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Abstract

Researchers commonly “shrink” raw quality measures based on statistical criteria.

This paper studies when and how this transformation’s statistical properties would

confer economic benefits to a utility-maximizing decisionmaker across common asym-

metric information environments. I develop the results for an application measuring

teacher quality. The presence of a systematic relationship between teacher quality and

class size could cause the data transformation to do either worse or better than the

untransformed data. I use data from Los Angeles to confirm the presence of such a

relationship and show that the simpler raw measure would outperform the one most

commonly used in teacher incentive schemes.
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1 Introduction

In response to what is thought to be excessive noise present in directly observed measures

of important economic inputs (e.g., teacher quality), many researchers and practitioners

transform raw measures by “shrinking” them towards the population mean. Shrinking the

raw measure by a factor decreasing in the number of observations used to compute it results in

a “shrinkage estimator”, which minimizes mean squared error, making it the best predictor.

This well-known statistical property (Copas (1983); Morris (1983)) has motivated the use of

shrinkage estimators to inform decisions in a large number of policy-relevant applications,

including (but not limited to) the estimation of teacher quality (Rockoff (2004); Kane et al.

(2008); Chetty et al. (2014a,b)), school quality (Raudenbush and Bryk (1986); Angrist et al.

(2017)), and neighborhood effects (Oakes (2004); Chetty and Hendren (2016)). Shrinkage

estimators have also been used to set insurance premia (Makov et al. (1996)) and, more

generally, in the evaluation of social programs (Rossi et al. (2003)).

The starting point for this paper is to recognize that quality measures are rarely of

intrinsic value, but rather, they are important because they are used to make decisions.

Statistically desirable properties may not confer advantages when viewed from an economic

perspective, i.e., when used by an optimizing decisionmaker in the relevant context. For

example, consider how to assign a bonus to the best teacher in a school, where the optimal

policy based on raw data would reward the teacher with the highest measured output. If

the best teacher had a relatively small classroom (i.e., fewer observations) and therefore was

shrunk closer to the mean, shrinking the raw measure could lower the odds of rewarding the

best teacher. It is not clear that an estimator with a lower mean squared error should always

be preferred to an unbiased one.

This paper examines whether a utility-maximizing decisionmaker in an asymmetric in-

formation environment could improve upon the shrinkage estimators pervasive in research

and practice. I first examine a practical and concrete cutoff model, where the decision-

maker classifies agents with respect to a desired threshold to minimize a weighted sum of

the expected Type I and Type II errors. To study how measurement affects output, I next

study hidden type (adverse selection) and hidden action (moral hazard) models, where agent

quality is, respectively, fixed and endogenous. Optimal policy in the hidden type model is a

stopping rule, or reservation quality measure, which suggests an economic intuition for the

cutoff model. Optimal policy in the hidden action model, which is based on Hölmstrom and

Milgrom (1987), is linear in the quality measure.

In each environment, the decisionmaker chooses the best estimator from a set containing

a (perhaps) naive measure, the raw, or unshrunken, quality measure, and the ubiquitous
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shrunken measure by comparing the value—that is, maximized expected utility obtained

under optimal policy—according to each estimator. Estimators in this set yield the clearest

insights because they only differ by how much they weigh sample data, which increases in the

number of observations, or sample size, per agent. For example, in the context of estimating

teacher quality these weights depend on class size; if class size systematically differed between

teachers then the amount of shrinkage could be related to underlying quality.1

The theoretical analysis shows that taking into account the decisionmaker’s optimization

behavior can undo or even reverse an estimator’s statistical advantages. The main theoret-

ical result—that the relationship between sample size and quality determines the preferred

estimator—is common across environments. When sample sizes (and thus, shrinkage) are

constant, optimal policy would undo any shrinkage, eliminating the desirable statistical prop-

erties of shrinkage estimators and leaving the decisionmaker indifferent between estimators.

Nonconstant sample sizes that are related to quality result in “differential shrinkage”, cre-

ating a difference in the value according to each estimator. For example, when the sample

size is negative-quadratic in quality, the decisionmaker may prefer the raw quality measure

and when it is positive-quadratic in quality she may prefer the shrunken one.

I develop the analysis using a highly policy-relevant application: the measurement of

teacher quality. The fact that only a small amount of variation in student achievement is

explained by teachers’ observed characteristics that are available in typical administrative

or survey data (Hanushek (1986); Rivkin et al. (2005)) and evidence that teacher quality is

an important determinant of human capital (Hanushek (2011); Chetty et al. (2014a)) have

spurred the introduction of teacher incentive schemes. For example, President Obama’s

Race to the Top initiative incentivizes states to adopt incentive pay schemes and the Teacher

Advancement Program has introduced performance-based bonuses to over 20,000 teachers

serving over 200,000 students across the U.S.2 In addition to being a linchpin of education

reform, teacher incentive schemes may be the most visible incarnation of performance-based

incentives in the public sector. The concern that teacher quality measures can be quite

noisy (Baker and Barton (2010)), which may subject teachers to undue risk if directly used

in high-powered incentive schemes, and the fact that they minimize mean squared error

has motivated the use of shrinkage estimators—most commonly “empirical Bayes”—in this

application.3

1 As discussed below, there is a large literature studying this relationship. This paper’s contribution is to
show how such a relationship could interact with measurement from the perspective of a utility maximizer.

2http://www.tapsystem.org/
3For example, American Federation of Teachers President Randi Weingarten said in a 2012 interview

about releasing VA scores to the public: “I fought against it because we knew value-added was based on a
series of assumptions and not ready for prime-time. But back then, we didn’t realize the error rates could
be as high as 50 percent!” (Goldstein (2012)).
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The theoretical environments described above are relevant for studying teacher quality,

where the decisionmaker could be a school district administrator, i.e., a public official inter-

ested in cost-effective ways of increasing educational production. As I document in Appendix

A, the cutoff model matches the structure of the vast majority of existing teacher incentive

schemes, which typically use empirical Bayes to measure teacher quality when assigning

bonuses or even dismissing teachers; it could also be used to model pay-for-percentile-type

schemes, which are tournament-based schemes that have recently become popular in ed-

ucation policy debates (Barlevy and Neal (2012)).4 Optimal policies in the asymmetric

information models take on the natural interpretation of reward, or wage, schedules that

weakly increase in measured quality. The optimal stopping rule in the hidden type model is

a step function, where teachers with above-threshold measures receive the same (positive)

salary and those below receive a wage of zero (meaning they are dismissed). The optimal

wage schedule in the hidden action model is a constant base salary, with a performance-

based bonus that increases linearly in measured quality. Notably, in each environment, the

administrator chooses an optimal reward policy function for each estimator. This is in con-

trast to the modal approach, which quantifies the effects of potentially suboptimal policies

using estimated models (e.g., Stinebrickner (2001), Tincani (2012), Todd and Wolpin (2012),

Behrman et al. (2016)) or those with calibrated parameters (e.g., Rothstein (2014)). While

clearly attractive, characterizing optimal reward policies is only possible for environments

that are parsimonious relative to those typically considered in this literature. Viewed in

light of this tradeoff and their somewhat different goals, this paper is quite complementary

to this literature.

The aforementioned concern that the amount of shrinkage could be systematically related

to the underlying estimand is germane to measuring teacher quality. The idea that class

size can reflect information about teacher quality has theoretical precedent (Lazear (2001);

Barrett and Toma (2013)) and researchers have found that higher-quality teachers tend to

have more favorable working conditions, in terms of student characteristics (Player (2010),

Clotfelter et al. (2006)); it is not a big leap to extend this reasoning to class size.5

When measuring teacher quality, the administrator’s preferred estimator is determined

by the relationship between class size and teacher quality. In particular, she would prefer the

4The cutoff model also allows us to be agnostic about what underlies variation in measured output, which
could be due to hidden types and/or actions.

5 Barrett and Toma (2013) assume that higher-quality teachers have a smaller reduction in efficacy for a
given increase in class size, which could induce a relationship between class size and teacher quality. Jepsen
and Rivkin (2002, 2009) show that a funding increase resulted in smaller class sizes, though teachers hired to
affect this reduction had less experience. Because these teachers were likely far less effective than experienced
ones, this finding would be consistent with a positive relationship between class size and teacher quality at
the low end of the distribution.
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same estimator across the three models: she would be indifferent when class size was constant

in teacher quality, prefer fixed effects when class size was negative-quadratic in teacher

quality, and prefer empirical Bayes when class size was positive-quadratic in teacher quality.

This finding is very intuitive. As discussed above, with constant class sizes her optimal policy

in each model would adjust to return the same estimator-specific value. Roughly, in the cutoff

and hidden type models, the administrator would prefer fixed effects when the teachers with

qualities she would most like to identify are those with relatively small class sizes. Because a

negative-quadratic relationship between class size and teacher quality would leave teachers

at the low and high ends of the quality distribution with the smallest class sizes, this would

lead to a lower value from empirical Bayes in the cutoff model for a wide range of desired

cutoffs, as shrinking makes it harder to sanction/fire less-effective teachers or reward/retain

more-effective teachers. Similarly, in the hidden type model, the administrator’s optimal

policy is to try to identify teachers with qualities below a certain level, which is harder to do

when shrinking the data when class sizes for these teachers are small. Finally, a negative-

quadratic relationship between class size and teacher quality decreases signal precision of the

shrunken quality measure, reducing the resulting optimal incentive strength and optimized

output in the hidden action model, again leading the administrator to prefer fixed effects in

the presence of a negative-quadratic relationship between class size and teacher quality.

The empirical part of the application uses data from the Los Angeles Unified School

District, the second-largest school district in the U.S. and one with a large degree of diver-

sity and variation in both student achievement and class size (Buddin (2011)). I find that

class sizes are smallest for the lowest- and highest-quality teachers, which is the scenario

in which the raw quality measure would be preferred to the shrunken measure in each en-

vironment. There is reason to also expect the type of relationship between class size and

teacher quality I document in Los Angeles in other locales. Suppose that, in the background

of the administrator’s optimization problem, school principals wanted to have students pass

a low proficiency threshold and increase total output at their respective schools. The former

could cause class size to increase in teacher quality at the low end of the quality distribution.

However, due to the lack of flexible wages in the public education sector, school principals

might also reduce class size at the high end of the distribution to retain high-quality teach-

ers.6 This paper remains agnostic about the source of this relationship; all that matters is

whether it exists and, if it does exist, what it is.

Finally, I calibrate additional parameters to quantitatively compare the prospective per-

6 This example provides only one potential explanation underlying the documented relationship between
class size and teacher quality, which would clearly be constrained by institutional factors like teacher unions
and, relevant for my empirical application, the California Education Code, Section 41376, which prescribes
maximum class sizes and penalties for districts violating those limits.
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formance of the estimators, finding nontrivial benefits to using raw quality measures. For

example, in the cutoff model, an administrator would make 9% more classification errors

when using empirical Bayes when seeking to identify teachers in the bottom 1% in Reading

value-added and switching from empirical Bayes would increase output by 2% in the hidden

action model. The performance of the estimators in the cutoff model differs most at the

tails of the distribution of teacher quality, which is important for identifying either high- or

low-quality teachers, the focus of existing teacher incentive schemes (e.g., the Washington

D.C. Schools Chancellor fired 241 teachers in 2010 based on performance measures (Turque

(2010)).7 The sheer number of schemes and affected teachers and students and increasing pol-

icy support for teacher incentive schemes point to substantial gains from using the preferred

estimator for the relevant context, especially in light of the relatively costless “intervention”

of adopting a simpler quality measure. Because incentive schemes do not directly take into

account class size, when there is a relationship between class size and teacher quality the

choice of estimator can effectively help to take into account this relationship.

Section 2 presents statistical background for the models used in this paper. Section 3

develops and analyzes the cutoff model and Section 4 presents the hidden type and hidden

action models. Section 5 presents the quantitative results and Section 6 concludes. The

Appendix documents a number of teacher incentive schemes and also contains proofs and

further details about the quantitative results.

2 Statistical Background

The application to measure teacher quality is based on the leading conceptual framework

for teacher quality, the value-added model (Murnane (1975); Hanushek (1979)), which uses

changes in students’ test scores over the year to measure the contribution (i.e., quality) of

individual teachers. There is a literature studying the statistical properties of the value-added

framework, with the main concern that the omission of important inputs may bias estimates

(e.g., McCaffrey et al. (2003), Rothstein (2009, 2010), Glazerman et al. (2010), Andrabi

et al. (2011), Guarino et al. (2014), Jackson (2014)). However, several recent studies have

found that value-added models are fairly good at accounting for unobserved inputs (Kinsler

(2012a,b), Chetty et al. (2014a), Kinsler (2016)), which will likely further increase their use

in research and policy.

Because this paper takes as given that the data generating process is consistent with

7The recent outcry about a case where teacher value-added was incorrectly calculated in Washington DC,
which resulted in firing mistakes (Strauss (2013)), evinces the considerable public concern about misclassi-
fying public school teachers.
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a value-added technology, it does not seek to contribute to the important, growing, and

controversial (Rothstein (2017) and Chetty et al. (2017)) literature studying the statistical

properties of value-added models. Rather, the contribution is to analyze the performance

of widely used estimators of teacher quality within the value-added framework, which is the

workhorse of existing teacher incentive schemes and education research. Therefore, the focus

of this paper is quite different from, and complementary to, the literature studying whether

value-added models are misspecified.8 A different concern is that raised by Bond and Lang

(2013), who question whether value-added should be ascribed any cardinal meaning at all,

noting that monotonic transformations of test scores can eliminate growth in the black-

white reading test score gap, documented in, e.g., Fryer Jr. and Levitt (2004). In this paper,

comparisons are made within one academic year (and within the same subject), mitigating

this concern.9

Manski (2004) writes that “statisticians studying estimation have long made progress

by restricting attention to tractable classes of estimators; for example, linear unbiased or

asymptotic normal ones,” (page 1231). In the same vein, I consider a set of estimators

containing a (perhaps) naive estimator based on the “raw” data, which in a value-added

framework would correspond to unbiased fixed effects, and the ubiquitous mean-square-

minimizing empirical Bayes. I show below in Remark 1 that this is a natural set to consider.10

The unconstrained class of optimal estimators would potentially condition on all available

information, because the administrator could simply ignore information that was not valuable

(Hölmstrom (1979)). No existing teacher incentive scheme does this. Therefore, in each

environment, I focus on the less trivial and more relevant case where the administrator

chooses the (constrained) optimal estimator from the set described above.

Teacher quality is distributed according to θi ∼ F = N (0, σ2
θ), where F is known.11 As

discussed in the introduction, the number of students assigned to teacher i, ni, may depend

on i’s quality. For simplicity, I assume that class size depends on θ, where I sometimes

denote this dependence by writing n(θ).12 Note that what matters is the end relationship

8 The maintained assumption that the technology is value-added also does not allow student ability to
evolve flexibly; see Hansen et al. (2004), Todd and Wolpin (2007), and Ding and Lehrer (2014) for research
relaxing this potentially important assumption.

9Moreover, comparisons are ordinal in the cutoff-based and hidden-type environments. However, it should
be noted that the value-added estimates themselves are obtained using student-level data, which are assumed
to have a cardinal structure.

10The framework developed here could also be used to study other classes of estimators.
11I follow standard assumptions that teacher quality is normally distributed in the population, and that

E [θ] is normalized to 0.
12If class size were instead a noisy signal of teacher quality, the model solution would be more compli-

cated without changing which estimator the administrator would prefer. I assume in this section that the
administrator cannot directly condition on class size; Remark 2 discusses this assumption.
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n(θ); whether it is the result of school principals assigning smaller class sizes to certain

teachers or, say, teacher lobbying effort does not affect the results.

The test score gain for student j assigned to teacher i is yji = θi+εji, where measurement

error εji ∼ N (0, σ2
ε ) and εji ⊥⊥ θi. I adopt this spare technology to simplify exposition; the

quantitative results use value-added estimates that control for many characteristics.13 I

follow the literature and assume normal distributions due to two key properties that lead

to considerable tractability: i) the normal distribution is closed under summation, which

means each teacher’s average measurement error will also be normally distributed and ii)

the normal distribution is self-conjugate, which means the posterior distribution of (normally

distributed) teacher quality, when it is added to a normally distributed average measurement

error, is also normal. Results would likely also apply to other common symmetric, unimodal

distributions.

The fixed-effects (FE) estimator of θi is the sample mean, i.e., θ̂FEi =
∑

j
yji
ni

= θi + εi,

and, given true quality θi, is distributed according to θ̂FEi ∼ N
(
θi,

σ2
ε

ni

)
. The empirical Bayes

(EB) estimator of teacher value-added updates the prior (i.e., population) distribution of θi

with data {yji}j. Because both the prior distribution and measurement errors are normal,

the posterior distribution is also normal, giving θ̂EBi = λiθ̂
FE
i + (1 − λi) E [θ] = λiθ̂

FE
i =

λi · (θi + εi), where λi =
σ2
θ

σ2
θ+σ2

ε /ni
is the ratio of the true variation in teacher quality (signal)

relative to the estimated variation using the fixed effects estimator (signal plus noise).14

I express the dependence of the weights on class size by writing λ(n(θ)) or λ(ni), or the

reduced-form λ(θ), depending on which is more convenient. How much the empirical Bayes

estimator is shifted towards the population mean depends on ni: λ(ni) → 1 as the number

of students observed for a teacher ni increases, causing all the weight to be shifted to the

sample mean. Note the empirical Bayes estimate for a particular teacher’s quality is biased,

i.e., Eε

[
θ̂i
EB
]

= λ(θ)θi 6= θi, but also has a lower variance. Though the exposition here is

for fixed effects and empirical Bayes estimators, this bias-variance tradeoff would also apply

to comparisons of other shrunken versus unshrunken estimators.

The fixed effects and empirical Bayes estimators differ only by the weights λ, making it

simple to also consider estimators with intermediate weights by considering convex combi-

nations of θ̂EBi and θ̂FEi , resulting in a set of candidate estimators [θ̂EBi , θ̂FEi ]. I obtain the

optimal estimator by first analyzing the end points of this set (i.e., fixed effects and empirical

Bayes) and then considering whether interior weights would be optimal.

13 Students (and their parents) are assumed to be passive; in particular, they are assumed not to respond
to changes in teacher quality. See Todd and Wolpin (2003) for a discussion of how this assumption could
affect estimates from value-added models; see Ding and Lehrer (2010) for an application estimating dynamic
treatment effects using Project STAR data.

14McCaffrey et al. (2003) discusses the differences between fixed effects and empirical Bayes estimators.
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Remark 1 (Class size). Note that because the estimators only differ by λi, which in turn

only differs between teachers via class size ni, the analysis will focus on variation in class

size without loss of generality.

Remark 1 identifies what will be a common thread across the models in this paper:

differences in estimator-specific value only depend on the relationship between class size and

teacher quality. Intuitively, this relationship determines the amount of information in each

estimator that is relevant to the administrator’s objective, which may in turn affect her

rankings over the estimators.

3 Cutoff-Based Model

In this section I develop a cutoff model to formalize the objective of a utility-maximizing

decisionmaker, a school-district administrator, and characterize her optimal cutoff policy. I

then use this model to evince the relationships between (i) how class size varies with teacher

quality, (ii) her choice of estimator, and (iii) her expected maximized utility, i.e., value.

The administrator takes as given an exogenous desired cutoff (for example, she is told to

give bonuses to the top 5% quality teachers or to fire the lowest 1% quality teachers in the

district) and chooses a cutoff policy, which may depend on estimator type, to maximize her

expected objective over all teachers in the district.15

I begin with this model for several reasons. First, as will be shown below, her objective can

be measured in terms of the number of correct and incorrect classifications with respect to the

desired cutoff, embedding the administrator’s objective in a natural metric: the expected

number of mistakes. Second, a discrete policy is a natural fit for modeling discrete real-

world policies like retention, making the analysis in this paper highly relevant for the most

pervasive, and perhaps the most contentious, education policy debates.16 Third, even though

they are not obliged to take such a form, almost all existing teacher incentive schemes for

public school teachers are cutoff-based, making this model’s results immediately applicable

to the vast majority of existing teacher incentive schemes; as noted by Stiglitz (1991) and

Ferrall and Shearer (1999), real-world incentive schemes typically take very simple forms.

Fourth, related literature also considers cutoff-based policies, e.g., Staiger and Rockoff (2010),

15Other work compares the statistical performance of different methods of estimating value-added. Scho-
chet and Chiang (2012) calculate error rates for fixed effects and empirical Bayes estimators of teacher
quality, assuming a fixed (identical) cutoff policy. Tate (2004) notes that ranks formed by fixed effects and
empirical Bayes may differ depending on class size, but does not embed the analysis within a decision prob-
lem. Guarino et al. (2015) compare the performance of fixed effects and empirical Bayes estimators, with a
focus on how they perform when students are not randomly assigned to teachers.

16Section 4.1.3 explores similarities between the cutoff-based model and the hidden type environment.
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Hanushek (2011), Tincani (2012), Chetty et al. (2014b), and Rothstein (2014). Finally, the

cutoff-based model’s flexibility allows us to be agnostic about what underlies variation in

measured output, which could be due to heterogeneity in fixed teacher productivity types

and/or unobserved actions.

Model Specification The administrator receives utility from correctly rewarding a teacher

with true quality equal to or higher than the desired cutoff κ (not making a Type I error)

and not rewarding a teacher with true quality below κ (not making a Type II error). The

administrator’s utility from using estimator θ̂ and cutoff policy c on a teacher of true quality

θ is:

uCP (θ, θ̂; c, κ) = α 1{θ̂ ≥ c|θ ≥ κ}︸ ︷︷ ︸
avoid Type I error

+(1− α) 1{θ̂ < c|θ < κ}︸ ︷︷ ︸
avoid Type II error

,

where α and (1− α) are her weights on not making Type I and II errors, respectively. The

parameter α helps link the model to the institutional context. An administrator tasked with

firing the lowest-quality teachers might be willing to make many more Type I errors to avoid

a Type II error (i.e., α < 1/2). Alternatively, a high value of α may be more appropriate for

an administrator allocating performance bonuses from a tight budget. If α = 1 − α = 1/2

the administrator values Type I and II errors equally.
Expected utility under the fixed effects estimator and candidate cutoff policy cFE inte-

grates the administrator’s objective over the distributions of teacher quality and measure-
ment error:

E
[
uCP (θ, θ̂FE ; cFE , κ)

]
= αPr{θ̂FE ≥ cFE |θ ≥ κ}+ (1− α) Pr{θ̂FE < cFE |θ < κ}

= α

∫ ∞
κ

(
1− Φ

(
cFE − θ
σε(n(θ))

))
dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

(
cFE − θ
σε(n(θ)

)
dF (θ|θ < κ),

(1)

where σε(n(θ)) ≡ σε√
n(θ)

and dF (θ|θ ≥ κ) = φ(θ/σθ)
σθ(1−Φ(κ/σθ))

and dF (θ|θ < κ) = φ(θ/σθ)
σθΦ(κ/σθ)

are

the distribution functions for θ, truncated below and above κ, respectively, where φ and
Φ respectively denote the standard normal density and cumulative distribution functions.
Expected utility under the empirical Bayes estimator and candidate cutoff policy cEB is

E
[
uCP (θ, θ̂EB ; cEB , κ)

]
= αPr{θ̂EB ≥ cEB |θ ≥ κ}+ (1− α) Pr{θ̂EB < cEB |θ < κ}

= α

∫ ∞
κ

1− Φ

 cEB

λ(n(θ)) − θ
σε(n(θ))

 dF (θ|θ ≥ κ) + (1− α)

∫ κ

−∞
Φ

 cEB

λ(n(θ)) − θ
σε(n(θ))

 dF (θ|θ < κ).

(2)

For either estimator, an increase in the prospective cutoff policy c decreases the probabil-
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ity of correctly identifying a teacher with true quality above κ and increases the probability of

correctly identifying a teacher with true quality below κ. The optimal cutoff policy equates

the marginal increase in the probability of committing a Type I error (marginal cost) with

the marginal decrease in the probability of committing a Type II error (marginal benefit).

That is, c∗EB solves

α

∫ ∞
κ

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ ≥ κ)

= (1− α)

∫ κ

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
dF (θ|θ < κ). (3)

The optimal cutoff for the fixed effects estimator c∗FE solves (3) when λ(θ) = 1,∀θ.
Denote the value to the administrator of using the optimal cutoff policies c∗FE and c∗EB as

vFECP (κ) = E
[
uCP (θ, θ̂FE; c∗FE, κ)

]
and vEBCP (κ) = E

[
uCP (θ, θ̂EB; c∗EB, κ)

]
, respectively. The

administrator’s value for both estimators is increasing in the signal-to-noise ratio σθ/σε: as

the variance of the measurement error tends to 0, σε → 0 and all teachers will be correctly

categorized, i.e., vFECP (κ) = vEBCP (κ) = 1 for all desired cutoffs κ (Appendix B.2).

Remark 2 (Full information). This analysis assumes the administrator chooses a cutoff

policy based on only test score information, e.g., she cannot directly condition on class size.

The simplicity of such a policy makes it of obvious policy relevance, as is shown in Appendix

Table 3, which documents existing incentive pay programs and shows that none condition

on class size. Additionally, when compared with a policy that may also explicitly condition

on class size, a test-score-based cutoff could attenuate issues of class size manipulation for

the sake of affecting the administrator’s posterior about the quality of a particular teacher.

However, because this assumption means empirical Bayes may be misspecified, in Appendix

B.1 I consider a case in which the administrator can also directly condition on class size.

Intuitively, the administrator would do no worse with this extra information, as she could

always choose to ignore it. Because the obvious answer obtained in this scenario renders it

of limited theoretical interest, the analysis in this paper focuses on estimators and policies

that do not directly condition on class size.17

17 Just as the full-information MLE estimator of teacher quality would perform better than the shrinkage
estimator, it may be the case that other statistical methods (such as supervised machine learning; see, e.g.,
Athey (2017)) could also improve upon the shrinkage estimator. Notably, predictions from either could
depend on class size in a somewhat flexible form. This flexibility, however, comes at the cost of increasing
the technical demands for implementation and, in the case of machine learning, using a “black-box” mapping
from the data to the predicted value. Nevertheless, insofar as the machine learning techniques continued to
“shrink” the raw data, the theoretical insights of this paper would likely still apply.
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Theoretical Results I now characterize the administrator’s value of using each estimator

as a function of the relationship between teacher quality and class size. Proposition 1 shows

that if there is no relationship between teacher quality and class size, the administrator’s

value is the same under both estimators. Next, I consider the case where class size depends on

teacher quality. Proposition 2 shows that the administrator’s relative value of the estimators

depends on the relationship between class size and teacher quality, and also shows when the

administrator would prefer either estimator for relevant ranges of parameters.

Proposition 1. The administrator receives the same value from both estimators for any

desired cutoff κ when class size is constant.

Proof. If all classes are the same size then λ(n(θ)) = λ,∀θ. Let c∗FE satisfy the administra-

tor’s first-order condition (3) when λ = 1. Because λ is constant, then c∗EB = c∗FEλ also

solves (3), and returns the same value (i.e., vFECP (κ) = vEBCP (κ)).

Note that Proposition 1 implies that the administrator would also be indifferent to using

any convex combination of the estimators.

Proposition 2. The administrator’s preferred estimator in the cutoff model depends on

the relationship between teacher quality and class size. In particular, when the relationship

between teacher quality and class size is negative-(positive-)quadratic, the administrator will

prefer the fixed effects (empirical Bayes) estimator for a wide range of parameter values.

Proof. Because λ is strictly increasing in n, to simplify the proof’s exposition I parameterize

the empirical Bayes weights λ(·) directly as a function of θ, by assuming there is one slope

for the relationship between teacher quality and weight below the population mean (β−) and

another slope for the relationship above the population mean (β+), where either slope can

be positive, negative, or zero; in Appendix B.6 I show that the results are not sensitive to

this piecewise-linear specification. I also set σε(θ) = σε for all teachers for the proof of the

current proposition; in Appendix B.7 I show why this homoskedasticity assumption does not

drive the result (regardless, σε varies between teachers in the numerical solution of the model

and quantitative results). The empirical Bayes weight is then

λ(θ) =

max{λ, δ− + β−θ} if θ < 0

max{λ, δ+ + β+θ} if θ ≥ 0,

where λ > 0.
First, suppose that κ < 0 and that c∗EB < 0. Differentiating the administrator’s value

with respect to β− and evaluating at β− = 0 (which is a natural point at which to evaluate

12



the derivative because it takes as the starting point the constant class size case considered
by Proposition 1), we obtain

∂vEBCP
∂β−

∣∣∣
β−=0

= (1− α)

∫ κ

−∞

−c∗EBθ
(δ−)2σε

φ

θ − c∗EB

δ−

σε

 φ(θ/σθ)

σθΦ(κ/σθ)
dθ

+α

∫ 0

κ

c∗EBθ

(δ−)2σε
φ

θ − c∗EB

δ−

σε

 φ(θ/σθ)

σθ(1− Φ(κ/σθ))
dθ,

because
∂vEBCP
∂c∗EB

· ∂c∗EB
∂β−

= 0 due to the Envelope Theorem. The first term is negative because

−c∗EBθ < 0 for θ < κ. Analogously, the second term is positive. If α is not too extreme, the

first term will typically dominate, in which case the administrator’s value is decreasing in

β−, i.e., the stronger is the increase in class size from teacher quality. Although the lack of

a closed-form expression for the normal CDF precludes the construction of exact conditions

on parameters under which the first term would dominate, Appendix B.3 provides sufficient

conditions under which the first term would dominate, which apply to a wide range of

underlying parameterizations of the cutoff model.

Analogously, if κ > 0 and c∗EB > 0 then by differentiating the administrator’s value with

respect to β+ we can see that the administrator’s value is increasing in β+, meaning that

increasing the weight associated with teacher fixed effects for teachers above the population

mean improves the administrator’s value. Appendix B.3 shows that the same conditions

apply for this case as for when κ < 0.

Therefore, reducing the slope of class size in teacher quality for below-average teachers

and increasing the slope of class size in teacher quality for above-average teachers improves

the administrator’s utility from using the empirical Bayes estimator. In particular, starting

from a constant class size, if we then shifted β− > 0 and β+ < 0 (shaped like a negative-

quadratic relationship), the fixed effects estimator would provide the administrator with

higher expected utility. On the other hand, if we shifted β− < 0 and β+ > 0 (shaped like a

positive-quadratic relationship), she would prefer empirical Bayes.

Note that interior convex combinations of the estimators will not be optimal. Intuitively,

if one estimator is better at identifying certain teachers than the other, an intermediate

estimator would also be outperformed by the corner.

Figure 1 illustrates Proposition 2 by plotting the expected utility of the administrator

under the fixed effects estimator (solid red curve) and the empirical Bayes estimator (dotted

blue curve) as a function of the cutoff policy for each estimator (x-axis), where class size

is increasing in teacher quality, i.e., β−, β+ > 0, meaning that lower-quality teachers are

weighted closer to the population mean than higher-quality teachers. Each curve traces

13



Figure 1: Administrator’s objective, assuming class size increasing in teacher quality
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out the administrator’s expected utility as a function of cutoff policies, given an exogenous

desired cutoff quality κ. The utility-maximizing cutoff policy for each estimator is indicated

by a vertical line c∗estimator(κ), where the administrator’s value from using that estimator,

v∗estimator
CP (κ), is the maximum of each curve. If the administrator desires to separate the

lowest quality teachers from the rest (Figure 1a), the re-weighting inherent in the empirical

Bayes estimator can actually reverse teacher rankings and lead to a lower expected objective

for the administrator than when the fixed effects estimator is used. The opposite is true for

when the administrator wishes to separate the top teachers from the rest (Figure 1c); here,

the peak of the empirical Bayes curve is higher. Intuitively, the empirical Bayes estimator is

now dilating the estimated teacher quality further than the fixed effects estimator, reducing

the probability the administrator makes a ranking error. When the administrator only

desires to separate the upper and lower half quality teachers (Figure 1b), fixed effects and

empirical Bayes both obtain the same maximum height, i.e., they return the same expected

objective. An increase in either δ− or δ+ corresponds to an increase in the signal-to-noise

ratio. Intuitively, an increase in the signal provided by student test scores increases λ,

reducing the dependence of the weight on teacher quality.

Figure 2 summarizes the theoretical results for the cutoff model by comparing the per-

formance of the estimators by plotting the ratio in value functions for the administrator

(vFECP (κ)/vEBCP (κ)) as a function of the desired cut percentile F (κ) (x-axis), for scenarios

where class size is constant, increasing in teacher quality, negative-quadratic in teacher qual-

ity, and positive-quadratic in teacher quality (average class size is the same across scenarios).

For simplicity, α has been set to 1/2; Appendix B.4 shows this does not drive the findings for

the vast majority of α values. Of course, if α took an extremely high value (i.e., α→ 1), the

second term in
∂vEBCP
∂β−

above would dominate; intuitively, if the administrator did not value
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Figure 2: Ratio of administrator’s value under fixed effects and empirical Bayes, by class
size scenario and desired cut point
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correctly identifying teachers below κ, their value would increase in β−.18

For each κ, estimator, and class size scenario, I solve for the administrator’s optimal

cutoff policy and plug it into her objective, returning vestimator(κ). The vertical axis then plots

vFECP (κ)/vEBCP (κ) corresponding to the desired cutoff associated with the desired cut percentile

F (κ). As shown before, when class size is constant (dotted black line), the empirical Bayes

cutoff is just a scaled version of the fixed effects cutoff and the administrator’s value is the

same under fixed effects and empirical Bayes estimators—i.e., vFECP (κ)/vEBCP (κ) = 1 for all κ.

When class size is increasing in teacher quality (short-dashed red curve), the fixed effects

estimator performs better than the empirical Bayes estimator when the administrator wishes

to separate teachers of low quality from the rest (Figure 1a), while the empirical Bayes

estimator performs better when the administrator wishes to isolate high-quality teachers

(Figure 1c). When class size has a negative-quadratic relationship with teacher quality

(dot-dashed blue curve), similar to the case in Proposition 2 where β− > 0 and β+ < 0,

it is increasing when teacher quality is low and decreasing when teacher quality is high; in

the example considered in Figure 2, the fixed effects estimator outperforms the empirical

Bayes estimator at both the lowest and highest desired cutoffs. Finally, when class size is

18 In their study of performance pay in education, Macartney et al. (2016) contrast policies focused on
identifying immutable teacher “ability” and those providing sharp incentives for teachers to increase their
provision of effort. The administrator’s underlying policy goal (which, in the context of Macartney et al.
(2016), would depend on the open question of whether unobserved teacher ability or unobserved effort was
quantitatively more important) could be used to determine the appropriate (α, κ) in my framework, which
then could be used to determine which would be the administrator’s preferred estimator. That being said,
Appendix B.4 documents the robustness of the administrator’s preferred estimator as a function of class size
scenario to even fairly asymmetric values for α (i.e., far from α = 1/2) over a wide range of κ, which allows
this paper a modicum of agnosticism regarding the administrator’s exact policy goals.
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a positive-quadratic function of teacher quality (long-dashed brown curve), the opposite is

true. Figure 2 also demonstrates that the difference between the performance of fixed effects

and empirical Bayes estimators decreases the closer the desired cut point is to the population

mean of 0. Intuitively, there is less of a difference between both the estimates resulting from

the fixed effects and empirical Bayes estimators when the administrator seeks to identify

teachers as being on either side of the population mean (see Proposition 8 in Appendix B.5

for a proof that the administrator would be indifferent if her problem is symmetric).

Remark 3 (Pay for percentile). The cutoff model could be applied to a tournament-based

scheme, e.g., “pay-for-percentile” (Barlevy and Neal (2012)), by considering an arbitrarily

large sequence of desired cutoffs and associated bonuses for being above them. Therefore, the

above results are also relevant for practitioners considering the design of such schemes or

other, potentially continuous, ones. In such settings, the relevant quality distribution would

be the one emerging in equilibrium, in response to the scheme.

Remark 4 (One-period model). The model developed here is for one period. Although using

an arbitrarily large number of periods when attempting to classify teachers would increase

estimator precision and, hence, administrator value, doing so would preclude using schemes

for many important decisions, such as termination of extremely low-quality inexperienced

teachers. Note that although the model is for one period, with appropriate adjustments to

its parameterization it could be applied to teachers as they progressed through their careers,

which could accommodate, e.g., drift processes in the evolution of teacher quality (Wiswall

(2013); Papay and Kraft (2015)).

4 Asymmetric Information Models

Although the cutoff model considered in Section 3 has a close link to existing policy that

is clearly desirable, it does not directly link measurement and output. Therefore, in this

section I use the two main types of asymmetric information models to directly study how

measurement of teacher quality may affect net output for a utility-maximizing administrator.

Section 4.1 considers a hidden type model, in which unobserved types determine teacher

quality. Section 4.2 considers a hidden action model, in which teachers take an unobserved

action that determines their quality.
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4.1 Hidden Type Model

This section develops a hidden type, or adverse selection, model.19 It starts by consider-

ing a general version, Model HT-G, which derives the administrator’s optimal policy when

she can observe a fairly general output signal. In contrast to the cutoff model, where the

administrator was assumed to follow a cutoff policy, this section shows that a cutoff-type

policy would emerge as the optimal one in a general hidden type environment. This is useful

because if a certain type of policy is optimal for the general signal in Model HT-G, then it

would also be optimal for the specific estimators considered in subsequent sections.

4.1.1 Model HT-G

There are T periods, indexed by t, and J classrooms, or slots, indexed by j, where slot j has

nj students. As in the cutoff model, the administrator can provide rewards (or sanctions)

to teachers, but class sizes may be determined by school principals. As in the real world,

the administrator may condition on quality signals but not directly on other data, e.g., class

sizes. Let I denote the set of potential teachers, or applicants, who are indexed by i. Per-

student output from slot j being filled by teacher i in period t is qit = β0 + θi(j,t), where

θi is teacher i’s quality and output for slot j is zero if it has not been assigned a teacher

(i.e., i(j, t) = ∅). The quality of applicants for teaching positions is distributed according to

θi ∼ N (µ, σ2
θ), where, as in the cutoff model, µ = 0. Any teacher i in the applicant pool

would accept a teaching job if offered a wage at least as high as w and there is an arbitrarily

large number of teachers for each slot.

Teacher quality is not directly observed by the administrator, who, after the end of each

period only observes a noisy signal of mean output q̂it ∼ Gq̂(q̂it|qit). As in the cutoff model,

the distribution of the output signal depends on true output q. However, I make a weaker

assumption here, that Gq̂ is a quasiconcave and symmetric error distribution.20 Hiring a

teacher costs χ output, where χ > 0. Let It denote the subset of I who are employed as

teachers in t. Let Hit denote the history of signals for teacher i that are observed at the

beginning of period t, i.e., Hit = {q̂iτ}τ<t, where the number of previous signals for i is |Hit|.
In each period, the administrator chooses a hiring policy ψh,t(·), where hiring occurs at

the beginning of the period, and a reward policy ψr,t(·) to maximize her expected objective,

19This environment is similar to one developed in Staiger and Rockoff (2010).
20 It might seem more intuitive to instead assume thatGq̂ satisfied the Monotone Likelihood Ratio Property

(MLRP). Karlin and Rubin (1956) note that many commonly used distributions satisfy the MLRP; examples
include the normal, binomial, Poisson, and Gamma distributions, which explains this assumption’s ubiquity
in asymmetric information models (Chambers and Healy (2012)). However, under any of these distributions,
Gq̂ would only be guaranteed to satisfy the MLRP in the case of homoskedastic errors, which would preclude
there being variation in class size.
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where ψr,t(·) consists of a wage wi(j,t), paid at the beginning of the period, and a retention

decision, made after that period’s signals have been realized. The administrator chooses

{ψh,t(·), ψr,t(·)}t∈T to maximize expected discounted total output, net the cost of her policy:

uHTG =
∑
t

δt−1 Et

[∑
j

qi(j,t),t − wi(j,t) − 1{|Hi(j,t),t| = 0}χ

]
, (4)

where δ is the discount rate, Et [·] denotes the expectation using information available at

period t, and |Hi(j,t),t| = 0 means i is a new hire in period t.

Theoretical Results For simplicity, assume β0 = 0 and set w = 0.21 Then, ψh,t(·) will be

a list of |Jt| random numbers for indices i ∈ I/It, where Jt denotes the set of empty slots

at the beginning of period t (i.e., Jt = J in the first period and then the slots with just-

dismissed teachers thereafter). Now consider the administrator’s choice of how to reward a

given portfolio of teachers, ψr(·). In general, ψr(·) could depend on all signals (i.e., from

the most recent and also earlier periods) of all currently employed teachers, and may have a

complicated functional form. Proposition 3 greatly simplifies the solution.

Proposition 3. The administrator’s optimal policy ψr,t(·), for i ∈ It, will have the reserva-

tion value property consisting a stopping region and, if Gq̂ is quasiconcave and symmetric, a

continuation region above.

Proof. First, note that the additive separability of (4) implies we can split it into J separate

problems. Examination of (4) shows that the administrator’s objective is increasing in output

qit, and therefore also increasing in expected output. If Gq̂ is quasiconcave and symmetric,

this implies that ∂ E[qit|q̂it]
∂q̂it

> 0, i.e., the posterior mean of a teacher’s quality is increasing in

the signal q̂it.
22 Lippman and McCall (1976) prove that the optimal policy for each problem

has a reservation value property (see also Shiryaev (2007)). Then, there will then be a

signal region in which the administrator will retain the teacher (i.e., a continuation region)

and below which she will pay χ to replace her (i.e., a stopping region). Finally, within

the continuation region note that the administrator would not gain from paying additional

wages per each slot, meaning that ψr,t will feature a wage payment of wψr,t = w = 0 and the

21This assumption is consistent with the administrator leaving no slots empty. An alternative would be
to assume β0 is such that the administrator would find it optimal to fill an empty slot j with a random hire
from the pool of applicants, i.e., expected output is β0 + E [θ] = β0 + µ > χ+ w. This would encumber the
notation without changing the result.

22This property is known as “updating in the direction of the signal” (UDS), and was derived by Chambers
and Healy (2012).
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retention decision will have a reservation value property.23

The optimality of a reservation-value policy is typical of optimal stopping problems, of

which the current model is an example, and suggests a link with the cutoff model from

Section 3.24 However, the administrator’s objective (4) is quite general, which complicates

obtaining theoretical results about how the administrator would prefer to measure teacher

quality and relating results from the hidden type model to those from the cutoff-based model.

Therefore, in Section 4.1.2 I study Model HT-0, a version of Model HT-G with two periods

and constant class sizes. Model HT-1, in Appendix C.1, shows how a multi-period model,

which allows teachers to become more productive as they gain experience, can be mapped

into a series comprised of the second period of different HT-0 models. Model HT-2, in

Appendix C.2, extends HT-0 to examine the case of variable class sizes. As with Model

HT-0, a multi-period version of Model HT-2 could be related back to the second period of

Model HT-2.

4.1.2 Model HT-0

There are two periods (T = 2) and teacher quality is fixed over time. Each slot j holds n > 0

students, which corresponds to the constant class size scenario for the cutoff-based model.

Output per slot is noisily measured according to q̂jit = qjit + εjit, where εjit ∼ N (0, σ2
ε/n)

and E [εjit|qjit] = E [εjit] = 0. Let ρ = σ2
θ/(σ

2
θ + σ2

ε

n
) be the signal reliability, i.e., the amount

of information about teacher quality in the output measure.

Theoretical Results As with Model HT-G, in the first period, the administrator hires

at random from the pool of potential teachers. Therefore, I focus on the second period and

suppress the period subscript t and discount rate δ. In the second period, she can choose

to either retain or replace each teacher i ∈ I1 based on information from the first period.

Proposition 3 shows the optimal solution has a reservation value property. Our goal then is

to characterize the marginal signal q in the distribution of first-period signals q̂.

Per slot, the administrator’s second-period objective from reservation value policy q on

23Variation in nj would not affect the optimality of a reservation value policy, provided n(θ) was symmetric
around the mean of teacher quality, as is the case in the positive- and negative-quadratic class size and teacher
quality scenarios.

24 Note that, although the administrator updates her prior beliefs using teacher quality estimates—in
particular, she is Bayesian—she has a choice of estimators, one of which is itself “Bayesian” (shrinkage
estimator) and one that is “frequentist” (fixed effects); she is not effectively “double-shrinking” the estimator.
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signal q̂ with a current teacher of quality q (which equals θ) is

1{q̂ < q} (E [q|new hire]−χ)︸ ︷︷ ︸
dismiss teacher; fill slot immediately

+ 1{q̂ ≥ q}q︸ ︷︷ ︸
retain teacher

= 1{q̂ < q}(E [θ|new hire]︸ ︷︷ ︸
=µ=0

−χ) + 1{q̂ ≥ q}θ. (5)

Taking expectations over output q and the signal q̂, we can write the administrator’s value

of using estimator q̂ with replacement cost χ as

vq̂HT0(χ) = max
q

Φ

(
q

σq̂

)
(−χ) +

(
1− Φ

(
q

σq̂

))
E
[
θ|q̂ ≥ q

]
. (6)

By setting q̂ = θ̂FE, the sample mean of each teacher’s observed signals during the first

period, we can then use (6) to write the administrator’s value from using the fixed effects

estimator:

vFEHT0(χ) = max
qFE

Φ

(
qFE

σθ̂FE

)
(−χ) +

(
1− Φ

(
qFE

σθ̂FE

))
σ2
θ

σθ̂FE

φ(−qFE/σθ̂FE)

Φ(−qFE/σθ̂FE)
, (7)

using the result for a truncated bivariate normal distribution, E
[
θ|θ̂FE ≥ qFE

]
=

σ2
θ

σ
θ̂FE

φ(−qFE/σ
θ̂FE

)

Φ(−qFE/σ
θ̂FE

)

(see Greene (2003)).

We can characterize the marginal signal q∗FE by noting the administrator would be

indifferent between replacing or retaining a teacher with that signal. The administrator’s

expected utility from replacing slot j’s teacher is E [θ]−χ = −χ and her expected utility

from retaining j’s teacher is E
[
θ|θ̂FE

]
, which is equal to (1− ρ)µ+ ρθ̂FE = ρθ̂FE by Bayes

rule. The administrator will then replace teacher i if and only if

− χ

ρ
≡ q∗FE > θ̂FEi(j,1). (8)

To see this, first suppose that χ = 0, in which case the marginal teacher is of average quality

of the existing stock of teachers; since hiring in the first period is random from the pool of

applicants this means any teacher with quality expected to be below the population average

(µ) would be replaced; increasing χ would lower this threshold.

4.1.3 Relation Between Preferred Estimator in Cutoff and Hidden Type Models

This section shows how results from the cutoff-based model may also obtain in the hidden

type environment. There are two main cases, corresponding to the class size scenarios covered

by the propositions in Section 3. Given the results from the cutoff model, when characterizing

the optimal estimator, I consider the corners of the set of estimators contained by the fixed
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effects and empirical Bayes estimators.

Constant n When class sizes are constant, the administrator is indifferent between using

either estimator. This is formalized in Proposition 4.

Proposition 4. The administrator receives the same value from both estimators for any

replacement cost χ when class size is constant.

Proof. To obtain the administrator’s value from using the empirical Bayes estimator q̂ =

θ̂EB ≡ λHT0θ̂
FE, where λHT0 ≡ ρ, adapt (6) for the distribution of λHT0θ̂:

vEBHT0(χ) = max
qEB

Φ

(
qEB

σθ̂EB

)
(−χ) +

(
1− Φ

(
qEB

σθ̂EB

))
ρ
σ2
θ

σθ̂EB

φ(−qEB/σθ̂EB)

Φ(−qEB/σθ̂EB)

= max
qEB

Φ

(
qEB

ρσθ̂FE

)
(−χ) +

(
1− Φ

(
qEB

ρσθ̂FE

))
ρ

σ2
θ

ρσθ̂FE

φ(−qEB/(ρσθ̂FE))

Φ(−qEB/(ρσθ̂FE))
, (9)

where the second line follows because σθ̂EB = ρσθ̂FE . Then, if q∗FE solves (7) then q∗EB =

ρq∗FE must solve (9) and, notably, return the same value for the administrator, i.e., vFEHT0(χ) =

vEBHT0(χ).

Therefore, as with Proposition 1 for the cutoff model, in Model HT-0 the administrator

would obtain the same value from using either estimator when class sizes are the same for all

teachers. Note also that the optimal empirical Bayes reservation signal q∗EB is shrunk toward

the population mean by exactly the same amount as was the optimal empirical Bayes cutoff

policy, suggesting an equivalence in optimal policies in the cutoff-based model and HT-0.

We can show this by setting κ = −χ and finding a Type I error weight αequiv such that

c∗FE(κ = −χ, αequiv) = q∗FE(χ). Then it will also be the case that c∗EB(κ = −χ, αequiv) =

q∗EB(χ).

Model HT-1, in Appendix C.1, shows how the results for Model HT-0—in particular,

its relation to the cutoff-based model—can be extended to allow for multiple periods and

changes in teacher output over time, say, due to the accumulation of teaching experience.

This is formalized in Proposition 5.

Proposition 5. Model HT-1 can be mapped to Model HT-0.

Proof. See Appendix C.1.

Thus, the administrator would be indifferent in her choice of estimator for HT-0 or HT-1,

i.e., when class size is constant.
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Variable n Ideally, we would know that if an estimator would be preferred for every

parameterization of the cutoff model, given a class size scenario, it would also be preferred

for any hidden type environment for that class size scenario. Propositions 1, 4, and 5 show

this is the case with constant class sizes. Model HT-2 extends Model HT-0 to allow for

nonconstant class sizes. For brevity, this model is developed and analyzed in Appendix C.2.

The results from Model HT-2 are strikingly similar to those from the cutoff model: (i)

the administrator’s preferred estimator depends on n(θ) (same as in the cutoff model), (ii)

the preferred estimator does not depend on the specific parameterization of HT-2 for a wide

range of parameters, given n(θ) (same as in the cutoff model), and (iii) given n(θ), the

administrator would prefer the same estimator in the cutoff model as she would in HT-2. In

sum, I find that the preferred estimator in the cutoff model, which depends on the class size

scenario n(θ), would typically also be preferred in model HT-2.

This similarity is intuitive. In the cutoff model, the administrator will have a higher

value when there are fewer Type I errors, which in the hidden type model corresponds to

fewer teachers of high true quality with quality measures below the reservation signal (i.e.,

replacement costs are lower). Likewise, the administrator in the cutoff model will also have a

higher value when there are fewer Type II errors, which in the hidden type model corresponds

to fewer teachers of low true quality with quality measures above the reservation signal (i.e.,

output will be higher).

Finally, note that one could model an increase in T by decreasing χ (from the two-period

model), as replacing teachers would become relatively less costly when compared to the

future gains in output. Then, the fact that the administrator would have the same preferred

estimator for HT-2 suggests that she would also prefer the same estimator for multi-period

versions of HT-2. It is important to note that, while Model HT-2 has two periods, a similar

transformation to that done in Model HT-1 could be used to model multiple periods and

potential changes in teacher output due to experience. If an estimator was preferred in

each period, then it would also be preferred when calculating the discounted value of the

administrator’s dynamic objective.

4.2 Hidden Action Model

Many teacher incentive schemes are predicated on inducing higher effort levels from teach-

ers. This section, therefore, presents the workhorse CARA-Normal model of moral hazard,

as developed in Bolton and Dewatripont (2005), to illustrate the potential role choice of esti-

mator may play in affecting output in a hidden action setting. The solution of this model is

the same as that in Hölmstrom and Milgrom (1987), which shows that the optimal contract
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features an end-of-period payment linear in measured output. This section builds on Mehta

(Forthcoming), which calibrates this model to quantify the potential gains resulting from

implementation of the optimal contract, using fixed effects. I begin by sketching the model

here.

Model Specification There is one period. The administrator has utility q − w, where

q is output and w is the wage paid to the teacher. The teacher has constant absolute risk

aversion (CARA) utility −e−ξ(w−ψ(a)), where ξ is their coefficient of absolute risk-aversion

and the cost of exerting effort a is ψ(a) = γa2/2. The teacher requires an expected utility

of u to participate. Output from teacher i depends on teacher quality according to qi = θi,

where teacher quality θi = ai + νi. The term ai is the teacher’s endogenous effort level and

the error νi ∼ N (0, σ2
ν) is a productivity shock common to students taught by the teacher;

ν could correspond to a teacher-classroom-specific match effect. Assume ν can be observed

by the school principal, meaning there may be a relationship between teacher quality and

class size, as in the other models. The teacher chooses a, without knowing the realization

of ν. Average output for teacher i is noisily measured according to an average test score

q̂i = qi + εi = θi + εi = ai + νi + εi. Note that the risk-neutrality of the administrator’s

objective implies that she can solve a separate problem for each teacher.

Hölmstrom and Milgrom (1987) show that it is optimal for the administrator to pay the

teacher based on the noisy output measure using a linear contract w = β0 + β1q̂, where β1 is

the share of measured output paid to the teacher. Note that, from the teacher’s perspective,

uncertainty comes from the composite error νi + εi, which are collected as ηi. We can then

write the wage as w(a, η), where the administrator can only observe a+η. Ex-ante, teachers

face the same uncertainty about ηi.
25

Substituting for output and output measure and using the result that the optimal contract

will be linear in observed output, the administrator’s problem is

max
β0,β1

Eν,η [a+ ν − w(a, η)] (10)

s.t. w(a, η) = β0 + β1(a+ η)

Eη

[
−e−ξ(w(a,η)−ψ(a))

]
≥ u (IR)

a ∈ arg max Eη

[
−e−ξ(w(a,η)−ψ(a))

]
, (IC)

25This section adopts the simplifying assumption that teachers treat ηi as being normally distributed when
solving for their optimal action. Technically, they should integrate over the distribution of distributions of
εi if n(θ) is not constant. Simulation results confirm that ηi is approximately normally distributed for
reasonable parameter values; a Kolmogorov-Smirnov test of normality of ηi has a p-value of 0.131. Further
note that all teachers would still have the same equilibrium action in the latter case, meaning this assumption
would not affect the qualitative predictions from this model.
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where the individual rationality constraint (IR) ensures participation and the incentive com-

patibility constraint (IC) characterizes the teacher’s choice of action.

The teacher problem yields a unique optimal action a∗ = β1/γ by differentiating (IC)

with respect to action and the optimal linear contract features β∗1 = 1/(1 + ξγσ2
η) (see pp.

137-139 of Bolton and Dewatripont (2005) for details).26 Therefore, expected output is

E [q∗] = Eν [a∗ + ν] = a∗ = 1/
(
γ(1 + ξγσ2

η)
)
.27 Intuitively, as the signal quality worsens

(i.e., σ2
η increases) the contract becomes lower powered (i.e., β∗1 decreases), resulting in lower

action a∗ and expected output E [q∗].

As with the hidden type model, the choice of estimator may affect output in the hidden

action environment. The fixed effects estimator would simply be the (unadulterated) output

signal, i.e., q̂FEi = q̂i. Proposition 6 considers the case of constant class sizes.

Proposition 6. The administrator receives the same value from both estimators in Model

HA when class size is constant.

Proof. The empirical Bayes estimator would be q̂FEi shrunk by a constant factor λ, i.e.,

q̂EBi = λq̂i. If (β∗FE0 , β∗FE1 ) solves (10) when using output measure q̂FEi then it must be that

(β∗FE0 , β∗FE1 /λ) solves (10) when using output measure λq̂i. Thus, the administrator obtains

the same value from using either estimator.

Intuitively, empirical Bayes contains the same amount of information as fixed effects

when class sizes are constant, meaning the contract slope would simply adjust to take into

account its shrunken distribution. Model HA highlights the bias-variance “tradeoff” that

has potentially been the source of confusion, leading to the adoption of shrinkage estimators

in many applications. If the variance of the fixed effects estimator increased, the resulting

optimal contract would partially protect a risk-averse teacher by making incentives weaker

in the output measure (i.e., test scores), or reducing the slope of the linear contract β1. The

more risk-averse the teacher, the more protected they would be (i.e., the shallower the slope

β1). Crucially, the optimal contract would not respond to an increase in noise by “changing

the data” (e.g., switching to a lower-variance estimator), but rather, would in equilibrium

adjust the way in which the data were used in remuneration (i.e., decrease β1).

26Note that, according to this model, output will necessarily be zero when teachers are salaried (i.e.,
β1 = 0), which is the case in many real-world applications in which, for various reasons, output-based pay
has not been implemented. This obviously counterfactual implication can be resolved by assuming there are
two types of effort: the action a which is only imperfectly measured and another action that is perfectly
observed, and therefore, contractible.

27Note that, although in this moral hazard setting there is a degenerate distribution of teacher effort in
equilibrium, measured teacher quality (i.e., average test score q̂) is normally distributed.
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The fact that Proposition 6 shows we can re-scale the empirical Bayes estimator when

class size is constant suggests the use of a biased, yet lower-variance estimator could be

modeled by increasing the effective error variance σ2
η.

Proposition 7. The administrator’s preferred estimator in Model HA depends on the rela-

tionship between teacher quality and class size. In particular, when the relationship between

teacher quality and class size is negative-(positive-)quadratic, the administrator will prefer

the fixed effects (empirical Bayes) estimator.

Proof. We can apply the informativeness principal of Hölmstrom (1979), which relates the

value of a signal to how much information it contains, and rank estimators based on how

much information they contain about teacher quality. I do this by examining the signal-to-

noise ratio in the output measure. The empirical Bayes signal is q̂EBi = λiq̂i = λiθi + λiεi,

which has a total amount of signal about θ (i.e., fraction of variation explained by θ) of∫ ∞
−∞

[λ(θ)θ]2

[λ(θ)θ]2 + [λ(θ)σε(n(θ))]2
dF (θ). (11)

The numerator of expression (11), i.e., the amount of signal contained in the measure, is

smaller when n(θ) is negative quadratic and larger when n(θ) is positive quadratic.28

Therefore, as with the cutoff and hidden type models, the theoretical effect of switching

from empirical Bayes to fixed effects is clear in the hidden action model, given the relationship

between class size and teacher quality: the administrator’s value would be the same with

constant class sizes, lower under empirical Bayes with a negative-quadratic n(θ), and higher

under empirical Bayes when n(θ) is positive quadratic.

5 Quantitative Results

In this section, I quantify the estimators’ performance, using data from the Los Angeles

Unified School District, the second-largest school district in the US.29 In Section 5.1, I

calibrate parameters needed to compare estimator performance in the cutoff model. In

Section 5.2, I assume the administrator wishes to categorize all teachers in the district

with respect to an array of desired cutoffs in the district-wide distribution of teacher quality.

28 As with the cutoff model, to simplify exposition I parameterize the empirical Bayes weights according
to λ(θ) = max{λ, δ− + β−θ} if θ < 0 and λ(θ) = max{λ, δ+ + β+θ} if θ ≥ 0, where λ > 0. In this case, the
derivative of the numerator of the integrand with respect to β−, evaluated at β− = 0, is 2θ3δ− < 0 and the
derivative of the numerator of the integrand with respect to β+, evaluated at β+ = 0, is 2θ3δ+ > 0.

29Imberman and Lovenheim (2016) use these data in their study of the market’s valuation of value-added.
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Section 5.3 presents a calculation of how choice of estimator would affect output in the hidden

type model. Section 5.4 discusses calibration of the additional parameters of the hidden

action model and computes how choice of estimator would affect output there. Although

these incentive schemes are not currently in place in Los Angeles, these exercises can serve

as a useful benchmark for how the estimators might perform when used in similar incentive

schemes. Indeed, the fact that a high-stakes scheme was not in place obviates addressing

the potential strategic re-assignment of students to teachers.

5.1 Calibration

The cutoff model shows that the difference in the administrator’s value depends on the

variances of teacher quality σ2
θ and the test score measurement error σ2

ε and the relationship

between teacher quality and class size, n(θ), implying that it is necessary to obtain values

for these objects to compare the performance of the estimators.

Variances Schochet and Chiang (2012) compile estimates of the variances from a large

number of studies in their study of error rates in value-added models, providing a good

source for typical values for σ2
θ and σ2

ε (see Appendix D.1). The chosen parameter values of

σ2
θ = 0.046 and σ2

ε = 0.953 indicate that the variance of the measurement error is about 20

times the size of the variance of teacher quality, resulting in an average student-achievement

signal-to-noise ratio of 0.512. That is, student achievement for the average teacher in Los

Angeles is about equal parts signal and noise. As has been noted by many other researchers

studying a wide variety of contexts (e.g., McCaffrey et al. (2009), Staiger and Rockoff (2010)),

it is difficult to correctly classify teachers.

Relationship Between Class Size and Teacher Quality I recover the relationship be-

tween class size and teacher quality using value-added estimates provided by the Los Angeles

Times. In 2011, the Los Angeles Times published the results of a RAND Corporation study

estimating value-added for over 30,000 teachers serving almost 700,000 students (Buddin

(2011)).30 The dataset contains estimated value-added, estimating using fixed-effects mod-

els, for 3rd to 5th grade teachers in both Reading and Math and class sizes which condition on

several variables, including past performance of students, class size, student characteristics

such as race, gender, English proficiency and parents’ education, and classroom composition

(past performance of classmates and their student characteristics as well).31 In addition

30http://projects.latimes.com/value-added/
31 The results do not appreciably change when using value-added estimates from specifications that control

for subsets of these characteristics. All specifications control for class size, which may result in an attenuated
calibrated relationship between teacher quality and class size.
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to describing the relationship between teacher quality and class size, which is critical to

compare the performance of the estimators, the distributions of value-added estimates from

Buddin (2011) are similar to those in Schochet and Chiang (2012).32 The average class size

is 22.5 students, with a standard deviation of 5 students.

Remark 5. As is common in studies using a value-added framework, estimated teacher

quality does not account for potential ceiling effects, which could affect value-added estimates

if many students score at the upper bound of the test instrument. However, around 40-60%

of California students score as proficient or higher on the test instrument, well below the

region identified as problematic by Koedel and Betts (2010).33 Therefore, ceiling effects do

not likely play a large role in this paper’s empirical application.

Figure 3 plots non-parametric regressions (solid blue lines) of class size on estimated

teacher value-added for Reading (3a) and Math (3b). Teachers at either end of the distri-

bution of Reading value-added have the smallest class sizes and those in the middle of the

distribution have the largest class sizes. Table 1 shows the results of regressions of teacher

class size on estimated teacher quality and estimated teacher quality squared. The first two

columns are for Reading and the second two are for Math. The dotted black lines on Figure

3 shows the regression line fit for models in columns (1) and (3). Columns (2) and (4) are

the same as regressions in (1) and (3), respectively, but exclude teachers whose estimated

quality is more than two standard deviations from the population mean, showing that the

estimates from the full sample are not driven by outliers. These results indicate that class

size is indeed increasing in value-added in the lowest part of the distribution and decreasing

in value-added in the highest part of the distribution. The relationship is not as clear for

math value-added, but the regression shows that class size first increases and then decreases

for reading value-added, with a negative quadratic term for math value-added. Strikingly,

the observed relationship between teacher quality and class size is the worst-case scenario

for the empirical Bayes estimator for the cutoff-based and asymmetric information models.

To most closely match the model, n(θ) would ideally be known and fed into the adminis-

trator’s problem. In practice, only estimates of n(θ), denoted by n̂(θ̂), are directly available

from any dataset; the latter are what was presented in Figure 3 and Table 1. The esti-

mated relationship n̂(θ̂) also features a mechanical negative-quadratic relationship, caused

by heteroskedastic errors that would be generated even under independently and identically

32The distributions of value-added in the data have means of 6.4E-11 and 1.3E-10 and variances of 0.038
and 0.083 for Reading and Math value-added, respectively. Because the quantitative results combine data
from Buddin (2011) and parameter values calibrated from other datasets, the fact that these parameters are
similar across the two types of sources lends validity to the quantitative results.

33See https://www2.ed.gov/admins/lead/account/consolidated/index.html for details.
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Figure 3: The relationship between class size and teacher quality
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Note: The solid blue lines plot predicted class size from non-parametric regressions of class size on estimated
teacher value-added for Reading (left panel) and Math (right panel), with 95% confidence intervals shaded
gray. The dotted black lines in each panel plot predicted class size from quadratic regressions of class size
on estimated teacher value-added for the full sample, the results of which are presented in columns (1) and
(3) of Table 1, for Reading and Math, respectively.

distributed class sizes. Intuitively, even with class size ni being distributed independently

from teacher quality θi, teachers with very small class sizes would end up in the tails of

the measured quality distribution because their mean errors would have higher variances.

To address these issues, I calibrate n(θ) using an indirect inference approach described in

Appendix D.2; this calibrated relationship is then used in the quantitative results presented

later in this section. Table 2 presents the calibrated relationships between teacher quality

and class size, n(θ). The first column presents the intercept, the second the linear term,

and the third the term on the quadratic variable. The negative-quadratic term in the cali-

brated relationship between class size and teacher quality for Reading is stronger than that

presented in Table 1, at -13.929, compared to -6.801 in column (1) of Table 1. On the

other hand, there is a negligible relationship between class size and teacher quality in Math.

That is, the mechanical relationship generated by heteroskedasticity can basically explain
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Table 1: Regressions of class size on teacher quality

Dependent variable: Class size

(1) (2) (3) (4)

Reading 0.618∗∗∗ 0.650∗∗∗

quality (0.139) (0.167)

Sq. Reading −6.801∗∗∗ −11.180∗∗∗

quality (0.368) (0.834)

Math 0.060 −0.008
quality (0.092) (0.109)

Sq. Math −1.014∗∗∗ −1.527∗∗∗

quality (0.212) (0.370)

Constant 22.609∗∗∗ 22.736∗∗∗ 22.434∗∗∗ 22.467∗∗∗

(0.030) (0.035) (0.032) (0.035)

Observations 36,125 34,407 36,125 34,372
R2 0.009 0.006 0.001 0.0005
F Statistic 170.442∗∗∗ 99.271∗∗∗ 11.442∗∗∗ 8.535∗∗∗

(df = 2; 36122) (df = 2; 34404) (df = 2; 36122) (df = 2; 34369)

Note: ∗∗∗p<0.01. Columns (1) and (3) present regression coefficients using the full samples of

Reading and Math value-added estimates, respectively. Columns (2) and (4) present regression

coefficients obtained when excluding teachers with estimated value added more than two standard

deviations from the mean, for Reading and Math, respectively.

the fairly weak pattern in Table 1.34

Table 2: Calibrated n(θ), by subject

Subject Constant Subject quality Sq. subject quality Res. Std. Error
Reading 22.702 1.031 -13.929 5.124
Math 22.263 -0.225 -0.039 4.388

Note: Each row presents the calibrated coefficients for an equation expressing class size in a subject
as a function of a constant, teacher quality in that subject, and teacher quality in that subject,
squared. Calibration details are in Appendix D.2.

34 Table 1 shows that both the Reading and Math negative-quadratic terms become larger in absolute
value when excluding teachers with estimated quality two standard deviations and more from mean quality.
Because the calibrated relationships are based on the full sample, they could therefore be viewed as conser-
vative characterizations of the strength of the negative-quadratic relationship between teacher quality and
class size.
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5.2 Quantitative Findings: Cutoff Model

This section computes the administrator’s value from using each estimator for a wide range

of desired cutoffs, using the calibrated values of error variances and the relationship between

class size and teacher quality obtained in Section 5.1. For each desired cutoff κ and subject

(e.g., identifying teachers with quality at or above the 99th percentile for Reading value-

added), I solve for the administrator’s optimal cutoff policy for fixed-effects and empirical

Bayes estimators, assuming a symmetric loss function.35 This returns an expected objective

for each estimator, for each desired cutoff (and subject), i.e., vFECP (κ) and vEBCP (κ) for the

fixed-effects and empirical Bayes estimators, respectively (for Reading).

Figure 4a plots the ratio of the administrator’s maximized expected objective under

the fixed effects and empirical Bayes estimators (vFECP (κ)/vEBCP (κ)) for Reading (solid black

curve) and Math (dotted red curve), for desired cutoffs ranging from the lowest to the highest

teacher qualities. The right panel (4b) plots how many more expected mistakes (i.e., the

expected sum of Type I and II errors) the empirical Bayes estimator would make than the

fixed effects estimator, assuming the Los Angeles school district employed 30,000 teachers.36

We can see that the quadratic nature of the association between teacher quality and class

size affects the relative performance of the fixed effects and empirical Bayes estimators in the

way demonstrated by Proposition 2. The stronger negative-quadratic relationship between

teacher quality and class size in the Reading test causes the larger divergence between the

value of using fixed effects rather than empirical Bayes estimators. The administrator’s

value is higher almost everywhere when she uses the fixed effects estimator, and the relative

performance of the empirical Bayes estimator is the worst at the extremes of the distribution

of teacher quality. For example, the empirical Bayes estimator would make almost 800 more

mistakes than fixed effects when the desired cutoff is at the 1st percentile, and 600 more when

the desired cutoff is at the 99th percentile. Put another way, even when the administrator is

allowed to re-optimize and choose an estimator-specific cutoff policy, using empirical Bayes

would result in 9.5% more classification mistakes when the desired cutoff was at the 1st

percentile of teacher quality and 7.3% more mistakes when the desired cutoff was the 99th

percentile of teacher quality.37 The administrator’s values from using the fixed effects and

empirical Bayes estimators become comparable as the desired cutoff approaches the center of

the distribution of teacher quality. The performance of the fixed effects and empirical Bayes

35Results are qualitatively similar under a wide range of asymmetric preferences, i.e., where α 6= 1 − α;
see Appendix B.4.

36Though the value-added data I am using cover 30,000 teachers, more than 45,000 worked in the district
in 2007 (http://en.wikipedia.org/wiki/Los_Angeles_Unified_School_District).

37The fraction of classification mistakes when using fixed effects when the desired cutoff κ is the 1st and
99th percentile would be 27.8% and 27.1%, respectively.
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estimators most greatly diverges precisely where policies that sanction very low-performing

teachers or reward very high-performing teachers would bite the most, and the fixed effects

estimator returns higher expected maximized utility (i.e., in expectation would make fewer

mistakes) under almost every desired cutoff.

Figure 4: Administrator’s value and difference in mistakes, using calibrated n(θ)
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(b) Expected number of mistakes (EB - FE)
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Note: Number of decisions is 30,000.

Although the divergence in estimator performance is largest when the desired cutoff is in

the tails of true teacher quality, all teachers would be affected by the administrator’s choice

of estimator. Figure 5a plots the probability that a teacher with true quality θ, measured

along the x-axis, has an estimated quality θ̂ above the optimal cutoff policy corresponding

to a desired cutoff κ of the first percentile of true teacher quality (dotted black line), e.g.,

Pr{θ̂FE ≥ c∗FE} for the fixed effects estimator. This desired cutoff could correspond to firing

teachers with quality at or below the first percentile. These probabilities are plotted for the

fixed effects (solid red curve) and empirical Bayes (dashed blue curve) estimators, using the

relationship between class size and teacher quality for Reading. The shaded area corresponds

to teachers with true quality below the desired cutoff. Having an estimated quality above

c∗ for teachers in this region would mean the administrator made a Type II error, e.g., they

were incorrectly retained, the probability of which corresponds to the distance from the

estimator-specific curve to 1 in Figure 5a. For teachers outside the shaded region, having an

estimated quality below c∗ would correspond to a Type I error, e.g., they were incorrectly
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dismissed, the probability of which corresponds to the height of the estimator-specific curve.

For each estimator, the probability of having estimated quality above the optimal cutoff

policy increases as a teacher’s true quality increases (i.e., we move to the right). However,

the fixed effects estimator has a higher probability of measuring above-threshold teachers as

above c∗FE than does empirical Bayes for its corresponding optimal cutoff policy and a lower

probability of measuring below-threshold teachers as above c∗FE. That is, fixed effects would

have lower probabilities of both Type I and Type II errors. This is more clear in Figure 5b,

which plots the ratio of probability of the estimate being above the respective cutoff for fixed

effects over empirical Bayes, i.e., Pr{θ̂FE ≥ c∗FE}/Pr{θ̂EB ≥ c∗EB}.38 For example, fixed

effects would have a 40% lower chance of measuring a teacher with true quality more than

four standard deviations below the mean (θ ≈ −0.8)—well below the desired cutoff quality

of the first percentile—as above the optimal cutoff policy and a 10% higher chance of finding

a teacher with true quality about 1.5 sd below the mean (θ ≈ −0.3)—above the desired

cutoff quality—as above the cutoff policy.

5.3 Quantitative Findings: Hidden Type Model

This section (roughly) examines how the choice of estimator would affect net output in a

hidden action environment, which requires information about the replacement cost χ. I

computed the administrator’s value under Model HT-2 (i.e., HT-0 with nonconstant n(θ))

under fixed effects and empirical Bayes estimators using the calibrated Reading class size

relationship from Table 2 and a calibrated replacement cost value of χ = 0.25σθ = 0.054. I

chose this value for χ because Wiswall (2013) reports that teachers with 30 years of expe-

rience have value-added that is one standard deviation higher than new teachers and 0.75

standard deviations higher than teachers with five years of experience, implying a 0.25 stan-

dard deviation difference acquired in the first five years of experience. This value is similar

to that used in Staiger and Rockoff (2010), who assume a first-year teacher has an average

value-added 0.07 sd lower than teachers with two or more years of experience. Note that by

setting χ in terms of standard deviations of teacher quality, the outcome is naturally viewed

in terms of teacher quality, which has been shown to appreciably affect economic output

(Hanushek (2011)).

The administrator’s value when using empirical Bayes and the optimal reservation signal

policy q∗EB(χ, n(θ)), is 0.038 of a standard deviation; teachers with quality measures in the

38 The crossing point of the curves in Figure 5a does not occur at the desired cutoff κ because, at the
recovered n(θ) relationship, the empirical Bayes cutoff policy c∗EB is closer to zero than the fixed effects
cutoff policy c∗FE , which means that teachers with qualities θ just below κ would be less likely to be measured
as being above the empirical Bayes cutoff than the fixed effects cutoff.
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Figure 5: Probability of being measured above optimal cutoff policy, given F−1(κ) = 0.01
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Figure 5a plots the probability that a teacher with true quality θ will be classified as being above the optimal estimator-specific cutoff policy c∗

for a desired cutoff κ equal to the first percentile of teacher quality (the vertical, dotted black line). The solid red curve depicts the probability
under fixed effects and the dashed blue curve depicts the probability under empirical Bayes. The shaded region indicates teachers with true quality
below the desired cutoff. Figure 5b plots the ratios of the probabilities depicted in Figure 5a.

bottom 37% would be replaced. The administrator’s value from using fixed effects would

be 0.5% larger, where this difference is driven by the lower optimal cost incurred under

the fixed effects estimator, which corresponds to fewer classification mistakes at the low

end of teacher quality. If instead, we used the value χ = 0.07 from Staiger and Rockoff

(2010), the reservation signal would decrease in response; here, teachers with the lowest

33% signals would be replaced. The administrator’s value under empirical Bayes would be

0.032 standard deviations. Naturally, the larger replacement cost lowers the administrator’s

optimized objective. The administrator’s value from using fixed effects would be 0.8% larger,

where this difference is again driven by the lower cost of the optimal policy under fixed effects.

5.4 Quantitative Findings: Hidden Action Model

This section takes two approaches to (roughly) examine how choice of estimator might affect

optimal output in a hidden action environment. First, it uses estimates from Muralidharan

and Sundararaman (2011) to calibrate parameters from the hidden action model. Second, it

computes the effect on output from using either estimator of teacher quality for a wide range
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of model primitives. The approaches use the relationship between class size and teacher

quality for Reading, from Section 5.1, and yield similar findings regarding the increase in

output coming from the administrator’s use of fixed effects, instead of empirical Bayes. Note

that, in each approach, actions and output are measured relative to their baseline level, i.e.,

that provided by teachers absent output-based incentives.

In the hidden action model, output is a function of the action, which itself depends on

the variance of noise η, CARA parameter ξ, and cost parameter γ. I first characterize how

much information the administrator can extract about teacher quality (here, teacher effort

choices) using either estimator. I do this by calibrating the implied variance of the composite

error η for the fixed effects and empirical Bayes estimators (details are in Appendix D.3).39

Based on Proposition 7, I model the information loss when using empirical Bayes under

a negative-quadratic relationship between class size and teacher quality by increasing the

measurement error variance on teacher action, σ2
η, by 3.2%.40

Mehta (Forthcoming) uses data from Muralidharan and Sundararaman (2011), which

estimates the effect of a linear output-based incentive scheme for teachers in the Indian state

of Andhra Pradesh, and other information to calibrate the model parameters (γ, ξ, σ2
η). These

are then used to characterize the optimal contract when using the fixed effects estimator and

the gains from implementing the optimal contract, which at the calibrated parameters would

be over six times larger than those in Muralidharan and Sundararaman (2011). Here, I take

that calibration as given and compute the effect of using the empirical Bayes estimator on

equilibrium output under the optimal contract.

Briefly, Mehta (Forthcoming) exploits the teacher’s optimal choice of action, which solves

(IC) in (10) but does not rely on optimality of the slope β1, to map (β1, a) to the cost

γ = 2.577× 10−5. The CARA parameter is set to ξ = 6.7× 10−3, the mean estimated

CARA from the benchmark model of Cohen and Einav (2007), Table 5. Finally, the variance

of output is calibrated to σ2
η =6,971,331$2. At the calibrated parameters, the optimal slope

is β∗FE1 = 0.454, which has a corresponding optimal action of a∗FE = $17, 608.83; this

corresponds to an average increase in student achievement of 1.063 sd. Either increase is

more than six times larger than the estimated increase in student achievement stemming

from the much weaker incentives provided under the experiment.

In contrast, using the above reckoning that empirical Bayes increases the variance of η by

3.2%, using empirical Bayes would produce an optimal slope of β∗EB1 = 0.446 and optimal

39This exercise abstracts from the error introduced by class size uncertainty, which would understate the
gain in output from using fixed effects instead of empirical Bayes.

40Although it would be in principle possible to also directly condition on class size, as has been discussed
previously, this would introduce a direct incentive to manipulate class size to affect the administrator’s
posterior beliefs about teacher quality.
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action of a∗EB = $17, 306.33, i.e., a 1.045 sd average increase in student achievement. As

expected, the higher measurement error variance on output from using empirical Bayes would

lower the strength of incentives (i.e., slope) and resulting equilibrium action. Output would

be 1.75% higher under fixed effects than it would be under empirical Bayes, suggesting an

obvious choice of fixed effects for education policymakers. Naturally, we would expect the

results from the hidden type model to be smaller than those from hidden action model here,

as the hidden type model primarily affects output at the low end of the teacher quality

distribution, while the hidden action model would affect output for all teachers.

Sensitivity Analysis Via Parameter Grid The mean class size in the Los Angeles

data is 22.5, much smaller than the mean of 37.5 used in the above calibration. Smaller

class sizes would increase the variance of the output measure. Moreover, Dohmen and Falk

(2010) document that teachers are more risk-averse than other workers. Therefore, it would

seem reasonable to examine how estimator-specific output would be affected by varying the

parameters of the hidden action model. Mehta (Forthcoming) does this for a grid of points

covering a wide range of alternative values of σ2
η and ξ, ranging from one half to ten times the

calibrated value of each parameter.41 Briefly, as teachers become more risk-averse (increasing

ξ) or the output measure becomes noisier (increasing σ2
η), both optimal incentive strength

and output would decrease. For example, the increase in output ranges from over 1.5 sd in

student achievement to around 0.5 sd when teachers are ten times more risk-averse than their

calibrated value of ξ = 6.7× 10−3; this latter figure is only about three times the estimated

effect of the incentive scheme.

As interesting as these results may be in their own right, the goal here is to quantify the

difference in output stemming from using one estimator versus another. Figure 6 presents a

contour map of the ratio in optimal output from using fixed effects over that using empirical

Bayes. Although, as just discussed, optimal incentive strength and output gains vary con-

siderably with respect to σ2
η and ξ, the output gain associated with using fixed effects versus

empirical Bayes ranges from just above 1% to around 3%. Intuitively, the higher noise in

empirical Bayes matters more (relative to the cost γ) when teachers are more risk averse or

when the baseline variance on the shock to output is higher. Of course, we cannot know the

exact amount by which the output would be lower were the administrator to use empirical

Bayes; knowing this would require the development and estimation of a richer structural

41Table 2 in Babcock et al. (1993) shows that a higher-end estimate of ξ is about 0.35, well above the
range considered in the parameter grid here. The output loss from using empirical Bayes would be larger
for CARA parameters in that range. Note that, because γ was recovered using the teacher’s optimal action
choice and can be recovered by using the slope of incentives in the experiment and increase in output, it
does not depend on (σ2

η, ξ) and is therefore fixed.
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Figure 6: Ratio of optimal output,
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η (the log of which is the y-axis). The calibrated values of ξ and σ2

η are depicted

by the red dot.

model, a promising avenue for future research. However, the variable share of compensa-

tion, calculated in Mehta (Forthcoming), can provide further guidance. As with the slope

and output, this share declines as the output noise variance and degree of risk aversion in-

crease. Suppose it seemed reasonable that, in the optimal arrangement, the variable share

of compensation for teachers would be at most around 2% of their income. Then the gain

in output from switching from empirical Bayes to fixed effects would be about 2-3%, which

is even larger than it was at the calibrated parameter values.

6 Discussion

While economic theory can help inform education policy, measurement issues are also impor-

tant when considering how to actually use data. Due to their statistical properties, empirical

Bayes estimators of teacher value-added are used by many education researchers and prac-

titioners to make inferences about teacher quality, which may serve as inputs to high-stakes

decisions like bonus assignments, personnel decisions, or wages. More generally, shrinkage

estimators are used on a broad array of policy-relevant applications. It is not obvious this

should be the case. If an estimator is going to be used to make a decision, then studies

of its bias and other statistical properties are certainly useful, but as an intermediate—not
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final—step in their evaluation.

In this paper, I show that the preferred estimator depends on information that is plau-

sibly part of an administrator’s context. The preferred estimator would be the same for

wide ranges of underlying parameters for all the models considered and is determined by

the qualitative relationship between class size and teacher quality. I find that class size is

negative-quadratic with respect to teacher quality in the Los Angeles Unified School District.

Suppose an administrator had been using empirical Bayes in an incentive scheme. Would it

make sense to switch to fixed effects? The relevant comparison, from an economic perspec-

tive, is a cost-benefit one. It is important to note that the intervention considered in this

paper is very easy to implement and virtually costless—to use a different, more transparent

estimator of teacher quality—and that the preferred estimator would be the same across

several models of the administrator’s objective. Indeed, in all likelihood, the relative cost of

using fixed effects would be zero, or even negative, given the increased transparency of fixed

effects, which could translate to a lower nonpecuniary cost incurred by society. Then, by an

economic criterion, these results suggest an obvious benefit from using fixed effects instead

of empirical Bayes in the design of teacher incentive schemes if, as was suggested previously,

class size is negative quadratic in teacher quality in the relevant context. Administrators

hesitant to implement incentive schemes may take comfort in at least knowing schemes were

better-designed for their purposes, reducing the change of public backlash. It is important

to note that the results are not just driven by the systematic relationship between class size

and teacher quality (i.e., class sizes that are negative quadratic in teacher quality). Absent

this relationship, empirical Bayes would still not return a higher value to the administrator,

as uniform shrinkage would be undone by the administrator’s optimizing behavior

Motivated by the quantitative results showing the choice of estimator can create dif-

ferences in policy-relevant outcomes, I have reviewed existing incentive schemes, which are

summarized in Appendix A. Most of the schemes use cutoff rules to assign bonuses and more

than half base bonuses, in part, on value-added models of student achievement. Almost 90%

of these use empirical Bayes estimators to calculate teacher quality. Strikingly, about one-

fifth of the schemes do not even specify how student achievement is mapped into teacher

bonuses. A corollary of this paper’s results is that, because the choice of estimator matters,

teacher incentive programs should clearly specify exactly how student achievement enters

them.

This paper characterizes which estimator would be preferred by an administrator in an

extremely large school district that has recently received much policy interest. A study of

how best to estimate teacher quality for another context would require data from the rele-

vant geography and, to prescribe the optimal policy, information about the administrator’s
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preferences. However, the uniform nature of the preferred estimator across the variety of

environments studied in this paper suggests that a policymaker in another district could

choose the right estimator for their context with a certain degree of confidence. Important

future work would study optimal design of incentive schemes using a more general produc-

tion technology model relating economic output to teacher quality, such as one allowing for

cumulative effects of inputs in a dynamic setting.

This paper’s findings could also in principle be applied to other work studying how to

structure incentives and personnel decisions based on noisy output measures. For example,

findings from the cutoff model could potentially be applied to decisionmakers in other settings

that discrete policies (e.g., Rubin (1980), who uses empirical Bayes to study law school

admissions decisions). The insights from this paper could also apply to other deviations

from the statistical framework considered in this paper. For example, a biased estimator may

be preferred in the cutoff model if higher-quality teachers were known to be systematically

assigned unobservably better students, as this would dilate quality measures and make it

easier to identify teachers of interest. Although deriving the (fully) optimal estimator for

the environments considered in this paper is a technically difficult problem, future research

making progress in this area could also quantify the effects of using such an estimator.

Macartney (2016) documents that teachers are forward-looking, choosing effort levels in

response to current and future incentives. Therefore, another important extension would

extend this paper’s static framework, where the most natural starting point would likely be

the hidden action model, to examine how measurement and optimal remuneration policy

would interact to affect the administrator’s value in dynamic settings. This would entail

characterizing the optimal contract in a dynamic setting, and then comparing the value ac-

cording to each estimator under this contract. Doing so would require considerable technical

advances, as the optimal contract designed by the administrator would have to characterize

the optimal sequence of functions in a dynamic setting, which is an active area of research

(see, e.g., Clausen (2013), Piskorski and Westerfield (2016)). Moreover, such an extension

would have to address the comparability of quality measures between periods (Bond and

Lang (2013), Penney (2017)), a concern obviated by this paper’s static approach. Therefore,

this ambitious undertaking is left for future research.
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Appendix

A Teacher Incentive Schemes

Table 3 documents existing teacher incentive schemes that are based, at least in part, on

student achievement. Many of these schemes include estimates of value-added as a determi-

nant of teacher bonuses, and most that do base bonuses on value-added also include other

measures of teacher quality.

Table 3: Incentive pay schemes

Name of scheme Location Active dates Bonus schedule Uses value-added ? Uses EB?
Dallas Independent School
District (DISD) Principal
and Teacher Incentive Pay
program

Dallas, Texas 2007-08 school
year (Previ-
ous program
started in
1992)

Discrete Yes Yes

TVAAS Tennessee Since 1996 Discrete Yes Yes
Tennessee Educator Accel-
eration Model (TEAM)

Tennessee Since 2010 Discrete Yes Yes

Memphis’ Teacher Effec-
tiveness Measure (TEM)

Memphis, Tennessee Since 2010 Discrete Yes Yes

Pennsylvania Pennsylvania Since 2013-
2014

Discrete Yes Yes

Pittsburgh Pittsburgh Since 2013-
2014

Discrete Yes Yes

North Carolina Teacher
Evaluation Process

North Carolina since 2012-2013 Discrete Yes Yes

Mission Possible Guilford County,
North Carolina

2006-current Discrete Yes Yes

Milken Family Founda-
tion’s Teacher Advance-
ment Program (TAP)

Nationwide (125
schools in 9 states
and 50 districts as of
2007)

Since 1999 Discrete Yes Varies

Denver Public School’s
Professional Compensa-
tion System for Teachers
(ProComp)

Denver, Colorado Since 2005 Discrete (many bonus
levels)

No No

Special Teachers Are Re-
warded (STAR) (followed
by MAP)

Florida 2006-2007
(MAP since
2007)

Discrete (MAP has
both continuous and
discrete rewards)

No (though they do use
a discretized version of
value-added through a
value table)

No

North Carolina ABCs North Carolina 1996-2012 Discrete No No
Q-Comp Minnesota Since 2005 Varies, but mostly

discrete
Varies between partici-
pants, but unknown in
general.

?

Louisiana Louisiana Since 2010 Discrete ? ?
Texas’ Governor’s Educa-
tor Excellence Award Pro-
grams (GEEAP)

Texas 2008 school
year

? ? ?

Source: Author’s compilation. A “?” means the information for that field was not available.

B Cutoff Model Proofs and Extensions

B.1 Direct Conditioning on Class Size

The difference in administrator’s value from using different teacher-quality estimators derives

from the assumption that the administrator chooses a cutoff policy based on only test score

information. Such a one-dimensional policy is quite simple and, therefore, is of considerable

clear policy relevance; this demonstrated by Table 3, which documents existing incentive
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schemes and shows that none condition on class size. Moreover, when compared with a policy

that may also explicitly condition on class sizes, a test-score-based cutoff may attenuate issues

of class size manipulation for the sake of affecting the administrator’s posterior about the

quality of a particular teacher. However, allowing the administrator to explicitly take into

account class size may still be of interest. This section shows how the theoretical results in

Section 3 would be affected.

Now suppose the administrator, instead of only indirectly taking it into account when

maximizing her utility, could instead explicitly condition on class size ni. If ni was a strictly

monotonic function of teacher quality θ, then the administrator could achieve a perfect

classification of teachers by inverting n(θ)—even if she ignored all teachers’ test scores.

A more realistic case would allow for multiple teacher qualities for at least one class size.

Suppose that the distribution of teacher qualities for each class size was normally distributed.

Because the administrator can explicitly condition on class size she can hold a separate cutoff-

based classification problem for each class size level; denote the administrator’s value from

using the fixed effects and empirical Bayes estimators as vFECP,n(κ) and vEBCP,n(κ), respectively.

Then by Proposition 1 the administrator would obtain the same value for either estimator

given the desired cutoff κ, i.e., vFECP,n(κ) = vEBCP,n(κ) for all (n, κ). Therefore, we can without

loss of generality consider only the fixed-effects estimator, with optimal cutoff policy c∗FEn .

Further note that the administrator’s expected objective would be at least as high if she is

allowed to split her original objective into one objective for each class size; if the cutoff for

c∗FEn1
= c∗FEn2

for all class sizes n1, n2, then her value under the separate class size scheme

would be the same as that from her original objective.

B.2 Administrator’s Problem with Infinite Precision

We want to prove that as the variance of the measurement error tends to 0 (which implies
σε → 0) all teachers will be correctly categorized, giving vFECP (κ) = vEBCP (κ) = 1 for all desired
κ. First, consider the fixed effects estimator. The administrator’s utility for a teacher with
true quality θ under the fixed effects estimator and cutoff policy c is

uCP (θ, θ̂FE ; c, κ) = α1{θ̂FE ≥ c|θ ≥ κ}+ (1− α)1{θ̂FE < c|θ < κ} p→ α1{θ ≥ c|θ ≥ κ}+ (1− α)1{θ < c|θ < κ},
(12)

which is maximized at c = κ. The administrator’s utility from using cutoff policy c under

the empirical Bayes estimator, for the same teacher, is

plimσε→0uCP (θ, θ̂EB; c, κ) = α1{θ̂EB ≥ c|θ ≥ κ}+ (1− α)1{θ̂EB < c|θ < κ}

= α1{λ(θ)θ ≥ c|θ ≥ κ}+ (1− α)1{λ(θ)θ < c|θ < κ}, (13)
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which is maximized at c = κ/λ(F−1(κ)). The probabilities of the events in both (12) and

(13) are all 1, giving an expected utility of 1 for all teacher qualities, which then integrates

to a value of 1 for each estimator.

B.3 Proof of Proposition 2

Recall that we are considering first the case where κ, c∗EB < 0. Differentiating the adminis-
trator’s value with respect to β− and evaluating at β− = 0, our goal is to show when

∂vEBCP
∂β−

∣∣∣
β−=0

= (1− α)

∫ κ

−∞

−c∗EBθ
(δ−)2σε

φ

θ − c∗EB

δ−

σε

 φ(θ/σθ)

σθΦ(κ/σθ)
dθ

+α

∫ 0

κ

c∗EBθ

(δ−)2σε
φ

θ − c∗EB

δ−

σε

 φ(θ/σθ)

σθ(1− Φ(κ/σθ))
dθ < 0. (14)

The conjugate nature of the normal distribution (Bromiley (2003)) allows us to combine the

above densities into one Gaussian density,42 letting us write 1
σε
φ

(
c∗EB
δ−
−θ

σε

)
× 1

σθ
φ( θ

σθ
) = fP (θ)

SP
,

where SP is a positive constant and

fP (θ) =
1

σP
φ

(
θ − µP
σP

)
µP =

c∗EB

δ−
σ2
θ + 0× σε2

σε
2 + σ2

θ

=

c∗EB

δ−
σ2
θ

σε
2 + σ2

θ

= c∗EB

σ2
P =

σε
2σ2

θ

σε
2 + σ2

θ

,

42 If X1 ∼ F1 = N
(
µ1, σ

2
1

)
, with density f1 and X2 ∼ F2 = N

(
µ2, σ

2
2

)
, with density f2, then f1(θ)×f2(θ) =

fP (θ)
SP

, where

fP (θ) =
1

σP
φ

(
θ − µP
σP

)
µP =

µ1σ
2
2 + µ2σ

2
1

σ2
1 + σ2

2

σ2
P =

σ2
1σ

2
2

σ2
1 + σ2

2

,

and SP is a positive and constant scaling factor that depends on µ1, µ2, σ1, σ2 according to Sp = φ

(
µ1−µ2√
σ2
1+σ

2
2

)
.
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where the last equality on the second line follows because δ− = λ(θ)
∣∣
β−=0

=
σ2
θ

σε
2+σ2

θ
. Dividing

through by SP , we have
∂vEBCP
∂β−

∣∣∣
β−=0

< 0 if

∫ κ
−∞

c∗EBθ
(δ−)2 fP (θ)dθ∫ 0

κ
c∗EBθ
(δ−)2 fP (θ)dθ

>

(
α

1− α

)(
Φ(κ/σθ)

1− Φ(κ/σθ)

)
⇒∫ κ

−∞ θfP (θ)dθ∫ 0

κ
θfP (θ)dθ

>

(
α

1− α

)(
Φ(κ/σθ)

1− Φ(κ/σθ)

)
. (15)

The top and bottom terms on the left side of (15) are expectations of truncated normal

random variables, scaled by truncation probabilities, i.e.,∫ κ

−∞
θfP (θ)dθ = (FP (κ)− FP (−∞)) EFP [θ|θ < κ]

= (FP (κ)− FP (−∞))

(
µP + σP

φ(−∞−µP
σP

)− φ(κ−µP
σP

)

Φ(κ−µP
σP

)− Φ(−∞−µP
σP

)

)

= Φ

(
κ− µP
σP

)(
µP + σP

−φ(κ−µP
σP

)

Φ(κ−µP
σP

)

)

and ∫ 0

κ

θfP (θ)dθ = (FP (0)− FP (κ)) EFP [θ|κ < θ < 0]

= (FP (0)− FP (κ))

(
µP + σP

φ(κ−µP
σP

)− φ(−µP
σP

)

Φ(−µP
σP

)− Φ(κ−µP
σP

)

)

=

(
Φ

(
−µP
σP

)
− Φ

(
κ− µP
σP

))(
µP + σP

φ(κ−µP
σP

)− φ(−µP
σP

)

Φ(−µP
σP

)− Φ(κ−µP
σP

)

)
.

Putting the above expressions back into the comparison (15) and re-arranging, we have(
µP + σP

−φ(
κ−µP
σP

)

Φ(
κ−µP
σP

)

)
(
µP + σP

φ(
κ−µP
σP

)−φ(
−µP
σP

)

Φ(
−µP
σP

)−Φ(
κ−µP
σP

)

)
︸ ︷︷ ︸

#1

×

1− Φ
(
κ
σθ

)
Φ
(
κ
σθ

)


︸ ︷︷ ︸
#2

×
Φ
(
κ−µP
σP

)
(

Φ
(
−µP
σP

)
− Φ

(
κ−µP
σP

))
︸ ︷︷ ︸

#3

>
α

1− α
. (16)

Recall that we are considering the case where κ < 0 and c∗EB < 0.43 Therefore, both the

numerator and denominator of expression #1 are negative, with the numerator greater in

43I show below that similar conditions obtain when considering κ > 0 and c∗EB > 0.
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absolute value than the denominator, which implies that expression #1 > 1. Moreover,

κ < 0 implies that Φ (κ/σθ) < 1/2, which implies that expression #2 > 1 as well. For

example, consider α ≤ 1/2. In these cases, the expressions #1 and #2 would satisfy the

above inequality. However, the expression #3 could potentially be less than 1.

Due to our well-known lack of a closed form expression for the standard normal CDF Φ,

it is impossible to sign the above inequality in a purely analytical manner for all possible

cases. Moreover, the inequality would be violated for extreme parameterizations, such as

where the administrator only placed value on one type of error (making α go to either the

corner of zero or one). However, it is still possible to show why Condition (16) would likely

hold for a wide range of reasonable values of (α, κ, σθ, σε, c
∗EB).

To start, assume α = 1/2, in which case what is left to be shown is that the left side of the

inequality (16) is greater than one (in Appendix B.4, I use numerical methods to verify that

estimator rankings consistent with (16) hold for a wide range of α). For simplicity, express

the cutoff policy as a fraction of the desired cutoff κ, i.e., cEB = γcκ, where γc ∈ [0, 1]

(i.e., cEB will be the same sign as κ and no larger in absolute value than κ) and write

µP = c∗EB = γcκ. Because #1 is always greater than one, it is sufficient to satisfy the

following condition:

1 <
1− Φ

(
κ
σθ

)
Φ
(
κ
σθ

) ×
Φ
(
κ−µP
σP

)
Φ
(
−µP
σP

)
− Φ

(
κ−µP
σP

) ⇒ Φ
(
−γc√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

) < 1

Φ (κσ)
, (17)

where κσ ≡ κ/σθ expresses the desired cutoff in terms of standard deviations of teacher

quality and γσ ≡ σ2
ε

σε
2+σ2

θ
∈ (0, 1).

With the above simplifications, whether Condition (17) will be satisfied (which is suffi-

cient for satisfying Condition (16) when α = 1/2) depends on (γσ, γc, κσ) ∈ (0, 1) × [0, 1] ×
(−∞, 0]. The following cases analyze when (γσ, γc, κσ) satisfy Condition (17):

Case a: κσ → 0. For all (γσ, γc) ∈ (0, 1) × [0, 1], Condition (17) will also be satisfied as

κσ → 0, as the left side tends to one and the right side tends to two.

Case b: κσ < 0. There are two relevant subcases:

Case b.i: 1− γc ≤
√
γσ.

Lemma 1. Condition (17) will be satisfied if 1− γc ≤
√
γσ.

Proof. The numerator of the left side of (17) will always be smaller than the numerator of the
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right for any finite κσ. If 1−γc ≤
√
γσ then we have (1−γc)√

γσ
κσ ≥ κσ ⇒ Φ

(
(1−γc)√

γσ
κσ

)
≥ Φ (κσ),

i.e. the denominator of the left will be at least as large as the denominator of the right.

Case b.ii: 1− γc >
√
γσ.

Lemma 2. There exists a threshold γ̂σ(κσ, γc) ∈ (0, 1) such that, given (κσ, γc), Condition

(17) is met for γσ > γ̂σ(κσ, γc).

Proof. Note that (γσ, γc) only enter the left side of (17). The limit of the left side of Condition

(17) as γσ → 0 is Φ(∞)/Φ(−∞) = 1/0 = ∞, which is greater than the right side for any

finite κσ. As γσ → 1, the above sufficient condition 1− γc ≤
√
γσ is satisfied for γc ∈ (0, 1)

because 1−γc ≤ 1⇔ γc ≥ 0, meaning the left side is less than the right side. Because the left

side is continuous in γσ, there exists a γ̂σ(κσ, γc) by the Intermediate Value Theorem such

that G(κσ, γc, γ̂σ(κσ, γc)) ≡
Φ

(
−γc√

γ̂σ(κσ,γc)
κσ

)
Φ

(
(1−γc)√
γ̂σ(κσ,γc)

κσ

) − 1
Φ(κσ)

= 0. The solution to G will be unique if

the left side of (17) is monotonically decreasing in γσ. The derivative of the left side with

respect to γσ is

∂

[
Φ
(
−γc√
γσ
κσ
)

Φ
(

(1−γc)√
γσ

κσ
)
]

∂γσ
= 2

κσ√
γσ

γcφ
(
−γc√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

)
+ (1− γc)φ

(
(1−γc)√

γσ
κσ

)
Φ
(
−γc√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

)2

 ,
(18)

which is negative because the term in brackets is positive and κσ < 0.

Lemma 3. The threshold γ̂σ(κσ, γc) is decreasing in γc.

Proof. Having established that there exists a cutoff γ̂σ solving G in Lemma 2, we can im-

plicitly differentiate G around the solution to obtain

∂γ̂σ
∂γc

= −
∂G
∂γc
∂G
∂γσ

= −

∂

 Φ

(
−γc√
γσ

κσ

)
Φ

(
(1−γc)√

γσ
κσ

)


∂γc

∂

 Φ

(
−γc√
γσ

κσ

)
Φ

(
(1−γc)√

γσ
κσ

)


∂γσ

.

The derivative in the denominator, (18), has been shown to be negative, which means that
∂γ̂σ
∂γc

will have the same sign as the derivative in the numerator (because the entire expression
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is multiplied by negative one):

∂

[
Φ
(
−γc√
γσ
κσ
)

Φ
(

(1−γc)√
γσ

κσ
)
]

∂γc
=

κσ√
γσ

φ
(

(1−γc)√
γσ
κσ

)
Φ
(
−γc√
γσ
κσ

)
− φ

(
−γc√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

)2

 .
The denominator of the term in the brackets is positive iff

φ

(
(1− γc)√

γσ
κσ

)
Φ

(
−γc√
γσ
κσ

)
> φ

(
−γc√
γσ
κσ

)
Φ

(
(1− γc)√

γσ
κσ

)
⇔

φ
(

(1−γc)√
γσ
κσ

)
Φ
(

(1−γc)√
γσ
κσ

) > φ
(
−γc√
γσ
κσ

)
Φ
(
−γc√
γσ
κσ

) ,
which is satisfied because each side represents the reverse hazard function for the normal

distribution r(x) = φ(x)
Φ(x)

, which is decreasing (see Theorem 17 of Chechile (2011)), and we

have (1−γc)√
γσ
κσ < 0 < −γc√

γσ
κσ.

Putting the above together, although it is not possible to obtain explicit conditions that

exactly characterize the set of parameters satisfying the desired inequality, it is possible

to show that the inequality would be satisfied for a wide range of parameters. Table 4

summarizes the cases considered above. First, all (γc, γσ) ∈ (0, 1)×[0, 1] satisfy the inequality

as κσ → 0 (case a). Intuitively, as κσ → 0, the countervailing decrease in Type I errors

vanishes, meaning the increase in Type II errors will necessarily dominate. For κσ < 0 (case

b), we know that there exists a cutoff value of γσ for each (κσ, γc) such that the inequality will

be satisfied, and that this cutoff is decreasing in γc (making it more likely to hold). If γc is

large enough (case b.i) then κσ does not need to be considered to verify whether the inequality

will be satisfied. Otherwise (case b.ii), whether the inequality will be satisfied depends on

(γσ, γc, κσ). Intuitively, as 1− γc increases (relative to
√
γσ) the weights φ

(
θ− c

∗EB
δ−
σε

)
in (14)

increase more for larger values of |θ|, causing the increase in Type II errors to be larger than

the decrease in Type I errors.

Table 4: Summary of cases

Case Parameterization Will (16) be satisfied? Proof
a κσ → 0 Yes Direct (see page 43 of text)
b.i κσ < 0 and 1− γc ≤

√
γσ Yes Lemma 1

b.ii κσ < 0 and 1− γc >
√
γσ Depends on (γσ, γc, κσ) Lemma 2

Therefore, it is instructive to compute the “worst-case” cutoff where γc = 0. Setting
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Figure 7: Cutoff γ̂σ when κσ = −1 and κσ = −2
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γc = 0 and rearranging (17), we obtain

Φ(0)

Φ
(

κσ√
γσ

) < 1

Φ(κσ)
⇔ γσ >

 κσ

Φ−1
(

Φ(κσ)
2

)
2

,

where the sign reversal in the last inequality is due to Φ−1
(

Φ(κσ)
2

)
< 0. Take for example

κσ = −1, meaning the administrator wishes to identify the bottom 16% teachers. In this case,

γ̂σ(κσ = −1, γc = 0) ≈ 0.50. Several empirical studies find that test scores are comprised of

roughly equal parts signal and noise (see, e.g., Staiger and Rockoff (2010), which means we

can use γσ = 1/2 as a rough approximation. This, combined with the fact that γ̂σ would only

decrease as γc increased from its lower bound of zero, makes it very likely that Condition

(17) would be satisfied.

Figure 7 plots the sufficient condition γσ ≥ (1−γc)2 (dotted curve) and the κσ-dependent

γ̂σ when κσ is -1 (solid curve) and -2 (dot-dashed curve). Any value of γσ above a scenario-

specific curve would satisfy Condition (17) for that scenario. For example, the result that

all values of γσ would satisfy the inequality as γc → 1 can be seen as the sufficient condition

goes down to zero when γc → 1. As κσ increases in absolute value the cutoff γ̂σ increases,

where γ̂σ approaches the sufficient condition (1− γc)2 as |κσ| → ∞.
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Across a wide variety of class size and teacher quality scenarios and desired cutoffs (κ),

the typical value of γc is in the range of 0.275 to 0.4. For example, the 25th and 75th

percentiles of γc are, respectively, 0.286 and 0.30 when using the calibrated relationship

between class size and teacher quality for reading in the LAUSD. The red segment shows

the range of typical values of γc, coupled with the typical value of γσ ≈ 1/2. Much of the red

segment lies in the “sufficiency” part of the plot, meaning Condition (17) would be satisfied

for any non-positive κσ. We can see that the typical values of (γc, γσ) would also easily

satisfy Condition (17) when κσ = −1 and κσ = −2.

It is important to remember that Condition (17) is only a sufficient condition for the

derivative of the value under empirical Bayes with respect to β− being negative, as it ignores

the first term in (16). For example, consider γc = 0.275 and γσ = 0.5. Setting γc to the lowest

value in the typical range is conservative as it makes (17) harder to satisfy. The left side of

(17) decreases in κ more quickly than the right side of (17), meaning a low (i.e., extreme

negative) desired cutoff would make it harder to satisfy the inequality.44 Choosing κ = −5σθ,

i.e., the desired cutoff was five standard deviations below the mean teacher quality, the left

side numerically evaluates to 1.91. Notably, this extreme cutoff is far beyond any existing

or proposed teacher incentive scheme. Thus, we can be confident that the desired inequality

would be satisfied for reasonable parameter values.

Now suppose that κ > 0 and c∗EB > 0. For the negative-quadratic n(θ) to result in lower

value from using empirical Bayes for all κ, the desired inequality would be
∂vEBCP
∂β+

∣∣∣
β+=0

> 0.

The (sufficient) analogue of the sufficient Condition (17) in this case would be

Φ (κσ)

1− Φ (κσ)
>

Φ
(

(1−γc)√
γσ
κσ

)
− Φ

(
−γc√
γσ
κσ

)
1− Φ

(
(1−γc)√

γσ
κσ

) ⇔ 1− Φ (−κσ)

Φ (−κσ)
>

Φ
(
−γc√
γσ

(−κσ)
)
− Φ

(
(1−γc)√

γσ
(−κσ)

)
Φ
(

(1−γc)√
γσ

(−κσ)
)

⇔ 1

Φ (−κσ)
>

Φ
(
−γc√
γσ

(−κσ)
)

Φ
(

(1−γc)√
γσ

(−κσ)
) ,

which, since −κσ < 0, is equivalent to Condition (17). Thus, the conditions on (γc, γσ) are

identical, given |κσ|.

B.4 Asymmetric Type I and Type II Weights

The administrator’s preferred estimator in the cutoff-based model is not very sensitive to α

being close to 1/2. Figure 8 plots the ratio of the administrator’s value under fixed effects

44This is illustrated in Figure 7, which shows that γ̂σ increases as κσ decreases from -1 to -2. Indeed, as
can be seen by inspecting G in Lemma 2, γ̂σ → (1− γc)2 as κσ → −∞.
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and empirical Bayes, by class size scenario n(θ) and desired cutoff κ, for different values of

the Type I error weight. Figure 8a shows the ratio in administrator’s value when α = 1/4,

i.e., the administrator values Type I errors one-third as much as she values Type II errors.

Figure 8b shows the value ratio when α = 2/3, i.e., the administrator values Type I errors

twice as much as Type II errors. In both plots, we can see that the relative ranking of the

estimators is the same as it was under the symmetric weight, α = 1/2, scenario.

Figure 8: Difference between administrator’s value under fixed effects and empirical Bayes,
by class size scenario and desired cut point and weight on Type I error, α
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(b) vFECP (κ)/vEBCP (κ) when α = 2/3
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B.5 Proposition 8

This section proves that fixed effects and empirical Bayes return the same value when the

administrator’s problem is symmetric.

Definition 1. The administrator’s problem is symmetric if α = 1/2, n(θ) is symmetric

around the population mean of teacher quality, and the administrator’s desired cutoff is

κ = 0.

Proposition 8. The administrator receives the same value from both estimators when the

problem is symmetric.
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Proof. Because n(θ) is symmetric about θ = 0 and θi ∼ F = N (0, σ2
θ), the distribution of θ

is symmetric around its population mean of 0. The optimal c∗EB solves∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)

σθ · 1/2
dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
c∗EB/λ(n(θ))− θ

σε(n(θ))

)
φ(θ/σθ)

σθ · 1/2
dθ.

At c∗EB = 0, the expression becomes∫ ∞
0

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)

σθ · 1/2
dθ =

∫ 0

−∞

1

λ(n(θ))σε(n(θ))
φ

(
−θ

σε(n(θ))

)
φ(θ/σθ)

σθ · 1/2
dθ,

which holds because of the symmetry of φ(·), n(·), and λ(·) (through its dependence on

n, which is symmetric). Therefore, c∗EB = 0 solves the administrator’s problem when

empirical Bayes is used. Because λ(n(θ)) = 1, ∀θ when the fixed effects estimator is used,

c∗FE = 0 must also solve the administrator’s problem when fixed effects is used, meaning

the administrator’s objective is equivalent under both estimators.

B.6 Functional Form of λ(·)

The functional form for λ(θ) was chosen to simplify exposition; another way to provide

intuition for result in Proposition 2 is to consider the effect of an infinitesimal “bump” βb to

the shrinkage weight, via

λ(θ) =

λ θ 6= θb

λ+ βb θ = θb.

If θb < κ then

∂vEBCP
∂βb

∣∣∣
βb=0

= (1− α)
−c∗EB

(λ)2σε
φ

(
θb − c∗EB

λ

σε

)
φ(θb/σθ)

σθΦ(κ/σθ)
> 0,

i.e., lowering the weight λ(·) for lower values of θ, as would occur with a negative-quadratic

λ(·), would lower the administrator’s value and increasing λ(·) for lower values of θ, as would

occur with a positive-quadratic λ(·), would increase the administrator’s value.

B.7 Mechanical Heteroskedasticity

The theoretical results in Section 3 were obtained under the assumption that all teachers

faced the same distribution of mean measurement error, i.e., σε(θ) = σε. There are two main

sources of heteroskedasticity in the errors on teacher quality measures. The first could be

thought of as “essential heteroskedasticity”, where the test score errors for different teachers
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had different variances, meaning the standard deviation of the measurement error for a single

test score for teacher i could be written as σε,i. Such heteroskedasticity could be present

even in the case of constant class sizes. The second is what I will refer to as “mechanical

heteroskedasticity”, which is due to nonconstant class sizes (which would emerge, e.g., in the

scenario of Proposition 2).

Essential heteroskedasticity Consider the environment of Boyd et al. (2013), which al-

lows for heteroskedasticity in terms of two observed variables: the grade level and the student

level (in terms of prior achievement). In principle, either or both forms of heteroskedasticity

could be accommodated by my framework by conducting the comparison at the appropriate

level, e.g., assigning a bonus to the κ-quantile quality teacher among 4th-grade teachers

with students who had low prior achievement. More generally, if the error variance de-

pends on known variables then conducting comparisons given those variables will result in

homoskedastic error terms.

Mechanical heteroskedasticity The other main form of heteroskedasticity is the me-

chanical heteroskedasticity that would emerge in the case of nonconstant class sizes. That

is, the mean score for teacher i, e.g., in the cutoff model, yi = θj +
∑
j εji

ni
, is naturally

heteroskedastic when n(θ) is nonconstant, where σε(θ) = σε/
√
n(θ).

I chose the simple and tractable homoskedastic environment to most clearly illustrate

the theoretical results. This mechanical heteroskedasticity is accounted for by the indi-

rect inference algorithm described in Appendix D.2, and the numerical model solutions and

quantitative results allow for it. Nevertheless, it is worthwhile to show how the theoretical

results from the cutoff model could still hold in the presence of mechanical heteroskedasticity.

Proposition 1 follows trivially, since the constant n(θ) precludes there being any mechanical

heteroskedasticity, but Proposition 2 is less obvious.
I show here why Proposition 2 would still likely hold in the presence of mechanical

heteroskedasticity. Consider as a starting point that
∂vEBCP
∂β−

∣∣∣
β−=0

< 0 in the homoskedastic

case. With heteroskedastic errors, we have

∂vEBCP
∂β−

∣∣∣
β−=0

=(1− α)

∫ κ

−∞

−c∗EBθ
(δ−)2σε(θ)

φ

θ − c∗EB

δ−

σε(θ)

 φ(θ/σθ)

σθΦ(κ/σθ)
dθ

+α

∫ 0

κ

c∗EBθ

(δ−)2σε(θ)
φ

θ − c∗EB

δ−

σε(θ)

 φ(θ/σθ)

σθ(1− Φ(κ/σθ))
dθ.
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If in the homoskedastic error case we have
∂vEBCP
∂β−

∣∣∣
β−=0

< 0, then by Proposition 2 we have

(1− α)

∫ κ

−∞
h(θ)

φ(θ/σθ)

σθΦ(κ/σθ)
dθ > α

∫ 0

κ

h(θ)
φ(θ/σθ)

σθ(1− Φ(κ/σθ))
dθ,

where h(θ) = c∗EBθ
(δ−)2σε

φ

(
θ− c

∗EB
δ−
σε

)
≥ 0. We can then examine the effect of heteroskedasticity

by seeing how h(θ) changes when the average measurement error variance can now depend

on θ, via n(θ), i.e., when h(θ) = c∗EBθ
(δ−)2σε(θ)

φ

(
θ− c

∗EB
δ−

σε(θ)

)
. To operationalize this, note that

the relationship between θ and σε(θ) will have the opposite sign as that between θ and λ(θ)

(which has the same sign as the relationship between θ and n(θ)). Thus, I consider

σε(θ) = max{σ, δσ − βσθ},∀θ ≤ 0,

where σ > 0. Note that, as in the parameterization of λ(·) for Proposition 2, although it has

been included for completeness, the max operator is obviated by evaluating the derivative

at βσ = 0.

Differentiating h with respect to βσ, at β− = βσ = 0 (and, for simplicity, setting δ− = 1),

we have
∂h

∂βσ

∣∣∣
β−=βσ=0

=
cEBθ2

δσ︸ ︷︷ ︸
<0

(
1− (θ − cEB)2

δ2
σ

)
1

δσ
φ

(
cEB − θ
δσ

)
︸ ︷︷ ︸

>0

.

The middle term is positive for values of θ that are very close to cEB, resulting in a reduction

in h(θ). For θ < cEB−δσ, the middle term will be negative, resulting in an increase in h(θ).45

Given that the starting point where h(θ) was such that
∂vEBCP
∂β−

∣∣∣
β−=0

< 0, the increases in h(θ)

for larger, negative values of θ and decreases in h(θ) for θ values close to cEB mean the

inequality will likely continue to hold, i.e.,
∂vEBCP
∂β−

∣∣∣
β−=0

< 0 even with βσ 6= 0. Intuitively, h(θ)

“stretches” to the left, as shown in Figure 9. The left panel shows how h(θ) changes when

we increase βσ from zero, and the right panel plots the derivative of h(θ) with respect to βσ,

evaluated at βσ = β− = 0. In each panel, the vertical dotted line denotes κ, which has been

set to −2σθ. Thus, the presence of mechanical heteroskedasticity would, if anything, likely

widen the difference in value obtained under the two estimators.

45The middle term would also be negative for θ > cEB + δσ, which does not substantially affect the
argument as we are only considering θ ≤ 0.
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Figure 9: How h(θ) is affected when βσ is increased from zero
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C Extensions to Hidden Type Model HT-0

C.1 Model HT-1

Now allow T > 2 and let output depend on teacher experience xi(j,t),t according to qjit =

β0 + θi(j,t) + e(xi(j,t),t), where e(xit) represents output, net of β0 and teacher quality, for a

teacher with t− 1 periods of prior experience.

The optimal hiring policy ψh is unchanged. Consider the retention decision for teachers

in period t = T , for teachers with the same experience, xit = xt. Such a policy need

not only apply to teachers’ first years of experience; Wiswall (2013) shows that teacher

quality also changes after the first few years of experience. Let q̂Hit be the sample mean

of teacher i’s output signals realized before period t. The retention decision ψr still has a

reservation value property, which now depends on the mean of each teacher’s entire history of

signals, q̂Hit , where the threshold now depends on the period, i.e., q
t

= µ−
(
χ+e(xt)

ρt

)
, where

ρt = σ2
θ/(σ

2
θ + σ2

ε

n|Ht|). The reservation signal q
t

is decreasing in xt if there are productivity

gains to experience and increasing in ρt, due to the higher precision about teachers’ true

quality. Note that solution to this problem would be the same as that from HT-0, setting the

replacement cost (in HT-0) to χt ≡ χ+ e(xt) and using the relevant ρt, and that considering

instead periods t < T would change the desired threshold quality, which could be modeled

by suitably adjusting the replacement cost χ from the static model HT-0. Therefore, this
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sequence of per-period reservation signals can then be mapped to the cutoff-based model

via a sequence of cutoff-based problems, one for each period of experience, as was done for

Model HT-0. Also, note that a similar transformation to the one above could be performed

to adapt Model HT-2 (see Section C.2) to also allow for an effect of experience on output.

C.2 Model HT-2

This model augments HT-0 to allow class size to depend on teacher quality, i.e., ni = n(θ). As

in HT-0, consider the administrator’s problem in the second period. As in the cutoff model,

the administrator must now integrate over the distribution of class sizes when choosing

their reservation signal. I first derive expected teacher quality, given the quality signal

q̂ = θ̂EB = λ(n(θ))θ̂FE is greater than cutoff rule q, where g(·) denotes the density function

of the argument(s) it takes:

E
[
θ|θ̂EB ≥ q

]
=

∫ ∞
−∞

θg(θ|θ̂EB ≥ q)dθ =

∫ ∞
−∞

∫ ∞
q

θg(θ, θ̂EB|θ̂EB ≥ q)dθ̂dθ

=

∫ ∞
−∞

∫ ∞
q

θ
g(θ, θ̂EB)

Pr{θ̂EB ≥ q}
dθ̂EBdθ =

1

Pr{θ̂EB ≥ q}

∫ ∞
−∞

∫ ∞
q

θg(θ, θ̂EB)dθ̂EBdθ

=
1

Pr{θ̂EB ≥ q}

∫ ∞
−∞

∫ ∞
q

θg(θ̂EB|θ)dθ̂EBf(θ)dθ

=
1

Pr{θ̂EB ≥ q}

∫ ∞
−∞

∫ ∞
q/λ(n(θ))−θ

θg(ε|θ)dεf(θ)dθ

=
1

Pr{θ̂EB ≥ q}

∫ ∞
−∞

θ

[
1− Φ

[
q/λ(n(θ))− θ

σε(θ)

]]
f(θ)dθ,

where

Pr{θ̂EB ≥ q} =

∫ ∞
−∞

Pr{θ̂EB ≥ q|θ}f(θ)dθ =

∫ ∞
−∞

Pr

{
ε ≥

q

λ(n(θ))
− θ
}
f(θ)dθ

=

∫ ∞
−∞

1− Φ

[ q

λ(n(θ))
− θ

σε(θ)

]
f(θ)dθ.

We then have

Pr{θ̂EB < q} = 1− Pr{θ̂EB ≥ q} =

∫ ∞
−∞

Φ

[ q

λ(n(θ))
− θ

σε(θ)

]
f(θ)dθ.
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As before, these quantities when using fixed effects are obtained by setting λ(·) = 1:

E
[
θ|θ̂FE ≥ q

]
=

1

Pr{θ̂FE ≥ q}

∫ ∞
−∞

∫ ∞
q−θ

θ

[
1− Φ

[
q − θ
σε(θ)

]]
f(θ)dθ

Pr{θ̂FE ≥ q} =

∫ ∞
−∞

1− Φ

[
q − θ
σε(θ)

]
f(θ)dθ

Pr{θ̂FE < q} =

∫ ∞
−∞

Φ

[
q − θ
σε(θ)

]
f(θ)dθ.

The administrator’s value from using the empirical Bayes estimator, using the result that
she will use a cutoff signal policy, is then

vEBHT2(χ) = max
q

{
−Pr{θ̂EB < q}χ+ Pr{θ̂EB ≥ q}E

[
θ|θ̂EB ≥ q

]}
= max

q

{
−Pr{θ̂EB < q}χ+ Pr{θ̂EB ≥ q} 1

Pr{θ̂EB ≥ q}

∫ ∞
−∞

∫ ∞
q/λ(n(θ))−θ

θ

[
1− Φ

[
q/λ(n(θ))− θ

σε(θ)

]]
f(θ)dθ

}

= max
q

{
−Pr{θ̂EB < q}χ+

∫ ∞
−∞

θ

[
1− Φ

[
q/λ(n(θ))− θ

σε(θ)

]]
f(θ)dθ

}
= max

q

{∫ ∞
−∞

(−χ)Φ

[ q

λ(n(θ)) − θ
σε(θ)

]
f(θ)dθ +

∫ ∞
−∞

θ

[
1− Φ

[
q/λ(n(θ))− θ

σε(θ)

]]
f(θ)dθ

}
, (19)

and the administrator’s value from using fixed effects is

vFEHT2(χ) = max
q

{∫ ∞
−∞

(−χ)Φ

[
q − θ
σε(θ)

]
f(θ)dθ +

∫ ∞
−∞

θ

[
1− Φ

[
q − θ
σε(θ)

]]
f(θ)dθ

}
. (20)

Intuitively, under either estimator the administrator will either replace a teacher with some

probability, which in expectation reduces her objective by an expected value of χ, or retains

the teacher with the complementary probability, in which case her objective is increased by

that teacher’s quality θ.

Because n(θ) is not constant (as it was in HT-0), the reliability of signals varies by

teacher and the analytical characterization of the administrator’s reservation signal from

Model HT-0 no longer obtains. The estimator-specific reservation signals, q∗EB and q∗FE,

are respectively obtained by numerically solving (19) and (20).

The ranking of the administrator’s utility from HT-2, by class size scenario n(θ), is the

same as her ranking under the cutoff-based model.

Proposition 9. In Model HT2, the administrator’s preferred estimator depends on the rela-

tionship between teacher quality and class size. In particular, when the relationship between

teacher quality and class size is negative-(positive-)quadratic, the administrator will prefer

the fixed effects (empirical Bayes) estimator.

54



Proof. I will focus on teachers with θ < 0, since below-average teachers will be most af-

fected by the reservation policy, which will generally be negative.46 As in the cutoff model,

parameterize the empirical Bayes weights using

λ(θ) =

max{λ, δ− + β−θ} if θ < 0

max{λ, δ+ + β+θ} if θ ≥ 0,

where λ > 0, and assume homoskedastic errors, i.e., σε(θ) = σε for all θ.47 Differentiating

the administrator’s value with respect to β− and evaluating the derivative at β− = 0 (as will

be made clear below, this is convenient because the environment in which the derivative is

evaluated is consistent with the one studied in HT-0, the constant class size scenario studied

by Proposition 4), we obtain

∂vEBHT2

∂β−

∣∣∣
β−=0

=

∫ 0

−∞

q∗EB

δ2
−
θ [χ+ θ]

1

σε
φ

 q∗EB

δ−
− θ

σε

 1

σθ
φ

(
θ

σθ

)
dθ, (21)

because
∂vEBHT2

∂q∗EB
× ∂q∗EB

∂β−
= 0 due to the Envelope Theorem. As in the proof of Proposition 2,

combine the normal densities into one density, fP (θ)/SP , where SP is a positive constant

(see footnote 42 for details). The expression (21) becomes

∂vEBHT2

∂β−

∣∣∣
β−=0

=
1

SP

∫ 0

−∞

q∗EB

δ2
−
θ [χ+ θ]︸ ︷︷ ︸
m(θ)

fP (θ)dθ,

where fP (θ) = 1
σP
φ
(
θ−µP
σP

)
, µP =

q∗EB

δ−

σ2
θ

σε
2+σ2

θ
= q∗EB, σ2

P = σ2
θγσ, and γσ = σε

2

σε
2+σ2

θ
. The

function m(θ) is strictly concave (in particular, negative quadratic) in θ and has zeros at

θ = −χ and θ = 0. Therefore, we have

∂vEBHT2

∂β−

∣∣∣
β−=0

< 0⇔
∫ −χ
−∞
−m(θ)fP (θ)dθ >

∫ 0

−χ
m(θ)fP (θ)dθ.

Observe that −m(−χ − a) > m(−χ + a) for 0 < a < χ and −m(−χ − a) ≥ 0 for a > 0.

Therefore, if fP were centered around a value no greater than −χ, i.e., µP ≤ −χ, then by the

symmetry of the normal distribution we would have
∫ −χ
−∞−m(θ)fP (θ)dθ >

∫ 0

−χm(θ)fP (θ)dθ

46Figure 11 shows that estimator rankings are similar for the negative-quadratic and increasing scenarios,
and between the positive-quadratic and decreasing scenarios.

47The numerical solutions presented later in this section and the quantitative results in Section 5.3 allow
for mechanical heteroskedasticity in σε(θ).
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Figure 10: |m(θ)| and fP (θ)
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because −m(θ)fP (−χ−θ) > m(θ)fP (−χ+θ) for θ > 0 and, thus,
∂vEBHT2

∂β−

∣∣∣
β−=0

< 0. Note that

the measurement errors have been assumed to be homoskedastic and that λ(·) is constant

because we are evaluating the derivative at β− = 0, which means the optimal fixed effects

policy from Model HT-0 (see (8)) would obtain when using fixed effects: q∗FE = −χ
ρ

, where

ρ =
σ2
θ

σ2
θ+σ2

ε
< 1. Then, by Proposition 4 we have q∗EB = ρq∗FE = −χ, which satisfies

µP ≤ −χ, and the desired inequality is obtained.48 Figure 10 illustrates this scenario, where

the solid curve is |m(θ)|, which is −m(θ) for θ ≤ −χ and m(θ) for θ ∈ [−χ, 0], and the

dot-dashed curve is fP , drawn with µP = −χ.

To illustrate this theoretical result, Figure 11 plots the ratio of value from the FE over

EB estimators for a wide range of replacement costs χ,49 across different class size scenarios:

constant, increasing, decreasing, negative quadratic, and positive quadratic. The constant

class size scenario (dotted black line) represents a special case of HT-2 where n(θ) = n,

48Although not as straightforward to solve for explicitly, q∗EB is very close to −χ across a wide variety of
n(θ), even when allowing for both mechanical heteroskedasticity in σε(θ) and the effect of class size in λ(θ).

49Wiswall (2013) reports that teachers with 30 years of experience have value-added that is one standard
deviation higher than new teachers and 0.75 standard deviations higher than teachers with five years of
experience; this implies a 0.25 sd difference acquired in the first five years of experience. Therefore, I set
χ = 0.25σθ = 0.054 for the baseline quantitative results and for this figure use a range for the replacement
cost running from zero to 0.30, over five times this value.
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Figure 11: Ratio of values of FE over EB, across class size scenarios
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which is simply model HT-0. Unsurprisingly, then, we obtain the same value for all re-

placement costs χ. Under the negative quadratic scenario (dot-short-dashed blue curve)

the administrator would obtain higher value from using fixed effects for every χ. This is

the same result as was obtained for a wide range of parameterizations of the cutoff-based

model. Also, as in the cutoff-based model, the estimator ranking is reversed under the

positive-quadratic class size scenario (long-dashed brown curve); i.e., she would prefer to use

empirical Bayes instead of fixed effects. The rankings of increasing (short-dashed red) and

negative-quadratic (dot-short-dashed blue) scenarios are similar. As argued above, most of

the difference in value comes from the part of the teacher quality distribution at highest risk

of being replaced—those with below-average qualities. By the same reasoning, the rankings

of decreasing (dot-long-dashed green) and positive-quadratic (long-dashed brown) scenarios

are also similar.50

As with model HT-1, an environment with multiple periods could be modeled by suitably

adjusting the desired threshold quality. For example, adding more periods could be accom-

modated by decreasing the replacement cost, as the administrator would have a relatively

higher gain from replacing when there are more periods of output. Because they range from

a cost of zero to several times the estimated difference in value-added between a teacher with

50This figure takes into account the mechanical heteroskedasticity caused by the variation in n(θ).
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five years experience and no experience, Figure 11 then likely also characterizes estimator

rankings for multi-period environments.

The takeaway from this section is that (i) the administrator’s preferred estimator depends

on the class size scenario n(θ), (ii) though the difference in values from using either estimator

depends on other model parameters (T, χ), the preferred estimator does not, and (iii) the

administrator would prefer the same estimator in HT-2 as she would in the cutoff model.

D Details for Quantitative Exercises

D.1 Calibrated Error Variances

I calibrate σ2
θ and σ2

ε from Table B-2 of Schochet and Chiang (2012) normalizing the total

variance to one. To most closely match a policy where an administrator would like to rank

teachers across a school district, I calibrate σ2
θ = 0.046 by summing the average of school-

and teacher-level variances in random effects. To most closely approximate an environment

where both student and aggregate-level shocks may affect student test scores, I calibrate

σ2
ε = 0.953 by summing the average of class- and student-level variances in random effects.

Note that, due to the much greater student-level error variance, the approximate sizes of σ2
θ

and σ2
ε are approximately the same if school-level variances are excluded from σ2

θ or class-level

variances are excluded from σ2
ε , lending robustness to the quantitative findings.

D.2 Heteroskedasticity Correction for Relationship Between Class

Size and Teacher Quality

The advantage of the indirect inference approach is that it can be implemented using a

vector of auxiliary moments which do not necessarily correspond to structural econometric

parameters. This is useful in the current context, where the micro-data to directly correct

for heteroskedasticity are not available.51

Indirect Inference Algorithm The following is done separately for Reading and Math.

0. Estimate the relationship between class size (ni) and teacher i’s estimated quality

in the subject (θ̂i) by running the regression ni = βdata0 + βdata1 θ̂i + βdata2 (θ̂i)
2 + ei.

The regression coefficients
(
β̂data0 , β̂data1 , β̂data2

)
and residual standard error σ̂datae form

51If micro-data had been available, then one could in principle use an approach like the one in Lockwood
and McCaffrey (2014) to account for the nonlinearities produced by heteroskedastic errors.
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the first set auxiliary parameters to fit. Compute the 25th, 50th, and 75th per-

centiles of the empirical distribution of class sizes, (ndatap25 , n
data
p50 , n

data
p75 ). These are the

remaining auxiliary parameters. The target vector of auxiliary parameters is then(
β̂data0 , β̂data1 , β̂data2 , σ̂e

data, ndatap25 , n
data
p50 , n

data
p75

)
.

1. Given σ2
θ , simulate teacher quality θsimi once for each teacher in the sample. (Recall

the population mean has been normalized to 0).

2. Simulate the random component of class sizes nsimi,i.i.d, which is distributed normal with

mean zero and standard deviation σnsim . As described below, this algorithm chooses

the parameter σnsim . Note these are independent from teacher quality to get an idea

of the role heteroskedasticity plays.

3. Assign incremental class sizes according to ninc(θsimi ) = a0 + a1θ
sim
i + a2(θsimi )2. As

described below, this algorithm chooses the parameters (a0, a1, a2). The final simulated

class size for teacher i is then nsimi = round{nsimi,i.i.d + ninc(θsimi )}, i.e., class sizes are

integer-valued.

4. Given σ2
ε and nsimi simulate an average shock for each teacher, εsimi ; form simulated

estimated teacher quality according to θ̂simi = θsimi + εsimi .

5. Regress nsimi = βsim0 + βsim1 θ̂simi + βsim2 (θ̂simi )2, estimating the auxiliary coefficients

(β̂sim0 , β̂sim1 , β̂sim2 ) and auxiliary residual standard error σ̂sime . Compute the 25th, 50th,

and 75th percentiles of the simulated distribution of class sizes, (nsimp25 , n
sim
p50 , n

sim
p75 ). The

simulated vector of auxiliary parameters is then
(
β̂sim0 , β̂sim1 , β̂sim2 , σ̂sime , nsimp25 , n

sim
p50 , n

sim
p75

)
.

6. Compute the Euclidean distance between target auxiliary parameters and simulated

auxiliary parameters (e.g., β̂data0 and β̂sim0 , respectively) as a function of the parameters

governing class size, d(a0, a1, a2, σnsim).

Repeat steps 1-6 for the vector (a0, a1, a2, σnsim), until the distance between data and

simulated auxiliary moments is minimized.

D.3 Details for Quantitative Illustration for Hidden Action Model

Output in the hidden action model depends on several parameters, including the variance of

measurement error on output, σ2
η. I adjust the error variance in several steps, using Reading

test scores as the measure:
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1. Simulate teacher quality, class sizes, and measurement errors using the parameters

from Section 5.1, for 30,000 teachers. Each simulated teacher then has a simulated

quality θsi and a simulated fixed-effect estimate θ̂s,FEi .

2. Use the empirical Bayes weights λ(·) to generate simulated EB measures of teacher

quality according to θ̂s,EBi = λ(n(θsi ))θ̂
s,FE
i .

3. Standardize θsi , θ̂
s,FE
i , and θ̂s,EBi to have variances of 1, to make the residual variances

comparable.

4. Finally, I estimate the residual variance from a regression of standardized θ̂s,FEi on the

standardized true (simulated) quality θsi and the residual variance from a regression of

standardized empirical Bayes measure θ̂s,EBi on standardized true (simulated) quality.

The ratio of residual variances, or amount unexplained in each regression, tells us how

much more (or less) the fixed effects estimator would inform the administrator about

teacher quality.

The regression results, shown in Table 5, indicate that the fixed-effects estimator explains

about 3.2% more variation in teacher quality than the empirical Bayes estimator (1 −
0.69562/0.70702 = 0.032). That is, the fact that the EB estimator makes it more diffi-

cult to separate high- and low-performing teachers when the class size function is negative

quadratic, as it is in the data, can be modeled as increasing the measurement error variance

on teacher output, σ2
η, by this amount.
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Table 5: Regressions of simulated teacher quality on FE and EB estimates

Dependent variable:

θs (standardized)

(1) (2)

θ̂s,FE (standardized) 0.718∗∗∗

(0.004)

θ̂s,EB (standardized) 0.707∗∗∗

(0.004)

Constant 0.002 −0.001
(0.004) (0.004)

Observations 30,000 30,000
R2 0.516 0.500
Residual Std. Error (df = 29998) 0.696 0.707

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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