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Abstract

Recent technologies permit matching intermediaries to engage in unprecedented levels of tar-

geting. Yet, regulators fear that the welfare gains of such targeting be hindered by the high degree

of price customization practiced by matching intermediaries, whereby prices finely depend on the

characteristics of the matching partners. To shed light on this debate, we develop a matching

model in which agents’ preferences are both vertically and horizontally differentiated. Mirroring

current practices, we show how platforms maximize profits by offering menus of matching plans

defined by (a) a baseline configuration, (b) a baseline price, and (c) a collection of nonlinear

tariffs for customization. We illustrate how, under such plans, prices are linked to structural

elasticities, and derive primitive conditions under which market power distortions increase with

the targeting level of a match. We then study the effects on targeting and consumer welfare of

uniform-pricing regulation mandating that the price charged to the side-i agents be invariant in

that side’s observable characteristics (e.g., the requirement that the price charged to advertisers

be invariant in the ads’ content). Finally, we examine the transition of matching markets from a

centralized structure to a decentralized one where sellers post prices and matching is unmediated.

The analysis has implications for ad-exchanges, media platforms, cable TV, business-to-business

platforms, and large online retailers.
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1 Introduction

Over the last two decades, new technologies have permitted the development of matching interme-

diaries of unprecedented scale engaging in unparalleled level of targeting. Notable examples include

(a) ad exchanges, matching publishers with advertisers, (b) business-to-business platforms, match-

ing firms with mutually beneficial commercial interests, and (c) dating websites, matching agents

with common passions. The same advances in technology that favored high levels of targeting also

enabled greater price customization, whereby the price of a match finely depend on observable char-

acteristics of the matching partners. For instance, in advertising exchanges, the reservation prices

demanded by publishers are allowed to vary with the identity of the advertisers.1 Furthermore,

the bids (and payments) by the advertisers depend on scores that summarize how compatible they

are with each publisher’s content. A similar trend can be found in other markets, not traditionally

analyzed through the lens of matching. In media markets, for instance, satellite TV providers use

sophisticated pricing strategies that condition subscribers’ payments on the entire bundle of channels

selected by the subscribers. In turn, because channels’ revenues often depend on the demographics

of the subscribers (as this determines the value of advertising), the prices negotiated by the TV

provider with the channels often depend in the profile of users subscribing the different packages in

which a channel is included.

In some cases, such pricing practices are easy to enforce, as “horizontal” characteristics (i.e.,

those that determine targeting accuracy) are observable (for instance, the profile of an advertiser is

typically observable). In other cases, instead, the characteristics relevant for targeting have to be

indirectly elicited, and this may require bundling.2

While having a long history in the policy debate,3 price-customizing practices have attracted

renewed attention due to the two-sided nature of matching intermediaries, and the amount of infor-

mation now available for pricing.4 The concern is that, by leveraging the platforms’ market power,

price customization hinders the efficiency gains permitted by better targeting technologies. The aim

of this paper is to understand how targeting and customized pricing shape the matching plans offered

by platforms and study the impact on targeting and consumer welfare of uniform-pricing regulation

(whereby the payments charged by the platform to each agent cannot depend on the agent’s own

profile).

To examine these issues, we develop a model where agents’ preferences exhibit elements of both

vertical and horizontal differentiation. Certain agents value being matched with agents from the

1See for example https://support.google.com/adxseller/answer/2913506?hl=en&ref topic=3376095. Moreover,

advertiser-specific reserve prices can be easily automated using proxy-bidding tools.
2Ad exchanges have recently developed new contractual arrangements allowing for bundling of advertising (see, for

example, Mirrokni and Nazerzadeh (2017)).
3In the US, the first law to regulate price discrimination is the Robinson-Patman Act of 1936.
4In the case of media markets, the Federal Communications Commission (FCC) has published two reports analyzing

the potential harm of price customization through bundling (FCC 2004, 2006). In the case of online retailing, the UK

Office of Fair Trading issued in 2010 an eponymous report on online targeting of advertising and prices.
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other side of the market uniformly more than others (vertical differentiation). At the same time,

agents from the same side may disagree on the relative attractiveness of any two agents from the

opposite side (horizontal differentiation). We capture the two dimensions of differentiation by letting

agents’ types be located on a cylinder, where the height represents the vertical dimension, while the

radial position determines the horizontal preference. Each agent’s utility from interacting with any

other agent from the opposite side increases uniformly with the agent’s vertical dimension. Fixing

the vertical dimension, each agent’s utility is single-peaked with respect to the horizontal dimension.

More specifically, we identify each agent’s radial position with his bliss point. Accordingly, each

agent’s utility for interacting with any other agent from the opposite side decreases with the distance

between the agent’s bliss point (his radial position) and the partner’s location (the partner’s radial

position). Such preference structure, in addition to its analytical convenience, mirrors the one in

the “ideal-point” models typically used in the empirical literature on media and advertising markets

(see, for example, Goettler and Shachar 2001).

A key element of our analysis is the focus on matching tariffs, which describe how the payments

asked by the platform vary with the matching set demanded by an agent. A tariff exhibits uniform

pricing if all agents from a given side face the same price schedule for different quantities of matches

from a given location of the opposite side. Formally, uniform tariffs are tariffs that do not condition

an agent’s payment to the platform on the agent’s own radial position (i.e, the horizontal dimension of

the agent’s preferences). A particularly simple type of uniform pricing often proposed as a potential

regulatory remedy to the market power enjoyed by media platforms is stand-alone linear pricing (for

a discussion, see Crawford and Yurukoglu 2012).

Absent any regulation, platforms typically use price-customizing tariffs, whereby agents from each

given side of the market are offered matching plans. Each plan is defined by its baseline configuration

(i.e., a baseline set of partners from the opposite side), a baseline price, and a collection of prices

describing the cost to the subscriber of customizing the plan by adding extra matches. The cost

of the customization is typically non-linear in the volume of matches of any given type added to

the plan (second-degree price discrimination). Importantly, the cost of the customization is also

a function of the baseline plan selected by the subscriber. Because different plans are targeted to

agents from different “locations,” price-customizing tariffs thus also display a form of third-degree

price discrimination. As the analysis reveals, when neither the vertical nor the horizontal dimensions

defining the agents’ preferences are observable by the platform, information about such dimensions is

elicited through a careful design of the baseline plans and the associated price-customizing schedules.

Our first main result derives conditions under which the profit-maximizing tariffs exhibit price

customization. Equipped with these conditions, we then offer a convenient representation of the

optimal price schedules. The representation yields a formula describing the price each agent from

each given location has to pay to include in his matching set any feasible amount of matches from any

location on the opposite side of the market. The formula links location- and volume-specific prices to

the various local elasticities of the demands on the two sides of the market. In this sense it constitutes
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the analog in a matching market of the familiar Lerner-Wilson formula of optimal monopolistic

pricing. The formula differs from the traditional one in that it accounts for (a) the reciprocity of the

matching, and (b) the fact that the platform combines second-degree price discrimination (higher

vertical types self-select into larger matching plans) with third-degree price discrimination (the total

price paid by each subscriber depends on the horizontal dimension of the subscriber’s preferences,

both when the latter are observed by the platform and when they are indirectly elicited through

self-selection).

Our characterization of the profit-maximizing matching tariffs reveals interesting patterns of

cross-subsidization, unique to matching environments. Namely, optimal tariffs induce a form of

negative assortative matching at the margin: at any given location, agents with a low value for

matching (a lower vertical dimension) are matched only to those agents from the other side whose

value for matching is sufficiently high. This form of negative assortativeness naturally takes into

account the agents’ mutual attractiveness, as determined by their joint locations. As a result, the

matching sets of any two agents from the same side are nested only if the two agents share the same

dimension of horizontal preferences.

We also leverage on this characterization to study the interplay between targeting and market

power. Specifically, we derive conditions on primitives (on the agents’ utilities and distributions of

their preferences) under which the under-provision of matches under profit maximization (relative

to the efficient level) is either magnified or alleviated as the distance of a partner’s location from an

agent’s bliss point increases. This analysis has no parallel in the screening literature, and can be

brought to data using structural techniques along the lines, for instance, of those in Kang and You

(2016).

Our second set of results investigates the effects on prices, the composition of the matching

demands, and consumer welfare of regulation that imposes uniform pricing on a given side of the

market (like the one proposed in recent years for consumers in media markets, or advertisers in digital

platforms). Analogously to the generalized Lerner-Wilson formula discussed above, we provide a

novel representation of the optimal price schedules that uses local elasticities to describe the prices

agents on each side have to pay per quantity of matches from each location on the opposite side.

Relative to the case of customized pricing, this new pricing formula identifies the relevant aggregate

elasticities in environments where location-specific pricing is not possible. The typical marginal

revenue and marginal cost terms (which determine the optimal cross-subsidization pattern) are now

averages that take into account not only the uniform-pricing aspect of regulation, but also how

the procurement costs of matches are affected by the horizontal component of preferences. From a

more theoretical perspective, the characterization contributes to the mechanism design literature by

developing a novel technique to handle constraints on the transfer rule employed by the principal (as

opposed to constraints on the allocation rules, which are typically easier to analyze using standard

techniques).

We then put this characterization to work, revealing how uniform-pricing regulation affects tar-
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geting and welfare. Intuition might suggest that uniform pricing should increase targeting (by pre-

venting platform from charging higher prices for the matches involving the most preferred partners).

This simple intuition, however, may fail to account for the fact that platforms re-optimize their entire

price schedules to respond to aggregate elasticities. Perhaps surprisingly, uniform-pricing regulation

can either decrease or increase the equilibrium level of targeting, depending on how match-demand

elasticities vary with location. We derive sufficient conditions in terms of primitives (on the modu-

larity and convexity of the agents’ utilities, as well as the distributions of vertical preferences) under

which targeting is higher (alternatively, lower) under uniform pricing (alternatively, customized pric-

ing). We then use such conditions to look into the welfare effects of uniform-pricing regulation.

Exploiting a novel connection between uniform pricing in matching markets and the literature on

third-degree price discrimination, we show how to adapt the elegant analysis in Aguirre et al. (2010)

to the matching markets under examination, and identify sufficient conditions for uniform-pricing

regulation to increase consumer surplus in the side where it is mandated. These results, once com-

bined with appropriate empirical work, can guide the design of regulatory interventions in platform

markets where price customization is a concern.

Lastly, we show how the above results can also be used to study the transition from a centralized

to a decentralized market. The same technological progress of the last few years that has facilitated

the growth of matching markets is now expected to favor a gradual transition of such markets from

a centralized structure where matching is controlled by platforms to a more decentralized structure

where one side (typically, the “seller” side) posts stand-alone prices, following which agents from the

other side (typically, the “buyer” side) then construct their matching sets. For example, in the market

for media content, several analysts believe the increase in the speed of fiber-optic and broadband

internet connection will favor a gradual transition of the market to a structure whereby viewers will

pay directly the content producers, bypassing the intermediation of current TV providers. It remains

unclear whether such developments will boost viewers’ surplus. We show that the same analysis that

permits us to uncover the welfare effects of uniform-pricing regulation can be adapted to shed light

on the welfare effects of a transition to such a decentralized structure, thus contributing a novel angle

to the policy debate over whether such transition should be encouraged or slowed down.

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the

introduction by briefly reviewing the pertinent literature. Section 2 presents the model. Section 3

identifies conditions under which the profit-maximizing matching tariffs are price-customizing, and

derives properties of the associated pricing schedules. Section 4 studies the effects of uniform-pricing

regulation and of the transition from a centralized to a decentralized structure. Section 5 concludes.

All proofs are in the Appendix at the end of the document.
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Related Literature

This paper studies many-to-many matching (with monetary transfers) in markets where the agents’

preferences are both vertically and horizontally differentiated. Particularly related are Jeon, Kim and

Menicucci (2017) and Gomes and Pavan (2016). The first paper studies the provision of quality by a

platform in a setting where quality provision enhances match values. The second paper studies the

inefficiency of profit maximization in many-to-many matching markets. Both papers abstract from

the possibility that agents’ preferences be horizontally differentiated (in tastes and match values),

thus ignoring the issues of targeting and price customization that are the heart of the analysis in the

present paper. Fershtman and Pavan (2017) considers many-to-many matching in a model with a

rich preference structure similar to the one in the present paper, combining elements of vertical and

horizontal differentiation. Contrary to the present paper, however, it focuses on dynamic markets

in which agents learn the attractiveness of their partners and experience shocks to their preferences

over time. The structure of the matching sets as well as the focus of the analysis (learning and

experimentation) are different from the one in the present paper.

Related are also Damiano and Li (2007), Johnson (2013), Jullien and Pavan (2017), and Tan

and Zhou (2017). The first two papers study price discrimination in markets where matching is one-

to-one and agents’ preferences are differentiated only along a vertical dimension. The third paper

studies platform competition in markets where agents’ preferences for the different platforms are

heterogenous but where agents value homogeneously the interactions with agents from the opposite

side of the market. The forth paper studies price competition in a general model where multiple

platforms compete by offering differentiated services to the various sides of the market and where

agents’ preferences are heterogenous with both within-side and across-sides network effects. Contrary

to the first two papers, however, the last two papers abstract from price discrimination.

More broadly, markets where agents purchase access to other agents are the focus of the broad

literature on two-sided markets (see Belleflamme and Peitz (2017) for the most up-to-date overview).

This literature, however, restricts attention to a single network, or to mutually exclusive networks,

and abstracts from horizontal differentiation. By allowing for more flexible matching rules, and by

considering a richer preferences structure, the present paper contributes to this literature by studying

targeting and price customization in such markets.

The study of price customization is related to the literature on price discrimination. In the case of

second-degree price discrimination, Mussa and Rosen (1978), Maskin and Riley (1983), and Wilson

(1997) study the provision of quality/quantity in markets where agents possess private information

about a vertical dimension of their preference. Our study of price customization in many-to-many

matching markets introduces two novel features relative to the standard monopolistic screening

problem. First, the platform’s feasibility constraint (namely, the reciprocity of the matching rule)

has no equivalent in markets for commodities. Second, agents’ preferences are differentiated along

both a vertical and a horizontal dimension. This richer preferences structure calls for a combination
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of second- and third-degree price discrimination and leads to cross-subsidization patters novel to the

literature.5

The paper also contributes to the literature on third-degree price discrimination. In addition to

the paper by Aguirre et al. (2010) mentioned above, see Bergemann, Brooks, and Morris (2015)

for an excellent overview and recent developments. That paper characterizes all combinations of

producer and consumer surplus that arise from different information structures about the buyers’

willingness-to-pay (alternatively, from different market segmentations). Our setup differs from theirs

in many respects. First, the informational costs incurred by the intermediary are endogenous, and

depend on its price-customization strategies on both sides of the market (the information structure is

exogenous in Bergemann, Brooks, and Morris (2015)). Second, the preferences structure is different,

reflecting specific features of many-to-many matching environments.

Related is also the literature on bundling (see, among others, Armstrong (2013), Hart and Reny

(2015), and the references therein). The present work differs from that literature in two important

aspects. First, while preferences are multi-dimensional both in the present paper and in that liter-

ature, in our setting, preferences can be orthogonally decomposed into a vertical and a horizontal

dimension. The bundling literature, instead, assumes a more general preference structure, which,

however, hinders the characterization of the optimal price schedules, except in special cases with

specific distributions and only two goods. Second, reflecting the practices of many-to-many match-

ing intermediaries, we assume that sales are monitored, so that prices can condition on the entire

matching set of each agent. The bundling literature, by contrast, typically assumes that purchases

are anonymous.

Lastly, the paper contributes to the literature on targeting in advertising markets (see, for ex-

ample, Bergemann and Bonatti (2011, 2015) and Cox et al. (2017) and the references therein). Our

work contributes to this literature by introducing a richer class of (non-linear) pricing strategies and

by comparing the matching outcomes that emerge under a decentralized structure to their counter-

parts in platform markets where the matching between the advertises and the publishers (or content

providers) is mediated. Contrary to some of the papers in this literature, however, we abstain from

platform competition and focus on a market with a single platform.

2 Model

A monopolistic platform matches agents from two sides of a market. Each side k ∈ {a, b} is populated

by a unit-mass continuum of agents. Each agent from each side k ∈ {a, b} has a bi-dimensional type

θk = (vk, xk) ∈ Θk ≡ Vk × Xk which parametrizes both the agent’s preferences and the agent’s

5Related is also Balestrieri and Izmalkov (2015). That paper studies price discrimination in a market with hori-

zontally differentiated preferences by an informed seller who possesses private information about its product’s quality

(equivalently, about the “position” of its good in the horizontal spectrum of agents’ preferences). The focus of that

paper is information disclosure, while the focus of the present paper is matching, targeting, and price customization.
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attractiveness.

The parameter xk, which describes the location of the agent, captures horizontal differentiation

in preferences. For convenience, we assume that agents are located on a circle of perimeter one, in

which case Xk = [0, 1], k = a, b. The parameter vk ∈ Vk ≡ [vk, vk] ⊆ R ∪ {+∞}, on the other hand,

captures heterogeneity in preferences along a vertical dimension. It controls for the intensity of an

agent’s matching utility across locations (i.e., the overall utility the agent derives from interacting

with a generic agent from the opposite side, before doing any profiling). Hereafter, we let Int[Vk]

denote the interior of the set Vk.

We assume that the vertical dimensions vk are the agents’ private information. As for the hori-

zontal dimensions, i.e., the locations xk, we consider both cases where they are publicly observable, as

well as cases where they are the agents’ private information. In particular, we consider the following

four scenarios:

• Scenario (i): Locations are publicly observable on both sides;

• Scenario (ii): Locations are private information on side a and publicly observable on side b;

• Scenario (iii): Locations are publicly observable on side a and private information on side b;

• Scenario (iv): locations are private information on both sides.

Agents derive higher utility from being matched to agents whose locations are closer to their own.

Their utility also increases, over all locations, with their vertical type. We assume the utility that

an agent from side k ∈ {a, b} with type θk = (vk, xk) obtains from being matched to an agent from

side l 6= k with type θl = (vl, xl) is represented by the function

uk(vk, |xk − xl|),

where |xk − xl| is the distance between the two agents’ locations. The function uk is Lipschitz

continuous, bounded, strictly increasing in vk, and weakly decreasing in |xk − xl|. To make things

interesting, we assume uk is strictly decreasing in |xk − xl| on at least one side. The following

examples illustrate the type of preferences covered by the aforementioned specification.

Example 1. (ad exchange) The platform is an ad exchange matching advertisers on side a to

publishers on side b. The expected payoff that an advertiser with type θa = (va, xa) obtains from an

impression at the website of a publisher with type θb = (vb, xb) is given by

ua(va, |xa − xb|) = va · φ (|xa − xb|) ,

where the strictly decreasing function φ : [0, .5]→ [0, 1] describes how the probability of a conversion

(i.e., the probability the ad view turns into a sale) varies with the distance between the publisher’s

profile, xb, and the advertiser’s ideal audience, xa. By contrast, publishers can be viewed (to a first

approximation) as indifferent with respect to the kind of advertisement displayed at their websites.
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The matching (dis)utility of a publisher reflects the opportunity cost of not using the advertisement

space to sell its own products, or from not selling the ad slot outside of the platform; given the above

notation, this is captured by letting ub(xb, |xa − xb|) = vb ≤ 0, all xa, xb ∈ [0, 1].

In the context of Example 1, it seems plausible that both an advertiser’s ideal type of audience

and a publisher’s profile be observable by the platform, which corresponds to Scenario (i) above.

Example 2. (media platform) The platform is a media outlet, e.g., a cable TV provider, matching

viewers on side a with content providers on side b. The utility that a viewer with type θa = (va, xa)

derives from having access to a content provider with type θb = (vb, xb) is given by the constant-

elasticity-of-substitution (CES) function

ua(va, |xa − xb|) =
[
α · (va)δ + (1− α) · φ (|xa − xb|)δ

]
1
δ ,

where α ∈ [0, 1] captures the relative importance of a viewer’s vertical and horizontal preferences, and

Va ⊂ R+. In turn, the strictly decreasing function φ : [0, .5]→ R+ describes how the viewer’s utility

varies with the distance between the viewer’s ideal type of content, xa, and the provider’s profile, xb.

Finally, δ > 0 measures the elasticity of substitution between the vertical and horizontal dimensions.

By contrast, content providers might be viewed as indifferent with respect to the profile of the viewers

that access their content. The matching (dis)utility of a content provider reflects the extra revenue

from advertisers (as advertisers typically pay more to content providers with a higher exposure to

viewers), or the expenses from broadcasting rights paid to third parties (which are proportional to

the audience reached). In this case, for any vb ∈ Vb, any xa, xb ∈ [0, 1], ub(vb, |xb − xa|)) = vb, with

vb > 0 under the first interpretation, and vb < 0 under the second interpretation.

In Example 2, each viewer’s ideal type of content is likely to be his own private information,

whereas each content provider’s profile is likely to be publicly observable, which corresponds to

Scenario (ii) above.

The type θk = (vk, xk) of each agent from each side k ∈ {a, b} is an independent draw from the

absolutely continuous distribution Fk with support Θk. We denote by F vk (alternatively, F xk ) the

marginal distribution of Fk with respect to vk (alternatively, xk), and by F
v|x
k the distribution of vk

conditional on xk. We denote by fvk the density of F vk and by λvk ≡ fvk /[1− F vk ] its hazard rate. We

use analogous notation for the densities and hazard rates of the conditional distributions F
v|x
k .

Let Σ(Θl) be the Borel sigma algebra associated with the set Θl. The total payoff that an agent

from side k ∈ {a, b} with type θk = (vk, xk) obtains from being matched, at a price p, to a set of

types sk ∈ Σ(Θl) from side l 6= k is given by6

πk(sk, p; θk) =

∫
sk

uk (vk, |xk − xl|) dFl(θl)− p, (1)

6The representation in (1) assumes the agent is matched to all agents from side l 6= k whose type is in sk, which is

the case under both profit-maximizing and welfare-maximizing mechanisms.
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whereas the payoff that the same agent obtains from not interacting with the platform (in which

case the agent is matched with no agent from side l 6= k and makes no payment to the platform) is

equal to zero.

Tariffs and Matching Demands

The platform offers matching tariffs to each side k ∈ {a, b}. A matching tariff Tk specifies the

(possibly negative) total payment Tk (sk) that each agent from each side k must pay to the platform

for being matched to the set of types sk ∈ Σ(Θl) from side l 6= k.

Given the tariff Tk, the matching demand of each agent from side k with type θk = (vk, xk) is

given by the set

ŝk(θk;Tk) ∈ arg max
sk∈Σ(Θl)

{∫
Θl

uk (vk, |xk − xl|) dFl(θl)− Tk (sk)

}
. (2)

To guarantee participation by all agents, we require that Tk (sk) = 0 if sk = ∅.

Definition 1. The tariffs Tk, k = a, b, are feasible if, for all (θk, θl) ∈ Θk ×Θl, k, l ∈ {a, b}, l 6= k,

θl ∈ ŝk(θk;Tk)⇐⇒ θk ∈ ŝl(θl;Tl). (3)

A pair of feasible matching tariffs thus induces reciprocal demands. That is, if an agent from side

k with type θk finds it optimal to be matched to all agents from side l 6= k with type θl, then all

agents from side l with type θl find it optimal to be matched to all agents from side k with type θk.

Given any matching set sk ∈ Σ(Θl), any location xl, we denote by qxl(sk) the “mass” of agents

from side l located at xl included in the matching set sk.
7

Definition 2. The tariff Tk offered by the platform to the side-k agents, k ∈ {a, b}, is consistent with

uniform pricing if there exists a collection of price schedules pk : [0, 1]2 → R, one for each location

xl ∈ [0, 1], such that the total payment asked by the platform for each matching set sk ∈ Σ(Θl) is

given by

Tk(sk) =

∫ 1

0
pk(qxl(sk)|xl)dxl. (4)

Conversely, the tariff Tk is discriminatory if there are no price schedules such that Tk is consistent

with Condition (4), for all sk.

Hence, under uniform pricing, the tariff offered by the platform to the side-k agents consists

of a collection of non-linear price schedules, (pk(·|xl))xl∈[0,1], with each schedule pk(q|xl) specifying

the total price each side-k agent has to pay to be matched to q agents from side l 6= k located at

xl ∈ [0, 1]. Importantly, the price pk(q|xl) is independent of the mass of agents from other locations

included in the matching set sk.

7Hereafter, we abuse of terminology by referring to the density of agents of a certain type as the “mass” of agents

of that type.
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The next definition describes a type of discriminatory tariffs that plays an important role in the

analysis below.

Definition 3. The tariff Tk is customized if there exists a collection of matching plans

{(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ [0, 1]} ,

one for each side-k location xk ∈ [0, 1], such that each side-k agent selecting the basic plan sk(xk)

and then selecting the customization sk ∈ Sk(xk) ⊆ Σ(Θl) is asked to make a total payment equal

to8

T k(xk) +

∫ 1

0
ρk(qxl(sk)|xl;xk)dxl, (5)

with ρk (qxl (sk(xk)) |xl;xk) = 0 all xl ∈ [0, 1].

Under customized tariffs, the platforms thus offer to the side-k agent a menu of matching plans,

one for each side-k location xk. Each plan specifies (a) a baseline configuration, formally captured

by the default set of types sk(xk) ⊆ Θl from side l 6= k included in the package, (b) a baseline price

T k(xk), (c) a collection of possible customizations Sk(xk) ⊆ Σ(Θl), and (d) a collection of non-linear

schedules ρk(q|xl;xk), one for each location xl ∈ [0, 1], that jointly define the cost of customizing

the plan. As in the case of uniform pricing, each non-linear schedule ρk(q|xl;xk) specifies the price

charged to the side-k agents for being matched to q agents from side l 6= k located at xl. Contrary

to the case of non-linear pricing, though, the price depends on the plan selected by the side-k agent,

which is conveniently indexed by the side-k locations, xk. A menu of customized tariffs thus combines

elements of second-degree price discrimination (each price function ρk (q|xl;xk) is possibly non-linear

in q) with elements of third-degree price discrimination (each non-linear price function ρk (q|xl;xk)
depends on the plan, and hence the location, of the side-k agents). That ρk (qxl (sk(xk)) |xl;xk) = 0,

all xl ∈ [0, 1], in turn means that an agent making no changes to a baseline plan is asked to make

no further payments to the platform beyond T k(xk). Customized tariffs capture important features

of real-world matching plans offered by platforms such as cable TV providers, Ad Exchanges, and

stores.

The platform’s problem consists in choosing a pair of feasible matching tariffs Tk, k = a, b, that

maximizes its profits, which are given by∑
k=a,b

∫
Θk

Tk(ŝk(θk;Tk))dFk(θk). (6)

8The payment specified by the tariff for any matching set sk /∈ {∪Sk(xk) : xk ∈ [0, 1]} can be taken to be arbitrarily

large to guarantee that no type finds it optimal to select any such set. The existence of such payments is guaranteed

by the assumption that uk is bounded, k = a, b. Furthermore, in case locations are private information on side k, the

collection of matching plans is required to have the property that for any set sk ∈ Sk(xk) ∩ Sk(x′k), the total payment

associated with sk is the same no matter whether the set is obtained by selecting the plan xk or the plan x′k. When,

instead, locations are public, the collection of matching plans {(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ [0, 1]} may

entail multiple prices for the same matching set sk. However, because each agent is constrained to choosing the plan

designed for his location, de facto each agent faces a tariff specifying a single price for each set.
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Hereafter, we denote by T ∗k the profit-maximizing tariffs and by s∗k the induced matching sets, k = a, b.

3 Customized Tariffs

We start by studying the platform’s problem when no restrictions are imposed on the matching tariffs

it can offer. Before describing the results, we introduce three conditions that play an important role

in the analysis below.

Condition 1. [R] Regularity: For any k, l ∈ {a, b}, l 6= k, (θk, θl) ∈ Θk ×Θl, the virtual values

ϕk (θk, θl) ≡ uk (vk, |xk − xl|)−
1− F v|xk (vk|xk)
f
v|x
k (vk|xk)

· ∂uk
∂v

(vk, |xk − xl|)

are continuous and non-decreasing in vk.

Condition R imposes that “virtual values” ϕk (θk, θl) be non-decreasing in the agents’ vertical

parameters. This assumption is the natural analog of standard regularity conditions (e.g., Myerson

(1981)) in matching environments.

Condition 2. [VD] Virtual values decreasing in distance: For any k, l ∈ {a, b}, l 6= k, θk ∈ Θk,

vl ∈ Vl, the virtual values ϕk (θk, (vl, xl)) are non-increasing in |xk − xl|.

Condition VD is another monotonicity condition, similar to R, requiring virtual values to be

non-increasing in the distance between locations. Note that, because true values uk(vk, |xk−xl|) are

decreasing in |xk − xl|, a sufficient, albeit not necessary, condition for VD is that the match value

functions uk are supermodular in (v, | · |).

Condition 3. [Ik] Independence on side k: for any θk = (vk, xk) ∈ Θk, Fk(θk) = F xk (xk)F
v
k (vk).

Condition Ik requires the vertical parameters vk to be drawn independently from the locations

xk. In the cable TV application, this condition implies that knowing a viewer’s “bliss point”, i.e.,

his preferred type of broadcasting, carries no information about the overall importance the viewer

assigns to cable TV.

Condition 4. [Sk] Symmetry on side k: for any θk = (vk, xk) ∈ Θk, Fk(θk) = xkF
v
k (vk).

Condition Sk strengthens the independence condition by further requiring that locations be uni-

formly distributed over Xk = [0, 1], as typically assumed in models of horizontal differentiation.9 As

shown below, this assumption disciplines the agents’ matching demands on side k, when locations

are private information on side l 6= k.

We then have the following result:

9Similar assumptions are typically made also in the targeting literature; see, for example, Bergemann and Bonatti

(2011, 2015), and Cox et al. (2017).
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Proposition 1. (properties of the optimum) In addition to Condition R, suppose the environ-

ment satisfies the properties of one of the following four cases: Scenario (i); Scenario (ii) along with

Conditions VD, Ia and Sb; Scenario (iii) along with Conditions VD, Sa and Ib; Scenario (iv) along

with Conditions VD, Sa and Sb. Then, under the profit-maximizing tariffs, for any k ∈ {a, b}:

1. the matching tariff T ∗k is customized;

2. the matching sets s∗k exhibit negative assortativeness at the margin: there exist functions t∗k :

Θk × [0, 1]→ Vl such that

s∗k(θk) = {(vl, xl) ∈ Θl : vl > t∗k (θk, xl)} ,

with the threshold function t∗k non-increasing in vk. When condition VD holds, fixing θk =

(vk, xk), the threshold functions t∗k (θk, xl) are non-decreasing in |xk − xl|. Finally, when loca-

tions are public on side k ∈ {a, b}, without loss of optimality, the side-k customized tariffs do

not need to restrict the set of possible customizations, i.e., for each xk ∈ [0, 1], Sk(xk) = Σ(Θl).

The conditions in Proposition 1 guarantee that the platform can price discriminate along the

agents’ locations, without leaving the agents rents for the private information the agents may possess

regarding their locations. That is, in Scenarios (ii)-(iv), these conditions guarantee that the platform

achieves the same profits as when locations are publicly observable, as in Scenario (i). Consider first

Scenario (ii). Under Conditions Ia and Sb, the platform’s pricing problem on side a is symmetric

across any two locations. This is because of two reasons. First, the location of any agent from side a

provides no information about the agent’s vertical preferences (this is guaranteed by Condition Ia).

Second, when the platform offers the same tariffs as in Scenario (i), the gross utility that each type

θk = (va, xa) obtains from the matching set s∗a(θk) coincides with the gross utility obtained by type

(va, xa + d) from choosing the matching set s∗a(va, xa + d), d ∈ [0, 1/2]. Furthermore, the matching

set s∗a(va, xa + d) is a parallel translation of the matching set s∗a(va, xa) by d units of distance, along

the horizontal dimension (this is guaranteed by Condition Sb). As a result, when, in Scenario (ii),

the platform offers the same profit-maximizing tariffs as in Scenario (i), the matching sets demanded

by any two agents with types (va, xa) and (va, xa + d) are parallel translations of one another, and

are priced identically. The above properties imply that, when the platform offers the same tariffs as

in Scenario (i), agents on side a continue to find it optimal to select the same matching sets as in

Scenario (i). A symmetric situation applies to Scenario (iii).

In Scenario (iv), instead, locations are private information on both sides. In this case, when the

platform offers the same profit-maximizing tariffs as in Scenario (i), agents continue to choose the

same matching sets, provided that Condition Sk holds on both sides of the market.

Importantly, under the optimal tariffs of Proposition 1, for any given location xk, the matching

sets demanded by those agents with higher vertical types are supersets of those demanded by agents

with lower vertical types. In this sense, the induced matching sets s∗k exhibit negative assortativeness
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at the margin. Side-l agents located at xl with a low vertical type vl are included in the matching

sets of the side-k agents located at xk only if the latter’s vertical types vk are large enough. To

understand, consider Scenario (i), bearing in mind that the same conclusions apply to Scenarios

(ii)-(iv) under the additional conditions in the proposition. Because locations are observable, the

marginal profits the platform obtains by matching type θl = (vl, xl) from side l to type θk = (vk, xk)

from side k are positive if, and only if,

ϕk (θk, θl) + ϕl (θl, θk) ≥ 0. (7)

Echoing Bulow and Roberts (1989), the above condition can be interpreted as stating that two

agents are matched if, and only if, their joint marginal revenue to the platform is weakly positive

(we elaborate on this point further in the next subsection). Condition R guarantees that ϕl (θk, θl)

is non-decreasing in vl. This implies existence of a threshold t∗k (θk, xl) such that Condition (7) is

satisfied if, and only if, vl ≥ t∗k (θk, xl). Moreover, the threshold t∗k (θk, xl) is non-increasing in vk

and, when virtual valuations are non-increasing in distance, t∗k (θk, xl) is also non-decreasing in the

distance |xk−xl|. This means that, as vk increases, the matching set of type θk expands to include new

agents with lower vertical types. Moreover, when virtual valuations are non-increasing in distance,

as vk increases, the vertical type of the marginal agents located at xl added to the matching set

s∗k(vk, xk) are higher the “farther” away the location xl is from xk. These assortativeness properties

of matching demands can be tested empirically (see for, example, the recent work by Kang and You

(2016)). Figure 1 illustrates the above properties by depicting the matching set of a representative

agent from side a.

Figure 1: Matching sets under profit-maximizing tariffs. The shaded area in the figure describes the

matching set for an agent from side a located at xa = 1/2.

Remark 1. Proposition 1 describes symmetry conditions under which customized tariffs are offered

by profit-maximizing platforms under imperfect information about the agents’ locations. These

conditions rule out the optimality of bunching and other complications (such as lotteries over tariffs
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and matching sets), while enabling us to highlight the role of price customization. These conditions

can be relaxed by considering a model with a finite number of locations equidistant in the unit-circle.

In a discrete setup, the agents’ incentive to lie over the horizontal dimensions are diminished. We

opted, here, for a continuum of locations for its greater analytical convenience, especially for pricing,

as we show below.

3.1 Lerner-Wilson formula for matching schedules

We now derive further properties of the customized tariffs that maximize the platform’s profits.

To facilitate the exposition, hereafter, we assume that locations are public on both sides (that is,

the environment satisfies the conditions of Scenario (i)). As explained in the proof of Proposi-

tion 1, in this case, because each side-k agent located at xk is constrained to choosing the plan

(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)), designed for him, there is no need for the platform to restrict

the set of possible customizations Sk(xk) each xk-agent can choose from; that is, without loss of

optimality, the platform can set Sk(xk) = Σ(Θl), for all xk ∈ [0, 1]. To ease the notation, hereafter,

we then drop the sets Sk(xk) from the specification of the matching plans.

Next, consider the problem of a side-k agent of type θk = (vk, xk) under the plan

(sk(xk), T k(xk), ρk(·|·;xk)).

The mass of agents located at xl demanded by type θk is given by

q̂xl(θk) ∈ arg max
q∈[0,fxl (xl)]

{uk(vk, |xk − xl|) · q − ρk(q|xl;xk)} .

Assuming the price schedule ρk(·|xl;xk) is differentiable and convex, we then have that, whenever

q̂xl(θk) ∈ (0, fxl (xl)), q̂xl(θk) is a solution to the following first-order condition:10

uk(vk, |xk − xl|) =
dρk
dq

(q̂xl(θk)|xl;xk) . (8)

For future reference, for any pair of locations xk, xl ∈ [0, 1], any marginal price dρk
dq ∈ [uk(vk, |xk − xl|), uk(v̄k, |xk − xl|)],

let v̂xl

(
dρk
dq |xk

)
denote the value of vk that solves the equation uk(vk, |xk−xl|) = dρk

dq , where, to ease

the notation, we dropped the arguments (q|xl;xk) of the marginal price.

Note that, because the price function ρk(·|xl;xk) is strictly convex over the range of quantities

purchased in equilibrium, the marginal price dρk/dq uniquely identifies the quantity q. Furthermore,

because agents with higher vertical types demand larger matching sets, the demand for the q-th unit

10The strict convexity of the price function ρk(·|xl;xk) over the set of quantities purchased in equilibrium is a direct

implication of the supermodularity of the agents’ payoffs uk(vk, |xk − xl|) · q in (vk, q).
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of the xl-agents by the xk-agents, at the marginal price dρk
dq , is given by11

Dk

(
dρk
dq
|xl;xk

)
≡
[
1− F v|xk

(
v̂xl

(
dρk
dq
|xk
)
|xk
)]

fxk (xk), (9)

where, as above, we dropped the arguments (q|xl;x) of the marginal price to lighten the notation.

Accordingly, Dk

(
dρk
dq |xl;xk

)
coincides with the mass of agents from side k located at xk whose

vertical type exceeds v̂xl

(
dρk
dq |xk

)
.

Using (9), we then define the elasticity of the demand by the side-k agents located at xk (in

short, the xk-demand) for the q-th unit of the xl-agents with respect to its marginal price dρk
dq by

(once again, the arguments of the marginal price dρk
dq are dropped to ease the notation)

εk

(
dρk
dq
|xl;xk

)
≡ −

∂Dk

(
dρk
dq |xl, xk

)
∂
(
dρk
dq

) ·
dρk
dq

Dk

(
dρk
dq |xl, xk

) . (10)

Note that, when dρk
dq (q|xl;xk) ∈ [uk(vk, |xk − xl|), uk(v̄k, |xk − xl|)],

εk

(
dρk
dq
|xl;xk

)
= λ

v|x
k

(
v̂xl

(
dρk
dq
|xk
)
|xk
)
·
[
∂uk
∂v

(
v̂xl

(
dρk
dq
|xk
)
, |xk − xl|

)]−1

· dρk
dq

, (11)

where recall that λ
v|x
k (vk|xk) ≡ f

v|x
k (vk|xk)/[1 − F

v|x
k (vk|xk)] is the hazard-rate of the conditional

distribution F
v|x
k . The next proposition characterizes the price schedules associated with the profit-

maximizing customized tariffs of Proposition 1 in terms of the location-specific elasticities of the

demands on both sides of the market.

Proposition 2. (Lerner-Wilson price schedules) In addition to Condition R, suppose the en-

vironment satisfies the properties of Scenario (i). The price schedules ρ∗k(·|xl;xk) associated with

the profit-maximizing customized tariffs T ∗k are differentiable and convex over the equilibrium range

[qxl(sk(vk, xk)), qxl(sk(vk, xk))], k = a, b. Moreover, ρ∗a and ρ∗b jointly satisfy the following Lerner-

Wilson formulas for all (xa, xb) ∈ [0, 1], all (qa, qb) ∈ [0, 1] such that qa = Db

(
dρ∗b
dq (qb|xa;xb)|xa;xb

)
and qb = Da

(
dρ∗a
dq (qa|xb;xa) |xb;xa

)
:

dρ∗a
dq

(qa|xb;xa)

1− 1

εa

(
dρ∗a
dq (qa|xb;xa)|xb;xa

)


︸ ︷︷ ︸
net effect on side-a profits

(12)

+
dρ∗b
dq

(qb|xa;xb)

1− 1

εb

(
dρ∗b
dq (qb|xa;xb)|xa;xb

)


︸ ︷︷ ︸
net effect on side-b profits

= 0.

11By the demand for the q-th unit of the xl-agents by the xk-agents we mean the mass of agents from side k located at

xk who demand at least q matches with the xl-agents. Also, hereafter, we extend the definition in (9) to marginal prices
dρk
dq

(q|xl;xk) /∈ [uk(vk, |xk − xl|), uk(v̄k, |xk − xl|)] by letting v̂xl

(
dρk
dq
|xk
)

= vk for all dρk
dq

(q|xl;xk) < uk(vk, |xk−xl|),

and v̂xl

(
dρk
dq
|xk
)

= v̄k for all dρk
dq

(q|xl;xk) > uk(v̄k, |xk − xl|).
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The Lerner-Wilson formulas (12) jointly determine the price schedules on both sides of the mar-

ket. Intuitively, these formulas require that the marginal contribution to profits from adding to

the matching sets of the xk-agents the qk-th unit of the xl-agents coincide with the marginal con-

tribution to profits from adding to the matching sets of the xl-agents the ql-th unit of the xk-

agents, where qk and ql are jointly related by the reciprocity condition in the Proposition (that

is, qa = Db

(
dρ∗b
dq (qb|xa;xb)|xa;xb

)
and qb = Da

(
dρ∗a
dq (qa|xb;xa) |xb;xa

)
. As for the standard Lerner-

Wilson formula for monopoly/monopsony pricing, on each side, the marginal contribution to profits of

such an adjustment has two terms: the term
dρ∗k
dq (qk|xl, xk) captures the marginal benefit from adding

the extra agents, whereas the semi-inverse-elasticity term
dρ∗k
dq (qk|xl, xk)

[
εk

(
dρ∗k
dq (qk|xl;xk)|xl;xk

)]−1

capture its associated infra-marginal losses.

Importantly, as anticipated above, the quantities qk and ql at which the conditional price schedules

are evaluated have to clear the market, as required by the reciprocity condition (3). The result in the

proposition uses the fact that the demands under the optimal tariffs satisfy the threshold structure

in Proposition 1 to establish that the mass of xk-agents that, at the marginal price
dρ∗k
dq (qk|xl, ;x), de-

mand qk agents or more of type xl coincide with the mass Dk

(
dρ∗k
dq (qk|xl;xk) |xl;xk

)
of xk-agents with

vertical type above v̂xl

(
dρk
dq |xk

)
. Together with reciprocity, Proposition 1 then also implies that the

mass qk of xl-agents that, at the marginal price
dρ∗l
dq (ql|xk, xl), demand ql = Dk

(
dρ∗k
dq (qk|xl;xk) |xl;xk

)
or more of the xk-agents coincides with the mass of xl-agents with vertical type above v̂xk

(
dρl
dq |xl

)
.

Finally, that the price schedules ρ∗k(qk|xl;xk) are convex in qk reflects the fact that the matching

demands of the xk-agents for the xl-agents are increasing in the vertical types vk. As a result, the

marginal price
dρ∗k
dq (qk|xl, xk) for the qk-unit of the xl-agents has to increase with qk.

The formulas in (12) also reveal how profit-maximizing platforms optimally cross-subsidize in-

teractions among agents from multiple sides of the market while accounting for heterogeneity in

preferences along both vertical and horizontal dimensions. In particular, the price schedules offered

at any two locations xk and xl are a function of the location-specific demand elasticities εk (·|xl;xk)
at these locations. This reflects the fact that, at the optimum, platforms make use of information

about horizontal preferences to offer matching tariffs that extract as much surplus as possible from

agents from both sides. As we show below, the ability to tailor price schedules to locations (a form

of third-degree price discrimination) has important implications for the composition of the demands

prevailing under optimal tariffs.

The result in Proposition 2 can also be used in empirical work, as it provides a system of structural

equations that allows the econometrician to recover the distribution of the agents’ preferences from

price schedules and match volumes. The work by Kahn and You (2016) follows a related approach

in the matching market for lobbying, but abstracting from horizontal differentiation. Proposition

2 might help in extending their empirical analysis to markets where horizontal differentiation is

expected to play an important role.
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3.2 Distortions and Horizontal Differentiation

We now investigate how distortions in the supply of matching opportunities (relative to efficiency)

due to market power vary with the agents’ horizontal preferences. In particular, we are interested in

whether distortions increase or decrease as one considers locations farther away from an agent’s bliss

point. The analysis in this section has important implications for how policy makers should regulate

mediated matching markets.

Let ∑
k=a,b

∫
Θk

∫
ŝk(θk;Tk)

uk (vk, |xk − xl|) dFj(θj)dFk(θk), (13)

denote the welfare associated with a feasible pair of matching tariffs Tk, k = a, b. It is straight-

forward to see that a pair of tariffs T ek , k = a, b, maximizes social welfare if, and only if, the induced

matching demands satisfy the following property: For any two agents with types θk = (vk, xk) and

θl = (vl, xl),

θl ∈ ŝk(θk;T
e
k ) ⇐⇒ uk (vk, |xk − xl|) + ul (vl, |xk − xl|) ≥ 0.

In turn, this means that, given any pair of welfare-maximizing tariffs T ek , k = a, b, there must exist

threshold functions tek (θk, xl) such that θl ∈ ŝk(θk;T
e
k ) if, and only if, vl ≥ tek (θk, xl). Arguments

similar to those establishing Proposition 1 and Proposition 2 then imply that the welfare-maximizing

tariffs T ea and T eb are customized, and their associated price schedules jointly solve

dρea
dq

(qa|xb;xa) +
dρeb
dq

(qb|xa;xb) = 0,

at any pair qa and qb such that qa = Db

(
dρeb
dq (qb|xa;xb)|xa;xb

)
and qb = Da

(
dρea
dq (qa|xb;xa) |xb;xa

)
.

The following example illustrates the differences between the matching sets sustained under

welfare maximization and their counterparts under profit maximization, when preferences are as in

Example 2.

Example 3. (constant distortions) In addition to Condition R, suppose the environment satisfies

the properties of Scenario (i) and Condition Ik holds for k = a, b. Further assume that agents’

preferences are as in Example 2 with δ = 1, vb drawn from a shifted exponential distribution with

parameters λ̃b > 0 and K < 0, and va drawn from a distribution F va such that ϕa(θa, θb) > 0 all

(θa, θb).
12 Assume |K| is large so that, for any (θa, xb) ∈ Θa × [0, 1], t∗a (θa, xb) , t

e
a (θa, xb) ∈ Int[Vb].

The distortions brought in by profit maximization are then captured by the discrepancy

t∗a (θa, xb)− tea (θa, xb) =
1

λ̃b
+

α

λva(va)

between the thresholds defining the matching sets under profit maximization and welfare maxi-

mization, respectively. Under the specification of this example, such discrepancy is invariant in the

distance |xa − xb| between any two pair of locations, as illustrated in Figure 2.

12That is, F vb (vb) = 1− exp
{
λ̃b (vb −K)

}
, with λ̃b > 0 and K < 0. Its support is then [K,+∞).
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Figure 2: The welfare-maximizing demand threshold tea (θa, xb) (dashed blue curve) and

profit-maximizing demand threshold t∗a (θa, xb) (solid black curve) for agents on side a located at

xa = .5 under the preferences of Example 2, when δ = 1, φ (|xa − xb|) = exp {−|xa − xb|}, and

vertical dimensions vb are drawn from a shifted exponential distribution. Horizontal dimensions are

drawn uniformly on both sides, independently of the vertical dimensions.

As the next proposition reveals, the above example is a knife-edge case, in that the match utility

of the side-a agents is modular (i.e., the cross-derivative of ua in va and µ = |xa − xb| is zero), the

match utility of the side-b agents is modular and linear in vb, and the distribution F vb of the vertical

parameter vb has a constant hazard rate.

To state the formal result, we first need to introduce a more general definition:

Definition 4. (distortions and distance) Distortions on side k ∈ {a, b} decrease (alternatively,

increase) with distance if, and only if,

ul (t
∗
k(θk, xl), |xl − xk|)− ul (tek(θk, xl), |xl − xk|)

decreases (alternatively, increases) with |xk − xl|.
Hence, fixing the type θk = (vk, xk) of a side-k agent, distortions increase with distance when

the difference between the minimal utility asked by a profit-maximizing platform and a welfare-

maximizing platform to each xl-agent to be matched with type θk increases with the distance

between the two agents’ locations. Note that the difference in utilities ul (t
∗
k(θk, xl), |xl − xk|) −

ul (t
e
k(θk, xl), |xl − xk|) reduces to the difference in the thresholds t∗k (θk, xl) − tek (θk, xl) when the

side-l’s preferences are invariant in the locations, as in Examples 1, 2, and 3 above.

Proposition 3. (distortions under customized pricing) In addition to Condition R, suppose

the environment satisfies the properties of Scenario (i), and Conditions VD and Ik hold, k = a, b.
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Consider any (θk, xl) ∈ Θk× [0, 1] for which t∗k(θk, xl), t
e
k(θk, xl)∈ Int[Vl].13 The following statements

are true for k, l = a, b, l 6= k:

1. If uk is submodular, ul is submodular and concave in vl, and F vl has an increasing hazard rate,

distortions on side k decrease with distance (strictly, if at least one of the conditions is strict);

2. If uk is supermodular, ul is supermodular and convex in vl, and F vl has a decreasing hazard

rate, distortions on side k increase with distance (strictly, if at least one of the conditions is

strict).

Consider again the specification in Example 3 but assume δ < 1, in which case, the preferences of

the side-a agents are strictly submodular. In this case, distortions decrease with distance. This means

that, under profit maximization, the matching sets of the side-a agents are distorted by excluding

primarily those agents from side b that the side-a agents like the most. Conversely, when δ > 1, the

preferences of the side-a agents are supermodular and distortions increase with distance, meaning

that the side-b agents that are inefficiently excluded from the matching sets of the side-a agents are

primarily those that the side-a agents regard as least attractive.14 Similar conclusions obtain when

preferences are modular but F vb has a strictly monotone hazard rate (increasing or decreasing).

Next, consider the ad exchange specification of Example 1. Note that the agents’ preferences

under this specification are consistent with the conditions of part 1 in Proposition 3 (ua is strictly

submodular, whereas ub is linear in vb and invariant in |xa − xb|). The results in Proposition 3 then

imply that, when F vb has an increasing hazard rate, under profit maximization, advertisers (on side

a) are more often matched (relative to efficiency) to those publishers whose profile is more distant

from their ideal audience. Figure 3 illustrates this situation.

13The results for the case in which either t∗k(θk, xl), or tek(θk, xl), coincide with the extreme points of Vl are not

particularly interesting. In this case, the monotonicity of the difference in the thresholds t∗k(θk, xl) − tek(θk, xl) does

not depend on the hazard rate of the distributions, nor on the modularity of the match values. It follows directly

from the monotonicity of the match values uk in vk and | · |, and from Conditions R and VD. When tek(θk, xl) = v̄l,

t∗k(θk, xl) = v̄l. In this case, distortions are invariant in the distance. If, instead, tek(θk, xl) = vl, then distortions are

weakly increasing in the distance. Finally, if t∗k(θk, xl) = v̄l then clearly distortions are weakly decreasing in distance.
14To see how the results follow from parts 1 and 2 in the proposition, recall that, in this example, the preferences

of the side-b agents are linear in vb and invariant in |xa − xb|; hence they are both weakly submodular and concave in

vb, and weakly supermodular and convex in vb. Furthermore, F vl is exponential and hence it has a hazard rate that is

both weakly increasing and weakly decreasing.
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Figure 3: The welfare-maximizing demand threshold tea (θa, xb) (dashed blue curve) and

profit-maximizing demand threshold t∗a (θa, xb) (solid black curve) for agents on side a located at

xa = .5 under the preferences specification of Example 1.

Proposition 3 identifies natural conditions on primitives (match utilities and distributions) that

lead to location-specific elasticities that increase or decrease with distance. To understand the

result, consider part 1 first. When ua is submodular, the effect of vertical differentiation on match

utility declines with the distance in locations. This implies that the location-specific semi-elasticity

εa

(
dρa
dq |xb;xa

)
/dρadq of the side-a demand, evaluated along the matching demand of type θa, is higher

at locations xb that are farther from xa (as implied by equation (11)). Holding fixed dρb
dq , this

property of elasticities contributes to marginal prices on side a that are lower (relative to their

efficient counterparts) at locations xb that are farther from xa, as implied by the Lerner-Wilson

formulas (12). Likewise, when F vb has an increasing hazard rate and ub is submodular and concave

in vl, the side-b location-specific semi-elasticity εb

(
dρb
dq |xa;xb

)
/dρbdq , evaluated along the matching

demand of type θa, is also higher at locations xb that are farther from xa (as implied by equation

(11)). Holding fixed dρa
dq , this property of elasticities thus contributes to marginal prices on side b

that are lower (relative to their efficient counterparts) at locations xb that are farther from xa (as

implied by the Lerner-Wilson formulas (12)). Because matchings is reciprocal, the side-a marginal

prices then also decrease (relative to their efficient counterparts) as distances increase.

The two effects described above point in the same direction: Namely, the discrepancy between

the side-a profit-maximizing marginal prices and their efficient counterparts are relatively lower at

locations xb that are farther from xa. When this is the case, distortions decrease with distance.

Mutatis mutandis, a similar explanation applies to the environment considered in part 2 in the

proposition.
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4 Uniform Pricing Regulation

In response to concerns about the detrimental welfare effects of price customization, policies advocat-

ing for the imposition of uniform-pricing regulations have recently gained prominence in the policy

debate. In this section, we study how platforms optimally respond to the imposition of uniform

pricing.

Uniform Pricing and Aggregate Demand Elasticities

Suppose the platform is forced to adopt a uniform price schedule pa(·|xb) on side a. Recall that,

for each location xb ∈ [0, 1], and each q ∈ [0, fxb (xb)], such a schedule specifies the price that the

side-a agents have to pay to be matched to q agents from side b located at xb. Under such schedule,

the aggregate demand (over all locations xa) for the q-th unit of the xb-agents at the marginal price
dpa
dq (q|xb) is equal to

D̄a

(
dpa
dq
|xb
)
≡
∫ 1

0
Da

(
dpa
dq
|xb;xa

)
dxa =

∫ 1

0

{
1− F v|xa

(
v̂xb

(
dpa
dq
|xa
)
|xa
)}

fxa (xa)dxa,

where, as in the previous section, Da

(
dpa
dq |xb;xa

)
denotes the mass of agents located at xa that

demand q units or more of the xb-agents, and where, as in the previous section, the arguments (q|xb)
of the marginal prices dρa

dq (q|xb) have been dropped, to ease the exposition.

The elasticity of the aggregate demand for the q-th unit of the xb-agents with respect to its

marginal price dpa
dq (q|xb) is then equal to

ε̄a

(
dpa
dq
|xb
)
≡ −

∂D̄a

(
dpa
dq |xb

)
∂
(
dpa
dq

) ·
dpa
dq

D̄a

(
dpa
dq |xb

) = E
H̄
(
x̃a|xb, dpadq

) [εa(dpa
dq
|xb; x̃a

)]
,

where the expectation is over Xa = [0, 1], under the distribution H̄
(
·|xb, dpadq

)
whose density is equal

to

h̄

(
xa|xb,

dpa
dq

)
≡

Da

(
dpa
dq |xb, xa

)
∫ 1

0 Da

(
dpa
dq |xb;x′a

)
dx′a

with εa

(
dpa
dq |xb;xa

)
as defined in (10).

Hereafter, we refer to ε̄a (·|xb) as to the aggregate elasticity of the side-a demand for the xb-

matches. This elasticity measures the percentage variation in the mass of agents from side a that

demand at least q matches with the side-b agents located at xb in response to a percentage change in

the marginal price for the q-th unit of the xb-agents. It is also equal to the average (over the side-a

locations) elasticity of the xa-demands for the q-th unit of the xb-agents with respect to the marginal

price dpa
dq , where the average is under a distribution that assigns to each location xa a weight equal

to the mass of agents Da

(
dpa
dq |xb, xa

)
located at xa demanding q units, or more, of the xb-agents.
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The next proposition derives the optimal tariffs employed by a platform that is constrained not

to engage in third-degree price discrimination on side a (equivalently, to price uniformly on side a).

Consistently with the previous two propositions, we ease the exposition by assuming that locations

are public information on both sides (that is, the environment satisfies the properties of Scenario (i))

and then denote by T ua and T ub the profit-maximizing tariffs on sides a and b, respectively, when the

platform is constrained to price uniformly on side a.

Proposition 4. (Uniform Pricing) In addition to Condition R, suppose the environment sat-

isfies the properties of Scenario (i) and that the platform is constrained to price uniformly on

side a (but is free to offer a customized tariff on side b). The profit-maximizing price schedules

pua(·|xb) and ρub (·|xa;xb) are differentiable and convex over the equilibrium ranges [qxb(sa(va, xb +

.5)), qxb(sa(va, xb))], and [qxa(sb(vb, xb)), qxa(sa(vb, xb))], and jointly satisfy the following optimality

conditions for all xb ∈ [0, 1], all q ≤ fxb (xb),

dpua
dq

(q|xb)

1− 1

ε̄a

(
dpua
dq (q|xb)

)


︸ ︷︷ ︸
net effect on side-a profits

+E
H
(
x̃a|xb, dpadq

)
dρubdq (q̂b(q; x̃a;xb)|x̃a;xb)

1− 1

εb

(
dρub
dq (q̂b(q; x̃a;xb)|x̃a;xb)|x̃a;xb

)


︸ ︷︷ ︸

 = 0,

net effect on side-b profits

(14)

where H
(
xa|xb, dpadq

)
is the distribution over Xa = [0, 1] whose density is given by

h

(
xa|xb,

dpa
dq

)
≡

∂Da
(
dpa
dq

(q|xb)|xb;xa
)

∂
(
dpa
dq

)
∂D̄a

(
dpa
dq

(q|xb)|xb
)

∂
(
dpa
dq

) ,

and where q̂b(q;xa;xb) ≡ Da

(
dpua
dq (q|xb)|xb;xa

)
is the mass of side-a agents located at xa that demand

q or more matches with the side-b agents located at xb when the (uniform) marginal price for the

q-th unit of the xb-agents is equal to dpua
dq (q|xb).

The result in the proposition provides structural equations similar to those corresponding to the

Lerner-Wilson formulas in (12), but adapted to account for the imposition of uniform pricing on

side a. Such structural conditions jointly determine the price schedules on both sides of the market.

Under uniform pricing, the price schedule on side a for the sale of the side-b matches cannot condition

on the location of the side-a agents. As a result, the markup for the sale of the q-th unit of the xb-

matches is constant across all side-a locations xa. The relevant elasticity for determining this markup
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is then the aggregate elasticity ε̄a(·|xb), rather than the location-specific elasticities εa (·|xb;xa) in

the Lerner-Wilson formula (12). Interestingly, even if the platform can price discriminate on side b

by offering a customized tariff to the side-b agents, when it is constrained to price uniformly on side

a, the cost of procuring the side-b agents is the average (mark-up augmented) price

E
H
(
x̃a|xb, dpadq

)
dρubdq (q̂b(q; x̃a;xb)|x̃a;xb)

1− 1

εb

(
dρub
dq (q̂b(q; x̃a;xb)|x̃a;xb)|x̃a;xb

)


︸ ︷︷ ︸


net effect on side-b profits

charged to the xb-agents for their interactions with the various xa-agents demanding q, or more,

xb-matches.

Also note that, by virtue of the reciprocity condition (3), the quantities qa and qb at which the

conditional price schedules are evaluated have to clear the market for any pair of locations (xa, xb).

For this to be possible, it is important that the platform be able to employ a customized tariff on

side b, as the latter ensures that the platform has enough price instruments to procure the side-b

matches demanded by the side-a agents, while respecting reciprocity.

Finally, as in the case where price customization is allowed on both sides, the convexity of the

price schedules pua(·|xb) and ρub (·|xa;xb) in q reflects the fact that the matching demands of those

agents with a higher vertical type are supersets of those with a lower vertical type.

As revealed by the pricing formulas (12) and (14), the effects of the imposition of uniform pricing

on side a on the composition of the matching sets on both sides hinge on the comparison between the

aggregate inverse-elasticity 1/ε̄a and the location-specific inverse-elasticities 1/εa (·|xb, xa) on side a,

as well as the comparison between the average inverse-elasticity E
H
(
x̃a|xb, dpadq

) [1/εb (·|x̃a;xb)|x̃a;xb)]

of the xb-demands for the various xa-matches and the inverse-elasticities 1/εb (·|x̃a;xb)|x̃a;xb) of the

same demands for the specific matches. In turn, such comparisons naturally reflect how the average

virtual valuations on both sides compare to their location-specific counterparts. To see this, first

note that

1

ε̄a

(
dpua
dq (q|xb)

) = E
H
(
x̃a|xb, dpadq

)
 1

εa

(
dpua
dq (q|xb)|xb; x̃a)

)
 . (15)

That is, the inverse aggregate elasticity of the side-a demand for the q-th unit of the xb-matches is

equal to the average of the various location-specific inverse elasticities of the side-a agents for the

same unit of the same xb-matches, where the average is under the same measure H
(
xa|xb, dpadq

)
introduced in the proposition. Letting v′b(q;xb) =

(
F
v|x
b

)−1
(1−q|xb) denote the value of the vertical

dimension of the xb-agents such that the mass of xb-agents with a vertical type higher than v′b(q;xb)

24



is equal to q, we then have that the optimality condition (14) can be re-written as

E
H
(
x̃a|xb, dpadq

) [ϕa((v̂xb (dpadq |x̃a
)
, x̃a

)
,
(
v′b(q;xb), xb

))]
︸ ︷︷ ︸

net effect on side-a profits

E
H
(
x̃a|xb, dpadq

) [ϕb((v′b(q;xb), xb)) ,(v̂xb (dpadq |x̃a
)
, x̃a

))]
︸ ︷︷ ︸ = 0.

net effect on side-B profits

(16)

Hereafter, we assume that the left-hand side of (16) is monotone in the marginal price dpa/dq, which

amounts to quasi-concavity of the platform’s profit function with respect to the marginal price, after

accounting for the cost of procuring the xb-agents, as explained in the proof of Proposition 4. The

above property implies that the necessary condition in (16) is also sufficient for optimality.

Now recall that, under price customization (on both sides), the platform matches each pair of

agents θa = (va, xa) and θb = (vb, xb) if, and only if, type-θa’s virtual value for interacting with type

θb is large enough to compensate for the virtual value that type θb derives from interacting with type

θa (formally, θa and θb are matched if, and only if, ϕa(θa, θb) +ϕb(θb, θa)≥ 0). Under uniform pricing

(on side a), instead, the platform matches the above pair of agents if, and only if, the following

is true: if all side-a agents with the same true value for interacting with type θb as type θa were

to be matched to type θb, the average virtual value among such agents for the match with type θb

would compensate for the average virtual value that type θb derives from being matched with all

such agents. Formally, under uniform pricing (on side a), types θa and θb are matched if, and only

if,

EH(x̃a|xb,ua(va,|xb−xa|)) [ϕa ((v̂xb (ua(va, |xb − xa|)|x̃a) , x̃a) , θb)]

+EH(x̃a|xb,ua(va,|xb−xa|)) [ϕb (θb, (v̂xb (ua(va, |xb − xa|)|x̃a) , x̃a))] ≥ 0.

This observation plays an important role in determining how targeting and welfare are affected by

the imposition of uniform pricing, as we show below.

4.1 Targeting under Uniform and Customized Pricing

Digital technology is often praised for its ability to increase match precision (or targeting) in a

variety of markets. Yet, technology alone is no guarantee of large targeting gains, as the matching

demands enjoyed by agents obviously depend on the pricing practices followed by platforms. Price

customization allows a platform to charge agents prices that directly depend on their horizontal

preferences. To the extent that agents value the most those matches of higher proximity, one might

expect price-customization to hinder targeting, as it permits platforms to set higher prices for those

matches the agents like the most. Without further inquiry, this observation seems to lend support

to policies that impose uniform pricing. Indeed, recent proposals, requiring stand-alone pricing for
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media content, or anonymous pricing for advertising slots, appear to follow this line of reasoning. This

intuition is, however, incomplete, as it ignores the (endogenous) changes in prices that the platform

undertakes in response to regulations mandating uniform pricing. The analysis below provides some

guidelines when it comes to the effects of customized pricing on targeting.

Definition 5. (targeting) Customized pricing (on both sides) leads to more targeting than uniform

pricing (on side a) if, for each θa = (va, xa), there exists d(θa) ∈ (0, 1
2) such that

t∗a(θa, xb)− tua(θa, xb)

{
< 0 if |xa − xb| < d(θa)

> 0 if |xa − xb| > d(θa).

Conversely, uniform pricing on side a leads to more targeting than customized pricing on both sides

if, for each θa = (va, xa), there exists d(θa) ∈ (0, 1
2) such that

t∗a(θa, xb)− tua(θa, xb)

{
> 0 if |xa − xb| < d(θa)

< 0 if |xa − xb| > d(θa).

Intuitively, customized pricing (on both sides) leads to more targeting than uniform pricing (on

side a) if, under the profit-maximizing customized tariffs, agents demand more matches close to

their ideal points, and less matches far from their ideal points, relative to what they do under

uniform pricing. Accordingly, the threshold function t∗a(θa, xb) under customized pricing is below

the corresponding threshold function tua(θa, xb) for nearby matches (i.e., for locations xb such that

|xa−xb| < d(θa)), and above tua(θa, xb) for more distant matches (for which |xa−xb| > d(θa)). Figure

4 illustrates the situation captured by the above definition.

Figure 4: The threshold function t∗a(θa, xb) under customized pricing (solid black curve) and

uniform pricing tua(θa, xb) (dashed blue curve) when customized pricing (on both sides) leads to

more targeting than uniform pricing (on side a).

Note that, because matching is reciprocal, the above definition has an analogous implication for

side b. Namely, when customized pricing (on both sides) leads to more targeting than uniform pricing
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(on side a), then the side-b threshold function under customized pricing, t∗b(θb, xa), also single-crosses

its counterpart under uniform pricing, tub (θb, xa), only once, and from below, as a function of the

distance |xa − xb|.
The next proposition identifies primitive conditions on the side-a’s preferences under which uni-

form pricing on that side leads to more targeting that customized pricing. Let t∗k(·) be the threshold

functions describing the matching sets optimally induced by the platform when it can offer customized

tariffs on both sides of the market. Let L : [0, 1]×Θb → R be the function defined by

L(xa|θb) ≡ ϕb (θb, (t
∗
b(θb, xa), xa))−

1− F v|xa (t∗b(θb, xa)|xa)
f
v|x
a

(
t∗b(θb, xa)|xa

) · ∂ua
∂v

(t∗b(θb, xa), |xa − xb|)

all (xa, θb) ∈ [0, 1]×Θb.

Proposition 5. (comparison: targeting) In addition to Condition R, suppose the environment

satisfies the properties of Scenario (i). The following statements are true.

1. Suppose that, for any θb, the function L(·|θb) is nondecreasing in |xb − xa|. Then uniform

pricing (on side a) leads to more targeting than customized pricing (on both sides). The following

conditions suffice for L(xa|θb) to be nondecreasing in |xb− xa|: in addition to Condition VD and Ia,

the match value function ua is submodular and concave in va, F va has an increasing hazard rate, and,

for any θb, the virtual values ϕb (θb, θa) are invariant in |xb − xa|.
2. Suppose that, for any θb, the function L(·|θb) is nonincreasing in |xb − xa|. Then customized

pricing (on both sides) leads to more targeting than uniform pricing (on side a). The following

conditions suffice for L(xa|θb) to be nonincreasing in |xb− xa|: in addition to Condition VD and Ia,

the match value function ua is supermodular and convex in va, and F va has a decreasing hazard rate.

The primitive conditions in Proposition 5 have implications for how location-specific elasticities

on both sides of the market compare to the average elasticities. For simplicity, consider a market

in which preferences on side b are location-invariant, that is, for all xa, xb ∈ [0, 1], all vb ∈ Vb,

ub(vb, |xb − xa|) = vb, as in Examples 1 and 2.

Consider first Part 1 and fix the side-b location xb. Let ρ̂ ≡ dρa
dq (q|xb;xa) be the marginal price for

the q-th unit of the xb-agents charged to the side-a agents located at xa under customized pricing. To

make things interesting, assume ρ̂ ∈ (ua(va, |xb − xa|), ua(v̄a, |xb − xa|)). We then have that, under

customized pricing, the semi-price elasticity15

εa (ρ̂|xb;xa) (ρ̂)−1 = λva (v̂xb (ρ̂|xa)) ·
[
∂ua
∂v

(v̂xb (ρ̂|xa) , |xb − xa|)
]−1

of the demand for the q-th unit of the xb-agents by the side-a agents is increasing in the distance

|xb−xa|. By contrast, under uniform pricing, the aggregate counterpart of the above semi-elasticity,

which is given by

ε̄a

(
dpua
dq

(q|xb) |xb
)(

dpua
dq

(q|xb)
)−1

,

15Recall that, in this case, v̂xb (ρ̂|xa) is defined by the unique solution to ua (v̂xb (ρ̂|xa) , |xb − xa|) = ρ̂.

27



is constant in xa (and therefore in the distance |xb−xa|), as the marginal price dpua
dq (q|xb) for the q-th

unit of xb-matches is the same for all xa-locations. As a consequence of the above property, under the

assumptions in Part 1, the relevant semi-elasticity in the customized-pricing regime is lower (alterna-

tively, higher) than in the uniform-pricing regime when the distance |xb− xa| is small (alternatively,

large). This implies that the marginal price dρ∗a
dq (q|xb;xa) for the q-th unit of xb-matches charged to

the xa-agents under the customized-pricing regime is lower than the corresponding price dpua
dq (q|xb)

under the uniform-pricing regime when locations are far apart, whereas the opposite is true at nearby

locations. Accordingly, there is more targeting under uniform pricing than under customized pricing.

Mutatis mutandis, the assumptions in Part 2 in the proposition imply that, under customized

pricing, the semi-price elasticity of the demand for the q-th unit of the xb-agents by the side-a agents

is strictly decreasing in |xb − xa|, in which case customized pricing leads to more targeting than

uniform pricing.

Proposition 5 helps us understand the effects of price customization in a variety of markets. In

the ad exchange setting of Example 1, price customization generates less targeting than uniform

pricing (as the match function ua is submodular and linear in va) when F va has an increasing hazard

rate (e.g., a uniform or exponential cdf). In the media markets setting of Example 2, instead, price

customization leads to more targeting than uniform pricing when the elasticity of substitution is high

(namely, when δ > 1) and F va has a decreasing hazard rate (e.g., a Pareto cdf).

When preferences on side b are also location-specific, the additional conditions in the proposition

guarantee that the above comparisons remain valid after accounting for differences between average

and location-specific elasticities on side b, which are responsible for the procurement costs.

4.2 Welfare under Uniform and Customized Pricing

The result in Proposition 5 can also be used to study the welfare implications of price customization.

To see this, suppose the market satisfies the conditions in part 1 in the proposition. Then, under

uniform pricing on side-a, the side-a agents face lower marginal prices dpa
dq (q|xb) for the xb-agents

they like the most and higher marginal prices for those side-b agents whose location is far from their

bliss point.

The above findings permit us to adapt results from the third-degree price discrimination literature

to the matching environment under consideration here to identify conditions under which welfare of

the side-a agents increases with the imposition of uniform pricing on side a. Formally, recall that,

under uniform pricing, the demand by the xa−agents for each q-th unit of the xb-matches is given

by

Da

(
dpa
dq
|xb;xa

)
=

[
1− F v|xa

(
v̂xb

(
dpua
dq
|xa
)
|xa
)]

fxa (xa)

where, to ease the notation, we dropped (q|xb) from the arguments of the the marginal price dpa
dq (q|xb).
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Now let

CDa

(
dpa
dq
|xb;xa

)
= −

∂2Da

(
dpua
dq |xb;xa

)
∂
(
dpua
dq

)2

dpua
dq

∂Da
(
dpua
dq
|xb;xa

)
∂
(
dpua
dq

)
denote the convexity of the demand by the xa-agents for the q-th unit of the xb-agents with respect

to the marginal price dpa
dq .16

Condition 5. [IR] Increasing Ratio: For any (xa, xb) ∈ [0, 1]2, any q ∈ [0, fxb (xb)], the function

za

(
dpa
dq
|xb;xa

)
≡

dpa
dq

2− CDa

(
dpa
dq |xb;xa

)
is nondecreasing in the marginal price dpa

dq for the q-th unit of the xb-agents.

We then have the following result:

Proposition 6. (comparison: welfare) In addition to Condition R, suppose the environment

satisfies the properties of Scenario (i) and Condition IR holds. The following statements are true.

1. Suppose the assumptions in part 1 of Proposition 5 hold and, for any dpa/dq and xb, the

convexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents declines

with the distance |xa−xb|. Then welfare of the side-a agents is higher under uniform pricing on side

a than under customized pricing on both sides.

2. Suppose the assumptions in part 2 of Proposition 5 hold and, for any dpa/dq and xb, the con-

vexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents increases

with the distance |xa−xb|. Then welfare of the side-a agents is higher under uniform pricing on side

a than under customized pricing on both sides.

Condition IR, as well as the convexity properties of the demand functions in Proposition 6, parallel

those in Aguirre et al (2010). The value of the proposition is in showing how our results about the

connection between targeting and customized pricing also permit us to apply to the environment

under examination here the welfare results from the third-degree price discrimination literature.

Note that Proposition 5 is key to the result in Proposition 6. It permits us to identify “stronger

markets,” in the sense of Aguirre et al. (2010), with those for matches involving agents from closer

locations (part 1) or more distant locations (part 2). Once the connection between targeting and

price customization is at hand, the welfare implications of customized pricing then naturally parallel

those in the third-degree price discrimination literature.

Also note that the result in Proposition 6 is just an illustration of the type of welfare results that

Proposition 5 permits. Paralleling the analysis in Proposition 2 in Aguirre et al. (2010), for example,

we can also identify primitive conditions under which welfare is higher under price customization

16Note that CDa
(
dpa
dq
|xb;xa

)
is also the elasticity of the marginal demand ∂Da

(
dpa
dq
|xb;xa

)
/∂
(
dpa
dq

)
with respect

to the marginal price dpa
dq

.
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than under uniform pricing, as well as conditions under which price customization impacts negatively

one side of the market and positively the other.

4.3 Centralized vs Decentralized Markets

The results in Propositions 5 and 6 also permit us to compare matching allocations and welfare in

centralized markets (where matching is controlled by a platform) to their counterparts in decentral-

ized markets (where matching is governed by agents on one side of the market posting prices for

their matches with the other side).

To illustrate, suppose that side a is the “buyers” side and side b is the “sellers” side. In a decen-

tralized market, sellers post prices for their products, or services, and their locations are observable,

whereas the buyers’ locations are the buyers’ private information. Note that this amounts to as-

suming that the characteristics of the sellers’ products are publicly observable, whereas the buyers’

preferences for the sellers’ products are the buyers’ private information, which appears the most rel-

evant scenario for many markets of interest. Consistently with the analysis in the rest of the paper,

buyers have unit demands for the product of each seller (that is, each buyer purchases at most one

unit from each seller) and the demand for each seller’s product is invariant in the price set by other

sellers (that is, preferences are additively separable, as in the rest of the paper). Each seller is a

local monopolist for its product; the products provided by different sellers from the same location

are distinct in the eyes of the buyers, although the provide the same utility.

Now observe that the sellers’ inability to identify the buyers’ locations, along with the fact that

each seller sells only one product, implies that, in a decentralized market, sellers are unable to engage

in price customization on side a. Paralleling the analysis preceding Proposition 5, one should then

expect that whether targeting is higher under a decentralized or a centralized market depends on the

supermodularity/submodularity and concavity/convexity of the utility functions as well as on the

marginal distributions of the vertical dimensions on both sides of the market. Indeed, the comparison

is very similar to the one in Proposition 5 when one replaces the assumption that the environment

satisfies the properties of Scenario (i) with the assumption that it satisfies the properties of Scenario

(ii) (i.e., locations are private information on side a but public on side b), Condition Ik, k = a, b, with

Conditions Ia and Sb (recall that these are the conditions that guarantee that, in a centralized market,

demands under the profit-maximizing plans have a threshold structure), and finally the assumption

that the vertical dimensions are private information on both sides with the assumption that they are

private on side a but public on side b. In this case, results analogous to those in Propositions 5 and

6 apply to the comparison between centralized and decentralized markets. To see this, it suffices to

note that the allocations and prices in decentralized markets coincide with those implemented in a

centralized market when the platform is constrained to price uniformly on side a.

When, instead, the vertical dimensions are private information on both sides of the market,

decentralization also brings a reduction in the prices set by the sellers, due to the elimination of
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the monopsony mark-up applied by the platform under asymmetric information. Combining this

extra effect with the ones identified in Propositions 5 and 6 permits us to establish the result in the

following proposition.

Proposition 7. (centralized vs decentralized markets) Suppose that, in addition to Condition

R, the environment satisfies the properties of Scenario (ii) and Conditions VD, Ia, Sb, and IR hold.

The following statements are true.

1. Suppose the assumptions in part 1 of Proposition 5 hold and, for any dpa/dq and xb, the

convexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents declines

with the distance |xa−xb|. Then welfare of the side-a agents is higher in a decentralized market than

in a centralized one.

2. Suppose the assumptions in part 2 of Proposition 5 hold and, for any dpa/dq and xb, the con-

vexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents increases

with the distance |xa − xb|. Then, again, welfare of the side-a agents is higher in a decentralized

market than in a centralized one.

The proposition thus identifies primitive conditions under which the transition from a centralized

market where matching is mediated to a decentralized one where sellers post prices and matching is

un-mediated increases consumer surplus (i.e., the welfare of the side-a agents). The result may help

policymakers identify markets where the transition to a decentralized structure should be promoted,

for example through fiscal incentives and/or direct subsidies.

5 Concluding Remarks

This paper studies many-to-many matching in markets in which agents’ preferences are both verti-

cally and horizontally differentiated. The analysis delivers the following results. First, it identifies

primitive conditions under which profit-maximizing platforms engage in price customization. That

is, they offer agents the possibility to customize their matching set by including partners of different

profiles based on their horizontal preferences, with the price for such customization varying with

the configuration of the baseline plan. We show that the optimal tariffs induce negative assortative

matching at the margin. As the matching sets expand, the marginal agents from each location in-

cluded in the set are always those with the lowest value for matching. The composition of the pool

of marginal agents, however, naturally respects horizontal differences in preferences, with most of

the marginal agents coming from “locations” close to the subscriber’s bliss-point. We then provide a

formula relating the optimal prices to location-specific elasticities of the demands on both sides of the

market that can be used in empirical work for testing and structural estimation and that permits us

to study how the distortions in the provision of matching services vary with the horizontal dimension

of the agents’ preferences.

Second, the paper studies the effects on prices, the composition of matching sets, and welfare,
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of uniform-pricing obligations aimed at dissuading platforms from offering menus of matching plans

where the prices for different matching sets depend directly, or indirectly, on the subscribers’ hori-

zontal dimensions.

Finally, the paper contributes to the policy debate about the desirability of mediation in matching

markets by offering a new angle relating the welfare effects of decentralization to the targeting and

price-customization implications of different market structures.

We believe the results have useful implications for various markets. Consider, for example, ad-

exchanges (see, among others, Bonatti and Bergemann (2011) for an overview of such markets).

As mentioned in the introduction, platforms such as AppNexus, AOL’s Marketplace, Microsoft Ad

Exchange, OpenX, Rubicon Project Exchange, and Smaato, use sophisticated pricing algorithms

where prices depend not only on volumes but on advertisers’ and publishers’ profiles. Such algorithms

thus permit ad exchanges to engage in price-customization practices that appear similar, at least in

spirit, to those studied in the present paper. While such algorithms have initially been praised for

the customization possibilities they offer, more recently they have been associated with targeting

and price-discriminatory practices believed to be detrimental to welfare. The policy debate about

the merits of such algorithms and, related, about the desirability of regulations imposing uniform

pricing, lacks a formal model shedding light on how platforms will respond to the introduction of such

regulations. Our paper contributes a stylized but flexible framework that one can use to study both

the distortions associated with price customization as well as platforms’ response to the imposition

of uniform pricing.

Next, consider the market for cable TV. Most providers price discriminate on the viewer side

by offering viewers packages of channels whereby the baseline configuration can be customized by

adding channels at a cost that depends on the baseline configuration originally selected (see, among

others, Crawford (2000), and Crawford and Yurukoglu (2012)). For example, in the US, Direct TV

offers various vertically differentiated (i.e., nested) packages (both in English and in Spanish). It

then allows viewers to add to these packages various (horizontally differentiated) premium packages,

which bundle together channels specialized in movies, sports, news, and games. In addition, viewers

can further customize the packages by adding individual sports, news, and movie channels. Similar

combinations of packages with different degrees of horizontal and vertical differentiation are offered

by other providers. This form of price customization appears highly consistent with what predicted

by our model. Such industry is evolving fast and many analysts predict a transition to a market

structure whereby viewers purchase broadcasting directly from the channels, thus bypassing the

intermediation of the current providers. Our analysis sheds some light on how prices set by individual

channels compare to their counterparts in markets where the interactions between the channels and

the viewers are mediated by cable companies and identifies conditions under which the transition to

a decentralized structure is advantageous to the viewers.

We conclude by discussing a few limitations of our analysis and venues for future research. First,

our analysis abstracts from platform competition. Second, and related, it assumes platform have
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the power to set prices on both sides of the market. While these assumptions are a natural starting

point, there are many markets where multiple platforms compete on multiple sides and their ability

to set prices is hindered by their lack of bargaining power. For example, the market for cable TV

is populated by multiple providers. Furthermore, as indicated in Crawford and Yurukoglu (2012),

large channel conglomerates enjoy nontrivial bargaining power vis-a-vis cable TV providers, which

suggests that prices are likely to be negotiated on the channel side instead of being set directly by the

platforms. Extending the analysis to accommodate for platform competition and limited bargaining

power on one, or multiple, sides of the market will provide further insights on the bundling and

pricing strategies of many platforms.

Furthermore, certain platforms, most notably B2B platforms, have recently expanded their ser-

vices to include e-billing and supply-management. These additional services open the door to more

sophisticated price-discriminatory practices that use instruments other than the composition of the

matching sets. Extending the analysis to accommodate for richer instruments is another interesting

direction for future research (see, e.g., Jeon, Kim, and Menicucci (2016)).

Lastly, in future work, it seems desirable to extend the analysis to accommodate for ”within-side”

network effects (e.g., congestion and limited attention) and dynamics.

6 Appendix

Proof of Proposition 1. We establish the result using mechanism design techniques. Let

(sk(θk), pk(θk))
k=a,b
θk∈Θk

denote a direct revelation mechanism, where agents are asked to report their types and where

(sk(θk), pk(θk)) denotes the allocation (matching set and total transfer) specified by the mechanism

for each side-k agent reporting θk.

By familiar envelope arguments, a necessary condition for each type θk = (vk, xk) ∈ Θk, k = a, b,

to prefer reporting truthfully to lying with respect to the vertical dimension vk while reporting

truthfully the horizontal dimension xk is that transfers satisfy the envelope conditions

pk(θk) =

∫
sk(θk)

uk (vk, |xk − xl|) dFl(θl)−
∫ vk

vk

∫
sk(y,xk)

∂uk
∂v

(y, |xk − xl|) dFl(θl)dy, (17)

− Uk(vk, xk),

where Uk(vk, xk) is the payoff of a side-k agent with type (vk, xk).

Using (17), the platform’s profits under any incentive-compatible mechanism can then be written

as

∑
k=a,b

∫
Θk


∫
sk(θk)

[
uk (vk, |xk − xl|)−

1−F vk (vk|xk)

fvk (vk|xk) ·
∂uk
∂v (vk, |xk − xl|)

]
dFl(θl)

−Uk(xk, vk)

 dFk(θk).
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Using the definition of the virtual-value functions ϕk (θk, θl) in the main text, we then have that the

platform’s profits are maximal when Uk(vk, xk) = 0 for all xk ∈ Xk, k = a, b, and when the matching

sets are chosen so as to maximize∑
k=a,b

∫
Θk

{∫
sk(θk)

ϕk (θk, θl) dFl(θl)

}
dFk(θk) (18)

subject to the reciprocity condition

θl ∈ sk(θk)⇐⇒ θk ∈ sl(θl), l, k ∈ {a, b}, k 6= l. (19)

Hereafter, we first describe the matching sets that maximize (18) subject to the above reciprocity

condition and then show that, under the assumptions in the proposition, the platform can implement

the allocations (sk(θk), pk(θk))
k=a,b
θk∈Θk

, where the functions sk(·) are those that maximize (18) subject

to (19), and where the functions pk(·) are as in (17), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b.

Define the indicator function mk(θk, θl) ∈ {0, 1} taking value one if and only if θl ∈ sk(θk), that

is, if and only if the two types θk and θl are matched. Then define the following measure on the

Borel sigma-algebra over Θk ×Θl:

νk(E) ≡
∫
E
mk(θk, θl)dFk(θk)dFl(θl). (20)

Reciprocity implies that mk(θk, θl) = ml(θl, θk). As a consequence, the measures νk and νl satisfy

dνk(θk, θl) = dνl(θl, θk). Equipped with this notation, the expression in (18) can be rewritten as∑
k,l=a,b, l 6=k

∫
Θk×Θl

ϕk (θk, θl) dνk(θk, θl)

=

∫
Θk×Θl

4k(θk, θl)mk(θk, θl)dFk(θk)dFl(θl), (21)

where, for k, l = a, b, l 6= k,

4k(θk, θl) ≡ ϕk (θk, θl) + ϕl (θl, θk) .

Note that the functions 4a(θa, θb) = 4b(θb, θa) represent the marginal effects on the platform’s

profits of matching types θa and θb. It is then immediate that the rule (mk(·))k=a,b that maximizes

the expression in (21) is such that, for any (θk, θl) ∈ Θk ×Θl, k, l = a, b, l 6= k, mk(θk, θl) = 1 if and

only if

4k(θk, θl) ≥ 0.

Next, observe that, under Condition R, the function

ϕk (θk, θl) ≡ uk (vk, |xk − xl|)−
1− F vk (vk|xk)
fvk (vk|xk)

· ∂uk
∂v

(vk, |xk − xl|)

is strictly increasing in vk, k, l = a, b, l 6= k. We conclude that the matching rule that maximizes

(18) subject to the reciprocity condition (19) can be described by means of a collection of threshold
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functions t∗k : Θk × Xl → Vl, k, l = a, b, l 6= k, such that, for any θk = (vk, xk), any θl = (vl, xl),

θl ∈ sk(θk) if, and only if, vl ≥ t∗k (θk, xl). The threshold functions t∗k (·) are such that, for any

θk ∈ Θk, any xl ∈ [0, 1], t∗k (θk, xl) = vl if 4k(θk, (vl, xl)) > 0, t∗k (θk, xl) = v̄l if 4k(θk, (v̄l, xl)) < 0,

and t∗k (θk, xl) is the unique solution to 4k (θk, (t
∗
k (θk, xl) , xl)) = 0 if

4k(θk, (vl, xl)) ≤ 0 ≤ 4k(θk, (v̄l, xl)).

Condition R also implies that, for ay xk, xl ∈ [0, 1]2, the threshold t∗k (θk, xl) is decreasing in vk.

Finally, if, in addition to Condition R, Condition VD also holds (in which case, the the virtual values

ϕk are non-increasing in |xk − xl|, k = a, b), for any θk = (vk, xk), the threshold functions t∗k (θk, xl)

and non-decreasing in |xl − xk|.
Equipped with the above result, we now show that, in each of the environments described by

the conditions in the proposition, the platform can implement the allocations (sk(θk), pk(θk))
k=a,b
θk∈Θk

,

where sk(θk) are the matching sets described by the above threshold rule, and where the payment

functions pk(θk) are the ones in (17), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b.

First observe that the payoff that each type θk obtains in the above direct revelation mechanism

when reporting truthfully is equal to

Uk(θk) =

∫ vk

vk

∫
sk(y,xk)

∂uk
∂v

(y, |xk − xl|) dFl(θl)dy.

That Uk(θk) ≥ 0 follows directly from the fact that uk is non-decreasing in vk. This means that the

mechanism is individually rational (meaning that each type θk prefers participating in the mechanism

and receiving the allocation (sk(θk), pk(θk)) to refusing to participate and receiving the allocation

(∅, 0) yielding a payoff equal to zero).

Below we show that either the above direct mechanism is also incentive-compatible (meaning that

each type θk prefers the allocation (sk(θk), pk(θk)) designed for him to the allocation (sk(θ
′
k), pk(θ

′
k))

designed for any other type θ′k), or it can be turned, at no cost to the platform, into a mecha-

nism implementing the same allocations as the above ones which is both incentive compatible and

individually rational.

Definition 6. (nested matching) A matching rule sk(θk) is nested if, for any pair θk = (vk, xk)

and θ̂k = (v̂k, x̂k) such that xk = x̂k, either sk(θk) ⊆ sk(θ̂k), or sk(θk) ⊇ sk(θ̂k). A direct revelation

mechanism is nested if its matching rule is nested.

Clearly, the direct mechanism defined above where the matching rule is described by the threshold

function t∗k (θk, xl) is nested. Now let Πk(θk; θ̂k) denote the payoff that type θk obtains in a direct

revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

by mimicking type θ̂k .

Definition 7. (ICV) A direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies incentive com-

patibility along the v dimension (ICV) if, for any θk = (vk, xk) and θ̂k = (v̂k, x̂k) with xk = x̂k,

Uk(θk) ≥ Πk(θk; θ̂k).
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The following results are then true (the proof is standard and hence omitted):

Lemma 1. A nested direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies ICV if, and only if,

the following conditions jointly hold:

1. for any θk = (vk, xk) and θ̂k = (v̂k, x̂k) such that xk = x̂k, vk > v̂k implies that sk(θk) ⊇ sk(θ̂k);

2. the payment functions pk(θk) satisfy the envelope formula (17).

Clearly, the direct revelation mechanism where the matching rule is the one corresponding to the

threshold functions t∗k(·) described above and where the payment functions pk(θk) are the ones in

(17), with Uk(vk, xk) = 0, all xk ∈ Xk, k = a, b, is not only nested but satisfies the two conditions in

the lemma. It follows that such a mechanism satisfies ICV.

Equipped with the above results, we now show that, in each of the environments corresponding

to the combination of conditions described in the proposition, the above direct revelation mechanism

is either incentive-compatible, or it can be augmented to implement the same allocations prescribed

by (sk(θk), pk(θk))
k=a,b
θk∈Θk

at no extra cost to the platform.

Consider first Scenario (i). Recall that, in this case, locations are public on both sides. That the

mechanism is ICV implies that any deviation along the vertical dimension is unprofitable. Further-

more, because locations are public on both sides, any deviation along the horizontal dimension is

detectable. It is then immediate that the platform can augment the above direct revelation mech-

anism by adding to it punishments (in the form of large fines) for those agents lying along the

horizontal dimension. The augmented mechanism is both individually rational and incentive com-

patible and implements the same allocations as the original mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

at no

extra cost to the platform.

Next suppose the environment satisfies the properties of Scenario (ii) and, in addition, Conditions

Ia, Sb, and VD hold. Again, because locations are public on side b, incentive compatibility on side b

can be guaranteed by augmenting the mechanism as described above for Scenario (i). Thus consider

incentive compatibility on side a. The latter requires that

Ua(va, xa) ≥ Πa((va, xa); (v̂a, x̂a)),

for all (xa, x̂a, va, va) ∈ X2
a × V 2

a . The above inequality is equivalent to∫ va

va

∫
sa(y,xa)

∂ua
∂v

(y, |xa − xb|) dFb(θb)dy ≥
∫ v̂a

va

∫
sa(y,x̂a)

∂ua
∂v

(y, |x̂a − xb|) dFb(θb)dy (22)

+

∫
sa(v̂a,x̂a)

[ua (va, |xa − xb|)− uk (v̂a, |x̂a − xb|)]dFb(b).

It is easy to see that, for any θa = (va, xa) ∈ Θa,∫
sa(va,xa)

∂ua
∂v

(va, |xa − xb|) dFb(θb) =

∫
d∈[0,1/2]

∂ua (va, d)

∂v
dW (d; θa), (23)

where W (d; θa) is the measure of agents whose distance from xa is at most d included in the matching

set sa(va, xa) of type θa under the proposed mechanism. It is also easy to see that, under Conditions
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Ia and Sb, the expression in (23) is invariant in xa. That is, W (d; θa) = W (d; θ′a) for any d ∈ [0, 1/2],

any θa, θ
′
a ∈ Θa with va = v′a.

17 This means that∫ v̂a

va

∫
sa(y,x̂a)

∂ua
∂v

(y, |x̂a − xb|) dFb(θb)dy =

∫ v̂a

va

∫
sa(y,xa)

∂ua
∂v

(y, |xa − xb|) dFb(θb)dy.

By the same arguments,∫
sa(v̂a,x̂a)

ua (v̂a, |x̂a − xb|) dFb(θb) =

∫
sa(v̂a,xa)

ua (v̂a, |xa − xb|) dFb(θb).

Furthermore, under condition VD, the threshold functions t∗k (θk, xl) and non-decreasing in the dis-

tance |xl − xk|. In turn, this implies that∫
sa(v̂a,x̂a)

ua (va, |xa − xb|) dFb(θb) ≤
∫
sa(v̂a,xb)

ua (va, |xb − xa|) dFb(θb).

It follows that the right hand side of (22) is smaller than∫ v̂a

va

∫
sa(y,xa)

∂uk
∂v

(y, |xa − xb|) dFb(θb)dy

+

∫
sa(v̂a,xa)

[ua (va, |xa − xb|)− ua (v̂a, |xa − xb|)]dFb(θb),

which is the payoff that type θa = (va, xa) obtains by announcing (v̂a, xa) (that is, by lying about

the vertical dimension but reporting truthfully the horizontal one). That the inequality in (22) holds

then follows from the fact that the direct revelation mechanism (sk(θk), pk(θk))
k=a,b
θk∈Θk

satisfies ICV.

The arguments for an environment satisfying the properties of Scenario (iii) along with Conditions

VD, Ib and Sa are symmetric to those for an environment satisfying the properties of Scenario (ii)

along with Conditions VD, Ia and Sb, and hence the proof is omitted.

Finally, consider an environment satisfying the properties of Scenario (iv) along with Condi-

tions VD, Sa and Sb. That the proposed mechanism is incentive compatible follows from the same

arguments as for Scenario (ii) above, now applied to both sides of the market.

We conclude that, in each of the environments considered in the proposition, the allocations

(sk(θk), pk(θk))
k=a,b
θk∈Θk

, where the matching sets sk(θk) are the ones specified by the threshold functions

t∗k(·) described above, and where the payments are the ones in (17) with Uk(vk, xk) = 0, all xk ∈ Xk,

k = a, b can be sustained in a mechanism that is both individually rational and incentive compatible.

The result in the proposition then follows from the fact that (a) such allocations are profit-maximizing

among those consistent with the rationality of the agents (i.e., satisfying the IC and IR constraints),

and (b) can be induced by offering customized tariffs

{(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) : xk ∈ [0, 1]}
17Conditions Ik, k = a, b, suffice to guarantee that the function ∆k(θk, θl) depends only on vk, vl, and |xl− xk|. The

strengthening of Condition Ib to Sb is, however, necessary to guarantee that the mass of agents of a given distance d

included in the matching sets of any pair of types θa, θ
′
a ∈ Θa with va = v′a is the same.
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satisfying the properties described below. For each plan xk ∈ [0, 1], the baseline configuration is

given by

sk(xk) = sk(vk, xk),

the baseline price is given by

T k(xk) = pk(vk, xk) =

∫
sk(vk,xk)

uk (vk, |xk − xl|) dFl(θl),

the set of possible customizations is given by

Sk(xk) = {sk(vk, xk) : vk ∈ Vk} ,

and the price schedules ρk(q|xl;xk) are such that, for q = qxl (sk(vk, xk)), ρk(q|xl;xk) = 0, while for

q ∈ (qxl (sk(vk, xk)) , qxl (sk(v̄k, xk))],

ρk(q|xl;xk) = quk (vk(q;xk, xl), |xk − xl|)−
∫ vk(q;xk,xl)

vk

qxl (sk(y, xk))
∂uk
∂v

(y, |xk − xl|) dy − T k(xk)

(24)

where

vk(q;xk, xl) = inf {vk ∈ Vk : qxl(sk(vk, xk)) = q} .

Any agent selecting the plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) and then choosing a matching set

sk /∈ Sk(xk) is charged a fine large enough to make the utility of such a set, net of the payment,

negative for all types. Likewise, when locations are public on side k, any side-k agent selecting a

plan other than (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) is charged a large enough fine to make the choice

unprofitable for any type. Note that the existence of such fines is guaranteed by the assumption that

uk is bounded, k = a, b.

That the above customized tariff implements the same allocations as the direct mechanism

(sk(θk), pk(θk))
k=a,b
θk∈Θk

then follows from the following considerations. Each type θk = (vk, xk), by

selecting the plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) designed for agents with the same location as

type θk and then choosing the customization sk(vk, xk) specified by the direct mechanism for type

θk is charged a total payment equal to

T k(xk) +
∫ 1

0

[
qxl(sk(vk, xk))uk (vk, |xk − xl|)−

∫ vk
vk
qxl(sk(y, xk))

∂uk
∂v (y, |xk − xl|) dy

]
dxl − T k(xk)

=
∫
sk(θk) uk (vk, |xk − xl|) dFl(θl)−

∫ vk
vk

∫
sk(y,xk)

∂uk
∂v (y, |xk − xl|) dFl(θl)dy

= pk(θk),

exactly as in the direct mechanism. That each type θk maximizes his payoff by selecting the plan

(sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) and then choosing the customization sk(vk, xk) specified for him

by the direct mechanism then follows from the fact that (a) the direct mechanism is incentive com-

patible, (b) the payment associated with any other plan (sk(x̂k), T k(x̂k), ρk(·|·; x̂k),Sk(x̂k)) followed
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by the selection of a set sk is either equal to the payment specified by the direct mechanism for some

report (v̂k, x̂k), or is so large to make the net payoff of such selection negative.

Finally, to see that, when locations are public on side k, without loss of optimality, the side-k

customized tariff does not need to restrict the agents’ ability to customize their matching sets (that

is, Sk(xk) = Σ(Θl), all xk) recall that, in this case, each side-k agent located at xk can be induced

to select the matching plan (sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) designed for agents located at xk by

setting the fee associated with the selection of any other plan sufficiently high. The separability of

the agents’ preferences then implies that, once the plan sk(xk), T k(xk), ρk(·|·;xk),Sk(xk)) is selected,

even if Sk(xk) = Σ(Θl), because the price schedules ρk(·|·;xk) satisfy (24), type θk prefers to select

qxl(sk(vk, xk)) agents from each location xl to any other mass of agents from the same location xl,

irrespective of the mass of agents from other locations type θk includes in his matching set. Q.E.D.

Proof of Proposition 2. Fix a pair of locations xa, xb ∈ [0, 1]. From Proposition 1, the profit-

maximizing tariffs are customized and induce agents to select matching sets satisfying the threshold

property of Proposition 1. Furthermore, from the proof of Proposition 1, for any θk = (vk, xk),

any xl ∈ [0, 1], the threshold t∗k is such that t∗k (θk, xl) = vl if 4k(θk, (vl, xl)) > 0, t∗k (θk, xl) = v̄l if

4k(θk, (v̄l, xl)) < 0, and t∗k (θk, xl) is the unique solution to 4k (θk, (t
∗
k (θk, xl) , xl)) = 0 if

4k(θk, (vl, xl)) ≤ 0 ≤ 4k(θk, (v̄l, xl)).

This means that, for any qk ∈ (0, fxl (xl)), either there exists no vk ∈ Vk such that qxl(sk(vk, xk)) = qk,

or there exists a unique vk ∈ Vk such that qxl(sk(vk, xk)) = qk. Now take any qk ∈ (0, fxl (xl)) for

which there exists vk ∈ Vk such that qxl(sk(vk, xk)) = qk. As explained in the main text, for any such

qk, the unique value of vk such that qxl(sk(vk, xk)) = qk is also the unique value of vk that solves

uk (vk, |xk − xl|) =
dρk
dq

(qk|xl;xk) . (25)

Now let v̂xl

(
dρk
dq |xk

)
be the unique solution to (25) and v′l(qk;xl) be the unique solution to[

1− F v|xl
(
v′l(qk;xl)|xl

)]
fxl (xl) = qk.

That the demands under the profit-maximizing tariffs satisfy the threshold structure of Proposition

1 implies that

t∗k

((
v̂xl

(
dρk
dq
|xk
)
, xk

)
, xl

)
= v′l(qk;xl)

and that

ϕk

((
v̂xl

(
dρk
dq
|xk
)
, xk

)
, (v′l(qk;xl), xl)

)
+ ϕl

(
v′l(qk;xl), xl),

(
v̂xl

(
dρk
dq
|xk
)
, xk

))
= 0. (26)

Lastly, observe that, for any such qk,

εk

(
dρk
dq
|xl;xk

)
=

f
v|x
k (v̂xl

(
dρk
dq |xk

)
|xk)

1− F v|xk (v̂xl

(
dρk
dq |xk

)
|xk)

[
∂uk
∂v

(
v̂xl

(
dρk
dq
|xk
)
, |xk − xl|

)]−1 dρk
dq

(qk|xl;xk) .

(27)
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Using the definition of ϕk from the main text together with (25) and (27), we then have that, for

any such qk,

ϕk

((
v̂xl

(
dρk
dq
|xk
)
, xk

)
, (v′l(qk;xl), xl)

)
=
dρk
dq

(qk|xl;xk)

1− 1

εk

(
dρk
dq |xl;xk

)
 . (28)

Likewise, when ql =
[
1− F v|xk

(
v̂xl

(
dρk
dq |xk

)
|xk
)]
fxk (xk),

ϕl

((
v′l(qk;xl), xl

)
,

(
v̂xl

(
dρk
dq
|xk
)
, xk

))
=
dρl
dq

(ql|xk;xl)

1− 1

εl

(
dρl
dq |xk;xl

)
 . (29)

Combining (28) and (29) with (26), we obtain the result in the proposition. Q.E.D.

Proof of Example 3. Recall that, for any (θa, xb) such that t∗a(θa, xb) ∈ Int[Vb], t∗a(θa, xb) is

defined by the unique solution to

ϕa (θa, (t
∗
a(θa, xb), xb)) + ϕb ((t∗a(θa, xb), xb), θa) = 0.

When preferences are as in Example 2, with δ = 1, and vertical and horizontal dimensions are

independently distributed,

ua(va, |xa − xb|) = α · va + (1− α) · φ (|xa − xb|) ,

ub(vb, |xb − xa|)) = vb, and, for any xk ∈ [0, 1], k = a, b,

1− F v|xk (vk|xk)
f
v|x
k (vk|xk)

=
1− F vk (vk)

fvk (vk)
≡ [λvk(vk)]

−1.

Hence, in this case,

ϕa (θa, θb) ≡ α · va + (1− α) · φ (|xa − xb|)−
α

λva(va)

and

ϕb (θb, θa) = vb −
1

λvb (vb)
.

This means that, for any (θa, xb) such that t∗a(θa, xb) ∈ Int[Vb], t
∗
a(θa, xb) is given by the unique

solution to

α · va + (1− α) · φ (|xa − xb|)−
α

λva(va)
+ t∗a(θa, xb)−

1

λvb (t
∗
a(θa, xb))

= 0.

On the other hand, the threshold functions tea (θa, xb) defining the matching sets under welfare max-

imizations are such that, for any (θa, xb) such that tea(θa, xb) ∈ Int[Vb], t
e
a(θa, xb) is given by the

unique solutions to

ua(va, |xa − xb|) + ub(t
e
a (θa, xb) , |xb − xa|)) = 0
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which means that tea (θa, xb) = − [αva + (1− α)φ (|xa − xb|)].
We conclude that, when |K| is sufficiently large that, for any (θa, xb) ∈ Θa×[0, 1], t∗a(θa, xb), t

e
a(θa, xb) ∈

Int[Vb],

t∗a (θa, xb)− tea (θa, xb) =
1

λvb (t
∗
a(θa, xb))

+
α

λva(va)
.

Using the fact that, when vertical types are drawn from an exponential distribution on side b,

1

λvb (t
∗
a(θa, xb))

=
1

λ̃b

we then obtain the result in the example. Q.E.D.

Proof of Proposition 3. Take any (θk, xl) ∈ Θk× [0, 1] for which t∗k (θk, xl) , t
e
k (θk, xl) ∈ Int[Vl].

Recall that, in this case, t∗k (θk, xl) is given by the unique solution to

ϕk (θk, (t
∗
k (θk, xl) , xl)) + ϕl ((t

∗
k (θk, xl) , xl) , θk) = 0

whereas tek (θk, xl) is given by the unique solution to

uk (vk, |xk − xl|) + ul (t
e
k (θk, xl) , |xl − xk|) = 0.

This means that

ul (t
∗
k (θk, xl) , |xl − xk|)− ul (tek (θk, xl) , |xl − xk|)

=
1−F vk (vk)

fvk (vk)
∂uk
∂vk

(vk, |xk − xl|) +
1−F vl (t∗k(θk,xl))
fvl (t∗k(θk,xl))

∂ul
∂vl

(t∗k (θk, xl) , |xk − xl|) .
(30)

Now fix θk = (vk, xk), let µ(xk, xl) = |xk − xl| and, without loss of generality, assume xl > xk (the

results for the case xl < xk are analogous to those for the case xl > xk, after the obvious change in

sign due to the fact that, in this case, increasing distance means decreasing xl). Differentiating the

expression in the right-hand-side of (30) with respect to xl at some xl for which µ(xk, xl) ∈
(
0, 1

2

)
,

we obtain that

∂
∂xl

[ul (t
∗
k (θk, xl) , |xl − xk|)− ul (tek (θk, xl) , |xl − xk|)] =

1−F vk (vk)

fvk (vk) ·
∂2uk(vk,|xk−xl|)

∂v∂µ

−(λvl )
′
(t∗k(θk,xl))

λvl (t
∗
k(θk,xl))

2

∂t∗k
∂xl

(θk, xl)
∂ul(t∗k(θk,xl),|xk−xl|)

∂vl

+ 1
λvl (t

∗
k(θk,xl))

(
∂2ul(t∗k(θk,xl),|xk−xl|)

∂v2l

∂t∗k(θk,xl)
∂xl

+
∂2ul(t∗k(θk,xl),|xk−xl|)

∂vl∂µ

)
.

By Proposition 1,
∂t∗k
∂xl

(θk, xl) ≥ 0. Therefore, under the assumptions of part 1, the expression above

is negative. Conversely, under the assumptions of part 2, the expression above is positive. The result

in the proposition then follows from the above properties. Q.E.D.

41



Proof of Proposition 4. The platform’s problem consists in choosing a collection of side-a

uniform price schedules pa(·|xb), one for each side-b location xb ∈ [0, 1], along with a collection of

side-b price schedules ρb(·|xa;xb), one for each pair (xa, xb) ∈ [0, 1]2, that jointly maximize its profits,

which can be conveniently expressed as∫ 1
0

∫ fxb (xb)
0 D̄a

(
dpa
dq (q|xb)|xb

)
dpa
dq (q|xb)dqdxb

+
∫ 1

0

∫ 1
0

∫ fxa (xa)
0 Db

(
dρb
dq (q|xa;xb)|xa;xb

)
dρb
dq (q|xa;xb)dqdxadxb,

subject to the feasibility constraint (3).

For any xb , q ≤ fxb (xb), and dpa
dq (q|xb), let

v̂xb

(
dpa
dq
|xa
)

=



va s.t. ua(va, |xa − xb|) = dpa
dq if dpa

dq ∈ [ua(va, |xa − xb|), ua(v̄a, |xa − xb|)]

va if dpa
dq < ua(va, |xa − xb|)

v̄a if dpa
dq > ua(v̄a, |xa − xb|).

(31)

Given the above definition, we have that the demand by the xa-agents for the q-th unit of the

xb-agents at the marginal price dpa
dq (q|xb) is equal to

Da

(
dpa
dq

(q|xb)|xb;xa
)

=

[
1− F v|xa

(
v̂xb

(
dpa
dq
|xa
)
|xa
)]

fxa (xa).

Also, for any q ≤ fxb (xb), recall that v′b(q;xb) is the unique solution to
[
1− F v|xb (v′b(q;xb)|xb)

]
fxb (xb) =

q. Reciprocity, along with optimality, implies that the most profitable way to deliver q units of xb-

agents to each xa-agent demanding to be matched to q units of xb-agents is to match the xa-agent

to every xb-agent whose vertical type exceeds v′b(q;xb). In other words, the optimal tariffs induce

matching demands with a threshold structure, as in the case where tariffs are customized on both

sides of the market (cfr Proposition 1). Now for each xa, xb ∈ [0, 1], each q ≤ fxb (xb), let

q̂b(q;xa;xb) ≡ Da

(
dpa
dq

(q|xb)|xb;xa
)
.

Given dpa
dq (q|xb), the platform thus optimally selects customized prices for the xb-agents for each

quantity q̂b(q;xa;xb) of the xa-agents equal to

dρb
dq

(q̂b(q;xa;xb)|xa;xb) = ub(v
′
b(q;xb), |xb − xa|). (32)

Such prices guarantee that, for each xa ∈ [0, 1], Db

(
dρb
dq (q̂b(q;xa;xb)|xa;xb)|xa;xb

)
= q, thus clearing

the market.
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The function dpa
dq (q|xb) : R × [0, 1] → R thus uniquely defines the matching sets on both sides

of the market. Now, from the arguments in the proof of Proposition 1, we know that the maximal

revenue the platform receives from the side-b agents when each xb-agent with vertical type vb is

assigned a matching set equal to sb(vb, xb) is given by∫
Θb

{∫ 1

0

{
ub (vb, |xb − xa|)−

1− F v|xb (vb|xb)
f
v|x
b (vb|xb)

· ∂ub
∂v

(vb, |xb − xa|)

}
qxa(sb(vb, xb))dxa

}
dFb(θb).

In turn, this means that the platform’s problem can be re-casted as choosing a function dpa
dq (q|xb) :

R× [0, 1]→ R that maximizes∫ 1

0

∫ fxb (xb)

0

{
D̄a

(
dpa
dq

(q|xb)|xb
)
dpa
dq

(q|xb)− C
[
dpa
dq

(q|xb)
]}

dqdxb

where, for each xb ∈ [0, 1], each q ≤ fxb (xb), the function

C
[
dpa
dq (q|xb)

]
≡

−
∫ 1

0

{
ub (v′b(q;xb), |xb − xa|)−

1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

· ∂ub∂v (v′b(q;xb), |xb − xa|)
}
Da

(
dpa
dq (q|xb)|xb;xa

)
dxa

captures the “procurement costs” of clearing the matching demands of all side-a agents that demand

at least q matches with the xb-agents. This problem can be solved by point-wise maximization of

the above objective function, i.e., by selecting for each xb ∈ [0, 1], q ≤ fxb (xb) (equivalently, for each

(xb, vb) ∈ [0, 1]× Vb), dpa
dq (q|xb) so as to maximize

D̄a

(
dpa
dq

(q|xb)|xb
)
dpa
dq

(q|xl)− C
[
dpa
dq

(q|xb)
]
.

The first-order conditions for such a problem are given by

dpa
dq

(q|xb)
∂D̄a

(
dpa
dq (q|xb)|xb

)
∂
(
dpa
dq

)
1− 1

ε̄a

(
dpa
dq (q|xb)|xb

)
− C′ [dpa

dq
(qa|xb)

]
= 0,

where

C′
[
dpa
dq (qa|xb)

]

= −
∫ 1

0

{
ub (v′b(q;xb), |xb − xa|)−

1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

· ∂ub∂v (v′b(q;xb), |xb − xa|)
}

∂Da
(
dpa
dq

(q|xb)|xb;xa
)

∂
(
dpa
dq

) dxa.

Now observe that (32) implies that

ub (v′b(q;xb), |xb − xa|)−
1−F v|xb (v′b(q;xb)|xb)
f
v|x
b (v′b(q;xb)|xb)

· ∂ub∂v (v′b(q;xb), |xb − xa|)

= dρb
dq (q̂b(q;xa;xb)|xa;xb)

(
1− 1

εb

(
dρb
dq

(q̂b(q;xa;xb)|xa;xb)|xa;xb

)
)
.
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This means that the above first-order conditions can be rewritten as

dpa
dq (q|xb)

[
1− 1

ε̄a
(
dpa
dq

(q|xb)|xb
)
]

+E
H
(
x̃a|xb, dpadq (q|xb)

)
[
dρb
dq (q̂b(q; x̃a;xb)|x̃a;xb)

(
1− 1

εb

(
dρb
dq

(q̂b(q;x̃a;xb)|x̃a;xb)|x̃a;xb

)
)]

= 0,

where H(xa|xb, q) is the distribution over Xa = [0, 1] whose density is given by

ha

(
xa|xb,

dpa
dq

(q|xb)
)
≡

∂Da
(
dpa
dq

(q|xb)|xb;xa
)

∂
(
dpa
dq

)
∂D̄a

(
dpa
dq

(q|xb)|xb
)

∂
(
dpa
dq

) .

The above properties imply the result in the proposition. Q.E.D.

Proof of Proposition 5. Fix θb = (vb, xb) and let q = fxb (xb) [1− F vb (vb)]. The result in

Proposition 4 implies that, under uniform pricing on side a and customized pricing on side b, for any

xa ∈ Xa such that tub (θb, xa) ∈ Int[Va], tub (θb, xa) is such that

ua(t
u
b (θb, xa), |xb − xa|)− E

H
(
x̃a|xb,

dpua
dq

)
[

1−F va
(
v̂xb

(
dpua
dq
|x̃a

))
fva

(
v̂xb

(
dpua
dq
|x̃a

)) · ∂ua∂v
(
v̂xb

(
dpua
dq |x̃a

)
, |x̃a − xb|

)]

+E
H
(
x̃a|xb,

dpua
dq

) [ϕb (θb,(v̂xb (dpuadq |x̃a) , x̃a))] = 0,

(33)

where H
(
xa|xb, dp

u
a

dq

)
is the distribution over Xa = [0, 1] whose density is given by

h

(
xa|xb,

dpua
dq

)
≡

∂Da
(
dpua
dq
|xb;xa

)
∂
(
dpa
dq

)
∂D̄a

(
dpua
dq
|xb

)
∂
(
dpa
dq

) ,

and where dpua
dq is a shortcut for dpua

dq (q|xb) with the latter equal to dpua
dq (q|xb) = ua(t

u
b (θb, xa), |xa−xb|).

Note that, to arrive at (33), we used the result in Proposition 4 along with the property in (15) and

the fact that, for any xa such that v̂xb

(
dpua
dq |xa

)
/∈ Int[Va], h

(
xa|xb, dp

u
a

dq

)
= 0, whereas for any xa

such that v̂xb

(
dpua
dq |xa

)
∈ Int[Va],

dpua
dq

εa

(
dpua
dq |xb;xa

) =
1− F va

(
v̂xb

(
dpua
dq |xa

))
fva

(
v̂xb

(
dpua
dq |xa

)) · ∂ua
∂v

(
v̂xb

(
dpua
dq
|xa
)
, |xa − xb|

)
.
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We also used the fact that, for any xa such that h
(
xa|xb, dp

u
a

dq

)
> 0 (equivalently, v̂xb

(
dpua
dq |xa

)
∈

Int[Va]),

dρb
dq (q̂b(q;xa;xb)|xa;xb)

(
1− 1

εb

(
dρb
dq

(q̂b(q;xa;xb)|xa;xb)|xa;xb

)
)

= ϕb

(
θb,
(
v̂xb

(
dpua
dq |xa

)
, xa

))
,

as shown in the proof of Proposition 4.

On the other hand, under customized pricing on both sides, for any such θb = (vb, xb), any

xa ∈ Xa such that t∗b(θb, xa) ∈ Int[Va], the threshold t∗b(θb, xa) is such that

ua(t
∗
b(θb, xa), |xb − xa|)−

1−F va (t∗b (θb,xa))
fva (t∗b (θb,xa))

· ∂ua∂v (t∗b(θb, xa), |xa − xb|) + ϕb (θb, (t
∗
b(θb, xa), xa)) = 0.

It is then immediate that, for any xa such that

−E
H
(
x̃a|xb,

dpua
dq

)
[

1−F va
(
v̂xb

(
dpua
dq
|x̃a

))
fva

(
v̂xb

(
dpua
dq
|x̃a

)) · ∂ua∂v
(
v̂xb

(
dpua
dq |x̃a

)
, |xb − x̃a|

)]

+E
H
(
x̃a|xb,

dpua
dq

) [ϕb (θb,(v̂xb (dpuadq |x̃a) , x̃a))]

≤ −1−F va (t∗b (θb,xa))
fva (t∗b (θb,xa))

· ∂ua∂v (t∗b(θb, xa), |xb − xa|) + ϕb (θb, (t
∗
b(θb, xa), xa))

we have that tub (θb, xa) ≥ t∗b(θb, xa), whereas, for any xa such that

−E
H
(
x̃a|xb,

dpua
dq

)
[

1−F va
(
v̂xb

(
dpua
dq
|x̃a

))
fva

(
v̂xb

(
dpua
dq
|x̃a

)) · ∂ua∂v
(
v̂xb

(
dpua
dq |x̃a

)
, |xb − x̃a|

)]

+E
H
(
x̃a|xb,

dpua
dq

) [ϕb (θb,(v̂xb (dpuadq |x̃a) , x̃a))]

≥ −1−F va (t∗b (θb,xa))
fva (t∗b (θb,xa))

· ∂ua∂v (t∗b(θb, xa), |xb − xa|) + ϕb (θb, (t
∗
b(θb, xa), xa))

we have that tub (θb, xa) ≤ t∗b(θb, xa).
The results in the proposition then follow from the monotonicity of the function

ϕb (θb, (t
∗
b(θb, xa), xa))−

1− F va (t∗b(θb, xa))

fva
(
t∗b(θb, xa)

) · ∂ua
∂v

(t∗b(θb, xa), |xb − xa|)

in the distance |xa − xb| (holding θb fixed), along with the fact that, by virtue of reciprocity,

tub (θb, xa) ≤ t∗b(θb, xa) if and only if

tua((t∗b(θb, xa), xa), xb) ≤ t∗b((t∗b(θb, xa), xa), xb)
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and, likewise, tub (θb, xa) ≥ t∗b(θb, xa) if and only if

tua((t∗b(θb, xa), xa), xb) ≥ t∗b((t∗b(θb, xa), xa), xb).

Q.E.D.

Proof of Proposition 6. The proof follows from the combination of the results in Proposition

5 with the results in Proposition 1 in Aguirre et al (2010). When the environment satisfies the

conditions in part 1 of Proposition 5, starting from uniform pricing on side a, the introduction of

customized pricing on side a leads to an increase in prices for nearby locations and a reduction

in prices for distant locations. Proposition 1 in Aguirre et al (2010), along with the fact that the

environment satisfies Condition IR and that, for any xb and dpa/dq, the convexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents declines with the distance |xa−xb|,
then implies that welfare of the side-a agents is higher under uniform pricing. Likewise, under the

conditions in part 2 of Proposition 5, that welfare of the side-a agents is higher under uniform pricing

follows from the fact that, starting from uniform pricing on side a, the introduction of customized

pricing on side a leads to an increase in prices for distant locations and a reduction in prices for nearby

locations. The welfare implications of such price adjustments then follow again from Proposition 1

in Aguirre et al (2010), along with the fact that Condition IR holds and that, for any xb and dpa/dq,

the convexity CDa

(
dpa
dq |xb;xa

)
of the demands by the xa-agents for the q-th unit of the xb-agents

increases with the distance |xb − xa|. Q.E.D.

Proof of Proposition 7. The results in Proposition 1) imply that, in a centralized market,

the platform engages in customized pricing on both sides of the market. Furthermore, the profit-

maximizing tariffs induce matching sets with a threshold structure. In particular, the proof of

Proposition 1 implies that, for any θb = (vb, xb), any xa ∈ Xa such that

ϕa ((v̄a, xa), θb) + ϕb (θb, (v̄a, xa)) < 0,

the threshold t∗b(θb, xa) is equal to t∗b(θb, xa) = v̄a. For any xa ∈ Xa such that

ϕa ((va, xa), θb) + ϕb (θb, (va, xa)) > 0

the threshold t∗b(θb, xa) is equal to t∗b(θb, xa) = va. Finally, for any xa ∈ Xa such that

ϕa ((va, xa), θb) + ϕb (θb, (va, xa)) ≤ 0 ≤ ϕa ((v̄a, xa), θb) + ϕb (θb, (v̄a, xa))

the threshold t∗b(θb, xa) is given by the unique solution to

ϕa ((t∗b(θb, xa), xa), θb) + ϕb (θb, (t
∗
b(θb, xa), xa)) = 0,

or, equivalently,18

ua(t
∗
b(θb, xa), |xa − xb|)−

1−F va (t∗b (θb,xa))
fva (t∗b (θb,xa))

· ∂ua∂v (t∗b(θb, xa), |xa − xb|) + ϕb (θb, (t
∗
b(θb, xa), xa)) = 0.

(34)

18Note that, in writing (34), we used the fact that Condition Ia holds.

46



Next, consider the prices optimally set by the sellers in a decentralized market. Because each

seller can sell at most a single unit to each buyer, no seller can engage in price discrimination.

Furthermore because buyers have separable demands, there is no competition among the sellers.

This means that the price pdb(θb) optimally selected by each seller with type θb = (vb, xb) maximizes

pD̄a (p|xb) +

∫ 1

0
ub(vb, |xb − xa)Da (p|xb;xa) dxa

where D̄a (p|xb) ≡
∫ 1

0 Da (p|xb;xa) dxa, with Da (p|xb;xa) = fxa (xa) [1− F va (v̂xb (p|xa))] and with the

function v̂xb (p|xa) as in (31). The optimal price pdb(θb) thus solves optimality conditions analogous

to those for the marginal price dpua(q|xb)/dq set by the platform under uniform pricing on side a, but

with the procurement cost adjusted by removing the monopsony markup

− p

εb(p|xa;xb)
.

In particular, for any θb such that pdb(θb) ∈ (ua(va,
1
2), ua(v̄a, 0)), the price pdb(θb) must solve the

optimality condition

pdb(θb)

[
1− 1

ε̄a(pdb (θb)|xb)

]
+ EH(x̃a|xb,pdb (θb))

[ub(vb, |xb − x̃a|)] = 0,

where H
(
xa|xb, dp

u
a

dq

)
is the distribution over Xa = [0, 1] whose density is given by

h (xa|xb, p) ≡
∂Da(p|xb;xa)

∂p

∂D̄a(p|xb)
∂p

.

Note that ua(va,
1
2) is the lowest willingness to pay, among all side-a agents, for each xb-product,

whereas ua(v̄a, 0) is the highest.

The price pdb(θb) optimally set by each seller of type θb = (vb, xb) thus induces location-specific

demands on side a with a threshold structure where the threshold tdb(θb, xa) = v̂xb
(
pdb(θb)|xa

)
.

Hence, for any xa such that tdb(θb, xa) ∈ Int[Va] (equivalently, for which ua(va, |xb − xa|) ≤ pdb(θb) ≤
ua(v̄a, |xb − xa|), the threshold tdb(θb, xa) is such that

ua(t
d
b(θb, xa), |xa − xb|)− EH(x̃a|xb,pdb (θb))

[
1−F va (v̂xb(p

d
b (θb)|x̃a))

fva (v̂xb(p
d
b (θb)|x̃a))

∂ua
∂v

(
v̂xb
(
pdb(θb)|x̃a

)
, |x̃a − xb|

)]

+EH(x̃a|xb,pdb (θb))
[ub(vb, |xb − x̃a|)] = 0.

The results in the proposition then follow from arguments that parallel those establishing Propo-

sitions 5 and 6. First, one can show that the assumptions in part 1 (alternatively, part 2) imply

that targeting is higher in a decentralized market (alternatively, in a centralized market). That, in

the two scenarios covered by parts 1 and 2 in the proposition, welfare of the side-a agents is higher

in a decentralized market than in a centralized one then follows from the above properties along

with the fact that the environment also satisfies condition IR and the additional convexity/concavity

properties of the CDa

(
dpa
dq |xb;xa

)
function in the proposition (again, this follows from arguments

identical to those establishing Proposition 1 in Aguirre et al (2010)). Q.E.D.
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