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Abstract 

Communication and behavior in organizations: An experiment* 
 
 
We design a laboratory experiment to study behavior in a multidivisional organi-
zation facing a trade-off between coordinating its decisions across the divisions 
and meeting division-specific needs that are known only to the division man-
agers. The managers communicate their private information through cheap talk. 
While the results show close to optimal communication, we also find systemat-
ic deviations from optimal behavior in how the communicated information is 
used. Specifically, subjects’ decisions show worse than predicted adaptation to 
the needs of the divisions in decentralized organizations and worse than predict-
ed coordination in centralized organizations. We show that the observed devia-
tions disappear when uncertainty about the divisions’ local needs is removed and 
discuss the possible underlying mechanisms. 
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1 Introduction

Coordination problems play a central role in organizations. Firms coordinate production

decisions across divisions, districts in federal systems coordinate policies, and NGOs coor-

dinate their decisions across countries. Often, such problems are complicated by privately

known motives of the decision makers.1 Two division managers attempting to coordinate

their business strategies, for instance, might have incomplete knowledge of each other’s

goals. When this is the case, coordination can be facilitated by a communication channel

between the managers, such as that established in General Motors by Alfred Sloan in the

1920s (Alonso et al., 2008).

While the manner in which private information is communicated and used to coordinate

decisions has been explored in recent theoretical work,2 key predictions of these models

remain to be tested. The present paper uses a laboratory experiment to provide a first

attempt, focusing on the question below:

Main Question. What effect does the structure of an organization have on (i) how pre-

cisely private information is communicated and (ii) how the communicated information is

used?

Following Alonso et al. (2008), the experiment makes use of two types of organizational

structures, centralized and decentralized, operationalizing them as simple coordination

games.3 A decentralized game is played between two agents, with a single decision to be

made by each.4 An agent has private information about her local conditions, which affect

the payoff the agent receives from her own decision. She incurs an adaptation loss if her

decision fails to adapt to her local conditions, and a coordination loss if her decision is not

perfectly aligned with the decision of the other agent, therefore facing a trade-off between

adaptation and coordination. The agents can communicate with each other before making

their decisions.

1Several literatures build on this insight. Carlsson and Van Damme (1993) apply this idea in the context

of global games; Baliga and Sjöström (2004) in the context of games of conflict; Dessein and Santos (2006)

in the context of organizational economics.
2See, e.g., Alonso et al. (2008), Rantakari (2008), Dessein et al. (2010), Alonso et al. (2013).
3While intermediate cases in which the principal retains some, but not all, of the decision making

authority can also be considered (Rantakari, 2008), the two extreme cases provide the sharpest contrast

in theoretical predictions and are therefore particularly well-suited to implementation in the lab.
4In applications of the model, an agent could be a manager in charge of a division or a function within

a firm, a local district, a state government, etc.
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In a centralized game, decision rights are delegated to an unbiased coordinator, referred

to as the principal, who maximizes joint profits and is uninformed about both local con-

ditions. The agents can communicate their private information to the principal before the

decisions are made. Because the answer to our Main Question above in theory depends

on the size of incentives to coordinate, the experimental treatments independently ma-

nipulate the structure of the game (centralized vs. decentralized) and the importance of

coordination (high vs. low) for individual payoffs.

We find that models in the organizational economics literature capture key features of

how subjects communicated in the experiment, but provide an incomplete explanation of

how the communicated information was used. Furthermore, the direction in which subjects’

behavior deviated from the theory was closely tied to how authority was allocated within

the game.

The importance of coordination was parametrized in the experiment as γ ∈ [0, 1], with

the interpretation that coordination is irrelevant when γ = 0 and adaptation is irrelevant

when γ = 1. We find that the principal behaved as if the importance of coordination

was smaller than it actually was, i.e., focused too much of her efforts on adapting to

the agents’ privately known states, while behavior of the agents under decentralization

exhibited the opposite pattern. Thus, the agents focused too much of their efforts on

coordination, behaving as if the importance of coordination was larger than it actually

was in the experiment. We summarize these deviations from the theory as follows:

Main Result 1. The importance of coordination was overweighted by the agents under

decentralization and underweighted by the principal under centralization.

Estimating the effect of the observed over- and underweighting on payoffs, we find that

94% of the difference between the optimal and the observed losses can be explained by the

distortions in decision rules, with the remaining 6% due to communication. This is our

second main result:

Main Result 2. Most payoff losses were due to distortions of decision rules rather than

miscommunication.

Our starting point in explaining the observed distortions is that uncertainty enters

the players’ payoff functions differently under centralization and decentralization. Under

decentralization, adaptation involves no uncertainty (since own states and decisions are

known), while coordination involves the other agent’s potentially uncertain decision. Under

centralization, coordination involves no uncertainty (since both decisions are known), while
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adaptation involves the two agents’ unknown states. Thus, one way to interpret Main

Result 1 above is that the subjects overweighted the uncertain part of their payoff functions

in all treatments.

To test the hypothesis that the observed deviations were driven by uncertainty, we

use data from additional treatments with complete information and unique equilibrium

predictions, but otherwise identical to their counterparts in the first stage of the experiment.

Consistent with the hypothesis, we find no significant distortions in decision weights on

average in these additional treatments:

Main Result 3. With complete information, there was no over- or underweighting of the

importance of coordination on average.

Section 4 of the paper provides several possible channels for how uncertainty might have

led to the observed deviations from equilibrium behavior. We show there that the data

is consistent with ambiguous communication in the presence of ambiguity-averse message

receivers as well as a simpler explanation based on gift-exchange. We also argue in Section

4 that the observed deviations from equilibrium behavior were unlikely to be caused by

social preferences or risk aversion.

Our paper makes several methodological contributions to the experimental cheap talk

literature. First, we elicit subjects’ beliefs about their matched subjects’ states and use

the elicited beliefs to construct an empirical counterpart to the residual variance of com-

munication, a measure commonly used in theoretical work.5 This allows us to formulate

predictions about how well subjects communicate without relying on assumptions about

how they do it. Second, we use the elicited beliefs together with the equilibrium decision

rules to study how subjects decide conditional on the communicated information. This

allows us to test theoretical predictions about subjects’ decision rules directly. Third,

we use the elicited beliefs to perform a detailed payoff analysis that decomposes subjects’

losses into a component due to miscommunication and a component due to deviations from

equilibrium behavior.

The closest experimental study to ours is Brandts and Cooper (2015). While they also

compare centralized and decentralized coordination games, they do not investigate the role

of communication in coordinating multiple decisions. Moreover, the games they use are

different from ours. Specifically, the agents are symmetrically informed about each others’

local conditions as well as a global state of the world, which affects the payoffs of each

5We also perform robustness checks of our results that do not rely on belief elicitation.
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player, while the principal is uninformed about the global state but informed about the

agents’ local conditions. Unlike Brandts and Cooper, we focus on communication of private

information and its effect on coordination.6

Our paper also contributes to the experimental literature investigating strategic infor-

mation transmission in the spirit of Crawford and Sobel (1982).7 Most of this literature

has focused on one sender-one receiver games, with more recent work investigating the case

of multiple senders (Vespa and Wilson, 2016). While we also consider the case of multiple

senders, our focus is on using communication to coordinate multiple decisions as opposed

to information aggregation.

The implications of uncertainty in coordination problems have only recently begun to be

studied in communication games with incomplete information.8 We show experimentally

that uncertainty biases subjects’ decision rules in a manner that depends on how authority

is allocated within an organization, and our results suggest a promising direction for future

work.

2 Experimental Design

Our experimental design is based on the models of Alonso et al. (2008) and Rantakari

(2008). Every treatment of the experiment has two players, 1 and 2, and two decisions,

d1 ∈ D and d2 ∈ D, to be made. The set D is a discretization of the interval [−1, 1] in

increments of 0.01; that is, D = {−1,−0.99,−0.98, ..., 0.98, 0.99, 1}.9 The payoff of Player

i ∈ {1, 2} is given by

πi = −(1− γ)(di − θi)2 − γ(di − dj)2, i 6= j, (2.1)

6Experimental economists have long been interested in coordination problems (see, e.g., Van Huyck

et al., 1990; Brandts and Cooper, 2006). Some existing studies also explore the role of communication as

a coordination device (see, e.g., Cooper et al., 1992; Blume and Ortmann, 2007).
7See, e.g., Dickhaut et al. (1995), Blume et al. (2001), Cai and Wang (2006), Sánchez-Pagés and Vorsatz

(2007), and Wang et al. (2010).
8See Wilson and Vespa (2017), who find that strategic uncertainty in a repeated cheap talk game leads

to a failure to coordinate on efficient equilibria. Behavior is consistent with a repeated babbling equilibrium

even when Pareto-superior equilibria exist in which the sender uses a truthful strategy.
9The decision space is restricted because allowing the decisions to be elements of R would make it

possible for a player who behaves randomly, or simply makes a mistake while typing, to sustain enormous

losses, making the experiment infeasible. While D = R in Alonso et al. (2008) and Rantakari (2008), the

restriction to [−1, 1] does not affect the theoretical predictions. A discretization of [−1, 1] is used because

decisions in experiments can only approximate continuous variables.
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where θi is Player i’s state, or local conditions. The first component of the payoff function

captures the adaptation loss arising from the mismatch between di and θi. The second

component captures the coordination loss arising from the mismatch between the two de-

cisions. As noted above, the parameter γ ∈ [0, 1] measures the importance of coordination

for the players. It is common knowledge that θ1 and θ2 are drawn independently from the

set Θ = D, with each state being equally likely.

The experiment has four initial treatments, Decentralized-High, Centralized-High,

Decentralized-Low, Centralized-Low.10 In the two Decentralized treatments, Player

1 makes decision d1, Player 2 makes decision d2, and each match consists of two players.

In the two Centralized treatments, the decisions d1 and d2 are made by an additional

Player 3 (the principal), whose payoff is given by the average of the payoffs of Player 1 and

Player 2:11

π3 =
π1 + π2

2
.

Each subject starts the session with an initial endowment and loses points in each

period based on the decisions made in the period. In the High treatments, the points

lost by Player 1 and Player 2 in each period of the game are determined by the following

formula:

πi = −(di − θi)2 − 3 · (di − dj)2 i = 1, 2, i 6= j, (2.2)

which corresponds to a choice of γ = 3/4.12 Thus, the High treatments place a higher

weight on coordinating d1 and d2 than on adapting to each state θi. The Low treatments

place a high weight on adaptation to θi (γ = 1/4):

πi = −3 · (di − θi)2 − (di − dj)2 i = 1, 2, i 6= j. (2.3)

The timing in the decentralized treatments is as follows. First, Player 1 and 2 privately

observe their local conditions; that is, Player i observes θi, but not θj, j 6= i. Then, each

player is asked to send a message m ∈ M = Θ to the other player. The framing of the

screen is intentionally left neutral to avoid any suggestion on how to use the messages.13

This is followed by an empty box and an OK button in the bottom right corner of the

10We also ran some additional treatments, which we describe later.
11For Player 3, the payoff is equal to the average to ensure that the losses do not substantially differ in

magnitude from those of Player 1 and Player 2.
12The actual points lost are multiplied by a factor of 4 to make the payoff functions easier for subjects

to understand.
13Specifically, the sender sees the following information displayed on her screen: “You are Player X.

Your number [local conditions] is X. Send your message.”
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screen. After both messages are sent, they are simultaneously revealed to both players.

Then, the players are asked to make their decisions. After the decisions are made, but

before they are made public, the players make incentivized conjectures of each other’s

states: Player 1 guesses θ2, and Player 2 guesses θ1. At the end of each match, the players

receive feedback.14

In the centralized treatments, Player 1 and Player 2 also start each match by privately

observing their local conditions. Player 3 observes neither θ1 nor θ2. Then, Player 1 and

2 are each asked to send a message to Player 3. The screens that Player 1 and 2 see

at this stage are identical to those displayed in the decentralized treatments. While the

senders decides what messages to send, Player 3 waits. After both messages are sent,

they are simultaneously revealed to Player 3, and this player is asked to make the two

decisions. After the decisions are made, the messages are made public, and all players

make conjectures about the states not known to them: Player 1 guesses θ2, Player 2

guesses θ1, and Player 3 guesses both θ1 and θ2. As in the decentralized treatments, these

conjectures are incentivized. At the end of the match, all players receive feedback.15

In all of our treatments, the state, message, and decision spaces are restricted to be

equal to each other. Thus, the θi, mi, and di variables are all selected in increments of 0.01

from the set {−1,−0.99,−0.98, ..., 0.98, 0.99, 1}. Restricting the message space to be equal

to the state space, as in Cai and Wang (2006), can be motivated from the observation that

subjects tend to interpret messages in cheap talk games using a natural language (see, e.g.,

Blume et al., 2001).16

14The feedback information consists of the other player’s state, the other player’s decision, own points

lost due to the decisions made, own points lost from the conjecture about the other player’s state, points

lost in the period, points lost so far, and pesos lost so far.
15The feedback information consists of the unknown state(s), Player 3’s decisions, own points lost from

the decisions made, own points lost from the conjecture(s) about the other state(s), points lost in the

period, points lost so far, and pesos lost so far.
16While we thought about allowing for free communication in the experiment, we decided in favor of a

more restricted communication protocol (i) because this allowed for a more direct test of the theory, (ii)

because this approach was followed by other experimental studies in the strategic communication literature

(e.g., Cai and Wang (2006)), and (iii) because we do not think that free communication would eliminate

strategic uncertainty, multiplicity of equlibria, or the possibility of ambiguous communication. Even if

communication were unrestricted, subjects could in principle use ambiguous messages such as “my state is

close to zero” or ”my state is 0.2 units away from zero,” etc. In the experiment with free communication,

the sender’s interpretation of a message would still be conditional on beliefs about what communication

rule is being used. Strategic uncertainty is not the result of our experimental design but rather an intrinsic

feature of cheap talk games.
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We use subjects’ elicited beliefs to measure the quality of communication in the ex-

periment (Section 3.1) and analyze how the communicated information is used in the

decision-making stage (Section 3.2). Subjects’ conjectures of each other’s states are ob-

tained with quadratic scoring rules (Nyarko and Schotter, 2002).17 For Player 1 and Player

2, the points lost for the guesses are equal to the square of the distance between the conjec-

ture and the true value of the state being guessed.18 In the centralized treatments, Player

3 also guesses the states of both Player 1 and Player 2.19 We interpret subjects’ elicited

conjectures as proxies of their posterior beliefs. While Section 4 of the paper discusses

some of the issues associated with belief elicitation, we also note that our main results

survive robustness checks that do not use subjects’ elicited beliefs.

After analyzing the data from the initial treatments, we ran two additional treatments

to test our explanations of the observed deviations from the theory. The treatments are

identical to Centralized-High and Decentralized-High in all respects except that local con-

ditions are common knowledge to all players. We provide more details in Section 4.

2.1 Implementation

The experiment was conducted at Instituto Tecnológico Autónomo de México in Mexico

City between October 2014 and September 2015 using the software z -Tree (Fischbacher,

2007). After entering the laboratory, sitting down at their computer terminals, and signing

the consent forms, the subjects are distributed their treatment’s instructions.20 At the same

time that the subjects are reading the instructions, a quiz is displayed on their computer

screens. The subjects are informed that they have 20 minutes to read the instructions and

complete the quiz.21

17Quadratic scoring rules incentivize risk-neutral subjects to report their mean beliefs truthfully.
18Formally, denote Player i’s conjecture about θj , conditional on having received message mj , by

p(θj |mj). The points lost for the conjecture are given by (p(θj |mj)− θj)2.
19For this player, the points lost are equal to the average of the two squared distances to ensure that

the losses for the guesses do not strongly differ from those of Player 1 and Player 2.
20See the online appendix at http://piotr-evdokimov.com/Appendix-Instructions.pdf. While the sample

instructions are in English, the actual instructions were administered in Spanish.
21The quiz has 8 questions that are identical for all treatments, and 4 that differ across the decentralized

and centralized treatments. The quiz tests the subjects’ understanding of statistical independence, how

they are to be matched in the experiment, the conversion of points to pesos, and the game’s basic structure.

The answers to all of the quiz questions are incentivized: each subject gains one Mexican peso for each

quiz question correctly answered. The questions are included in the online appendix.
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The treatments are implemented between subjects. Each session of the experiment

consists of two practice periods followed by fifteen periods that count towards each subject’s

earnings. In each period, subjects are randomly and anonymously matched with randomly-

assigned roles at the beginning of each period.

The subjects’ earnings are determined as follows. Every subject is guaranteed a 30

Mexican pesos (≈ US$2) show up fee in addition to the earnings from the quiz. These

earnings are called the subject’s “guaranteed earnings.” In addition, each subject is given

210 Mexican pesos (≈ US$15). In each (non-practice) period of the game, each subject

loses a number of points due to her decisions and the decisions made by the subjects

with whom she is matched during the period. In addition to losing points from the game,

the subjects lose points from their conjectures of other players’ states in accordance to the

quadratic scoring rule described above. The subject’s “additional earnings” are determined

as follows:

Additional earnings = 210− 3× Total points lost during the experiment.

Each subject’s total earnings are given by the sum of the guaranteed and additional earn-

ings.22 It is explained to the subjects that any subject losing more than 50 cumulative

points (150 Mexican pesos) would be excluded from further matches, and that in the

event this happens, the remaining subjects will be rematched with each other, with some

randomly chosen subjects sitting out in each subsequent match. In practice, this never

happened, but the program we used allowed for the contingency.

2.2 Predictions

The communication rule of sender i is a mapping µi : Θ → ∆Mi from local conditions

to probability distributions over messages. Under decentralization, the decision rule of

receiver i is a mapping dDi : Θ × M1 × M2 → R, i ∈ {1, 2}, from local conditions and

messages to decisions. Under centralization, the decision rule of the sole receiver (Player

3) is a pair of mappings dCi : M1 ×M2 → R, i ∈ {1, 2}, where dCi maps a pair of messages

(m1,m2) to a decision for Player i. The belief functions of receiver i are the mappings

ηj : Mj → ∆Θ, j ∈ {1, 2}, each denoting the probability assigned by the receiver to each

state θj ∈ Θ after receiving message mj from sender j.

22The instructions provide subjects with several examples of final earnings as a function of points lost,

and the quiz tests their understanding of the payment rules with yet another example.
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A communication equilibrium is defined by communication rules for Player 1 and Player

2 (µ1(m1|θ1) and µ2(m2|θ2)), decision rules for the decision makers (dDi (m1,m2, θi) under

decentralization, and dCi (m1,m2) under centralization), and belief functions for the re-

ceivers (η1(θ1|m1) and η2(θ2|m2)) such that the communication rules are optimal given the

decision rules, the decision rules are optimal given beliefs, and the beliefs are derived from

the communication rules using Bayes’ rule whenever possible.

We define E[θi|mi], i = 1, 2, as the posterior belief held by the receiver of message

mi about local conditions θi. Following the theoretical literature, we measure the qual-

ity of communication through the residual variance of the posterior belief, defined as

E [(θi − E[θi|mi])
2]. Higher residual variance means more dispersion in the posterior beliefs

and thus lower quality of communication. The advantage of such a measure in experimen-

tal settings is that the residual variance of communication is defined independently of the

partitional structure of equilibrium.23 Therefore, it can be used to measure communica-

tion quality whether or not players are conforming to any particular equilibrium or even

exhibiting non-equilibrium behavior.

It is well-known that communication games admit a multiplicity of equilibria.24 We

therefore formulate most of our predictions about equilibrium communication around the

Most Informative Equilibrium (MIE). We base our predictions on MIE for several reasons:

i) it is the equilibrium selection rule used in the theoretical literature;25 ii) MIE maximizes

ex-ante expected payoffs and it is therefore the right benchmark to compare payoff losses

in the experiment; iii) it leads to clear theoretical predictions. A different equilibrium

selection rule might generate potentially different predictions given the large number of

possible equilibrium choices across our treatments. Ultimately, we address the question of

what, if any, equilibrium is played using the experimental data.

Theory predicts the following about communication in MIE:

Prediction 1 (Communication).

1. The residual variance of communication is lower under centralization than decentral-

ization, for any γ ∈ (0, 1).

23Alonso et al. (2008) and Rantakari (2008) show that any equilibrium in which a finite number of

messages is possible is economically equivalent to one in which the communication rules take a partitional

form: a sender partitions the state space and only communicates which element of the partition the realized

state belongs to.
24It is also well-known that an uninformative equilibrium always exists in such games.
25Chen et al. (2008) provide conditions which uniquely select MIE in cheap talk games.
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2. As the importance of coordination increases, the residual variance of communication

increases under centralization while it decreases under decentralization.

The logic behind Prediction 1 is the following. Since the agents maximize their own

individual payoffs, while the principal cares about the payoffs of both agents, the incentives

of the agents are more aligned with the incentives of the principal than they are with each

other. This leads communication to be more informative under centralization than decen-

tralization, as long as γ < 1. As γ increases under centralization, the principal cares less

about adapting to local conditions and information becomes less relevant, distorting incen-

tives of senders toward exaggeration. As γ increases under decentralization, the increased

consequences of coordination failure provide incentives for better communication.26

Recall that E[θi|mi] denotes the posterior expectation about i’s state held by the re-

ceiver of the message following message mi. Under decentralization, Player i makes the

following decision in equilibrium after receiving the message mj:

dDi = (1− γ)θi +
γ2

1 + γ
E[θi|mi] +

γ

1 + γ
E[θj|mj], i = 1, 2, i 6= j. (2.4)

The agent’s decision rule is a linear function of her own state θi, her own posterior E[θj|mj],

and the other agent’s posterior E[θi|mi]. When the importance of coordination is low, both

agents put large weights on their own local conditions and small weights on the other pieces

of information. As coordination needs increase, both players increase the weight on the

information provided by the other player, and decrease the weight on their own private

information, which leads to more coordination in equilibrium.27 We estimate the decision

rule in Equation 2.4 as part of our statistical analysis of the data to quantify the magnitude

and direction of the deviations from optimal behavior.

Under centralization, the principal makes the following decisions after receiving the

26Prediction 1 is robust to social preferences. Alonso et al. (2008) consider a variation of the model

described above in which Player 1 maximizes λπ1 + (1 − λ)π2 and Player 2 maximizes (1 − λ)π1 + λπ2,

where λ ∈
[
1
2 , 1
]
. Although the payoff functions used in the experiment set λ = 1, it is in principle

plausible that Player 1 and Player 2 assign strictly positive weights to each other’s payoffs. However, for

a fixed γ, it can be shown that the difference in the quality of communication under centralization and

decentralization, while shrinking as λ approaches 1
2 , remains strictly positive. Similarly, for any fixed λ,

the arguments regarding the effect of γ on the quality of communication remain valid.
27It can be shown that the decisions converge to each other as γ → 1.
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message m = (m1,m2):
28

dCi =
1 + γ

1 + 3γ
E[θi|mi] +

2γ

1 + 3γ
E[θj|mj], i = 1, 2, i 6= j. (2.5)

The decision rules are functions of the principal’s posterior beliefs about the players’ states.

When the importance of coordination is low, the posterior about Player i’s state has a

much larger weight in determining di than the posterior about the state of Player j. As

the importance of coordination increases, the weights on the two posteriors become closer

to each other. These comparative statics can be summarized as follows:

Prediction 2 (Optimal Decisions). As the importance of coordination increases:

1. Under centralization, Player 3 puts more weight on the information communicated

by Player j when making decision di.

2. Under decentralization, Player i, i = 1, 2, puts less weight on her own local conditions

and a larger weight on the information communicated by Player j.

We can also use the decision rules in Equation 2.4 and Equation 2.5 to formulate

predictions about average degrees of adaptation and coordination in the experiment. The

advantage of centralization lies in the principal’s ability to perfectly control the degree to

which the decisions are coordinated with each other. The principal, however, lacks complete

knowledge of the other players’ local conditions, which makes adaptation difficult. By

contrast, under decentralization, the players can perfectly control the degree of adaptation

of their decisions to their own local conditions, but coordination is difficult because each

player only controls her own decision.

Let CLk = E[(d1 − d2)2], k ∈ {C(entralized), D(ecentralized)}, denote the expected

(normalized) coordination loss.29 In MIE, the principal’s comparative advantage at coor-

dination generates a smaller coordination loss under centralization than under decentral-

ization. Moreover, as γ increases, the coordination loss falls regardless of how authority is

allocated.30 This implies the following prediction, which is proved in Proposition 1 of the

online appendix:

28See Alonso et al. (2008) and Rantakari (2008) for derivations of the decision rules described in this

section.
29This quantity is normalized by γ and hence does not represent actual utility or point losses.
30The model is sufficiently tractable to also allow the computation of correlations between decisions,

and between decisions and states, in closed form. However, we base our predictions on coordination and

adaptation losses (see below) because they are easier to test compared to predictions based on correlation

coefficients.
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Prediction 3 (Coordination Losses).

1. The average coordination loss is larger under decentralization than centralization.

2. As the importance of coordination increases, the average coordination loss decreases

under both centralization and decentralization.

Similarly, we can compute the expected (normalized) adaptation loss in MIE for an

arbitrary Player i, i = 1, 2, denoted by ALik = E[(dki − θki )
2], k ∈ {C,D}. The agents’

comparative advantage at adaptation leads to larger adaptation losses under centralization

than under decentralization. As coordination becomes more important, the adaptation

loss rises regardless of how authority is allocated.31 The following prediction is proved in

Proposition 2 of the online appendix:

Prediction 4 (Adaptation Losses).

1. The average adaptation loss is larger under centralization than decentralization.

2. As the importance of coordination increases, the average adaptation loss increases

under both centralization and decentralization.

Thus, the games lend themselves to a rich array of predictions about communication

quality, decision rules, and adaptation/coordination losses. We now describe the experi-

mental data.

3 Results

For the initial treatments with incomplete information, we collected data from 238 under-

graduate students recruited from introductory level classes.32 A total of 14 experimental

sessions were conducted with a minimum of 11 students and a maximum of 21 students per

session. The distribution of subjects among treatments is shown in Table 1.33 More sub-

31This has no immediate implication for welfare because an increase in γ also implies that adaptation

losses have a lower impact on welfare.
32We also ran some additional treatments, described below in Section 4.
33The number of participants in the Centralized-High treatment is not divisible by three. This is because

one of the subjects experienced a health issue while the instructions were being administered and had to

leave the room. We re-calibrated the program in this session to accommodate 11 subjects rather than 12.
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jects participated in the centralized treatments to ensure that the amount of observations

(e.g., for d1 and d2) is not too unbalanced. A session lasted 75 minutes on average.

Low γ High γ

Decentralized
3 sessions 3 sessions

N = 48 N = 56

Centralized
4 sessions 4 sessions

N = 66 N = 68

Table 1: Subjects per treatment (initial treatments with incomplete information).

In what follows, we first discuss how subjects communicated in the experiment (Section

3.1), and second how the communicated information was used (Section 3.2). Section 3.3

quantifies the payoff consequences of deviations from equilibrium behavior, as well as the

payoff consequences of miscommunication. All of our results focus on non-practice periods

of the experiment.

3.1 How Private Information Was Communicated

The quality of communication is in theory measured in terms of the residual variance

of the receiver’s posterior, E[θ|m], around the sender’s privately known state, that is,

E [(θ − E(θ|m))2]. To obtain a unit-free measure, we divide this variable by 1/3 (the

residual variance in the babbling equilibrium). We then assess treatment effects on the

empirical analogue of this object, by defining 3× (Other Stateit−Guessit)2 as three times

the squared distance between receiver i’s guess in period t and the true value of the state.34

If the mean of this variable is equal to 0.5, for instance, the interpretation is that one half

of the no communication variance of beliefs around the true value of the state is observed

in the data.

We regress 3×(Other Stateit−Guessit)2 against treatment dummies, allowing the error

This was accomplished by matching 9 people in every period of the game, with two remaining participants

sitting out randomly. We also informed the participants in this session about the new rematching procedure.

Our results do not significantly change if this session is excluded from the analysis.
34 We use all elicited guesses (in non-practice periods) of all subjects in our analysis of the quality of

communication. In centralized treatments, the correlation between the guesses of Player 3 and those of

Player 1 and Player 2 has a coefficient of ρ = 0.855.
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term in the regression to be correlated for observations coming from the same session.35

While the number of sessions is small, we assume within-session correlations because this

assumption can be applied in the vast majority of our econometric analysis,36 and, when

possible, provide robustness checks with subject-clustered standard errors in the appendix.

Decentralized Centralized

γ̂ when γ = 0.25 0.4272 >∗∗ 0.1796

(0.0574) (0.0803)

∨∗∗ ��∧
γ̂ when γ = 0.75 0.2164 ≮ 0.3971

(0.0789) (0.2102)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 2: Treatment effects on residual variance of communication. The >∗∗ and ∨∗∗

symbols denote differences that are significant at a 5% level. The ��∧ and ≮ symbols denote

differences that are not statistically significant (P > 0.1).

The results are shown in Table 2. Consistent with Prediction 1, we find that the resid-

ual variance of communication was lower under centralization than decentralization when

the importance of coordination was low (P < 0.05). The residual variance decreased with

the importance of coordination under decentralization (P < 0.05), also as predicted. There

was no significant difference between the residual variance under centralization and decen-

tralization when γ was high (P = 0.435), which is also in line with Prediction 1, according

to which the quality of communication converges to the same level in both organizational

structures as γ increases. Inconsistent with Prediction 1, we find no significant effect of γ

on the residual variance under centralization (P = 0.351).

Appendix A.3 provides some robustness checks of the result that the residual variance

of communication was significantly higher under decentralization if and only if the impor-

tance of coordination was low. As shown there, the result is observed in later periods of

the experiment taken separately, suggesting that the underlying effects were not learned

away. It is also observed if residual variance is measured using subjects’ messages as prox-

ies for guesses. I.e., even if the analysis does not use subjects’ elicited beliefs, which in

35Notice that subjects in the role of Player 3 made two guesses in every period.
36E.g., even under the assumption that residuals are independent across subjects, clustering by subject

or using subject-level random effects is not appropriate when the unit of observation is a game, as in

Section 3.2 below.
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principle may be biased,37 to form a measure of communication quality, we see some of the

theoretically predicted comparative statics in the data. Moreover, the result is reflected in

distributions at the level of individual subjects and not just within-treatment averages.

These results suggest that MIE was at least partially predictive of the treatment ef-

fects observed in the communication data. Directly comparing the predicted and observed

residual variances of communication using the standard errors in Table 2, we find that the

residual variances were not significantly lower than predicted in any of the treatments, and

significantly higher than predicted in Decentralized-Low (P < 0.01). While this suggests

at least some under-communication relative to MIE, it is consistent with behavior in other,

less informative, equilibria. On the other hand, the way in which the communicated infor-

mation was used deviated from the predictions of any communication equilibrium, not just

MIE. These deviations, which are demonstrated in Section 3.2 below, are the mainstay of

our paper.

3.2 How the Communicated Information Was Used

While our predictions about the optimal use of information are centered on subjects’ de-

cision rules (Equation 2.4 and Equation 2.5), it is instructive to first study the observed

adaptation and coordination losses. This allows us to assess treatment effects without re-

sorting to involved econometric analysis and to see if systematic deviations from optimal

coordination and adaptation are present in the data. After noting and describing these

deviations, we turn to a more rigorous analysis of subjects’ decision rules.

Subjects’ adaptation and coordination losses are plotted in Figure 1.38 It can be seen

from Figure 1 that, as predicted, subjects coordinated more and adapted less as coor-

dination became more important, and that this was true both under centralization and

decentralization. Specifically, as γ increased, the coordination loss decreased under cen-

tralization (P < 0.001), while the adaptation loss increased under both centralization

(P < 0.01) and decentralization (P < 0.05). While the decrease in the coordination loss

under decentralization was not statistically significant (P = 0.1007), the effect was in the

right direction. That adaptation losses increased but coordination losses were little affected

37One possibly source of bias is risk aversion. The results in this section are difficult to interpret if risk

aversion on the part of the message receivers is assumed, as the direction of the bias would depend on

assumptions about the message receivers’ beliefs.
38We compute the standard errors by regressing (di − θi)2 and (d1 − d2)2 against treatment dummies,

with standard errors clustered by session. The regression results can be found in Table 22 in the appendix.
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suggests a possible coordination failure in the Decentralized-High treatment.39

Because MIE maximizes agents’ ex-ante expected payoffs, it provides a useful bench-

mark for how well subjects should adapt and coordinate. The treatment comparisons

show that, with low γ, the coordination loss was higher under centralization than decen-

tralization (P < 0.05), while the adaptation loss was higher under decentralization than

centralization (P < 0.01). Both of these observations directly contradict Prediction 3 and

Prediction 4, as well as the intuition that centralized organizations are better at coordi-

nating while decentralized ones are better at adapting. When γ is high, the coordination

loss was statistically indistinguishable under centralization and decentralization, as was the

adaptation loss (both P > 0.1). These observations are also at odds with Prediction 3 and

Prediction 4. Comparing the data to the MIE predictions directly, the coordination loss

(d1−d2)2 was significantly greater than predicted for both values of γ under centralization

(P < 0.001 in both cases), while the adaptation loss (di − θi)
2 was significantly greater

than predicted for both values of γ under decentralization (P < 0.001 in both cases).

Taken together, the results in this paragraph suggest that decision makers under-adapted

in decentralized treatments and under-coordinated in centralized ones.

To directly estimate the equilibrium decision rule under decentralization (Equation

2.4), we regress the decision made by subject i in period t (Decisionit) against subject i’s

state (θit), the guess of subject i’s partner about subject i’s state (Guess of the Stateit),

and the guess of subject i about her partner’s state (Guess of the Other Stateit).
40 To

accommodate the effect of γ on subjects’ decisions, we interact the explanatory variables

with a dummy that takes on the value of one for treatments with γ = 3
4
. We also place the

restriction that the weights add up to one both when γ = 1
4

and when γ = 3
4
.41 The results

are shown in the first column of Table 3. As can be seen from the interaction terms, subjects

qualitatively responded to incentives to coordinate and adapt roughly as theory predicts.

39Relative to MIE, we also find that the coordination loss was significantly higher than predicted in this

treatment.
40Formally, the decision di made by Player i depends on her state θi, her belief about j’ state, E[θj |mj ],

and her second order belief about the belief held by Player j about state θi after having received message

mi, E[θi|mi]. We proxy this second order belief with the belief reported by Player j. While this second

order belief equals E[θi|mi] in any equilibrium, the two quantities might differ in the presence of deviations

from equilibrium. To alleviate this concern, we perform a robustness check in the appendix by re-doing

our analysis with received messages in place of reported beliefs and find similar results. Unlike elicited

beliefs, messages are common knowledge even in the presence of equilibrium deviations.
41The results are qualitatively similar if this restriction is removed. As in the rest of our analysis, we

allow the error terms εit to be correlated within a session. Robustness checks using subject-clustered

standard errors can be found in the appendix.
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Figure 1: Observed misadaptation and miscoordination (dark grey) and MIE predictions

(light grey).
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As the importance of coordination increased, the weight on θit decreased (P < 0.05), and

the weight on Guess of the Other Stateit increased (P < 0.001). Subjects’ decisions put

a smaller weight on the state and a larger weight on posterior beliefs when the incentive

to coordinate was greater.

Decentralized Centralized

High (dummy=1 if γ = 3
4 ) -0.00735 0.0149

(0.0131) (0.0149)

State (θ) 0.493****

(0.0775)

Guess of the State 0.162**** 0.946****

(0.0224) (0.0196)

Guess of the Other State 0.345**** 0.0544***

(0.0572) (0.0196)

θ × High -0.270**

(0.115)

Guess of the State × High 0.0576 -0.290****

(0.0939) (0.0323)

Guess of the Other State × High 0.213**** 0.290****

(0.0598) (0.0323)

Constant 0.0197 0.00615

(0.0123) (0.0118)

Observations 1560 1320

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 3: Estimated decision weights.

We use Equation 2.5 as a guide to estimate an analogous model for the centralized

treatments. I.e., we regress the principals’ decisions against their elicited posterior beliefs

with the restriction that the weights sum up to one.42 The results, reported in the second

column of Table 3, suggest that the principals’ decision rules responded in the predicted

direction to changes in incentives to coordinate. Thus, the weight on Guess of the State

42To conserve the same variable names, we define Decisionjit to be the decision made by principal j in

period t on subject i’s behalf, Guess of the Statejit the principal’s guess about subject i’s state in period

t, and Guess of the Other Statejit the principal’s guess about the other subject’s state in period t.
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decreased and the weight on Guess of the Other State increased when the importance

of coordination was high (P < 0.001 in both cases). I.e., as coordination became more

important, the principal weighted the belief about i’s state less and the belief about the

state of i’s partner more when making a decision on behalf of subject i.

Importantly, while the responses to changes in incentives to coordinate were in the right

direction both under centralization and decentralization, subjects’ decisions showed signif-

icant and systematic quantitative deviations from equilibrium (Table 4). In Decentralized-

Low, subjects underweighted their own states (P < 0.001), overweighted their partners’

posteriors (P < 0.001), and overweighted their own posteriors about their partners’ states

(P < 0.05). In Decentralized-High, subjects overweighted their own posteriors (P < 0.001).

Thus, subjects in the decentralized treatments underweighted their own states and over-

weighted their own and their partners’ beliefs. In both Centralized-Low and Centralized-

High, the principal put too much weight on the belief about θi and too little weight on

the belief about θj when making decision di (P < 0.001 in both cases). These deviations

are consistent with the hypothesis that decision makers overweighted the importance of

coordination under decentralization and underweighted it under centralization.

Decentralized Treatments θi νi νj

Low (Predicted) 0.75 0.05 0.2

Low (Actual) 0.49**** 0.16**** 0.34**

High (Predicted) 0.25 0.32 0.43

High (Actual) 0.22 0.22 0.56****

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Centralized Treatments νi νj

Low (Predicted) 0.71 0.29

Low (Actual) 0.95**** 0.05****

High (Predicted) 0.54 0.46

High (Actual) 0.66**** 0.34****

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 4: Predicted equilibrium weights and the actual weights in subjects’ decision rules.

The significance levels refer to the difference between actual and predicted weights.

To quantify the degree to which coordination was over- or underweighted, we struc-
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turally estimate the γ implied by the subjects’ decisions under the null hypothesis of

equilibrium. We do this separately for each of the experimental treatments using non-

linear least squares and session-clustered errors.43 The estimation results are shown in

Table 5. The estimated γ’s are significantly higher than what they should be (i.e., those

specified in the instructions) in both Decentralized-Low and Decentralized-High (P < 0.05

and P < 0.01, respectively). For example, when γ = 3
4
, the agents acted as if adaptation is

almost irrelevant. In Centralized-Low and Centralized-High, the weights are significantly

lower than what they should be (P < 0.001 in both treatments). For example, when γ = 1
4
,

the principal acted as if the weight on coordination were almost zero. We summarize these

findings as follows:

Decentralized Centralized

γ̂ when γ = 0.25 0.517 >∗∗ 0.25 0.0296 <∗∗∗∗ 0.25

(0.103) (0.0116)

γ̂ when γ = 0.75 0.9396 >∗∗∗ 0.75 0.356 <∗∗∗∗ 0.75

(0.0375) (0.0548)

Observations 1560 1320

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 5: The estimated distortions of γ.

Main Result 1. The importance of coordination was overweighted by the agents under

decentralization and underweighted by the principal under centralization.

To see how robust the result above is to learning, we modify the non-linear least squares

model used in Table 5 by allowing the estimated γ̂’s to differ across periods in every

treatment of the experiment.44 This reveals a significant time trend in the Decentralized-

Low treatment, where the estimated γ̂ loses significance by period 15 (P = 0.345). On the

other hand, the overweighting in this treatment is still positive in period 15, and the lack

of significance might simply be a question of power. We find no significant time effects on

γ̂ in Decentralized-High (P = 0.496), Centralized-Low (P = 0.273), or Centralized-High

(P = 0.266). Taken together, these results suggest that the distortions identified in Table

5 are not easily learned away.

43We provide a number of robustness checks below, including ones in which coefficients are estimated at

the level of individual subjects.
44The econometric details and estimation results are described in Appendix A.4.
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Figure 2: Heterogeneity in decision weights.
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To study between-subject heterogeneity in deviations from equilibrium, we estimate

subject-level regressions analogous to those in Table 5.45 The subject-level estimates of

γ in the four treatments are reported in Figure 2. The red vertical lines represent the

predicted γ’s of 0.25 and 0.75. As seen in the figure, a large fraction of subjects in the

Decentralized-High treatment acted as if γ was close to one, while a large fraction of

subjects in the Centralized-Low treatment acted as if γ was close to zero. It can also be

seen that many subjects used a γ above 0.25 in the Decentralized-Low treatment and a

γ below 0.75 in Centralized-High. While we omit a description of the relevant statistical

comparisons here, it is argued in Appendix A.4.1, which compares the observed medians

and means to their predicted values, that Main Result 1 is reflected not only in overall

averages but also in distributions at the level of individual subjects.

While the analysis so far has made use of subjects’ elicited beliefs, there is another

way to identify deviations from equilibrium decision rules in our experiment. Specifically,

the experimental design allows us to derive subjects’ implicit beliefs under the assump-

tion of equilibrium behavior. For the centralized treatments, given that we do observe the

principal’s decisions, the equilibrium decision rules in Equation 2.5 form a system of two

equations in two unknowns which can be used to solve for E(θ1|m1) and E(θ2|m2). For

the decentralized treatments, a similar procedure can be employed given knowledge of the

decisions made by each player, the true states, and the equilibrium decision rules given by

Equation 2.4. When we do this, we find that 43.19% of implicit beliefs lie outside the in-

terval [−1, 1] overall, with 50.96% under decentralization and 34.02% under centralization.

This provides corroborative evidence of suboptimal behavior in both treatments.

Appendix A.4 provides additional robustness checks of Main Result 1. Specifically,

Table 18 re-estimates the weights in Table 5 using subjects’ messages in place of elicited

beliefs; Table 19 re-estimates the weights in the centralized treatments replacing the be-

liefs of Player 3 with those of Player 1 and 2; Table 20 re-estimates the weights with

standard errors clustered at the level of the decision maker; Appendix A.4.1 carries out the

above-described analysis of heterogeneity in decision rules. We find qualitatively similar

distortions of decision weights in every case.

45The model produces no estimate for one of the subjects in Centralized-High because this subject set

each of the decisions to zero. As adaptation was ignored and full coordination achieved, we manually set

γ̂ = 1 for this subject.
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3.3 Payoff Consequences of Deviations From Equilibrium

We now turn to an analysis of subjects’ losses in the experiment. On average, subjects

earned 163.5 Mexican pesos (≈ US$11), excluding the show-up fee and the payment from

the quiz.46 Of the 46.5 pesos subjects lost on average from playing the game and making

guesses about their partners’ states, 91% were lost from the game and 9% from the guesses.

While the average losses from playing the game were moderate, several subjects came close

to bankruptcy (losing more than 150 pesos by period 15) in the course of the experiment,

and there was significant variation across subjects, as shown in Figure 5 of Appendix A.5.

Because only good decisions ensured subjects from incurring substantial losses, we believe

that our experiment provided subjects with effective incentives.

For each team in our data set, we define the total relative payoff loss as the loss observed

in the data minus the loss predicted by MIE:

Ltotal = Lobserved − LMIE.

To compute LMIE, for every treatment, we calculate an explicit solution for the most

informative partitional equilibrium provided by Alonso et al. (2008, pp. 171-172). We then

derive the posterior beliefs that receivers would form in MIE.47 Using these posterior beliefs,

we compute the optimal decisions (using 2.4 and 2.5). Then, using 2.1, we compute the

decision makers’ utilities given the decisions. The payoffs of Player 1 and Player 2 are then

added to calculate LMIE.

We can further decompose the relative payoff loss as follows:

Ltotal = (Lobserved − Lreported beliefs)︸ ︷︷ ︸
Loss due to distortions

+ (Lreported beliefs − LMIE)︸ ︷︷ ︸
Loss due to miscommunication

. (3.1)

Lreported beliefs is the team’s payoff loss given the decision makers’ reported beliefs. To

compute it, we calculate the equilibrium predictions for dCi and dDi conditional on subjects’

elicited beliefs. We then use Equation 2.1 to calculate individual utilities and add the

utilities to calculate Lreported beliefs. This gives the total amount of points that each team

would have lost if the decision makers followed the equilibrium decision rules using their

reported beliefs. Lobserved−Lreported beliefs is labeled as the loss due to distortions in Equation

46At the time of the experiment, the minimum wage in Mexico was about 70 pesos per day, which is

arguably a poor reference point for students at a private research university such as ITAM. For a better

one, consider that the cost of a 15km Uber ride was around 80 pesos.
47Our simulation approximates the most informative equilibria by partitional equilibria with 231 ele-

ments.
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3.1. We interpret this variable as the loss in payoffs due to subjects’ decisions deviating

from the equilibrium decision rules in Equation 2.4 and Equation 2.5. Lreported beliefs−LMIE

is labeled as the loss due to miscommunication. This variable captures the payoff loss due

to subjects’ posterior beliefs deviating from those suggested by MIE.

The total relative payoff loss (Lobserved − LMIE) was on average 1.39 points.48 To get

a reference for the size of this number, note that the observed loss (Lobserved) of 1.90 (or

1.39+0.51) points is approximately 3.75 times as large as the MIE benchmark (LMIE) of

0.51 points. The relative loss due to distortions was 1.31 points, while the relative loss

due to miscommunication was 0.08 points. Thus, the distortions accounted for 94% of the

overall relative loss in payoffs.49 We highlight this as one of our main results:

Main Result 2. Most payoff losses are due to distortions of decision rules rather than

miscommunication.

4 Discussion

Any experiment in which utility is identified with money is subject to the possibility that

subjects’ true utilities transform their monetary payoffs in some way. For instance, if

a decision maker in our experiment is risk-averse or risk-seeking, she might have a utility

function of the form U(x) = −(−x)α over her point losses x < 0, where the parameter α > 0

determines the decision maker’s risk attitudes (Tversky and Kahneman, 1992). Another

possibility is that the decision maker cares not only about her own monetary payoffs but

also the monetary payoffs of the other players, for instance using the functional form in

Levine (1998).50 Our goal is to explore how such transformations alter the predictions in

Section 2.2.

Because the principal maximizes the agents’ joint payoffs, social preferences cannot

explain the distortions we observe in the centralized treatments, but can lead the agents

to over-coordinate relative to the self-interested benchmark under decentralization. This

is a testable prediction we highlight below:

Prediction 5. If social preferences caused the distortions in Decentralized-Low and

Decentralized-High, we should observe similar distortions in analogous treatments with

48This represents the per-period average. The regression results can be found in Table 23 in the appendix.
49Appendix A.6 provides an additional analysis of subjects’ payoffs.
50E.g., Player 1 may be maximizing λπ1 + (1− λ)π2 and Player 2 may be maximizing (1− λ)π1 + λπ2,

where λ ∈
[
1
2 , 1
]
.
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complete information.

Unlike social preferences, risk aversion can generate distortions in the directions we

observe both under centralization and decentralization.51 To get some intuition for this

claim, consider the case of centralization. The principal’s payoff can be decomposed into

two adaptation losses (one for each agent) and a coordination loss. The coordination loss is

non-stochastic, while the adaptation losses depend on unknown states. If the agents report

truthfully and the principal believes the messages received, the adaptation losses are also

non-stochastic, conditional on the information received, and risk preferences have no bite.

Noise in messages introduces uncertainty about the principal’s adaptation losses. While

a risk-neutral decision maker only cares about the posterior expectations of the states, a

risk-averse principal also cares about the variance of her conditional expectation, and might

under-coordinate to decrease this variance. Because the models of Alonso et al. (2008) and

Rantakari (2008) have no closed-form solutions with risk-averse preferences, predictions

have to be obtained through simulations. We do this in Appendix A.8 and argue that only

4%-17% of the observed under-coordination in the centralized treatments can be accounted

for by reasonable degrees of risk aversion.52 I.e., while risk aversion predicts distortions in

the right direction, it does not seem to generate distortions of the right magnitude.53

Another possibility is that the observed distortions in decision rules were generated by

51A corollary of this claim is that risk seeking preferences generate distortions in the opposite directions

and therefore cannot explain our data. There are several possible explanations for why our results differ

from those of Tversky and Kahneman (1992). First, our experiment differs substantially from the choice-

theoretic experiments in the prospect theory literature or related experiments such as Myagkov and Plott

(1997). The noise in our game is not objective but derived from other subjects’ communication rules.

Second, it is possible that subjects’ reference points are not zero (Kahneman and Tversky, 1979). Because

incurring no losses is difficult in our environment, subjects might have formed expectations accordingly

(Kőszegi and Rabin, 2006). Third, as we show below, ambiguity-aversion can generate distortions in the

right direction even with moderate risk-seeking preferences.
52Under decentralization, reasonable degrees of risk aversion can explain 28%-50% of the under-

adaptation observed in the data.
53In principle, risk aversion might also have influenced subjects’ elicited beliefs, which we used to compute

a measure of communication quality and estimate subjects’ decision rules. In a regression of elicited guesses

against true states, R2 is approximately 0.7, which suggests that subjects’ guesses of unknown states were

quite good on average. I.e., if risk aversion biased the reported beliefs, the resulting bias was small, which

is consistent with our observation that MIE rationalizes the communication data well. Second, as we

show in Appendix A.3, several of our results pertaining to communication quality are robust to defining a

measure of residual variance based on subjects’ messages as opposed to elicited beliefs. Likewise, our main

results regarding the biases in subjects’ decision rules are reflected in the analysis of subjects’ adaptation

and coordination losses, which does not rely on belief elicitation.
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ambiguity in communication. Consider, for instance, the game under centralization. If

the principal is uncertain about the communication rules used by the agents, she needs

to form subjective beliefs about how the states are communicated through subjects’ mes-

sages. Assuming ambiguity-neutral preferences, the principal can easily form posterior

beliefs E(θi|mi), and ambiguity about communication rules has no predictive power. In

the presence of ambiguity aversion, however, the predictions of the model change. In Ap-

pendix A.10, we perform simulations to solve the problem of an ambiguity-averse principal

under centralization. The simulation assumes that the principal has preferences of the

maxmin sort, where the min is taken over different beliefs about the agents’ states. We

find that ambiguity aversion substantially amplifies the distortions due to risk aversion.

Thus, with the Tversky and Kahneman (1992)’s functional form, a risk aversion parameter

of α = 2, and ambiguity-averse preferences, the model accounts for 17% to 55% of the

under-coordination observed in the data. Moreover, if the principal is ambiguity-averse,

the model can generate distortions in the right direction even if her utility function is

moderately risk-seeking.

Although informative, the simulations described above do not assume equilibrium be-

havior. We now sketch a simple variant of the models of Alonso et al. (2008) and Rantakari

(2008) that allows for ambiguous communication in the presence of ambiguity-averse mes-

sage receivers. Suppose that each division manager has access to an Ellsberg urn. An

Ellsberg urn is an urn which contains red and black balls but whose color composition is

unknown to every player. Let ρ ∈ [0, 1] denote the fraction of red balls. Each division

manager privately observes her local conditions and a draw from her Ellsberg urn before

communication takes place. Ambiguous communication occurs when the sender conditions

her message on the urn realization. While seemingly abstract, this construct can be used

to capture both intentional and unintentional vagueness in communication.

While solving the model is beyond the scope of this paper, recent theoretical work by

Kellner and Le Quement (2018) shows that ambiguous communication can be sustained in

equilibria of sender-receiver games of the Crawford and Sobel (1982) type. More precisely,

for any informative communication equilibrium without ambiguity aversion, there exists

an ambiguous communication equilibrium which strictly Pareto-dominates it. In the latter

equilibrium, communication is more informative and the receiver takes actions which are

more accommodating toward the preferences of the sender. Conjecturing that similar

results can be extended to the framework of Alonso et al. (2008) and Rantakari (2008), the

latter observation would provide a theoretical rationale for the result in our experiment

that the decision rules are more accommodating toward the message senders’ private needs
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than predicted by the baseline model. Focusing on MIE, coordination losses would be

larger than predicted in the ambiguous game under centralization while adaptation losses

would be larger than predicted in the ambiguous game under decentralization. While it is

not clear that the ambiguity-averse extension of the model would capture all elements of

the data,54 it provides a promising avenue for an explanation.

A simpler explanation for the observed distortions is gift exchange.55 E.g., it might be

the case that the message receivers reward the message senders for communicating private

information, where the reward comes in the form of putting a higher weight on the mes-

sage. Under decentralization, this would lead to a larger adaptation loss than predicted;

moreover, it could lead to coordination failure (as we observe in the Decentralized-High

treatment) if the weight on the other player’s message is sufficiently high.56 Under cen-

tralization, gift exchange would lead the central manager’s decisions to be less coordinated

than predicted, as we observe in the data.

4.1 Complete information Treatments

Consider now a complete information modification of the initial treatments where the states

θi are commonly known. If we interpret the distortions as arising from either ambiguous

communication or gift exchange, complete information should eliminate the distortions

observed in the initial treatments of the experiment.57 To shed light on the role of uncer-

tainty in generating the distortions, we ran two additional treatments in September 2015:

Decentralized-Complete Info (N = 30, one session with 10 and one with 20 subjects)

and Centralized-Complete Info (N = 30, one session with 12 and one with 18 subjects).

The treatments were identical to Decentralized-High and Centralized-High in all respects

but the following. First, every player observed every state θi (i = 1, 2) before making any

decision. Second, the players did not make any guesses about the states of other players.

In particular, the agents still sent messages to each other under decentralization and to

54Ambiguity aversion, for instance, would bias the belief-elicitation procedure, complicating our results

regarding communication quality. Moreover, it is not clear if equilibria exist of the ambiguous game where

the decision makers try but fail to accommodate the message senders’ needs, as we observe in the data.
55We thank an anonymous referee for pointing out this explanation.
56E.g., in the extreme case, a decision maker might completely ignore coordination, setting her decision

equal to the other player’s message.
57As pointed out by a referee, strategic uncertainty about whether or not an opponent is playing the

right game could still be present in the complete information treatments.
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the principal under centralization.58 Thus, the only difference between the complete and

incomplete information treatments is uncertainty about θi.

Because the messages are irrelevant in theory, we make no predictions about residual

variance of communication in Centralized-Complete Info and Decentralized-Complete Info.

The complete information decision rules are the same as those in Equation 2.4 and Equation

2.5, with the modification that each posterior belief E[θi|mi] is replaced by the true value

of the corresponding state θi. While the decision rule under decentralization is the unique

equilibrium solution, the decision rule under centralization is the unique solution to the

principal’s decision problem:

dDi =
1

1 + γ
θi +

γ

1 + γ
θj, i = 1, 2, i 6= j. (4.1)

dCi =
1 + γ

1 + 3γ
θi +

2γ

1 + 3γ
θj, i = 1, 2, i 6= j. (4.2)

Estimating the γ’s in Equation 4.1 and Equation 4.2 using nonlinear least squares, we

find a weight of 0.774 in Decentralized-Complete Info and a weight of 0.687 in Centralized-

Complete Info. Neither of these estimates is significantly different from the predicted value

of 0.75 (P = 0.814 in Decentralized-Complete Info and P = 0.5257 in Centralized-Complete

Info).59 We also find little significant differences in predicted and observed decision weights

when the weights are estimated at the level of individual subjects. Indeed, as shown in

Figure 3, the distribution of individually estimated decision weights shifts to the left under

decentralization and to the right under centralization.

In Decentralized-Complete Info, the mean estimate of γ is 0.76, the median is 0.853,

and neither is significantly different from 0.75.60 In Centralized-Complete Info, the mean

estimate of γ is 0.802, and the median is 1. While the mean is not significantly different

from 0.75 (P = 0.365), the median is significantly higher (P < 0.001).

Thus, regardless of how the data is analyzed, the deviations from equilibrium behavior

are significantly reduced in the complete information treatments. Specifically, no under-

58While we could have removed communication from the complete information treatments, we avoided

doing this so that uncertainty and communication are not manipulated at the same time.
59Because we only have two sessions per treatment, the standard errors for the coefficient estimates are

clustered at the level of the decision maker. The comparisons remain insignificant with session-clustered

errors.
60P = 0.831 for the mean and P = 0.414 for the median.
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Figure 3: Distributions of decision weights, incomplete vs. complete information.
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weighting of γ is observed under centralization, and no overweighting is observed under

decentralization. While behavior of the median subject deviates from equilibrium under

centralization, it deviates in the direction of overweighting the importance of coordination,

the reverse of Main Result 1. Moreover, we find no significant deviations from the predicted

decision weights on average. We summarize these findings as follows:

Main Result 3. With complete information, there was no over- or underweighting of the

importance of coordination on average.

Our findings in the complete information treatments provide evidence against social

preferences. They are also consistent with the hypothesis that the deviations from equi-

librium observed in the initial treatments were caused by uncertainty, i.e., the hypothesis

cannot be rejected. We cannot, however, identify the channel through which uncertainty

distorted the decision rules in the initial treatments (e.g., ambiguous communication vs.

gift exchange). This question should be addressed in future work.

5 Conclusion

An organization is often tasked with coordinating activity across multiple divisions. The

presence of localized information creates uncertainty, which complicates the coordination

of activity across multiple divisions. In theory, efficient decision making in multidivisional

organizations can to some extent be facilitated by communication. Our results uncover an

additional hurdle to efficiency, as decision makers in an experiment are more accommodat-

ing to the communicated information than predicted by standard theory.

Our experimental framework can accommodate the study of a wide array of related

coordination problems. For example, Alonso et al. (2008) show that the quality of commu-

nication under decentralization can be worse if decisions are made sequentially as opposed

to simultaneously. This is because the player in the role of the follower has higher incentives

to misreport in an attempt to influence the decision of the leader, which makes coordina-

tion more difficult in theory. In light of our results, i.e., the players overweighting the

importance of coordination under decentralization, sequential decision making might make

coordination easier in practice. This is an empirical question that should be investigated.

It would also be interesting to study how our results on communication and behavior are

affected by asymmetries in coordination needs or partial centralization (where only one of
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the decisions is controlled by the principal).61

A different project could investigate coordination in teams with incomplete information.

Thus, each player in our experiment can be identified with a team of several subjects who

need to agree on which message to send and which decision to make. Feri et al. (2010) find

that team decision making can lead to higher coordination on efficient outcomes, a testable

prediction. An open question is whether the distortions observed in our treatments will be

robust to or alleviated by decisions being made in teams. Another experiment could nest

the basic framework in a repeated game. This would bring the setup closer to real world

organizations in which the same agents interact for longer periods of time and allow the

dynamics of communication62 and coordination to be investigated.

61Both of these extensions are theoretically explored in Rantakari (2008).
62Will subjects communicate private information more truthfully and trust more in longer relation-

ships? Does the quality of communication decrease over time in a finite game? Does the way in which

communication feeds into subjects’ decision rules change over time?
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A Appendix (For Online Publication)

A.1 Residual variance of communication

Residual variances under MIE can be computed analytically. If γ ∈ (0, 1), it is shown in

Alonso et al. (2008) that the residual variance of communication in MIE under decentral-

ization is given by

E
[
(θi − E[θi|mi])

2
]

=
1

12 + 9γ
if i = 1, 2. (A.1)

Under centralization, the residual variance of communication is given by

E
[
(θi − E[θi|mi])

2
]

=
γ

9 + 12γ
if i = 1, 2. (A.2)

Importance of coordination, γ

Vertical
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1

Residual Variance

0
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1
21

1
12
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Figure 4: Predicted communication quality as a function of γ.

Figure 4 plots the residual variance of communication in MIE.

Note that when coordination is irrelevant (γ = 0), it is an equilibrium to tell the truth

about one’s state and set d1 equal to θ1 and d2 equal to θ2. This is true in both the

centralized and the decentralized game. Because the residual variance of communication

in the truth-telling equilibrium is equal to zero, the residual variance under centralization

exhibits a discontinuity at γ = 0. Both residual variances also exhibit a discontinuity at

γ = 1 in MIE, because truth-telling can be sustained in equilibrium when coordination
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is the only relevant task, given that private information has no value. In principle, these

discontinuities may be behaviorally relevant. For example, it could be that when γ is low

the players decide to play the game ignoring coordination, in which case full revelation is

an equilibrium. This, however, is not observed in our data.
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A.2 Predictions about Normalized Coordination and Adaptation

Losses

Let CLk = E[(dk1 − dk2)2], k ∈ {C,D}, denote the normalized coordination loss. Similarly,

ALik = E[(dki − θki )2], k ∈ {C,D}, denotes the normalized adaptation loss for an arbitrary

agent i, which is symmetric between agents. We have the following results.

Proposition 1. For any γ ∈ (0, 1), CLC < CLD. Also, dCLC

dγ
< 0 and dCLD

dγ
< 0.

Proof. From the proof of Proposition 2 in Alonso et al. (2008, pag. 174), it follows that

CLC = 2
(1− γ)2

(1 + 3γ)2
1 + γ

3 + 4γ
, (A.3)

CLD = 2(1− γ)2
[

1

3
− γ 2

(1 + γ)(4 + 3γ)

]
. (A.4)

Differentiating (A.3) and (A.4) with respect to γ gives

dCLC
dγ

= −2
(1 + γ)(19 + 32γ + 5γ2)

(1 + 3γ)3(3 + 4γ)2
< 0, (A.5)

dCLD
dγ

= −2

3

(1− γ)(56 + 64γ + 17γ2 + 3γ3)

(1 + γ)2(4 + 3γ)2
< 0. (A.6)

Finally, CLC < CLD, for any γ ∈ (0, 1), follows from Lemma 2 in Alonso et al. (2008). �

Proposition 2. For any γ ∈ (0, 1), ALiC > ALiD. Also,
dALi

C

dγ
> 0 and

dALi
D

dγ
> 0.

Proof. From the proof of Proposition 2 in Alonso et al. (2008, pag. 174), it follows again

that

ALiC =
1

3
− (1 + γ)(1 + 6γ + γ2)

(1 + 3γ)2(3 + 4γ)
, (A.7)

ALiD =
7γ2 + γ3

3(1 + γ)(4 + 3γ)
. (A.8)

Differentiating (A.7) and (A.8) with respect to γ gives

dALiC
dγ

=
1 + 57γ + 131γ2 + 67γ3

(1 + 3γ)3(3 + 4γ)2
> 0, (A.9)

dALiD
dγ

=
γ

3

56 + 61γ + 14γ2 + 3γ3

(1 + γ)2(4 + 3γ)2
> 0. (A.10)

Finally, ALiC > ALiD, for any γ ∈ (0, 1), follows from Lemma 2 in Alonso et al. (2008). �
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A.3 Additional Analysis of Communication Quality

Tables 6-11 provide several robustness checks of the results in Table 2. The analysis is

carried out for the first five periods of the experiment in Table 6 and the last five periods

of the experiment in Table 7. Table 8 repeats the analysis in Table 2 using messages instead

of guesses to form a measure of residual variance, providing a robustness check that does

not rely on our belief elicitation procedure. Table 9 repeats it excluding observations in

which (i) the state and message are of opposite signs or (ii) the guess and message are

of opposite signs, which might be interpreted as mistakes. Because entering a minus sign

requires effort, an arguably more plausible interpretation is that only observations where a

minus sign is forgotten represent mistakes. Following this interpretation, Table 10 repeats

the analysis excluding observations in which (i) the state is negative and the message

is positive and (ii) the message is negative and the guess is positive, i.e. where one of

the players “forgets” a minus sign. Table 11 runs the regression in Table 2 clustering

the standard errors at the level of the message receiver (the subject making the guess).

This controls for heterogeneity at the subject level without allowing for between-subject

correlations.

While we find no significant treatment effects in periods 1-5 of the experiment (Table

6), this observation should be taken with caution as the effects of time on communication

quality are not significant.63 Tables 7-11 suggest that the quality of communication was

significantly higher under centralization if and only if the importance of coordination was

low, as predicted by MIE and reported in the main text.

A.3.1 Analysis of Heterogeneity

To study whether the effects regarding communication quality were reflected in distribu-

tions at the level of individual subjects, we generate subject “types” as follows. For each

subject i, we take the observations where the subject was in the role of Player 1 and Player

2 and average out the distances |Sent Messageit− θit| between the subject’s messages and

states. We identify the resulting variable with the subject’s “lying type.”64 Notice that the

63Specifically, we can run a single regression using observations in periods 1-5 and 11-15 of the exper-

iment. If we introduce treatment dummies, a dummy for observations in later periods, and interactions

between the treatment dummies and the late observations dummy, we find that none of the interactions

are significant.
64As noted by a referee, these labels may be somewhat misleading. A subject might send a message as

a recommendation of what action to take, in which case the receivers’ guesses might not correspond to
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Decentralized Centralized

γ̂ when γ = 0.25 0.4954 ≯ 0.2643

(0.1172) (0.0912)

��∨ ��∧
γ̂ when γ = 0.75 0.2815 ≮ 0.670

(0.0448) (0.2997)

Observations 1400

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 6: Treatment effects on residual variance of communication (periods 1-5).

Decentralized Centralized

γ̂ when γ = 0.25 0.3701 >∗∗ 0.1158

(0.0722) (0.0499)

��∨ ��∧
γ̂ when γ = 0.75 0.1914 ≮ 0.2368

(0.1314) (0.1652)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 7: Treatment effects on residual variance of communication (periods 11-15).

Decentralized Centralized

γ̂ when γ = 0.25 0.2979 >∗∗ 0.1036

(0.0539) (0.054)

��∨ ��∧
γ̂ when γ = 0.75 0.1458 ≮ 0.2484

(0.070) (0.149)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 8: Treatment effects on residual variance of communication (messages as guesses).

lying type is equal to zero if the subject’s messages always corresponded to the states. Sim-

the messages. While our analysis below uses the “lying” and “mistrust” terminology, a careful reader will

keep this caveat in mind.
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Decentralized Centralized

γ̂ when γ = 0.25 0.091 >∗∗ 0.0336

(0.022) (0.0077)

��∨ ��∧
γ̂ when γ = 0.75 0.104 ≮ 0.0956

(0.0415) (0.0461)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 9: Treatment effects on residual variance of communication (excluding observations

with sign switches).

Decentralized Centralized

γ̂ when γ = 0.25 0.2387 >∗∗∗∗ 0.0735

(0.0237) (0.0264)

∨∗∗ ��∧
γ̂ when γ = 0.75 0.1163 ≮ 0.172

(0.0376) (0.0906)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 10: Treatment effects on residual variance of communication (excluding observations

with missing minus sign).

Decentralized Centralized

γ̂ when γ = 0.25 0.4272 >∗∗∗ 0.1796

(0.0686) (0.0327)

∨∗∗∗ ∧∗∗∗

γ̂ when γ = 0.75 0.2164 <∗∗ 0.3971

(0.0315) (0.066)

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 11: Treatment effects on residual variance of communication (errors clustered by

receiver).

ilarly, averaging out the distances |Guessit − Received Messageit| between the subjects’
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elicited posterior beliefs and received messages, we obtain the subject’s “mistrust type.” A

subject whose guesses always corresponded to the received messages had a mistrust type

of zero.

Mean Standard Deviation Median Observations

Decentralized-Low 0.108 0.203 0.022 48

Decentralized-High 0.078 0.127 0.03 56

Centralized-Low 0.038 0.085 0.003 66

Centralized-High 0.088 0.157 0.011 68

(a) Lying types.

Mean Standard Deviation Median Observations

Decentralized-Low 0.058 0.147 0.008 48

Decentralized-High 0.045 0.08 0.015 56

Centralized-Low 0.045 0.085 0.008 66

Centralized-High 0.08 0.115 0.043 68

(b) Mistrust types.

Table 12: Summary statistics of lying and mistrust types.

We find that 75 subjects had a lying type of zero, 64 subjects had a mistrust type

of zero, and 49 subjects had a lying type of zero and a mistrust type of zero.65 I.e.,

the vast majority of subjects had non-zero lying and mistrust types. A more detailed

description of the data is provided in Table 12, which suggests several observations that

can be related to our analysis of residual variance. First, we find that the mean and

median lying type was smaller in Centralized-Low than Decentralized-Low (P < 0.01 in a

Wilcoxon rank-sum test).66 Second, the difference between mistrust types in Centralized-

Low and Decentralized-Low was small and not significant (P = 0.889). I.e., the lying

type was smaller under centralization and the effect of centralization on the mistrust types

was not significant when the importance of coordination was low, which is consistent with

Prediction 1 and the results on residual variance. An increase in γ led to more lying

types (P < 0.05) and more mistrust types (P < 0.01) under centralization. This is

also consistent with the residual variance results, as they show no overall effect of γ in the

centralized treatments. Inconsistent with the results on residual variance, γ had little effect

65The correlation between the lying and mistrust types has a coefficient of ρ = 0.737.
66We use the Wilcoxon rank-sum test in all statistical comparisons in this paragraph.
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on subjects’ types under decentralization (P = 0.735 for lying and P = 0.37 for mistrust

types). The discrepancy can be reconciled by the observation that when the quality of

communication is measured in terms of standard deviations |Other Stateit−Guessit|, the

significant difference between these two decentralized treatments disappears. This suggests

that the observed difference in residual variances of Decentralized-Low and Decentralized-

High was driven by relatively large errors in guesses.

Table 13, Table 14, and Table 15 provide some robustness checks of the results re-

ported in Table 12. In Table 13, we exclude observations with particularly large distances

between states and messages and messages and guesses when computing players’ types.

Specifically, when computing lying types, we exclude observations in which the messages

were of opposite sign of the associated states, and when computing mistrust types, we

exclude observations in which the guesses were of opposite sign of the messages. In Table

14, we exclude observations in which the state was negative and the message positive or the

message was negative and the guess positive. In Table 15, we compute lying and mistrust

types using observations from the last five periods in the experiment, which can be viewed

as a robustness check for learning effects.

Most of the statistical comparisons using the types in Tables 13-15 give qualitatively

similar results to those reported in Table 12. For instance, the lying types are significantly

smaller in Centralized-Low than Decentralized-Low (P < 0.01 leaving out observations

with sign switches or omitted minus signs). While the rank-sum test shows no significant

difference for later observations (P = 0.1645), the difference is significant according to a

t-test (P < 0.05). Similarly, in a regression with treatment dummy variables and session-

clustered errors, the coefficient on Centralized-Low is negative and strongly significant for

observations in the last five periods (P < 0.001). As in Table 12, the mistrust types in

Centralized-Low and Decentralized-Low are not significantly different (P = 0.784 leaving

out sign switches, P = 0.7709 leaving out omitted minus signs, and P = 0.813 for later

observations).
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Mean Standard Deviation Median Observations

Decentralized-Low 0.059 0.139 0.01 48

Decentralized-High 0.06 0.1 0.015 56

Centralized-Low 0.013 0.04 0.001 66

Centralized-High 0.043 0.073 0.011 68

(a) Lying types.

Mean Standard Deviation Median Observations

Decentralized-Low 0.034 0.11 0.007 48

Decentralized-High 0.032 0.053 0.013 56

Centralized-Low 0.026 0.044 0.007 66

Centralized-High 0.052 0.081 0.025 68

(b) Mistrust types.

Table 13: Summary statistics of lying and mistrust types (excluding observations with sign

switches).

Mean Standard Deviation Median Observations

Decentralized-Low 0.086 0.172 0.016 48

Decentralized-High 0.062 0.1 0.017 56

Centralized-Low 0.023 0.062 0.002 66

Centralized-High 0.053 0.089 0.011 68

(a) Lying types.

Mean Standard Deviation Median Observations

Decentralized-Low 0.04 0.12 0.007 48

Decentralized-High 0.033 0.057 0.013 56

Centralized-Low 0.029 0.049 0.007 66

Centralized-High 0.064 0.093 0.03 68

(b) Mistrust types.

Table 14: Summary statistics of lying and mistrust types (excluding observations with

omitted minus signs).
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Mean Standard Deviation Median Observations

Decentralized-Low 0.105 0.267 0 48

Decentralized-High 0.076 0.174 0 56

Centralized-Low 0.022 0.08 0 66

Centralized-High 0.058 0.162 0 68

(a) Lying types.

Mean Standard Deviation Median Observations

Decentralized-Low 0.032 0.12 0 48

Decentralized-High 0.027 0.094 0 56

Centralized-Low 0.033 0.087 0 66

Centralized-High 0.045 0.115 0 68

(b) Mistrust types.

Table 15: Summary statistics of lying and mistrust types (types estimated from observa-

tions in the last five periods of the experiment).
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A.4 Robustness Checks for Section 3.2

For our econometric analysis of learning, we use the following model under centralization:

Decisionit =
(1 + β0 + β1Highit + β2t+ β3tHighit)

(1 + 3 ∗ (β0 + β1Highit + β2t+ β3tHighit)
×Guess of the Stateit+

+
2 ∗ (β0 + β1Highit + β2t+ β3tHighit)

(1 + 3 ∗ (β0 + β1Highit + β2t+ β3tHighit)
×Guess of the Other Stateit + εit

and the following under decentralization:

Decisionit =(1− β0 − β1Highit − β2t− β3tHighit)× θit+

+
(β0 + β1Highit + β2t+ β3tHighit)

2

(1 + β0 + β1Highit + β2t+ β3tHighit)
×Guess of the Stateit+

+
(β0 + β1Highit + β3t+ β4tHighit)

(1 + β0 + β1Highit + β2t+ β3tHighit)
×Guess of the Other Stateit + εit

In the baseline case (Table 5), the NLS models are identical with the exception that the

coefficients involving time (β2 and β3) are omitted. The coefficient estimates and standard

errors of the model with learning are reported in Table 16. The main text describes the

results.

The remaining tables in this section report the results of robustness checks described

in Section 3.2 of the main text. Table 17 is identical to Table 3, with the exception that

standard errors are clustered at the level of the decision maker (as opposed to session). The

models underlying Table 18, Table 19, and Table 20 are described in the last paragraph of

Section 3.2.
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Decentralization Centralization

β0 0.684**** 0.0131*

(0.0883) (0.00632)

β1 0.189 0.252*

(0.139) (0.115)

β2 -0.0209**** 0.00193

(0.00179) (0.00162)

β3 0.0298* 0.00979

(0.0123) (0.00983)

Observations 1560 1320

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 16: Effects of learning on distortions of decision rules (see Section A.4 for the coef-

ficient legend).
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Decentralized Centralized

High (dummy=1 if γ = 3
4 ) -0.00735 0.0149

(0.0181) (0.0166)

State (θ) 0.493****

(0.0427)

Guess of the State 0.162**** 0.946****

(0.0396) (0.0130)

Guess of the Other State 0.345**** 0.0544****

(0.0297) (0.0130)

θ × High -0.270****

(0.0688)

Guess of the State × High 0.0576 -0.290****

(0.0710) (0.0339)

Guess of the Other State × High 0.213**** 0.290****

(0.0394) (0.0339)

Constant 0.0197 0.00615

(0.0138) (0.00956)

Observations 1560 1320

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 17: Estimated decision weights (standard errors clustered by subject making the

decision).

Decentralized Centralized

γ̂ when γ = 0.25 0.538 >∗∗∗ 0.25 0.055 <∗∗∗∗ 0.25

(0.128) (0.012)

γ̂ when γ = 0.75 1.048 >∗∗∗∗ 0.75 0.414 <∗∗∗∗ 0.75

(0.057) (0.052)

Observations 1560 1320

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 18: Estimated distortions of γ (messages as proxies for beliefs).
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Centralized

γ̂ when γ = 0.25 0.052 <∗∗∗∗ 0.25

(0.012)

γ̂ when γ = 0.75 0.443 <∗∗∗ 0.75

(0.072)

Observations 1320

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 19: Estimated distortions of γ under centralization (estimated with beliefs of Player

1 and Player 2).

Decentralized Centralized

γ̂ when γ = 0.25 0.517 >∗∗∗ 0.25 0.0296 <∗∗∗∗ 0.25

(0.081) (0.008)

γ̂ when γ = 0.75 0.9396 >∗∗∗ 0.75 0.356 <∗∗∗∗ 0.75

(0.07) (0.067)

Observations 1560 1320

Subject-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 20: Estimated distortions of γ (subject-clustered errors).
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A.4.1 Analysis of Heterogeneity

Table 21 compares the within-treatment means and medians of the estimated γ’s to their

predicted values. We find that the mean in Decentralized-Low is significantly greater than

predicted (P < 0.001 using a t-test), although the median is not (P = 0.685).67 While

the mean in Decentralized-High is not significantly greater than 0.75 (P = 0.291 using a

t-test), the median is (P < 0.001). Both of the means are significantly lower than predicted

in Centralized-Low and Centralized-High (P < 0.001 in both cases); while the median is

significantly lower than predicted in Centralized-Low (P < 0.001), but not in Centralized-

High (P = 0.523). The broad message of these findings is that Main Result 1 is reflected

not only in overall averages, but also in distributions at the level of individual subjects.

Mean Standard Deviation Median Observations

Decentralized-Low 0.446 0.377 0.278 48

Decentralized-High 0.792 0.296 0.983 56

Centralized-Low 0.07 0.15 0.004 66

Centralized-High 0.542 0.436 0.638 68

Table 21: Distributions of individual-level estimates of γ.

67When comparing the medians to the associated predicted values, we run a quantile regression for each

treatment. The dependent variable is the subject-level estimate of γ, and the single independent variable

is a constant. We then compare the estimated constant to its predicted value using an F-test.
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A.5 Omitted Figures and Tables
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Figure 5: Points lost in the experiment by subject.

(1) (2)

(d1 − d2)2 (di − θi)2

Decentralized-High -0.0935 0.117**

(0.0532) (0.0428)

Centralized-Low 0.204** -0.145***

(0.0700) (0.0402)

Centralized-High -0.0596 0.0590

(0.0469) (0.0741)

Constant 0.319**** 0.220****

(0.0424) (0.0369)

Observations 1440 2880

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 22: Degrees of adaptation and coordination in different experimental treatments.

The Decentralized-Low treatment serves as a baseline.
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A.6 Additional Analysis of Payoffs

Recall that theory predicts expected payoffs under centralization to be higher for both

chosen values of γ. The first column of Table 23 presents the results of a regression in

which the total points lost by Player 1 and Player 2 from the decisions made in the game68

are regressed against the treatment indicator variables.69 The results show that losses are

marginally lower under centralization than decentralization when γ is low (P < 0.1). They

are also lower under decentralization when γ is high, although the difference in this case is

not statistically significant (P = 0.7738 in a test of equality of coefficients on Decentralized-

High and Centralized-High). These results are not consistent with the MIE predictions,

which is not surprising given the deviations from equilibrium behavior documented above.

The fact that γ is underweighted under centralization makes a principal’s comparative

advantage in coordination weaker. Similarly, that γ is overweighted under decentralization

weakens each agent’s comparative advantage in adaptation.

In the second column of Table 23, we regress the relative losses due to distortions against

the treatment dummies. The estimates show that these losses were positive and signifi-

cant in each of our treatments (P < 0.001 in every treatment). The negative coefficient

on Centralized-Low (P < 0.01) suggests that the relative losses due to distortions were

lower in this treatment than in the others. Recall that subjects in the centralized treat-

ments overweighted the importance of adaptation. The negative coefficient suggests that in

Centralized-Low, where coordination was not important, the overweighting of adaptation

was less costly than it was in Centralized-High. It was also less costly than the underweight-

ing of adaptation in the decentralized treatments. This is because in Decentralized-High–

where the underweighting of adaptation was less costly than in Decentralized-Low–the

subjects still found it difficult to coordinate their decisions. Table 24 shows that the rel-

ative loss due to miscoordination is higher in Decentralized-High than in Centralized-Low

(see also Appendix A.7).

The third column of Table 23 reports the results of a regression of subjects’ relative mis-

communication losses against the treatment indicator variables. These results show that

these losses were positive and significant in Decentralized-Low (P < 0.05 on the constant

term) and not in any other treatment (P > 0.1 on the test of the constant plus any of the

indicator variables being equal to zero). This is consistent with the results on communi-

cation quality reported in Section 3.1, where we find that the quality of communication is

68That is, excluding the points lost for guessing.
69Only subjects in the roles of Player 1 and Player 2 are used in this regression to avoid double-counting.
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Total points lost Relative payoff loss Relative payoff loss

from the decisions from distortions from communication

Lobserved Lobserved − Lreported beliefs Lreported beliefs − LMIE

Decentralized-High 0.0667 0.346 -0.0116

(0.281) (0.283) (0.0260)

Centralized-Low -0.463* -0.600*** 0.140

(0.242) (0.163) (0.143)

Centralized-High 0.154 0.353 0.101

(0.260) (0.214) (0.0893)

Constant 1.959**** 1.268**** 0.0303**

(0.171) (0.157) (0.0120)

Observations 1440 1440 1440

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 23: Payoff analysis. Lobserved = Lobserved1 + Lobserved2 denotes the total points lost by

Player 1 and Player 2 in the game due to the decisions, Lreported beliefs = Lreported beliefs1 +

Lreported beliefs2 denotes the points that the team would have lost if the decision makers

employed equilibrium decision rules with their reported (elicited) beliefs, and LMIE =

LMIE
1 + LMIE

2 denotes the total points that Player 1 and Player 2 would have lost if they

employed equilibrium decision rules and formed beliefs according to MIE.
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significantly different from MIE in the Decentralized-Low treatment.
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A.7 Additional Analysis of Adaptation and Coordination Losses

Table 24 breaks point losses of teams in different treatments of the experiment into misco-

munication and miscoordination components. Thus, for example, the miscommunication

component of the relative coordination loss in the treatments with γ = 3
4

is calculated as:70

2∑
i=1

{
3 ∗
(
(dreported beliefsi − dreported beliefs−i )2 − (dMIE

i − dMIE
−i )2

)}

Note that this table can be used to recover the overall relative losses due to distortions or

communication reported in Table 23. For example, to compute the relative losses due to

distortions in Decentralized-Low (Table 23, constant term in the second column), add the

relative coordination losses due to distortions in Decentralized-Low (Table 24, first column,

second row) to the relative adaptation losses due to distortions in Decentralized-Low (Table

24, first column, fifth row).

Recall from the second column of Table 23 that the relative payoff losses due to dis-

tortions were smaller in Centralized-Low than in any of the other treatments. Table 24

provides evidence for our conjecture that this was driven by coordination losses being

smaller in Centralized-Low (where the overweighting of adaptation was less costly) than

in Centralized-High. Thus, while the coordination loss due to distortions was greater in

Centralized-High than in Centralized-Low, distortions in decision rules did not lead to

adaptation losses under centralization (all P > 0.1). The table also provides additional

evidence for Result 2: very little of the significant loss in payoffs is due to miscommu-

nication. As discussed above, the only treatment showing significant payoff loss due to

miscommunication is Decentralized-Low.

70The sum is necessary in the expression because the analysis of the decompositions is carried out in

terms of team rather than individual payoffs.
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D-L D-H C-L C-H

Relative coordination loss 0.125 1.236**** 0.810**** 1.533****

(0.081) (0.191) (0.111) (0.120)

Relative coordination loss (Distortions) 0.111 1.233**** 0.826**** 1.533****

(0.070) (0.200) (0.097) (0.120)

Relative coordination loss (Miscommunication) 0.014 0.003 -0.017 0.0001

(0.014) (0.012) (0.016) (0.001)

Relative adaptation loss 1.173**** 0.397**** 0.028 0.219

(0.220) (0.038) (0.082) (0.134)

Relative adaptation loss (Distortions) 1.157**** 0.381**** -0.158 0.088*

(0.221) (0.042) (0.106) (0.050)

Relative adaptation loss (Miscommunication) 0.016**** 0.016 0.187 0.131

(0.002) (0.012) (0.134) (0.088)

Observations 360 420 330 330

Session-clustered standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001

Table 24: Decompositions of adaptation and coordination losses into a component due to

distortions of decision weights and a component due to miscommunication. The standard

errors are obtained by regressing each of the variables (e.g., relative coordination loss)

against the treatment dummies.
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A.8 Simulations for Risk Preferences (Centralization)

To accommodate risk-seeking as well as risk-averse preferences, we assume that the decision

maker in the experiment has a utility function of the form U(x) = −(−x)α, with α > 1

leading to risk-averse and α ∈ (0, 1) to risk-seeking behavior. Suppose that authority is

centralized. Let νi be the principal’s posterior expectation about θi after having received

a message about θi. Suppose that ν̃i ∈ {νi − ε, νi + ε}, with ε > 0, i = 1, 2. Let p =

Prob(ν̃i = νi + ε). Then, E[ν̃i] = νi + (2p − 1)ε and V ar(ν̃i) = 4p(1 − p)ε2. When p is

close to 1
2
, the distribution of νi is a proxy for a uniform posterior distribution around the

posterior mean νi, as it would be in communication equilibria with risk-neutrality.71 The

parameter ε can be interpreted as a measure of uncertainty about the posterior expectation

νi. The problem of the principal can therefore be written as:

max
d1,d2∈R

−E
[(

(1− γ)(d1 − ν̃1)2 + (1− γ)(d2 − ν̃2)2 + 2γ(d1 − d2)2
)α]

. (A.11)

If the principal were risk-neutral (α = 1), she would choose

di =
1 + γ

1 + 3γ
E[ν̃i] +

2γ

1 + 3γ
E[ν̃j], i = 1, 2, i 6= j. (A.12)

Note that the decision rules are exactly those used by the principal in our baseline model.

We perform simulations to calculate the average distance between the principal’s deci-

sions, |d1−d2|, for different values of ν1, ν2, α, and ε.72 In the simulations, we assume that

p = 1
2
73 and consider νi ∈ [−0.6, 0.6].74 Figure 6 shows the simulated average distances

D(ε, α) ≡ Mean(ν1,ν2)

{
|dRS1 − dRS2 | − |dRN1 − dRN2 |

}
for different values of α and ε, with

α ∈ [0, 1].75 The figure shows that the simulated average distance is negative, which means

that the decisions are on average more coordinated under risk-seeking than risk-neutrality.

If we average over ε ∈ [0, 0.4], and α ∈ [0, 1], we obtain that the average distance between

decisions under risk-seeking is -0.04 for γ = 1/4 and -0.01 for γ = 3/4.76 In the experiment,

71Although communication equilibria could have different features under risk aversion, we make this

distributional assumption for tractability.
72We set the grid sizes to 0.05 for νi, i = 1, 2, 0.02 for ε.
73Robustness checks suggest that the magnitude of distortions is little affected by relaxing it.
74The values of ν1 and ν2 are chosen in such a way that max {|νi − ε|, |νi + ε|} ≤ 1, i = 1, 2, given the

simulated values of ε ∈ [0, 0.4]. Varying ε over a smaller interval leads to smaller distortions.
75More precisely, we calculate the distance D for each vector (α, ε, ν1, ν2) and, holding α and ε fixed,

average the distances obtained for different values of (ν1, ν2). The grid size for α is set at 0.05.
76We also performed simulations with a larger number of states, namely,

{
νi − ε, νi − ε

3 , νi + ε
3 , νi + ε

}
,

i = 1, 2. We found similar qualitative and quantitative results.
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the average absolute distance between the observed and risk-neutral equilibrium decisions,

|dObserved1 − dObserved2 | − |dEq1 − d
Eq
2 |, is approximately 0.29 for Centralized-Low and 0.22 for

Centralized-High. Based on these simulation results, we conclude that risk-seeking cannot

explain the over-coordination observed in the centralized treatments in the data.

Simulation results for risk-averse preferences are shown in Figure 7. The figure gives

us a rough idea of how much risk aversion is necessary to generate distortions of the order

observed in the experiment. With α ∈ [1, 5],77 we obtain that the average difference in the

distances is 0.05 for γ = 1/4 and 0.01 for γ = 3/4. Although the simulated distortions go

in the same direction as what we observe in our data, the magnitudes are of a different

order even with highly unreasonable degrees of risk aversion. For example, averaging over

α ∈ [10, 20] only raises the average between distances to 0.098 for γ = 1/4 and 0.029

γ = 3/4. We performed simulations with alternative, standard, utility functions such as

the log and CRRA and obtained similar results. This shows that risk aversion can partly

explain the distortions observed in the centralized treatments with incomplete information

but cannot fully accommodate them.

77The grid size for α was increased to 0.1 due to the larger parameter interval.
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(a) Comparison of average distances between optimal risk-seeking and risk-neutral decisions,

|dRS1 − dRS2 | − |dRN1 − dRN2 | for γ = 1
4 . Each point corresponds to the average over (ν1, ν2) ∈

[−0.6, 0.6]2 with a grid of size 0.05. The grid size for α is 0.05.

(b) Comparison of average distances between optimal risk-seeking and risk-neutral decisions,

|dRS1 − dRS2 | − |dRN1 − dRN2 | for γ = 3
4 . Each point corresponds to the average over (ν1, ν2) ∈

[−0.6, 0.6]2 with a grid of size 0.05. The grid size for α is 0.05.

Figure 6: The effect of risk-seeking on coordination behavior in centralized coordination

games.
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(a) Comparison of average distances between optimal risk-averse and risk-neutral decisions, |dRA1 −
dRA2 | − |dRN1 − dRN2 | for γ = 1

4 . Each point corresponds to the average over (ν1, ν2) ∈ [−0.6, 0.6]2

with a grid of size 0.05.

(b) Comparison of average distances between optimal risk-averse and risk-neutral decisions, |dRA1 −
dRA2 | − |dRN1 − dRN2 | for γ = 3

4 . Each point corresponds to the average over (ν1, ν2) ∈ [−0.6, 0.6]2

with a grid of size 0.05.

Figure 7: The effect of risk aversion on coordination behavior in centralized coordination

games.
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A.9 Simulations for Risk Preferences (Decentralization)

Under decentralization, we can without loss of generality consider the decision problem

of Player 1. Player 1 observes her own local conditions θ1 and needs to make a single

decision without knowing the decision made by Player 2. Let us reformulate the problem

assuming that the decision of Player 2, d̃2, is random from Player 1’s perspective and could

take on the value d2 + ε with probability p, or d2 − ε otherwise, where d2 ∈ (−1, 1) and

ε ∈ (0, 1 − |d2|). We interpret d2 as the expected decision of Player 2 from Player 1’s

perspective.

Given a risk aversion coefficient α, Player 1’s decision problem can be written as

max
d1∈R

−E
[(

(1− γ)(d1 − θ1)2 + γ(d1 − d̃2)2
)α]

. (A.13)

If Player 1 were risk-neutral (α = 1), she would choose

d1 = (1− γ)θ1 + γE[d̃2]. (A.14)

Note that this decision rule is the same as the one used by Player 1 in the baseline model,

given our interpretation of d2.

We perform simulations to calculate the degree of adaptation, |d1 − θ1|, for different

values of θ1, d2, α, and ε. In the simulations, we assume that p = 1
2

and consider values

of θ1 ∈ [−1, 1], d2 ∈ [−0.6, 0.6], and ε ∈ [0, 0.4].78 Figure 8 shows the simulated average

distances D(ε, α) ≡ Mean(θ1,d2)

{
|dR1 − θ1| − |dRN1 − θ1|

}
for different values of α and ε.

The figure shows that the decisions are on average more adapted under risk-seeking than

risk neutrality, and more adapted under risk neutrality than under risk aversion. More

precisely, averaging over ε ∈ [0, 0.4] and α ∈ {0.2, 0.4, 0.6, 0.8}, for a risk seeking decision

maker, we obtain that the average distances are approximately -0.02 for γ = 1/4, and

-0.05 for γ = 3/4. For degrees of risk aversion in the set {2, 3, 4, 5}, the same average

leads to 0.036 for γ = 1/4, and 0.05 for γ = 3/4. For comparison, the average distance

between decisions and states in the data is approximately 0.128 for γ = 1/4, and 0.10

for γ = 3/4. Thus, risk aversion explains the direction of the observed distortions under

decentralization. It is also provides quantitative benchmarks that are closer to the data

than their counterparts in the centralized case.

78The grids for θ1, d2, and ε are 0.01, 0.01, and 0.02, respectively.
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(a) Comparison of average distances between optimal risky and risk neutral level of adaptation,

|dR1 − θ1| − |dRN1 − θ1| for γ = 1
4 , different attitudes toward risk, α ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5},

and different values of ε ∈ [0, 0.4] with grid of size 0.02. Each point corresponds to the average

over (θ1, d2) ∈ [−1, 1]× [−0.6, 0.6] with a grid of size 0.01.

(b) Comparison of average distances between optimal risky and risk neutral level of adaptation,

|dR1 − θ1| − |dRN1 − θ1| for γ = 3
4 , different attitudes toward risk, α ∈ {0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5},

and different values of ε ∈ [0, 0.4] with grid of size 0.02. Each point corresponds to the average

over (θ1, d2) ∈ [−1, 1]× [−0.6, 0.6] with a grid of size 0.01.

Figure 8: The effect of attitudes toward risk on the degree of adaptation in decentralized

coordination games.
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A.10 Simulations for Ambiguity Preferences (Centralization)

We now use simulations similar to those described in Sections A.8 and A.9 to argue that

strategic uncertainty about communication rules combined with ambiguity-aversion can

generate distortions of larger magnitudes than those generated by risk-aversion alone.

Moreover, ambiguity-aversion can generate distortions in the right direction even with

risk-seeking preferences. To see this, assume that the principal solves the following opti-

mization problem:

max
d1,d2∈R

min
µ∈{(p,1−p),(1−p,p)}

−Eµ
[(

(1− γ)(d1 − ν̃1)2 + (1− γ)(d2 − ν̃2)2 + 2γ(d1 − d2)2
)α]

.

Here, µ indexes the principal’s belief system, which specifies beliefs both about ν1 and

about ν2.
79

The belief system can be either (p, 1 − p) or (1 − p, p). If µ = (p, 1 − p), p is the

probability that ν1 is high as well as the probability that ν2 is low.80 If µ = (1− p, p), then

p is the probability that ν1 is low as well as the probability that ν2 is high. Thus, for any

p 6= 1/2, the principal considers two belief systems: one in which the probability that ν1 is

high is greater than the probability that ν2 is high, and another in which the probability

that ν2 is high is greater than the probability that ν1 is high. Intuitively, for any (ν1, ν2),

the principal posterior beliefs can take on one of four values: (ν1− ε, ν2− ε), (ν1− ε, ν2 + ε),

(ν1 + ε, ν2− ε), or (ν1 + ε, ν2 + ε). The principal will use one of two belief systems (p, 1− p)
and (1− p, p) to compute her expected utility. Ambiguity-aversion will make the principal

select the belief system under which “bad” posteriors–posteriors where beliefs about ν1 and

ν2 are further apart–are more likely. In the simulation, we consider three possible values

for p ∈ {0.1, 0.3, 0.6}. To complete the description of the simulation, we assume that both

belief systems are equally likely, so that an ambiguity neutral decision maker will have a

posterior belief equal to 1/2 for any of our possible values of p.

Our simulation results with different values of p and α are reported in Figure 9 in the

appendix. These results show that introducing ambiguity-aversion amplifies the distortions

caused by risk aversion considerably. Thus, even with risk neutrality, that is, α = 1, we

obtain that the average difference in the distances, over our simulated values of p, is 0.1369

for γ = 1/4 and 0.031 for γ = 3/4. Increasing the risk aversion coefficient to α = 2 increases

the average difference in distance to 0.1547 for γ = 1/4 and 0.039 for γ = 3/4, thus more

than tripling the average distances compared to an ambiguity neutral but risk averse agent

79Recall that we assume ν1 and ν2 are independent.
80Formally, p = Prob(ν̃1 = ν1 + ε) and p = Prob(ν̃1 = ν1 − ε).
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with the same attitudes toward risk. We conclude that reasonable degrees of risk aversion

(i.e., α = 2), coupled with extreme aversion to ambiguity, can account for 17% to 55%

of the distortions observed in the data. Moreover, note that when p is either sufficiently

low or sufficiently high, the simulated distortions are quantitatively close to those for an

ambiguity neutral decision maker for values of α in the upper part of the interval [0, 1].

This suggests that ambiguity-aversion can generate a reasonable fit to the data even with

moderate risk-seeking preferences.
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(a) Comparison of average distances between optimal maxmin and risk/ambiguity-neutral deci-

sions, |dMM
1 − dMM

2 | − |dRN1 − dRN2 | for γ = 1
4 , different degrees of risk aversion α, and different

distribution parameters p. Each point corresponds to the average over (ν1, ν2) ∈ [−0.6, 0.6]2 with

a grid of size 0.05. The grid size for the decisions is 0.05, and the value of ε = 0.4.

(b) Comparison of average distances between optimal maxmin and risk/ambiguity-neutral deci-

sions, |dMM
1 − dMM

2 | − |dRN1 − dRN2 | for γ = 3
4 , different degrees of risk aversion α, and different

distribution parameters p. Each point corresponds to the average over (ν1, ν2) ∈ [−0.6, 0.6]2 with

a grid of size 0.05. The grid size for the decisions is 0.05, and the value of ε = 0.4.

Figure 9: The effect of ambiguity-aversion on coordination behavior in centralized coordi-

nation games.
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