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Abstract

Economists disagree about the factors driving the substantial increase in residual wage inequality
in the U.S. over the past few decades. We identify and estimate a general model of log wage residuals
that incorporates: (i) changing returns to unobserved skills, (ii) a changing distribution of unobserved
skills, and (iii) changing volatility in wages due to factors unrelated to skills. Using data from the
Panel Study of Income Dynamics, we estimate that the returns to unobserved skills have declined by
as much as 50% since the mid-1980s despite a sizable increase in residual inequality. Instead, the
variance of skills rose over this period due to increasing variability in life cycle skill growth. Finally,
we develop an assignment model of the labor market and show that both demand and supply factors
contributed to the downward trend in the returns to skills over time, with demand factors dominating
for non-college-educated men.
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Maryland, NYU, University of Rochester, University ofWestern Ontario, Yonsei University, the 2017AppliedMicroWorkshop
in Oslo, and 2017 Annual Meetings of the Canadian Economics Association and the Society for Economic Dynamics. Lochner
acknowledges generous support from SSHRC.
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1 Introduction

The U.S. has experienced substantial and sustained growth in wage inequality since the 1960s. In
addition to the long-run increase in wage differentials across workers with different levels of education
and experience, inequality within narrowly defined groups (e.g., by race, education, and age/experience)
also rose dramatically (see, e.g., Katz and Autor, 1999; Autor, Katz, and Kearney, 2008). While the
interpretation of the latter trend is not fully understood, its underlying cause is economically important.
Whether it reflects an increase in the returns to unobserved skills, variance of unobserved skills, or
variance of short-term volatility unrelated to skills (or measurement error) is critical to our understanding
of both the causes and welfare consequences of rising inequality.1

Since the seminal work of Juhn, Murphy, and Pierce (1993), many economists (implicitly or explicitly)
equate the rising within-group, or residual, inequality with an increase in the returns to unobserved ability
or skill (see, e.g., Card and Lemieux, 1996; Katz and Autor, 1999; Acemoglu, 2002; Autor, Katz, and
Kearney, 2008). Indeed, this interpretation, along with the rising returns to observable skill, motivated
an enormous and still influential literature on skill-biased technical change (SBTC).2

Challenging the conventional view, Lemieux (2006) demonstrates that the rise in residual inequality is
at least partially explained by an increase in the variance of unmeasured skills resulting from composition
changes in the labor market, especially in the late 1980s and 1990s, as the workforce shifted increasingly
to older and more educated workers who exhibit greater within-group inequality. Lemieux (2006) and
Gottschalk and Moffitt (2009) further argue that increasing measurement error and short-term volatility
in wages may have also contributed to rising residual inequality.

A few studies have turned to richer data to incorporate additional measures of skill or occupational
tasks, directly estimating their effects on wages at different points in time. Using the 1979 and 1997
Cohorts of the National Longitudinal Surveys of Youth (NLSY), Castex and Dechter (2014) estimate that
the wage returns to cognitive achievement, as measured by the Armed Forces Qualifying Test (AFQT),
declined substantially between the 1980s and early 2000s. By contrast, Deming (forthcoming) estimates
that the returns to social skills have risen across these two cohorts. Among others, Autor, Levy, and
Murnane (2003) and Autor and Dorn (2013) document a decline in demand for middle-skill workers

1Economists have long recognized the importance of distinguishing between transitory and permanent income shocks
for understanding inequality in consumption and welfare. Several recent studies (e.g., Krueger and Perri, 2006; Blundell,
Pistaferri, and Preston, 2008; Heathcote, Storesletten, and Violante, 2014) further show that conclusions about the nature and
degree of consumption insurance (over time) depend critically on estimated correlations between consumption and income
changes as well as the relative importance of transitory vs. permanent income shocks (over time).

2Many of these studies aimed specifically to explain rising residual inequality and returns to unobserved ability/skill (e.g.,
Galor and Tsiddon, 1997; Acemoglu, 1999; Caselli, 1999; Galor and Moav, 2000; Violante, 2002). Card and DiNardo (2002)
question the influence of SBTC on the overall wage structure based largely on the failure of SBTC to explain the evolution of
important between-group differences (largely across race and gender) in wages.
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caused by the automation of routine tasks, which has led to a fall in the wages for workers in many
middle-skill relative to low- and high-skill occupations, dubbed “polarization”. Caines, Hoffmann, and
Kambourov (2017) instead argue that occupational task complexity has become a stronger determinant
of wages in recent years, more so than routineness.

While efforts to better measure skills and job tasks have greatly enriched our understanding of wage
inequality, much of the cross-sectional variation in wages remains unexplained in these studies. More
importantly, difficult measurement challenges have led to strong (often implicit) assumptions on the
evolution of skills over the life cycle and across time. For example, Castex and Dechter (2014) and
Deming (forthcoming) examine the effects of pre-market skills on wages, ignoring subsequent life cycle
skill accumulation that may vary across workers and over time. Because the vast majority of studies
taking a task-based approach do not use individual-level data on skills or job tasks, they implicitly assume
that worker skills and tasks within each occupation are time invariant and attribute all time variation in
wages across occupations to changes in the returns to skills/tasks.3

The literature studying the evolution of residual wage inequality relies largely on repeated samples of
cross-sectional data, which makes it difficult to sort out changes in skill returns vs. the distributions of
skills over time. Panel data are naturally more useful. Intuitively, if heterogeneity in skills is important,
then workers earning a high wage today should continue, on average, to earn a high wage far into the
future (even after the influence of transitory shocks has faded). As such, heterogeneity in unobserved
skills implies that differences in wage residuals across workers should be predictive of long-term future
residual differences, and residual autocovariances should not disappear for observations far apart in time.
Furthermore, if unobserved skills become more important in the labor market (i.e., their returns increase)
over time, then we should observe growing differences in predicted wage residuals conditional on initial
residual differences.

We show how panel data on wages can be used to separately identify the evolution of (i) returns to
unobserved skills, (ii) distributions of unobserved skills and skill growth rates, and (iii) the volatility of
transitory shocks unrelated to skills. Building on the literature on earnings dynamics, our key source
of identification (long-run autocovariances in wage residuals) motivates a simple instrumental variable
strategy for estimating the returns to skill over time, even when life cycle skill growth varies systematically
across individuals and is subject to time-varying idiosyncratic shocks.4 This approach also allows for a

3Using data with individual-level measures of job tasks, Spitz-Oener (2006) shows that most task changes in Germany
over the 1980s and 1990s actually occurred within occupations. Autor and Handel (2013) document substantial heterogeneity
in worker tasks within occupations that are powerful predictors of wage variation (within occupational, demographic, and
education groups). Their finding that person-level job tasks vary systematically across demographic groups within narrowly
defined occupations suggests that worker skills and job tasks are unlikely to be time invariant within occupations as the
composition of the workforce changes.

4The voluminous literature on earnings dynamics focuses on a different question from ours: identifying the changing
importance of permanent vs. transitory shocks in earnings and the resulting implications for consumption and wealth inequality
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very general structure for transitory non-skill shocks. Once the returns to skill have been estimated, it is
straightforward to estimate the distribution of unobserved skills, skill growth, and non-skill shocks over
time. Importantly, there is no need to observe anything about what workers do on their jobs, enabling our
approach in most widely available panel data sets.

We estimate the evolution of returns to unobserved skills, variances of unobserved skills, and variances
of the non-skill component of wages from 1970 to 2012 using data on log hourly wages for men ages 16–64
in the Panel Study of Income Dynamics (PSID), performing separate analyses by college attendance. Our
main finding is that the returns to unobserved skills were relatively stable from 1970 to themid-1980s, then
fell considerably through the 1990s, stabilizing thereafter. The drop in estimated returns reflects a sharp
decline in the predictability of long-term wage residual differences conditional on earlier differences and
is robust to different estimation strategies and to very general specifications regarding heterogeneity across
cohorts and experience levels. The decline in skill returns was more dramatic for non-college-educated
workers, consistent with the recent literature on polarization (Autor, Levy, and Murnane, 2003; Autor,
Katz, and Kearney, 2008; Acemoglu and Autor, 2011; Autor and Dorn, 2013).

The flip side of declining returns is that the variance of unobserved skills rose substantially, driving the
increase in the residual variance of log wages. The widening skill distribution is largely explained by an
increase in the variance of life cycle skill growth over time, not in the variance of initial skill levels across
cohorts.5 We further show that the increasing variance of skill growth reflects increases in the variances
of both idiosyncratic skill growth shocks (consistent with the notion of growing economic turbulence
studied by Ljungqvist and Sargent (1998)) and heterogeneous systematic life cycle skill growth.6

Our results highlight the importance of accounting for changes in the distribution of unobserved skills
over time. Our estimated time patterns for returns to unobserved skill are fundamentally different from
those estimated in previous studies assuming time-invariant unobserved skill distributions (e.g., Juhn,
Murphy, and Pierce, 1993; Moffitt and Gottschalk, 2012). They are more consistent with the falling
returns to AFQT between the 1980s and early 2000s as estimated by Castex and Dechter (2014).

To help interpret our empirical findings, we develop a simple demand and supply framework based
on the assignment model of Sattinger (1979). In this model, the returns to skills are determined by the
assignment of workers with heterogeneous skills to jobs with heterogeneous productivity (e.g., different
tasks or capital quality), as well as the technology of production itself. More skilled workers earn more

(e.g., Gottschalk and Moffitt, 1994; Blundell and Preston, 1998; Haider, 2001; Moffitt and Gottschalk, 2002; Meghir and
Pistaferri, 2004; Bonhomme and Robin, 2010; Heathcote, Storesletten, and Violante, 2010; Heathcote, Perri, and Violante,
2010; Moffitt and Gottschalk, 2012; Blundell, Graber, and Mogstad, 2015).

5Since we estimate widening skill growth distributions within education and experience groups, these trends are not
accounted for in the composition adjustments of Lemieux (2006).

6Baker and Solon (2003), Guvenen (2009), andMoffitt and Gottschalk (2012) estimate heterogeneity in skill/income growth
profiles but do not estimate changes in the extent of that heterogeneity over time.
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partly because they work at more productive jobs. As a result, the skill distribution affects the return to
skill by changing the equilibrium assignment. An increase in the variance of skills reduces the returns to
skills by shrinking the productivity differential across jobs among workers of different skill levels. We
recover the demand and supply factors by combining our estimates of the returns to skills and variance
of skills with key restrictions implied by the model. Our estimates suggest that both demand and supply
factors played important roles in the declining returns to unobserved skills since the mid-1980s for both
college-educated and non-college-educated workers. The decline in skill demand was a more important
factor than supply shifts for non-college-educated workers, consistent with the automation of routine tasks
in middle-skill jobs, as emphasized by Autor, Levy, and Murnane (2003), Autor and Dorn (2013), and
many others.

This paper proceeds as follows. In Section 2, we provide identification results for our model where
the returns to unobserved skills, the variance of unobserved skills, and the variance of the non-skill
component of earnings change over time. Section 3 describes the PSID data used in our empirical
analysis and highlights key features of the data relevant to the evolution of skill returns. Sections 4 and
5 report our empirical findings. Section 6 develops our assignment model of the labor market and uses
it to interpret the evolution of estimated returns to unobserved skills in terms of changes in demand and
supply. Section 7 concludes.

2 Identifying the Returns to and Distributions of Unobserved Skills

In this section, we describe a general specification for wages that is consistent with much of the empirical
literature on residual wage inequality and our theoretical framework in Section 6. We then establish
conditions under which the time series for the returns to unobserved skills, the variances of unobserved
skills, and the variances of transitory non-skill shocks (or measurement error) are identified.

2.1 Log Wage Functions

We consider the following specification for log wages motivated by the literature on unobserved skills
(e.g., Juhn, Murphy, and Pierce, 1993; Card and Lemieux, 1994; Chay and Lee, 2000; Lemieux, 2006):

lnWi,t = f t (xi,t ) + µtθi,t + εi,t︸      ︷︷      ︸
≡wi, t

, (1)
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where Wi,t reflects wages, xi,t observed characteristics (e.g., education, race, experience), and θi,t (log)
unobserved skill for individual i in period t.7 The time-varying function f t (·) incorporates effects of
observable characteristics on period t log wages, while the “residual” wi,t ≡ µtθi,t + εi,t reflects the
contributions of unobserved skills and idiosyncratic non-skill shocks εi,t (including measurement error).8
In Section 6, we develop and study an assignment model of the labor market that produces log wage
functions of this form.9

The log wage residual wi,t is the primary focus of our efforts to identify and estimate the evolution of
“returns” to unobserved skill, distributions of unobserved skill, and volatility of non-skill shocks.

2.2 Identification

Suppose that we observe log wage residuals from equation (1) for a large number of individuals i =

1, 2, . . . , N for periods t = t, t + 1, . . . , t:

wi,t = µtθi,t + εi,t, (2)

where θi,t represents unobserved (log) skill, µt the period t return to unobserved skill, and εi,t idiosyncratic
shocks. Since wi,t is a mean zero residual, we normalize θi,t and εi,t so that both are mean zero for all t.
This implies that unobserved skill growth innovations,

νi,t ≡ θi,t − θi,t−1

are also mean zero for all t.10 We further assume that Cov(θt, εt ′) = Cov(νt, εt ′) = 0 for all t, t′.11 Thus,
any shocks related to skills are embedded in θi,t , while εi,t reflects factors unrelated to skills. We note
that individuals may come from different cohorts (i.e., different years of labor market entry), which we
discuss further below.

7The assumption of separability between xi, t and θi, t is both common and convenient, although not necessary. One could
simply condition the analysis that follows on xi, t . Indeed, much of our empirical analysis separately studies non-college-
educated and college-educated workers.

8Chay and Lee (2000), Card and Lemieux (1994), and Lemieux (2006) consider the same log wage residual decomposition;
however, they assume that the variances of skills within observable groups (e.g., education, experience, race) are time invariant.
Thus, their approaches account only for changes in the overall variance of unobserved skills due to changes in the composition
of workers across observable types. In estimating the importance of these composition changes, Lemieux (2006) further
ignores any variation in the transitory component, εi, t . Our use of panel data enables a much more general analysis.

9Notice that wage levels are non-linear in unobserved skill. As such, variation in µt over time is inconsistent with perfect
substitutability across workers of different skill levels, since perfect substitutability would imply log wages functions that are
additively separable in “prices” and skills.

10Average skill growth rates, which may vary by observable characteristics, are reflected in changes in f t (xi, t ).
11Let xt be a random variable and its realization for individual i be xi, t . Denote its cross-sectional second moments by

Var(xt ) and Cov(xt, xt ′ ).
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Central to our approach is the classical idea of Friedman and Kuznets (1954) that earnings consist
of a permanent component related to skills and a transitory component that reflects short-run variation
unrelated to skills. Although the transitory component, which may include measurement error, can be
serially correlated, the correlation between transitory components far apart in time is likely to be quite
small. Taking this to the limit, we assume that there exists some k > 0 such that Cov(εt, εt ′) = 0 for
|t′ − t | ≥ k, so the “long” autocovariance of wage residuals reflects only the skill-related component
(Carroll, 1992; Moffitt and Gottschalk, 2012):

Cov(wt,wt ′) = µt µt ′ Cov(θt, θt ′), for |t′ − t | ≥ k . (3)

In short, we assume that persistent long-term differences in wages across workers are driven by lasting
differences in skills. Appendix A.1 shows that our main identification results continue to hold when
the “transitory” component εi,t contains an autoregressive component, such that the serial correlation in
non-skill shocks depreciates exponentially over time but never fully disappears. Empirical results are also
quite similar in this case.

The properties of skill growth innovations, νi,t , are important for identification. We begin by assuming
that these innovations are serially uncorrelated, then show how systematic heterogeneity in skill growth
rates (over most of the life cycle) can be incorporated.

2.2.1 Serially Uncorrelated Skill Growth Shocks

First, consider the case in which unobserved skill growth innovations νi,t are uncorrelated with past skill
levels and growth shocks; i.e., Cov(θt ′, νt ) = 0 for all t′ < t and Cov(νt, νt ′) = 0 for all t , t′. This
implies that skill levels are persistent in the sense that, for all t′ ≤ t, Cov(θt, θt ′) = Var(θt ′). Together
with equation (3), this implies that Cov(wt,wt ′) = µt µt ′ Var(θt ′) for t′ ≤ t − k, so the following ratio of
residual covariances identifies the ratio of skill returns:

Cov(wt,wt ′)
Cov(wt−1,wt ′)

=
µt µt ′ Var(θt ′)
µt−1µt ′ Var(θt ′)

=
µt

µt−1
, for t′ < t − k . (4)

This suggests that µt/µt−1 can be easily estimated by regressing wi,t on wi,t−1 using sufficiently lagged
wi,t ′ as an instrumental variable (IV).

An IV estimation approach can also be motivated using the framework of Holtz-Eakin, Newey, and
Rosen (1988). We can substitute in for θi,t in equation (2) to obtain an expression for wi,t in terms of
wi,t−1:

wi,t = µt

(
wi,t−1 − εi,t−1

µt−1
+ νi,t

)
+ εi,t =

µt

µt−1
wi,t−1 +

(
εi,t −

µt

µt−1
εi,t−1 + µtνi,t

)
, (5)
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suggesting that lagged residuals wi,t−1 might serve as a proxy for unobserved skills. However, because
wi,t−1 = µt−1θi,t−1+εi,t−1 is a “noisy”measure of unobserved skill θi,t , it is correlatedwith themeasurement
error εi,t−1 (and εi,t if Cov(εt, εt−1) , 0). Simply regressing wi,t on wi,t−1 would, therefore, produce a
biased estimate of µt/µt−1. To address this problem, wage residuals from the distant past (i.e., any wi,t ′ for
t′ < t − k) can be used as instrumental variables, since they are correlated with wi,t−1 (through unobserved
skills) but uncorrelated with εi,t−1, εi,t , and νi,t . Therefore, µt/µt−1 can be estimated using IV methods
for all but the first few sample years; i.e., t > t + k.

Future wage residuals are not valid instruments in equation (5), because skill growth has permanent
effects on future skills. Indeed, IV regression using future wage residuals as instruments produces an
upward biased estimate of µt/µt−1 with the bias proportional to the variance of skill growth:

Cov(wt,wt ′′)
Cov(wt−1,wt ′′)

=
µt µt ′′ Var(θt )

µt−1µt ′′ Var(θt−1)
=

µt

µt−1

[
1 +

Var(νt )
Var(θt−1)

]
for t′′ ≥ t + k . (6)

Since IV estimates using past residuals consistently estimate µt/µt−1, the ratio of IV estimates using future
vs. past residuals as instruments can be used to identify the importance of skill growth shocks (relative to
variation in lagged skill levels):

Var(νt )
Var(θt−1)

=
Cov(wt,wt ′′)/Cov(wt−1,wt ′′)
Cov(wt,wt ′)/Cov(wt−1,wt ′)

− 1, for t′ + k < t ≤ t′′ − k .

The bias for µt/µt−1 when using future residuals as instruments poses an identification challenge for
µt in early sample periods when past observations are not available to serve as instruments. Fortunately,
two additional conditions enable estimation of µt/µt−1 for early years by differencing out this bias across
cohorts. To see this, let c reflect the period of labor market entry (“cohort”), and suppose that two cohorts
exist, c and c̃, such that Var(θt−1 |c) , Var(θt−1 |c̃) andVar(νt |c) = Var(νt |c̃).12 The first condition is likely
to hold quite generally. For example, differences in the variance of initial skill levels would contribute
to different variances later in life. Even if initial skill distributions were identical across cohorts, the
older cohort is likely to have accumulated more skill growth innovations over its longer career. The
second condition holds when the skill growth variance depends only on time (and not experience) or
when there is a non-monotonic experience trend in the variance of skill changes. For example, young
workers may experience greater variation in skill growth than middle-aged workers due to differences in
training or learning opportunities, while older workers may have a greater variance in skill changes due to
differences in health shocks or skill obsolescence. Indeed, Baker and Solon (2003) and Blundell, Graber,
and Mogstad (2015) estimate a U-shaped age profile for the variance of earnings shocks. In this case, the
ratio of the difference of the long autocovariances between cohorts identifies the ratio of skill returns for

12We assume that all previous assumptions on the covariance structure of θt , εt , and νt hold conditional on c.
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early periods:

Cov(wt,wt ′ |c) − Cov(wt,wt ′ |c̃)
Cov(wt−1,wt ′ |c) − Cov(wt−1,wt ′ |c̃)

=
µt µt ′

[
Var(θt−1 |c) − Var(θt−1 |c̃)

]
µt−1µt ′

[
Var(θt−1 |c) − Var(θt−1 |c̃)

] = µt

µt−1
, for t′ ≥ t + k . (7)

With this, we can identify the sequence of all µt over the sample period, where we must normalize one
skill return in a single time period; say, t∗. Normalizing µt∗ = 1 effectively sets the units for unobserved
skill in terms of dollars per hour of work in year t∗.

Once the sequence of all µt has been identified, the variances of unobserved skills for all t ≤ t − k are
identified from the covariance between current and future wage residuals Var(θt ) = Cov(wt,wt ′)/(µt µt ′)
for t′ ≥ t + k. Although the return to unobserved skill is identified for all periods, the variance of
unobserved skills is not identified for later periods t > t − k (without further assumptions), because it
is impossible to distinguish between unobserved skills and wage shocks without observing future wage
residuals. Having identified the variance of unobserved skills over time, it is straightforward to then
identify Var(νt ) = Var(θt ) − Var(θt−1) and Var(εt ) = Var(wt ) − µ2t Var(θt ).

We summarize the above discussion in Proposition 1, where we also note that the variances of
unobserved skills, skill growth shocks, and non-skill transitory shocks can be identified separately by
cohort.

Proposition 1. Assume: (i) there exists k > 0 such that t − t ≥ 2k and Cov(εt, εt ′ |c) = 0 for all (c, t, t′)
such that |t′− t | ≥ k, (ii) Cov(εt, θt ′ |c) = Cov(εt, νt ′ |c) = 0 for all (c, t, t′), (iii) Cov(νt, θt− j |c) = 0 for all
(c, t), and j > 0, and (iv) Var(θt−1 |c) , Var(θt−1 |c̃) and Var(νt |c) = Var(νt |c̃) for some c , c̃. Then, (i)
µt is identified for all t up to a normalization µt∗ = 1 for some period t∗, (ii) Var(θt |c) and Var(εt |c) are
identified for all (c, t) such that the cohort c is observed both in period t and some other period t′ ≥ t + k,
and (iii) Var(νt |c) is identified for all (c, t) such that Var(θt |c) and Var(θt−1 |c) are identified.

Our identification strategy has relied on the assumption that non-skill shocks, εi,t , become serially
uncorrelated when observations are far enough apart. This is not critical, although identification is most
transparent in this case. Appendix A.1 provides an analogous identification analysis when εi,t follows an
ARMA(1,q) process, such that the serial correlation in non-skill shocks never fully disappears.

2.2.2 Heterogeneity in Life Cycle Skill Growth

We now consider the possibility that unobserved skill growth innovations νi,t may be correlated over time
as in the heterogeneous income profile (HIP) models estimated in, for example, Haider (2001), Baker
and Solon (2003), Guvenen (2009), and Moffitt and Gottschalk (2012). We consider a flexible process
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governing this skill growth heterogeneity, assuming

νi,t = τt (ci)δi + ν̃i,t, (8)

where δi is a mean zero individual-specific life cycle growth rate factor and the τt (c) ≥ 0 terms allow for
variation in systematic skill growth across time and cohorts/experience. If we let ψi reflect the initial skill
level for an individual just entering the labor market, then the level of unobserved skill for individual i

from cohort ci in year t can be written as

θi,t = ψi +

t−ci−1∑
j=0

τt− j (ci)δi +

t−ci−1∑
j=0

ν̃i,t− j .

We assume that idiosyncratic skill growth shocks ν̃i,t are serially uncorrelated and uncorrelated with
initial skills ψi and systematic skill growth δi; however, we make no assumptions about the correlation
between heterogeneous skill growth rates δi and initial skill levelsψi. We continue to assume that non-skill
shocks εi,t are uncorrelated with all skill-related components ψi, δi, and ν̃i,t ′ for all t, t′. Altogether, these
assumptions imply the following variance of skills:

Var(θt |c) = Var(ψ |c) + *.
,

t−c−1∑
j=0

τt− j (c)+/
-

2

Var(δ |c) + 2
t−c−1∑

j=0
τt− j (c) Cov(ψ, δ |c) +

t−c−1∑
j=0

Var(ν̃t− j |c). (9)

This includes two new terms reflecting (i) the variance of accumulated (systematic) skill growth and (ii)
the covariance between this accumulated skill growth and initial skills. The covariance between skills in
periods t and t′ < t can be written as

Cov(θt, θt ′ |c) = Var(θt ′ |c) +
t∑

j=t ′+1
τj (c) Cov(θt ′, δ |c). (10)

Unless
∑t

j=t ′+1 τj (c) = 0, it is clear that Cov(θt, θt ′ |c) will not generally equal Var(θt ′ |c), and the IV
approach described in the previous subsection (see equation (4)) cannot be used to identify/estimate
µt/µt−1.13 An additional assumption is needed.

Human capital theory (Becker, 1964; Ben-Porath, 1967) predicts that skill investment and accumu-
lation should be negligible as workers approach the end of their careers, a prediction confirmed by the
lack of wage growth among most older workers. While assuming zero skill growth among older workers

13Notice that Cov(θt ′, δ |c) =
(∑t−c−1

j=0 τt− j (c)
)
Var(δ |c) +Cov(ψ, δ |c), which can be negative very early in workers’ careers

if initial skill levels and skill growth rates are negatively correlated.
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would enable identification of µt/µt−1, such an assumption is stronger than needed. Instead, it is sufficient
to assume that there is no unobserved heterogeneity in skill growth among the most experienced workers;
i.e., τt (c) = 0 for all (t, c) satisfying e = t − c ≥ ē.14 This assumption implies that skill innovations are
serially uncorrelated and that Cov(θt, θt ′ |c) = Var(θt ′ |c) for workers with e ≥ ē. Based on the analysis of
Section 2.2.1, the returns to skill can be identified and estimated by following these workers over time.15
No other assumptions are needed regarding the structure of skill growth heterogeneity across time or
cohort/experience (i.e., τt (c)) over the rest of the life cycle. In practice, many cohorts may be needed to
recover a long time series of skill returns µt by using overlapping subsamples of sufficiently experienced
workers. See Appendix A.2 for details on identification of the full model.

2.3 Returns to Skill and Predicted Future Wage Differences

The evolution of returns to skill are directly related to predicted differences in wages across workers given
any prior differences. Assuming skill and non-skill shocks are mean independent of past skill levels (i.e.,
E[νt |θt ′] = E[εt |θt ′] = 0 for all t > t′) implies that E[wt |wt ′] = µt (wt ′ − E[εt ′ |wt ′]) /µt ′ for t′ ≤ t − k.16
Thus, for any given year t′ differences in residuals across workers, long-term differences in expected
future residuals, E[wt |wt ′], will increase (decrease) over time as the returns to skill µt increase (decrease):

E
[
wt |wt ′ = wH

]
− E

[
wt |wt ′ = wL

]
= µt

(
wH − wL + E[εt ′ |wt ′ = wL] − E[εt ′ |wt ′ = wH]

µt ′

)
(11)

for t′ ≤ t − k. Intuitively, wage differences are related to skill differences when there are positive returns
to skill. As a result, workers with a high wage today will also tend to have a high wage in the future, even
after the influence of any transitory non-skill shocks have disappeared. If the returns to skill increase over
time, then differences in expected wages for any two individuals should also grow in the long run.

14This assumption is weaker than the assumption of zero skill growth for older workers used to identify skill price patterns
in Heckman, Lochner, and Taber (1998) and Bowlus and Robinson (2012) and the distribution of human capital shocks in
Huggett, Ventura, and Yaron (2011). Our assumption accommodates any average level of skill growth, as well as systematic
differences in skill growth based on observable characteristics like education, experience, and time.

15As discussed in Appendix A.2, the experience level ē above which τt (c) = 0 must leave enough years prior to retirement
to identify skill returns based on workers with e ≥ ē. For example, µt/µt−1 for t > t + k is identified if e + k is less than the
maximum experience level used in the analysis.

16In the special case where εt ′ and θt ′ are both normally distributed, this expression simplifies nicely to E[wt |wt ′] =
µt

µt′

[
1 − Var(εt′ )

Var(wt′ )

]
wt ′ .
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3 PSID Data

To estimate the evolution of returns to unobserved skills, variances of unobserved skills and skill growth
innovations, and variances of transitory non-skill shocks (including measurement error), we utilize data
for American men from the PSID. The PSID is a longitudinal survey of a representative sample of
individuals and families in the U.S. beginning in 1968. The survey was conducted annually through 1997
and biennially since. We use data collected from 1971 through 2013. Since earnings were collected for
the year prior to each survey, our analysis studies hourly wages from 1970 to 2012. (Key findings also
hold for annual earnings.)17

Our sample is restricted to male heads of households from the core (SRC) sample.18 We use earnings
(total wage and salary earnings, excluding farm and business income) from any year these men were ages
16–64, had potential experience of 1–40 years, had positive wage and salary income, had positive hours
worked, and were not enrolled as a student. We calculate the wage measure we use in our analysis by
dividing annual earnings by annual hours worked, trimming the top and bottom 1% of all wages within
year by college- vs. non-college-educated status and 10-year experience cells. The resulting sample
contains 3,766 men and 44,547 person-year observations – roughly 12 observations for each individual.

Our sample is composed of 92% white, 6% black, and 1% Hispanic men with an average age of 39
years. We create seven education categories based on current years of completed schooling: 1–5 years,
6–8 years, 9–11 years, 12 years, 13–15 years, 16 years, and 17 or more years. College-educated workers
are defined as those with more than 12 years of schooling. In our sample, 13% of respondents finished
fewer than 12 years of schooling, 35% had exactly 12 years of completed schooling, 21% completed some
college (13–15 years), 21% completed college (16 years), and 10% had more than 16 years of schooling.

Our analysis focuses on log wage residuals wi,t from equation (1) after controlling for differences in
educational attainment, race, and experience. Specifically, we estimate f t (xi,t ) by year and college- vs.
non-college-educated status from separate linear regressions of log hourly wages on indicators for each
year of potential experience, race, and our educational attainment categories, along with interactions
between race and education indicators and a third-order polynomial in experience.

Figure 1 shows the total variance, between-group variance, and within-group variance (variance of
residuals) of log wages over time. The variance of log wages increases sharply in the early 1980s and after
the late 1990s. The evolution of the within-group variance closely mirrors this pattern. The within-group
variance explains a larger share of the total variance than the between-group variance, and it also explains

17Results available upon request. Also, see Lochner and Shin (2014) for similar results using a slightly different specification.
18We exclude those from any PSID oversamples (SEO, Latino) as well as those with zero individual weights. The earnings

questions we use are asked only of household heads. We also restrict our sample to those who were heads of household and
not students during the survey year of the observation of interest as well as two years earlier. Our sampling scheme is very
similar to that of Moffitt and Gottschalk (2012).
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an increasing share of the total variance since the early 1990s.
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Figure 1: Between- and Within-Group Variances of Log Wages

Figure 2 also shows the widening of the residual distribution over time, reporting average log wage
residuals within each quartile. Consistent with Figure 1, the distribution widened most during the early
1980s and then again after 2000.
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Figure 2: Average Log Wage Residuals by Quartile

As discussed in Section 2.3, the evolution of expected future wage residuals conditional on some
“base” year residuals wb, E[wt |wb], is informative about the evolution of skill returns. To explore this,
we categorize workers based on their residual quartile in three different “base” years (1970, 1980, and
1990), then calculate their average residuals in subsequent years t = b + 6, ..., b + 20. These averages
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are reported in Figure 3, which has three lines for each quartile associated with each of the three “base”
years. Each line traces out estimates of E

[
wt |wb ∈ Q j

b

]
for different t years where Q j

b reflects quartile
j in “base” year b. Not surprisingly, the lines are always higher for workers from higher initial residual
quartiles. Consistent with an important role for unobserved skills, those earning higher wages in any
given base year also earn more, on average, up to 20 years later. More interestingly, the lines are fairly
flat over the late 1970s and early 1980s, as well as in the 2000s; however, they sharply converge over the
late 1980s and 1990s.19 This suggests that the returns to skill fell over the middle years of our sample
(see equation (11)), despite modest growth in residual inequality at the time (see Figures 1 and 2).
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Figure 3: Average Predicted Log Wage Residuals by Baseline Residual Quartile

Long autocovariances in wage residuals play a central role in identifying changes in the returns to
unobserved skill (see Section 2). Figure 4 reports Cov(wb,wt ) for t = b + 6, ..., b + 20 with each line
reporting autocovariances for a different “base” year b and 15 subsequent years.20 For example, the
left-most line beginning in 1976 reflects autocovariances for b = 1970 and values of t ranging from
1976–1990. If heterogeneity in systematic unobserved skill growth is negligible and t − b is large enough
such that transitory shocks are uncorrelated, then Cov(wb,wt ) = µt µb Var(θb) and following each line
over t is directly informative about the evolution of µt , while the shifts up or down across lines at a given
date t are informative about differences in µb Var(θb). The sharply declining autocovariances over the
late 1980s and 1990s (regardless of the base year) suggest that the returns to unobserved skill fell over that
period. The time trends for autocovariances were much weaker during earlier and later years, consistent

19While not shown, this general pattern holds when using other “base” years as well. The differences in levels across lines
for any given quartile reflect differences in the base years’ wage distribution – see equation (11).

20Figure E-1 in Appendix E shows that sample attrition due to non-response or aging/retirement does not affect the
autocovariance patterns documented here.
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Figure 4: Autocovariances for Log Wage Residuals

with more stable returns. Finally, the upward shifting lines beginning in the 1980s, coupled with declining
or constant skill returns, indicate an increasing variance of unobserved skills.

If heterogeneity in unobserved skill growth is important, then the residual covariances are more
difficult to interpret, since Cov(θb, θt ) does not generally equal Var(θb) (see equation (10)). In this case, it
is useful to focus on more experienced workers for whom differences in unobserved skill growth should be
negligible. Figure 5 reveals very similar autocovariance patterns to Figure 4 when restricting the sample
to men with 16-30 years of experience as of baseline b years.21 Thus, our conclusions about the declining
returns to skill and growing variance of unobserved skill do not appear to be affected by heterogeneity in
systematic unobserved skill growth.

As emphasized by the literature on “polarization” in the U.S. labor market (Autor, Levy, andMurnane,
2003; Autor, Katz, and Kearney, 2008; Acemoglu and Autor, 2011; Autor and Dorn, 2013), wage
inequality evolved differently for non-college- and college-educated workers. Figure 6 shows that the rise
in residual inequality over the early 1980s was stronger among non-college-educated workers; however,
residual inequality began to fall among non-college-educated workers in the mid-1980s while it continued
to increase among college-educated workers. It is natural to ask whether these differential trends reflect
differences in the evolution of returns to skill by educational attainment.

To examine this, Figure 7 reports autocovariances separately for non-college- and college-educated

21Figure E-2 in Appendix E shows qualitatively similar autocovariances for men with 1–15 years of experience (i.e., lines
generally declining in t over the late 1980s and 1990s, while shifting upwards across base years b); however, the patterns are
much more muted. The weaker declines in Cov(wb,wt ) with changes in t (among less experienced workers) are consistent
with a positive correlation between baseline skills θb and individual-specific skill growth rates δ for young workers (see
equation (10)). The lower levels and more modest upward shifts in the lines across base years b are consistent with less
dispersion in skills among less experienced workers.
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Figure 5: Autocovariances for Log Wage Residuals (16–30 Years of Experience)

men (analogous to those in Figure 4). The time patterns are qualitatively similar for both education
groups, with two noteworthy differences: First, the autocovariance lines continue declining for non-
college-educated men throughout the early 2000s when they flatten out for college-educated men. This
suggests that the returns to skill continued falling for non-college-educated men several years after they
stabilized for college-educated men. Second, the lines shift more strongly upward over the late 1990s and
early 2000s for college-educated men, suggesting that the distribution of skills may have widened more
for them over this period.22

We explore these autocovariance patterns and their implications for the returns to skill, variance of
unobserved skill, and variance of transitory non-skill wage shocks more deeply in the empirical analysis
presented in the next two sections.

4 Instrumental Variable Estimation of Skill Returns

In this section, we estimate growth rates in the returns to unobserved skill based on the IV strategy described
in Section 2. Given our data are available only every other year later in the sample period, we modify the
strategy slightly to estimate two-year growth rates, (µt − µt−2)/µt−2, using two-stage least squares (2SLS)
with multiple lags of log wage residuals as instruments. Substituting in for θi,t =

wi, t−2−εi, t−2
µt−2

+ νi,t−1 + νi,t

22This is not necessarily the case, however, since the lines shift upward if µb Var(θb ) increased. For non-college-educated
men, µb is declining over the early 2000s (based on the slopes of all lines over that period), while it is not for college-educated
men. Thus, we would expect smaller upward shifts in the lines for non-college-educated relative to college-educated men even
with the same increases in skill variances.
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Figure 6: Variance of Log Wage Residuals by Educational Attainment

in equation (2), subtracting wi,t−2 from both sides, and rearranging yields

wi,t − wi,t−2 =

(
µt − µt−2
µt−2

)
wi,t−2 +

[
µt (νi,t−1 + νi,t ) + εi,t −

µt

µt−2
εi,t−2

]
, (12)

where the final term in brackets is uncorrelated with sufficiently lagged residuals. So, if Cov(εt, εt ′) = 0
holds for |t′ − t | ≥ k, we can obtain consistent estimates of (µt − µt−2)/µt−2 by estimating equation (12)
via 2SLS using lags wi,t−k−2,wi,t−k−3, ... as instrumental variables.

Table 1 reports estimates of skill return growth rates using equation (12) for years t covering 1979–
1995, assuming that skill return growth rates are constant within two- or three-year periods (i.e., 1979–
1980, 1981–1983,...,1993–1995). Assuming k = 6, we use (wi,t−8,wi,t−9) as instruments. Table 2 reports
estimates for the later years of the PSID (t covering 1996–2012) when observations become biennial.23 In
all specifications, the instruments are “strong” with very large first-stage F-statistics (for the instruments).

Panel A of Tables 1 and 2 reports estimates for the full sample of men in the PSID, while panel B
reports estimates for the sample of men with 21–40 years of experience (in year t) when heterogeneity
in systematic unobserved skill growth should be negligible. As might be expected from Figures 4 and
5, the estimates are quite similar in both panels, and all are negative. Many estimates in the late 1980s
and 1990s are statistically significant. Panels C and D report separate estimates for non-college- and
college-educated men (of all experience levels). Nearly all of these estimates are negative as well, with
several statistically significant. Figure 8 combines these estimates to trace out the implied paths for µt

from 1979 to 2012. Altogether, these results suggest that the returns to unobserved skill have declined

23Estimates in Table 2 assume two-year return growth rates are constant within each of the periods 1996–2000, 2002–2006,
and 2008–2012, and use (wi, t−8,wi, t−9) as instruments for 1996–2000 and (wi, t−8,wi, t−10) thereafter.
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Figure 7: Autocovariances for Log Wage Residuals by Educational Attainment

by roughly 50% since the mid-1980s, contrasting sharply with the sizable increase in residual inequality
reported in Figure 1.
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Figure 8: µt Implied by IV Estimates (µ1985 = 1)

In Appendix B, we show that analogous Generalized Method of Moments (GMM) estimates to the
2SLS estimates in panel A of Tables 1 and 2 are very similar.24 More importantly, we calculate Hansen
J-statistics to test the validity of our lagged instruments, since we are overidentified when using two

24The GMM estimates exploit the same moments but use the optimal weighting matrix (allowing for heteroskedasticity and
serial correlation within individuals).
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Table 1: 2SLS estimates of (µt − µt−2)/µt−2 for three-year periods, 1978–1995

1979–1980 1981–1983 1984–1986 1987–1989 1990–1992 1993–1995
A. All men

(µt − µt−2)/µt−2 -0.036 -0.044 -0.046 -0.081∗ -0.082∗ -0.067
(0.045) (0.038) (0.038) (0.034) (0.035) (0.035)

Observations 1,349 2,077 2,188 2,245 2,189 2,095
1st-Stage F-Statistic 163.09 191.61 114.85 209.42 227.13 286.96

B. All men with 21–40 years of experience (at year t)
(µt − µt−2)/µt−2 -0.052 -0.088∗ -0.031 -0.100∗ -0.036 -0.104∗

(0.050) (0.043) (0.050) (0.046) (0.044) (0.045)

Observations 928 1,323 1,244 1,211 1,244 1,300
1st-Stage F-Statistic 117.23 132.19 66.26 130.53 132.83 201.62

C. Non-college-educated men (all experience levels)
(µt − µt−2)/µt−2 -0.075 0.039 -0.035 -0.127∗ -0.062 -0.057

(0.061) (0.056) (0.060) (0.050) (0.058) (0.054)

Observations 740 1,080 997 965 897 851
1st-Stage F-Statistic 81.85 85.23 39.48 98.34 92.27 91.33

D. College-educated men (all experience levels)
(µt − µt−2)/µt−2 -0.034 -0.123∗ -0.030 -0.028 -0.097∗ -0.074

(0.061) (0.048) (0.049) (0.047) (0.047) (0.046)

Observations 508 884 1,046 1,109 1,107 1,242
1st-Stage F-Statistic 100.95 115.03 123.38 97.29 122.42 208.04
Notes: Estimates from 2SLS regression of wi, t − wi, t−2 on wi, t−2 using instruments (wi, t−8,wi, t−9).
∗ Denotes significance at 0.05 level.

instruments to identify a single parameter. In all years, these J-statistics are less than 1, and we cannot
reject our instruments at conventional levels. We further show that future residuals are invalid instruments
(during most of our time periods), highlighting the importance of accounting for variation in skill growth.
Finally, comparing estimates using only past vs. only future residuals as instruments, we show that the
variance of two-year skill growth relative to prior skill levels, Var(νt−1+νt )

Var(θt−2) , ranges from 0.16 to 0.29 over
our sample period.

It is worth emphasizing that these estimates require no assumptions about the variance of individual
skill innovations νi,t (or non-skill shocks, εi,t) over time or across experience groups. The only assumptions
are: (i) skill shocks νi,t are uncorrelated with past skills; and (ii) non-skill shocks εi,t are uncorrelated
with non-skill shocks more than five years removed, initial skill levels, and all skill shocks. (Our

19



Table 2: 2SLS estimates of (µt − µt−2)/µt−2 for four-year periods, 1996–2012

1996–2000 2002–2006 2008–2012
A. All men

(µt − µt−2)/µt−2 -0.075∗ -0.039 -0.050
(0.025) (0.028) (0.027)

Observations 2,122 2,129 1,968
1st-Stage F-Statistic 369.09 344.25 341.36

B. All men with 21–40 years of experience (at year t)
(µt − µt−2)/µt−2 -0.084∗ -0.040 -0.058

(0.030) (0.032) (0.031)
Observations 1,427 1,591 1,493
1st-Stage F-Statistic 295.75 281.91 267.83

C. Non-college-educated men (all experience levels)
(µt − µt−2)/µt−2 -0.087∗ -0.043 0.011

(0.043) (0.047) (0.075)

Observations 862 826 615
1st-Stage F-Statistic 121.44 142.56 104.92

D. College-educated men (all experience levels)
(µt − µt−2)/µt−2 -0.070∗ -0.041 -0.065∗

(0.031) (0.034) (0.029)

Observations 1,252 1,293 1,141
1st-Stage F-Statistic 260.47 218.64 229.40
Notes: Estimates from 2SLS regression of wi, t − wi, t−2 on
wi, t−2 using instruments (wt−8,wt−9) for 1996–2000 and
(wt−8,wt−10) for 2002–2006 and 2008–2012. ∗ Denotes
significance at 0.05 level.
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overidentification tests suggest that these assumptions cannot be rejected.) Equation (7) shows that with
modest assumptions on the variance of skills and skill innovations across cohorts, additional moment
restrictions can also be used to help identify µt in all but the final few years.

We have, thus far, used a very limited set of lagged residuals as instruments to keep the specifications
similar across years and to allow estimation of skill return growth rates back to 1979. One could certainly
add more lags as instruments for most years. Rather than report several sets of 2SLS estimates, the next
section employs a minimum distance estimator to estimate the returns to unobserved skills, as well as the
variances of unobserved skills and shocks over time, using the full set of available moments in the data.
“Smoothness” restrictions on the time and experience patterns for skill and non-skill shock variances are
also imposed. The combination of more moments and modest “smoothness” restrictions considerably
improves precision, yet it produces very similar estimates for the time sequence of µt .

5 Minimum Distance Estimation

We now estimate the full model by choosing parameters to minimize the distance between the sample
covariances and the theoretical covariances implied by the model. This requires a more complete
specification of the model; however, since we are focused on estimating the evolution of unobserved skill
returns and the variances of skills over time, we need not model or use higher order moments.

5.1 Specification and Identification

We assume that individuals enter the labor market with initial skill ψi and no other prior shocks, which
implies that unobserved skill in year t for individual i who started working in year ci can be written as

θi,t = ψi +

t−ci−1∑
j=0

νi,t− j . (13)

We begin by assuming that skill growth shocks, νi,t , are serially uncorrelated but relax this assumption
later in Subsection 5.3. As in much of the literature, we assume that the transitory component εi,t is a
moving average process with order q:

εi,t =

min{q,t−ci−1}∑
j=0

β jξi,t− j, (14)

where β0 = 1.
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Given thisMA(q) specification for εi,t , identifying assumption (i) in Proposition 1 (i.e., Cov(εt, εt ′ |c) =
0 for |t′ − t | ≥ k) holds for k = q + 1. This demonstrates identification for all skill returns µt (up to one
normalization) as well as cohort- and time-specific variances of skills, Var(θt |c) = Cov(wt,wt ′ |c)/µt µt ′,
for cohorts observed in years t and any t′ ≥ t+q+1. Next, Cov(εt, εt ′ |c) = Cov(wt,wt ′ |c)−µt µt ′ Var(θt |c)
for t′ ≥ t is identified for (c, t) such that Var(θt |c) is identified. Then, β j is identified from some cohort
c and period t = c + 1 as follows:

Cov(εt, εt+ j |c)
Var(εt |c)

= β j
Var(ξt |c)
Var(ξt |c)

= β j .

Given β j’s, we can recover Var(ξt |c) each period by following cohorts over time.25
In our empirical analysis, we assume that the initial skill variance for each cohort Var(ψ |c) is a cubic

polynomial in c. We also assume that the variances of shocks for each period and cohort can be written
as products of time trends and experience trends:

Var(νt |c) = π(t)φ(e) and Var(ξt |c) = ω(t)κ(e),

where e = t − c is potential work experience and we normalize φ(20) = κ(20) = 1. We assume that the
experience trends φ(e) and κ(e) are quadratic. The time trend for the skill shock variance π(t) is assumed
to be cubic, but the time pattern for the variances of transitory shocks ω(t) is unrestricted. Finally, we
assume that the variances of all shocks prior to 1970 are the same as in 1970.

We estimate µt for all t (normalizing µ1985 = 1), {β j }
q
j=1, cohort trends in Var(ψ |c), time trends in

shocks, π(t) and ω(t), and experience trends in shocks, φ(e) and κ(e). Since the relative wages between
those who did not attend college and those who did have diverged significantly during the sample period
(Katz and Murphy, 1992), we also estimate all parameters separately for the two groups, which we call
“sectors”. Let si,t be an indicator variable for college attendance.

For a given parameter vector Λ, we can compute theoretical counterparts for Cov(wt,wt ′ |s, c) implied
by the model (2), (13), and (14) and compare them with the sample covariances. Since some cohort (or,
equivalently, experience e = t − c) cells have few observations when calculating residual covariances,
we partition the experience set E = {1, . . . , 40} into 10-year experience groups E1, E2, E3, and E4,
corresponding to 1–10, 11–20, 21–30, and 31–40 years, respectively, and aggregate within experience
groups.

25Consider a cohort c. For the initial period t = c + 1, Var(ξt |c) = Var(εt |c). For t > c + 1,

Var(ξt |c) = Var(εt |c) −
min{q, t−c−1}∑

j=1
β2j Var(ξt− j |c).
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The minimum distance estimator Λ̂ solves

min
Λ

∑
(s, j,t,t ′)∈Γ

{
Ĉov(wt,wt ′ |s, E j ) − Cov(wt,wt ′ |s, E j,Λ)

}2
,

where Γ = {s, j, t, t′|1970 ≤ t′ ≤ t ≤ 2012, s ∈ {0, 1}, j ∈ {1, 2, 3, 4}}, Ĉov(wt,wt ′ |s, E j ) is the sample
covariance conditional on sector s and experience group E j in year t, and Cov(wt,wt ′ |s, E j,Λ) is the
corresponding theoretical covariance given parameter Λ.

5.2 Estimation Results

We discuss results for log wage residuals with MA(5) transitory shocks in the text, consistent with
k = 6 assumed in Section 4; however, conclusions are quite similar for log annual earnings and other
specifications for the transitory component.26
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Figure 9: Estimated µt (Thick Lines) with 95% Confidence Interval (Thin Lines)

Estimated Returns Figure 9 reports the estimated returns over time along with their 95% confidence
intervals. The returns are quite similar to those reported in Figure 8 but are muchmore precisely estimated
now. Figure 10 shows separate estimates by education sector. Overall, the returns to unobserved skills
fell substantially after 1985 in both sectors despite the increasing residual inequality during the period.
Although the returns for non-college- and college-educated workers display qualitatively similar time
patterns, the return for non-college-educated workers declines about 20 percentage points more between

26Available upon request.
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Figure 10: µt Estimated Separately by Educational Attainment

1985 and 2008 than that of college-educated workers. Indeed, we can reject the hypothesis that the returns
to unobserved skills are identical across education groups at the 5% significance level.27

One potential concern is that skill growth shocks may be serially correlated, especially for younger
workers who are likely to be investing in their skills through job training. This is less of a concern for older
workers, whose wage profiles are relatively flat due to weaker incentives for investment (e.g., Heckman,
Lochner, and Taber, 1998; Huggett, Ventura, and Yaron, 2011). Figure 11 shows that estimated returns
to unobserved skill are quite similar for workers with low (1–20 years) and high (21–40 years) levels of
experience, alleviating concerns that our estimated decline in µt over time is due to serially correlated
skill shocks.28 In Subsection 5.3, we further show that the estimated µt series is quite similar to that of
Figure 9 when we explicitly model individual heterogeneity in systematic life cycle wage growth profiles.

Our finding that the returns to unobserved skills have fallen since the mid-1980s is consistent with
the findings of Castex and Dechter (2014), who show that the returns to cognitive ability as measured by
AFQT scores fell in the 2000s relative to the 1980s by comparing NLSY79 and NLSY97 cohorts. The
decreasing returns to unobserved skills differ, however, from the conclusions reached in the literature
based on the Current Population Survey (CPS) data, which typically equates changes in the total variance
of log wage residuals with changes in the returns to unobserved skills. This literature generally concludes
that the returns to unobserved skill increased steadily after the early 1970s (Juhn, Murphy, and Pierce,

27A Wald test is used to test the null hypothesis that µt is identical across sectors for all t , 1985.
28These estimated return sequences are based on the full sample assuming parameters are the same across education groups

(as in Figure 9) but allowing the µt returns to depend on worker experience in period t.
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Figure 11: µt Estimated Separately by Experience

1993; Katz and Autor, 1999; Acemoglu, 2002).29
The PSID-based literature on earnings dynamics focuses primarily on the relative importance of

permanent and transitory shocks, typically ignoring variation in the returns to unobserved skills.30 Haider
(2001) and Moffitt and Gottschalk (2012) are notable exceptions. Haider (2001) estimates that the returns
to unobserved skills were stable in the 1970s and then increased throughout the 1980s, while Moffitt and
Gottschalk (2012) find that the returns increased until the mid-1980s, stabilized, and then increased again
in the mid-1990s.31

Of course, the patterns estimated in the earnings dynamics literature may differ from ours due to labor
supply responses and the distinction between annual earnings and hourly wages. This is not the entire
story, however. Figure 12 shows that the evolution of estimated returns to skill in Haider (2001) and
Moffitt and Gottschalk (2012) differs from ours largely because they restrict the variance of permanent
skill shocks to remain constant over time. The estimates in this figure are based on an analysis of log
hourly wage residuals that pools non-college- and college-educated men, estimating a single series for
µt as in Figure 9 (referred to as “Baseline” in the figure). The blue line with circles reports estimates

29Lemieux (2006) is a notable exception. After controlling for composition effects, he estimates that the returns to unobserved
skill declined slightly in the 1970s and 1990s.

30See, among others, Abowd and Card (1989); Blundell and Preston (1998); Meghir and Pistaferri (2004); Blundell,
Pistaferri, and Preston (2008); Heathcote, Perri, and Violante (2010). See MaCurdy (2007) for a review.

31Other studies exploit different panel data sets on earnings to estimate similar models to Haider (2001) and Moffitt and
Gottschalk (2012). DeBacker et al. (2013) use U.S. tax return data from 1987 to 2009, while Baker and Solon (2003) exploit
Canadian tax return data from 1976 to 1992. Both studies reach similar conclusions that the returns to skill increased over
time.
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Figure 12: Estimated µt Under Different Restrictions

assuming that transitory non-skill shocks follow an ARMA(1,1) (rather than MA(5)) process as in their
analyses. The estimated time patterns for µt are quite similar to our baseline estimates. More generally,
different assumptions about the persistence of transitory non-skill shocks all lead to similar conclusions
about the returns to skill. The red dashed line reports estimates additionally assuming that the variance
of skill shocks is time invariant, while the green line with + signs further assumes that the initial skill
distribution is identical across cohorts. The last model is nearly identical to those estimated in Haider
(2001) and Moffitt and Gottschalk (2012), and the estimated time series for µt is similar to theirs.32
Moving from the baseline to the final model, the estimated returns rotate counter-clockwise, generating
strong positive trends both before the mid-1980s and after the mid-1990s. The difference between the
ARMA(1, 1) model with time-varying vs. time-invariant skill growth shock distributions is dramatic after
1990, highlighting the importance of accounting for the rise in the variance of skill growth innovations.
When the variance of skill growth shocks is not allowed to increase over time, the model is “forced” to
explain the increasing residual variance via an increase in the returns to skill.

Variance of Unobserved Skills and the Rising Residual Variance The fact that estimated returns have
evolved quite differently from residual inequality suggests that the role of unobserved skills might also
have changed. Figure 13 decomposes the residual variance into two components: the unobserved skill
component (µtθt) and transitory component (εt).33 Initially quite low, the variance of the unobserved

32These studies also allow for heterogeneity in the growth rate of unobserved skills. We incorporate this heterogeneity in
Subsection 5.3 and show that the estimated returns to skill are quite similar to our “Baseline” series.

33As shown in Section 2, the variances of unobserved skills and transitory components are not nonparametrically identified
for the last few years of our panel. In this figure and those that follow, we report only distributions of skills and shocks through
2006.
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skill component rises over the 1970s and early 1980s before stabilizing after 1985. The variance of the
transitory component rises in the late 1980s and early 1990s. The unobserved skill component explains
about 65% of the total residual variance at its peak in the late 1980s with its share decreasing thereafter.
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Figure 13: Log Wage Residual Variance Decomposition (Full Sample)

Figure 14 decomposes the residual variance when estimating the model separately for non-college-
and college-educated men. The figure reveals that the general time patterns for overall residual inequality
(within education groups) are driven largely by changes in the variance of the unobserved skill component,
µtθt . The variance of this component rose for both college- and non-college-educated workers over the
1970s and early 1980s; however, it reversed course for non-college-educated workers over the late 1980s
and early 1990s. Among college-educated workers, the variance of the unobserved skill component
continued to rise throughout the sample period, although there was a slowdown in the growth rate
beginning in the mid-1980s. The course reversal for the Var(µtθt ) among non-college-educated workers
and the slowdown for college-educated workers beginning in the mid-1980s is driven entirely by the
sudden and lasting decline in skill returns µt documented in Figure 10. As Figure 15 shows, variation in
skill levels θt rose continually from the mid-1980s through the early 2000s.

Figure 15 also decomposes the rising variance in unobserved skills θt into the variance of initial skill
levels and the accumulation of all permanent skill shocks.34 The increasing variance of unobserved skills
is driven entirely by an increase in the variability of skill growth shocks over time. The estimated time
trends for the variance of skill growth shocks, π(t), is reported in Figure 16.35

34These aggregate across all cohort/experience groups within each period. Initial skills are given by ψ for each cohort, while
the accumulation of permanent skills are simply θt − ψ for each cohort.

35See Appendix E for estimated cohort trends in the variance of initial skills (Figure E-3) and for the experience profiles for
the variance of permanent skill shocks, φ(e) (Figure E-4).
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Figure 14: Log Wage Residual Variance Decomposition Separately by Education
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Figure 15: Skill Variance Decomposition by Education

Summarizing, we find that U.S. trends in residual wage inequality closely resemble trends in the
variance of the unobserved skill component of wages. Variation in the total value of unobserved skill,
µtθt , has risen considerably since 1970. For both college- and non-college-educated men, the increase
was strongest before the mid-1980s, after which it increased more slowly for college-educated men
and declined for almost a decade among non-college-educated men. The increasing variability in the
total value of skill contrasts sharply with the strong decline in returns to unobserved skill, µt , from the
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Figure 16: Time Trends in the Variances of Skill Growth Shocks, π(t), by Education

mid-1980s to late 1990s, especially among non-college-educated men. This decline in returns is largely
responsible for the slowdown (college-educated men) and roughly decade-long fall (non-college-educated
men) in residual inequality; yet, it was offset by a strong increase in the variance of unobserved skill θt

beginning in the early 1980s. Finally, the increasing variance of skills is driven by increasing variation
in skill growth shocks, νt , over time rather than an increase in initial skill levels for more recent cohorts.
The transitory, non-skill component of wages, εt , showed little systematic growth over this period.36

5.3 Accounting for Heterogeneity in Systematic Life Cycle Skill Growth

We now incorporate potential heterogeneity in systematic life cycle skill growth as discussed in Sec-
tion 2.2.2. In particular, we consider a flexible process governing heterogeneity over the life cycle and
across time: νi,t = τt (ci)δi + ν̃i,t .

For practical purposes, we make a few additional assumptions on the structure of unobserved skill
growth in estimating this framework using the PSID. We begin by assuming that τt (c) is separable in
experience and time, so τt (c) = χ(t)η(e) where e = t − c. The parameter χ(t) captures any time-
varying differences in systematic skill growth (normalizing χ(1985) = 1), while η(e) allows skill growth
heterogeneity to vary with experience. We assume that χ(t) is a cubic polynomial in time, while we
assume that η(e) declines linearly in experience (a natural assumption, given the decline in skill growth
over the life cycle). Specifically, we assume η(e) = max{1 − e/ē, 0} with ē = 30. Finally, we assume
that Var(δ |c) and Cov(δ, ψ |c) are the same across cohorts, while we continue to allow for cohort trends

36See Figures E-5 and E-6 in Appendix E for estimated time and experience patterns for transitory shocks.
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in Var(ψ |c) as above.
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Figure 17: Estimated µt Accounting for Heterogeneous Skill Growth with χ(t) = χ
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Figure 18: Estimated µt and χ(t) Accounting for Time-Varying Variance of Heterogeneous Skill Growth

We first examine the impacts of introducing systematic skill growth heterogeneity for our estimates
of skill returns, keeping χ(t) = χ fixed over time. This is similar to previous studies that allow for HIP;
however, we continue to allow for time variation in the variance of skill shocks ν̃t .37 Figure 17 shows that
incorporating systematic skill growth heterogeneity has very little effect on our estimated µt skill return

37For this analysis, we pool all men and assume parameters are the same across education groups (college and non-college).
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series (compare with Figure 9). Allowing χ(t) to vary over time (Figure 18), we estimate substantial
growth in the variance of systematic skill growth over the 1980s and 1990s.These results suggest a slightly
stronger decline in skill returns after 1985.

Finally, Figure 19 shows the dramatic increase in the variance of unobserved skills over time and
decomposes this variance into the part due to heterogeneity in initial skills, ψ, which varies across
cohorts; the part due to systematic skill growth (including terms related to Var(δ) and Cov(ψ, δ) in
equation (9)); and the part due to accumulated idiosyncratic skill growth shocks, ν̃t . Consistent with our
earlier results, variation in initial skills plays a minor role in the rising skill variance. Instead, we observe
strong increases in the variances of both systematic and idiosyncratic skill growth innovations.
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Figure 19: Skill Variance Decomposition Accounting for Time-Varying Variance of Heterogeneous Skill
Growth

6 Interpreting Skill Returns in a Demand and Supply Framework

In this section, we examine the extent to which the estimated widening of the skill distribution, as well
as changes in the demand for skill (due to changes in technology), has contributed to the falling return
to skill since the mid-1980s. In particular, we assess the contributions of skill demand and supply using
an equilibrium framework based on the assignment model of Sattinger (1979). Assignment models
are particularly useful for studying within-group wage inequality because they generate a hedonic wage
function that is non-linear in skill.38 The frameworkwe develop produces logwage specifications identical

38See Sattinger (1993) for an early review. Recent theoretical and empirical studies of income inequality based on this
framework include Terviö (2008); Gabaix and Landier (2008); Costinot and Vogel (2010); Lindenlaub (forthcoming); Burstein,
Morales, and Vogel (2015); Ales, Kurnaz, and Sleet (2015); Scheuer and Werning (2015).
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to those estimated earlier in the paper and provides results that are useful for recovering changes in skill
demand from our estimated returns and distributions of unobserved skills.

In the model, the returns to skill are generated by differences in the productivity of skill and amplified
by differences in the productivity of jobs or tasks in which skills are employed. Heterogeneity in job/task
productivity may be purely technological with more complex tasks performed more efficiently by more
skilled workers. Heterogeneous productivity across jobs might also derive from differences in the amount
of resources under each worker’s control, such as the amount of capital or the number of reporting workers
in a hierarchy. Differences could also arise from different vintages of technology embodied in capital.
As in the models of “span-of-control” (Lucas, 1978; Rosen, 1982) and “superstars” (Rosen, 1981), the
production technology determines the extent to which differences in skills are magnified to differences in
earnings. When jobs are in fixed supply, the distribution of skills also affects the return to skills through
its impact on the equilibrium assignment of skills and jobs.

Since the aim of this analysis is to understand the evolution of skill returns in equilibrium, we do not
consider the economic forces driving changes in the underlying distribution of skills. We also abstract
from transitory wage shocks that are unrelated to skills.

6.1 Assignment Model of Labor Market

Endowment We consider an economy populated by a continuum of measure 1 of workers and jobs.
In each period t, there exist workers endowed with heterogeneous skills Θt and jobs with heterogeneous
productivity Zt . Worker skills and job productivities are continuously distributed with full support on the
real line according to distribution functions Ft (Θt ) and Gt (Zt ). Skill Θt is assumed to be observed by all
market participants.39

Technology Production takes place through one-to-one matching between workers and jobs. If a
worker with skill Θt works at a job with productivity Zt , Yt (Θt, Zt ) ≥ 0 units of output are produced.
We assume that Yt (·, ·) is twice continuously differentiable, strictly increasing, and satisfies the following
strict supermodularity condition:

∂2Yt (Θt, Zt )
∂Θt∂Zt

> 0. (15)

These assumptions imply that high-skill workers are more productive (i.e., they have absolute advan-
tages) than low-skill workers at all jobs, but the productivity gap between high- and low-skill workers

39It need not be perfectly observed by the econometrician. As discussed in Subsection 6.3, the component of skill that is
orthogonal to observed variables, θt ≡ Θt − E[Θt |xt ], corresponds to unobserved skill in the empirical model studied earlier.
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is greater at more productive jobs due to complementarity between workers and jobs. Therefore, the
efficient assignment that maximizes aggregate output features positive assortative matching where more
skilled workers work at more productive jobs (Becker, 1973).

Profit Maximization All markets are perfectly competitive. Workers with skill Θt earn Wt (Θt ) and
output is sold at a price normalized to 1. Producers maximize profits, solving

Πt (Zt ) ≡ max
Θt

{
Yt (Θt, Zt ) −Wt (Θt )

}
. (16)

Denote the solution by Θ̂t (Zt ). Because it is strictly increasing in Zt due to the strict supermodularity of
Yt (·, ·), its inverse Ẑt (Θt ), which we call the “matching function,” is well defined. The necessary first-order
condition for profit maximization is

∂Yt
(
Θt, Ẑt (Θt )

)
∂Θt

=
dWt (Θt )

dΘt
. (17)

The second-order condition is satisfied at optimum due to the supermodularity.

Market Clearing The labor market clears if, for all Θt , the fraction of producers demanding skills Θt

or less equals the fraction of workers supplying skills Θt or less:

Ft (Θt ) = Gt
(
Ẑt (Θt )

)
. (18)

With one-to-one matching, the equilibrium assignment is entirely characterized by the market clearing
condition, independent of technology.

Given the equilibrium assignment defined by themarket clearing condition (18), the condition for profit
maximization (17) determines the slope of the hedonic wage function. To pin down the level of wages, we
assume that both producers andworkers have an option not to engage in production, inwhich case they earn
zero, and that the least productive worker-job pair produces nothing (i.e., limΘt→−∞Yt (Θt, Ẑt (Θt )) = 0).
Then, it can be shown that, in equilibrium, all workers participate, and the least skilled worker earns zero:
limΘt→−∞Wt (Θt ) = 0.

Equilibrium Wage A competitive equilibrium consists of the matching function Ẑt (Θt ) and the wage
function Wt (Θt ) that satisfy the first-order condition for profit maximization (17) and the market clearing
condition (18). The equilibrium wage for a worker with skill Θt , Wt (Θt ), is given by the solution to
differential equation (17) with the condition limΘt→−∞Wt (Θt ) = 0.
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We can rearrange the first-order condition (17) to derive the following expression for the equilibrium
return to skill:40

d lnWt (Θt )
dΘt︸        ︷︷        ︸

Return to skill

=
∂ lnYt

(
Θt, Ẑt (Θt )

)
∂Θt︸                  ︷︷                  ︸

Partial elasticity of output

(
Wt (Θt )

Yt
(
Θt, Ẑt (Θt )

) )︸               ︷︷               ︸
Labor share

−1
. (19)

The return to skill consists of two components. The first term, which we call the “partial elasticity of
output,” is the proportional change in output associated with a marginal skill change, holding productivity
of a job constant. The second term is the inverse of the worker’s share of revenue, or labor share.
Therefore, the return to skill for a worker is determined by the worker’s marginal contribution to output
(relative to a marginally less skilled worker) as well as the share of output that accrues to the worker.

6.2 Cobb-Douglas Technology and Returns to Skill

When the production function is Cobb-Douglas and skills and job productivities are normally distributed,
the return to skill (19) is identical across skill levels, consistent with our empirical model.41 Proposition
2 shows that the return to skill can be derived in closed form as a function of production technology
parameters and the variances of both skills and job productivity. (Its proof is provided in Appendix C.)

Proposition 2. Suppose that (i) lnYt (Θt, Zt ) = λtΘt + γt Zt and (ii) Θt and Zt are normally distributed.
Then, the equilibrium return to skill is given by

d lnWt (Θt )
dΘt

=λt + γt
σ(Zt )
σ(Θt )

, (20)

where σ(X ) is the standard deviation of X .

It is useful to provide some intuition for this result. Because the technology ensures that wages are a
constant fraction of output, both wages and output will increase by the same proportion with an increase
in skills.42 For simplicity, we consider the effects of skills on output. More skilled workers produce more
at all jobs, which is captured by the partial elasticity of output λt . They also work at jobs with higher
productivity. Taking into account this sorting effect, the proportional increase in output for higher-skilled
workers, which we call the “total elasticity of output,” is

d lnYt
(
Θt, Ẑt (Θt )

)
dΘt

=
∂ lnYt

(
Θt, Ẑt (Θt )

)
∂Θt

+
∂ lnYt

(
Θt, Ẑt (Θt )

)
∂Zt

dẐt (Θt )
dΘt

= λt + γt
dẐt (Θt )

dΘt
. (21)

40Costinot and Vogel (2010) and Sampson (2014) also derive the same expression in one-to-many matching models.
41Normality is not central to the results of this subsection, although it is a natural assumption given the normality of log

wages. All of the results in this subsection hold more generally when Θt and Zt belong to the same location-scale family
distribution, which also includes uniform, logistic, Cauchy, extreme value, and 2-parameter exponential distributions.

42A constant labor share results from the constant marginal rate of technical substitution between Θt and Zt .
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The normality assumption implies that dẐt (Θt )/dΘt = σ(Zt )/σ(Θt ), so this expression is identical to
that of equation (20).

Combining equations (19) and (20), we get the following formula for the labor share:

αt ≡
Wt (Θt )

Y (Θt, Ẑt (Θt ))
=

λt

λt + γt
σ(Zt )
σ(Θt )

. (22)

Intuitively, the labor share equals the ratio between the partial and total elasticity of output to skill and
reflects the worker’s direct marginal contribution to output relative to the total increase in output (including
any improvement in job productivity).

Equation (20) reveals that technology, λt and γt , as well as the relative heterogeneity between workers
and jobs, is important for the equilibrium return to skill.43 When workers are relatively homogeneous
compared with jobs, the matching function is steep, and a slightly more skilled worker is assigned to a
much more productive job. This generates large proportional changes in output and wages, amplifying
the innate skill differences across workers. By contrast, when jobs are relatively homogeneous compared
to workers, the sorting effect is small, and the differences in wages reflect mainly skill differences.

The Cobb-Douglas case provides a useful framework for studying the key forces that determine the
return to skill. It also provides a direct mapping to our empirical model in which log wages are linear in
skills.

6.3 Demand and Supply Factors and their Contributions to Skill Returns

We now use the framework from the previous subsection, along with our minimum distance estimation
results from Section 5, to identify changes in demand and supply factors over time, as well as their
contributions to the changes in estimated skill returns.

Equation (20) implies that our estimated skill returns are determined by µt = λt + γt
σ(Zt )
σ(Θt )

. Our
estimated variances of unobserved skill can be used to determine the evolution of the supply factor σ(Θt )
over time. Using additional data on labor compensation and firm output over time to calculate labor
shares, αt , we can also identify two distinct demand forces. First, we can use equation (22) to recover
the partial elasticity of output with respect to skill over time, λt = αt µt , from the labor shares and the
estimated returns to skill. Second, we can use the estimated skill variances, along with µt and λt , to
obtain γtσ(Zt ) = (µt − λt )σ(Θt ). This reflects the partial elasticity of output with respect to scaled
job productivity, Zt/σ(Zt ). Without additional information, we cannot distinguish between changes in

43Sattinger (1980) and Gabaix and Landier (2008) derive skill returns similar to equation (20); however, they consider cases
in which the minimum wage level is not zero, so skill returns are not necessarily independent of skills. Gabaix and Landier
(2008) also assume that Θt and Zt follow a 2-parameter exponential distribution rather than a normal distribution.
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productivity differences across specific jobs or tasks vs. changes in the distribution of job/tasks.44
We assume that the labor market is segmented between a sector for college-educated workers and

another sector for non-college-educated workers, allowing all parameters to differ across sectors. We
therefore use the baseline results estimated separately by sector (i.e., µt from Figure 10 and Var(θt ) from
Figure 15).

Supply Factor We assume that skills are correlated with the workers’ observed characteristics xi,t but
are not fully observed by an econometrician. Within each (college/non-college) sector, we assume that
skill for individual i in year t is

Θi,t = gt (xi,t ) + θi,t,

where E[θt |xt] = 0. From equation (20), the equilibrium wage function can be written as lnWt (Θi,t ) =
ζt + µtΘi,t for some time-varying constant ζt . Assuming that log wages are the sum of a skill-related
component that reflects the equilibrium wage function and a transitory non-skill component, εi,t , they can
be written as

lnWi,t = ζt + µtΘi,t + εi,t = ζt + µtgt (xi,t )︸           ︷︷           ︸
≡ f t (xi, t )

+ µtθi,t + εi,t︸      ︷︷      ︸
=wi, t

,

which is equivalent to our empirical log wage equation (1). The variance of skills consists of variation in
both the observable and unobservable components. It is easily identified as follows:

σ(Θt )2 = Var(Θt ) =
Var(lnWt ) − Var(εt )

µ2t
.

Therefore, our estimates of µt and Var(εt ) can be used to compute the variance of skills in each period.
Figure 20 shows the time trends in skill variances for college- and non-college-educated workers. These
skill variances increased steeply from the early 1980s to the mid-2000s for both college- and non-college-
educated workers, with most of the increase driven by unobserved skills.

Demand Factors Recovering output elasticities from factor income shares is not uncommon. However,
implementing this strategy in our case is complicated by the need to obtain education sector-specific labor
shares. The difficulty arises from the fact that data on value added by workers with different levels of
education are not generally available. To overcome this difficulty, we assume that the labor shares in our
model can be approximated by average industry-level labor share for workers in each sector. Suppose that
there are j = 1, . . . , J industries with value added Vj,t and labor compensation L j,t in year t. Let N j,s,t be

44It is worth noting, however, that the wage returns to skill, d lnWt (Θt )/dΘt , are distinct from and need not equal the wage
returns to jobs or tasks, d lnWt (Θ̂t (Zt ))/dZt = γt + λ tσ(Θt )/σ(Zt ). Thus, it is possible for the returns to skill to decline
when the returns to job productivity increase.
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Figure 20: Skill Variances

the number of workers in industry j, sector s, and year t, and let Ns,t =
∑J

j=1 N j,s,t be the total number of
workers in sector s and year t in all industries. Then, the average labor share in sector s and year t is

J∑
j=1

N j,s,t

Ns,t

L j,t

Vj,t
.

We use data on labor shares and the number of college- and non-college-educated workers in the U.S.
by 31 International Standard Industrial Classification of All Economic Activities (ISIC) 45 industries from
theWorld KLEMS data set.46 The number of workers is computed by counting male workers aged 25–64.
Figure 21 shows that the implied labor shares exhibit weak long-run time trends and strongly co-move
over time. The labor share is slightly lower for college workers until the late 1990s, but the gap closes
thereafter.

Figure 22 shows the demand factors calculated from the labor shares and returns to skills. The time
patterns for the partial elasticity of output with respect to skill, λt , are similar to patterns for the returns to
skills, µt , due to the relatively modest time variation in labor shares. For both college- and non-college-
educated workers, λt increases between the mid-1970s and the mid-1980s, then decreases until the early
2000s. The rise and (especially) fall of λt is much more pronounced for non-college-educated workers.
The time pattern for the other demand factor, γtσ(Zt ), is quite different from that of λt : During the
1970s, the partial elasticity of output to (scaled) job productivity increases only for non-college-educated

45ISIC is a United Nations industry classification system.
46See Jorgenson, Ho, and Samuels (2012) for description.
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workers. Beginning in the early 1980s, this elasticity begins to increase for college-educated workers,
while it begins to fall for non-college-educated workers.47

Effects of Demand and Supply Factors on Returns to Skill Finally, we assess the contribution of
demand and supply factors to the evolution of returns to skill. Figure 23 shows the actual estimated
returns, as well as counterfactual returns when the demand factors (λt and γtσ(Zt )) or the supply factor
(σ(Θt )) are held constant at their 1985 values. While the patterns are qualitatively similar across the
non-college and college sectors, the relative importance of supply and demand factors is not. Among
non-college-educated men, the decline in returns to skill is driven almost exclusively by a reduction in
demand for skill. While the increase in the variance of skills did contribute to the declining returns, its
contribution is quite modest. Among college-educated men, both supply and demand factors contribute
roughly equally to the decline in returns to skill between the mid-1980s and mid-2000s. Interestingly, for
both college- and non-college-educated workers, the modest rise in skill returns over the 1970s and early
1980s is due entirely to increasing demand for skill.

7 Conclusion

Economists have struggled to determine the underlying causes of rising wage inequality over the past
few decades. Most efforts have relied on large repeated samples of cross-sectional data, attributing the

47The patterns for γtσ(Zt ) are broadly consistent with an increase in wage returns to more productive jobs among college-
educated workers and declines in wage returns to better jobs among non-college-educated workers as highlighted by the
“polarization” literature.
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growth in residual inequality to rising returns to unobserved skill while assuming that the distribution
of unobserved skills has remained constant over time. More recent studies have often attempted to
incorporate additional measures of worker skills or job tasks, continuing to rely on data drawn from
different samples of workers over time. While these efforts have yielded important insights, they are not
without limitations.

This paper takes a very different approach, demonstrating that traditional panel data sets can be used
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to separately identify changes in the returns to unobserved skill from changes in the distributions of
unobserved skill and in the distribution of transitory non-skill shocks. Based on transparent identifying
assumptions, we show that a simple 2SLS strategy can be used to estimate the returns to unobserved
skill over time, even when life cycle skill growth varies across individuals due to systematic unobserved
heterogeneity and idiosyncratic shocks. Once skill returns have been identified, it is straightforward to
identify and estimate the evolution of skill (and skill growth) distributions as well as distributions of
transitory non-skill shocks. None of this requires measuring the tasks workers perform or efforts to
directly measure worker skill levels.

Using panel data on the wages of American men from the PSID, we show that accounting for changes
in the distributions of skills and the volatility of wages is critical in estimating the evolution of returns
to unobserved skills. Our estimates reveal that these returns were fairly stable or increasing in the 1970s
and early 1980s, but then fell sharply after 1985, especially among non-college-educated workers. The
decline in returns was offset by a strong increase in the variance of unobserved skill beginning in the early
1980s, driven by increasing variation in life cycle skill growth. These conclusions stand in stark contrast
to the prevailing view, which attributes rising residual inequality to rising returns.

To understandwhy the returns to skill have fallen since themid-1980s, we develop an assignmentmodel
of the labormarket in whichworkers of heterogeneous skill levels arematched to different jobs. We further
show conditions under which this framework produces equilibrium wage functions like those commonly
assumed in the empirical literature on wage inequality. Combining labor shares with our estimated skill
returns and skill distributions, we identify changes in production technology and decompose changes in
skill returns into supply vs. demand effects. Our estimates suggest that the fall in demand for skill explains
most of the decline in returns for non-college-educated men, while both supply and demand shifts are
similarly important for college-educated men.

Several of our findings are broadly consistent with the growing polarization literature, while highlight-
ing the challenges faced by the simplest SBTC hypothesis (e.g., Card and DiNardo, 2002), which argues
that a steady increase in demand for skills has driven the increase in inequality. Further work is required to
understand why skill demand declined during the 1990s, precisely when technological progress appears
to have accelerated (Cummins and Violante, 2002).

Equally important, our results suggest that more attention should be devoted to understanding the
dramatic increase in unobserved skill inequality, stemming largely from growing differences in life cycle
(post-school) skill growth across workers with similar experience and education levels. This may simply
reflect a different type of technological change – one characterized by the frequent introduction of new
tasks that makes others obsolete (Andolfatto and Smith, 2001; Acemoglu and Restrepo, 2017).48 Defining

48In an economy with imperfect information about worker skills, our estimated “skill distributions” would instead reflect
the distributions of beliefs about worker skills. What we refer to as “skill growth” would instead reflect updates in beliefs.
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workers’ skill levels by the most productive task(s) they can perform, this type of technological change
would generate growing volatility in skills over the life cycle. Alternatively, more able workers may simply
be more capable of learning and adapting to new tasks (Nelson and Phelps, 1966), which would lead to
greater variation in systematic life cycle wage growth.49 We do not attempt to explain the underlying
causes for the growing skill growth inequality, leaving this for future research.

With this interpretation, the underlying distribution of skills may not have changed over time, but the market may have become
better at identifying (and rewarding) skill differences (Lemieux, MacLeod, and Parent, 2009; Jovanovic, 2014).

49See Section 3.2 of Hornstein, Krusell, and Violante (2005) for a survey of theory and evidence on this view of technological
change and skills.
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Appendix

A Identification Results

A.1 Identification with εi,t ∼ ARMA(1,q)

We demonstrate identification for the model in Section 2.2.1, generalized so that the transitory component
εi,t follows an ARMA(1,q) process. That is, εi,t = ξi,t for t = ci + 1 and, for t > ci + 1,

εi,t = ρεi,t−1 +

min{q,t−ci−1}∑
j=0

β jξi,t− j,

where β0 = 1.

Identification of ρ Let k = q + 1. Then for (c, t, t′), such that c < t ≤ t′ + k,

Cov(εt, εt ′ − ρεt ′−1 |c) = Cov *.
,
εt,

min{q,t−c−1}∑
j=0

β jξt ′− j
���c

+/
-
= 0, and

Cov(wt,wt ′ |c) − ρCov(wt,wt ′−1 |c) = Cov(wt,wt ′ − ρwt ′−1 |c) = µt (µt ′ − ρµt ′−1) Var(θt |c).

Taking the ratio of this expression for cohort c relative to c̃ < t yields

Cov(wt,wt ′ |c) − ρCov(wt,wt ′−1 |c)
Cov(wt,wt ′ |c̃) − ρCov(wt,wt ′−1 |c̃)

=
Var(θt |c)
Var(θt |c̃)

.

Similarly, for t′′ − t ≥ k,

Cov(wt,wt ′′ |c) − ρCov(wt,wt ′′−1 |c)
Cov(wt,wt ′′ |c̃) − ρCov(wt,wt ′′−1 |c̃)

=
Var(θt |c)
Var(θt |c̃)

.

Combining these two equations yields

Cov(wt,wt ′ |c) − ρCov(wt,wt ′−1 |c)
Cov(wt,wt ′ |c̃) − ρCov(wt,wt ′−1 |c̃)

=
Cov(wt,wt ′′ |c) − ρCov(wt,wt ′′−1 |c)
Cov(wt,wt ′′ |c̃) − ρCov(wt,wt ′′−1 |c̃)

. (23)



Equation (23) can be written as

Aρ2 + Bρ + C = 0, (24)

where

A =Cov(wt,wt ′−1 |c) Cov(wt,wt ′′−1 |c̃) − Cov(wt,wt ′′−1 |c) Cov(wt,wt ′−1 |c̃),

B =Cov(wt,wt ′−1 |c̃) Cov(wt,wt ′′ |c) + Cov(wt,wt ′ |c̃) Cov(wt,wt ′′−1 |c)

− Cov(wt,wt ′ |c) Cov(wt,wt ′′−1 |c̃) − Cov(wt,wt ′−1 |c) Cov(wt,wt ′′ |c̃),

C =Cov(wt,wt ′ |c) Cov(wt,wt ′′ |c̃) − Cov(wt,wt ′ |c̃) Cov(wt,wt ′′ |c).

If A = 0 or B2 − 4AC = 0 holds for some (c, c̃, t, t′, t′′) such that c < t, c̃ < t, t′ − t ≥ k, and t′′ − t ≥ k,
then ρ is identified from the unique solution to (24). Otherwise, there may be two real solutions (if
B2 − 4AC > 0).

When A , 0 and B2−4AC > 0 holds for other available (c, c̃, t, t′, t′′) such that c < t, c̃ < t, t′− t ≥ k,
and t′′ − t ≥ k, the autocorrelation parameter ρ can be uniquely identified by combining at least two
distinct quadratic equations (24). To see this, rewrite (24) for two different sets of (c, c̃, t, t′, t′′):

ρ2 +
B1
A1
ρ +

C1
A1
=0, (25)

ρ2 +
B2
A2
ρ +

C2
A2
=0. (26)

If A1 , 0, B2
1 − 4A1C1 > 0, A2 , 0, and B2

2 − 4A2C2 > 0, then ρ is identified from the common solution
to (25) and (26):

ρ =

(
B1
A1
−

B2
A2

)−1 (
C2
A2
−

C1
A1

)
=

A1C2 − A2C1
A2B1 − A1B2

as long as B1/A1 , B2/A2.



Identification of µt For t′ − t ≥ k, suppose that there exists (c, c̃) such that Var(θt−1 |c) , Var(θt−1 |c̃)
and Var(νt |c) = Var(νt |c̃). Then,[

Cov(wt,wt ′ |c) − ρCov(wt,wt ′−1 |c)
]
−

[
Cov(wt,wt ′ |c̃) − ρCov(wt,wt ′−1 |c̃)

][
Cov(wt−1,wt ′ |c) − ρCov(wt−1,wt ′−1 |c)

]
−

[
Cov(wt−1,wt ′ |c̃) − ρCov(wt−1,wt ′−1 |c̃)

]
=

µt (µt ′ − ρµt ′−1)
[
Var(θt |c) − Var(θt |c̃)

]
µt−1(µt ′ − ρµt ′−1)

[
Var(θt−1 |c) − Var(θt−1 |c̃)

]
=
µt

µt−1

In this way, we can identify µt for t ≤ t − k.
For t > t − k, consider t′ < t − k. Then,

Cov(wt ′,wt |c) − ρCov(wt ′,wt−1 |c)
Cov(wt ′,wt−1 |c) − ρCov(wt ′,wt−2 |c)

=
µt ′ (µt − ρµt−1) Var(θt ′ |c)
µt ′ (µt−1 − ρµt−2) Var(θt ′ |c)

=
µt − ρµt−1
µt−1 − ρµt−2

(27)

Since ρ and µt for t ≤ t − k are identified, we can sequentially identify µt for t > t − k using the above
equation.

Identification of Var(θt |c) For t′ − t ≥ k,

Var(θt |c) =
Cov(wt,wt ′ |c) − ρCov(wt,wt ′−1 |c)

µt (µt ′ − ρµt ′−1)
.

Therefore, Var(θt |c) is identified for all t ≤ t − k.

Identification of β j First, note that the ARMA(1,q) process can be written as an MA(t − c+1) process:

εi,t =

t−ci−1∑
j=0

β̃ jξi,t− j,

where β̃ j = 1 for j = 0, β̃ j = ρ β̃ j−1 + β j for 1 ≤ j ≤ q, and β̃ j = ρ β̃ j−1 for j > q.
Then, for t = c + 1 and j ≥ 0,

Cov(εt, εt+ j |c)
Var(εt |c)

= β̃ j
Var(ξt |c)
Var(ξt |c)

= β̃ j .

Therefore, β̃ j’s are identified from cohort-specific autocovariances of εt , which can be obtained from

Cov(εt, εt+ j |c) = Cov(wt,wt+ j |c) − µt µt+ j Var(θt |c).



Given ρ and β̃ j , β j for 1 ≤ j ≤ q is identified from β j = β̃ j − ρ β̃ j−1.

Identification of Var(ξt |c) For the initial period t = c + 1 for cohort c, Var(ξt |c) = Var(εt |c). For
c + 1 < t ≤ t − k,

Var(ξt |c) = Var(εt |c) −
min{q,t−c−1}∑

j=1
β̃2j Var(ξt− j |c).

A.2 Identification with Heterogeneous Skill Growth Rates

We demonstrate identification for the model in Section 2.2.2 with systematic heterogeneity in life cycle
skill growth:

θi,t = θi,t−1 + τt (ci)δi + ν̃i,t,

where τt (c) = 0 for e = t − c ≥ e.

Identification of µt Note that µt/µt−1 for t > t + k is identified if there exists some cohort c such that
(i) the cohort has experience e = t′ − c ≥ e in some year t′ < t − k and (ii) the cohort is observed in years
t′, t − 1, and t. These require that e + k < 40, which holds under our assumption e = 30 and k = 6.

Moreover, µt/µt−1 for t ≤ t + k is identified if there exist two cohorts c and c̃ such that (i) both cohorts
have experience of at least e in year t − 1, (ii) both cohorts are observed in years t − 1, t, and some year
t′ ≥ t + k, and (iii) Var(θt−1 |c) , Var(θt−1 |c̃) and Var(νt |c) = Var(νt |c̃). For the first two conditions to
be satisfied, we need e + k < 39.

Identification of τt (c) By dividing the residual by µt , we get

wi,t

µt
= θi,t +

εi,t

µt
.

If we take a first difference,

∆

(
wi,t

µt

)
= ∆θi,t + ∆

(
εi,t

µt

)
= τt (ci)δi + ν̃i,t + ∆

(
εi,t

µt

)
.

For (c, t, t′) such that Cov(∆εt,∆εt ′ |c) = Cov(∆εt−1,∆εt ′ |c) = 0, we have

Cov
(
∆

(
wt−1
µt−1

)
,∆

(
wt ′

µt ′

)
���c
)
=Cov(∆θt−1,∆θt ′ |c) = τt−1(c)τt ′ (c) Var(δ |c)

Cov
(
∆

(
wt

µt

)
,∆

(
wt ′

µt ′

)
���c
)
=Cov(∆θt,∆θt ′ |c) = τt (c)τt ′ (c) Var(δ |c).



By combining these two, we can identify changes in τt (c):

τt (c)
τt−1(c)

=
Cov

(
∆

(
wt

µt

)
,∆

(
wt ′

µt ′

)
|c
)

Cov
(
∆

(
wt−1
µt−1

)
,∆

(
wt ′

µt ′

)
|c
) .

Identification of Var(δ |c) Once τt (c)’s have been identified (up to a normalization τt∗(c) (c) = 1 for
some t∗(c)), Var(δ |c) is also identified from

Var(δ |c) =
Cov

(
∆

(
wt

µt

)
,∆

(
wt ′

µt ′

)
|c
)

τt (c)τt ′ (c)
.

Identification of Cov(ψ, δ |c) For (c, t, t′) such that t′ − t ≥ k + 1, Cov(εt,∆εt ′ |c) = 0 and we get

Cov
(
wt

µt
,∆

(
wt ′

µt ′

)
���c
)
= Cov(θt,∆θt ′ |c) = τt ′ (c) Cov(θt, δ |c),

where

Cov(θt, δ |c) = Cov(ψ, δ |c) + Var(δ |c)
t−c−1∑

j=0
τt− j (c). (28)

Therefore,

Cov(ψ, δ |c) =
Cov

(
wt

µt
,∆

(
wt ′

µt ′

)
|c
)

τt ′ (c)
− Var(δ |c)

t−c−1∑
j=0

τt− j (c).

Identification of Var(θt |c) For (c, t, t′) such that t′ − t ≥ k, write

θi,t ′ = θi,t +

t ′−t−1∑
j=0

[
τt ′− j (ci)δi + ν̃i,t ′− j

]
.

Then,

Cov
(
wt

µt
,
wt ′

µt ′

���c
)
= Cov(θt, θt ′ |c) = Var(θt |c) + Cov(θt, δ |c)

t ′−t−1∑
j=0

τt ′− j (c).

Therefore,

Var(θt |c) = Cov
(
wt

µt
,
wt ′

µt ′

���c
)
− Cov(θt, δ |c)

t ′−t−1∑
j=0

τt ′− j (c).



Identification of Var(ν̃t |c) Note that

Var(θt+1 |c) = Var(θt |c) + Var(δ |c)τt+1(c)2 + 2Cov(θt, δ |c)τt+1(c) + Var(ν̃t+1 |c).

Therefore,

Var(ν̃t+1 |c) =Var(θt+1 |c) − Var(θt |c) − Var(δ |c)τt+1(c)2 − 2Cov(θt, δ |c)τt+1(c).

B GMM Estimates of Skill Returns, Overidentification Tests, and
Variance of Skill Growth

In this appendix, we report GMM estimates for the returns to skill using the same model and moments
(i.e., lagged residuals serve as instruments) as with our 2SLS approach in Section 4 along with J-statistics
to test for overidentification. We also report analogous GMM estimates that use both past and future
wage residuals as instruments, reporting J-statistics to test the validity of the latter. Finally, we combine
estimates using past vs. future residuals as instruments to estimate the variance of skill growth relative to
lagged skill levels.

To begin, rewrite the two-period wage growth equation (12) as follows:

wi,t − wi,t−2 =

(
µt − µt−2
µt−2

)
wi,t−2 + ui,t, (29)

where ui,t = εi,t −
µt
µt−2

εi,t−2 + µt (νi,t−1 + νi,t ).
Our model with skill serially uncorrelated skill shocks (Section 2.2.1) implies the following moment

condition:

E[wt ′ut] = 0, for t′ ≤ t − 2 − k . (30)

Under the stronger assumption that Var(νt ) = 0 for all t, the following additional moment condition holds:

E[wt ′′ut] = 0, for t′′ ≥ t + k . (31)

Equation (31) will not hold when Var(νt−1) + Var(νt ) > 0, and the IV estimate using future residuals as



instruments is asymptotically biased with probability limit

Cov(wt − wt−2,wt ′)
Cov(wt−2,wt ′)

=

(
µt − µt−2
µt−2

)
+

µt

µt−2

(
Var(νt−1) + Var(νt )

Var(θt−2)

)
>
µt − µt−2
µt−2

, for t′ ≥ t + k .

The difference between estimates using future and past residuals as instruments identifies the magni-
tude of the skill shock variance relative to the skill variance: for t′ ≤ t − 2 − k and t′′ ≥ t + k,

Var(νt−1) + Var(νt )
Var(θt−2)

=

(
Cov(wt − wt−2,wt ′′)

Cov(wt−2,wt ′′)
−
Cov(wt − wt−2,wt ′)

Cov(wt−2,wt ′)

) (
1 +

Cov(wt − wt−2,wt ′)
Cov(wt−2,wt ′)

)−1
.

(32)

B.1 Overidentification Tests

We begin by testing the moments in equation (31) using Hansen’s J-test, assuming k = 6 and using the
two nearest valid instruments. This amounts to using wi,t−8 and wi,t−9 (or wi,t−10) for equation (30) and
the first two available out of wi,t+6,wi,t+7,wi,t+8,wi,t+9 for (31).

Table B-1 reports the two-step optimal GMM estimates (allowing for heteroskedasticity and serial
correlation within individual) for the coefficient on wi,t−2 along with Hansen’s J-statistics when estimating
the wage growth equation (29). Panel A reports estimates when moments from both equations (30) and
(31) are used (i.e., lags and leads), while Panel B reports estimates when only the moment condition from
equation (30) is used (i.e., lags only). The sample is restricted to be the same in both panels.50

Comparing the J-statistics in Panels A and B in Table B-1, we can test the validity of using leads as
instruments (i.e., moments in equation (31)). Since the differences are greater than 5.991 (critical value
for χ22 at significance level 0.05) except for 1979–1980 and 2002–2004, we reject the “leads” moments
in equation (31) at 5% significance level for 1981-2000. Moreover, all J-statistics in Panel B are smaller
than 3.841 (critical value for χ21 at significance level 0.05), implying that we cannot reject the lags as
instruments (i.e., moments in equation (30)) at the 5% level. Altogether, these results suggest that the
lagged residuals are valid instruments, while the leads are not (in most years).

Also note that the estimates using both leads and lags as instruments are always greater than their
counterparts using only the lags, consistent with the positive bias induced from using leads when there
are skill growth shocks.

50Because use of both leads and lags requires observations that are as many as 19 years apart, this restriction reduces the
sample size substantially relative to that used in our baseline 2SLS analysis (see Tables 1 and 2). Panel A of Table B-2 below
reports GMM estimates when this sample selection is not imposed. Those results are directly comparable and quite similar to
those in Tables 1 and 2.



Table B-1: GMM Estimates of Skill Return Growth Using Leads and Lags as Instruments (Balanced
Samples)

1979–80 1981–83 1984–86 1987–89 1990–92 1993–95 1996–2000 2002–04

A. 2 Nearest Valid Lags and 2 Nearest (Potentially Valid) Leads as Instruments
Coeff. on wi, t−2 -0.019 0.088∗ 0.053 0.007 -0.030 0.026 0.008 0.022

(0.053) (0.044) (0.046) (0.034) (0.038) (0.035) (0.0235) (0.035)
Observations 818 1,251 1,325 1,356 1,313 1,311 1,375 777
J-Statistic 4.400 10.392 11.743 9.579 9.461 6.991 8.922 1.646

B. 2 Nearest Valid Lags as Instruments
Coeff. on wi, t−2 -0.070 -0.010 -0.065 -0.057 -0.103∗ -0.025 -0.041 -0.003

(0.056) (0.053) (0.055) (0.040) (0.046) (0.039) (0.029) (0.0389)
Observations 818 1,251 1,325 1,356 1,313 1,311 1,375 777
J-Statistic 0.009 0.187 0.632 0.869 0.064 0.238 0.107 0.016

Notes: GMM estimates for a regression of (wi, t − wi, t−2) on wi, t−2. Panel A uses as instruments the 2 nearest
available lags from (wt−8,wt−9,wt−10) and 2 nearest available leads from (wt+6, ...,wt+9). Panel B uses only
the 2 lags as instruments. ∗ Denotes significance at 0.05 level.

B.2 Inferring Relative Magnitude of Skill Shocks

Table B-2 reports GMM estimates using only lags or leads as instruments where all available observations
are used (i.e., samples are not restricted to be the same across specifications). Panel A reports estimates
when only the moments in equation (30) are used (i.e., 2 nearest valid lags). These results are analogous to
the 2SLS estimates in Tables 1 and 2, using the same samples. Comparing estimates across the tables, we
see that they are quite similar. Panel B reports GMM estimates when only the moments in equation (31)
are used (i.e., 2 nearest potentially valid leads), also based on all available observations. Finally, we
compare the estimates in Panels A and B using equation (32) to estimate the relative importance of skill
growth shocks. These estimates are reported in Panel C. The variance of (two-year) skill growth relative
to the variance of prior skill levels ranges from 0.16 to 0.29 over our entire sample period.



Table B-2: GMM Estimates of Skill Return Growth Using Leads vs. Lags as Instruments and Relative
Skill Shock Variance (Unbalanced Samples)

1979–80 1981–83 1984–86 1987–89 1990–92 1993–95 1996–2000 2002–04

A. 2 Nearest Valid Lags as Instruments
Coeff. on wi, t−2 -0.033 -0.045 -0.044 -0.084∗ -0.083∗ -0.067 -0.076∗ -0.090∗

(0.045) (0.038) (0.038) (0.033) (0.035) (0.035) (0.025) (0.035)
Observations 1,349 2,077 2,188 2,245 2,189 2,095 2,122 1,377

B. 2 Nearest (Potentially Valid) Leads as Instruments
Coeff. on wi, t−2 0.165∗ 0.229∗ 0.193∗ 0.099∗ 0.067 0.087∗ 0.073∗ 0.115∗

(0.059) (0.053) (0.047) (0.042) (0.043) (0.038) (0.028) (0.039)
Observations 1,500 2,229 2,159 2,100 2,042 1,994 2,178 1,249

C. Estimated Shock Variances Relative to Skill Variances
Var(νt−1)+Var(νt )

Var(θt−2) 0.204 0.287 0.248 0.200 0.163 0.166 0.161 0.225

Notes: GMM estimates for a regression of (wi, t − wi, t−2) on wi, t−2. Panel A uses 2 nearest available lags as
instruments from (wt−8,wt−9,wt−10). Panel B uses 2 nearest available leads as instruments from (wt+6, ...,wt+9).
Panel C reports estimates of skill growth shock variance relative to skill variance based on equation (32).
∗ Denotes significance at 0.05 level.

C Proofs and Analytical Details for Assignment Model

C.1 Proof of Proposition 2

With the normality assumption, the market clearing condition (18) simplifies to

Ẑt (Θt ) = E[Zt] +
σ(Zt )
σ(Θt )

(Θt − E[Θt]) . (33)

Then the first-order condition (17) becomes

dWt (Θt )
dΘt

=λt exp
(
λtΘt + γt Ẑt (Θ)

)
= λt exp

(
γt

(
E[Zt] −

σ(Zt )
σ(Θt )

E[Θt]
)
+

(
λt + γt

σ(Zt )
σ(Θt )

)
Θt

)
.

By integrating the above equation, we get

Wt (Θt ) =
∫ Θt

−∞

dWt (Θ′t )
dΘt

dΘ′t =
*.
,

λt

λt + γt
σ(Zt )
σ(Θt )

+/
-
exp

(
γt

(
E[Zt] −

σ(Zt )
σ(Θt )

E[Θt]
)
+

(
λt + γt

σ(Zt )
σ(Θt )

)
Θt

)
.

By taking logs and differentiating with respect to Θt , we get (20).



D Calculating Standard Errors

Let m = 1, 2, . . . , M be the index of moments. Let di,m be the indicator of whether individual i contributes
to the mth moment Cov(wt,wt ′ |s, E j ). That is, both wi,t and wi,t ′ are non-missing and si,t = si,t ′ = s and
ei,t ∈ E j . Also let pm(Λ) = Cov(wt,wt ′ |s, E j,Λ). Then we can write

hm(zi,Λ) = di,m
[
wi,twi,t ′ − pm(Λ)

]
,

where zi includeswi,t di,m for all t andm for individual i. Let h(z,Λ) = [h1(z,Λ) h2(z,Λ) . . . hM (z,Λ)]>.
Then the following moment condition holds for the true parameter Λ0:

E[h(z,Λ0)] = 0.

The minimum distance estimator Λ̂ is equivalent to the GMM estimator that solves

min
Λ



1
N

N∑
i=1

h(zi,Λ)


>

W


1
N

N∑
i=1

h(zi,Λ)

,

whereW = diag( N2

N2
1
, N2

N2
2
, . . . , N2

N2
M

) and Nm =
∑N

i=1 di,m.

The GMM estimator Λ̂ is asymptotically normal with a variance matrix

V = (H>WH )−1(H>WΩWH )(H>WH )−1,

where H is the Jacobian of the vector of moments, E[∂h(z,Λ0)/∂Λ>], and Ω = E[h(z,Λ0)h(z,Λ0)>].
Both expectations are replaced by sample averages and evaluated at the estimated parameter:

Ĥ =
1
N

N∑
i=1

∂h(zi, Λ̂)
∂Λ>

= W− 1
2
∂ p(Λ̂)
∂Λ>

,

Ω̂ =
1
N

N∑
i=1

h(zi, Λ̂)h(zi, Λ̂)>,

whereW− 1
2 = diag( N1

N ,
N2
N , . . . ,

NM

N ).
We can test r linear parameter restrictions H0 : RΛ = 0 using Wald test statistic:

N (RΛ̂)>(RV̂R>)−1RΛ̂
d
−→ χ2r .



E Additional Empirical Results

To examine whether attrition affects the residual autocovariances reported in Figure 4, Figure E-1 shows
the autocovariances, Cov(wb,wt ) for 6 ≤ t − b ≤ 16, where the samples for each line (representing
different base years, b) are restricted to those individuals observed in the base year as well as at least one
of the last two years used for that line (i.e., t − b = 15 or 16 in early years or t − b = 14 or 16 in later
years with biannual surveys). Comparing Figures 4 and E-1, the autocovariance patterns are quite similar,
indicating little effect of sample attrition (due to non-response or retirement) on the key moments used in
our analysis.
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Year
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0.08

0.1
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0.14

0.16

0.18

Figure E-1: Log Wage Residual Autocovariances (“Balanced” Sample)

Figure E-2 shows the residual autocovariances for individuals with 1–15 years of experience in the
base years. Regardless of the base year, the autocovariances are typically declining from the late 1980s
through the 1990s as in Figures 4 (full sample) and 5 (men with 16–30 years of experience) in the text.
The lines also shift upwards over time, consistent with rising skill variances.

For the model estimated separately for college- and non-college-educated men in Section 5.2, Fig-
ures E-3 to E-6 report estimates (with 95% confidence intervals) for the variance of initial skills by cohort
(Figure E-3), experience patterns for the variance of skill shocks (Figure E-4), and time trends (Figure E-5)
and experience patterns (Figure E-6) for the variance of transitory non-skill shocks.
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Figure E-2: Autocovariances for Log Wages (1–15 Years of Experience)
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Figure E-3: Variance of Initial Skill by Education
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Figure E-4: Experience Patterns for the Variances of Skill Shocks, φ(e), by Education
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Figure E-5: Time Trends in the Variances of Transitory Non-Skill Shocks, ω(t), by Education



5 10 15 20 25 30 35 40

Experience

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Non-College

5 10 15 20 25 30 35 40

Experience

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) College

Figure E-6: Experience Patterns for the Variances of Transitory Non-Skill Shocks, κ(e), by Education


	Western University
	Scholarship@Western
	2017

	2017-26 Wage Dynamics and Returns to Unobserved Skill
	Lance Lochner
	Youngmin Park
	Youngki Shin
	Citation of this paper:


	Introduction
	Identifying the Returns to and Distributions of Unobserved Skills
	Log Wage Functions
	Identification
	Serially Uncorrelated Skill Growth Shocks
	Heterogeneity in Life Cycle Skill Growth

	Returns to Skill and Predicted Future Wage Differences

	PSID Data
	Instrumental Variable Estimation of Skill Returns
	Minimum Distance Estimation
	Specification and Identification
	Estimation Results
	Accounting for Heterogeneity in Systematic Life Cycle Skill Growth

	Interpreting Skill Returns in a Demand and Supply Framework
	Assignment Model of Labor Market
	Cobb-Douglas Technology and Returns to Skill
	Demand and Supply Factors and their Contributions to Skill Returns

	Conclusion
	Identification Results
	Identification with i,t ARMA(1,q) 
	Identification with Heterogeneous Skill Growth Rates

	GMM Estimates of Skill Returns, Overidentification Tests, and Variance of Skill Growth
	Overidentification Tests
	Inferring Relative Magnitude of Skill Shocks

	Proofs and Analytical Details for Assignment Model
	Proof of Proposition 2

	Calculating Standard Errors
	Additional Empirical Results

