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IMMIGRATION AND THE RATE OF POPULATION MIXING: EXPLORATIONS WITH A STYLIZED MODEL 

Frank T Denton and Byron G Spencer 

ABSTRACT 

Immigrants can mix with the population of a receiving country in various ways. We consider 

demographic mixing by which we mean cross-mating, and more particularly the bearing of children 

where one parent is of immigrant descent and the other is not – cross-parenting as we term it. We 

consider a hypothetical country with an initial stable population and introduce immigration. The results 

of cross-parenting are taken into account by identifying three separate populations within the overall 

total: non-immigrant population, immigrant population (immigrants and their descendants), and mixed 

population. We develop a stylized model to track the three populations, with interest focusing in 

particular on how the proportion of mixed population changes through time as it moves toward a steady 

state. The model has a stable projection (Leslie) matrix that holds for all three populations and moves 

them forward from generation to generation as each evolves in its own way. As cross-parenting occurs 

the resulting progeny are transferred from the other populations to the mixed population. The pattern 

of cross-parenting is determined in the first instance by a matrix representing preferences among the 

three populations and alternative preferential patterns are experimented with, ranging from complete 

isolation to indifference as to cross-parenting choices. However the matrix must be modified to 

recognize supply constraints imposed by the sizes of the available populations and a restricted least-

squares procedure is employed to effect the modification while remaining as close as possible to the 

original preference pattern. Alternative rates of immigration are experimented with also.  

JEL:  F22 

Keywords: immigration, population mixing, cross-parenting, demographic modeling, parenting 

preferences 
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IMMIGRATION AND THE RATE OF POPULATION MIXING: EXPLORATIONS WITH A STYLIZED MODEL 

Frank T Denton and Byron G Spencer 

1. INTRODUCTION

There are many ways in which the two populations can mix when a home country receives 

immigrants. A rough (and perhaps overlapping) categorization might be as follows: economic mixing 

(working or doing business with each other); social mixing (belonging to the same common-interest 

groups, including religious institutions, schools, clubs, and informal friendship affiliations; geographic 

mixing (through neighbourhood proximity and contacts); and demographic mixing (mating and the 

bearing of children).  Our concern in this paper is demographic mixing, and more specifically the bearing 

of children with mothers and fathers from different populations. Population mixing for us will be the 

result of cross-parenting, as we shall call it. (We use cross-parenting in preference to  cross-breeding, 

the term common in biology, as it has a greater  connotation of voluntary choice. Note too that the term 

population mixing in our context differs from its definition in epidemiology where it refers to contacts 

among people as a result of spatial movement; see Law et al., 2008.)      

In the analysis that follows we will define three populations, a non-immigrant population, an 

immigrant population (original immigrants and their descendants), and a mixed population, and we will 

employ a simplified or “stylized” demographic projection model to trace the evolution of each 

population from one generation to the next under alternative assumptions about the propensity to 

cross-parent. Although implicit rather than explicit in the model immigrants could have the same 

characteristics as non-immigrants or they could differ in various ways – ethnicity, language, education, 

and others – and such differences could have an important bearing on the mixing pattern. While not 

directly related to immigration (except historically) we note that many studies of population mixing in 

the United States have focused on racial intermarriage. Fryer (2007), for example, contrasts the 

“extraordinary convergence” in relation to black-white economic and political empowerment with much 

less convergence  “in the most intimate spheres of life – religion, residential location, marriage, and 

cohabitation” and observes that marriage across racial lines is a “rare event” (pp. 71, 72). Torch and Rich 

(2016) report that the proportion of black-white marriages and cohabitations among couples increased 

five-fold from 1980 to 2010 but still accounted for only 1.5 percent of the total (p. 1).   

The integration of immigrants with non-immigrants is a concern for many countries (immigrants 

account for more than 20 percent of the population in some of the major recipients) and inter-mating, 

and cross-parenting are important indicators. Adserà and Ferrer (2015) provide a summary of the 

literature relating to intermarriage of immigrants and non-immigrants. They note that “the capacity to 

form and maintain exogamous unions (between native and foreign born) can be interpreted as the 

quintessence of successful integration” (p.324). Referring to the work of Duncan and Trejo (2007) they 

observe too that “selectivity into intermarriage influences ethnic identification”, and hence the 
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measurement of integration for those with “immigrant ancestry” (p. 324). Substituting “cross-parenting” 

for “intermarriage”, these observations relate directly to our focus in the present paper.   

The paper, based on a stylized model, is theoretical and exploratory. Our intention is to show 

how quickly, in generational time, one could expect integration to take place under alternative 

assumptions about the propensity for immigrants and non-immigrants to mix, where cross-parenting is 

the mixing instrument. We develop the model, calibrate it using life table data, and carry out a series of 

experiments starting with a stable population and introducing immigration at different rates. Alternative 

underlying mixing preferences are assumed in the experiments and a procedure is developed for 

adapting the preferences to render them consistent with restrictions imposed by the available 

populations of childbearing age. The preferences range from no mixing at all (no cross-parenting) to 

free, unrestricted mixing. The non-immigrant, immigrant, and mixed components of the overall 

population are projected as a tri-population system. Of special interest is the proportion of mixed in the 

total as it changes from one generation to the next and approaches a steady-state limit as the number 

of generations increases without bound.       

2. A FRAMEWORK FOR THE MODEL

We start with a hypothetical country (region) with overall population N. The population is 

distributed among two sexes and five age groups: “children” (0 – 19), “young adults” (20 – 39), “middle 

aged” (40 – 59), “old” (60 – 79), and “very old” (80 – 99), with no survivors at 100. The age-sex 

distribution is captured by a 10-element vector 𝑛 = [𝑛𝑥], with 𝑥 = 1 to 5 representing the female age 

groups, 𝑥 = 6 to 10 the male age groups. All children have young adult parents – mothers in group 𝑛2, 

fathers in 𝑛7.  The fertility rate for young adult females is thus equivalent to the conventional total 

fertility rate. In addition, restricting fathers to the same age range allows the calculation of a male 

fertility rate (see below).  

In the absence of migration, in or out, the population is augmented by births, depleted by 

deaths, has a 10 x 10 projection (Leslie) matrix 𝑄, and a stable age distribution. The female fertility rate 

is set at the natural replacement level, survival rates are unchanging, and 𝑛𝑡+1 = 𝑄𝑛𝑡 = 𝑛𝑡   for all 𝑡 where 

the time interval is 20 years, the same as the age intervals. For convenience we shall refer to this 

interval as a generation. (To keep notation as simple as possible we add a time subscript when necessary 

but avoid doing so otherwise.)  

Now introduce immigration (still with no emigration, which we shall take to be zero) and 

assume that immigrants have the same stable age-sex distribution, proportionately, as the original non-

immigrants and the same projection matrix 𝑄. In our simulations below immigration may be one-time or 

repeated but to develop the framework assume for the present that it is a one-time event with 

immigrants arriving at  𝑡 = 0. The question of interest is how rapidly will the populations of immigrants 

and non-immigrants mix where mixing in our context means cross-parenting – initially the bearing of 

children with one immigrant parent and one non-immigrant parent, although the descendants of such a 

union will also be regarded as mixed. (It is perhaps well to recognize, before proceeding, that 

realistically in virtually any place in the world all of the population will be descended from immigrants if 
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one goes back far enough in time. In what follows we will simply identify 𝑡 = 0 as a point at which new 

entrants will be classified as immigrants and the existing population as non-immigrants.)   

We identify then three separate populations within the overall population N, each evolving in its 

own way: (1) the original non-immigrant population and its non-mixed descendants H; (2) the 

population of immigrants and their non-mixed descendants M; (3) a mixed population U, including all 

children of mixed lineage – children of mixed parents, grandchildren of mixed parents, and in general, all 

persons with lineage traceable back to a mixed union. (Mnemonically, H is for “home”, M for “migrant”, 

U for “union”. Where the meaning is clear we shall sometimes use the word “immigrants” to refer to 

members of the M population, thus including both those who immigrated originally and their 

descendants.) These three populations have age-sex vectors ℎ, 𝑚, and 𝑢 corresponding in structure to 𝑛 

(and aggregating to 𝑛). They also have the same projection matrix 𝑄. While initially immigrants and non-

immigrants have the same proportionate age-sex distribution they may differ in other characteristics. 

The non-immigrant population will be augmented in each generation by births and depleted by deaths 

but those births to non-immigrant mothers mated with immigrant or mixed fathers will be transferred 

(reclassified) to the mixed population. Similarly, the immigrant population will be augmented by births 

and depleted by deaths but all births to immigrant mothers mated to non-immigrant or mixed fathers 

will be transferred to the mixed population. The mixed population will be augmented by births, depleted 

by deaths, and augmented also by the cross-parenting transfers from the other populations. If cross-

parenting continues freely and indefinitely – if individuals choose to mate randomly and bear children 

without preference as to population membership – the non-immigrant and immigrant populations will 

vanish in the limit; all residents of the country will eventually be of mixed lineage. The proportion of 

mixed population in the total population of the country serves as an indicator at any given time of the 

degree of mixing that has occurred. (Note that the overall population N continues to have the same 

stable age-sex distribution; that is not affected by transfers among its component populations.)    

The foregoing assumes one-time immigration. If immigration is repeated – at a constant rate 

proportional to the total population, let us say – the framework is the same as before except that the 

immigrant population will now be augmented by new immigrants each generation. The non-immigrant 

population will still vanish, in the limit, under random parenting, but the immigrant population will be 

continuously replenished and the mixed proportion in the overall population will always be less than 

one.  

The accounting relations for the process with repeated immigration can be stated informally as 

follows. The change in the non-immigrant population from one generation to the next can be 

represented as 

ΔH = Births – Deaths –  CPT(H,M -> U) –  CPT(H,U -> U) 

CPT stands for a cross-parenting transfer of newborn children and the arrow indicates that the direction 

of transfer is to U, the mixed population. The transfers result from a non-immigrant/immigrant 

(mother/father) pairing (H,M) in the first case and a non-immigrant/mixed population pairing (H,U) in 
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the second. (The first letter is always the population of the mother.) Using similar notation the changes 

in the immigrant and mixed populations can be represented as 

 ΔM = Births  –  Deaths  –  CPT(M,H -> U) –  CPT(M,U -> U) +  New Immigrants 

  ΔU =  Births  –  Deaths +  CPT(U <- H,M) + CPT(U <-H,U)  +  CPT(U <- M,H) + CPT(U <- M,U) 

PREFERENTIAL DISTRIBUTION PATTERNS 

Free and random mating/parenting yields one particular type of interpopulation distribution of 

children but there are others. We shall call these distributions preferential in the first instance. 

Preferential distributions reflect personal preferences and mutual mating/parenting agreements, and 

possibly also societal discrimination of one kind or another. Actual or realized distributions may differ 

from preferential ones by incorporating supply constraints imposed by the differing sizes of the 

populations and the limited availability of mating partners; preferential distribution patterns thus 

represent distributions as they would occur in the absence of such constraints. (Imagine for the moment 

a hypothetical situation in which there is a given number of young adult females but an unlimited 

number of males in each population so that any proportionate distribution of mothers according to the 

population of fathers is possible, and reflective only of preferences.) We shall deal with supply 

constraints shortly but first consider a 3 x 3 preferential distribution matrix  𝑃 = [𝑝𝑖𝑗]. The rows of the 

matrix represent mothers in each of the three populations (H,M,U), the columns represent fathers from 

those populations. An element 𝑖, 𝑗 represents the proportion of children who are born to mothers from 

population 𝑖 and have fathers from population 𝑗, with the elements in each row summing to 1. This 

matrix can be configured in various ways to represent alternative preferential patterns. Here are some.    

(1) Indifference: There is no preference in any of the three populations: the matrix is 3 x 3; 𝑝𝑖𝑗  = 1/3  for 

all 𝑖, 𝑗 (this is what we called free and random parenting above). 

(2) Isolation: There is no cross-parenting and hence no mixed population; non-immigrants parent with 

non-immigrants, immigrants parent with immigrants, and the matrix is reduced to 2 x 2: 𝑝11 = 𝑝22 = 1; 

𝑝12 = 𝑝21 = 0. Isolation could be a matter of mutual preference or a consequence of societal 

discrimination (the two may be essentially equivalent).  

(3) Partial Discrimination: Non-immigrants have a preference for parenting with non-immigrants but the 

preference is not exclusive -  they will parent also with  mixed population members,  with lower 

probability, and with immigrants, with still lower probability; immigrants have a similar probability 

pattern, but in reverse; mixed population members are indifferent: 𝑝11 > 𝑝13 > 𝑝12;  𝑝22 > 𝑝23 > 𝑝21;  

𝑝31 =  𝑝32 =  𝑝33  = 1/3. 

(4) Adaptation: The pattern is isolation at some initial time but moves toward indifference from one 

generation to the next - say linearly, for example - as society adapts and the integration of immigrants 

and non-immigrants comes to be fully accepted.  
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3. THE MALE FERTILITY RATE AND ASSOCIATED IMPLICATIONS  

 The requirement in the model that all parents must be young adults allows us to calculate a 

male fertility rate. The female fertility rate F is the ratio of live births to the number of young adult 

women, the same for all populations. Similarly, a male fertility rate G can be defined as the ratio of live 

births to young adult males, the number of live births being the same in both cases. With overall 

population vector 𝑛, the male fertility rate would be G = (𝑛2/𝑛7)F, where 𝑛2 and 𝑛7 are the numbers of 

young adult females and males, respectively. Assuming G to be the same for all populations (as is F), the 

overall number of births will be distributed according to the population of the fathers in proportion to 

the numbers of young adult males.  Furthermore, the 𝑄 matrix incorporates a fixed sex ratio at birth and 

an adjustment to allow for infant and early childhood mortality in calculating the numbers of surviving 

male and female children in a population (see Appendix). The calculations are common to all three 

populations and so the distributions of male children and female children by population of father will be 

the same and proportional to the numbers of young adult males, as are births.  They will be proportional 

also to the numbers of young adult females, for the same reasons, and thus any conflict between the 

two proportionality distributions must be resolved. Females from one population who would otherwise 

parent with males from another cannot do so if the latter population has an insufficient number of 

young adult males.       

5. FROM PREFERENCES TO REALIZED PROPORTIONS 

 A preferential distribution provides a starting point but the relative availability of young adults in 

the three populations will dictate the feasibility of any cross-parenting pattern. To modify a preferential 

pattern to accommodate supply restrictions but remain as close as possible to the original preferential 

distribution we make use of a method known variously by the names biproportional adjustment, 

iterative proportional fitting, and others. The method was first given formal mathematical treatment by 

Deming and Stephan (1940), based on a restricted least squares criterion,  in the context of the 

adjustment of sample estimates to fixed census marginal totals in the construction of contingency 

tables. It was subsequently taken up in the construction of economic input-output tables (Bacharach, 

1965, 1970), where it has had extensive application over the years under the name RAS Method. (See 

Lahr and de Mesnard, 2004, for a history of RAS applications.) Note that under the isolation preferential 

pattern there are no supply constraints – the “demand” for and supply of young adult males are 

automatically in balance in each population  so the procedure we are about to describe is required only 

for other patterns.   

 We wish to construct a 3 x 3 matrix 𝐵 = [𝑏𝑖𝑗], 𝑖, 𝑗 = H,M,U, showing the realized distributions of 

children by mothers’ population (rows) and fathers’ population (columns). (𝐵 is 2 x 2 if there is no adult 

mixed population, as is the case temporarily when immigration is first introduced, and before any cross-

parenting can occur.) Having constructed 𝐵 we then want to convert it into a matrix 𝐴 that is similar in 

structure to 𝑃 but shows the actual (realized)  proportionate distribution of births among fathers’ 

populations for each population of mothers (row totals are thus equal to 1). The overall number of 

children, all populations combined, is given by calculation based on the 𝑄 matrix (all populations have 

the same Q matrix). The row totals of the 𝐵 matrix (𝑏𝑖•) are calculated by distributing the overall 
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number of children in proportion to the numbers of young adult females in the three  populations and 

the column totals (𝑏•𝑗) by distributing the same overall number of children in proportion to the numbers 

of young adult males. Given some initial matrix 𝐵∗ = [𝑏𝑖𝑗
∗ ], which in general will not satisfy the 

requirements that elements must sum to both row and column totals, the biproportional adjustment 

algorithm proceeds iteratively to find 3 x 3 (or 2 x 2) diagonal matrices 𝐷 and 𝐶 such that 𝐵 = 𝐷(𝐵∗)𝐶  

satisfies those requirements; it thus calculates 𝐵 as a transformation of the initial matrix 𝐵∗ by forcing 

row and column adding-up consistency. As a final step the 𝐴 matrix is calculated by expressing each 

element of 𝐵 as a proportion of its row total; 𝑃 and 𝐴 are thus comparable, 𝑃 showing preferences, 𝐴 

showing realizations. The sex ratio of children is constant for each population, under the assumptions of 

the model, and thus the proportionate distributions provided by the 𝐴 matrix are the same for male and 

female children.  

 The derivation of the 𝐵 matrix is as follows. The row and column totals are calculated as above. 

The row totals are then distributed among the elements of each row in proportion to the corresponding 

elements of the 𝑃 matrix, thus providing the initial matrix 𝐵∗, the starting point for the procedure. The 

elements of 𝐵∗ sum to the correct row totals, by construction, but not (in general) to the column totals. 

They are then adjusted pro rata to force them to sum to the column totals but now they no longer sum 

to the row totals. They are forced again pro rata to sum to the row totals, and so it proceeds, iteratively, 

until convergence is obtained and the adding-up restrictions are satisfied. Following Deming and 

Stephan (1940) this simple procedure can be shown to be equivalent to minimizing the sum of squares 

of the differences between the 𝐵∗ and 𝐵 elements, ∑(𝑏𝑖𝑗
∗ − 𝑏𝑖𝑗)2. (Deming and Stephan used a 

weighted average for illustration; we use an unweighted average, or a weighted average with weights 

equal to 1, if one prefers to say it that way.) The minimization is subject to the conditions that the rows 

of 𝐵 must add to 𝑏𝑖• and the columns to 𝑏•𝑗. The 𝐴 matrix derived from  𝐵, and representing realized 

distributions, is thus as close as possible to the 𝑃 matrix, representing preferential distributions, based 

on the least squares criterion.  (The final adjustment factors that convert  𝐵∗ to 𝐵 in the iterative 

sequence are the diagonal elements of the 𝐷 and 𝐶 matrices – row adjustment factors for 𝐷, column 

adjustment factors for 𝐶.) The transformation of 𝐵∗ to 𝐵 (more fully, 𝑃 to 𝐵∗  to 𝐵 to 𝐴) using the 

biproportional adjustment algorithm is unique and convergence is fast and guaranteed under simple 

conditions that are satisfied by the model.            

 The application of the biproportional adjustment algorithm here is similar to its application in 

the construction of an economic input-output matrix, as noted above: marginal input and output (row 

and column) totals are known precisely but interindustry product flows – the elements of the matrix – 

are not. They are represented initially by estimates that are then adjusted iteratively to enforce the 

adding-up restrictions. The present application involves only small matrices; input-output applications 

are generally on a much larger scale but the basic ideas are the same.         

 We provide below examples of the 𝑃 matrices for selected preferential patterns and the 

corresponding derived 𝐴 matrices for two of our immigration simulation applications. First though we 

lay out the formal specifications of the model on which the applications are based.  
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6. THE MODEL  

 The complete model can be derived as follows. In the absence of transfers of children the non-

immigrant population would be projected one generation ahead as ℎ𝑡+1 = 𝑄ℎ𝑡. To introduce transfers 

we define a 10 x 10 matrix 𝑅 = [𝑟𝑖𝑗] where 𝑟12 and 𝑟62 are equal to 𝑞12 and 𝑞62 (the mortality-adjusted 

sex-specific fertility elements of 𝑄 – see Appendix) and all other elements are zero.  𝑅𝐻𝑡 is then a vector 

with the projected numbers of female and male children as the first and sixth elements, zeros 

elsewhere. Assuming 𝐴 is a 3 x 3 matrix the proportion of children transferred out of the non-immigrant 

population is 𝑎ℎ𝑚 + 𝑎ℎ𝑢 = 1 – 𝑎ℎℎ, the same for both sexes, the transfer coefficients being the elements 

of 𝐴 representing particular cross-parenting proportions. In practice, the biproportional procedure is 

applied anew at each generation in a simulation, and thus 𝐴 will vary. Time subscripts are therefore 

attached to the elements of 𝐴 in the equations below in addition to the row and column subscripts. 

Putting all of this together, the full projection equation for the non-immigrant population can be written 

compactly in the form 

 ℎ𝑡+1 = (𝑄 – (1 - 𝑎ℎℎ𝑡)𝑅)ℎ𝑡                                           (1) 

 The projection for the immigrant population can be dealt with in the same way, with child transfer 

proportion 𝑎𝑚𝑛 + 𝑎𝑚𝑢 = 1 – 𝑎𝑚𝑚, but now new immigrants must be added. Assume that new 

immigrants enter the country each generation as a fixed proportion ϕ of the population calculated as it 

would be without  the new immigrants. They enter the country with the same age-sex distribution as the 

overall population, the vector of new immigrants is therefore ϕ𝑄(ℎ𝑡 + 𝑚𝑡 + 𝑢𝑡) = ϕ𝑄𝑛𝑡, and the 

projection equation for the immigrant population can be written as 

 𝑚𝑡+1 = (𝑄  – (1 – 𝑎𝑚𝑚𝑡)𝑅)𝑚𝑡 + ϕ𝑄𝑛𝑡                              (2) 

(A small point: The immigration vector at generation 𝑡 includes children who are immigrating with their 

parents.  Alternatively, the children of immigrant parents could be born immediately after the parents 

enter the country - in the same generational interval, that is; that would make no difference. In either 

case the children would represent an addition to M, the immigrant population. ϕ would simply be 

defined to include both pre-entry and immediate post-entry births to immigrant parents.) 

The projection equation for the mixed population, the recipient of child transfers, is then  

 𝑢𝑡+1 = 𝑄𝑢𝑡 + (1 – 𝑎ℎℎ𝑡)𝑅ℎ𝑡 + (1 – 𝑎𝑚𝑚𝑡)𝑅𝑚𝑡                  (3) 

 Equations (1), (2), and (3) constitute the integrated tri-population system that we use to explore, 

by simulation, the rate of population mixing. Given an initial population ℎ−1, immigration commencing 

at 𝑡 = 0 at an assumed rate ϕ, and a preferential cross-parenting pattern represented by 𝑃, 𝐴 can be 

calculated,  the system can be moved forward one generation at a time, and the proportionate 

distribution among the three populations noted. Of particular interest is the time path of the ratio of 

mixed to total population under alternative assumptions.   
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7. EXAMPLES OF P AND A MATRICES 

 For illustration, Tables 1 and 2 show examples of the 𝑃 matrices for three preferential patterns, 

indifference, isolation, and a particular version of partial discrimination, along with the corresponding 

derived 𝐴 matrices. One-time immigration is assumed in Table 1, repeated immigration in Table 2, with 

the immigration rate ϕ in both cases set at .20 (one of the immigration rates considered in simulations 

in the next section). The row elements of each matrix sum to 1 (rounding aside). For a 𝑃 matrix each row 

represents the proportionate inter-population distribution among fathers of the total number of births 

to mothers  in a given population, ignoring supply restrictions on the number of potential fathers (young 

adult males);  For the 𝐴 matrices a row represents the same thing but with the supply restrictions 

imposed. The P matrices remain the same from one generation to the next in the three examples shown 

in the table but the 𝐴 matrices may change as the populations change. Under isolation the restrictions 

are automatically and continuously satisfied so 𝐴 and 𝑃 are always the same; for the other cases the 

table shows the 𝐴 matrices after three generations (𝑡 = 3). 

8. CALIBRATION OF THE MODEL 

 The model requires calibration for simulation application. The 𝑃 matrix is chosen by assumption 

and the 𝐴 matrix is then derived, as above. 𝜙 is also chosen by assumption. However 𝑄 must be 

specified realistically and for that purpose we use a projection matrix based on Canadian life tables 

centered on the year 2001 (Statistics Canada, 2006). Any realistic projection matrix would serve our 

purposes but this is one that we have used in previous studies (Denton and Spencer, 2014, 2015a, 

2015b) and we find it convenient to use it here. The matrix is 10  x 10, representing females and males in 

the five broad age groups. It incorporates survival rates for those groups, a female fertility rate set at the 

natural replacement level consistent with the life tables (approximately 2.0745) and adjusted for infant 

and early childhood mortality, and a male/female sex ratio at birth of 1.05. The 𝑄 matrix and associated 

stable population age-sex distribution are provided in the Appendix, with discussion.       

9.  SIMULATIONS WITH ONE-TIME IMMIGRATION 

 We begin the simulations with ones that assume one-time immigration, as presented in Tables 3 

and 4. The reported simulations span a period of eight generations (𝑡 = 0,1,…,7). The tables show the 

evolving percentage distribution of the population among its three components under alternative 

assumptions: alternative preferential patterns for a given immigration rate in Table 3; alternative 

immigration rates for a given preferential pattern in Table 4. (We refer to immigration rate even though 

it is applied only once here; proportion might be better but using the term rate allows a smoother 

transition in language from one-time to repeated immigration in the next section.)  The immigration 

rates considered are 10, 20, and 30 percent (ϕ = .10, .20, and .30). These rates may appear large but 

they have to be interpreted relative to the generational time interval of the model, 20 years. Viewed on 

a per annum basis within that interval they are much smaller, of course, and probably not unrealistic in a 

more familiar context of popular discussions of immigration or immigration policy. Looking at them that 
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way, the rates are approximately .48, .92, and 1.32 percent per annum. (These observations apply to 

one-time immigration here but more especially to the repeated immigration simulations in the next 

section.)   

 The immigration rate is set at ϕ = .20 in Table 3 and simulation results for four preferential 

patterns are presented: indifference, isolation, partial discrimination, and adaptation. The 𝑃 matrices for 

indifference, isolation, and partial discrimination are as shown in Tables 1 and 2, and discussed above. 

The matrix for adaptation (also discussed above) assumes isolation at the beginning (𝑡 = 0) but moves 

linearly, from one generation to the next, until it achieves the indifference form after three generations 

(𝑡 = 3), which form it retains thereafter. 

 Under isolation there is no mixed population and no cross-parenting of immigrants and non-

immigrants; the H/N and M/N proportions are unchanging over the eight generations (and beyond). 

Under the other preferential patterns the mixed population proportion is small at first in each case but 

steadily increasing as cross-parenting shifts the distribution and the H/N and M/N proportions decline; it 

is clear from Table 3 (and simple reasoning) that the ultimate percentage distribution as the number of 

generations increases without bound would be  U/N = 100, H/N = M/N = 0 for all patterns except 

isolation. The most rapid shift in distribution occurs under indifference, as one would expect: the mixed 

population is almost a third of the total after three generations (U/N is 32.0 percent) and just under half 

after four generations  (U/N is 49.5 percent). The slowest shift occurs under partial discrimination, as we 

have defined that pattern. One might think of indifference as providing a benchmark with which the 

results of other patterns can be compared.      

 The rate of immigration obviously has a major role in determining the generational pace of 

population mixing. Table 4 shows the shifts in population distribution for the indifference pattern under 

the three alternative immigration rates that we have chosen to experiment with. The differences in shift 

patterns are in general as one would expect: increasing the immigration rate from .20 to .30 produces 

more rapid shifting (U/N is 40.0  percent  after three generations) and a faster approach to the limiting 

distribution; reducing the rate to .10 has the opposite and much slower effect  (U/N is 19.6 percent after 

three generations).                      

10. SIMULATIONS WITH REPEATED IMMIGRATION 

 The second set of simulations assumes that immigration occurs at the rate ϕ in every 

generation. The results for these simulations are reported in Tables 5 and 6. Following the same plan as 

before, Table 5 shows results for alternative preferential patterns with a fixed immigration rate,   Table 6 

shows results for alternative immigration rates with a fixed preferential pattern.  

 One general feature of the simulations in Table 5 (with ϕ set at .20) is that the proportion of 

immigrants in the population increases over the eight generation span. The pace at which it increases 

tapers off though. M/N increases from the beginning but the increases get smaller from one generation 

to the next, and for the adaptation preferential pattern they are replaced by decreases, starting at 𝑡 = 5, 
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as the effects of indifference begin to  offset the earlier effects of isolation in the adaptation process. 

The mixed proportion U/N rises in all cases except isolation, where of course it remains at zero.  

 Each preferential pattern results in an ultimate stable state for the proportionate population 

distribution as the number of generations increases without bound. The (proportionately) stable state 

for isolation is obviously M/N = 100 percent, H/N = 0. (The H population itself is unchanging; it simply 

becomes a smaller and smaller proportion of the total as the immigrant population grows.) We have 

calculated the stable states for the other preferential patterns (with ϕ = .20) by running the model for 

20 generations (more than enough to achieve stability, for practical purposes). H/N is 0 in all cases. For 

indifference and adaptation M/N = 41.6 percent, U/N = 58.4; for partial discrimination M/N = 47.9 

percent, U/N = 52.1. That the results for adaptation and indifference are the same is simply a 

consequence of the fact that once isolation is replaced by indifference in the adaptation process the 

effects of isolation wear off and eventually the evolution of the population follows the same course as it 

would under pure indifference.  

 Taking a shorter-run view, and focusing on the mixed proportion, U/N is 29.2 percent after three 

generations under indifference and 41.9 after four. As with one-time immigration, the percentages are 

smaller for the other patterns – 15.5 and 24.3 under partial discrimination, 19.6 and 32.9 under 

adaptation.    

 The rate of immigration plays an important role in determining the population distribution, as 

one would imagine, and as illustrated in Table 6 for the indifference pattern. However the actual results 

are somewhat different from what one might have expected. Lowering the rate reduces the mixed 

proportion somewhat in the earlier generations but increases it in the later ones, and especially in the 

final stable state. Setting ϕ to .10 rather than .20 reduces the U/N percentage from 29.2 to 23.9 after 

three generations but increases it from 58.0 to 77.1 in the stable state. Setting ϕ to .30 increases U/N in 

the first two generations but by the third it lowers it slightly, to 28.2 percent, and thereafter lowers it 

more sharply; in the stable state the percentage falls to 43.7. The reason for the differences between 

early effects and later ones is that it takes time for repeated immigration to build up the immigrant 

population, starting from a base of zero, and then time for the mixing process to take advantage of the 

presence of more immigrants. On the one hand, as the immigrant population continues to grow it forms 

an increasing share of the total population, how fast depending on the rate of new immigrant entrants. 

On the other hand, a larger immigrant population means more opportunities for mixed parenting, thus 

tending to raise the proportion of mixed population, and so reduce the proportion of immigrant 

population. These two offsetting effects eventually strike a balance and produce a stable state.     

11. CONCLUDING REMARKS 

 We have used a much simplified demographic model to provide the results reported in this 

paper – a stylized model, as we have called it. There are many ways in which the model could be 

modified. The number of age groups could be increased and the time interval for a generation reduced; 

immigrants could be assigned fertility and mortality rates different from those of the non-immigrant 

population, and perhaps changing over time as the two populations mix; fertility rates could be set 
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above or below the natural replacement level; heterogeneity of immigrants could be introduced and 

different populations created to accommodate immigrants of different types; different preferential 

parenting patterns could be specified and their effects explored. A reader can no doubt think of other 

possible modifications. These modifications would come at a cost of course in terms of complicating the 

model. Our aim in the present paper has been to provide a “big picture” view of how immigrant and 

non-immigrant populations might interact (or not interact) in the bearing of children of mixed parentage 

and how the overall population composition of a country might change accordingly, in generational 

time. With the “big picture” goal in mind we have kept the model as simple as possible.   
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Table 1. Examples of 𝑃 and 𝐴 Matrices for Three Alternative Preference Patterns: One-Time Immigration 

 

 𝑃 matrix  𝐴 matrix 

         H         M         U          H         M         U 

Indifference        

        H     0.333     0.333     0.333      0.579     0.005     0.417 

        M     0.333     0.333     0.333      0.579     0.005     0.417 

        U     0.333     0.333     0.333      0.579     0.005     0.417 

        

Isolation        

        H     1.000     0.000         --      1.000     0.000         --    

        M     0.000     1.000         --      0.000     1.000         -- 

        U         --         --         --          --         --         -- 

        

Partial disc.        

        H     0.571     0.143     0.286      0.762     0.033     0.205 

        M     0.143     0.571     0.286      0.361     0.252     0.387 

        U     0.333     0.333     0.333      0.584     0.102     0.314 

        

Note: Row entries are for mothers’ population, column entries for fathers’ population. The 𝐴 matrices 
are for one-time immigration calculated after three generations (𝑡 =3) with ϕ = .20. 
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Table 2. Examples of 𝑃 and 𝐴 Matrices for Three Alternative Preference Patterns: Repeated Immigration 

 

 𝑃 matrix  𝐴 matrix 

         H         M         U          H         M         U 

Indifference        

        H     0.333     0.333     0.333      0.335     0.215     0.450 

        M     0.333     0.333     0.333      0.335     0.215     0.450 

        U     0.333     0.333     0.333      0.335     0.215     0.450 

        

Isolation        

        H     1.000     0.000         --      1.000     0.000         -- 

        M     0.000     1.000         --      0.000     1.000         -- 

        U         --         --         --          --         --         -- 

        

Partial disc.        

        H     0.571     0.143     0.286      0.666     0.129     0.205 

        M     0.143     0.571     0.286      0.188     0.582     0.230 

        U     0.333     0.333     0.333      0.418     0.325     0.257 

        

Note: Row entries are for mothers’ population, column entries for fathers’ population. The 𝐴 matrices 
are for repeated immigration calculated after three generations (𝑡 =3) with ϕ = .20. 
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Table 3. Component Populations as Percent of Total: Four Alternative Preference Patterns with  
One-Time Immigration (ϕ = .20) 

 

                                                                     Generation (𝑡) 

       0       1       2       3       4       5       6       7 

Indifference         

      H/N      83.3     79.9     73.5     62.9     48.7     33.6     20.1     10.0 

      M/N      16.7     13.2       9.2       5.1        1.7       0.3        0.0       0.0 

      U/N        0.0       7.0     17.3     32.0      49.5     66.1      79.9     90.0 

Isolation         

      H/N      83.3     83.3     83.3     83.3     83.3     83.3     83.3     83.3 

      M/N      16.7     16.7     16.7     16.7     16.7     16.7     16.7     16.7 

      U/N        0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 

Partial disc.         

      H/N      83.3     81.6     78.1     71.9     63.0     52.0     39.9     27.7 

      M/N      16.7     15.0     12.4       8.9       5.3       2.6       1.1       0.3 

      U/N        0.0       3.4       9.5     19.1     31.7     45.3     59.1     72.0 

Adaptation         

      H/N      83.3     82.2     79.1     72.3     61.7     47.8     32.7     19.3 

      M/N      16.7     15.6     12.8       9.0       5.0       2.1       0.5       0.1 

      U/N        0.0       2.2       8.1     18.8     33.3     50.1     66.8     80.6 

         

Note: All immigration takes place at t = 0. See text and Table 1 or 2 for specifications of 𝑃 matrices for 
indifference, isolation, and partial discrimination. The matrix for adaptation changes linearly from 
isolation at 𝑡 = 0 to indifference at 𝑡 = 3 and remains fixed thereafter.  
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Table 4. Component Populations as Percent of Total: Indifference Preference Pattern with One-Time                                
Immigration (ϕ = .10, .20, .30) 

 

                                                                     Generation (𝑡) 

        0       1       2       3       4       5       6       7 

ϕ = .10               

      H/N      90.9         88.8     84.9     77.8     67.3     53.9     38.8     24.5 

      M/N        9.1           7.0       4.8       2.6       0.8       0.1       0.0       0.0 

      U/N        0.0               4.1     10.3     19.6     32.0     46.1     61.2     75.5 

ϕ = .20             

      H/N      83.3        79.9     73.5     62.9     48.7     33.6     20.1     10.0 

      M/N     16.7     13.2       9.2       5.1       1.7       0.3       0.0       0.0 

      U/N        0.0       7.0     17.3     32.0     49.5     66.1     79.9     90.0 

ϕ = .30         

      H/N      76.9     72.5     64.7     52.4     37.3     23.1     12.1       5.0 

      M/N     23.1     18.6     13.2       7.6       2.8       0.6       0.1       0.0 

      U/N        0.0       8.9     22.1     40.0     59.9     76.3     87.8     95.0 

         

Note: All immigration takes place at 𝑡 = 0. See text and Table 1 or 2 for specification of P matrix for the 
indifference pattern. 
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Table 5. Component Populations as Percent of Total: Alternative Preference Patterns with Repeated                                
Immigration (ϕ = .20) 

 

                                                                     Generation (𝑡) 

        0       1       2       3       4       5       6       7 

Indifference         

      H/N      83.3     66.5     49.4     32.6     18.3       8.6       3.2       0.8 

      M/N      16.7     27.7     34.6     38.3     39.8     40.6     41.0     41.2 

      U/N        0.0       5.8     16.0     29.2     41.9     50.9     55.9     58.0 

Isolation         

      H/N      83.3     69.4     57.9     48.2     40.2     33.5     27.9     23.3 

      M/N     16.7     30.6     42.1     51.8     59.8     66.5     72.1     76.7 

      U/N        0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 

Partial disc.         

      H/N      83.3      68.0     53.7     40.1     27.7     17.2       9.4       4.4 

      M/N     16.7     29.1     38.3     44.4     48.0     49.9     50.5     50.5 

      U/N        0.0       2.9       8.0     15.5     24.3     32.9      40.0     45.1 

Adaptation         

      H/N      83.3     68.5     53.9     38.1     23.5     12.2       5.0       1.5 

      M/N     16.7     29.6     38.3     42.3     43.6     43.4     42.7     42.2 

      U/N        0.0       1.9       7.7     19.6     32.9     44.4     52.3     56.2 

         

Note: Immigration commences at 𝑡 = 0. See text and Table 1 or 2 for specifications of 𝑃 matrices for 
indifference, isolation, and partial discrimination. The matrix for adaptation changes linearly from 
isolation at 𝑡 = 0 to indifference at 𝑡 = 3 and remains fixed thereafter. 
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Table 6. Component Populations as Percent of Total: Indifference Preference Pattern with Repeated                                
Immigration (ϕ = .10, .20, .30) 

 

                                                                     Generation (𝑡) 

        0       1       2       3       4       5       6       7 

ϕ = .10             

      H/N      90.9     80.8     68.8     54.3     38.3     23.5     12.1       5.0 

      M/N        9.1                 15.5     19.6     21.8     22.5     22.7     22.8     22.9 

      U/N        0.0       3.8     11.6     23.9     39.2     53.8     65.0     72.1 

ϕ = .20         

      H/N      83.3     66.5     49.4     32.6     18.3       8.6       3.2       0.8 

      M/N     16.7     27.7     34.6     38.3     39.8     40.6     41.0     41.2 

      U/N        0.0       5.8     16.0     29.2     41.9     50.9     55.9     58.0 

ϕ = .30         

      H/N      76.9     55.8     36.7     21.0     10.0       3.8       1.1       0.2 

      M/N     23.1     37.4     46.2     50.9     53.2     54.6     55.5     56.1 

      U/N        0.0       6.8     17.1     28.2     36.8     41.6     43.5     43.7 

         

Note: Immigration commences at 𝑡 = 0. See text and Table 1 or 2 for specification of 𝑃 matrix for the 
indifference pattern. 
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APPENDIX: THE Q MATRIX AND THE STABLE POPULATION DISTRIBUTION 

 The 𝑄 matrix is shown in Table A1. Age group survival rates, elements (2,1), (3,2), etc., are 

derived from Canadian life tables, as noted in the text; infant/early-childhood survival rates - Sf0 for 

females, Sm0 for males - are derived  also from those tables. The (female) fertility rate F is the natural 

replacement rate consistent with the survival rates and the assumed male/female ratio at birth. The 

latter ratio is set at 1.05 and the female and male proportions, 𝐶𝑓 and 𝐶𝑚, are calculated accordingly. 

(As noted by Hesketh and Xing, 2006, p. 13271, “In the absence of manipulation, the sex ratio at birth is 

remarkably consistent across human populations, with 105 – 107 male births for every 100 female 

births.” Our choice of 1.05 is approximately the long-standing Canadian ratio.)   

 The application of 𝑄 to an initial stable population vector 𝑛𝑡 maintains the stability in 

perpetuity: 𝑛𝑡+𝑘 =  𝑄𝑘𝑛𝑡 =  𝑛𝑡 for all 𝑘 ≥ 0. To obtain F experimentally and the corresponding stable age-

sex distribution we projected a starting population vector repeatedly with alternative values of F for 100 

generations until numerically satisfactory stability was achieved.  (The starting population vector was 

calculated by combining the male and female life table populations.) The resulting stable vector is 

shown in Table A2, in approximate percentage distribution form.   

 

 

 

 

Table A1.The Calibrated Q Matrix for a Stable Population  

 

  Col.1  Col.2  Col.3  Col.4  Col.5  Col.6  Col.7  Col.8  Col.9 Col.10 

Row1      0  Sf0CfF      0      0      0      0      0      0      0      0 

Row2 0.9942      0      0      0      0      0      0      0      0      0 

Row3      0 0.9769      0      0      0      0      0      0      0      0 

Row4      0      0 0.8635      0      0      0      0      0      0      0 

Row5      0      0      0 0.3798      0      0      0      0      0      0 

Row6      0 Sm0CmF      0      0      0      0      0      0      0      0 

Row7      0      0      0      0      0 0.9875      0      0      0      0 

Row8      0      0      0      0      0      0 0.9617      0      0      0 

Row9      0      0      0      0      0      0      0 0.7850      0      0 

Row10          0      0      0      0      0      0      0      0 0.2575      0 

 

Note: Sf0 = 0.9940, Sm0 = 0.9924; Cf  = 0.4878, Cm = 0.5122; F = 2.0745 
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Table A2. The Initial Stable Population Vector (𝑛): Elements as Percentages of Total  

 

Age group Females Males 

     Element   % of total population   Element % of total population 

Children 𝑛1 12.2 𝑛6 12.8 

Young adults 𝑛2 12.1 𝑛7 12.6 

Middle aged 𝑛3 11.9 𝑛8 12.2 

Old 𝑛4 10.2 𝑛9    9.5 

Very old 𝑛5    3.9         𝑛10    2.5 

        

 

 


