 
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Robustness checks. To verify the effect found in the main analysis, we conduct a variety 

of robustness checks in Table 3, spanning the domains of sample composition (Panel A) and 

controls for potential confounding events and estimation methods (Panel B). In these analyses, we 

concentrate our attention on the two and three year lags post-IDD regime ascension, as our main 

results were most salient in those time periods. All robustness analyses are consistent with our full-

sample results. 

[INSERT TABLE 3 ABOUT HERE] 

We start by showing that the main results are robust to various sub-samples of the overall 

data set. We return to the inventor-year level of analysis, with each specification containing the 

full set of control variables, as well as individual and state fixed-effects. The first group of 

robustness checks in Table 3, Panel A, examine whether the results are sensitive to the exclusion 

of inventors who change states (specifications 3A-1 and 3A-2) and the exclusion of inventors who 

change IDD regimes (columns 3A-3 and 3A-4). We wish to dismiss the possibility that changes in 

the sample composition are driving the main results, which could constitute a violation of the 

stability of the treatment unit, which in turn undermines the credibility of the empirical strategy. 

Our results are robust to both sub-sample exclusions. 

The next two sample composition robustness checks first exclude inventors from California 

and then focuses on the U.S. Midwestern states, where the landmark PepsiCo case took place. 

Since the focal California case placing it in the IDD negative regime took place in 1944, well 

before the modern trade secrecy environment and the rest of the state-level regimes we consider, 

and because the case facts also may not have been comparable with the other cases (the defendant 

was a contractor and not an employee), we verify that the result are robust to excluding California 

inventors in specifications 3A-5 and 3A-6. In the next two columns, we confine the sample to 
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inventors from Illinois and seven U.S. Midwestern states (Kansas, Michigan, Missouri, Nebraska, 

North Dakota, South Dakota, and Wisconsin). The treatment is in effect for inventors in Illinois in 

the post-1995 period. The legal environment shift in this setting was important and swift, and more 

uniform in case facts (e.g., the importance of bad faith, the absence of a covenant not to compete, 

and pre-existing state-level ratification of the UTSA in applying the doctrine) relative to a multi-

state analysis. The results are consistent and economically larger (a seven percent innovation 

decline), even after utilizing a synthetic state control method (Abadie, et al. 2010; results 

unreported but available from the authors). The final two specifications in Table 3, Panel A 

investigate result robustness to a uniform five-year treatment window around the IDD events,12 

and also find consistent results. 

In Table 3, Panel B we investigate result robustness to a variety of potentially confounding 

events. We first examine whether differences in non-compete clause enforcement, as described in 

Garmaise (2011), overturn our main results. We employ Png’s (2017a; 2017b) composite index, 

which incorporates both Garmaise’s non-compete clause enforcement data as well as other 

elements of the state-level trade secrecy regime (with features such as variation in qualifications 

for trade secrecy protection, civil procedure regarding taking legal action, and remedies in case of 

violations), as a control variable in the first two columns of Table 3, Panel B. The negative impact 

of IDD previously reported remains essentially unchanged in magnitude and statistical 

significance. We next show result robustness to a time trend (specifications 3B-3 and 3B-4) and a 

state-specific time trend (specifications 3B-5 and 3B-6).  

																																																								
12 We make two sample construction decisions to conduct this analysis: (1) because some inventors could move within 
the analysis window and so could be treated twice, we analyze inventors who do not move across states, and (2) 
because it is not clear how to construct a time window for an inventor who is never treated, we remove inventors who 
are never treated from this analysis. This analysis is robust to alternative sampling choices, such as restricting to 
inventors who are treated only once (regardless of whether they change state) or including never-treated inventors. 
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A number of U.S. banking deregulation environment shifts could also be confounders, as 

such deregulation could have implications for, among other things, the decision to undertake 

projects and make investments. Since these decisions could in turn affect innovation rates, even 

outside of the trade secrecy regime, we control for the banking deregulation regime (by following 

the Kerr and Nanda (2009) scheme in columns 3B-7 and -8, and by following the Amore, et al. 

(2013) coding in 3B-9 and -10). Our results are robust. 

The final two columns of Table 3, panel B test the robustness of estimation method. We 

employ Poisson models, in which the outcome variable is a count of the number of citation-

weighted patents. Such models are appropriate for dependent variables which take on non-negative 

integer values. Again, the main results hold.  

Our main robust finding is a negative relation between patent-based innovation measures 

and an employer-friendly trade secrecy regime. The remainder of the empirical analyses 

investigate the potential explanations behind this effect. We do not consider the theoretical 

explanation centered on enhanced organizational human capital investments, which predicts a 

positive relation between IDD positive and innovation outcomes. We first examine whether a 

change in intellectual property rights (IPR) strategy substituting trade secrecy for patenting is 

driving the main results. We then examine the knowledge recombination and labor market 

signaling mechanisms in turn, as each theory is consistent with the negative main effect we find. 

Mechanisms analysis. The first mechanism we explore is a shift away from patent 

protection in the face of a strengthened (from the employer’s perspective) trade secrecy 

environment. This possible intellectual property rights (IPR) protection strategy shift could explain 

the diminished patenting-based innovation outcome if inventions which were formerly protected 

by patents are now protected via trade secrecy (Friedman et al., 1991; Png, 2017a), with little or 
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no change in actual innovation. In particular, the negative relation between strengthened trade 

secrecy and measured innovation (patent output) could result from reduced employee mobility 

stemming from an employer-friendly trade secrecy environment. This may result in less potential 

for knowledge spillovers, which in turn may be manifested in less aggressive patenting (Kim and 

Marchke, 2005). 

We exploit the heterogeneity of patent effectiveness across industries, as perceived and 

reported in surveys of industrial managers. Among manufacturing industries, Cohen et al. (2000) 

distinguish discrete from complex technologies. Discrete technologies are those typically 

composed of a relatively small number of components. Complex technologies are those that tend 

to be composed of a large number of components.13  As Png (2015: 2) states: “For discrete 

technology products, the substitution between patents and secrecy will be relatively weak. So long 

as a product embeds at least one patent, it gets some of the advantages of a patent – the legal right 

to exclude, strategic purposes, publicity, underpinning licensing, and access to federal courts. 

Manufacturers of discrete technology products would be reluctant to switch the single invention 

from patent to secrecy and lose those advantages. By contrast, in complex technology products, 

there will be many patents to convey those advantages, even after substitution of some patents for 

secrecy. Hence, the substitution will be stronger among complex technology products.”�

[INSERT TABLE 4 ABOUT HERE] 

																																																								
13 To build these measures, we match patents to SIC codes. We assign a SIC code to each patent building on the 
method proposed by Silverman (1999). Silverman (1999) constructs a concordance linking the International Patent 
Classification (IPC) system to the U.S. Standard Industrial Classification (SIC) system, assigning each IPC to one or 
more four-digit SIC codes where the patent may be used. Using this dataset, we assign each IPC to the SIC code with 
its highest frequency of use, thereby linking each US patent to its most plausible SIC code. Finally, we focus on 
manufacturing sectors and categorize each SIC as either discrete (SIC between 19 and 33: food, tobacco, textiles, 
apparel, lumber, furniture, paper, printing, chemicals, petroleum refining, rubber, leather, and varied material 
products) or complex (SIC between 34 and 39: fabricated metal, industrial machinery, computer and electronic 
components and equipment, transportation equipment, and measuring/optical/medical goods), as per Cohen et al. 
(2000).  



	

	 18 

Since the actor deciding on the possible IP form is the manager, and she is likely examining 

the invention rather than the inventor in determining the form of IP protection (patents versus trade 

secrets), we perform the analysis at the invention unit of analysis. Therefore, we regress innovation 

quality (log of forward citations for each given patent) on IDD regime at the time of patent 

application and team- and organization-level controls. We find that for the sub-sample of discrete 

technologies, which comprises about a third of our overall sample, there is a negative relation 

between IDD positive ascension and innovation quality, while this relationship does not exist for 

the sample of complex technologies (see Table 4, Panel A, 4A-3 and -4 as compared to 4A-5 and 

-6). The same general pattern emerges at the inventor-year level of analysis, though the results are 

somewhat noisier (regression output available on request).14 We therefore conclude that IP form 

substitution does not explain the entire negative innovation output relation arising from an IDD 

positive trade secrecy regime, particularly for discrete technologies. 

Because the theoretical mechanisms explaining the main negative relation between an IDD 

positive regime and innovation outcomes take place at the inventor level, we now return to that 

level of analysis in order to assess the mechanisms (Table 4, Panels B and C).15 We start by 

examining the knowledge recombination mechanism. This view suggests that because circulating 

ideas for feedback and recombination may be instrumental for innovation, and because an IDD 

																																																								
14 While the heart of our mechanisms analysis examines the discrete technology sub-sample, we contextualize the 
complex technology sub-sample with respect to possible IP form substitution in the Appendix. 
15 When we assess these mechanisms, we construct the inventor-year observations using the following procedure: 1) 
we classify each invention as discrete or complex (using SIC concordance, via the Silverman (1999) method); 2) we 
classify each inventor-year as discrete or complex using a majority rule (the cases where an inventor has the same 
number of discrete and complex inventions in a year are very few, so the results are not sensitive to their inclusion or 
exclusion); and 3) we use an imputation approach to fill in inventor-year observations when there is no patenting, 
following a common practice in the literature (see for example Marx, Strumsky & Fleming (2009: 882)). The results 
reported in Table 4, panels B and C use the majority rule to classify inventors as discrete or complex (a threshold of 
more than 50% of the inventor-years of a given inventor classified as a given technology type), though the results are 
robust to alternate thresholds of above 75% and 100% (we report the lower threshold to maximize the number of 
usable observations). 
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positive legal regime places frictions on inventor mobility across firms, we might believe that 

dampening knowledge recombination may be a leading mechanism for the negative innovation 

result. Since the concept of frictions to labor movement restraining mobility has been well-tested 

in the literature,16 we do not dwell on it here. 

Instead, we concentrate our efforts in directly exploring whether the IDD regime is 

associated with a validated measure of combinatorial novelty based on the work of Fleming and 

Sorenson (2001).17 This measure captures the degree to which a focal invention has recombined 

elements which are relatively uncommon (a proxy of higher novelty) as compared to historical 

patents. We extend the measure to inventor-year patent portfolios, and use this as an outcome 

measure, with the main independent variable of interest the post-IDD positive regime indicator in 

a difference-in-differences specification. If the knowledge recombination mechanism of 

explaining the adverse innovation impact of IDD is salient, we would expect that the IDD positive 

variable would be negatively related to the combinatorial novelty variable. Across a range of 

empirical specifications, we do not find empirical support for this, for the sample as a whole, and 

for either the discrete- or complex-technology subsamples (Table 4, Panel B).  

A different possible mechanism explaining the negative innovation effect of the IDD 

positive environment relates to the incentive structure of inventors. Inventors may be incentivized 

to innovate by generating more high quality patents in order to signal their quality to the 

competitive labor market so as to weaken potential hold-up problems inside a firm and obtain 

																																																								
16 Several papers find that increased costs of inventor mobility dampen technical employee mobility (we also find the 
same empirical pattern in our sample). For example, Marx et al. (2009) report that an unanticipated shift in employee 
non-compete agreement enforcement in Michigan curtails such mobility.  
17  The combinatorial novelty measure is calculated as follows. We first compute recombination ease E!"  for 
technology subclass s at time t as the ratio of number of subclasses combined with s and the number of patents in s. 
Combinatorial novelty C# of patent p is the sum of recombination ease E!" for each subclass s associated to patent p. 
Finally, inventor-year combinatorial novelty C" is the average of the combinatorial novelty C# of all patents p applied 
for in year t. 
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better employment terms. Under an employer-friendly trade secrecy regime such as IDD positive, 

which raises the cost of within-sector employee mobility, inventors’ incentives to make use of the 

secondary labor market in their focal domain may be dampened. Inventors might instead be 

incentivized to vary the direction or nature of their innovation efforts in order to signal their skills 

and quality to organizations other than their direct competitors. We posit that IDD positive rulings 

incentivize inventors to signal their skills and quality in non-competing domains, and our empirical 

prediction is that more general-purpose innovations will be produced by inventors “treated” by 

IDD positive rulings. The mechanism suggests that if inventors’ prospects for labor market 

bargaining as a result of their productive efforts in their focal technology area is curtailed, then 

they may be dis-incentivized in producing in the focal technology area. However, this diminished 

incentive does not hold in other technology domains, since IDD enforcement is specific to a given 

technology area. 

We use the patent generality measure, calculated as 1 minus the Herfindahl-Hirschman 

Index of patent classes in forward patent citations (Hall et al., 2001) to proxy the nature of 

innovation produced, with the idea that while IDD may dampen inventors’ within-sector incentives 

for innovation (for the reasons stated above), inventors may redirect their efforts to signaling their 

quality across sectors and technical application areas, where IDD does not apply. Lower values of 

this measure indicate little use of the focal patent in a broad range of patent classes within the set 

of forward citations to the focal patent.  

We therefore analyze the effect of IDD on inventors’ patent generality in using the same 

difference-in-differences style regression framework we have employed before (using mean patent 

generality at the inventor-year level of analysis). Note that this analysis does not try to directly link 

the higher inventor-level patent generality after IDD positive to the same regime shift post-IDD 
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with respect to forward citation weighted patents. Instead, these analyses are complementary in 

describing possible inventor-level responses to the regime shift making trade secrets protection 

more employer friendly.	The results are presented in Table 4, Panel C. The economically and 

statistically positive coefficient is confined to the part of the sample in which there is unlikely to 

be IP substitution: the discrete technology sub-sample, though an aggregated analysis using the 

full sample exhibits the positive relation as well (Table 4, Panel C, columns 3-4). We interpret 

these results as consistent with a labor market signaling perspective in which inventors alter the 

direction of their inventive efforts to be more general-purpose, even if their incentives to produce 

“quality” patents/innovation in their focal domain (as measured by forward citation weighted 

patent counts) is dampened.18 

Our overall conclusions to our analysis of mechanisms are as follows. First, our main 

evidence for the mechanisms is drawn from the “discrete” technologies, as they are unlikely to 

experience substitution, even in the face of differentially-altered IP regimes. This analysis is 

consistent with the labor market signaling mechanism and does not find support for the knowledge 

recombination mechanism. Second, some degree of substitution is likely to be taking place in the 

other part of our sample of the “complex” technologies. It is hard to quantify this effect, though 

comparisons of industry composition in light of the existing literature in markets for technology, 

patent propensity, and patent substitution with trade secrecy (contained in the Appendix) suggest 

that substitution is unlikely to account for the entire effect. 

																																																								
18 An anonymous reviewer suggested exploring the extent to which agents might respond to an IDD positive regime 
by exerting more inventive effort (manifested in patent quality, proxied by forward patent citations) for more general 
technologies and less such effort in “dedicated” (less general) technologies. Our empirical examination found partial 
support for this (evidence of the latter effect), though we do not report these results formally because: (a) this analysis 
divides the sample based on a similar source of information (forward patent citations) that drive the outcome variable 
we analyze, and (b) we are not entirely comfortable with the premise that inventors can choose both invention quality 
and generality at the same time, especially if the inventor has previously been producing more specialized 
technologies.  
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Discussion 

Trade secrecy is an inherently difficult phenomenon to study empirically, and theoretical 

analyses, as we discussed, point to conflicting predictions on shifts in trade secrecy regime and 

innovation outcomes. Our empirical results, drawn from U.S. state-level trade secrecy environment 

changes resulting from the Inevitable Disclosure Doctrine, suggest that shifting to an employer-

friendly trade secrecy regime may hinder innovation as measured by forward-citation weighted 

patent grants. Further analysis suggests that this result is more consistent with an explanation 

rooted in dampened inventor incentives in signaling their quality to the external labor market as 

compared to the more common mechanism discussed in the management literature, placing 

frictions on idea recombination by individuals.  

These findings suggest that the non-patent intellectual property legal environment (most 

prior work has focused on patenting) in which individuals and organizations operate can influence 

innovation outcomes. Paradoxically, our results suggest that what many firms and managers may 

lobby or wish for – a strengthened trade secrecy environment – may backfire with respect to 

inventor-level patent output. The topic of appropriation of R&D-based activities is of course a long 

standing and important theme in the management of innovation/technology literature (e.g., Cohen, 

2010). The literature has mainly followed variation in appropriation among industry sectors – for 

example, the classic Yale and Carnegie Mellon industry surveys organize managerial perceptions 

of appropriation along industry lines. By contrast, not only do we consider non-patent based 

intellectual property, we also look beyond traditional industry boundaries in appropriability 

environments. This difference results in part from trade secrecy law adjudication at the U.S. state 

level. The managerial implication is that there can be differences in appropriability environment 
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within industries, and so more active firm management of IP form (rather than mere consideration 

of industry membership) may be important.  

Beyond the high-level recognition that the knowledge worker labor market environment 

and the associated incentives generated can impact innovation, our work on the associated 

mechanisms also hold a number of managerial implications. While one theory consistent with the 

main empirical pattern is that reduced idea recombination and cross-fertilization may be the 

operative mechanism, our results are not consistent with this mechanism. On the other hand, the 

labor market signaling view has not received as much attention in the strategic management 

literature. Managers should be aware that employee innovative effort, aside from intrinsic 

motivation, may also rely on expectations of employment terms and career advancement, as well 

as the ability to weaken potential hold-up problems inside a firm. Such advancement, in turn, may 

depend on both internal-to-the-firm and external career paths. If frictions are placed on the external 

path, that may have behavioral implications for technical staff within the focal organization. Our 

results suggest that this may be manifested in dampened incentives as a result of the threat of 

internal hold-up as well as a redirection in inventive effort (concentrating on more general-purpose 

inventions which would not be subject to the restrictions of the IDD).  

More generally, since trade secrecy is a commonly used form of intellectual property 

protection by industrial managers, a deeper understanding of how and when it is used, together 

with how it operates, should be of managerial interest. Beyond managerial implications, our results 

also relate to the geography of innovation policy discussions and the debates in that literature 

regarding the role of regional culture versus legal infrastructure in innovation outcomes (e.g., 

Saxenian, 1994; Gilson, 1999). Our results do not speak to the role of regional culture, but do 
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support the view that regionally-based legal infrastructure can alter innovation incentives and 

outcomes.  

Alongside these implications of our study, it is important to clearly discuss the generality 

of our findings. We empirically study a particular quasi-natural experiment: an exogenously 

shifting trade secrecy regime in some U.S. states. In such a setting, our empirical strategy involves 

estimating how “exposed” individual inventors, who had previously been “untreated” are now 

affected in innovation outcomes in an altered business environment, as compared to inventors who 

had never been treated (a difference-in-differences design). This implies that our resulting 

estimates pertain to contexts in which we are able to observe tangible measures of innovation (via 

patent data and measures), which otherwise are difficult to observe. Furthermore, to mitigate the 

role of individual-level heterogeneity, our empirical approach relies on inventor-level fixed effects 

to assess within-person changes (which also has the effect of reducing the observations). Future 

work in other empirical settings would ideally triangulate both the main effects we estimate, as 

well as further elaborate the mechanisms we test. 

In conclusion, we hope that this study is a beginning of further empirical research 

deepening our understanding of the relationship between trade secrecy law and innovation. 
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Table 1: Variable definitions and descriptive statistics 
 

VARIABLE DEFINITION (DATA SOURCE) MEAN STD. DEV. 
Inventor-year level of analysis 

Log citation weighted 
patent count 

Log of the number of eventually-granted patent applications 
weighted by number of forward citations within 4 years from 
grant (IQSS/NBER) 

0.84 1.18 

Log mean combinatorial 
novelty 

Log of the mean of the combinatorial novelty of the eventually-
granted patent applications. Combinatorial novelty measures the 
degree to which the individual inventions recombine infrequently 
combined technology areas (Fleming and Sorenson, 2001)  

2.15 0.81 

Mean patent generality 1-Herfindahl-Hirschman Index of primary patent classes within 
forward patent citations (IQSS/NBER) 

0.44 0.26 

IDD positive Binary variable taking value 1 when a positive ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.06 0.23 

IDD negative Binary variable taking value 1 when a negative ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.29 0.45 

Log 4-year patent stock Log of number of patents in the prior four years (IQSS/NBER) 1.08 0.69 
Log individual 
experience 

Log of number of years since the inventor appears in the dataset 
(IQSS/NBER) 

1.80 0.70 

Log organization size Log of number of inventors with patent assignments to the focal 
organization (IQSS/NBER) 

4.02 2.42 

Log organization age Log of number of years since organization appears in dataset 
(IQSS/NBER) 

2.39 0.68 

Log industry size Log of number of inventors in 3-digit SIC (IQSS/NBER & 
Silverman, 1999) 

5.27 1.84 

Log state total wage Log of the state sum of wages and salaries in thousands of US 
dollars (Bureau of Economic Analysis website) 

18.51 0.98 

State-year level of analysis 
Log citation weighted 
patent count 

Log of the number of forward citations within 4 years from grant 
(IQSS/NBER) 

7.23 1.90 

IDD positive Binary variable taking value 1 when a positive ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.02 0.14 

IDD negative Binary variable taking value 1 when a negative ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.10 0.29 

Log state total wage Log of the state sum of wages and salaries in thousands of US 
dollars (Bureau of Economic Analysis website) 

17.15 1.17 

Invention level of analysis 
Log citation count Log of the number of forward citations within 4 years from grant 

(IQSS/NBER) 
1.33 1.00 

IDD positive Binary variable taking value 1 when a positive ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.06 0.23 

IDD negative Binary variable taking value 1 when a negative ruling for IDD is 
in place and 0 otherwise (Castellaneta et al., 2016) 

0.30 0.46 

Log team size Log of number of patent team members (IQSS/NBER) 0.99 0.35 
Log average experience Log of average number of years since the inventor appears in the 

dataset (IQSS/NBER) 
1.77 0.70 

Log average tenure Log of average tenure in present firm across patent team members 
(IQSS/NBER) 

1.46 0.60 

Log average organization 
age 

Log of average organization age across patent team members 
(IQSS/NBER) 

2.37 0.73 

Log average organization 
size 

Log of average organization size across patent team members 
(IQSS/NBER) 

4.26 2.24 

 
This table reports variable definitions and summary statistics for variables used in the analyses. Each section of the table focuses 
on one of the three levels of analysis employed: inventor-year, state-year, and invention. When we use the logarithm, it is the 
natural logarithm of the variable plus 1. 



	

	

Table 2: Main analysis of IDD regime and innovation 
 
Panel A: Inventor -year level of analysis 
 

DV Log citation weighted patent count 
Time window t+2 t+3 t+4 t+5 
 2B-1 2B -2 2B-3 2B-4 2B-5 2B-6 2B-7 2B-8 
IDD positive -0.045 -0.038 -0.049 -0.040 -0.056 -0.047 -0.047 -0.038 
 (0.015) (0.019) (0.018) (0.013) (0.028) (0.018) (0.046) (0.037) 
IDD negative 0.024 0.023 0.015 0.016 0.013 0.014 0.009 0.010 
 (0.023) (0.025) (0.021) (0.022) (0.021) (0.019) (0.021) (0.016) 
Controls N Y N Y N Y N Y 
Inventor, state 
& year FE 

Y Y Y Y Y Y Y Y 

N 2,067,187 2,067,187 1,763,496 1,763,496 1,510,618 1,510,618 1,297,248 1,297,248 
Adj. R^2 0.25 0.26 0.26 0.27 0.26 0.27 0.26 0.27 

 
This panel reports coefficients and standard errors (in parentheses) from OLS regressions at the inventor year level. The 
control variables are listed in Table 1. Standard errors are clustered at the state level. The outcome variable is measured at 
times t+2, t+3, t+4, t+5 relative to focal year t. All explanatory variables are measured at time t. 
 
Panel B: State-year level of analysis 
 

DV Log citation weighted patent count 
Time window t+2 t+3 t+4 t+5 
 2B-1 2B -2 2B-3 2B-4 2B-5 2B-6 2B-7 2B-8 
IDD positive -0.188 -0.260 -0.206 -0.266 -0.206 -0.249 -0.233 -0.253 
 (0.201) (0.142) (0.176) (0.123) (0.165) (0.118) (0.154) (0.114) 
IDD negative -0.187 -0.283 -0.205 -0.278 -0.207 -0.262 -0.233 -0.277 
 (0.147) (0.144) (0.153) (0.149) (0.163) (0.159) (0.174) (0.171) 
Controls N Y N Y N Y N Y 
State & year FE Y Y Y Y Y Y Y Y 
N 1,326 1,326 1,275 1,275 1,224 1,224 1,173 1,173 
Adj. R^2 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

 
This panel reports coefficients and standard errors (in parentheses) from OLS regressions at the state year level. The control 
variables are listed in Table 1. Standard errors are clustered at the state level. The outcome variable is measured at times t+2, 
t+3, t+4, t+5 relative to focal year t. All explanatory variables are measured at time t. 
 
 



	

	

 
Table 3: Robustness checks 
 
Panel A. Robustness to sample composition 
 

DV Log citation weighted patent count 
Sample Inventors who do not 

change state 
Inventors who do not 
change IDD regime 

Excludes inventors 
from California 

Inventors from Illinois 
(treated in 1995) and 

non-treated U.S. 
Midwestern states 

5-year window around 
treatment 

Time window t+2 t+3 t+2 t+3 t+2 t+3 t+2 t+3 t+2 t+3 
 3A-1 3A-2 3A-3 3A-4 3A-5 3A-6 3A-7 3A-8 3A-9 3A-10 
IDD positive -0.039 -0.030 -0.040 -0.034 -0.036 -0.044 -0.069 -0.070 -0.056 -0.053 
 (0.021) (0.013) (0.020) (0.013) (0.016) (0.015) (0.016) (0.016) (0.017) (0.025) 
IDD negative 0.013 0.007 0.017 0.013 0.019 0.011 N/A N/A -0.018 -0.026 
 (0.046) (0.044) (0.038) (0.035) (0.033) (0.031) N/A N/A (0.034) (0.032) 
Controls Y Y Y Y Y Y Y Y Y Y 
Indiv. & year FE Y Y Y Y Y Y Y Y Y Y 
N 1,581,745 1,325,937 1,736,865 1,465,375 1,735,431 1,484,942 141,072 117,248 276,624 225,242 
Adj. R^2 0.26 0.27 0.26 0.27 0.25 0.26 0.26 0.26 0.29 0.30 

 
This panel reports coefficients and standard errors (in parenthesis) from OLS regressions at the inventor year level of analysis. Standard errors are 
clustered at the state level. The control variables are listed in Table 1. Columns 1-2 use the sample of inventors who do not change state; columns 3-4 
use the sample of inventors who do not change IDD regime; columns 5-6 use the sample excluding California; columns 7-8 use the sample restricted to 
Illinois and the non-treated U.S. Midwest states (KS, MI, MO, NE, ND, SD, WI); and columns 9-10 restrict the sample to a 5-year window around the 
event and inventors who do not change state.  
 



	

	

Table 3: Robustness checks (continued) 
 
Panel B. Robustness to potential confounds 
 

DV Log citation weighted patent count Citation weighted 
patent count 

Model Trade secrecy index Time trend State-specific time 
trends 

Bank deregulation 
(Kerr & Nanda) 

Bank deregulation 
(Amore et al.) 

Poisson 

Time 
Window 

t+2 t+3 t+2 t+3 t+2 t+3 t+2 t+3 t+2 t+3 t+2 t+3 

 3B-1 3B-2 3B-3 3B-4 3B-5 3B-6 3B-7 3B-8 3B-9 3B-10 3B-11 3B-12 
IDD 
positive 

-0.037 -0.039 -0.085 -0.144 -0.110 -0.164 -0.033 -0.035 -0.038 -0.040 -0.072 -0.063 

 (0.018) (0.012) (0.030) (0.039) (0.034) (0.045) (0.014) (0.014) (0.018) (0.013) (0.027) (0.031) 
IDD 
negative 

0.023 0.016 0.033 0.013 0.038 0.008 0.017 0.012 0.023 0.016 0.026 0.012 

 (0.025) (0.022) (0.042) (0.042) (0.070) (0.076) (0.023) (0.021) (0.025) (0.022) (0.020) (0.021) 
Controls Y Y Y Y Y Y Y Y Y Y Y Y 
Indiv. FE Y Y Y Y Y Y Y Y Y Y Y Y 
Year FE Y Y N N N N Y Y Y Y Y Y 
N 2,067,187 1,763,496 2,067,187 1,763,496 2,067,187 1,763,496 2,067,187 1,763,496 2,067,187 1,763,496 1,907,452 1,627,639 
Adj. R^2 0.26 0.27 0.25 0.26 0.25 0.26 0.26 0.27 0.26 0.27 N/A N/A 

 
This panel reports coefficients and standard errors (in parenthesis) from OLS and Poisson regressions at the inventor-year level of analysis. Standard errors are clustered 
at the state level in the OLS regressions and robust in the Poisson regressions. The control variables are listed in Table 1. Columns 1-2 include a measure of the prevailing 
state-level trade secrecy regime (taken from Png, 2017b); columns 3-4 use a time trend instead of year fixed-effects (FEs); columns 5-6 use state-specific time trends 
instead of year FEs; columns 7-8 include the bank deregulation regime from Kerr and Nanda (2009); columns 9-10 include the bank deregulation regime variables from 
Amore et al. (2013), and columns 11-12 use Poisson count models. 

 



	

	

Table 4: Mechanisms 
 
Panel A: Potential IP substitution 
 

DV Log number of citations (invention level) 
Sample full “discrete” inventions “complex” inventions 
 4A-1 4A-2 4A-3 4A-4 4A-5 4A-6 
IDD positive -0.021 -0.015 -0.057 -0.051 -0.005 -0.001 
 (0.005) (0.005) (0.009) (0.009) (0.006) (0.006) 
IDD negative 0.098 0.093 0.051 0.050 0.113 0.107 
 (0.002) (0.002) (0.004) (0.004) (0.003) (0.003) 
Controls N Y N Y N Y 
SIC2 & year FE Y Y Y Y Y Y 
N 792,804 792,804 238,281 238,281 554,523 554,523 
Adj. R^2 0.17 0.18 0.10 0.11 0.17 0.18 

 
This panel reports coefficients and standard errors (in parenthesis) from OLS regressions at the invention level. The 
outcome variable is the log count of forward citations. Control variables are listed in Table 1. Standard errors are robust. 
All explanatory variables are measured at time t. To define “discrete” and “complex” technologies, we follow Cohen et 
al. (2000) by focusing on manufacturing sectors and categorize each US Standard Industrial Classification (SIC) as either 
discrete (SICs between 19 and 33) or complex (SICs between 34 and 39). We assign a SIC code to each patent building 
on the method proposed by Silverman (1999). Silverman (1999) constructs a concordance linking the International 
Patent Classification (IPC) system to the SIC system, assigning each IPC to one or more four-digit SIC codes where the 
patent may be used. Using this dataset, we assign each IPC to the SIC code with its highest frequency of use, thereby 
linking each US patent to its most plausible SIC code. Finally, using the SIC code of each patent, we categorize the 
patent as either discrete or complex. We focus on patents where all inventors are based in the same IDD regime in order 
to unambiguously assign IDD regime to each patent. 



	

	

Table 4: Mechanisms (continued) 
 
Panel B: Knowledge recombination mechanism 

DV Log mean combinatorial novelty (inventor-year level) 
Sample full “discrete” inventors “complex” inventors 
Time widow t+2 t+3 t+2 t+3 t+2 t+3 
 4B-1 4B-2 4B-3 4B-4 4B-5 4B-6 4B-7 4B-8 4B-9 4B-10 4B-11 4B-12 
IDD positive -0.009 -0.009 -0.007 -0.007 -0.032 -0.029 -0.023 -0.020 0.014 0.015 0.016 0.016 
 (0.020) (0.018) (0.019) (0.018) (0.037) (0.036) (0.027) (0.027) (0.021) (0.020) (0.028) (0.026) 
IDD negative -0.008 -0.007 -0.009 -0.005 -0.023 -0.022 -0.021 -0.017 0.011 0.015 0.006 0.011 
 (0.011) (0.012) (0.007) (0.007) (0.013) (0.013) (0.012) (0.011) (0.009) (0.009) (0.008) (0.009) 
Controls N Y N Y N Y N Y N Y N Y 
Ind. & year FE Y Y Y Y Y Y Y Y Y Y Y Y 
N 897,582 897,582 758,575 758,575 202,644 202,644 172,706 172,706 431,906 431,906 363,382 363,382 
Adj. R^2 0.46 0.46 0.47 0.47 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 

 
This panel reports coefficients and standard errors (in parenthesis) from OLS regressions at the inventor-year level of analysis. The outcome variable is log mean combinatorial 
novelty. Control variables are listed in Table 1. Standard errors are clustered at the state level. All explanatory variables are measured at time t. To define “discrete” and 
“complex” technologies, we follow Cohen et al. (2000) by focusing on manufacturing sectors and categorize each SIC as either discrete (SIC between 19 and 33) or complex 
(SIC between 34 and 39). Inventors with more than 50% of their inventor years classified as a given technology “type” (discrete or complex) are categorized within each 
category. These results are robust to using 75% and 100% cutoffs. 



	

	

 
Table 4: Mechanisms (continued) 

 
Panel C: Labor market signaling mechanism 

DV Mean patent generality (inventor-year level) 
Sample full “discrete” inventors “complex” inventors 
Time window t+2 t+3 t+2 t+3 t+2 t+3 
 4C-1 4C-2 4C-3 4C-4 4C-5 4C-6 4C-7 4C-8 4C-9 4C-10 4C-11 4C-12 
IDD positive 0.006 0.006 0.010 0.010 0.026 0.027 0.034 0.034 0.000 0.001 0.003 0.004 
 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.004) (0.003) (0.005) (0.005) 
IDD negative 0.002 0.002 -0.002 -0.001 -0.005 -0.004 -0.007 -0.007 0.008 0.010 0.003 0.003 
 (0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.005) (0.004) (0.003) (0.003) (0.003) (0.003) 
Controls N Y N Y N Y N Y N Y N Y 
Ind. & year FE Y Y Y Y Y Y Y Y Y Y Y Y 
N 819,229 819,229 691,408 691,408 181,036 181,036 154,091 154,091 404,530 404,530 339,892 339,892 
Adj. R^2 0.35 0.35 0.35 0.35 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 

 
This panel reports coefficients and standard errors (in parenthesis) from OLS regressions at the inventor-year level. The outcome variable is log mean patent generality. 
Control variables are listed in Table 1. Standard errors are clustered at the state level. All explanatory variables are measured at time t. To define “discrete” and “complex” 
technologies, we follow Cohen et al. (2000) by focusing on manufacturing sectors and categorize each SIC as either discrete (SICs between 19 and 33) or complex (SICs 
between 34 and 39). Inventors with more than 50% of their inventor years classified as a given technology “type” (discrete or complex) are categorized within each 
category. These results are robust to using 75% and 100% cutoffs. 
 
 



	

	

 
Figure 1: Inevitable disclosure doctrine (IDD) rulings over time 
 

 
 
This figure reports the decisions regarding IDD based on Castellaneta et al (2016). The y-axis is cumulative number 
of states. The x-axis is time. We use all thirteen IDD decisions within our sample time horizon (1976-2003) except 
New York, which Castellaneta et al. consider unclear. We interpret the equivocal 2003 New York decision as a reversal 
of a positive IDD decision (one to zero). For details about the classification, please see Castellaneta et al. 2016, Table 
B1 page 539. 
 



	

	

Appendix: Trade secrecy / patent substitution analysis in the complex technology sub-sample 
 
This appendix further discusses the possibility of intellectual property form substitution (trade secrecy versus 
patenting) in the wake of differential strengthening of the employer-friendly trade secrecy regime. The main text 
concentrates on the case of “discrete” technologies, which are unlikely to face the substitution. For that reason, we 
rely on the discrete sub-sample to assess our mechanisms. This appendix discusses the possible substitution in the 
complex technology sub-sample, for the sake of contextual understanding rather than for direct evidence of 
mechanisms.  
 
Substitution is more likely to hold in the context of complex technologies following trade secrecy regime shifts, and 
so the open question is how to understand and interpret the degree of substitution versus “real” effects of reduced 
innovation in this sub-sample. Even though we do not rely on this sub-sample for empirical assessment of our 
mechanisms, we wish to qualitatively understand the likely behavior of this sub-sample, especially since it comprises 
about two-thirds of our overall sample. Consider Appendix Table A, which lists the two digit SIC codes of complex 
technologies appearing in our sample, in descending order of frequency.  
 
Appendix Table A: Comparison of our sub-sample of complex technologies, by industry 
 

Two digit SIC 
code 

Industry description Fraction of the 
complex sub-
sample (within 
our data) 

Serrano (2010) 
share of “traded” 
technologies 
 
[From Serrano’s 
Table 2, Panel 
A, p. 693] 

Arundel & Kabla (1998) 
sales-weighted patent 
propensity 
 
[From Arundel & Kabla’s 
Table 1, p. 133. Baseline for 
all product innovations 
within their sample: 35.9%] 

36 Electronic and electrical 
equipment (except 
computers) 

44.4% 13.8% 43.6% (“electronic 
equipment”) 

35 Industrial and 
communications 
machinery, and 
computers 

28.6% 12.9% 52.4%-56.8% (“machinery 
and office equipment”); 
46.6% (“communications 
equipment”) 

37 Transportation equipment 14.8% 12% 
(“mechanical”) 

 
38 Measuring, controlling, 

and analyzing equipment 
6.8% 56.4% (“precision 

instruments”) 
34 Fabricated metal 

products 
4.8%  

39 Miscellaneous 
manufacturing 

0.6%  

 
The first two columns list each of the two digit SIC sectors contained within the “complex” technology broad category. 
The third column describes the relative frequency (as a percentage of the complex technologies) of each sector, and 
is sorted in descending order of incidence within our sample. The final two columns provide comparisons to two 
papers related to sector-level activity in the markets for technology (Serrano, 2010) and patenting propensity (Arundel 
and Kabla, 1998). The table and page references in the header of these final two columns refer to those contained 
within the cited papers. 
 
The markets for technology literature has identified patenting as important in transacting in the market for technology 
(Arora, Fosfuri & Gambardella, 2001; Gans, Hsu & Stern, 2008), and so we compare the industrial composition of 
our complex technology subsample to the findings in the literature describing the level of activity in the markets for 
technology along industry lines (Serrano, 2010) in the fourth column. There is a great deal of overlap between the 
complex industry sub-sectors in our sample and the Serrano (2010) sub-sectors with regard to market for technology 
activity. With the exception of the drugs/medical and chemical sectors, which experienced patent market transactions 
at a rate of 16% and 14.9%, respectively (note: these two sectors are not categorized as complex technologies), the 
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sectors comprising the complex technology sectors listed in the above table were the most frequently transacted in the 
Serrano sample.  
 
Likewise, as shown in column 5, using a survey of European industrial firms, Arundel and Kabla (1998) describe the 
sales-weighted patent propensity of sectors also contained within our sample of complex technologies. The patenting 
propensity in the Arundel and Kabla (1998) data was systematically higher in each of the sectors they studied (ranging 
from 43.6% to 56.8%) which are also present within our set of “complex” industries, as compared to their baseline 
patenting propensity for all product innovations in their sample (35.9%). This suggests that among our complex 
technologies, patent propensity may also be high. 
 
One important interpretational note to these comparisons is that they are not in general made in the face of differential 
changes in one IP regime over another, as would be the case in IDD positive and negative rulings as compared to 
patent protection. Png (2015) examines such changes in the wake of state-level adoption of the Uniform Trade Secrets 
Act (UTSA). He finds (his Table 5) that in two sectors (electronic accessories (SIC3 code: 367) and general industrial 
machinery (SIC3: 356)), there is a negative and significant relation between UTSA and patent counts. These two 3 
digit SIC industries seem to belong within our first and third 2 digit SIC industries (ranked by frequency of 
representation in our sample). It is notable that Png (2015) finds no significant effect when he analyses the computer 
and office equipment industry (SIC3: 357), which is our second most frequent “complex” technology by frequency. 
 
Having examined the degree to which there might be substitution across forms of IP protection, we also verified that 
inventors were not switching from discrete to complex inventions/technologies (or vice-versa) in response to the 
altered trade secrecy regime. We confirm that this is not the case for both levels of each type of technology (discrete 
and complex), as well as the shares of each type (formal regression output available on request).  
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