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An Economic Approach to Generalizing Findings from

Regression-Discontinuity Designs

Nirav Mehta∗

May 21, 2016

Abstract

Regression-discontinuity (RD) designs estimate treatment effects at a cutoff. This

paper shows what can be learned about average treatment effects for the treated (ATT),

untreated (ATUT), and population (ATE) if the cutoff was chosen to maximize the

net gain from treatment. The ATT must be positive. Without capacity constraints,

the RD estimate bounds the ATT from below and the ATUT from above, implying

bounds for the ATE. Optimality of the cutoff rules out constant treatment effects.

Testable implications of cutoff optimality are derived. Bounds are looser if the capacity

constraint binds. The results are applied to existing RD studies.

∗Department of Economics, University of Western Ontario. Email: nirav.mehta@uwo.ca.
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1 Introduction

Regression-discontinuity (RD) designs are a popular tool for program evaluation due to

the ubiquity of cutoff-based treatment assignment and agnosticism they afford researchers.

However, it is not always clear how best to use such estimates to inform policy. Suppose

an impact evaluation of a program using an RD design found the treatment effect at the

cutoff to be positive, but small. Is this evidence the program should be terminated? Because

treatment effects likely vary, it is useful to extend findings from RD designs to people away

from the cutoff.

The goal of this paper is to demonstrate how combining an RD estimate with a simple

economic model can deliver useful information about treatment effects in certain contexts.

Researchers using RD designs typically focus on treatment effects at the cutoff, an approach

that has the ostensible benefit of imposing minimal structure. Though such estimates can

help decide whether to extend the treatment at the margin, this approach implicitly assumes

that the treatment effect at the cutoff is completely uninformative about treatment effects

elsewhere in the distribution. This assumption may not always be appropriate. This paper

considers a program administrator interested in maximizing the gain from treatment, net of

treatment costs, but who, as is often the case in real-world applications, has been constrained

to assign treatment using a cutoff rule. By imposing structure not on treatment effects, but

on the economic environment, I show that we can learn about important characteristics of the

distribution of treatment effects in cases where there is reason to believe the administrator

has information about the costs and benefits of treatment. That is, the choice of cutoff may

reveal information key to understanding the overall costs and benefits of a program.1

Combining an estimate of the treatment effect at the cutoff with a simple model of cutoff

choice yields many insights. The most basic inference we can draw about treatment effects

is that the average effect of treatment on the treated (ATT) must be positive if the marginal

cost of treatment is positive. There is also a basic testable implication of the model: if

the treatment effect at the cutoff is negative, then we can reject cutoff optimality. Several

results obtain if the cutoff does not reflect a binding capacity constraint. Optimality implies

that the treatment effect is increasing at the cutoff, an implication that can be tested using

results from Dong and Lewbel (2015). Additional results relate the treatment effect at the

cutoff to the distribution of treatment effects. First, the RD estimate at the treatment

cutoff provides a lower bound for the ATT; if this were not true the administrator could

have obtained higher utility by moving the cutoff. Intuitively, the administrator will not

1See Heckman et al. (1997) for a discussion of heterogeneous treatment effects in the context of an
experimental setting. See Heckman and Smith (1998) for a discussion of how to link information about
program benefits with conventional cost-benefit analysis and welfare calculations.
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place the cutoff where the gain from treatment is very large if, as is commonly assumed by

practitioners, treatment effects are smooth. Second, the fact that the administrator chose

not to extend treatment to certain students provides an upper bound for the average effect

of treatment on the untreated (ATUT). These bounds only require the RD estimate, not

actual estimates of the cost of treatment. Additionally, we can rule out a constant treatment

effect, a finding that relates to the literature comparing findings from RD studies with those

from experiments (e.g., Black et al. (2007) and Buddelmeyer and Skoufias (2004)). Finally,

the bounds on the ATT and ATUT provide informative bounds on the average treatment

effect (ATE). Bounds are looser if the chosen cutoff reflects a binding capacity constraint.

However, a new testable implication also emerges: if the program is subsequently expanded

until the constraint no longer binds, the RD estimate will be lower than when it had been

when the constraint was binding.

These results have implications for the use of RD estimates in policymaking. Perhaps

the most striking result is that, because an unconstrained administrator is unlikely to choose

a cutoff where the gain is quite large, one may incorrectly surmise from RD estimates that

certain programs are ineffective and eliminate them, even though in reality they are quite

effective for the treated population. In fact, such a mistake would be more likely for a pro-

gram with a very low marginal cost, holding constant the ATT, because an unconstrained

optimizing administrator would extend treatment to units until the gain, i.e., marginal ben-

efit, equaled this low marginal cost. If the cutoff reflects a binding capacity constraint, then

the RD estimate will exceed the marginal cost of treatment, which may help explain why it

is sometimes difficult to “scale up” successful interventions to larger populations (see, e.g.,

Elmore (1996) and Sternberg et al. (2006)).

To make these findings more concrete, the results are illustrated using three recent empir-

ical applications. The studies used in the applications, Hoekstra (2009), Lindo et al. (2010),

and Bui et al. (2014), all exploit discontinuities in treatment assignment rules to study ques-

tions in the economics of education, and cover a mix of cases where the capacity constraint

likely does and does not bind. I first show that bounds obtained for the sharp RD design

can be extended to the “fuzzy” design used in two of the applications. I also formally test

the necessary conditions of optimality, and find that I cannot reject the model assumptions

that the cutoffs were chosen optimally by informed program administrators.2

There is a long tradition in economics, starting with Roy (1951), of using revealed prefer-

ences to inform empirical work about information unobservable to the econometrician. This

2Applications need not be restricted to the economics of education. For example, the findings from
this paper might apply to a job training program in which the program officer receives a bonus based on
the increase in wages. I reiterate that one could test whether the environment studied in this paper was
applicable for this, or any other context by checking that the treatment effect is nondecreasing at the cutoff.
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paper simply makes clear what we could learn by embedding the choice of treatment cut-

off within a larger decision problem. To most clearly demonstrate what can be learned by

taking into account the administrator’s context, I assume she knows both the distribution

of treatment effects and her cost function. Though for a different context, the insights of

this paper are similar to those in Heckman and Vytlacil (2007), who build on the work of

Björklund and Moffitt (1987) by using the optimality of individual decision-making in the

context of a Roy model and the marginal treatment effect (MTE) to bound treatment effects

for non-marginal units.

By embedding an RD design within a simple economic model, this paper contributes

to several literatures. First, it adds to the literature examining technical features of RD

designs (Hahn et al. (2001), Van der Klaauw (2008)) by demonstrating how inferences from

RD designs can be generalized by using a simple theoretical framework. This paper also

relates to the debate about the usefulness of discontinuity and other LATE estimators of

treatment effects (Heckman et al. (1999), Heckman and Urzua (2010), Imbens (2010)). In

terms of goals, this paper is most similar to Manski and Pepper (2000), which uses monotone

instrumental variables to bound treatment effects. This paper takes a different approach by

assuming optimality of assignment to treatment status, while making minimal assumptions

about the responses of agents to the treatment.

This paper also contributes to a literature seeking to extend results from RD designs.

Dong and Lewbel (2015) show that the differentiability assumptions typically invoked to

estimate RD models can be exploited to estimate the derivative of the treatment effect. In a

similar vein, DiNardo and Lee (2011) show how a Taylor expansion around the cutoff can be

used to estimate the ATT. Angrist and Rokkanen (2013) invoke a conditional independence

assumption to generalize findings from RD studies. Due to the different type of assumption

made (i.e., statistical versus economic), this paper complements their work. There is also an

extensive literature studying the validity of RD designs.3 This paper treats the RD design

as valid and instead examines how findings from such studies can be generalized to other

parts of the population.

Section 2 lays out the model of the administrator’s problem, which serves as the founda-

tion for the results in Section 3. Section 4 illustrates the results using empirical applications.

Section 5 shows how a model of human capital formation can help interpret the results, and

discusses policy implications as well as variations on the informational assumptions made in

this paper.

3This literature is reviewed in Imbens and Lemieux (2008). See Lee and Card (2008) and McCrary
(2008) for examples.
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2 Model

Consider a program administrator who can assign students to a training program. The

administrator knows how effective the program would be for any given student and also

knows the cost of enrolling students in the program. Due to institutional reasons, she is

constrained to choose a cutoff rule for assigning the treatment, above which students are

enrolled. The choice of cutoff-based treatment assignment captures the fact that many real-

world policies are discrete in nature (Ferrall and Shearer (1999)).

There is a measure one of students, uniformly distributed over [0, 1]. The students are

indexed by x ∈ [0, 1]; this index doubles as the running variable in the discontinuity design.

Let τ(x) = 1 if x is given the treatment and 0 otherwise. The administrator is constrained

to choose a cutoff rule where τ(x) = 1 if and only if x ≥ κ for some κ ∈ (0, 1).4 To

simplify exposition, I assume a “sharp” RD design and perfect compliance, which means that

students with indices of κ or greater receive the treatment (i.e., participate in the program)

and students with indices less than κ don’t receive the treatment (i.e., don’t participate

in the program).5 Let κ∗ denote the treatment cutoff chosen by the administrator. The

measure of students receiving treatment is µ =
∫ 1

0
τ(x)dx. The administrator faces a cost

of treating µ students, c(µ), which may capture an implicit budget constraint. Results from

the administrator’s unconstrained problem, the model for which is presented in this section,

are presented in Section 3.1. Section 3.2 introduces capacity constraints and then analyzes

that problem.

Let Yτ (x) denote student x’s outcome under treatment group τ . For example, this may be

the wage earned as a function of being enrolled in a training program. The treatment effect

is ∆(x) ≡ Y1(x)− Y0(x), and, as is made explicit shortly in Assumption 1, is known by the

administrator. The administrator need not be perfectly informed about students’ potential

outcomes; so long as the administrator has an unbiased signal of ∆(x), uncertainty about

treatment effects does not affect the analysis.6 In general, there may be multiple students

with the index x, and a distribution of treatment effects among these students at x. In this

case, one could think of ∆(x) as the expected gain from treating students at x, i.e. ∆(x) =∫
∆(z)f(z|x)dz, where f(·) describes heterogeneity at x. As is common in studies employing

4If the administrator could choose precisely which x ∈ [0, 1] to treat we can make the inference that the
gain from serving those students was at least as large as the marginal cost of serving them, point-wise. This
stronger informational assumption would imply that gains were positive for all treated students, as opposed
to positive on average. Therefore, we could also bound from below the share of students who would gain

from treatment:
∫ 1

0
1{∆(x) > 0}dx ≥ µ. This would be relevant if, say, the population voted on whether to

implement the treatment.
5Section 4 shows that the theoretical results are identical under a “fuzzy” design where, instead of perfect

compliance, the probability of participation discontinuously changes at the treatment cutoff.
6This is shown in Appendix B.
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discontinuity designs, the stable-unit-treatment-value-assumption (SUTVA) is maintained

here (Rubin (1980)), ruling out general equilibrium effects and other interactions between

other units’ treatment status and one’s own treatment effect, such as endogenous social

interactions.

The fundamental problem of causal inference is that we only observe each student in one

treatment condition, making it difficult to recover the entire function ∆(·). What can we say

about ∆(·) knowing 1) that κ∗, the treatment cutoff, was chosen by the administrator and

2) the value of ∆(κ∗), from a RD design? Though I find that we can not say much about

∆(·) for particular x who are not at the cutoff, we will be able to bound averages of ∆(·)
over different intervals, listed in Definition 1.

Definition 1 (Treatment effects of interest). I focus on the:

• Average Effect of Treatment on the Treated (ATT):
∫ 1

κ∗
∆(x)
1−κ∗dx,

• Average Effect of Treatment on the Untreated (ATUT):
∫ κ∗

0
∆(x)
κ∗
dx, and

• Average Treatment Effect (ATE):
∫ 1

0
∆(x)dx.

The administrator’s problem is to choose a cutoff to maximize the total treatment effect,

net treatment cost:7

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) , (1)

where β measures how much the administrator values the effect of the program in terms of

the cost of treatment. Though in principle identified when the cost function is known to the

researcher, β is normalized to one to simplify exposition. The administrator has an outside

option of zero. This objective function is similar to those studied in Manski (2003, 2004,

2011), where a utilitarian social planner takes an action to maximize expected welfare (i.e.,

the gain net the cost of treatment), as well as those in studies of statistical discrimination

such as Knowles et al. (2001), Anwar and Fang (2006), and Brock et al. (2011), where police

officers face a cost of pulling over motorists to maximize expected hit rates. The economic

rationale for studying a utilitarian social planner is that a system of lump-sum transfers

could then be designed to redistribute total output in such a manner as the social planner

saw fit; that is, the utilitarian objective corresponds to the efficient allocation.8

7For an example of a slightly different objective function, see Heinrich et al. (2002), who study treatment
decisions when administrators face performance standards.

8In the baseline case presented here, the administrator is a utilitarian who weighs gains for all students
equally. See Appendix C for a case where gains are not weighed equally; the results derived in Section 3.1
are also obtained there.
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Assumption 1. The following assumptions about costs and benefits of treatment are main-

tained throughout this section:

(i) The cost of treatment is known by the administrator, and is strictly increasing and

linear in the number of units treated, i.e. c(µ) = χµ, where χ = c′(·) > 0 denotes the

constant marginal cost of treatment.

(ii) Treatment effects ∆(·) are differentiable in x and known by the administrator.

(iii) There exist finite lower and upper bounds of ∆(·). Denote these by ∆ ∈ R and ∆ ∈ R,

respectively.

Assumption 1(i) implies that the marginal cost of providing treatment is known and

strictly positive; the assumption of a linear cost function is made to simplify exposition.

The assumption that the cost function is linear is also made in Manski (2011)’s analysis

of optimal treatment choices, who assumes costs are separable across treated units. All

of the following results would obtain in the more general case where the marginal cost of

treatment was nonincreasing in µ, i.e., where the cost of treatment is weakly concave in

µ (see Appendix D for details).9 The first part of Assumption 1(ii), i.e. differentiability of

∆(·), is typically invoked in applications of RD designs, which control for a smooth (typically

polynomial or smoothed non-parametric) function of the running variable.10 The second part

of Assumption 1(ii), that ∆(·) is known by the administrator, produces a testable implication

(as is shown in the next section). Assumption 1(iii) means that the set of outcomes Yτ (·) has

finite support, which makes sense for outcomes such as wages, test scores, or probabilities.11

3 Results

Section 3.1 develops results for the administrator’s problem when there is no capacity con-

straint. Section 3.2 develops results for the administrator’s problem in the presence of a

capacity constraint.

9If one thought marginal costs were increasing in a context of interest, the bounds would have to be
adjusted accordingly (see Appendix D for details).

10Note that ∆(·) only needs to be smooth local to the chosen cutoff. The assumption that it is globally
smooth is only made to simplify exposition.

11Note that Yτ (·) may contain negative values, which may capture a negative treatment effect or a positive
opportunity cost of taking an ineffective treatment.
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3.1 Results without capacity constraints

The goal of this paper is to link the chosen cutoff κ∗ to treatment effects ∆(·). Therefore, I

first provide necessary and sufficient conditions to characterize κ∗, in terms of ∆(·) and the

cost function c(µ) = χµ.

Condition 1 (Necessity). The following necessary conditions must hold for κ∗:

(i) MB=MC: ∆(κ∗) = c′(1− κ∗) = χ

(ii) Increasing MB: ∆′(κ∗) ≥ 0.

Proof. Differentiate the administrator’s problem (1) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator

would gain by not treating students just above κ∗, thereby obtaining (ii).

Condition 1(i) will play a key role in bounding treatment effects, and also provides

testable implication of cutoff optimality, in that a negative LATE at the cutoff (i.e., ∆(κ∗) <

0) would contradict Assumption 1, because χ > 0. Condition 1(ii) is another testable

implication of the model’s assumptions that the administrator is acting optimally and with

knowledge of ∆(·). It can be tested using methods developed in Dong and Lewbel (2015).

That is, the model’s maintained Assumption 1 would be falsified if one rejected that ∆′(κ∗) ≥
0. Condition 1 need not be sufficient; there can be multiple cutoffs satisfying it.

Assumption 2 (Unique maximand). κ∗ uniquely maximizes the administrator’s problem

(1).

Assumption 2 implies that ∆(·) crosses c′(·) finitely many times and is made to simplify

exposition. Note that uniqueness of κ∗ implies that Condition 1(ii) should be strict (i.e.

∆′(κ∗) > 0). To guarantee uniqueness, inspection of (1) implies two additional conditions

sufficient for characterizing κ∗.

Condition 2 (Sufficiency). The fact the program was implemented implies that the total

gain from treating those students was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗) = χ(1− κ∗). (2)

The fact the program was not extended to κ̂ < κ∗ implies that treating these students would

be sub-optimal, i.e.:

κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗) = χ(κ∗ − κ̂). (3)

8



Intuitively, Condition 2 uses revealed preferences to make statements about the gains

and costs of treating students who are either treated or untreated. It must be worthwhile

to have treated the treated students, and it could not have been worthwhile to treat the

untreated. Two corollaries immediately follow.

Corollary 1. ∆(·) cannot be constant.

Corollary 2. ∆(·) is not on average decreasing in x.

Proof. Condition 1(ii) already rules out ∆(·) decreasing at κ∗. Consider the behavior of ∆(·)
for positive measures of students away from the cutoff. The second part of Condition 2 says

that it must be the case that
∫ κ∗
κ̂

(∆(x)− χ) dx < 0. Moreover, we know that ∆(κ∗) = χ.

Therefore, if ∆(·) were on average decreasing in x, this inequality would be violated.

It is often said that there is no reason to believe treatment effects would be the same

for students away from the cutoff, though this notion is not always reflected in empirical

implementations. Corollary 1 strengthens this statement by ruling out constant treatment

effects. Corollary 2 tells us that the ATT will be larger than the ATUT. Intuitively, if the

administrator has decided to provide the treatment to students above, as opposed to below,

κ∗, the former must have gained more from the treatment.

Corollaries 1-2 are fairly weak statements about the global behavior of ∆(·). Therefore,

I next examine what can be deduced about averages of treatment effects for subsets of

students.

Proposition 1. The ATT is bounded below by the LATE at the treatment cutoff.

Proof. Divide (2) by the measure of treated students (1−κ∗) and combine this with Condition

1(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ χ(1− κ∗)
1− κ∗

= χ = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.

A corollary immediately follows.

Corollary 3. The ATT is positive.

Proof. This follows directly from Proposition 1 because χ > 0, by Assumption 1(i).
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Figure 1: Example ∆(·) with optimal cutoff κ∗

Proposition 1 shows that the discontinuity-based estimate provides a lower bound for the

average effect of treatment on the treated. In other words, estimates from discontinuity-based

designs will understate the effect of treatment on the treated. Intuitively, the administrator

chooses κ∗ to set the marginal benefit from providing the treatment equal to the marginal

cost, which is lower than the average cost of providing treatment to treated students (i.e., the

marginal cost). The fact that the administrator chose to implement the program, however,

implies that the gain to treating those students must have been at least as large as the total

cost of treating them. Note that the level of the marginal cost does not need to be known

by the researcher.

However, although we have quite a bit of information about averages of treatment effects

∆(·) over some intervals of interest, we cannot make statements about ∆(x) for students

x 6= κ∗. Figure 1 plots an example treatment effect function ∆(x) (dashed black curve)

and the marginal cost of treatment (solid red horizontal line) against the student index x,

which ranges from 0 to 1, and the optimal cutoff κ∗ (dotted blue vertical line). This figure

shows a case satisfying Conditions 1-2 where there are also untreated students with gains

greater than their cost of treatment and treated students with gains smaller than their cost

of treatment. Although Corollary 2 rules out a decreasing treatment effect, it could be the
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case that ∆(·) increases for some x < κ∗. Therefore, it is useful to make a statement about

the average effect of extending treatment to the untreated. In particular, we can bound

averages of ∆(·) itself for subsets of untreated students.

Proposition 2. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗.

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ < κ∗. Let µ̂ be

the measure of students under consideration and split (3) into two parts at x̂ and rearrange

terms:
x̂∫

x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < χ(κ∗−(x̂−µ̂))−∆ (κ∗ − x̂) ,

(4)

where the implication follows from Assumption 1(iii).

The right hand side of the expression in Proposition 2 provides an upper bound for the

gain from treating students x ∈ [x̂ − µ̂, x̂]. Because we do not know ∆(·), by assuming the

worst possible treatment effect (∆) we can find an upper bound for how large it could be for

a measure of students µ̂ and satisfying the individual rationality constraint from Condition 2.

Intuitively, this upper bound grows the further below the cutoff we go. To gain more intuition

for Proposition 2, rearrange (4) and divide by the measure of students under consideration

µ̂ to obtain:

x̂∫
x̂−µ̂

∆(x)

µ̂
dx < (χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ. (5)

The left side of (5) is the average treatment effect among students x ∈ [x̂ − µ̂, x̂]. First,

consider the extreme scenario where we want an upper bound for the treatment effect for

student x̂, ∆(x̂). Take the limit of (5) as the additional treated students go to zero:

lim
µ̂→0

 x̂∫
x̂−µ̂

∆(x)

µ̂
dx


︸ ︷︷ ︸

∆(x̂)

< lim
µ̂→0

(
(χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ

)
=∞,

i.e. the expression becomes completely uninformative when we evaluate it for measure zero

of students to bound ∆(·) at a point. However, consider the other extreme where µ̂ = x̂, i.e.
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Figure 2: Upper bounds for the remaining ATUT, for different values of ∆

the administrator is considering extending treatment to all students below x̂:

x̂∫
0

∆(x)

x̂
dx < (χ−∆)

(
κ∗

x̂

)
+ ∆. (6)

Equation (6) says that the upper bound on the average treatment effect among students

x ≤ x̂ (the left side) grows the further x̂ goes below κ∗, the higher is the marginal cost χ,

and the lower is the lower bound ∆. This relationship is depicted in Figure 2, which overlays

the solid black curves showing the upper bound for the average gain to treating students

x < x̂ on top of Figure 1, for different values of ∆.

Setting the measure of students to whom the treatment is extended equal to κ∗ provides

the following result about the ATUT.

Corollary 4. The ATUT is bounded above by the LATE at the treatment cutoff.

Proof. Let x̂ = µ̂ = κ∗ in (4) and divide through by κ∗ to obtain the result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
c(1)− c(1− κ∗)

κ∗
= χ︸ ︷︷ ︸

>0,<∞

, (7)
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where the right hand side is positive from Assumption 1(i).

Analogously to the upper bound for the ATT, although Corollary 4 bounds the average

of treatment effects for all untreated students, there is no informative (i.e. greater than ∆)

lower bound.

Finally, the next result shows how the prior results can be used to bound the average

treatment effect (ATE).

Corollary 5. The ATE has informative bounds.

Proof. To form the lower bound for the ATE, note that measure κ∗ students are untreated,

and, by Assumption 1(iii), the treatment effect for each student cannot be worse than ∆.

Analogously, 1 − κ∗ students are treated, and (2) implies the ATT is no smaller than χ.

Integrate and sum the two parts to form ∆LB
κ∗χ ≡ ∆κ∗+χ(1−κ∗). To form the upper bound

for the ATE, note that (3) implies that the ATUT is no larger than χ. By Assumption 1(iii),

the treatment effect for any treated student cannot exceed ∆. Integrate and sum to form

∆UB
κ∗χ ≡ χκ∗ + ∆(1− κ∗).

Corollary 5 shows that higher values of κ∗ tighten the upper bound on the ATE while

loosening the lower bound on the ATE. Intuitively, treating fewer students increases the

share of untreated students, who have an upper bound of χ, while increasing the share of

students with very low values of ∆(·), i.e., ∆.

To summarize, optimality of the treatment cutoff κ∗ implies a lower bound on the average

effect of treatment on the treated (ATT) and an upper bound on the average effect of

treatment on the untreated (ATUT). The average treatment effect for the population (ATE)

combines the above bounds.12 Put another way, we can exploit information revealed by the

optimizing behavior of the administrator to extrapolate from the LATE at the treatment

cutoff, which is often available but can apply only to measure zero of the population, to

obtain bounds for the treated, untreated, and the entire population. Optimality further

implies that ATUT < ∆(κ∗) ≤ ATT. Moreover, we can contrast what can be said about

∆(·) for students with indices x > κ∗ and ∆(·) for student with indices x < κ∗. Because the

treatment is being provided to all students in the treated group, we cannot separate how

treatment effects accumulate for students x > κ∗. But the fact that the administrator is not

choosing to extend (i.e., decrease) the cutoff to student x̂ < κ∗ provides us information for

how large treatment effects can possibly be for students x ∈ [x̂, κ∗).

12Most bounds remain the same if, instead of being constant, the marginal cost of treatment is decreasing.
Bounds for the ATE are looser when the marginal cost of providing treatment is increasing and tighter when
it is decreasing. Results are in Appendix D.
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3.2 Results with capacity constraints

Suppose now that the administrator faces a capacity constraint, µ. Then, the administrator

solves

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) (1̄)

s.t. 1− κ̃ ≤ µ,

where we continue to maintain Assumptions 1-2 from problem (1).

If the desired (i.e., unconstrained) measure of treated students does not exceed capacity,

i.e., µ∗(≡ 1 − κ∗) ≤ µ, then the constraint does not bind, and the optimal cutoff κ∗ and

resulting analysis are unaffected. This means the results from Section 3.1 apply here as

well. By definition, if the capacity constraint is binding the measure of students treated

must be strictly less than the desired measure of students treated, meaning the optimal

cutoff and results may differ from those in Section 3.1. Let κ∗ denote the binding solution

to the constrained problem (1̄). This section focuses on averages of ∆(·) when the capacity

constraint binds, defined as follows.

Definition 1̄ (Treatment effects of interest). When the capacity constraint is binding, define:

• Average Effect of Treatment on the Treated (ATT):
∫ 1

κ∗
∆(x)
1−κ∗dx,

• Average Effect of Treatment on the Untreated (ATUT):
∫ κ∗

0
∆(x)
κ∗
dx, and

• Average Treatment Effect (ATE):
∫ 1

0
∆(x)dx.

The conditional treatment effects in Definition 1̄ differ from those in Definition 1 because

they use the capacity-constrained-optimal cutoff κ∗. However, the capacity-constrained ATE

is the same as the unconstrained one, i.e., ATE = ATE.

Begin by characterizing the constrained-optimal cutoff, κ∗. Condition 1 must be adapted,

resulting in Condition 1̄.

Condition 1̄ (Necessity). If κ∗ solves the administrator’s capacity-constrained problem (1̄),

then ∆(κ∗) > χ.

Proof. Ignoring the measure-zero case(s) where ∆(κ∗) = χ, this follows from Condition 1(i)

and the fact that the capacity constraint is binding, i.e., the administrator would have liked

to treat more students.
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Condition 1̄ has the same testable implication as that derived from Condition 1(i)—that

the model can be falsified if the RD estimate is negative. Note, however, that Condition 1(ii),

that the treatment effect derivative is nondecreasing at the cutoff, need not apply when the

constraint binds. However, an alternative testable implication of optimality can be deduced

by combining Condition 1(i) with Condition 1̄: ∆(κ∗) > ∆(κ∗). This could be tested by

using data from two years where one thought the model parameters ∆(·) and χ remained

constant, one where the constraint was binding (allowing estimation of ∆(κ∗)) and another

where the administrator’s budget increased, say, due to a large RD estimate stemming from

the binding constraint in the first year (allowing estimation of ∆(κ∗)). What may look like a

lack of “scale-up” for a program may simply reflect that the marginal benefit at the treatment

cutoff is smaller if the constraint is no longer binding. Further note that one could use the

variation in capacity constraints to trace out ∆(·). Interestingly, these last two results are

only implementable if the constraint binds in at least one period—otherwise the cutoff, and

resulting LATE, would be the same for both periods. This is perhaps counterintuitive, as

we may actually learn more when the constraint binds in at least one year.

Condition 2̄ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those students was larger than the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx > χ(1− κ∗), (2̄)

where the strict inequality follows from combining Condition 1̄ with (2), from Condition 2.

Note that Condition 2̄ does not have an analogue to the second part of Condition 2. This

is because the administrator would have wanted to treat the inframarginal students (i.e.,

those between the unconstrained- and constrained-optimal cutoffs); otherwise the constraint

would not have been binding.

Next, I examine what can be learned about ∆(·) for subsets of students, starting with

the treated.

Corollary 3̄. The ATT is positive.

Proof. Because the marginal cost of treatment is positive (Assumption 1(i)), (2̄) implies that

1∫
κ∗

∆(x)dx > χ(1− κ∗) > 0.
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Divide through by (1− κ∗) to obtain the result:

1∫
κ∗

∆(x)

(1− κ∗)
dx

︸ ︷︷ ︸
ATT

> χ︸︷︷︸
avg. cost of treating treated

> 0.

Corollary 3̄ shows that we can bound the ATT from below by zero. This bound is looser

than that for the ATT (i.e., the unconstrained analogue of ATT). This because, though we

know that both ∆(κ∗) and the ATT are nonnegative, we do not have enough information to

order them. This is in contrast to Proposition 1, which showed that the unconstrained RD

estimate bounded the unconstrained ATT from below.13 For example, consider ∆(·) such

that ∆′(x) < 0, for x ≥ κ∗; in this case the RD estimate would bound the ATT from above.

However, we could use (2̄) to tighten this bound, if information about χ, the marginal cost

of treatment, were available.14

Next, I focus on what can be learned about ∆(·) for subsets of untreated students.

Proposition 2̄. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗,

if κ∗ is known and a < κ∗.

Proof. If b ≤ κ∗, then by Proposition 2 the upper bound is χ(κ∗ − a) − ∆(κ∗ − b); if χ is

unknown then apply Condition 1̄ to form the upper bound ∆(κ∗)(κ∗ − a)−∆(κ∗ − b).
If b > κ∗, then we can split the integral into two parts:

∫ κ∗
a

∆(x)dx, which, applying the

result for b ≤ κ∗, has an upper bound of ∆(κ∗)(κ∗− a), and
∫ b
κ∗

∆(x)dx, which has an upper

bound of ∆(b− κ∗). Combine to form the upper bound ∆(κ∗)(κ∗ − a) + ∆(b− κ∗).
Note that if a ≥ κ∗, then all students x ∈ [a, b] are inframarginal, meaning the upper

bound would be ∆(b− a), i.e., uninformative.

Proposition 2̄ applies to subsets of untreated students, and can be applied to two subsets

of particular interest.

Corollary 4̄. Upper bounds can be obtained for treatment effects for groups of untreated

students:

(i) The ATUT is bounded from above by the LATE at the treatment cutoff.

(ii) There is an informative upper bound for the ATUT, if κ∗ is known.

13Also note that ATT is bounded below by the ATT. However, as we do not know the ATT—at best, we
would know its lower bound if the constraint did not bind—this result is of limited use.

14Assuming β was also known.
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Proof. Part (i) follows by combining Condition 1̄ with Corollary 4 and Condition 1(i).

To show part (ii), apply Proposition 2̄, setting a = 0 and b = κ∗, and divide by κ∗, the

measure of untreated students, obtaining (κ∗/κ∗)∆(κ∗) + (κ∗ − κ∗)/κ∗)∆.

Corollary 4̄(i) is the analogue of Corollary 4, delivering an upper bound to the uncon-

strained ATUT. Corollary 4̄(ii) shows that knowledge of how severe the capacity constraint

is, i.e., (κ∗/κ∗), tightens the upper bound on the ATUT. The extent to which it can be

tightened depends on κ∗, but this bound is still looser than in the unconstrained case, be-

cause ∆(κ∗) > ∆(κ∗). Intuitively, if the desired measure of treated students is not known

then we would have to set κ∗ = 0, to maximize the upper bound, returning the uninfor-

mative upper bound of ∆. It is reasonable to think we may be able to determine how

severely the constraint binds in real-world applications, even when we don’t know κ∗ or

the marginal cost of treatment. Specifically, one could compare an administrator’s budget

request with the actual amount expended and exploit the fact that the fraction, (κ∗/κ∗),

which is required to compute the bound, is a known function of the ratio of requested and

realized budgets, because the unknown marginal cost of treatment cancels when computing

the requested/realized budget ratio.15

Finally, we can combine the previous results to bound the ATE.

Corollary 5̄. The ATE has an informative lower bound when the capacity constraint binds,

if ∆ < 0. If κ∗ is known, then the ATE also has an informative upper bound.

Proof. By Corollary 3̄, the lower bound for students x ≥ κ∗ is 0. This increases the ATE

lower bound from ∆ to ∆κ∗.

If κ∗ is known, then by Corollary 4̄(ii) the upper bound on the total gain for the untreated

is κ∗∆(κ∗)+(κ∗−κ∗)∆, reducing the ATE upper bound from ∆ to κ∗∆(κ∗)+(1−κ∗)∆.

There is no informative upper bound (i.e., less than ∆) for the ATE if κ∗ is unknown.

Note that, if χ and κ∗ are known, then the ATE bounds would be the same as in Section

3.1.

In summary, bounds on ∆(·) are looser when the capacity constraint binds. The lower

bound on the ATT is lower—it is zero instead of the RD-estimate LATE. The RD estimate

bounds the ATUT, but not the ATUT, from above. Knowledge of how severe the capacity

constraint is—which in principle could be obtained by comparing budget requests and re-

alized allocations—significantly tightens the upper bound on the ATUT and, consequently,

15Let the requested budget be B∗ = (1 − κ∗)χ and the realized budget be B
∗

= (1 − κ∗)χ. We can

compute B∗/B
∗

= ((1−κ∗)χ)/((1−κ∗)χ) = (1−κ∗)/(1−κ∗), which permits the solution for κ∗, even when
marginal cost χ is unknown.
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the ATE. Additionally, though the derivative-based test of cutoff optimality does not apply

when the constraint binds, the nonnegative LATE testable implication still does apply and

there is a new testable implication of optimality (which could be applied if one had access to

data for binding and non-binding periods), and a new policy-relevant result that may help

explain why it is difficult to “scale up” successful programs to larger populations (see, e.g.,

Elmore (1996) and Sternberg et al. (2006)).

4 Applications

This section shows how this paper’s theoretical results can be used to extend findings from

regression-discontinuity designs. There are three applications, all of which happen to be in

the economics of education and examine contexts where it seems reasonable to expect that

program administrators had information about the gains and costs of treatment.

Recall that the administrator’s objective depends on the total gain from treatment in the

baseline model presented in Section 2. This specification is a good fit for many applications

of interest, in particular, the applications studied here, which all study either wages directly,

or measures of human capital, such as GPA or standardized test scores. This is because,

given a rental rate for human capital, maximizing human capital, maximizing wages, and

maximizing output may be viewed as equivalent, meaning the objective considered here

corresponds to the efficient allocation.

To most fully illustrate the theoretical results, I first examine a context where it seems

likely that the administrator’s capacity constraint binds; this is followed by two contexts

where the constraint is likely not binding. I check the model implication that the treatment

effect at the cutoff is nonnegative for all three applications; this test follows from Condition

1(i) when the capacity constraint is not binding and Condition 1̄ when the constraint does

bind. For the latter two applications, I also conduct the test of model assumptions implied

by Condition 1(ii), i.e., that the treatment effect is increasing at the cutoff.16 Reassuringly,

we cannot reject that the cutoff was chosen optimally by an informed administrator in each

of the (five) falsification tests.

Two of the studies employ fuzzy designs, so I first show how the earlier results pertaining

to sharp designs generalize here.17 Some new notation is necessary. Let ω(x) denote the

administrator’s intended treatment group for student with index x.18 For example, if students

16Recall that this condition does not hold for the binding-constraint case.
17These results are derived for when the capacity constraint is not binding; analogous results obtain when

the constraint binds.
18Recall that students are distributed uniformly over [0, 1].
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with indices x above cutoff κ are targeted for a program, then ω(x) = 1 for x ≥ κ and

ω(x) = 0 for x < κ. The probability of being treated (τ = 1) depends on ω according to

ρω = Pr{τ = 1|ω}.19 In a fuzzy design, 0 ≤ ρ0 < ρ1 < 1, i.e. not all students targeted for

treatment are treated. It may also be the case that some students not targeted for treatment

(in the above example, a student with index x < κ), receive the treatment, in which case

ρ0 > 0. The fuzzy design requires the probability of treatment to increase discontinuously

at the cutoff κ (Hahn et al. (2001)). This notation can also capture a sharp design when

0 = ρ0 < ρ1 = 1. In a fuzzy design, the administrator chooses the treatment cutoff κ to

maximize her expected objective:20

max
κ̃

ρ0

κ̃∫
0

(∆(x)− χ)dx+ ρ1

1∫
κ̃

(∆(x)− χ)dx)

 . (8)

The optimal cutoff κ∗ is characterized by ρ1∆(κ∗) = ρ1χ, implying that ∆(κ∗) = χ. Note

that this condition is identical to Condition 1(i) for the sharp design. Moreover, multiplying

through by ρω shows that the fuzzy design returns exactly the same bounds for the ATT

and ATUT as does the sharp design when ρω are constant within treatment status.21

The tests of model assumptions can be described using a sharp design without any loss

of generality.22 Suppose students with index x ≥ κ∗ were treated. In this context, the

assumptions that the administrator knows ∆(·) and is acting optimally would be rejected

if we found that either ∆′(κ∗) < 0, because the administrator would gain by increasing the

cutoff and avoid treating inframarginal students with gains lower than that for students at

the cutoff, or ∆(κ∗) < 0, because the marginal cost of treatment is positive, contradicting

optimality of treating students at κ∗. As commonly assumed in regression-discontinuity

designs, assume the expected outcome for a student with index x, Yτ(x)(x), depends on

treatment status τ(x) and the running variable (x−κ∗) according to the following statistical

relationship:23

Yτ(x)(x) = α0 + α1(x− κ∗) + α2τ(x) + α3τ(x)(x− κ∗),
19That is, treatment probability only depends on x through ω(x).
20As was the case in the theoretical model, β has been set to 1. Recall that the marginal costs of treatment

are assumed to be constant in the model. Though estimates of cost functions are not widely available, I was
able to find evidence supporting this assumption for the applications studying university outcomes. This
evidence is presented on page 21.

21Appendix A shows results when treatment probabilities ρω depend on x.
22Dong and Lewbel (2015) show that a similar result holds for fuzzy designs. In particular, the derivative

sign test implied by Condition 1(ii) is the same.
23This relationship only needs to be approximately true in a neighborhood around κ for the argument

made here. However, if this were instead thought to be a reasonable approximation to the global behavior of
Yτ(x)(x), and, therefore, ∆(x), then Appendix B shows that inclusion of an additive independent error ε does
not affect the choice of κ∗ or theoretical results. Some studies also use polynomial functions of the running
variable, which affects how to estimate ∆′(κ∗) but, does not affect the test results for these applications.
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and the observed outcome for student i, Y̌i, measures Yτ(xi)(xi) with an independent mea-

surement error εi according to:

Y̌i = Yτ(x)(x) + εi = α0 + α1(x− κ∗) + α2τ(x) + α3τ(x)(x− κ∗) + εi. (9)

The estimate of the LATE at the treatment cutoff is ∆̂(κ∗) = α̂2. Dong and Lewbel (2015)

show that the estimate of the treatment effect derivative at the cutoff here would be ∆̂′(κ∗) =

α̂3. Therefore, the model has a testable implication, i.e., is falsifiable, because using α̂3 to

test the null hypothesis H0 : α3 ≥ 0, versus the alternative hypothesis H1 : α3 < 0, amounts

to a test of the model assumptions. Evidence strong enough to reject the null that α3 ≥ 0

would cast doubt on the validity of Assumption 1. Moreover, evidence strong enough to

reject the null hypothesis that α2 ≥ 0 would also cast doubt on the validity of the model

assumptions.

4.1 Hoekstra (2009): “The Effect of Attending the Flagship State

University on Earnings: A Discontinuity-based Approach”

This section applies this paper’s results to Hoekstra (2009), who studies the effect of at-

tending a flagship public university on subsequent mean wages for a sample of white males

between the ages of 28 and 33. The objective considered in (1), where the administrator

seeks to maximize the amount gained (i.e., increase in wages) net cost of treatment (i.e.,

having a student attend a high-quality public university) may be a good fit for this environ-

ment because a public university likely has the education of the state’s denizens at heart,

especially if these students become more productive and stay in the state upon graduation

( 70% of applicants to the flagship eventually earn wages in the same state).24

Hoekstra uses a fuzzy design in which treatment was targeted to students at or above

a covariate-adjusted SAT score, i.e. ω(x) = 1 ⇔ x ≥ κ∗. The intended treated students

(ω(x) = 1) were offered admission to the flagship and, for the most part, attended it. The in-

tended untreated students (ω(x) = 0) represent a combination of students who do not pursue

any higher education, students who attend some other institution of higher education, and a

small number of students who attend the flagship university, though the author provides ev-

idence that most likely attend another institution. Let Y0(x) and Y1(x) denote the expected

24Epple et al. (2006) find that a model where universities optimize student achievement can explain the
data. Because students’ achievement measures their human capital, which itself augments wages, one could
therefore view universities as wanting to maximize future wages. Similarly, maximizing students’ completing
college or finding (or keeping) jobs would naturally be captured by having the administrator maximize
wages, as these schooling and labor market outcomes are all positively related to wages. That is, though it
admittedly abstracts from alternative dimensions universities may care about, modeling public universities
as maximizing student wages may reasonably approximate their objectives.
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wage for student with index x in treatment group τ . Variation in ∆(x) ≡ Y1(x)−Y0(x) then

represents the oft-studied heterogeneity in the returns to education, for the case of selective

public universities. The inferential problem with extrapolating from the RD estimate is that

the gain may vary between students.

Research by Epple et al. (2006) shows that universities admit students until their capacity

constraints bind, meaning it is likely that Hoekstra (2009) was implemented under a binding

capacity constraint. The marginal cost of treatment is assumed to be constant and, as in the

model, is denoted by χ. This assumption has supported by Izadi et al. (2002), who estimate

a CES cost function for universities. Based on parameter estimates provided in that paper,

one cannot reject that university cost functions are linear in the number of students served.25

This assumption is also supported by other work, such as Epple et al. (2006), who estimate

a model of the higher education market for private colleges and do not find evidence that

the cost of serving students is nonlinear.26

Recall that the fuzzy design returns exactly the same bounds as does the sharp design,

when ρω are constant within treatment status. Therefore, the lower bound for the average

effect of treatment on the treated (ATT) and upper bound for the average effect of treatment

on the untreated (ATUT) developed earlier also apply here. The main result reported in

Hoekstra (2009) is that attending the flagship university increases log wages by 20% for

students at the treatment cutoff.27 This positive estimate means this context is consistent

with (constrained-) optimality of the cutoff, implied by Condition 1̄; that is, we cannot

falsify the model assumptions. Note that when we use the bounds for the ATT when the

capacity constraint binds, we can only surmise that the effect of treatment on the treated is

positive, i.e., ATT > 0. As noted by Hoekstra, this estimate seems fairly high; for example,

Ashenfelter and Rouse (1998) estimate that an additional year of schooling increases wages

by 9%, while Behrman et al. (1996) find that an additional year of schooling increases wages

by 6-8% and that there is a 20% increase in wages from attending a large public college

versus only graduating from high school. However, the relatively large estimated effect in

Hoekstra (2009) are quite intuitive when viewed through the lens of Condition 1̄ (that the

RD estimate exceeds the marginal cost of treatment when the capacity constraint binds).

25Specifically, I test whether the second derivative of the cost of serving arts and science students is zero
in the number of that type of student, and find that even an 80% confidence interval for the second derivative
contains zero for both student types. Izadi et al. (2002) use data from the UK.

26See Table II on page 907 of Epple et al. (2006).
27Conservatively, this corresponds to an average increase of $8,000 in the annual wage. Based on corre-

spondence with the author, the average baseline annual income for the untreated was between $40,000 and
$50,000.
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4.2 Lindo et al. (2010): “Ability, Gender, and Performance Stan-

dards: Evidence from Academic Probation”

This section applies this paper’s results to Lindo et al. (2010), which studies how being

placed on academic probation affects subsequent outcomes for university students. They

exploit a sharp discontinuity design, where students with GPAs below a chosen cutoff are

assigned to academic probation, i.e., τ(x) = 1⇔ x ≤ κ∗, where x is the student’s GPA last

semester. Students on academic probation must keep their GPAs above a certain standard,

else they will be placed on academic suspension. The estimation sample comprises students

from three campuses of a public university in Canada.

As with Hoekstra (2009), the fact that the university is public means it is reasonable

to expect that it would value student achievement. Therefore, I focus on effect of being

placed on probation on subsequent GPA, which means that the treatment effect ∆(x) is the

expected gain in subsequent GPA if student with prior GPA x were placed on academic

probation. Lindo et al. (2010) use a simplified version of Bénabou and Tirole (2000) to

motivate why there may be heterogeneity in the affect of probation on student outcomes;

the takeaway being that students far above the cutoff naturally perform well in their classes,

and, therefore, would gain little from being put on probation. The university faces a cost of

placing students on probation, which captures the fact that students are offered additional

counseling and support services to help them improve their achievement. Therefore, assigning

all students to probation would mean incurring costs for students who have little expected

gain. Because only a subset of students are placed on probation and the effects of probation

likely depend on student ability, it is useful to think about how we can extrapolate away

from the treatment cutoff. The university could have treated more students by sending out

more probation letters and hiring the counselor/tutor for more hours, which means it is

reasonable to assume the capacity constraint was not binding in this application.

I begin by conducting the falsification test on the treatment effect derivative, implied by

Condition 1(ii). The sign of ∆′(κ∗), and therefore the rejection region for the falsification test,

is reversed here because treatment is offered to students below κ∗, meaning that extending

treatment to students above κ∗ should not improve the administrator’s objective. Using the

information made available by the journal’s replication policy, I ran regression (9), the results

of which are presented in Table 1. I find that α̂3 = 0.047, with a standard error of 0.094, which

means that there is not strong evidence that the treatment effect is increasing at the cutoff (p-

value 0.31 that the treatment effect derivative is greater than zero).28 Moreover, the positive

28The data are available at https://www.aea-net.org/articles.php?doi=10.1257/app.2.2.95; R
code for replication can be found at Chi and Dow (2014).
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RD estimate (see below) means the model passes the nonnegative LATE falsification test,

implied by Condition 1(i). That is, we cannot reject that the model assumptions hold here.

Therefore, the first result is that we can rule out constant treatment effects, by Corollary 1.

Table 1: Results from main specification in Lindo et al. (2010)

Dependent variable:
Regressor: GPA next semester (Y̌i)

Intercept 0.312
(α̂0) (0.019)

Running variable - cutoff 0.699
(α̂1) (0.053)

Treatment indicator 0.233
(α̂2) (0.031)

Treatment indicator × (running variable - cutoff) 0.047
(α̂3) (0.094)

Obs. 11,258
R2 0.035
Note: Standard errors are in parentheses

The main result of Lindo et al. (2010) is that the estimated treatment effect of being

placed on academic probation on the next term’s grade performance for the full sample is

∆̂(κ∗) = 0.233 higher GPA points.29 By extending this finding using the results of this

paper, we can bound the ATT and ATUT according to: ATT ≥ ∆̂(κ∗) = 0.233 > ATUT.

In other words, placing students below the treatment cutoff on academic probation would,

on average, increase their GPA the next term by 0.233 points, while doing so for students

above the treatment cutoff would increase their GPA next term by at most 0.233 points,

on average. Intuitively, on average, academic probation may be more useful for students at

the bottom of the grade distribution, by providing them with an external commitment to

increase their performance above some minimal level.30

4.3 Bui et al. (2014): “Is Gifted Education a Bright Idea? Assess-

ing the Impact of Gifted and Talented Programs on Students”

Bui et al. (2014) study the effects of a gifted and talented program on the academic achieve-

29This can be found in Table 5, in column (1) of panel A of Lindo et al. (2010).
30 This is a conjecture. Proposition 2 shows that we can obtain bounds for subsets of untreated students.

However, no such bounds can be obtained for subsets of treated students, such as those with the lowest
GPAs.
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ment of 7th graders in a large school district. They exploit a fuzzy eligibility cutoff, in which

students with prior achievement above the cutoff were more likely to be found eligible (i.e.,

ω(x) = 1 ⇔ x ≥ κ∗, and 0 < ρ0 < ρ1 < 1), to compute how the program affected achieve-

ment of marginal students near the cutoff. Students eligible for the gifted and talented

programs could additionally apply to special gifted and talented programs at district-wide

magnet schools. The gifted and talented program is comprised of peers and curricula; the

authors show that teachers are essentially the same between gifted and marginal non-gifted

students. Therefore, the school district could have switched more teachers into gifted classes,

meaning it is reasonable to assume the capacity constraint does not bind in this application.

Two of these magnet schools were oversubscribed so the district assigned applicants by lot-

tery. The authors exploit this to conduct a lottery-based design, comparing the achievement

of applicants who had been randomized into these magnet schools with those who had been

randomized out (and into a “regular”, or non-magnet, gifted and talented program).

The data contain many standardized test score measures of both incoming and outcome

human capital. Following the authors, I set the noisy measure of incoming human capital x

equal to the student’s “gifted and talented identification matrix” score, which converts each

student’s prior achievement, teacher ratings, and socio-economic status into one scale that

serves as the running variable in their discontinuity design. The authors report treatment

effects for outcome scores in many subjects s, ∆s(κ∗), where s can be math, reading, lan-

guage, science, or social studies. Let ∆̂s(κ∗) denote the estimate of subject-specific treatment

effect ∆s(κ∗). These are then aggregated into a composite score, i.e., ∆̂(κ∗) =
∑

s λs∆̂
s(κ∗)

measures the composite gain ∆(κ∗) =
∑

s λs∆
s(κ∗), where the weights λs satisfy

∑
s λs = 1

are chosen to correspond to different composite treatment effects of interest. Note that, in

addition to being used to calculate bounds, the weighted composite scores can also be used

in the treatment-effect derivative test, because derivatives are linear operators.

The top panel of Table 2 summarizes RD estimates from Bui et al. (2014), Table 4b (the

authors’ preferred specification), by subject. Columns (1) and (2) present treatment effect

derivatives and standard errors, respectively. Columns (3) and (4) present RD estimates

of treatment effects and their standard errors, respectively. The bottom panel presents

two different averages across subject-specific estimates.31 First, based on the notion that

the school district desires well-rounded students, the unweighted average across subjects

is presented. Looking at the first two columns, we can see that the (unweighted) average

treatment effect derivative is -0.002, with a standard error of 0.002, which is not significantly

31Standard errors for averages are computed assuming the subject-specific measures are independently
distributed. This is conservative in the sense that, because it provides a lower bound for the standard error

of ∆̂′s(κ∗), it increases the likelihood of rejecting the null hypothesis that the model assumptions hold.
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Table 2: Summary of subject-specific treatment effect derivatives and RD estimates in Bui
et al. (2014)

Treatment-effect derivative, ∆̂′s(κ∗) Treatment effect, ∆̂s(κ∗)
(α̂3) (α̂2)

Estimate Std. error Estimate Std. error
Subject (1) (2) (3) (4)
Math 0.004 0.005 -0.037 0.074
Reading -0.008 0.004 0.049 0.068
Language -0.007 0.005 -0.015 0.066
Science -0.004 0.004 0.003 0.084
Social studies 0.003 0.006 -0.025 0.084
Average (unweighted) -0.002 0.002 -0.005 0.034
Average (weighted) 0.001 0.003 -0.020 0.046
Note: Standard errors for averages were computed assuming independence across subjects.

less than zero with a p-value of 0.13. That is, one cannot reject that the eligibility cutoff

for gifted and talented programs is optimal in this school district. One should also note

that, notwithstanding general equilibrium effects, this implies that there is no evidence that

extending gifted and talented programs to students just below the threshold would increase

achievement.32 Consistent with the subject-specific estimates, the top row of the bottom

panel shows that there is no discernible effect on the unweighted average achievement for

the marginal student of being assigned from their regular program to a gifted and talented

program, with a point estimate of -0.005 that has a standard error of 0.034, resulting in a

p-value of 0.88 that the treatment effect is different from zero.

Second, weights were computed by relating, or “anchoring” standardized test scores to

adult wages.33 As one can see in the second row of the bottom panel, here too, one cannot

reject optimality of the chosen cutoff (the composite treatment effect derivative is positive),

and the composite marginal effect is indistinguishable from zero (with a point estimate of

-0.020 with standard error 0.046, resulting in a p-value of 0.66 that the treatment effect is

different from zero). Note that both the unweighted and weighted treatment effects are non-

negative, meaning the model also passes this test of cutoff optimality (implied by Condition

32Dong and Lewbel (2015) refer to this assumption as “local policy invariance” and exploit it to estimate
the Marginal Threshold Treatment Effect, or MTTE.

33This idea of “anchoring” skills in an outcome of interest has been advocated by Cunha et al. (2010)
and Bond and Lang (2013), among others; Cawley et al. (1999) do so using adult wages. Sanders (2015)
regresses the completed years of education on ASVAB scores for Science, Vocabulary, Paragraph Compre-
hension, and Math (see his Table 3). I computed weights corresponding to the partial correlation of that
subject with completed years of education, divided by the sum of partial correlations across all subjects
(Reading, Language, and Social studies were given the weight of the average of Vocabulary and Paragraph
Comprehension); the motivation for this is that expected wages (and output produced) have generally been
found to increase in one’s education.
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1(i)).

Therefore, under either weighting scheme, we cannot reject that the treatment cutoff was

chosen optimally and the lower bound for the ATT and the upper bound for the ATUT are

both approximately zero. Additionally, as was the case with Lindo et al. (2010), by Corollary

1 we can rule out constant treatment effects.

The finding that the effect of treating the marginal student is very close to (and not

discernible from) zero may seem surprising at first, but is very natural when viewed in the

context of an endogenous treatment assignment cutoff. If treatment effects ∆(·) are smooth

around the cutoff, an assumption upon which RD estimates are typically predicated,34 then

the school district would have little reason to place the cutoff at a point where there was

a very large gain in achievement for the marginal student. This would be consistent with

a human capital production function in which incoming human capital and school inputs

were complements, in which case returns from assignment to the program would then be

increasing in x, the measure of incoming human capital.

Without further information, one cannot surmise more about the average effect of treat-

ment on the treated or untreated, other than the ATT cannot be negative and the ATUT

cannot be positive. However, Bui et al. (2014) also features a complementary analysis that

exploits the fact that students above the treatment cutoff were not only eligible for gifted and

talented programs, but could also apply to attend oversubscribed magnet gifted and talented

programs. The authors find no discernible difference in achievement across most subjects

between students randomized into magnet and non-magnet gifted and talented programs.35

If one thought that such magnet programs produced higher achievement than regular public

schools, the fact that achievement was the same for eligible students in both magnet and

non-magnet gifted and talented programs would mean that non-magnet gifted and talented

programs also produced gains for eligible students. For example, Burke and Sass (2013) and

Hoxby and Weingarth (2005) find that the effect of increases in peer quality is increasing

in one’s own ability. This would imply that the ATT, i.e., the average effect of attending

gifted and talented programs for students above the assignment cutoff, is positive, which is

consistent with the bounds obtained above.

34See Hahn et al. (2001) and Dong and Lewbel (2015) for discussions of this point.
35The one exception is that students randomized to attend magnet schools had higher outcomes on science

tests.
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5 Discussion

This paper represents a first step towards showing how one can use plausibly available

information and a simple economic model to generalize findings from RD designs.36 Perhaps

the most intuitive findings relate to the case where the capacity constraint does not bind: i)

if treating students is costly and the treatment cutoff has been chosen optimally, the ATT

must be positive and treatment effects cannot be constant; ii) RD-based estimates provide a

lower bound, or understate, the ATT; and iii) RD-based estimates provide an upper bound

for the ATUT. Notably for applying these results, the model generates testable implications:

if the treatment effect at the cutoff is negative or treatment effects are decreasing in the

direction of treatment at the cutoff, then we can reject that the cutoff was chosen optimally

by an administrator informed about the distribution of treatment effects. If the capacity

constraint does bind, then the treatment-effect sign test still allows one to falsify the model,

and treatment effects are generally looser. The treatment-effect-derivative test no longer

applies, but there emerges a new testable implication of cutoff optimality, as well as an

intuitive explanation for why program “scale-up” can be difficult in real-life applications.

The theoretical results were then demonstrated using three applications. We cannot

reject that the cutoff was chosen optimally by an informed administrator in every one of

the falsification tests conducted, which may increase confidence that the contexts studied

here constitute reasonable applications of the theoretical results. The applications all study

topics in the economics of education, which means it is useful to think about them using a

standard model of human capital formation. The bounds obtained by applying this paper’s

results to Hoekstra (2009) and Bui et al. (2014) are consistent with a model of human capital

production in which incoming student human capital, which may have been measured by

student SAT scores or prior academic achievement, and additional inputs, such as access

to a flagship university or a gifted and talented program, are complements in the produc-

tion of human capital. Not only would this imply then that treatment effects would be

heterogeneous—which the model shows must be the case when the marginal cost of treat-

ment is constant—but also that the ATT would be higher than the RD estimate, which itself

would be higher than the ATUT.

Put another way, suppose the program could be assigned either to students above or

below the cutoff. If student human capital and program inputs were complements, then

the average gain would be higher when students above the cutoff received additional inputs

than it would be if instead students below the cutoff were given those inputs. Therefore,

the fact that students above the cutoff were treated, as opposed to those below the cutoff, is

36This paper also relates to work non-parametrically estimating the distribution of treatment effects.
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consistent with student human capital and program inputs being complements. In contrast,

Lindo et al. (2010) studied a treatment, academic probation, where students below the

cutoff received the treatment. In terms of program inputs, being put on academic probation

comprises mostly access to counseling and support required to have students meet a minimal

performance standard, which likely serve more as substitutes for low ability students who

may not meet performance standards on their own, as opposed to something like access to

more rigorous curricula. The former is clearly much more useful to lower ability students

than higher ability ones.

The findings in this paper have several implications for the use of RD results in policy.

Perhaps most novel is that we may incorrectly surmise that some programs are ineffective

and eliminate them, even though in reality they are quite effective for the treated population.

Strikingly, such a mistake would be more likely for a program with a very low marginal cost,

holding constant the ATT. This point is illustrated in Figure 3, which plots treatment effects

associated with hypothetical programs at two sites, A and B, with respective distributions

of treatment effects ∆A(·) (solid black line) and ∆B(·) (dashed black line).37 The programs

have different marginal costs of treatment, where χB > χA, and happen to have the same

cutoff κ∗ and the same ATT. The difference in marginal costs means that optimization by

respective site administrators implies that ∆B(κ∗) > ∆A(κ∗). If only based on these RD

estimates, a policymaker would likely fund B over A because it has a higher LATE, even

though A provides the same gain on the treated, at a lower cost. Additional policy-relevant

results obtain if we can relate the policymaker’s objective with that of the administrator.

First, if a policymaker knew that their valuation of treatment gain in terms of treatment

cost (i.e., β) was at least as high as the administrator’s then he should definitely treat those

units treated by the administrator. Second, the upper bound on the ATUT, which increases

in distance from the cutoff, can help rule out whether it would be worthwhile to extend

treatment to subsets of units below the cutoff.

Though, in this setting, estimates of the LATE at the treatment cutoff must be positive if

treating students is costly, we cannot compare them with the ATE, in the manner of LaLonde

(1986), Dehejia and Wahba (1999), or Smith and Todd (2005), without further information.

There is some work comparing findings from RD and experimental designs (Buddelmeyer and

Skoufias (2004), Black et al. (2007), Cook and Wong (2008), Gleason et al. (2012), Barrera-

Osorio et al. (2014)), but unfortunately, none consider the case of a program where the

treatment cutoff seems to have been chosen by an administrator with institutional knowledge

of the environment (e.g., in Barrera-Osorio et al. (2014) the evaluators were external, and

choose a poverty index as the threshold for treatment). However, the results here do suggest

37Note that capacity constraints do not bind in this example.
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Figure 3: Example of when policy based only on the RD estimate could cause termination
of the wrong program

that RD estimates may be higher when cutoffs are chosen by external evaluators without

institutional knowledge, hence less information about treatment effects. Related to this

point, an unconstrained optimizing administrator would not choose to place the cutoff where

they know the gain from treatment is quite large. Because RD estimates may understate the

ATT, there may be RD studies of useful programs that are simply not published because

they lack statistically significant findings.

One practical variation of the environment considered here would introduce a more sub-

stantial form of uncertainty, for example, featuring learning about the distribution of treat-

ment effects, into the administrator’s problem. Such uncertainty would pervade to the

bounds obtained here, perhaps motivating a Bayesian approach. A more formal approach

could also combine bounds for a particular treatment that had been implemented across

multiple sites, to build up a picture of the population-level (as opposed to site-specific) dis-

tribution of treatment effects. Another variation would investigate what could be learned if

the administrator only knew certain moments of the distribution of treatment effects, say,

the ATE, along with the RD-based estimate. Such variations could be worthwhile ways to

build on the basic point made in this paper: revealed preferences can provide quite a bit of

useful information about treatment effects away from the cutoff in regression-discontinuity
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designs.
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Appendix

A Allowing the probability of enrollment to vary by x

Consider (8), where ρω are no longer assumed to be uniform among treated students, but

instead depends on x. The administrator’s problem becomes:

max
κ̃

 κ̃∫
0

ρ0(x)(∆(x)− χ)dx)

+

 1∫
κ̃

ρ1(x)(∆(x)− χ)dx)

 .

Note that a necessary condition for κ∗ being optimal is still ρ1(κ∗)∆(κ∗) = ρ1(κ∗)χ ⇒
∆(κ∗) = χ, which is identical to Condition 1(i) for the sharp design. Optimality of κ∗

further implies:

1∫
κ̃

ρ1(x)∆(x)dx ≥
1∫

κ̃

ρ1(x)χdx = ρ1χ(1− κ∗)⇔

1∫̃
κ

ρ1(x)∆(x)dx

1− κ∗︸ ︷︷ ︸
ITT

≥ ρ1χ︸︷︷︸
expected cost of treating the treated

= ρ1∆̂(κ∗), (10)

where the second equality follows because ∆(κ∗) = χ. Equation (10) shows that if the

average attendance probability among the treated (ρ1) were known then the RD estimate

of the treatment effect can again be used to provide a lower bound for the mean effect of

intending-to-treat among the treated (ITT).

B Uncertainty about the treatment effect

Suppose the administrator is uncertain about the treatment effect for particular students,

but has observed ∆̌(x), an unbiased signal of ∆(x). Let ∆̌(x) = ∆(x) + εi, where ε is

distributed independently from x, denote the administrator’s noisy signal of the treatment

effect for student i who has index x. Because the administrator has unbiased beliefs about

∆(x) at every point x, it must be the case that E [εi] = 0. The administrator chooses a
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cutoff to maximize her expected objective:

max
κ̃

E

β
 1∫

κ̃

∆̌(x)dx

− c (1− κ̃)

⇔ max
κ̃

β E

 1∫
κ̃

(∆(x) + ε)dx

−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

+ β E [ε]−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) . (11)

The first equivalence follows from the fact that the measure of students treated (c (1− κ̃)) is

known because it is chosen by the administrator. The second follows from the independence

assumption and the third from unbiasedness. The last expression is the administrator’s orig-

inal problem, (1). Therefore, the analysis for this case is identical. Intuitively, uncertainty

does not affect the administrator’s problem because it is linear in the amount gained.

C Weighted objective

The administrator’s original problem (1) was utilitarian, i.e., it weighed gains for all students

equally. The most natural alternative to the unweighted objective would be a redistributive

policy, which assigned people with lower running variable indices larger weights. For example,

if x measured incoming human capital, then putting more weight on gains for students

with lower indices allows the administrator to place additional value on students’ becoming

proficient. In this case, we can adapt equation (1) to allow the administrator to weigh gains

for students depending on their index x by using weights φ(x), where φ′ ≤ 0:

max
κ̃

 1∫
κ̃

φ(x)∆(x)dx

− χ (1− κ̃) , (1̂)

and proceed with the analysis.

Condition 1̂ (Necessity). For problem (1̂), the following necessary conditions must hold for

κ∗:

(i) MB=MC: φ(κ∗)∆(κ∗) = χ

(ii) Increasing MB: ∆′(κ∗) ≥ 0.
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Proof. Differentiate the administrator’s problem (1̂) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator

would gain by not treating students just above κ∗, thereby obtaining (ii). The inequality is

strict if φ′ < 0.

Condition 2̂ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those students was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

φ(x)∆(x)dx ≥ χ(1− κ∗). (2̂)

The fact the program was not extended to κ̂ < κ∗ implies that treating these students would

be sub-optimal, i.e.:
κ∗∫
κ̂

φ(x)∆(x)dx < χ(κ∗ − κ̂). (3̂)

Proposition 1 remains true when φ′ ≤ 0. To see this, divide (2̂) by the measure of

treated students and combine with Condition 1̂(i) to obtain
(∫ 1

κ∗
φ(x)∆(x)dx

)
/ (1− κ∗) ≥

φ(κ∗)∆(κ∗). Because φ′ ≤ 0, this implies that
(∫ 1

κ∗
∆(x)dx

)
/ (1− κ∗) ≥ ∆(κ∗), where the

inequality is strict if φ′ < 0. Intuitively, the gains for treating the treated must be even larger

than the LATE if the administrator values such gains less. Analogous reasoning applied to

Corollary 4 shows that the ATUT is bounded above by the LATE when φ′ ≤ 0, and that this

bound is strict when φ′ < 0. Therefore, the corollaries, in particular Corollary 5 bounding the

ATE, also still obtained with the weighted problem (1̂). In summary, all of the bounds from

the unweighted problem, including Corollary 5, which bounds the ATE, are also obtained

for the weighted problem (1̂).

D Variable marginal cost of treatment

Begin by relaxing Assumption 1(i), replacing it with

Assumption 1′. (i) The cost function c(·) is known and is non-negative, strictly increas-

ing, and differentiable. The marginal cost function c′(·) is monotonic.

Note that Assumption 1′(i) still implies that the marginal cost of providing treatment

is strictly positive. The second part of Assumption 1′(i) relaxes the constant marginal cost

assumption.
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I first adapt the conditions characterizing κ∗, in terms of ∆(·) and qualitative features

of the cost function c(·). Specifically, I consider three cases for Assumption 1′(i): where the

marginal cost is constant, decreasing, and increasing; these correspond to linear, concave,

and convex cost functions, respectively. I then provide results bounding treatment effects of

interest.

Condition 1′ (Necessity). The following necessary conditions must hold for κ∗:

(i) MB=MC: ∆(κ∗) = c′(1− κ∗) for any cost function c(·) satisfying Assumption 1′

(ii) Increasing MB: ∆′(κ∗) ≥ 0 if the marginal cost is constant or decreasing; this inequality

is strict if the marginal cost is decreasing.

Proof. Differentiate the administrator’s problem (1) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i) but the marginal cost is

nonincreasing, the administrator would gain by not treating students just above κ∗, thereby

obtaining (ii).

Condition 1′ is similar to Condition 1, except that Condition 1′(ii) has a strict inequality if

the marginal cost of treatment is decreasing. As before, to guarantee uniqueness, inspection

of (1) implies two additional conditions sufficient for characterizing κ∗. These conditions are

identical to those in Condition 2, the only difference being that χ no longer enters either

expression.

Condition 2′ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those students was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗). (2′)

The fact the program was not extended to κ̂ < κ∗ implies that treating these students would

be sub-optimal, i.e.:
κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗). (3′)

As before, two corollaries immediately follow.

Corollary 1′. ∆(·) cannot be constant if the marginal cost of treatment is nonincreasing.
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Corollary 2′. ∆(·) is nondecreasing in x if the marginal cost of treatment is nonincreasing.

Proof. First consider the case with constant marginal cost of treatment χ. The second part

of Condition 2′ says that it must be the case that
∫ κ∗
κ̂

(∆(x)− χ) dx < 0. Moreover, we

know that ∆(κ∗) = χ. Therefore, if ∆(·) were decreasing in x then this inequality would

be violated. If the marginal cost is decreasing then ∆(·) would have be even more strongly

increasing in x to satisfy the above inequality.

As before, I next examine what can be deduced about averages of treatment effects for

subsets of students.

Corollary 3′. The ATT is positive for any cost function c(·) satisfying Assumption 1′.

Proof. The left side of (2′) in Condition 2′ is the total effect of treatment on the treated,

i.e. (
∫ 1

κ∗
∆(x)

(1−κ∗)
dx) (1− κ∗). Because the marginal cost of treatment is positive (Assumption

1′(i)), (2′) implies that
1∫

κ∗

∆(x)dx ≥ c(1− κ∗) > 0.

Divide through by (1− κ∗) to obtain the result:

1∫
κ∗

∆(x)

(1− κ∗)
dx

︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
(1− κ∗)︸ ︷︷ ︸

avg. cost of treating treated

> 0.

Although Corollary 3′ provides a lower bound for the average effect of treatment on the

treated, there is no informative (i.e. lower than ∆) upper bound. Corollary 3′ makes no

further assumptions about the shape of the cost function. However, if the marginal cost of

treating students is nonincreasing, the lower bound on the average effect of treatment on the

treated increases.

Proposition 1′. If the marginal cost of treatment is nonincreasing, the ATT is bounded

below by the LATE at the treatment cutoff.

Proof. If the marginal cost of treatment is nonincreasing then c′(1 − κ∗) ≤ c(1−κ∗)
1−κ∗ , i.e.

the marginal cost of treatment for 1 − κ∗ is no greater than the average cost of providing

treatment for treated students. Insert this inequality into (2′) and combine with this with
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Condition 1′(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
1− κ∗

≥ c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.

As with Proposition 1, Proposition 1′ shows that, if the marginal cost of treatment is

nonincreasing, the discontinuity-based estimate provides a lower bound for the average effect

of treatment on the treated. One should note that only qualitative information about the

shape, not the level, of the marginal cost of treatment is all that is required for this result.

Although Corollary 2′ rules out a decreasing treatment effect (if the marginal cost of

treatment is nonincreasing), it could be the case that ∆(·) increases for some x < κ∗.

Therefore, as before, it is useful to bound averages of ∆(·) itself for strict subsets of untreated

students.

Proposition 2′. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗.

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ < κ∗. Let µ̂ be

the measure of students under consideration and split (3′) into two parts at x̂ and rearrange

terms:

x̂∫
x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−∆ (κ∗ − x̂) ,

(4′)

where the implication follows from Assumption 1(iii).

Setting the measure of students to whom the treatment is extended equal to κ∗ provides

the following result about the ATUT.

Corollary 4′. The ATUT has an informative upper bound. If the marginal cost of treatment

is nonincreasing, this upper bound is the LATE at the treatment cutoff.

Proof. Let x̂ = µ̂ = κ∗ in (4′) and divide through by κ∗ to obtain the first result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
c(1)− c(1− κ∗)

κ∗︸ ︷︷ ︸
>0,<∞

, (7′)
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where the right hand side is positive from Assumption 1′(i). For the second result, note that

a nonincreasing marginal cost implies

c(1)− c(1− κ∗)
κ∗

< c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

,

where the equality follows from Proposition 1′(i).

Analogously to the upper bound for the ATT, although Corollary 4′ bounds the average

of treatment effects for all untreated students, there is no informative (i.e. greater than ∆)

lower bound.

To summarize, optimality of κ∗ implies a lower bound on the ATT and an upper bound

on the ATUT. If the marginal cost of treatment is constant or decreasing then it must be the

case that ATUT < ∆(κ∗) ≤ ATT. Though the ATT and ATUT are respectively bounded

below and above by the cutoff LATE when marginal costs are nonincreasing, the LATE does

not bound these moments when the marginal cost of treatment is increasing. Also note that,

though the ATT is larger for treated students than the untreated when the marginal cost

of treatment is nonincreasing, if the marginal cost is increasing, the ATUT could be larger

than the ATT when the administrator is constrained to treat students starting from the top

instead of the bottom.

D.1 Bounding the ATE

Corollary 5 bounds the ATE when the marginal cost of treatment is constant. This section

studies the interplay between qualitative features of the cost of treatment and inferences

about the distribution of treatment effects, by comparing three cases: constant, decreasing,

and increasing marginal cost of treatment, where each marginal cost curve passes through

the point (κ∗,∆(κ∗)). A decreasing marginal cost (c′′ < 0) might result from economies of

scale, while an increasing marginal cost (c′′ > 0) might result from congestion effects, say if

it becomes increasingly difficult to find a good fit for the program.

To begin, suppose the cost function is c(µ) = µχ. Then, as was shown in Section 3.1,

the ATE lower bound is ∆LB
κ∗χ ≡ ∆κ∗ + χ(1 − κ∗) and the ATE upper bound is ∆UB

κ∗χ ≡
χκ∗ + ∆(1 − κ∗). Figure 4 builds on the example in Figure 1 to provide intuition for how

the marginal cost of treatment bounds the ATE. Start with the solid red line representing

a constant marginal cost of treatment, and rotate the cost function counterclockwise about

the point (κ∗,∆(κ∗)) to represent a decreasing marginal cost of treatment (long-dashed red

line).38 This rotation implies the ATT must be higher than the case corresponding to the

38Recall that this line is decreasing in x because the treatment is being extended from x = 1 downwards.
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constant marginal cost in order to satisfy (2′). Analogously, the maximum ATUT must be

lower when marginal costs are decreasing; were they the same as with constant marginal

costs, the administrator might gain from extending treatment to untreated units given that

they now have a lower cost of being treated, violating (3′). The opposite holds true for

when we rotate the cost curve clockwise about the point (κ∗,∆(κ∗)), to reflect an increasing

marginal cost of treatment (dot-dashed red line). Table 3 summarizes these results, showing

that when the marginal cost of treatment is decreasing, bounds on the ATE are tighter than

they would be with a constant marginal cost, while when marginal cost is increasing, bounds

on the ATE are looser.
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Figure 4: Example with different cost functions

ATE bounds

Marginal cost Lower Upper

Const. (c′′ = 0) =∆LB
κ∗χ = ∆UB

κ∗χ

Dec. (c′′ < 0) > ∆LB
κ∗χ < ∆UB

κ∗χ

Inc. (c′′ > 0) < ∆LB
κ∗χ > ∆UB

κ∗χ

Table 3: Summary of bounds on ATE
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