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Abstract

Cooperative approaches to study renegotiation in repeated games have assumed that Pareto-

ranked equilibria could not coexist within the same renegotiation-proof set. With strategic

renegotiation, however, a proposal to move to a Pareto-superior equilibrium can be deterred

by a different continuation equilibrium which harms the proposer and rewards the rejector.

This paper studies strategic renegotiation in repeated games, defining stable social norms and

renegotiation-proof outcomes in terms of a simple equilibrium refinement. We provide distinct

necessary and sufficient conditions for renegotiation-proofness which converge to each other as

renegotiation frictions become negligible. Renegotiation-proof outcomes always exist and can be

all included within a single, most permissive social norm that is straightforward to characterize

graphically. The analysis suggests a novel mechanism explaining inefficient equilibria, such as

mis-coordination, inertia, and failure to upset an oppressive status quo even when information

is complete, communication is frictionless, and players can credibly agree on efficient outcomes.

1 Introduction

The punishment equilibria used to sustain cooperation in repeated games are often Pareto inef-

ficient. This puts into question their viability and, hence, the implementability of cooperative

outcomes based on such punishments when players are free to renegotiate any continuation of

the game. Incorporating renegotiation satisfactorily in repeated games has been a longstanding

challenge.

To address this question, economists have introduced various concepts of renegotiation-proofness

based on the following idea: roughly speaking, an equilibrium is not renegotiation-proof if it entails

a continuation play that is Pareto dominated by some “credible” equilibrium (Pearce (1987), Bern-

heim and Ray (1989), Farrell and Maskin (1989), Abreu and Pearce (1991), and Asheim (1991)).1

∗We are grateful for comments from Larry Samuelson, Ilya Segal, Tadashi Sekiguchi, Takuo Sugaya, Joel Watson,

and seminar participants at the 2015 SAET meeting and at the 2015 World Congress of the Econometric Society.

Strulovici acknowledges financial support from the NSF (Grant No.1151410) and the Alfred P. Sloan Foundation.
1The first discussion along these lines is due to Farrell (1983), which is subsumed by Farrell and Maskin (1989).

Other approaches to renegotiation include DeMarzo (1988), Benôıt and Krishna (1993), and Bergin and MacLeod

(1993). All these papers follow axiomatic approaches.
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These concepts mainly differ regarding what “credible” means and yield contrasted results:

while Pearce (1987) argued,2 as in the first paragraph, that maximal cooperation may not be

sustained due to the lack of a credible and severe enough punishment, Farrell and Maskin (1989)

found that most renegotiation-proof outcomes, as players become arbitrarily patient, had to be on

the Pareto frontier of the feasible set.3

Owing to their cooperative (i.e., non-strategic) nature, these concepts have left unexplored an

aspect of renegotiation which arises naturally when one considers an explicit protocol of renego-

tiation: what happens when a player rejects another player’s proposal? Suppose that during the

punishment phase of a two-player repeated game, the continuation payoffs are (X1,X2) and player 1

proposes a Pareto-improving equilibrium with payoffs (Y1, Y2). Clearly, such a Pareto-improvement

need not be accepted if, by rejecting 1’s proposal, player 2 gets rewarded by a higher continuation

payoff Z2 > Y2. Moreover, if 1’s continuation payoff Z1 after 2 has rejected his offer is less than X1,

then it is suboptimal for 1 to propose the Pareto improvement in the first place. With strategic

renegotiation, a Pareto dominated equilibrium may thus withstand renegotiation as long as any

off-path proposal may be deterred in this fashion. Punishing a player who deviates (here, in pro-

posals) and rewarding other players is standard in repeated game analysis. It also seems plausible:

for example, if an agent tries to bribe another one to obtain some advantage (a Pareto improving

scheme for these agents!), the agent who rejects and exposes the bribe may be rewarded and the

corruptor punished as a result.

This paper considers strategic renegotiation in repeated games by appending a simple stage at

the end of each period: after actions and payoffs have been chosen and observed in period t, one

of the players may be selected, with a fixed probability, to propose a continuation plan. A plan

for period t + 1 is more easily described recursively: it prescribes players’ actions, proposals, and

acceptance decisions in period t+ 1, as well as the continuation plan for period t+ 2 as a function

of the actions, proposals, and acceptance decisions observed in period t + 1. In repeated game

with renegotiation a set N of equilibria is called a norm if, roughly speaking, all continuations of

these equilibria—except, possibly, accepted off-path proposals—belong to N . This definition aims

to capture the idea of a social norm, known to all players, which describes all “usual” equilibria. A

set N is a norm if for any equilibrium in the norm, any off-path proposal is rejected and followed

by an equilibrium which stays in the norm. Players can propose new plans in each period, with a

2See also Abreu and Pearce (1991) and Abreu, Pearce and Stacchetti (1993).
3Farrell and Maskin, like Bernheim and Ray, introduce weak and strong concepts of renegotiation-proofness. The

strong notion is arguably the more satisfactory one as it allows external comparisons (for example, the repetition

of any static Nash equilibrium forms a weakly renegotiation-proof equilibrium of the repeated game, but it can

be challenged by other equilibria according to the strong concept). The strong concept is well-behaved (existence,

uniqueness) when players are arbitrarily patient, although the set of strongly-renegotiation proof equilibria may be

very small due to the lack of punishments outside of a line that goes through the Pareto frontier.
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fixed probability.4

To assess the stability of a norm, we introduce a strategic 5equilibrium refinement. A norm N
is stable, when for any equilibrium in the norm, if a player makes a proposal which is accepted

by other players, then this proposal is played. In particular, the refinement rules out babbling

equilibria in which all proposals are ignored and any equilibrium of the underlying repeated game

can be implemented. In fact, we find that as players become arbitrarily patient, the folk theorem

need not hold any more when renegotiation is allowed.

Our analysis first covers the case of two players. We consider the set of all renegotiation-

proof equilibrium payoffs, which are the payoffs that belong to the payoff set of some stable norm.

We characterize this set when players are patient and renegotiation frictions—modeled as the

probability that no one gets to make a proposal within any fixed time window—become negligible.

This set is well behaved: it is always non empty and is straightforward to describe. In fact, its

shape depends on only three points in the set of feasible payoffs: the minmax payoff vector V

and the payoff vectors P1 and P2 that delimit the Pareto frontier. The set of renegotiation-proof

payoffs is the intersection of two positive orthants with the feasible set: the orthant with vertex

V (as in the Folk Theorem) and the orthant whose boundaries go through P1 and P2. The sets

characterizing necessary and sufficient conditions are distinct at all friction levels of renegotiation,

and converge to each other as renegotiation frictions become negligible.

All renegotiation-proof payoffs can be implemented within the same stable norm. Therefore,

there is no issue of competition or indeterminacy between multiple norms, at least not for the most

permissive norm.

Our construction implies path dependence for the set of proposals considered acceptable within

the norm. For example, the cooperative proposal (Y1, Y2) mentioned above may be acceptable at

the beginning of the game, but not after a deviation. The relevance of this path dependence has

been emphasized earlier (Abreu and Pearce (1991) and Asheim (1991)), and arises naturally when

renegotiation is considered to be part of the equilibrium of a larger game, rather than a restriction on

the set of equilibria of the underlying repeated game. It also implies that Farrell and Maskin’s and

Bernheim and Ray’s identical notions of weak renegotiation proofness and internal consistency may

in fact rule out stable norms. These reduced-form concepts, often viewed as a minimal restriction

for any renegotiation-proof norm, require that no Pareto ranked equilibria coexist within such a

norm. As noted, however, Pareto-dominated equilibria may withstand renegotiation as long as the

social norm specifies clear punishment and reward for proposers and rejectors of Pareto improving

4Our results do not hinge on allowing players to propose arbitrary innovations: the sets of payoffs characterizing

necessary and sufficient conditions are identical if players are restricted to propose “credible” innovations, as explained

in Section 5.
5Section 5 introduces a set-theoretic notion which captures this strategic approach and is payoff-equivalent.
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equilibria.

The analysis provides a new explanation for the existence of inefficient equilibria, such as coor-

dination failures and the difficulty to oppose oppressive regimes even when agents are freely able

to communicate and credibly agree on efficient equilibria. With strategic negotiation, a norm must

prescribe the continuation play not only after off-path actions but also after off-path proposals,

such as suggestions to move to a Pareto-improving equilibrium. In the context of an oppressive

regime, for instance, the norm may specify that any “subversive” (regime-threatening) proposal

trigger a punishment for the proposer and reward other players who reject the proposal.

With three or more players, new conceptual issues emerge. In particular, what happens if only

a subset of players accept the proposal made by a given player?6 We explore several specifications

and show that, depending on the assumptions, our predictions range from the Folk Theorem to

Pareto efficiency. The simplest specification assumes that the continuation equilibrium when a

proposal fails to receive unanimous approval is independent of the identity of the rejectors. Under

this condition, our necessary and sufficient conditions are both characterized by payoff sets which

take the form of upper-orthants, a useful qualitative property to model renegotiation in repeated

games. In all our specifications, the sets characterizing necessary and sufficient conditions become

arbitrarily close to each other as renegotiation frictions vanish. The analysis of this more general

environment is contained in Section 7.

As noted, the stable norms introduced here differ conceptually from earlier notions and yield

different predictions. Compared to weakly renegotiation-proof or internally consistent sets, they

are more demanding by allowing their elements to be challenged by outside proposals. On the

other hand, the stable norms are more permissive by allowing Pareto-ranked equilibria to coexist

within a given norm and acceptable proposals and equilibria to be path dependent. For these latter

reasons, the stable norms of this paper are more inclusive than the strongly renegotiation-proof

sets of Farrell an Maskin (1989).

Several papers have studied strategic negotiation in which players engage in several rounds of

cheap talk before choosing their actions in a one-shot game, and asked whether this pre-play com-

munication could help select efficient equilibrium in the one-shot game. Farrell (1987) considers an

entry game in which firms simultaneously announce their intention of whether to enter the market.

With pre-play communication, firms achieve a higher payoff than they do in the symmetric one-

shot equilibrium, but do not achieve perfect coordination. In Rabin (1994), players simultaneously

propose Nash equilibria of the one-shot game and an equilibrium is played if both players propose

it. With sufficiently many rounds of communication, each player is guaranteed to get at least her

6A related issue is to understand what happens if a player makes a proposal to a subset of players. Although such

a proposal may be understood as a global proposal which requires only the approval of a subset of players, it has a

specific structure which we do not investigate in this paper and hope to explore in future work.
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worst payoff in the “Pareto meet,” which is the set of Pareto-efficient Nash equilibria in the one-shot

game. Players need not achieve a Pareto-efficient outcome however. In these papers, inefficiency

can arise because players keep proposing their preferred outcome with high probability and may

fail to reach an agreement.

The papers closest to ours are Santos (2000) and Miller and Watson (2013). In the alternative-

offer model studied by Santos (2000), players bargain over Nash equilibria of a one-shot game, and

play whichever equilibrium is agree upon. In that paper, each player is guaranteed to get a payoff

in the Pareto meet, but players may still end up playing a Pareto-inefficient equilibrium. More

recently, Miller and Watson (2013) study equilibrium selection in a repeated game with an explicit

bargaining protocol and transfers. Their goals and analysis are quite different from this paper’s. In

particular, they are interested in understanding how axiomatic restrictions on disagreements affect

bargaining outcomes. This, together with the presence of a transfer stage separate from the action

stage, distinguishes their analysis and results from ours. The relation between these papers and

ours is explained in detail in Sections 4.3 and 6.

2 Setting

We start the analysis by considering a repeated game between two players indexed by i ∈ {1, 2}.
Player i’s stage-game action, ai, lies in a finite set denoted Ai. The vector a = (a1, a2) of actions

determines the players’ payoffs for the current period, u(a) = (u1(a), u2(a)). A distribution αi over

Ai is a mixed action for i, and α = (α1, α2) denotes a vector of mixed actions for both players.

Players have a common discount factor δ ∈ (0, 1), and we will often find it convenient to work with

the current-period weight ε = 1− δ.

Each period consists of the following stages:

1) Players observe the realization z of a public randomization device taking values in [0, 1];

2) They simultaneously choose mixed actions αi ∈ ∆(Ai), i ∈ {1, 2}. Mixing probabilities are

not observable. Conditional on the realization z of the public randomization device, players choose

their mixed actions independently from each other;

3) The vector a of actions is observed and the period’s payoffs are realized;7

7In accordance to the accepted standard in the modern analysis of repeated games, we allow players to use a

public randomization device and private mixed strategies. This feature distinguishes our analysis from some of the

earlier work on renegotiation. For example, Farrell and Maskin (1989) assume that players can observe each other’s

mixing strategies, rather than merely observing the action outcomes of the randomization. It is possible to construct

examples in which this distinction is important, as shown in Appendix H. Intuitively, when players observe mixing,

there is without loss a single continuation payoff vector, conditional on players’ mixing strategies. When mixtures

are unobservable, however, there must be a continuation vector for every possible outcome of the mixture—chosen

so as to make each player indifferent across all actions in the support of her mixing strategy—and all of these vectors

5



4) With probability p < 1, one of the players is chosen to propose a new plan describing the

continuation of the game. Each player has the same probability of p
2 being chosen.8 The chosen

player may, however, conceal his proposal opportunity and remain silent instead, or mix between

making a proposal or staying silent. The object of the proposal is an infinite-horizon plan m from

the set M of all possible plans, and will be described shortly;

5) If i made a proposal, player −i decides whether to accept it, possibly mixing between accep-

tance and rejection. The resulting decision, D−i, is set to 1 if −i accepts the proposal and 0 if he

rejects it;

The public history for the stage consists of the realisation z of the randomization device, the

action vector a, the proposal (which we will later denote as µi) or absence thereof and, if applicable,

the acceptance decision D−i. In addition, each player privately observes the mixing probability used

for each of her decisions.

A plan at period t describes players’ strategy for the infinite repetition of the stage-game de-

scribed above, from period t + 1 onwards. Those decisions (actions, proposals, and acceptance

mixtures) are history-dependent. Because the setting is time invariant, the set M of plans can be

more conveniently defined recursively.

Specifically, a plan m ∈ M at any period t is characterized by the following elements:

a) For each realization z of the public randomization device, a pair α = α[m](z) of mixed actions

that players should play in period t+ 1;

b1) For each player i, a distribution µ̄i = µ̄i[m](z,a) ∈ ∆(M ∪ ∅) over proposals, where the

outcome ∅ means that i abstains from making a proposal (unbeknownst to player −i). We assume

that distributions have a finite support over plans.9 The proposer’s choice of a proposal distribution

is conditional on the realization z of the public randomization device and on the pair a of observed

actions. Because p < 1, not observing any proposal from either player is always consistent with

“on-path” behavior. The realized proposal is denoted µi;

b2) A probability q−i = q−i[m](z,a, µi) that −i accepts i’s proposal (whenever µi 6= ∅), condi-
tional on z, a, and µi;

b3) If no one made a proposal, the acceptance stage is skipped. To economize on notation,

we assume that some player i is, even in that case, conventionally selected (randomly or deter-

must belong to the renegotiation-proof set. This is problematic because some of these continuations may have Pareto-

ranked payoffs, violating weak renegotiation-proofness. Bernheim and Ray (1989) rule out mixing altogether, focusing

the analysis on pure-strategy equilibria.
8Our results extend to the case of asymmetric probabilities. The sufficient conditions are unchanged, but neces-

sary conditions entail a payoff lower bound on each player, which increases with that player’s proposal probability,

consistent with the intuition that a higher proposal probability means an increased bargaining power. The extension

is discussed in Appendix B.
9We will in fact impose a uniform upper bound on this support as explained below.
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ministically) as the proposer and let µi = ∅ and D−i = 0. (So, −i’s conventional response is to

systematically “reject” i’s non proposal.)

c) A continuation plan m+1 = m+1[m](z,a, i, µi,D−i) ∈ M for period t + 2 onwards, as a

function of z, a, i, µi, D−i, where i indicates the identity of the last proposer. Obviously, this plan

must be independent of i whenever µi = ∅, so that the convention chosen for the proposer in the

absence of any actual proposal is indeed irrelevant. This restriction is applied throughout.

This protocol allows plans in which any proposal is ignored (babbling). In the next section, we

introduce a stability refinement requiring some accepted proposals to be played. The protocol also

allows plans for which any rejected proposal results in the same “default” continuation, which is

the “No-Fault Disagreement” Axiom studied by Santos (2000) and Miller and Watson (2013) and,

in a simultaneous-offer setting, by Farrell (1987), Rabin (1994), Arvan, Cabral, Santos (1999).10

While the above definition seems natural, it turns out to be too permissive for the set of

plans to be well-defined: there does not exist a set of plans so large as to contain all the possible

continuation prescriptions allowed above. For example, notice that the above construction must

specify an acceptance decision for each possible proposal. This means that, in general, each plan

m must specify—among other things—a function which maps each element of M (the proposal)

to a binary decision (acceptance). This implies that the set M of plans must contain, in order to

include all possible prescriptions, its power set 2M. Such a set does not exist, since any set has a

strictly lower cardinality than its power set, by Cantor’s Power Set Theorem (see, e.g., Mendelson

(1997)).

In the Appendix, we provide restrictions on plan prescriptions which guarantee that the set of

plans is well-defined, but flexible enough to include all the plans discussed in this paper. These

restrictions are of three kinds: first, we assume that the cardinalities of support of µ̄i[m](z,a) (the

proposal distribution) and the set M+1[m] of possible continuation plans are uniformly bounded

over m, z, and a. Second, a receiver is prescribed to accept on-paths proposals and reject off-path

ones. Third, the continuation plan is chosen in M+1[m] according to a choice rule which depends

only on the following information: i) whether the proposal was on-path (i.e., in the support of the

proposal distribution prescribed by m for the proposer), ii) whether it was accepted, and iii) for

each player and continuation plan in M+1[m], the pairwise ranking of the proposal’s payoff relative

that continuation plan’s payoff. The set of plans resulting from these restrictions can be chosen so

as to have cardinality i2—the cardinality of the set of all real-valued functions over R. To avoid

cluttering the analysis, we defer the details to Appendix A.

10The protocol also allows more counter-intuitive plans for which an accepted proposal is followed by a continuation

plan which has nothing to do with the initial proposal. Appendix B explains why one could without loss restrict

attention to plans which are “truthful” (i.e., on-path proposals which are accepted are played). However, we delay

this discussion to avoid cluttering the analysis.
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3 Concepts

The previous section has introduced an infinite-horizon game which we call “negotiated game”.

Any strategy profile of this game can be identified with a plan. Indeed, a plan defines—explicitly

or recursively—an arbitrary history-dependent mixture of actions at each stage of the game.11

Accordingly, the subgame perfect equilibria (SPEs) of the negotiated game can be identified as

a subset S of M. Unless stated otherwise, in this paper “SPE” refers to an equilibrium of the

negotiated game (not to be confused with the subgame perfect equilibria of the underlying repeated

game without renegotiation).

Definition 1 A subset N of S is a norm if for any m ∈ N such that µi ∈ µ̄i[m](z,a) or D−i = 0,

m+1[m](z,a, i, µi,D−i) ∈ N ;

We interpret N as a social norm: it describes the set of all continuation plays which players

consider possible under “business as usual”. A social norm alone does not determine everyday

interaction, since it allows for multiple possibilities; players have to keep in mind which continuation

in the norm is being currently played. According to this norm, players may be punished if they

deviate from the equilibrium path, but they are always punished within the norm, regardless of the

history. However, players may in principle agree to switch to an equilibrium outside of the norm.

This happens if a player makes a deviation in proposal (hence creating an “innovation”), which the

other player accepts.

Until now, negotiation has not imposed any restriction on the set of equilibria which may be

played. For example, it does not rule out babbling equilibria. The key concept is the following

notion of stability.

Definition 2 A norm N is stable if for any SPE of N , whenever i proposes an equilibrium µ ∈ S
and −i accepts it, µ is implemented.

To understand the concept, notice that a stable norm must be able to withstand any proposal,

including proposals which lie outside the norm (and are thus off-path, by definition of a norm)12.

For if such a proposal were accepted, it would be taken seriously by the players and be implemented.

Stability thus requires that no player has ever an incentive to make proposals outside of the norm.

As noted, stability can be intuitively achieved by rewarding the receiver if he rejects such a proposal,

11In the actual game, the absence of a proposal triggers the next period. Therefore, a plan’s independence from the

conventionally chosen proposer in the absence of an actual proposal is not restriction on the set of strategy profiles

being considered.
12A union of two stable norms N1 and N2 is another stable norm N1 ∪ N2, with even larger set of possible

punishments for any deviation in proposal. This shows the existence of the largest stable norm.
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and punishing the proposer by a worse continuation than if he had stayed on path. Of course, this

deterrence continuation has to lie within the norm.

This definition of stability may seem particularly demanding: why should players treat all

proposals as “credible”? Section 5 shows that a much more restrictive notion of credibility yields

the same necessary and sufficient conditions that we obtain when we consider all proposals.13

Conceptually, it should be emphasized that all proposals are equilibria of the repeated game

with renegotiation. For instance, if player 1 says to player 2: “let’s move to this other equilibrium

of the underlying repeated game and treat all future proposals as babbling,” and 2 accepts this,

then it is indeed an equilibrium for them to treat all ulterior proposals as babbling.

Another potential concern about the definition of stability is that credible proposals are not

required to obey a similar stability refinement. However, the refinement considered by definition 2

is imposed on off-path proposals.14 Players may accept, once, to leave the norm and implement

an innovative proposal. Any further proposal which is off-path, relative to the current one, should

not be played even if accepted. Otherwise the first proposal would not be credible and should be

ignored when being made initially.

Stability thus amounts to a simple equilibrium refinement which rules out pure cheap talk,

giving some bite to renegotiation. This means that any SPE of the stable norm N is able to

withstand arbitrary proposals. Recalling that on-path continuations must all belong to the norm

(by definition of a norm), stability implicitly requires that any proposal that is not in the norm is

rejected. We allow considerable leeway in proposals, though it does not affect either our necessary

or sufficient conditions, stated in the next section. Both the conditions are rigorously identical if

one restricts proposals to a much smaller subset of “credible” proposals, which are roughly speaking

equilibria such that any deviation triggers a reversal to the norm. Since such a restriction is not

needed for the results, we postpone the analysis of credible innovations to Section 5.

Before defining renegotiation-proofness, we need to introduce notation to distinguish players’

payoffs at different stages of the game. Given a subset L of SPEs, the set U(L) (or just U , when there

is no confusion) denotes the set of expected payoffs for the players, across all possible SPEs in L,
computed before public randomization. V is defined identically but computed after the realization

of the randomization device z. In particular, U is included in the convex hull of V. Finally, W
consists of continuations payoffs after actions and payoffs are observed and incurred in the current

period, but before the proposal stage. Any payoff vector of W is a mixture of three payoff vectors of

U , seen as continuation payoffs for the next period: these payoffs correspond to the three possible

13In that section, a proposal is credible relative to a norm if any ulterior deviation from this proposal triggers a

reversal to the norm.
14In fact, one can easily show that any norm is equivalent to another one in which all on-path proposals are accepted

and implemented, as shown in Appendix B.
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cases for the proposal stage: player 1 gets to make a proposal, player 2 does, or no one does.

Because continuation payoffs in W do not include the payoff from the current period, in order to

make them commensurate with payoffs in U , they are computed in terms of the next period (i.e.,

ignoring the discount factor between the two periods). With this convention, payoffs in W are

indeed mixtures of elements in U .
Elements of U , V, and W are points of two-dimensional sets. For any point U of such a set, we

let πi(U) denote the ith component of U , i.e., i’s continuation payoff at corresponding stage of the

game.

Definition 3 A point A is q-renegotiation-proof if there exists ε̄ ∈ (0, 1
q
) such that for all ε ≤ ε̄

and p = qε, there exists a stable norm N such that A ∈ U(N ). Moreover, A is renegotiation-

proof if it is q-renegotiation-proof for all q’s large enough.

The coefficient q is inversely related to the amount of renegotiation frictions in the game:15

when q = 0, players never get a chance to renegotiate and the game reduces to a standard repeated

game. As with the standard Folk theorem, any point of the feasible IR set (in the usual sense of

repeated games, absent any renegotiation) is 0-sustainable. Our main objective is to characterize

the set of sustainable payoffs. To do so, we first study the set of q-sustainable payoffs for any fixed

q, and then let the renegotiation frictions go to zero (i.e., q go to ∞).

In the definition above, A needs only belong to U which, unlike V, includes the initial use of

a public randomization device. As it turns out however, this distinction is unimportant for our

results.

4 Main Result

4.1 Statement

We let v
¯i

denote i’s minmax payoff in the stage game of the repeated game (absent any renego-

tiation).16 The set of all feasible stage-game payoffs is a convex polygon. Similarly, let Pi denote

the feasible payoff vector that gives i his maximal payoff in the stage game.17 The ‘weak’ Pareto

frontier (consisting of all points which are not strictly Pareto dominated) is a piecewise linear curve

joining P1 and P2.

Let v1 = max{v
¯1
;π1(P2)} and v2 = max{v

¯2
;π2(P1)}.

15Players could be considered to take actions in continuous time, with ε being the time interval between the

subsequent actions. For small ε, the coefficient q would then be equal to the expected number of possibilities for

some player to make a proposal, within a time interval of 1.
16As usual, player −i is allowed to mix across actions to minmax i.
17If several such points exist, we choose the point among those with the lowest payoff for −i.

10



π2

π1

P2

P1

2
2+q

(π1(P2) − v
¯1

)

v
¯

Figure 1: Necessary and sufficient conditions for fixed q

Theorem 1 (Renegotiation-Proof Set) Suppose that P1 6= P2. Then, the following holds:

Sufficiency If

πi(A) > vi for i ∈ {1, 2}, (1)

then the point A is q-renegotiation-proof for all q ∈ R+ and hence renegotiation-proof.

Necessity If A is q-renegotiation-proof, then

πi(A) ≥ v
¯ i +max

{

0;
q

2 + q
(πi(P−i)− v

¯ i)

}

(2)

for i ∈ {1, 2}. If A is renegotiation-proof, inequalities in (1) must hold for both players as weak

inequalities.

If P1 = P2, the only renegotiation-proof point is P1, which is played forever. In this case, players

have perfectly aligned interests as they both want to implement P1. The necessary conditions in

this case are the same as in (2), selecting point P1 as the only possible outcome, as renegotiation

frictions become negligible.18

The statement of Theorem 1 can be visualized on Figure 1 for a fixed friction level of renego-

tiation. The green domain represents the set of points which are known to be renegotiation-proof

(i.e., part of a stable norm), while the orange domain represents the additional points which may

be renegotiation-proof. When q = 0 (no renegotiation), the orange domain extends all the way

back to the minmax point v
¯
, and we obtain the Folk Theorem. As the renegotiation frictions vanish

(q → +∞), the orange domain disappears: necessary and sufficient conditions become identical (up

to the boundary).

18In the non-generic case of several Pareto-efficient points, each giving the same payoff to one player, the best

Pareto point is renegotiation-proof. Other Pareto points may or may not be renegotiation-proof.
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It is straightforward to characterize renegotiation-proof points when frictions vanish. This may

be done graphically, and Figure 2 represents the corresponding sets for various configuration. In

configuration (a), renegotiation constrains the set of implementable payoffs because the deterrence

points P1 and P2 are too close to each other (relative to the vector of minmax payoffs). Configuration

(b) represents a perfectly cooperative game. The only renegotiation-proof outcome is the Pareto

efficient point. In configuration (c), the punishment/reward points are sufficiently far apart, and

the Folk Theorem holds despite the presence of renegotiation.

π2

π1

P2

P1

O(1/q)

v
¯

π2

π1

P1 = P2

v
¯

(a) Renegotiation destroys the Folk Theorem (b) Pareto frontier reduced to one point

π2

π1

P2

P1
v
¯

π2

π1

P2

P1

v
¯

(c) Folk Theorem with extreme deterrence points (d) Asymmetric case

Figure 2: Necessary and sufficient conditions for various configurations

Scope for Cooperation and Renegotiation-proof Outcomes

As Figure 2 illustrates, the impact of renegotiation hinges on the structure of the stage game.

As the game becomes less cooperative (moving from (b) to (a) to (c), on the figure), there is more

scope for disagreement among the players, which can be used to implement a larger set of feasible

payoffs. In our framework, renegotiation does not destroy the implementability of individually-
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rational, Pareto efficient payoffs. However, when players have diverging interests, one can depart

more and more from this.

Seeing this result from the perspective of a mechanism designer, it may be that what is good

for these two players is actually bad for a larger group. Getting close to the Pareto point may mean

that both players are slacking off, or polluting, which negatively affects some unmodeled entity, such

as the environment or other society members not explicitly included in the game. Thus, a certain

scope of disagreement (actions which benefit only one player but not the other) may keep players

working or making effort (even if this is, for them, a bad Nash equilibrium). The construction

explained below shows how such equilibrium can be self-implemented by using dynamic norms

among the two players. The only role of the mechanism designer is simply to specify a norm of how

players should interpret deviations in actions and proposals, i.e., what continuation equilibria they

should expect as a result of these deviations. Once this common understanding is reached at the

beginning of the game, the mechanism designer has no role to play and can completely withdraw

from the game: the two players can enforce the norms themselves and punish each other if one of

them ever deviates.

Examples illustrating the limits of renegotiation to achieve efficiency

Perhaps the most intriguing aspect of the present analysis is the fact that players self-enforce

a norm that prevents them from moving to Pareto efficient payoffs. One may interpret any deviat-

ing proposal as a rupture in the social norm between players. After all, when being in a norm, there

is a common understanding between players of the sequence of actions that should take place and of

off-path sequences in case of deviations. This common understanding can be modified or shattered

by various proposals, resulting in a new equilibrium. This new equilibrium may not necessarily

follow a proposal, as illustrated by the following examples.

Cournot competition. Consider two symmetric firms which, in equilibrium, produce a higher

total output than the monopolistic output. These firms could achieve a higher profit if they each

produced half of monopolistic output. However, even when they can renegotiate this Pareto ineffi-

cient equilibrium, the business norm in these firms’ industry may prevent them from implementing

a coordinated output reduction, by treating any such proposal as “corrupt” behavior. The other

firm rejects the agreement and both firms understand (as part of a business norm) that the new

equilibrium prescribes the rejector to produce the Stackelberg leader’s output in each period, while

the proposer chooses the Stackelberg follower’s output. These new outputs constitute an equilib-

rium. The proposer has a lower payoff compared to initial equilibrium, and the opponent has a

higher payoff than under the split monopoly proposal. The punishment for the proposer, i.e., the
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Stackelberg equilibrium, is not Pareto-efficient. However, it achieves the objective of deterring a

Pareto-improving proposal.

This example illustrates the point, mentioned earlier, that the designer of the norm may be a

regulator outside of the game whose payoff (or welfare objective) depends on the actions of the

players in the game. However, once the norm is set in place, no outside involvement is needed to

sustain the Pareto-dominated equilibrium.

It may be tempting for one of the firms to reach out to the other firm anyway and argue that

they really ought to forget all about the present norm and move to a Pareto improving production.

However, such a message is exactly the kind of proposal that this model aims to capture. If it

is clear to all firms that reaching out in this way constitutes a proposal punishable by the norm,

then it is definitely in the receiver’s interest to reject the proposal, which deters the first firm from

making a proposal. Indeed, a perfect norm should prescribe reactions to any possible message. This

opens the possibility of studying “weak” norms, which are not immune to convincing neologisms,

perhaps because the first player’s message cannot be mapped unambiguously into a proposal for

which the norm has a clear prescription.

One can push further the idea that the environment includes not only “active” players of the

game, but also a third party— the norm designer. The third party is not directly involved in the

game, and it does not want the players to cooperate (or, depending on applications, to collude).

For example, it could be a manager who faces high costs to monitor his employees. Designing a

norm may provide a cheap, effective way of preventing collusion.

The logic of the argument may be illustrated by the a dictatorship facing the possibility of a

revolution. Under the dictatorship, citizens must pay high taxes, as a large share of their income is

captured by the dictator. Each citizen may start persuading others to start a revolution (which is

not a part of the current norm). If everyone agrees, the dictator is thrown out, and every citizen gets

a better payoff. However, the current norm addresses this threat by rewarding anyone who reveals

such a plot, so that the revolution may be prevented by punishing the deviator. Importantly,

the reward and the punishment are performed by the citizens, without the dictator needing to

get involved. The logic of the argument relates to a symmetric setting with many players, as

described in Section 7. It provides a novel completely endogenous explanation for the stability of

dictatorships, which allows coordination but exposes the limits of attempts to coordinate when the

norm in place anticipates such attempts.

These examples also hint at the dynamic nature of social norms, understood in our model as the

interpretation of proposals: for example, starting from a Pareto dominated equilibrium, a proposal

to move to a cooperative, Pareto-improving equilibrium may be welcome and accepted. However,

the accepted proposal triggers a new continuation in the norm, in which if a player subsequently
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deviates from the cooperative play, the Pareto-dominated equilibrium is played forever. Any new

proposal to move to a Pareto improving plan is punished.

An equilibrium of the repeated game with renegotiation defines its own changes as one moves

along the game. It is as if players have a “reputation” within the current equilibrium—which is not

about an intrinsic type (such type doesn’t exist in our model) but about how players understand to

be treated in the continuation of the game. If a player makes a proposal to change the equilibrium

(cooperation, revolution), she risks losing her reputation if the other player rejects the proposal.

Following a rejected proposal, the initial plan is still implemented, but with changed players’

reputation and payoffs.

4.2 Sufficient conditions: construction of a stable norm

We now present the construction of a stable norm which permits to establish the sufficient condi-

tions. The necessary conditions are derived in Appendix C

Outline. We construct, for any payoff vector A satisfying (1), a norm N containing an equilib-

rium with expected payoff A and which is stable for any q ≥ 0. To avoid confusion, for any payoff

vector X which is achieved at some SPE in the norm, we denote that SPE as XN . The construction

starts by choosing two points A1, A2 such that Ai defines i’s worst possible payoff according to the

norm.19 Given any continuation payoff far away from Ai, it is always in i’s interest to follow the

prescribed play in action, since any deviation provides a gain of order ε and can be punished by

moving to AN
i . The key is to choose Ai so that i is adequately incentivized near Ai and to complete

the norm with enough equilibria to guarantee that the norm is stable. That last part is achieved

by including some Pareto-optimal points D1,D2 in the norm so that for any proposal that −i may

deviate to, i can always be rewarded, and −i punished, by rejecting −i’s proposal and have DN
i

implemented.

For each player i, there are two cases to consider, depending on whether i’s minmax payoff v
¯i

lies above or below πi(P−i). We treat the former case first.

Case 1: v
¯1

> π1(P2) and v
¯2

> π2(P1)

Consider any point A satisfying (1). For ε small enough, the points A1 and A2 with coordinates

π1(A1) = v
¯1

+ ε
1
2 ; π2(A1) = π2(A)

and

π1(A2) = π1(A); π2(A2) = v
¯2

+ ε
1
2

are individually rational and such that π1(A1) < π1(A) and π2(A2) < π2(A).

The element AN
1 is implemented as follows (AN

2 has a similar implementation):

19Unless stated otherwise, payoffs are elements of the set U , i.e., at the beginning of a period.
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Figure 3: Stable norm construction: outline

1) Action stage: player 2 minmaxes player 1, possibly mixing between several actions a2j and

1 best responds by a pure action a1,minmax achieving his minmax payoff.

1a) If no deviation in action is observed, the continuation payoff vector B1j ∈ W is a function

of 2’s realized action, a2j , chosen so as to satisfy the promise-keeping condition. The payoffs B1j

are chosen so as to make 2 indifferent between the actions a2j used to minmax 1 and all give 1 the

same continuation payoff. This implies that

π1(A1) = εv
¯1

+ (1− ε)π1(B1j) (3)

Note that all B1j ’s are within an ε-proportional distance of A1.

1b) If 2 deviates in action (i.e., chooses an action outside of the mixture used to minmax 1), the

continuation payoffs jump to the point A2, mentioned above, which gives her the lowest possible

payoff in the norm.20 This punishment is clearly enough to incentivize 2, because any gain is of

order ε, whereas π2(A2) is arbitrarily close to 2’s minmax payoff and thus at an ε-independent

distance from π2(A1) (and, hence, π2(B1j)’s)

1c) If 1 deviates in action, disregard this. Such a deviation is obviously suboptimal, since 1 was

prescribed to best respond to being minmaxed by 2.

2) Proposal stage: the element BN
1j is implemented as follows: if either 2 gets a chance to make

a proposal, or no player does, the continuation payoffs return to AN
1 . (2 is prescribed to remain

20More precisely, it jumps to the point B21, which is the analogue of the point B11, following the implementation

of A2.
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silent.) If 1 gets a chance to make a proposal, he proposes an element CN
1j , which payoff C1j lies

on the line going through A1 and B1j , and is chosen so as to satisfy the promise-keeping condition:

π1(B1j) =
(

1− p

2

)

π1(A1) +
p

2
π1(C1j) (4)

Player 2 is prescribed to accept proposal CN
1j . The points {C1j}j give the same payoff to 1,

independently of j. Their implementation is described in 3) below.

2a) If 1 proposes any plan other than CN
1j , he is punished by the implementation of an element

DN
1 chosen so that i) π1(D1) < π1(C1j) and ii) 2 prefers DN

1 to 1’s proposal, Pareto dominating

CN
1j . Precisely, D

N
1 is defined as the point of the Pareto frontier that gives 1 a payoff of:

π1(A1) + π1(C1j)

2
(5)

2b) If 2 deviates by making a proposal or rejecting 1’s offer to move to C1j, she is punished by

the player-2 analogue of point DN
1 .

3) Next periods: the element CN
1j is easily implemented, because it gives 1 a payoff of the order

of
√
ε above what AN

1 and, hence, BN
1j ’s give him, as explained shortly. A deviation in action by

1 brings a gain of order ε and is punished by a drop of order
√
ε in 1’s continuation payoff, and

is thus suboptimal, for ε small enough. More precisely, the element CN
1j can be implemented by a

deterministic sequence of actions keeping players’ continuation payoffs within a distance Kε from

C1j . The rules implementing that sequence are simple: play a deterministic action profile keeping

continuation payoffs ε-close to C1j and do not allow any proposal. If 1 deviates in actions, move to

one of the points BN
1j ; if he deviates in proposals, move to DN

1 . A similar rule is applied for player

2, who has even more to lose from deviating.

4) Finally, the payoff D1 lies at a distance of order
√
ε from A1, and DN

1 can therefore be

implemented similarly to CN
1j by a deterministic sequence of actions which keep the continuation

payoff within a distance Kε from D1. Any proposal is ignored.

This construction is represented on Figure 3, and the relative distances between continuation

payoffs are represented on Figure 4.

We verify the claim that all C1j ’s lie at a
√
ε-proportional distance to the right of A1. From

(3) and (4), we get

π1(A1) = εv
¯1

+ (1− ε)π1(Bj) = εv
¯1

+ (1− ε)
[(

1− qε

2

)

π1(A1) +
qε

2
π1(C1j)

]

Ignoring terms of order ε2 and higher, this implies that

π1(A1) = εv
¯1

+
(

1−
(

1 +
q

2

)

ε
)

π1(A1) +
qε

2
π1(C1j).

Subtracting π1(A1) from both sides and dividing by ε yields

ε
1
2 = π1(A1)− v

¯1
=

q

2
(π1(C1j)− π1(A1)) , (6)
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Figure 4: Construction details

which shows the claim.

The direction of each vector
−−−−→
A1C1j , which is also

−−−−→
A1B1j’s direction, depends only on 2’s action,

a2j ; it does not change when ε goes to 0. This shows that, for ε small enough, C1j is a feasible

payoff and π2(C1j) exceeds π2(A2) by an ε-independent value.

As noted, the system of actions and proposals implementing AN
i ’s, BN

ij ’s and CN
ij ’s and DN

i ’s

is incentive compatible in actions and in proposals. To conclude the construction, we observe that

A gives each player i a payoff higher than Ai, by an amount that is bounded below away from zero

and thus independent of ε as ε goes to zero. One may therefore implement A by a deterministic

sequence of actions, chosen so that the continuation payoffs stay within a distance Kε of A. 21

Deviations in actions are punished by moving to BN
11 or BN

21, depending on which of the players, 1

or 2, has deviated. Deviations in proposals are similarly punished by moving to DN
1 or DN

2 .

To verify that the norm is stable, notice that whenever 1 gets to make a proposal, his payoff is

at least π1(D1). Since D1 is on the Pareto frontier, any proposal giving 1 strictly more than π1(D1)

must give 2 less than π2(D1). This means that DN
1 can serve as a punishment in case 1 makes such

a proposal.

Remaining cases: v
¯1

≤ π1(P2) and/or v
¯2

≤ π2(P1)

The construction of the norm is almost identical to the previous case. The only difficulty is

that the difference π1(A1) − v
¯1

is now bounded below away from zero, whereas it was previously

21One can modify the implementation of payoffs A, Ai in a way that the continuation payoff will eventually converge

to a Pareto-efficient point. Thus, if players switch to a Pareto-inefficient element in the stable norm after a deviation,

they will eventually forgive and forget, rather than being stuck at an inefficient element forever.
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of order
√
ε. This may lead to situations in which the points C1j constructed above are no longer

feasible and/or may give 2 a payoff lower than π2(A2). This difficulty is easily addressed by adding,

for each j, a new point E1j lying on the segment [A1B1j ]—and thus also on the line (A1C1j)—such

that if player 2 gets a chance to make a proposal, or if nobody does, continuation payoffs jump to

the point E1j . The promise keeping condition (4) becomes

π1(B1j) =
(

1− p

2

)

π1(E1j) +
p

2
π1(C1j) (7)

By choosing E1j close enough to B1j , one can make the point C1j within a distance
√
ε of B1j

and, hence, of A1. This guarantees that C1j is feasible and does not drop below π2(A2), so that

the rest of the argument for the first case can be applied. Finally, whenever the element EN
1j must

be implemented in the next period, we use the public randomization device to implement it as a

probabilistic mixture between AN
1 and CN

1j .

4.3 Relation to the existing literature

When renegotiation is viewed as a strategic interaction, stable norms may contain Pareto-ranked

equilibria. This happens when the norm dissuades Pareto improving proposals by punishing the

proposer and rewarding the rejector above and beyond the higher payoff offered to him by the

proposer. This idea also underlies the results of Santos (2000), who considers players bargaining

over which equilibrium to play in a one-shot game, as well as Miller and Watson’s (2013) Theorem 1,

which shows that renegotiation has no restrictive power when it must only obey their “Internal

Agreement Consistency” Axiom. To understand the difference between that theorem and ours, a

key observation is that their argument requires unbounded transfers: to punish a proposer, say

player 1, one requires him to make a very high transfer to 2 in the next period. If the weight of

a single period is ε, the transfer must be of order 1
ε
(hence, the necessity of assuming unbounded

transfers, as ε goes to zero). These large transfers permit 1’s continuation value to immediately

jump discretely from some punishment payoff v01 to a higher continuation value v1, which is easy to

implement. Moreover, the transfer stage takes place, in each period, before the action stage (and,

in particular, is distinct from it), if 1 deviates by making a lower or no transfer, it suffices to have

him minmaxed by the other player and reset the continuation value to v01 for the next period to

punish this deviation.

When stage-game payoffs are bounded, as in our setting, the continuation value of a player

cannot jump by an ε-independent amount. The equilibrium construction must thus keep track of

continuation values and make sure that these continuation values are implementable at all stages

and following all deviations. In the absence of a separate transfer stage, moreover, if player 1

deviates in action when implementing v01, his continuation value must fall below v01. Implementing
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this lower value may be difficult or even impossible. In fact, it is this impossibility which creates

new restrictions on the set of renegotiation-proof payoffs and destroys the folk theorem obtained in

Miller and Watson’s Theorem 1.

Both Santos (2000) and Miller and Watson (2013) consider a further restriction, which is that

the continuation of the game, in case of a disagreement, be independent of the identity of the

proposer and of the nature of the proposals. This restriction guarantees a higher level of efficiency.

The consequences for our model of such a refinement are studied in Section 6.

4.4 Comparative statics: bargaining frictions and discounting

In standard repeated games with public randomization, it is well known that the set of imple-

mentable payoffs increases with the discount factor. However, the same property does not hold

with renegotiation. For example, let the stage game have an inefficient Nash equilibrium, lying

outside of the renegotiation-proof set predicted by Theorem 1, for a fixed value of q = 1
2 . When ε

is small, Theorem 1 implies that this Nash equilibrium payoff, along with an open neighborhood

around it, is not renegotiation-proof. However as ε goes to 1, there is an equilibrium in which

players follow this Nash equilibrium in the first period (before possibly renegotiating to a Pareto

superior continuation). Since the current-period weight is arbitrarily close to 1, players’ payoffs are

arbitrarily close to the inefficient Nash equilibrium’s payoffs, which was impossible with a small

enough value of ε.

Although discount-factor monotonicity is violated in the presence of renegotiation, a different

kind of monotonicity arises here, with respect to negotiation frictions: the more opportunities

players have to renegotiate their continuation equilibrium, the smaller the renegotiation-proof set.

This result holds at all discount factor levels, as proved in Appendix F.

Proposition 1 For any fixed ε ∈ (0, 1), the set of renegotiation-proof payoffs is decreasing in q.

5 Equivalent notions of stability

Previous sections derived conditions characterizing renegotiation-proof payoffs based on a particular

equilibrium refinement. When the renegotiation frictions become negligible, these two conditions

converge to an orthant with coordinates given by either minmax or Pareto points P1, P2. In this

section, we show that the set of renegotiation-proof payoffs is the same if we consider alternative

concepts of renegotiation. We start by restricting the set of players’ possible deviations from the

norm: it is possible only if they propose an innovation which is “credible” with respect to the norm.

Second, we also consider a set-theoretic definition of the renegotiation-proof set, and show that it

is payoff-equivalent to the strategic notion analyzed in earlier sections.
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5.1 Credible innovations

Our definition of stability allowed players to implement any Pareto-improving continuation equi-

librium that is proposed and accepted at some point of the game. When players are used to a

given norm N , however, one may question why they would take such a proposal seriously. As it

turns, both the necessary and the sufficient conditions of Theorem 1 remain identical if one restricts

proposals to a much smaller subset.

Definition 4 Given a norm N , an N -credible (or just “credible”, when there is no confusion)

proposal is an SPE such that any off-equilibrium play (action, proposal, or acceptance decision) is

followed by a continuation in N at the next stage;

A credible proposal is thus an SPE which can be supported under the assumption that any

deviation will be followed by a reversal to the norm. For example, if a norm includes a harsh

punishment equilibrium for both players, then it supports many credible equilibria, any deviation

of which triggers a reversal to the norm and, more precisely, to the punishment equilibrium.

Definition 5 A norm N is stable with respect to credible innovations if it satisfies the refinement

of Definition 2 for all N -credible proposals.

Definition 5 is clearly more permissive than Definition 2, because it imposes the refinement over

a smaller set of proposals. However, we get the following result.

Theorem 2 All the conclusions of Theorem 1 continue to hold if the norms sustaining renegotiation-

proof payoffs are only required to be stable with respect to credible innovations.

The proof is straightforward. Because this second definition of stability is more permissive, our

construction for the sufficiency condition also works in this case. Moreover, it is easy to check that

the proposals considered to derive the necessary conditions are credible.

5.2 Set-theoretic definition

The norms that we defined earlier were open in the sense that they allowed players to depart from

the norm in case an off-equilibrium proposal is made and accepted. This openness is necessary for

stability since we want to treat such proposals seriously. It is possible however to bring our work

closer to the set-theoretic approach that was studied in the late eighties and early nineties. In fact,

we show in this section that our earlier analysis can be entirely reexpressed in terms of set-theoretic

definitions, yielding exactly the same characterization.
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In this section, players do not actually take proposals outside of the norm seriously. They

consider their norm as the only possible outcomes. We thus begin by “closing” our definition of a

norm:

Definition 6 A subset N of S is a closed norm if for any m ∈ N , m+1[m](z,a, i, µi,D−i) ∈ N .

The only difference with the earlier definition of a norm is that continuations belong to the norm,

including when an off-equilibrium proposal is made and accepted. Next, our earlier definition of

stability is translated into set-theoretic terms. To keep in line with the previous section, we state

the definition for credible proposals. It should be noted however that the same definition dropping

“credible” yields the same set.

Definition 7 A closed norm N is stable if the following holds: consider any SPE of N and

history at which i gets a chance to make a proposal and let Ûi denote i’s continuation payoff.

Then, for any credible proposal with payoff vector U which gives i a payoff πi(U) > Ûi, there exists

a payoff vector U ′ in the norm such that π−i(U
′) ≥ π−i(U) and πi(U

′) ≤ Ûi.

Theorem 3

1. For any closed norm N c, there exists an open norm N o which has the same payoff set, and vice

versa.

2. For any stable closed norm N c, there exists a stable open norm N o which has the same

payoff set, and vice versa.

6 Renegotiation-proof equilibria in the absence of proposer-specific

punishments

The analysis thus far has explored a negotiation environment in which deviating proposals may

trigger continuations that incentivize receivers to reject the proposals and dissuade proposers from

making them in the first place. As we showed, this mechanism confers credibility to punishment

phases which cannot be easily renegotiated away. This feature of our model arises as a natural

consequence of describing explicitly the strategic aspect of the negotiation process between players.

One may, however, wonder what equilibria may be sustained when proposers cannot be punished.

Such a scenario occurs when one restricts the continuation play after a rejection to be independent

of the identity of the proposer and the nature of the proposal. This restriction has been modeled

elsewhere22 as a “No-Fault Disagreement” (NFD) axiom, which requires the continuation after

22See Santos (2000) and Miller-Watson (2013). A similar idea appears in Farrell (1987), Rabin (1994), and Arvan,

Cabral, Santos (1999) for the case of simultaneous announcements.
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Figure 5: Signed distance from (P1P2)

rejection to coincide with the default continuation in case no proposal is made. For completeness,

we describe how the results are modified in this case.

Definition 8 A stable norm N is forgiving if for any SPE m in N , for any i and µi,

m+1[m](z,a, i, µi, 0)=m+1[m](z,a, i, ∅, 0) .

Our concepts of renegotiation-proofness are modified as follows. A payoff vector A is said

to be forgivingly q-renegotiation-proof if for all ε small enough, there is a forgiving stable norm

containing an equilibrium which expected payoff is equal to A. A is forgivingly renegotiation-proof

if it is forgivingly q-renegotiation-proof for all q’s large enough.

The main result in this case is given by the novel necessary conditions, which are much more

restrictive than before: the continuation payoffs must lie within a distance O(1
q
) of the convex hull

of the (individually-rational) Pareto frontier. More precisely, for each feasible payoff vector A, let

ρ(A) denote the signed distance from the line (P1P2), counted positively if A lies below (P1P2),

and negatively otherwise, as indicated by Figure 5).

Let ρ̄ denote the maximum value of ρ among all feasible payoff vectors.

Theorem 4 If A is forgivingly q-renegotiation-proof, then ρ(A) ≤ ρ̄
1+q

.

One may also wonder whether all the feasible payoffs lying above (P1, P2) can be achieved in

this case. The next result provides a positive answer which is independent of negotiation frictions.

To establish this result, we slightly modify the definition of stability, as follows: deviating proposal

which is accepted needs to be implemented only if it improves the proposer’s payoff by more than

a constant η > 0, arbitrarily small but fixed, over his equilibrium payoff without the deviation.23

23Using the refinement in Theorem 4 affects the corresponding bound by a factor η.
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ρ̄1+
q

Definition 9 A norm N is η-stable if the following holds: consider any SPE of N and history at

which i gets a chance to make a proposal and let Ûi denote i’s continuation payoff. Then, whenever

i proposes a plan µ ∈ S giving him at least Ûi + η, and −i accepts it, µ is implemented.

Theorem 5 Assuming η-stability, any payoff vector A strictly above the segment (P1, P2) is for-

givingly renegotiation-proof.

The role of η, which is to prevent off-equilibrium proposals near the most extreme continuation

payoffs in the norm, is pointed out in the proof.

7 Three or more players

The analysis so far has focused on two players, which is a common restriction in the study of

renegotiation in repeated games (e.g., Farrell and Maskin (1989), Benôıt and Krishna (1993), and

Santos (2000).24). Extending the analysis to more players raises new conceptual issues. Can

proposals be targeted toward a subset of individuals? What happens if only a subset of the players

accepts the proposal?

This section explores some of these issues, allowing for an arbitrary number, n ≥ 3, of players.

After a player has made a proposal, other players vote on accepting the proposal. The continuation

payoff may a priori depend on the identity of the players who voted for the proposal. We consider

several dependence structures, which vary in their flexibility. Our analysis is mainly focused on

environments in which players vote simultaneously over the acceptance decision. We briefly discuss

the case of sequential acceptance decisions afterwards.

24Abreu et al. (1993) focus instead on symmetric equilibria.
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The setting is identical to the two-player case, except as noted below. At the proposal stage, each

player i has the same probability p
n
(p < 1) of being chosen to propose a new plan. This player may

choose to conceal his proposal opportunity. If i makes a proposal, other players decide on whether

to accept it, resulting in a vector of acceptance votes D−n ∈ {0, 1}n−1.25 Given a plan m at the

beginning of a period, the continuation plan at the next period, m+1 = m+1[m](z,a, i, µi,D−i) ∈ M
is a function of z, a, i, µi, and D−i, where i indicates the identity of the last proposer.

Norm stability is extended as follows.

Definition 10 A subset N of S is a norm if, for any m ∈ N such that µi ∈ µ̄i[m](z,a) or

D−i 6= {1}n−1, m+1[m](z,a, i, µi,D−i) ∈ N ;

Definition 11 A norm N is stable if for any SPE of N , whenever i proposes an equilibrium

µ ∈ S and all other players accept it, µ is implemented.

Stability specifies the continuation payoff when everyone accepts the proposal. One must also

define players’ continuation payoffs following the rejection of the proposal. We consider three

specifications. The most flexible one allows continuation payoffs to depend arbitrarily on the

identity of the players who accepted and rejected the proposal. The other two specifications entail

two continuation payoffs: the first one arises if all players agree on a proposal; the second one

arises if at least one player rejects the proposal. These specifications differ with regard to the

continuation payoff in case of a rejection: can the proposer be punished if his proposal is rejected,

or does the game proceed as if no proposal had taken place, as already prescribed by the No-Fault

Disagreement axiom studied in Section 6?

These specifications are captured by the following concepts.

Definition 12 A stable norm N is simple if, for any m ∈ N and D−i,D
′
−i 6= {1}n−1,

m+1[m](z,a, i, µi,D−i) = m+1[m](z,a, i, µi,D
′
−i).

Definition 13 A simple norm N is forgiving if, for any SPE m ∈ N , m+1[m](z,a, i, µi,D−i 6=
{1}n−1)=m+1[m](z,a, i, ∅, {0}n−1), for any i, µi.

The definitions of (forgivingly) q-renegotiation-proof payoffs and (forgivingly) renegotiation-

proof payoffs are identical to those of the two-player case.

Throughout the analysis, we assume that the individually-rational payoff set has a full dimension

an in Fudenberg and Maskin (1986).

25Similar to two-player case, if no proposal is made, the identity of a proposer is arbitrarily chosen, and the null

proposal is rejected by everyone else.
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7.1 Voter-dependent continuations

Suppose, first, that continuation payoffs can depend arbitrarily on the voting decision of each

player—except if everyone agrees on a proposal, in which case stability dictates that the proposal is

implemented. With this high degree of flexibility, norms may be constructed so that all negotiation

proposals are dissuaded and the Folk Theorem obtains.

Theorem 6 For any feasible payoff vector π with πi > vi for all i, π is renegotiation-proof.

To understand this result, we recall that in the underlying repeated game without negotiation,

any strictly individually-rational payoff vector can be implemented for ε small enough by minmaxing

any player i who deviates in actions, and switch to minmaxing any player j 6= i who deviates when

minmaxing player i. The same idea can be applied when negotiation is possible, by deterring it

as follows: if a player, i, proposes another continuation, everyone else is prescribed to reject the

proposal and to start minmaxing player i. If another player, j, deviates from the prescribed rejection

by accepting i’s proposal, and all other players reject it, then players are prescribed to minmax j

instead of i. If two or more players accept i’s proposal, it is implemented, which guarantees that the

norm satisfies our stability refinement. This prescription guarantees that it is always suboptimal

for a player to unilaterally accept a proposal and, consequently, that it is also suboptimal to make

any proposal. Unless some additional restrictions are imposed on the continuation payoffs, allowing

for the possibility of renegotiation with three or more players thus has no more predictive power

on the set of equilibria and payoffs than the standard Folk Theorem.

7.2 Simple Norms

Suppose now that only two continuations may follow each proposal, depending on whether all

players have agreed to it. As usual with voting games, we eliminate equilibria involving weakly

dominated strategies.

Assumption 1 A player votes in favor of the proposal if it gives him a strictly higher payoff than

its continuation payoff in case of a rejection.

Let P denote the Pareto frontier of the feasible payoffs in the stage game and, for each i, P−i

denote any individually-rational payoff vector of P which minimizes i’s payoff.

The key question, for characterizing stable norms, is this: if player i makes an unprescribed

proposal, what is the worst “credible” punishment for him? Suppose that player i proposes an

SPE of the renegotiated game, with corresponding payoff vector C, and let V denote the set of

achievable payoff vectors in our candidate norm, N . If N is stable, C will be implemented if all

players accept i’s proposal. If anyone rejects the proposal, norm simplicity implies that there is a
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single payoff vector in the norm, D(C), which will be realized. If D(C) gives πj(C) or more to at

least one player j 6= i, that player will refuse the implementation of C, and D(C)N will be played.

Following any proposal with a payoff C by player i, the worst punishment in V for player i

minimizes i’s utility over the set:26

D(C,V) = {D(C) ∈ V : ∃j 6= i : πj(D(C)) ≥ πj(C)}.

Let πi(C,V) denote i’s utility under this worst punishment.

Viewing πi(C,V) as a function of C, one can then find the proposal with a continuation C(V)
which maximizes i’s payoff at the worst punishment: C(V) = argmaxC{πi(C,V)}, and the corre-

sponding payoff, πi(V), for i.
One should think of the payoff C(V) as follows. The most efficient way to prevent player i from

making a non-prescribed proposal is by implementing his worst punishment. Anticipating this, if

player i deviates from his prescription, he may as well choose the optimal proposal, which gives the

payoff C(V). In the appendix, we show that C(V) can without loss of generality be taken to lie on

the relative weak Pareto frontier of the set V, which we denote P(V).

Lemma 1 C(V) ∈ P(V)

These observations lead to the following sequential construction. We start from the set F of

strictly individually-rational payoffs in the stage game, i.e., what would be implementable without

renegotiation. We consider the minimal payoffs πi(F), i ∈ {1, ..., n} which any player i could

guarantee himself if having a chance to make a proposal and the payoffs sustained by the norm

were in F . We will build two decreasing sequences of sets, starting from F , which will generate

separate necessary and sufficient conditions for a payoff to be renegotiation-proof.

To derive sufficient conditions, the kth set in the sequence, Fk
s , is reduced by removing all the

payoffs below πi(Fk
s ), to form the k+1-th set in the sequence, starting with F0

s = F . We will show

that this process converges to a stable set which defines sufficient conditions.

To derive necessary conditions, let πmin,i(Fk
n) denote the lowest expected payoff for player i at

the beginning of a period, among all payoff vectors in Fk
n . This value is lower than the continuation

payoff πi(Fk
n) that i can guarantee himself when he gets a chance to make a proposal. We have

πmin,i(Fk
n) ≥ εvi + (1− ε)[qεπi(Fk

n) + (1− qε)πmin,i(Fk
n)]

Indeed, as in the two-player case, i gets at least vi as his current payoff, and can guarantee himself

πi(Fk
n) if he has a chance to make a proposal. As ε goes to 0, one can express the value πmin,i(Fk

n)

as:

πmin,i(Fk
n) ≥

vi + qπi(Fk
n)

1 + q
. (8)

26For the existence of a worst punishment, the set V needs to be closed. Our construction will satisfy this condition.
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At each step the set Fk
n is being reduced by removing the payoffs below (8). Iterations of this

procedure converge to a steady set, as we show in the Appendix.

Proposition 2 Both procedures converge to steady sets.

We denote the limiting sets by Vs and Vn. They both are positive orthants, whose vertices give

lower bounds on players’ payoffs (calculated at the beginning of period) under both procedures,

and are denoted πmin,i(Vs) and πmin,i(Vn), for any player i. By construction, expression (8) holds

as an equality for Vn:

πmin,i(Vn) =
vi + qπi(Vn)

1 + q
(9)

Similarly, we have πmin,i(Vs) = πi(Vs).

We can now state the main result of this section. Let R denote the open positive orthant

whose vertex is the vector (πi(P−i))
n
i=1. In the two-player case, this set characterized the suffi-

cient conditions for renegotiation-proofness. With n > 2 players, we show that R still consists of

renegotiation-proof vectors, thought it might not include all of them. The theorem is formulated

for the case where Pareto frontier supports for each player a non-zero range of payoffs.

Theorem 7 Any renegotiation-proof payoff lies in Vn, and generically any payoff in the interior

of Vs is renegotiation-proof. Moreover, any payoff in the interior of R is renegotiation-proof.

In case of feasible set having the unique Pareto-efficient point, it is the only renegotiation-proof

payoff. 27

In the two-player case, the necessary and sufficient conditions became arbitrary tight as rene-

gotiation frictions vanished. The same is true in this more general environment, as shown in

Appendix G.5.

Proposition 3 The sets Vs and Vn converge to each other as q goes to infinity.

If the players are making responses to proposals sequentially, then one has the same result 28.

Each proposal has only two continuations. If the continuation in case of rejection benefits at least

one responder, he rejects the proposal in any extended game. Otherwise, from backward induction,

each player votes for the proposal if it gives higher payoff than rejection - same as in simultaneous

voting.

27In the non-generic case of several Pareto points, each giving the same payoff to one of players, in case of at least

two other players having different payoffs on Pareto frontier, the renegotiation-proof payoffs always form a non-empty

full-dimensional orthant. In case Pareto frontier gives the same payoff to all but one player, there is a best Pareto

point, which is renegotiation-proof.
28We actually got the equivalence between sequential and simultaneous votes when assuming that player votes for

the proposal if it gives him higher payoff compared to rejection.
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7.2.1 Sequential voting in case of no restrictions

Sequential voting permits more than two continuation payoffs, depending on the sequence of ac-

ceptance decisions of the players. The resulting stable norm is qualitatively similar to the earlier

analysis with only two continuations, and it is more permissive.

Proposition 4 Suppose that each proposal is decided by sequential voting. Then, analogous con-

structions to the two-continuation case yield sufficient and necessary conditions characterized by

upper orthants. Moreover, each of these sets is larger than the corresponding set obtained with only

two continuations.

Sequential voting with many continuations thus provides more predictive power than simulta-

neous voting, but less predictive power than the simultaneous-voting specification with only two

continuations.

7.3 Three or more players without proposer-specific punishment

Finally, consider the most restrictive case of a simple norm that is also forgiving, as defined in

the two-player case. The necessary conditions resemble the two-player case. Consider the set of

individually-rational Pareto-efficient payoffs P ′, and consider the convex hull of this set, Co(P ′).

Then one has:

Proposition 5 If A is forgivingly q-renegotiation-proof, the distance from A to Co(P ′) is bounded

above by a decreasing function of q, which converges to 0 as q becomes arbitrarily large.

The proof closely mirrors the argument used for the two-player case and is only sketched here.

Suppose that A is the point of the norm which has the largest distance from Co(P ′) and that A lies

“too far” down away from Co(P ′). Whenever a player gets to make a proposal—which happens

with probability proportional to q—he proposes a Pareto point (or close to it). Moreover, the

continuation payoff A′ which follows if the proposal is rejected cannot lie farther away from Co(P ′)

than A does. Combining this puts a bound on A’s distance to Co(P ′), which vanishes as q gets

large.

We conclude this section with sufficient conditions, whose derivation is more involved and

described in Appendix G.7.

Theorem 8 Assuming η-stability, any point A in the set Co(P ′) lying strictly above the minmax

is forgivingly renegotiation-proof.
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8 Discussion

Understanding and tractably modeling renegotiation in repeated games has been a longstanding

challenge. Nevertheless, the protocol and concepts studied in the paper lead to a particularly simple

characterization of stable norms and renegotiation-proof equilibria. We hope that our characteriza-

tion can serve as a useful benchmark for applied economists who need to incorporate renegotiation

in their models.

Renegotiation in repeated games raises two challenges: defining “credible” proposals and pre-

scribing what happens when a proposal is rejected. Cooperative concepts have focused on the first

aspect, implicitly assuming that a rejection would be bad for both players, and faced important

conceptual difficulties. Internal notions of credibility (consider renegotiation only within the norm)

were too weak, ignoring natural proposals—such as proposals which Pareto dominate all equilibria

in a given “stable” norm—while external notions proved overly restrictive.

A contribution of this paper is to show that this first challenge becomes moot when the second

one is taken into account: the stability concept is essentially independent of any reasonable notion of

credibility, as least for the case of two players. This independence results for two players is already

important in itself because many games concern only two players (and, in fact, many existing works

on renegotiation in repeated games have focused on two players).

Even with more than two players, the present analysis suggests that under natural specifications

the set of renegotiation-proof payoffs has useful analytical (convergence of necessary and sufficient

conditions) and geometric properties (upper orthant characterization). Although the present paper

makes progress even in this more complicated case, some important issues need to be explored. In

particular, what happens if a player makes a proposal to a subset of the players? How does this

impact the equilibrium played by all players? This question arises naturally when players can be

divided into relatively homogeneous groups, which should intuitively be more easily able to coordi-

nate their actions. Understanding how renegotiation shapes equilibrium outcomes in environments

with segmented groups seems particularly helpful for applied work in political economy and other

areas.
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A Restricting plans

We refine steps b1), b2), and c) as follows. There exist constants k and k′ with k′ > 3k > 0 29such that

b1) for any z, a, and i, the support of µi[m](z, a) contains at most k proposals;

b2) −i is prescribed to surely accept (reject) any on-path (off-path) proposal;

c) for any z and a, the set M+1[m](z, a, µ) of possible continuation plans has at most k′ elements and

contains, in this order: the current proposal, µ; a default option (used if no proposal was made); the set of

possible on-path proposals for each player (at most 2k elements); a finite number of alternative continuation

plans, pre-specified by m as a function of z and a, which may be used as punishments against deviating

proposers.

The condition k′ > 3k guarantees that the list of continuation plans can indeed be included inM+1[m](z, a, µ)

as long as there are no more than k′ − 2k − 2 > 0 alternative continuations plans.

To specify the continuation plan selected for the next period, we partition the proposal stage according

to i) who (if any) got to make a proposal, ii) in the event that a proposal was made, whether the proposal

was prescribed (out of at most k possibilities) or off-path, iii) whether the proposal was accepted or rejected.

As is readily checked, this partition consists of at most k̂ = 1+2× (k+1)× 2 elements. In addition, we also

compare the current proposal, µ (or the default option in case of no proposal), to each of the (at most) k′−1

other feasible continuation plans. Specifically, we consider, for each player and alternative continuation,

which of the current proposal or the alternative continuation plan gives the higher payoff to that player.

Allowing three comparison outcomes ({=, <,>}) for each player yields 32(k
′−1) combinations.

Let E denote the set of possible events at the proposal stage, and k̄ = k̂× 32(k
′−1) denote its cardinality.

A choice rule g determines, for each event, the continuation plan—an element of M+1[m](z, a, µ)—for the

next period. The choice rule g[m](z, a) is pre-specified by m as a function of z and a; and it is an element

of a finite set G with a cardinality (k′)k̄.

In summary, each plan prescribes, for each realization of z and a, a successor (a plan for the following

period) as a function of the choice rule (an element from G) and of the event which occurred. Letting

A = A1 × A2 denote the (finite) set of action profiles, this stage adds Mprop = (k′k̄|G|)[0,1]×A elements to

the prescription, which has the cardinality of the power set of the continuum.30

For any set M , let T (M) denote the set of plans obtained from the recursive construction above, choosing

proposals from M and continuation plans from M . T (M) is the Cartesian product of the prescriptions

obtained at each step of the construction. We now show that there exist sets M ’s for which T (M) has the

same cardinality as M . These sets have cardinality i2 = |2c|, i.e., the cardinality of the power set of the

continuum, which is also the cardinality of RR—the set of all real-valued functions over R—see, e.g., Forster

(1995).31

Proposition 6 If M has cardinality |2c|, then so does T (M).

This implies that any set M with cardinality |2c| is in bijection with T (M).32 The set M of plans is

then structured as follows: let φ denote the bijection between 2c and T (2c). To any m ∈ 2c, we can associate

the plan, defined recursively through φ(m), which specifies mixed strategies for each realization z of the

29The plan for n > 2 players is described similarly, with increased constants k and k′ > (n+ 1)k > 0.
30Since [0, 1] has the cardinality of the continuum, Mprop has the same cardinality as the set of functions which

maps real numbers into a finite set, which is the same as the cardinality of 2c, the power set of the continuum.
31Perhaps a simple way to see this is the chain |RR| = |(2ℵ0)2

ℵ0 | = |2ℵ02
ℵ0 | = |22ℵ0 | = |2R|, where the third

inequality holds because N× R is no larger than R.
32By definition, two sets have the same cardinality if there exists a bijection between them. See, e.g., Kuratowski

and Mostowski (1968).
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randomization device, proposals as a function of z and of the observed action profile a, and continuation

plans which are elements of 2c. Thus, each element of M = 2c specifies a plan, which is defined recursively.

Proof. Given the cardinality of M, for each part from a) to c) in the prescription of a plan, one must find

the cardinality added to the plan choice from that part. Since these parts are related by a Cartesian product

and we are dealing with infinite sets, the cardinality of the Cartesian product coincides with the cardinality

of the largest component of the product.33 Part a) maps real-line outcomes (randomization device) into

mixed strategies over A for both players, which is a subset of R|A|. Since RR has the cardinality of 2c, this

has the same cardinality as M. Part b1) maps any outcome (z, a) and proposer into k possible plans in M
and a distribution over these plans, and thus has Mk×[0,1]×A ×∆k(R)

[0,1]×A elements where ∆k(R) is the

probability simplex in Rk. Again, this set has the cardinality of i2 since MR is equivalent to RR. Part b2)

does not add any cardinality since the prescription is to accept only prescribed proposals. Similarly, part

b3) does not add any cardinality. Part c) adds the choice rule specification with a cardinality G[0,1]×A = 2c

and the set M+1 of continuations with the cardinality of Mk′

, which is the same as M’s, concluding the

proof. �

Special cases used in the analysis

1) Babbling equilibria. These are the SPEs of the underlying repeated game, ignoring any renegotiation

of continuation play. Babbling equilibria are captured by the choice rule which imposes the default contin-

uation (the second element of M+1[m](z, a, µ)), no matter what happens during the proposal stage.

2) Stable norms. We can use choice rules such that if a proposal is accepted it is used as the continuation

plan

3) Conditionally stable norms. Similarly, we can can also define a choice rule such that if a proposal is

accepted and gives everyone at least as much as the expected proposal of some player, or some default

option, then it becomes the continuation plan.

4) Forgiving norms. The choice rule specifies that if a proposal is rejected, the default continuation is played

regardless of the proposal and the identity of the proposer.

B Refinement and Extensions

Payoff equivalence to more permissive plans

The current description of a plan imposes restriction on the number of proposals for each player and the

number of possible continuations; plus only the on-path proposals are prescribed to be accepted. That is,

any equilibrium is truthful : any on-path proposal is always accepted and implemented. Those restrictions

are necessary to guarantee the existence of a set of plans. However, even if one could find more permissive

plans and a related stable norm N , there would be a payoff-equivalent stable norm, using the same concept

of stability, and built with the restrictive plans used in this paper. Indeed, let’s consider any stable norm

N which uses plans with no restrictions. When player i gets a chance to propose, he can make any number

of proposals in equilibrium. Given that player i got a chance to propose, one can find the related expected

continuation payoff C and alter the equilibrium by prescribing player i to make only one proposal with payoff

C. The altered equilibrium would prescribe every other player to accept the proposal, and to implement C

regardless of the acceptance decision. The payoff C can be implemented using public randomization.

33In particular, for i0 = N, we have |N× N| = |N|. The same is true for higher beth numbers, such as i1 = R and

i2 = 2c.
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If player i deviates and proposes a Pareto improvement over C, then everyone is prescribed to reject it.

In case of n > 2 rejecting the off-path proposal is an equilibrium. In case of n = 2 players or original norm

N being simple there are only two continuations in N following the off-path proposal. The new norm would

prescribe to have the same rejection continuation as in the original norm, N . Since the incentives to accept

the proposal did not change, everyone is incentivized to reject an off-path proposal.

Finally, if one has enough continuations to incentivize the players to reject any off-path proposal in a

simple norm, it is possible to use only n − 1 of them. If one considers all possible off-path proposals of

player i, for each such a proposal there is at least one player j 6= i who rejects it. This means that for any

off-path proposal rejected by player j there is an element CN
j in the norm which gives j at least as high

payoff as the off-path proposal. Any norm can be expanded to have all the payoffs in its closure by properly

designing the prescriptions. Thus, one can consider the element CN
j with the highest payoff for j and use it

as a punishment; and have at most n− 1 continuations in total for the simple norm to be stable.

The equivalence to more permissive plans also holds if one does not impose the stability requirement.

Player i is prescribed to propose CN and the continuation is prescribed to be CN regardless of acceptance

decision. If player i makes another proposal, a default option is always played. This makes accepting CN

and rejecting any other proposal an equilibrium.

Asymmetric proposing probabilities and bargaining power

It is easy to extend the analysis to a protocol in which one of the players has a higher probability fac-

tor qi of proposal than the other player. The sufficient conditions are unchanged in this setting, but the

necessary conditions become tighter for the player whose proposal probability is higher, which translates

into a higher minimal guaranteed payoff for that player, across all renegotiation-proof equilibria. To see this

starkly suppose that v
¯1

< π1(P2) and v
¯2

< π2(P1) (configuration (a) in Figure 2), so that renegotiation

potentially benefits both players, compared to the minmax payoffs, and consider the case in which 1 can

make frequent proposals while 2 never gets a chance to make a proposal (i.e., q1 is arbitrarily large while

q2 = 0). Then, 2’s minimal guaranteed renegotiation-proof payoff collapses to her minmax payoff, while 1

is guaranteed to get a payoff of at least π1(P2). More generally, player i’s minimal payoff, given by (2), is

calculated using the probability qi that he gets an opportunity to make a proposal, and is independent of

the other player’s probability of getting that opportunity. As qi increases, player i’s guaranteed continuation

payoff increases as well, and vice versa.

C Proof of Theorem 1 (Necessary Conditions)

The interesting case is when v
¯i

< πi(P−i)—otherwise, Theorem 1 predicts only that i’s payoff must be

individually rational. We derive the necessary condition for player 1. The proof for player 2 is identical.

Let us thus assume that π1(P2) > v
¯1

and suppose, by contradiction, that there is a point A such that

π1(A) < v1 = v
¯1

+ q
2+q

(π1(P2)− v
¯1
), which is q-renegotiation-proof. This means that one can construct, for

any ε small enough, a stable norm N that contains A as one of its continuation payoffs, that is, an element

AN

In this case, we first build a specific equilibrium which yields the payoff vector P2. The point P2 is

easily shown to be the payoff vector of an equilibrium of the game, and hence has to be considered in the

Definition 2 to check that A belongs to a stable norm.34 However, we argue later in the paper (Section 5) that

our necessary and sufficient conditions are unchanged if one restricts attention, in Definition 2, to credible

proposals instead of arbitrary ones. A proposal is credible with respect to some norm N if it is an SPE

34By the Folk Theorem, P2 can be implemented by an SPE of the repeated game without renegotiation. By treating

all proposals as cheap talk, P2 can then also be implemented as an SPE of the game with renegotiation.
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such that any deviation (in action or proposal) leads to reversal to an equilibrium of the norm N .35 To this

end, we now show that P2 is the payoff of a credible proposal. The SPE implementing P2 is constructed as

follows: players are prescribed to play, in all periods, the pure action profile with payoff P2, and to abstain

from making any proposal. Any deviation, whether in action or in proposal, triggers the implementation of

element AN . Clearly, player 2 cannot benefit from deviating as she is getting her highest possible payoff in

the game. Moreover, the difference π1(P2) − π1(A) is by assumption bounded below by 2
2+q

(π1(P2) − v
¯1
),

which is ε-independent. Therefore, 1 cannot benefit from deviating either: a deviation in action may create

an immediate gain of order ε, but triggers a drop in continuation payoffs that is ε-independent and dominates

the gain. A deviation in proposal triggers AN , which again is detrimental to 1. We thus have a constructed

an equilibrium of the game with payoff P2.

Let C1 denote 1’s infimum payoff in N when it is his turn to make a proposal. Since P2 is a possible

proposal payoff, and since it Pareto dominates all payoffs with π1 < π1(P2), A is a payoff of N only if

π1(P2) ≤ C1

We now show that it is impossible. Let A1 = infV ∈V(N ) π1(V ), B1 = infW∈W(N ) π1(W ), and D1 =

infU∈U(N ) π1(U), and consider a sequence {Vm} ∈ V(N ) such that π1(Vm) →m→+∞ A1. For any Vm

there is an action that implements it in the first period of the corresponding SPE. However, if player 1

deviates, he can guarantee himself an immediate payoff of at least v
¯1
, and the worst punishment for him

after deviation gives him at least B1. Therefore, π1(Vm) ≥ εv
¯1

+ (1 − ε)B1. Since this inequality holds for

all Vm we obtain, taking the limit:

A1 ≥ εv
¯1

+ (1− ε)B1 (10)

Because any element of U(N ) lies in the convex hull of V(N ), and C1 is a mixture of points in U(N ),36

we have

C1 ≥ D1 ≥ A1

Consider now a sequence {Wm} ∈ W(N ) such that π1(Wm) → B1. Any element Wm is a weighted

average of an expected payoff vector EU1
m whenever 1 gets a chance to make a proposal, an expected payoff

vector EU2
m when it is 2’s turn to make a proposal, and a payoff vector U0

m in case no one gets to make a

proposal:

Wm =
p

2
(EU1

m) +
p

2
(EU2

m) + (1− p)(U0
m) (11)

We note that EU1
m is a mixture of elements of U resulting from 1’s mixture over proposals and 2’s mixture

over her acceptance decision. Similarly, EU2
m is a mixture of elements of U .

Since all elements Um’s belong to U(N ), we have π1(EU2
m) ≥ A1 and π1(U

0
m) ≥ A1. Equation (11) thus

implies that

π1(Wm) ≥ (1− p

2
)A1 +

p

2
π1(EU1

m).

Recalling that C1 denotes 1’s infimum payoff when he gets to make a proposal, we get

π1(Wm) ≥ (1− p

2
)A1 +

p

2
C1.

Taking limits,

B1 ≥ (1− p

2
)A1 +

p

2
C1

or

B1 ≥ (1− qε

2
)A1 +

qε

2
C1. (12)

35See Definition 4 for a precise definition.
36It is a mixture over the payoffs obtained following −i’s acceptance/rejection decision to i’s proposal.
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Combining (10) and (12), we conclude that

A1 ≥ εv
¯1

+ (1− ε)[(1 − qε

2
)A1 +

qε

2
C1]

or, ignoring terms of order ε2 in right-hand side,

A1 ≥ εv
¯1

+ (1 − [1 +
q

2
]ε)A1 +

qε

2
C1.

Subtracting A1 on both sides of the last equation and dividing by ε, we obtain

0 ≥ v
¯1

− [1 +
q

2
]A1 +

q

2
C1 (13)

From A1 ≤ π1(A), C1 ≥ π1(P2), and π1(A) < v1 = v
¯1

+ q

2+q
(π1(P2)− v

¯1
), we get

0 < v
¯1

− [1 +
q

2
]A1 +

q

2
C1

which contradicts (13). This shows the necessary condition for player 1. An identical reasoning for player

2 shows the second necessary condition. This proves the result. When P1 = P2, a similar reasoning implies

the result.

D Concept equivalence

1. Any closed norm N c is an open norm as well, so the first statement is trivially true. Now consider any

open norm N o. To construct a payoff-equivalent closed norm N c, we modify each plan/equilibrium m of N o

as follows: m’s rules on and off the equilibrium path are kept unchanged except when a player, say i, makes

a proposal µi which is off the equilibrium path. In this case, because N o is an open norm, the continuation

equilibrium if −i accepts the proposal need not lie in N o. Following such a proposal, players are instead

prescribed to behave as if i had remained silent. The new rules define an equilibrium: when playing the

original equilibrium m, i was not making the proposal µi anyway, so removing this option does not affect

equilibrium behavior and payoffs. By construction, the set of modified equilibria form a closed norm N c,

and because each equilibrium of N o has been modified into a single payoff-equivalent equilibrium of N c, the

norms are payoff equivalent.

2. We start with the observation that if two norms N c and N o have the same payoff sets, then any

proposal that is credible according to either norm is credible according to the other norm.

We now consider any stable open norm N o and construct the corresponding closed norm N c as in Part 1.

To show that N c is stable, consider any SPE m of N c, history at which player i gets to propose, and credible

proposal U such that πi(U) is strictly greater than i’s continuation payoff Ûi. From the above observation,

U is also credible for N o. If the proposal U gives player −i lower payoff compared to Û , then the game

proceeds as if there is no proposal. If the proposal U Pareto dominates Û , then for the equilibrium m̃ of N o

corresponding to m, and the same history, −i must reject U with positive probability (for otherwise πi(U)

would coincide with Ûi). Let U
′ denote the continuation payoff if −i rejects U . By stability of N o, −i knows

that if he accepts U it will be implemented. Since it is weakly optimal for −i to reject U , it must therefore

be the case that π−i(U
′) ≥ π−i(U). Moreover, it must also be the case that πi(U

′) ≤ Ûi, for otherwise it

would be strictly optimal for i to deviate by proposing U , and m̃ would not be an equilibrium. Using this

U ′ in Definition 7, this implies that N c is stable.

Next, consider any stable closed norm N c. To construct a payoff-equivalent stable open norm N o, we

simultaneously modify all SPE’s of N c. The modification proceeds in two steps, and is based on the recursive

definition a plan. Recall that a plan is a prescription of actions, proposals and acceptance decisions for the
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next period (each depending on what happened in earlier stages), along with a continuation plan resulting

from these stages to be applied in the period after next. In Step 1, we modify the prescriptions for time

t + 1, and still use plans of N c as continuations plans. The purpose of this step is to make a prescription

compatible with the requirement that if a Pareto-improving, credible proposal is made and accepted, then it

has to be played. In Step 2, we replace these continuation plans of N c by those built in Step 1, to guarantee

that the rule applies at all periods, ensuring that credible proposals which are accepted are implemented, so

that Definition 5 holds at all periods.

Consider any SPE m of N c. We modify m as follows. For the modified SPE m̃, the action stage and

on-path proposals are prescribed exactly as in m.37 Now consider a history at which i makes any proposal

U which is not prescribed by m but which is N c-credible. If −i accepts the proposal, we construct m̃ by

prescribing that players implement this proposal.38 If the proposal gives i a strictly higher payoff than his

equilibrium continuation payoff Ûi, then by stability of N c, there must exist a payoff vector U ′ corresponding

to some equilibrium m′ of N c, which gives player −i at least as much as U , and which gives player i at most

Ûi. We prescribe playing the equilibrium corresponding to U ′ in case player −i rejects the proposal. If U

does not improve upon i’s equilibrium continuation payoff, we prescribe playing the continuation equilibrium

corresponding to any of i’s equilibrium proposals in case −i rejects U . Finally, if i makes a non-credible

proposal, the proposal is ignored as if i had stayed silent.

We now verify that m̃ is an SPE that yields the same payoff as m. Since m̃ prescribes the same actions

as m, players are incentivized to follow the prescription. If i gets a chance to make a proposal, any proposal

prescribed by m (and hence m̃) yields the same continuation payoff as in m. If player i makes a credible,

off-equilibrium proposal that improves upon his equilibrium payoff, then player −i is incentivized to reject

it, and i’s continuation payoff is weakly lower than his equilibrium payoff. It is never optimal for i to make

a credible proposal that is lower than his equilibrium payoff, regardless of −i’s acceptance decision. Finally,

we replace all continuation plans by their modified versions.

There remains to verify that the set consisting of all modified equilibria forms a stable open norm,

denoted N o, which is payoff equivalent to N c. First, we notice that continuation equilibria outside of N o

may only arise when a player makes an off equilibrium proposal (which, by construction, also has to be

credible) which is accepted by the other player. Thus, N o is an open norm. By construction, each element of

N o corresponds to exactly one element of N c, which yields the same expected payoff. Therefore, the norms

are payoff equivalent. As observed earlier, this implies that they have the same set of credible proposals.

This, in turn, implies that any Pareto-improving, credible proposal of N o that is accepted is played and,

hence, that N o is stable.

37We need to make another small modification to m issue whenever i is proposing a continuation µ outside of the

norm N c, which −i is supposed to accept, and which is followed by a continuation µ′ in the norm N c (as it should,

since the norm is closed). In that case, we can replace this play by i proposing instead µ′ and have it accepted by

−i. That this modification can be done while preserving the equilibrium is straightforwad to check. In fact, any SPE

of the game can be turned into a payoff equivalent “truthful” SPE of the game, i.e., one in which any proposal that

is made and accepted on the equilibrium path is implemented. See Appendix B.
38At this point, we do not know yet that the proposal is N o-credible. We only know that it is N c-credible. However,

the norm N o that we are constructing will be payoff equivalent to N c and hence have the same credible proposals.
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Figure 6: Norm construction with NFD (payoffs)

E Proofs of Section 6

E.1 Proof of Theorem 5 (Sufficient Conditions)

Consider two feasible Pareto points, Q1 and Q2, lying at an arbitrarily small but strictly positive distance

from P2 and P1, respectively, and illustrated by Figure E.1. It suffices enough to show that for any ε small

enough, there exists a forgiving stable norm N which includes Q1 and Q1 as equilibrium payoffs, that is,

norm has elements QN
1 , QN

2 . By public randomization, this will imply that this norm can also be made to

contain all payoffs above the segment [Q1, Q2]. The argument below focuses on the case in which P2 and P1

are determined by the minmax payoffs, which is the harder one.39

We construct a norm which continuation payoffs just after the public randomization stage (before the

action stage) consist of the Pareto frontier contained between Q1 and Q2 and of two additional points, A1

and A2, respectively lying within ε-proportional distance from Q1 and Q2, as indicated on Figure E.1. We

describe the implementation of AN
1 and QN

1 ; AN
2 and QN

2 have a symmetric implementation.

While Q1 is taken as given, the location of A1 depends on ε, and is determined by the following conditions

π1(A1) = π1(Q1)−Kε

π2(A1) = π2(Q1)− Lε, (14)

for constants K and L which will be determined ulteriorly.

To implement AN
1 , players are prescribed to minmax each other. The continuation payoff B after the

action stage is a function of the players’ realized actions, a1 and a2: B = B(a1, a2). The implementation is

illustrated by Figure 7. For any action ai of player i the continuation payoff πi(B(ai, aj)) does not depend

on aj .

Given that player 2 has minmaxed player 1, let Eu1(a1) denote 1’s expected payoff for the period, as

a function of his chosen action, a1. 1’s continuation payoff, π1(B(a1, a2)), satisfies the promise-keeping

condition

π1(A1) = εEu1(a1) + (1 − ε)π1(B(a1, a2)).

A similar relation holds for 2’s continuation payoff. By appropriately choosing players’ continuation

payoffs B(a1, a2)(a1,a2)∈A, the construction can make players indifferent between taking any action in the

game.

39If, say, π1(P2) > v1, it suffices to set Q1 = P2 in our construction and use it as as the best proposal for player 2.
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Figure 7: Norm construction with NFD (implementation)

Moreover, if the constant K appearing in (14) is large enough, then for any action profile (a1, a2), one

necessarily has π1(B(a1, a2)) < π1(Q1)).
40

Consider any of the continuation payoffs B(a1, a2)(a1,a2)∈A after the action stage—henceforth referred

to as ‘B’ for simplicity. B is a weighted average of three continuation payoffs corresponding to the following

events: player 1 makes a proposal, player 2 makes a proposal, no one makes a proposal. Let C denote the

continuation payoff in case no one makes a proposal (this payoff is computed before the public randomization

taking place in the following period).

For the norm to be forgiving, any rejected proposal results in payoff C. This implies that if player 1 gets

to make a proposal, in equilibrium he proposes the element with a Pareto-efficient payoff C1 which gives 2

her default value π2(C), making player 2 to accept the proposal in equilibrium.

The situation is different if player 2 gets to make a proposal. BN gives player 1 a lower payoff than QN
1 ,

and player 2 is prescribed to propose an element QN
1 , which achieves her highest payoff in the norm and also

gives player 1 a higher payoff than CN does.

As shown on Figure 7, at element BN if player 1 gets a chance to make a proposal, he proposes CN
1 , if 2

gets a chance to make a proposal, she proposes QN
1 . B is thus a weighted average of C, C1 and Q1. Given

any point B, one can find a default option C such that B is indeed the right weighted average, given the

probabilities of proposal for each player.

We will verify at the end of this proof that the constants K and L from (14) may be chosen so that C

lies to the right of the line (A1, Q1). If this is true, CN may be implemented, before public randomization,

as a weighted average of AN
1 , QN

1 , and QN
2 .

The remaining element of interest, QN
1 , is implemented as follows: players are prescribed to choose the

pure-strategy Pareto-efficient payoff northwest of Q1. If 1 deviates in action, the continuation payoff jumps

to B; if 2 deviates, it jumps to the analog of B near Q2. Players are incentivized to play as prescribed as

long as π1(Q1)−π1(B)
ε

is large enough. This is achieved by judiciously choosing the constants K and L arising

in (14), as explained next.

Determination of the constants K and L

First, we observe that for K large enough, the threat of jumping to continuation BN is enough to

incentivize player 1 to play as prescribed in the implementation of QN
1 . We fix such a K—this choice is

independent of ε. We now show that for L big enough, for any realization of B (which depends on which

actions players choose while implementing AN ), the point C will lie to the right of line A1Q1, as mentioned

earlier.

40Indeed, the distance between A and B(a1, a2) is proportional to ε, with a coefficient bounded above by the highest

absolute value of the payoff of the stage game.
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Since a player’s probability of proposal and the distance from B to the Pareto line are both proportional

ε, the distance between B and C must be proportional to ε2. Therefore, if we can show that each continuation

point B(a1, a2) lies to the right of the line A1Q1, at a strictly positive ε-proportional distance, so does the

point C, for sufficiently small ε.

The points B(a1, a2) are constructed by promise-keeping conditions. Let B∗ denote the continuation

payoff, out of all continuations B(a1, a2), which gives the lowest payoff to player 1 and the highest payoff to

player 2. B∗ corresponds to the highest value Eu1(a1) out of all actions a1 and to the lowest value Eu1(a2)

out of all actions a2. It suffices to show that B∗ lies to the right of A1Q1. We recall the promise-keeping

conditions

π1(A1) = εEu1(a1) + (1− ε)π1(B
∗)

π2(A1) = εEu2(a2) + (1− ε)π2(B
∗)

or, equivalently,

[π1(A1)− π1(B
∗)] = ε[Eu1(a1)− π1(B

∗)]

[π2(A1)− π2(B
∗)] = ε[Eu2(a2)− π2(B

∗)].

The ratio of the absolute values of the right-hand sides in the two equations above, |Eu2(a2)−π2(B
∗)

Eu1(a1)−π1(B∗) |,
determines the tangent of the angle of the vector A1B

∗ above the horizontal. Since B∗ is at an ε-distance

from Q1, this ratio simplifies to |Eu2(a2)−π2(Q1)
Eu1(a1)−π1(Q2)

|, plus ε-terms which can be ignored.

Player 1 cannot obtain a higher payoff than his minmax v1 (as player 2 is minmaxing him), and player 2

cannot obtain a lower payoff than her lowest possible payoff in the game, which we denote as v. Therefore,

the angle of the vector A1B
∗ above the horizontal is no higher than | v−π2(Q1)

v
1
−π1(Q2)

|, a finite value independent

of L and ε.

The tangent of the angle of the line (A1Q1) above the horizonal is equal to L
K
. By choosing L high

enough, this ratio exceeds twice the ratio | v−π2(Q1)
v
1
−π1(Q2)

|. This guarantees that the vector A1B
∗ lies strictly to

the right of the line (A1Q1), as desired.

There remains to check that the norm satisfies all the conditions of Theorem 5. First, both players are

incentivized to propose as prescribed: player 1 proposes the best available option for him, given the default

option C. If player 2 wants to improve upon Q1, she has to propose a continuation which gives her at

least η more than her on-path continuation payoff. For ε small enough, however, the only proposals that

would achieve this would have to give player 1 less than π1(C), and would therefore be rejected. Second, the

continuation payoff, C, is the same when a proposal is rejected, regardless of the identity of the proposer

and the nature of the proposal. The norm is thus forgiving. Finally, the point Q1 is a continuation of the

norm both after and before the public randomization, as desired.

E.2 Proof of Theorem 4 (Necessary Conditions)

Consider a forgiving stable norm N . For simplicity, we assume that at each stage of the game—before the

action stage, before the proposal stage, and before the public randomization stage—there exist equilibria in

the norm with respective payoff vectors A, B, and C, that yield the maximal value of ρ at the corresponding

stage.41 Let α denote the (possibly mixed) action profile corresponding to the first-period play implementing

element AN—the continuation before the action stage, and let v(α) denote the expected current payoff

resulting from α. Since ρ(v(α)) ≤ ρ̄, we necessarily have

ρ(A) ≤ ερ̄+ (1 − ε)ρ(B)

Point B, which is a continuation payoff before the proposal stage, is the weighted average of the continuation

payoffs following accepted proposals, and of the default option. When a player—player 1, say—gets a chance

41If the supremum values are not achieved, the proof can be easily adjusted by taking appropriate limits.
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to make a proposal, the expected continuation payoff must lie within at most an
√
ε-distance from the

Pareto line. Otherwise, player 1 could propose a Pareto point which increases both players’ payoffs by a

value proportional to
√
ε, and is an equilibrium lying above the minmax.42 This proposal would then be

accepted by player 2 and would be a profitable deviation for player 1. Therefore, if a player gets a chance to

make a proposal, which happens with probability qε, the resulting continuation cannot have a positive value

of ρ that exceeds
√
ε. When no one makes a proposal, the continuation payoff is dictated by the default

continuation, whose value of ρ is at most ρ(C). This implies that

ρ(B) ≤ qε×√
ε+ (1 − qε)ρ(C).

Finally, since C is a convex combination of payoffs, obtained by public randomization, of equilibrium payoffs

before the action stage whose maximal ρ-value is achieved by A,

ρ(C) ≤ ρ(A).

Combining the above inequalities and getting rid of second-order ε terms shows Theorem 4.

F Comparative statics

Consider any q > q′ and any norm N that is stable for q. We will show the existence of a norm N ′, stable for

q′ and payoff-equivalent to N , which implies that all payoffs implemented by N are q′-renegotiation-proof

for the lower value of q′.

In the new norm N ′, any payoff A achieved by N before the action stage is implemented using the same

mixed actions and the same subsequent continuations as prescribed byN . Consider now any vector payoff

B, calculated before the proposal stage, implemented by some equilibrium BN of N . BN is a mixture of

three continuation equilibria: CN
1 , which arises when 1 gets a chance to make a proposal and is calculated

after the proposal stage; CN
2 which arises if 2 gets to make a proposal; and CN , which arises if no one gets

to make a proposal.

With the new negotiation factor q′, B is implemented as follows: players are prescribed to make exactly

the same proposals (with the same prescribed punishments if someone made an off-path proposal). For B to

still to be the weighted average of the continuations occurring after the three proposal events, we change the

continuation payoff in case no proposal is made: the new continuation payoff in this case, C′, has to lie on

the line between B and C. The new continuation C′N can be implemented by using a public randomization,

as it lies in the triangle (C,C1, C2). This, essentially, yields the new implementation.

There might be a problem, however, with this candidate implementation. One needs to make sure that

players are correctly incentivized to make a proposal, when they get an opportunity to do so, rather than to

conceal this opportunity. This is the case if π1(C1) ≥ π1(C) and π2(C2) ≥ π2(C), i.e., if each player gets at

least as high a payoff when he makes a proposal as when he remains silent. When one moves point C to C′,

these incentives might get violated, and the construction above must be adjusted as follows.

The new continuation payoff when no proposal is made, C′, lies in between C and B. Suppose that it

violates 1’s incentives to make his prescribed proposal: π1(C
′) > π1(C1). Since, in the old norm, we had

π1(C1) ≥ π1(C), such a violation is possible only if π1(C2) > π1(C1). In this case, we modify the prescribed

proposal for player 1 by moving point C1 towards C2. As this happens, the value of π1(C1) increases and the

value π1(C
′) decreases (to keep B the weighted average). When these values become equal, the incentives for

42With the more permissive concept of an η-stable norm, the continuation payoff has to lie within a distance of
√
ε+ η from the Pareto line. Otherwise player 1 could make a proposal which gives him η more, and gives player 2

√
ε more than the continuation payoff.
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player 1 to make a proposal start holding again. With the new continuation payoff C′
1 for player 1’s proposal

and renewed continuation payoff in case of no proposal C′′, player 1 is incentivized to make the prescribed

proposal. One then can check that both new points can be implemented: the payoff C′
1 lies between C1 and

C2 and therefore can be implemented using public randomization, while point C′′ lies within the triangle

(C,C1, C2) and can therefore also be implemented.

The same procedure can be done for player 2. The modified continuation payoffs can be implemented

using public randomization device. The new norm N ′ therefore has the same set of payoffs as the old norm

N at any stage; and it is stable given the new value of q′.

G Proofs of Section 7 (Three or More Players)

G.1 Proof of Theorem 6

Since v ∈ F , the usual Folk Theorem implies that for ε small enough v can be achieved by an SPE of the

underlying repeated game. This SPE can be embedded into an equilibrium of the repeated game with renego-

tiation. In this equilibrium, no proposals are ever prescribed at any stage of the game. If any player i makes

a proposal, other players are all prescribed to reject it, and the continuation payoff is player i’s punishment,

as in the underlying SPE. If only one player j 6= i accepts i’s proposal, the continuation is the punish-

ment equilibrium for j. If at least two players accept the proposal, it is implemented. These prescriptions

guarantee that any unilateral deviation in action, proposal, or acceptance decision is suboptimal.

G.2 Proof of Lemma 1

If i makes a non-prescribed proposal with payoff C, which is not Pareto-optimal, there must exist another

point C′, which is the payoff of another non-prescribed proposal for player i which Pareto dominates C, given

that the number of prescribed proposals is finite and given our maintained full-dimensionality assumption.

The set D(C,V) of possible punishment payoffs 43is strictly larger than the set D(C′,V), since the latter
set gives every player j 6= i a higher lower-bound on his payoff. This implies that the proposal C′ gives player

i a worst punishment payoff πi(C
′,V) at least as high as the proposal associated with payoff C. Therefore,

player i can without loss always choose a point on Pareto frontier P(V).

G.3 Proof of Proposition 2

We fix one of the two procures and let Fk denote the set corresponding to the k-th step in the sequential

reduction of the set F under this procedures. We first show that points on the relative Pareto frontier P(Fk)

of Fk are never removed by the procedure. Suppose, contrary to the claim, that some point A ∈ P(Fk)

was removed by the procedure. Then there would be a player i such that πi(A) < πi(Fk). If A was

prescribed as a punishment payoff for any proposal of player i, then for i’s optimal proposal with payoff

C ∈ Fk, the punishment payoff A would not be credible as it is removed at the k-th step. That is, any

j 6= i πj(A) < πj(C). Since A lies on the Pareto frontier of Fk, this means that πi(C) < πi(A): C gives

i a lower payoff than πi(Fk), which contradicts C’s assumed optimality. One could simply prescribe both

continuations to have C as their payoff vector, and this would give i a lower payoff than πi(Fk).

Since no point on the relative Pareto frontier of F is removed, the set of optimal proposals for any player

i remains the same along the sequence. However, the set of possible punishments keeps decreasing at each

step, which weakly increases, as a result, the minimal value πi(Fk) with k. (Recall that πi(Fk) is i’s minimal

43In Appendix B we show that it’s enough to have only a finite number of punishment continuations, satisfying

the description of a plan.
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payoff if he gets a chance to make a proposal). At each step, the set Fk is characterized by the n lower

bounds of the players’ payoffs {πmin,i(Fk)}i∈{1,...,n}. These lower bounds are weakly increasing at each step,

which implies that the procedure converges to a stable point.

G.4 Proof of Theorem 7

Necessity

Suppose that A lies outside of Vn and, for any small enough ε > 0, there exists a stable norm N (ε) such

that A ∈ N (ε). A norm N (ε) has to satisfy the inequality 8 (if being used as an argument instead of Fk
n),

up to an ε-term. Let’s limit ε to 0 and consider a sequence of norms N (ε) which payoff sets converge. This

limit payoff set contains A and satisfies the inequality 8, which in turn means that A should have not been

removed from any of the sets Fk
n . However, that would make A an element in Vn, a contradiction.

Sufficiency: R
We first prove that any point in R is renegotiation-proof. Consider any point A with πi > πi(P−i)

for any i. As in the two-player case, one can find n points Ai such that for j 6= i πj(Ai) = πj(A) and

πi(Ai) = πi(P−i) +
√
ε. Each point Ai will give the lowest payoff for player i in the constructed norm N . In

the equilibrium of the norm AN
i associated with payoff vector Ai, player i is being minmaxed. Since players

other than i may have to use mixed strategies, this generates a set B of continuation payoffs, following the

action stage, which depend on the realization of actions of players other than i. Any continuation B ∈ B
is implemented as follows: if player i can make a proposal, he is prescribed to propose some continuation

with payoff C; other players are prescribed to remain silent; in the absence of any proposal, the continuation

returns to AN
i . As in the two-player case, one can guarantee (possibly using the public randomization), that

the distance AiC is of order
√
ε.

Since the Pareto frontier is connected, so is its truncation to points for which i’s payoff lies above πi(P−i).

One can therefore find a connected subset Sε of the frontier consisting of all points giving, for each i, a payoff

greater than or equal to πi(Ai)+Kε, where K is a constant chosen large enough that players are incentivized

not to deviate in actions.

Continuation equilibria with payoffs in Sε are implemented in such a way that each player i gets at least

πi(Ai) + Kε in all continuations. Players are prescribed to stay silent. Since each point of Sε is Pareto-

efficient, there are no unanimously improving proposals anyway. Moreover, using AN
i as a punishment if i

deviates in actions guarantees that such deviation would be suboptimal.

When implementing AN
i , players are already incentivized to follow the prescribed actions. If i wants to

make a non-prescribed proposal, then by construction of Sε there exists a continuation with a payoff Qi in

set Sε which gives player i a lower payoff than C. Indeed, the lower bound for πi at the set Sε is πi(Ai)+Kε,

while πi(C)− πi(Ai) is of order
√
ε.

Sufficiency: General Conditions

The proof is similar to the two-player case. For any point A ∈ Vs with πi > πmin,i(Vs), consider the set

of points Ai ∈ Vs such that for any i πi(Ai) = πmin,i(Vs)+
√
ε and π−i(Ai) = π−i(A). The points Ai have a

smaller i-th coordinate than A provided that ε is small enough. In addition, we have πi(Aj)−πi(Ai) >>
√
ε

for any j 6= i without loss of generality.

We build a stable norm N such that Ai gives the lowest payoff to player i in the norm (calculated at

the start of the period). At AN
i , player i is minmaxed. Since players other than i may have to mix their

actions, we construct a set of continuations with payoffs B ∈ B, corresponding to the observed actions of

players −i. For any continuation equilibrium BN associated with some payoff B ∈ B, i is prescribed to

make a proposal with some payoff vector C, and all other players are prescribed to remain silent. As with

the two-player case, C can be assumed to lie at a distance of order
√
ε from Ai. When implementing the

equilibrium CN associated with C, players are prescribed to follow a deterministic sequence of actions such
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that the continuation payoff remains within an ε-distance from C. Players are prescribed not to make any

proposals.

The initial point A is also implemented by deterministic actions and no proposals. Moreover, each point

in the orthant with lower bounds πi(Ai) + Kε is included in the norm N and implemented in such a way

that πi > πi(Ai) + Kε: AN
i is severe enough a punishment for i that it makes it suboptimal for him to

deviate in action.

This norm can be shown to be generically stable. The only new issue concerns i’s incentives to deviate

in proposal. We have reduced (increased the lower bounds on payoffs) the initial set Vs by an order of
√
ε.

The whole orthant defined by πi > πi(Ai) + Kε for all i is part of the norm, but some points below are

removed from the original set Vs. As a result, the value πi(.), which i can guarantee if having a chance to

propose, can now be larger. Our goal is to show that, nevertheless, generically the value of πi(.) is smaller

than πi(C), and therefore player i is incentivized to propose CN .

When building a set Vs by sequentially removing payoffs with πmin,i(.) < πi(.), the initial set of

individually-rational payoffs gets reduced. If for player i the final value of πmin,i(Vs) is strictly larger

than his minmax payoff vi, then the value of πi(Ai) − vi is of order ε
0. This means that the distance AiC

can be made of ε
1
4 -order. At the same time, the set Vs (and, respectively, the value πi(.)) were changed by

an order of
√
ε, guaranteeing that πi(.) < πi(C).

If player i’s payoff πmin,i(Vs) equals to minmax vi, this means that i’s payoff was not increased when

building set Vs. Put it differently, one can consider a hyperplane of the set Vs with πi = vi, and find the

maximum payoffs of other players πj , j 6= i on that hyperplane. The n−1-dimensional payoff vector {πj}j 6=i

cannot lie within an interior of Vs (otherwise, player i could make a proposal dominating {πj}j 6=i and thus

guaranteeing himself a payoff higher than vi). When the set Vs is reduced by (an arbitrarily small)
√
ε-order,

player i can gain incentives to make an off-path proposal, only if the vector {πj}j 6=i lies exactly on the Pareto

frontier of Vs. However, this possibility is not generic.

G.5 Proof of Proposition 3

Intuition. The sets Vs and Vq
n—necessary conditions depend on q, hence the superscript—are both obtained

from F by sequentially increasing the lower bounds on each player’s payoff when he gets a chance to make

a proposal. Vs is obtained by removing payoffs below πi(·) at each step, while Vq
n is obtained by removing

payoffs below
vi+qπi(.)

1+q
. When q goes to infinity, the sets of payoffs removed at each step of these procedures

converge to each other. As we show below, this implies that Vq
n converges to the set Vs as q goes to infinity.

The set of sufficient conditions, Vs, can be characterized by two sets of lower bounds for each player i:

πi(Vs) is the lower bound on i’s payoff when he gets a chance to make a proposal and πmin,i(Vs) is the lower

bound for his payoff at the beginning of a period. Vs was constructed in such a way that πi(Vs) ≤ πmin,i(Vs).

To capture the above intuition, we first show by induction that Vs is the largest set S of individually

rational payoffs whose Pareto frontier is equal to P(V) and such that πi(S) ≤ πmin,i(S) for any i. Consider

such a set S. The sequence of sets Fk
s converging to Vs starts with F0

s = F , the set of all individually

rational points. This implies that πi(S) ≥ πi(F0
s ), since F0

s contains S and, hence, the set of punishments

if i makes an unprescribed proposal is higher with F0
s than with S, resulting in a lower bound πi. We now

show the induction hypothesis: if πi(S) ≥ πi(Fk
s ), then the same condition holds for k + 1. Due to the way

the payoffs are cut at step k, one has for each i, πmin,i(Fk+1
s ) = max{πmin,i(Fk

s ), πi(Fk
s )} ≤ πi(Fk

s ), which

does not exceed πi(S) ≤ πmin,i(S). Since the lower bound πmin,i(Fk+1
s ) is lower than πmin,i(S), the set

Fk+1
s contains S, and one has that πi(S) ≥ πi(Fk+1

s ). By induction, the limit set Vs contains S.
Let Vn denote the limit of Vq

n as q goes to infinity. We wish to show that Vn = Vs. Consider the

sequences {Fk,q
n }+∞

k=0 resulting from the procedure applied, for any fixed q, to derive necessary conditions

for this value of q. Due to the way points are removed at each step, it is easy to check that Fk,q′

n ⊂ Fk,q
n

whenever q′ > q; by the same logic, it is straightforward to check that Vs is contained in Vn. To prove the
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reverse inclusion, note for each q and i, we have πmin,i(Vq
n) ≥ vi+qπi(V

q
n)

1+q
, as this inequality holds at each

step k of the procedure. Taking the limit as q goes to infinity, the limiting set Vn must satisfy for each i

πi(Vn) ≤ πmin,i(Vn). From the previous paragraph, this implies that Vs contains Vn, which concludes the

proof.

G.6 Proof of Proposition 4 (Sketch)

Consider for simplicity the case of three players: player 1 makes a proposal and player 2 responds first,

followed by player 3. Depending on responding players’ votes, there are four possible continuations, one of

which is equal to 1’s proposal and arises when 2 and 3 accept the proposal.

The ability to punish 2 for accepting player 1’s proposal is constrained by the following issue: if 2 accepts

the proposal, 3 will reject it only if the punishment for player 2 gives him at least the same payoff as 1’s

proposal, which will be implemented if he accepts it. This puts a lower bound on 2’s punishment payoff,

which is higher than the minmax v2.

As a result, 1’s punishment for making an off-path proposal is also limited. Since fewer punishments

are available, fewer equilibria are renegotiation-proof: sequential voting has more predictive power than

simultaneous voting.

By nature of the arguments used to derive necessary and sufficient conditions, these conditions are

characterized by upper orthants, even if players randomize their acceptance decision.

Since allowing only two continuations—as simple norms do with simultaneous voting—is a special case

of the more numerous continuations allowed by sequential voting, it follows that simple stable norms have

more predictive power than the stable norms obtained with sequential voting.

G.7 Proof of Theorem 8 (Sketch)

We construct a forgiving η-stable norm N as follows. The norm N includes all Pareto-efficient payoffs which

lie at some arbitrary small, but ε-independent distance from the minmax values. The norm N also includes,

for each player, a set of Pareto-inefficient elements used to build a punishment equilibrium for that player, all

elements in each set lie within a distance of order ε from the Pareto-efficient elements of the norm. For each

player i, there is a Pareto-inefficient payoff vector Ai which gives i his worst payoff in N . The equilibrium AN
i

which achieves payoff Ai, together with its continuations, form the punishment set for player i, as described

below.

If players were unable to make any proposal, one could implement payoff Ai as follows. Player i is being

minmaxed, which may require other players to use mixed strategies. As described in earlier proofs, this

results in a set B1 of continuation payoffs, (potentially) one for each observed action profile (these various

continuations are needed to incentivize the minmaxing strategy). Each continuation payoff B1 ∈ B1 is

implemented by minmaxing player i, which again generates several continuation payoffs in the next period,

with generic element denoted as B2. Player i is minmaxed in this way for several periods. In each period

i’s continuation payoff, πi, increases by an amount of order ε. One can compute the number m of periods

needed to minmax player i, so that πi exceeds πi(Ai) by a sufficiently high amount that i can be incentivized

to play any action by the threat of returning to Ai. After these m periods, each continuation payoff Bm can

be implemented by playing a deterministic sequence of actions so that the continuation payoff always lies

within some ε-proportional distance from Bm. This implementation is an equilibrium, since the payoff Ai

prevents any deviation from player i, and any deviation by another player leads to an even larger drop in

the continuation payoff of the deviator.

When proposals are re-introduced in the game, there will be changes in the implementation of AN
i , but

these changes will be insignificant. After the first round of minmaxing player i, the resulting continuation

payoffB1 is calculated taken into account the possibility of proposals. That is, B1N is the convex combination
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of some default option, C1N , if no one makes a proposal, and of proposals payoffs CN
i for each player, which

are chosen to be Pareto efficient elements of the norm N . The distance between the payoffs B1 and C1 is

of order ε2—as explained the similar proofs seen earlier. In the next period, the continuation payoff before

the actions will be C1 (instead of B1, in the previous paragraph). Therefore, if one repeats minmaxing

player i for m periods, the resulting continuation payoff compared to the case with no proposals, will differ

by an amount of order ε2, which is negligible as ε becomes arbitrarily small. As players become arbitrarily

patient, the modified implementation of Ai, based on minmaxing player i for m periods and then choosing

a deterministic sequence of actions, will thus be an equilibrium even with the possibility of proposals.

Finally, the payoff Ai (and, therefore, all the default continuation payoffs C’s) can be chosen so as to

lie within some distance Kε-distance from the Pareto line. With ε small enough, no player can make an

off-equilibrium proposal that would give him a payoff of at least η more than the equilibrium proposal, while

keeping all other players at least at well as off as with the default payoff C. Therefore, the constructed norm

is η-stable. Using initial public randomization, one can then include in the norm any point in the convex

hull Co(P ′), which concludes the proof.

H Observability of mixing strategies

We have assumed throughout the paper that when a player randomizes across several actions or proposals,

only the outcome of this randomization is observed by the other player. In particular, players’ continuation

values cannot directly depend on their choice of mixed strategy. Our results do not change if instead we

assume that mixed strategies are observable. For sufficient conditions, this fact is straightforward because

our construction is clearly compatible with players observing more information. For necessary conditions,

payoff lower bounds were computed using only that any player can guarantee himself at least his minmax

payoff during the action stage and at least some particular payoff during the proposal stage which satisfies

the responder. These lower bounds do not change when mixing is observable.

The observability of mixed strategies does affect, however, the set of weakly renegotiation-proof (WRP)

equilibria defined by Farrell and Maskin (1989), defined as follows. An SPE σ is weakly-renegotiation proof

if there do not exist continuation equilibria σ1, σ2 of σ such that σ1 strictly Pareto dominates σ2. If a payoff

vector arises as players’ continuation payoff following some history of a WRP equilibrium, we will also say

that these payoffs are WRP.

Assuming that mixing probabilities are observable, Farrell and Maskin obtained a sufficient condition

for any feasible payoff to be WRP in the context of two-player repeated games. To formulate this condition,

they define ci(α) = maxa′

i
πi(a

′
i, α−i) as the cheating payoff of player i when he chooses a best response to

the (mixed) action α−i, and establish the following result.

Proposition 7 Let π = (π1, π2) denote a feasible payoff. If there exist (mixed) action pairs αi = (αi
1, α

i
2)

(for i = 1, 2) such that ci(α
i) < πi, and π−i(α

i) ≥ π−i, then the payoff π is WRP if players are sufficiently

patient.

We now present an example with a Pareto-efficient payoff that satisfies the requirement of the above

proposition, but cannot be WRP if mixing probabilities are unobserved.44 The stage game is as follows:

9,-4 -2,-4

-2,-4 9,-4

0,8 8,0

44The definition of WRP is the same as before. The only difference is that equilibrium strategies now depend only

on the history of realized actions rather than on the history that included mixed strategies.
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The payoffs (0, 8) and (8, 0) are Pareto efficient and the minmax values of players are v1 = 72
19 = 4 − 4

19

and v2 = −4, as is easily checked (for v
¯1
, 2 mixes so as to make 1 indifferent between the first and last rows).

The Pareto-efficient, individually-rational point A with payoffs π1 = 4+ 1
100 , π2 = 4− 1

100 satisfies the premise

of Proposition 7 with α1 defined by player 1 choosing the last row and player 2 mixing equally between two

columns and α2 defined by player 1 choosing the first row and player 2 choosing the first column. We will

nevertheless show that A cannot be WRP for low enough ε (arbitrarily patient players), even if players have

access to a public randomization device.

Counter-Example 1 With unobservable mixed strategies, A is not WRP.

Suppose, by way of contradiction, that A is the continuation payoff of some WRP equilibrium σ, and

consider the payoff vector A′ corresponding to player 1’s lowest payoff and, hence, player 2’s highest payoff

among all continuations payoff of σ before public randomization.45 When implementing A′, depending on

the outcome of public randomization, player 2 plays a pure strategy with some probability β and mixes with

the complement probability (1− β).

Since A′ gives 1 his lowest possible payoff, when implementing A′ player 1 cannot get a period payoff

higher than π1(A
′), even if he always plays a stage-game best response. Otherwise, the promise-keeping

constraint would have to prescribe a continuation giving 1 a payoff lower than π1(A
′). If player 2 chooses

a pure strategy, player 1 can guarantee himself a payoff of at least 9. If player 2 chooses a mixed strategy,

player 1 can guarantee himself his minmax payoff of 72
19 . This puts an upper bound on the probability β of

player 2 choosing pure strategy:

π1(A
′) ≥ 9β +

72

19
(1− β) (15)

The continuation payoff π2(A
′) of player 2 is a mixture between continuation payoffs π2,pure and π2,mixed

conditional on her playing a pure and a mixed strategy:

π2(A
′) = π2,pureβ + π2,mixed(1− β) (16)

If 2 mixes between the two columns, by indifference any choice has to give her the same payoff π2,mixed.

Player 2 cannot get more than 0 when choosing the right column, and the continuation payoff cannot exceed

the maximal value π2(A
′) in WRP equilibrium. This puts an upper bound on 2’s continuation payoff:

π2,mixed ≤ 0× ε+ (1− ε)π2(A
′)

Similarly, since 2 cannot get a payoff higher then 8, we have

π2,pure ≤ 8× ε+ (1 − ε)π2(A
′)

Combining these inequalities with (16) yields

π2(A
′) ≤ 8× εβ + (1− ε)π2(A

′).

Rearranging, we get the following lower bound for β:

π2(A
′) ≤ 8β (17)

Combining (15) and (17) yields π2(A
′) ≤ 8

99 (19π1(A
′)− 72). Since π2(A) ≤ π2(A

′) and π1(A) ≥ π1(A
′) this

implies that

4− 1

100
≤ 8

99

(

19

(

4 +
1

100

)

− 72

)

,

which is false (the right-hand side is approximately equal to 0.34) and yields the desired contradiction.

45Since σ is WRP, 1’s lowest continuation payoff is achieved for 2’s highest continuation payoff. The proof can be

easily adjusted if σ’s payoff extrema are not achieved.
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