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Abstract

This paper examines the potential output gains from the implementation of optimal

teacher incentive pay schemes, by calibrating the Hölmstrom and Milgrom (1987) hid-

den action model using data from Muralidharan and Sundararaman (2011), a teacher

incentive pay experiment implemented in Andhra Pradesh, India. Findings suggest

that the introduction of optimal individual incentive-pay schemes could result in very

large increases in output, about six times the size of the (significant) results obtained

in the experiment.
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1 Introduction

Evidence that teacher quality is an important determinant of human capital that is hard to

measure (Goldhaber and Brewer (1997); Rivkin et al. (2005); Hanushek (2011)) has gener-

ated substantial policy interest in output-based teacher incentive schemes and motivated a

research agenda using randomized controlled trials to estimate whether such schemes affect

teacher inputs. In theory, many characteristics of an incentive scheme’s design, together

with the context in which the scheme is implemented, could be important determinants of

its efficacy. Broadly, teacher incentive schemes may differ by their structure—e.g., whether

they provide teachers with individual bonuses that are linear in only their own output, or

assign bonuses via tournaments at the district level— and their strength—e.g., the “slope” of

the individual bonus in output, or the size of the prize given to the winner of the tournament.

Most research studying the design of output-based teacher incentives has focused on vary-

ing scheme structure. This research has been carried out across a wide variety of different

contexts. Given this heterogeneity, it is perhaps unsurprising that the effects of output-based

teacher incentives have been widely mixed. For example, even among randomized controlled

trials (one of the many research designs used in this literature), there is no consensus on the

broad question of whether incentivizing teachers based on output measures improves student

achievement:1 Muralidharan and Sundararaman (2011) find significant positive effects of in-

dividual and group-based linear incentive schemes implemented in Andhra Pradesh, India;

Springer et al. (2010) find no significant effect on student achievement of POINT, an indi-

vidual, threshold-based incentive implemented in Nashville, Tennessee; and Fryer Jr. (2013)

finds significant negative effects of group-based (and typically threshold-based) incentive

schemes chosen by public schools in New York City.2

Perhaps due to the wide variety of possible structures, incentive strengths, and contexts,

little attention has been paid to the important question of what are the potential gains from

1As would be expected, there is a similar lack of consensus among research using non-experimental data
to study different types of teacher incentive schemes. For example, Dee and Wyckoff (2015) use a regression-
discontinuity design to estimate the effect of an individual, threshold-based scheme in Washington, D.C.,
and find significant, positive effects of both dismissal threats and performance-based bonuses on student
achievement. Sojourner et al. (2014) use a difference-in-differences approach to estimate the effect of Q-
Comp, a reform in Minnesota in which districts were allowed to choose from a set of possible schemes,
all of which included fairly weak group-based threshold-based teacher incentives; while it seems that Q-
Comp marginally improved students’ reading, there was not a large significant effect on their mathematics
achievement.

2Springer et al. (2010) and Muralidharan and Sundararaman (2011) study teacher incentive schemes that
were based on absolute (as opposed to relative) performance; Fryer Jr. (2013) considers a scheme based
on relative performance. For another example of a scheme based on relative performance, see Imberman
and Lovenheim (2015), which studies a tournament scheme in Houston, Texas, in which groups of teachers
competed for performance bonuses.
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their implementation, which can only be computed using the optimal incentive scheme for

a given environment, could be. Despite the aforementioned availability of high-quality ex-

perimental findings and a well-developed theoretical literature, the gains from using optimal

incentives are unknown for two reasons. First, characterizing optimal contracts is techni-

cally very demanding in most economic environments. Second, quantifying the effects of

implementing such a contract would also require knowledge of the parameters of the model

describing the underlying economic environment.

If output is a noisy measure of teacher effort, then output-based incentives could be

suboptimally strong if, as incentive pay opponents argue, they expose teachers to too much

risk. Alternatively, they could be too weak if they do not appreciably change teacher effort

inputs, making it hard to discern significant effects. Theoretical work such as Barlevy and

Neal (2012), which takes the first step, by developing a multitask model of teacher effort

provision, cannot quantify the gains from optimal contracts without taking the second step.

At the same time, cleanly identified and precisely estimated causal effects from RCTs cannot

speak to the gains from optimal incentives without the additional structure provided by

theoretical work. Moreover, since RCT implementation is expensive, experiments typically

study only a small number of different levels of incentive strength (i.e., treatment groups).

Searching for optimal incentive strength via pure experimentation would be prohibitively

expensive, motivating the use of additional structure to maximally leverage findings from

RCTs for use in education policy.

This paper takes a step towards filling this gap by using the framework of Hölmstrom

and Milgrom (1987), a hidden action, or “moral hazard” model of effort choice, to interpret

findings from Muralidharan and Sundararaman (2011), an experimental study of teacher

incentive pay implemented in Andhra Pradesh, a state in India. In the model, teachers

choose an unobserved effort level, which determines their quality. The main advantage of

this model is its closed-form solution of the optimal contract: the optimal incentive scheme

is linear in output, which depends on teacher effort and a shock. A larger error variance or

higher teacher risk aversion would reduce optimal incentive strength, or slope of remuneration

in output. Hölmstrom and Milgrom (1987) is equivalent to the widely used CARA-Normal

model, making it a particularly salient example environment.

Muralidharan and Sundararaman (2011) is particularly good for calibrating model pa-

rameters because the experiment introduced an output-based incentive scheme that, like the

optimal contract in Hölmstrom and Milgrom (1987), is linear in the output of individual

teachers. Additionally, the authors estimate a significant effect of individual incentive-pay

schemes. Because this paper’s goal is to assess potential gains from optimal contracts, it is

most natural to focus on a well-designed incentive pay experiment reporting a statistically
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significant effect.

2 Methods

2.1 Background on Muralidharan and Sundararaman (2011)

Muralidharan and Sundararaman (2011) conducted a large-scale experimental evaluation of

group- and individual-based performance-based bonus schemes for primary school teachers

in rural Andhra Pradesh, which was the fifth most populous state in India. Muralidharan

and Sundararaman (2011) write that the quality of education in rural Andhra Pradesh was

similar to that elsewhere in rural India, where “nearly 60 percent of children aged 6–14

. . . could not read at the second-grade level, though over 95 percent of them were enrolled in

school,” (page 45). In addition to this context of fairly low achievement, prior research had

already shown that potentially important inputs were also fairly low in Andhra Pradesh. For

example, Kremer et al. (2005) documented a 25% absence rate among teachers in the state.

Taken together, these facts point to large potential gains from increasing teachers’ provision

of costly effort inputs.

The experiment, which spanned the 2005–06 and 2006–07 school years, randomly assigned

100 schools from a representative sample of government-run schools in rural Andhra Pradesh

to either treatment arm, setting aside another 100 government-run schools to serve as a

control group.3 Although Muralidharan and Sundararaman (2011) find similar positive and

significant average treatment effects for the group- and individual-based incentives for their

main output measure (the average of achievement score increases in math and language) in

the first year, I focus on the individual-based incentive scheme because it is most closely

linked with the theoretical model. The individual bonus scheme assigned a teacher a bonus

linear in the amount a teacher’s student test score growth exceeded a minimal threshold: in

particular, the teacher was paid 500 rupees per percent increase in mean test scores, for test

score gains above 5%.4 The primary schools studied in Muralidharan and Sundararaman

(2011) were fairly small, with most schools having either two or three teachers and a typical

class size of around 40 students. The average teacher in the sample was 37 years old, the

standard deviation of teacher age was 8.8 years, and 57% of teachers were male; these

statistics are germane for the later sensitivity analysis, in which I consider the robustness of

3Muralidharan and Sundararaman (2011) also featured a treatment arm that provided resources to
schools; please see Muralidharan and Sundararaman (2011) for further detail.

4This threshold was chosen to minimize concerns that threshold-induced nonlinearities would substantially
affect teacher behavior; see footnote 16 on page 51 of Muralidharan and Sundararaman (2011). At a
conversion of 45 rupees per dollar, 500 rupees corresponds to $11.11.
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potential gains.5

2.2 Model

This section presents the workhorse CARA-Normal model of moral hazard, as developed in

Bolton and Dewatripont (2005). Although this model assumes a linear contract, which need

not be optimal, the solution is the same as that in Hölmstrom and Milgrom (1987), which

studies a static one-period model split into a number of sub-periods, where in each sub-period

an agent (i.e., teacher) controls the probability of success for a binomial random variable.

In particular, Hölmstrom and Milgrom (1987) show that the optimal contract features an

end-of-period payment that is a linear function of aggregated signals. The interpretation for

our education context would be that, in each infinitesimal unit of time, the teacher could

exert more or less effort to increase the probability a student obtains a sub-period-specific

“bit” of human capital measured by an end-of-year exam.

The administrator has utility q − w, where q is output and w is the wage paid to the

teacher. The teacher has constant absolute risk aversion (CARA) utility −e−ξ(w−ψ(a)), where

ξ is their coefficient of absolute risk-aversion and the cost of exerting effort a is ψ(a) = γa2/2.

The teacher requires an expected utility of u to participate. Output from teacher i depends

on their effort according to qi = ai + ηi, where the IID ex-post shock ηi ∼ N
(
0, σ2

η

)
renders

output a noisy measure of teacher effort.

Hölmstrom and Milgrom (1987) show that it is optimal for the administrator to pay the

teacher using the linear contract w = β0 + β1q, where β1 is the share of output paid to the

teacher. Therefore, the administrator solves

max
β0,β1

Eη [a+ η − w(a, η)] (1)

s.t. w(a, η) = β0 + β1(a+ η)

Eη

[
−e−ξ(w(a,η)−ψ(a))

]
≥ u (IR)

a ∈ arg max Eη

[
−e−ξ(w(a,η)−ψ(a))

]
. (IC)

The teacher problem yields a unique optimal effort level a∗ = β1/γ by differentiating (IC)

with respect to effort, and the optimal linear contract sets β∗
1 = 1/(1 + ξγσ2

η). Therefore,

expected output is E [q∗] = Eη [a∗ + η] = a∗ = 1/
(
γ(1 + ξγσ2

η)
)
. Intuitively, as the signal

quality worsens (i.e., σ2
η increases) the contract becomes lower powered (i.e., β∗

1 decreases),

resulting in lower effort a∗ and expected output E [q∗].

5These statistics were computed using the supplementary data associated with Muralidharan and Sun-
dararaman (2011), which are available at https://doi.org/10.1086/659655.

5

https://doi.org/10.1086/659655


If noise increased, the resulting optimal contract would partially protect a risk-averse

teacher by making incentives weaker in output, by reducing the slope of the linear contract

β∗
1 . The more risk-averse the teacher, the more protected they would be from fluctuations

in η.

2.3 Calibration

I calibrate the model parameters (γ, ξ, σ2
η) using a “sophisticated” back-of-the-envelope

method, which is “sophisticated” because I calibrate using equilibrium implications of the

hidden action model. As I show below, values for ξ and σ2
η can be obtained either directly

from external sources or by transforming external data. However, to calibrate the effort cost

parameter γ, we need to know how much teachers respond to incentive pay. Note that the

“causal” or composite effect of teacher incentive pay reported in the experimental results

could, in theory, also include changes in student and/or family inputs. However, assigning

the total effect to changes in teacher effort is consistent with the theoretical model used to

interpret these results. Note that effort and output are compared to their baseline levels,

i.e., that obtained absent output-based incentives.

As with any mapping between theory and data, assumptions have to be made. The benefit

of using Hölmstrom and Milgrom (1987) to interpret Muralidharan and Sundararaman (2011)

is that the linear scheme employed in the latter affords a clean mapping between their findings

and the hidden action model. The same is true of their experimental research design, which

obviates having to account for mean differences in output between treatment and control

groups being based on selection on hidden types, allowing the calibration to proceed for a

representative (average) teacher.6 I convert currency into U.S. dollars for convenience. While

this might raise concerns about external validity, CARA utility implies that risk aversion is

independent of wealth, meaning the large wealth differences between teachers in India and

the U.S. would only affect the intercept, not optimal teacher effort and output.

There were on average 3.14 teachers and 37.5 pupils per teacher in the incentive schools.

Student achievement increased by an average of 0.1415 sd, per year.7 Students’ annual

wages increased by an average of 2,812 rupees per student8; the average cost of the incentive

6The linearity of the administrator’s objective implies that she can solve a separate problem for each
teacher.

7This was obtained from the top row of Table 8 of Muralidharan and Sundararaman (2011), by dividing
the composite two-year gain by two.

8See footnote 34 on page 72 of Muralidharan and Sundararaman (2011); note, however, that a 10.04%
increase was applied instead of 7.7%, as the former was based on individual scheme gains and the latter was
based on pooled individual and group incentive scheme gains.
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scheme was 20,000 rupees.9 With a conversion rate of 45 rupees per dollar, this corresponds

to $2,343.60 (=$62.50×37.5) in total output produced by the average teacher and $141.54

(=$444.44/3.14) paid to the average teacher. Then, the slope of the contract is the per-

teacher income increase ($141.54) divided by the increase in output ($2,343.60), or 0.0604;

i.e., teachers were paid a piece rate of 6.04% of output.

We can exploit the teacher’s optimal choice of action, which solves (IC) in (1) but does

not rely on optimality of the slope β1, to map (β1, a) to the effort cost γ. The value of γ

which rationalizes this increase is then γ = β1/a = 0.0604/2, 343.60 = 2.577× 10−5. Teacher

risk aversion matters for how incentives are structured (Nadler and Wiswall (2011)). I set

the CARA parameter to ξ = 6.7× 10−3, the mean estimated coefficient of absolute risk

aversion from the benchmark model of Cohen and Einav (2007), Table 5.

Assuming mean test scores10 y are converted to output via q = βqy, the conversion

factor βq can be calibrated by noting that the scheme increased mean test scores by 0.1415

sd and output per teacher by $2,343.60, resulting in a conversion factor βq =$16,562.54

(=$2,343.60/0.1415). Student j’s test score depends on their teacher i’s effort and a student-

specific shock distributed IID according to εji ∼ N (0, σ2
ε ), which captures idiosyncratic

factors affecting student achievement on the administered test instrument. The variance of

the mean test score then can be computed by dividing the variance of test score error σ2
ε by

the average number of students per teacher in the data, i.e., σ2
y =0.953/(37.5).11 To obtain

the variance of output σ2
η we then square the test-score-to-income parameter and multiply

by the variance of mean test score, i.e., σ2
η =6,971,331$2(=$16,562.542 × 0.953/(37.5)).12

3 Results

Using the calibrated parameter values, we can solve for the optimal slope of β∗
1 = 0.454,

which is over six times steeper than in the experiment. This results in an optimal effort

level/output gain of a∗ = $17, 608.83, which corresponds to an average increase in student

achievement of 1.063 sd. Accordingly, these increases are also more than six times larger

than the estimated increases stemming from the much weaker incentives provided under the

experiment.

9The incentive scheme cost an average of 10,000 rupees for each of two years (Muralidharan and Sun-
dararaman, 2011, pp. 70-71).

10Note that everywhere, I refer to test score gains.
11Schochet and Chiang (2012) compile estimates of the variances from a large number of studies in their

study of error rates in value-added models, providing a good source for typical values for σ2
ε of σ2

ε = 0.953.
Results available upon request.

12This is because the variance of q, i.e., σ2
η, is β2

qσ
2
y.
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Sensitivity Analysis Figure 1 presents contour maps of model outcomes for a grid of

points covering a wide range of alternative values of the logarithms of σ2
η and ξ, ranging

from one half to ten times the calibrated value of each parameter.13 Note that, because

γ was recovered using the teacher’s effort action choice and can be recovered by using the

slope of incentives in the experiment and increase in output, it does not depend on (σ2
η, ξ).

Figure 1a is a contour map of the optimal output share, or β∗
1 . Figure 1b is a contour map of

optimal output, i.e., E [q∗]. In both figures, the value corresponding to the calibrated values

of σ2
η and ξ is indicated by a red dot. We can see that as teachers become more risk averse

(increasing ξ) or output becomes noisier (increasing σ2
η), both incentive strength (Figure 1a)

and output gains decrease (Figure 1b). For example, fixing σ2
η at its calibrated value, the

increase in output ranges from about 1.4 sd in student achievement to around 0.3 sd when

teachers are ten times more risk averse than their calibrated value of ξ = 6.7× 10−3. This

latter figure is only about twice the estimated effect of the incentive scheme, but still of

considerable magnitude when compared with the effects of other educational interventions,

while not being implausibly large.14 Put another way, teachers would have to be extremely

risk averse and/or output would have to be far noisier than is typically the case for optimal

incentives be even close to as flat as those in Muralidharan and Sundararaman (2011).

We can use additional results from Cohen and Einav (2007) to make the sensitivity

analysis with respect to the coefficient of absolute risk aversion a bit more concrete. For

example, taking the benchmark model estimates from Cohen and Einav (2007), Table 4, the

mean of which I use as the calibrated coefficient of absolute risk aversion, the coefficient on

Female in predicting the log of the coefficient of absolute risk aversion is 0.2049. That is,

ceteris paribus, females have a 20% higher coefficient of absolute risk aversion than males,

which means that increasing the calibrated CARA parameter ξ by 20% would provide a very

conservative upper bound for how switching from male to female would affect ξ. The resulting

value, ξ = 8.1× 10−3, is well within the range of values explored in the sensitivity analysis.

Similarly, Cohen and Einav (2007) reports that the coefficient of absolute risk aversion is U-

shaped in age, achieving a minimum at 48 years. Using the estimated coefficients from Table

4 on Age and Age squared, the log coefficient of absolute risk aversion would be 0.51 higher

for a 20-year old than it would be for a 48-year old, implying a very conservative upper

bound for the coefficient of absolute risk aversion for a 20-year old—about two standard

13Table 2 in Babcock et al. (1993) shows that a higher-end estimate of ξ is about 0.35, well above the
range considered in the parameter grid here. The lower bound for the range of the CARA parameter is very
close to the mean and median values of the CARA parameter when Cohen and Einav (2007) assume CARA
utility (in the third panel of their Table 5); therefore, using a larger (i.e., more risk-averse) value for ξ as
the baseline results in weaker optimal incentives. In this particular sense, we may view the results for the
calibrated values as conservative, in terms of the potential output gains.

14Cohen (1988) classifies gains of 0.80 sd and higher as “large”.
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deviations younger than the average teacher in the sample—that is 51% higher than the

calibrated value, i.e., ξ = 1.0× 10−2. As was the case for females, this value is also well

within the range of values explored in the sensitivity analysis.

Finally, Figure 1c presents a contour map of the expected share of teacher income com-

prised by variable compensation, i.e., E [β∗
1q

∗] /E [β∗
0 + β∗

1q
∗]. As with the slope and output,

this share declines as the output shock variance and degree of risk aversion increase.15 The

optimal expected share of income that is variable pay under the calibrated parameter values

would be around 10%.

4 Discussion and Conclusion

This paper produces the first quantitative assessment of the potential gains to implementing

optimal teacher incentive pay. The findings point to large potential gains to implementing

optimal contracts, which are six times steeper than those in the experiment, which were

already significant and positive. This suggests that the estimated null effect found in some

implemented studies of incentive pay could potentially be attributed to weaker-than-optimal

incentive strength.

The simplicity of this paper’s approach allows me to study an environment for which the

optimal contract has already been characterized and then use a well-implemented empirical

study to recover the relevant parameters. It provides an example of the potential gains to

adopting optimal contracts in educational production. That being said, caveats regarding

to the interpretation of this paper’s results are in order.

To start, there are two reasons, stemming from this paper’s strategy of combining in-

formation from Indian and other (e.g., the US and Israeli) contexts to calibrate the model,

why it would be prudent to view the calibrated six-fold increase in output resulting from

the introduction of optimal incentives as an upper bound. First, if teachers are substantially

more risk-averse than other agents (e.g., Dohmen and Falk (2010) document that teachers

are more risk-averse than other workers), optimal incentives (and the associated potential

output gains) would naturally be weaker (and smaller). In a similar vein, although teach-

ers are assumed to have CARA preferences, it is worth considering how a deviation from

constant absolute risk aversion could affect this paper’s findings. The typical deviation

from constant absolute risk aversion is decreasing absolute risk aversion (Friend and Blume

(1975)).16 Therefore, as a rough approximation, suppose that we maintained CARA pref-

15This was computed using a certainty equivalent value of $70,000 (Himes (2015)), along with a binding
IR constraint in (1).

16For example, macroeconomists often assume that preferences exhibit constant relative risk aversion (i.e.,
CRRA utility), which implies decreasing absolute risk aversion.
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Figure 1: Optimal output share and ratio of output for (σ2
η, ξ)−grid
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erences, but adjusted ξ to reflect the potentially large differences in income between, say,

India and the US. In this case, it might seem reasonable to think that the calibrated value of

ξ (which was based on data from Israel, which is much more similar to the US, in terms of

income17) would be too low to properly account for the potentially greater risk aversion of

Indian teachers. Thus, here too, the optimal incentive strength, and potential output gains,

would be smaller than those using the calibrated value of ξ. This highlights the importance

of the sensitivity analysis, which shows that there would be substantial potential output

gains even when ξ was ten times larger than its calibrated value.

Second, output in this paper is measured in terms of value added, and output gains

(i.e., increases in value added) are determined by γ, the effort cost parameter. The large

treatment effects found in Muralidharan and Sundararaman (2011) imply a small calibrated

value of γ. Such large effects may seem quite reasonable in a context where, e.g., in the

control group over 20% of teachers were absent and less than half were found to be actively

teaching when audited by enumerators (Muralidharan and Sundararaman (2011), Table 9);

indeed, the low baseline achievement level of rural Andhra Pradesh was what motivated

the experimental intervention. The convexity of the effort cost function implies that in a

context such as the US, which perhaps could be viewed as having higher baseline student

achievement and teacher effort (e.g., lower absence rates), would imply a higher value for

γ. This would reduce optimal incentive strength and the associated potential output gains.

Quantifying γ for the US, or other, contexts would thus be a useful line of future research.

A final caveat is that the linear, individual teacher incentive scheme is only one of the

many potential structures of incentive schemes, as the Hölmstrom and Milgrom (1987) envi-

ronment is only one of many potentially relevant economic environments; different underlying

environments would likely imply different optimal incentive schemes. For example, in this

paper’s model, the lack of teacher effort is the channel through which poor student per-

formance can be explained. While there is some external support to the hypothesis that

teacher effort matters, e.g., Jones (2013), another potentially important design element is

whether (and how strongly) students should be incentivized. For example, Behrman et al.

(2015) conducted a randomized controlled trial in Mexican high schools that featured three

treatment arms, with threshold-based incentives for (i) only students, (ii) only teachers, and

(iii) both students and teachers; only those with student incentives significantly improved

achievement. Calculating the potential output gains from moving to optimal contracts in

other environments constitutes an important avenue for future research.

17Real per-capita GDP in 2005, in 2011 dollars, was $3,179 in India, $26,761 in Israel, and $49,762 in
the US. Source: World Bank national accounts data, and OECD National Accounts data files, https:

//data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD.

11

https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD


References

Babcock, B. A., E. K. Choi and E. Feinerman, “Risk and Probability Premiums for CARA

Utility Functions,” Journal of Agricultural and Resource Economics, pp. 17–24, 1993.

Barlevy, G. and D. Neal, “Pay for Percentile,” American Economic Review, 102(5):1805–31,

2012.

Behrman, J. R., S. W. Parker, P. E. Todd and K. I. Wolpin, “Aligning Learning Incentives

of Students and Teachers: Results from a Social Experiment in Mexican High Schools,”

Journal of Political Economy, 123(2):325–364, 2015.

Bolton, P. and M. Dewatripont, Contract Theory, MIT Press, 2005.

Cohen, A. and L. Einav, “Estimating Risk Preferences From Deductible Choice,” American

Economic Review, pp. 745–788, 2007.

Cohen, J., Statistical Power Analysis for the Behavioral Sciences, vol. 2, Hillsdale, NJ:

Lawrence Earlbaum Associates, 1988.

Dee, T. S. and J. Wyckoff, “Incentives, Selection, and Teacher Performance: Evidence from

IMPACT,” Journal of Policy Analysis and Management, 34(2):267–297, 2015.

Dohmen, T. and A. Falk, “You Get What You Pay For: Incentives and Selection in the

Education System,” Economic Journal, 120(546):F256–F271, 2010.

Friend, I. and M. E. Blume, “The Demand for Risky Assets,” American Economic Review,

65(5):900–922, 1975.

Fryer Jr., R. G., “Teacher Incentives and Student Achievement: Evidence from New York

City Public Schools,” Journal of Labor Economics, 31(2):373–407, 2013.

Goldhaber, D. D. and D. J. Brewer, “Why Don’t Schools and Teachers Seem to Matter?

Assessing the Impact of Unobservables On Educational Productivity.” Journal of Human

Resources, 32(3), 1997.

Hanushek, E. A., “The Economic Value of Higher Teacher Quality,” Economics of Education

Review, 30(3):466–479, 2011.

Himes, T., “LAUSD Educators Typically Earned $75,504 Last Year,” Los Angeles Daily

News, 2015.

12
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