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Abstract. Long-run restrictions have been used extensively for identifying structural

shocks in vector autoregressive (VAR) analysis. Such restrictions are typically just-

identifying but can be checked by utilizing changes in volatility. This paper reviews

and contrasts the volatility models that have been used for this purpose. Three main

approaches have been used, exogenously generated changes in the unconditional residual

covariance matrix, changing volatility modelled by a Markov switching mechanism and

multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models.

Using changes in volatility for checking long-run identifying restrictions in structural VAR

analysis is illustrated by reconsidering models for identifying fundamental components of

stock prices.
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1 Introduction

An important problem in vector autoregressive (VAR) analysis is that the reduced form

residuals are typically not the shocks that are of interest from an economic point of view.

Determining shocks of economic interest is a main subject of structural VAR (SVAR) anal-

ysis. Proposals have been made how to identify shocks by placing restrictions on the im-

pact effects, the long-run responses of the variables, or the signs of the impulse responses.

More recently it has been discussed how to utilize changes in the volatility of the residuals

or the variables for getting identifying information for the shocks. Important work on that

topic is due to Rigobon (2003), Rigobon and Sack (2003), Normandin and Phaneuf (2004),

Lanne and Lütkepohl (2008a), Bouakez and Normandin (2010) and Lanne, Lütkepohl and

Maciejowska (2010). A survey of that literature appears in Lütkepohl (2013a).

Much of the SVAR literature on identification via heteroskedasticity considers models

where short-run restrictions are used in a conventional setting. For example, monetary

policy analysis is an important area of applications. There are, however, also many SVAR

studies that use long-run restrictions. For example, they have been used for identifying

technology shocks. In fact, there is a controversial discussion of the impact of technology

shocks on hours worked. In parts of the literature technology shocks are found to increase

hours worked and in other studies they are diagnosed to lead to a reduction (e.g., Gaĺı

(1999), Christiano, Eichenbaum and Vigfusson (2004)). Long-run restrictions are also

commonly used in analyzing the relation between economic conditions and the stock

market. Some studies find that the stock market is driven by fundamentals whereas other

studies attribute stock market movements primarily to speculation (see Velinov (2013)

for a survey).

Given the importance of long-run restrictions for identifying structural shocks in the

SVAR literature we first present a unifying framework for identifying structural shocks

by imposing long-run restrictions possibly in combination with restrictions on the short-

run effects. The latter are typically zero restrictions on the impact effects while long-run

restrictions usually ensure that specific shocks do not have a long-lasting or permanent

effect on some of the variables whereas other shocks may have persistent effects. For

example, in an important study in this context, Blanchard and Quah (1989) assume

that demand shocks do not have permanent effects on output while the long-run impact

of supply shocks is not restricted. Long-run effects of shocks are possible if some of

the variables are integrated and, hence, have some persistence. In the Blanchard-Quah

approach it is typically assumed that some variables appear in growth rates and the effects

of the shocks on the levels or log-levels may be permanent. Thus, the variables enter in
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transformed stationary form in the VAR model. Such an approach is justified if there

is no cointegration between the levels variables. For the case of cointegrated variables

it is preferable to set up a vector error correction (VEC) model. King, Plosser, Stock

and Watson (1991) propose an approach for imposing long-run restrictions for shocks

in such cointegrated VAR models. It also allows for restrictions on the impact effects

of shocks. As shown by Fisher and Huh (2014), other approaches of imposing long-run

restrictions on SVAR models can be cast in this modelling framework as well. We first

present the King et al. (1991) approach as a unifying framework for imposing long-run

and short-run restrictions in SVAR models and then discuss the relation to the literature

on identification via heteroskedasticity.

The long-run and short-run restrictions used for identifying structural shocks in VAR

models are typically just-identifying. Hence, they can not be tested in a conventional

framework. We show how changes in volatility can be used to obtain additional identifying

information that can be used to test restrictions that are just-identifying in a conventional

framework. To this end we give a brief survey of the main approaches that have been used

for identifying SVARs through heteroskedasticity. Our review draws partly on Lütkepohl

(2013a) but is more condensed and less technical. In contrast to Lütkepohl (2013a) we

will pay special attention to VAR models with integrated and cointegrated variables.

Illustrative examples are presented from the literature that investigates the impact of

fundamental shocks on stock prices. Since financial market series are often characterized

by changes in volatility or conditional heteroskedasticity they have features that are an

important precondition for applying the techniques developed in the related literature.

Moreover, the identifying restrictions used in this context are sometimes on soft grounds

so that bringing in alternative sources for identification is desirable.

This study is organized as follows. The general model setup is presented in Section 2.

Specific models for changes in volatility that are useful for providing additional identifying

information for shocks in SVAR models are reviewed in Section 3. Illustrations based

on studies from the literature on the importance of fundamental shocks for stock price

movements are discussed in Section 4 and conclusions are presented in Section 5.

2 SVARs with Integrated and Cointegrated Variables

We start from a K-dimensional reduced form VAR(p) model,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where ν is a (K×1) constant term, Aj (j = 1, . . . , p) are (K×K) VAR coefficient matrices

and ut is a zero-mean white noise error term with nonsingular covariance matrix Σu, that
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is, ut ∼ (0,Σu). Considering more general deterministic terms is easily possible. We avoid

them in our basic model because they are of no importance for the structural analysis we

are interested in.

The components of yt may be integrated and cointegrated variables. For simplicity we

assume that all variables are stationary (I(0)) or integrated of order one (I(1)). For our

empirical example in Section 4 this assumption is general enough and it also covers the

majority of examples in the related literature. Hence, it makes sense to avoid complica-

tions resulting from more general assumptions regarding the integration properties of the

variables. If there are integrated variables, using the vector error correction (VEC) form

of model (1) is often helpful. Assuming that there are r linearly independent cointegration

relations, it can be written as

∆yt = ν + αβ′yt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut, (2)

where ∆ is the differencing operator such that ∆yt = yt − yt−1, ν is a (K × 1) constant

term as before, α is a (K × r) loading matrix, β is a (K × r) cointegration matrix and

Γ1, . . . ,Γp−1 are (K ×K) coefficient matrices (see, e.g., Lütkepohl (2005) for the relation

between the parameters in (1) and (2)).

SVAR analysis with homoskedastic reduced form residuals ut assumes that the struc-

tural shocks, εt, are obtained from the reduced form residuals by a linear transformation

εt = B−1ut. In other words, Bεt = ut, where B is such that the structural shocks are

instantaneously uncorrelated, that is, εt ∼ (0,Σε), and Σε is a diagonal matrix. In fact,

the structural variances are often normalized to one so that Σε = IK and, hence, B is

such that Σu = BB′. The matrix B is not uniquely determined by this relation. In fact,

at least K(K − 1)/2 further relations or restrictions are needed for uniquely identifying

B.

Substituting Bεt for ut in (1) or (2) the matrix B is easily recognized as the matrix

of impact effects of the structural shocks. Thus, imposing restrictions on the impact

effects constrains the elements of B directly. Exclusion restrictions are quite common in

this context. In other words, a certain shock may be assumed to have no instantaneous

effect on a particular variable. A recursive structure that implies a triangular B matrix

is not uncommon in this framework. Exclusion restrictions are also often imposed on

the instantaneous relations of the observed variables yt. Such restrictions amount to

restricting B−1. Of course, a triangular matrix B−1 implies also a triangular matrix B.

Restrictions on the long-run effects of the shocks have also been used frequently for

identifying B. To see how this is done it may be useful to consider the matrix of long-run

effects of the reduced form errors from the Granger-Johansen representation (see Johansen
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(1995)) of the yt corresponding to (2),

Ξ = β⊥

[
α′⊥

(
IK −

p−1∑
i=1

Γi

)
β⊥

]−1
α′⊥, (3)

where β⊥ and α⊥ are (K × (K − r)) dimensional orthogonal complements of the (K × r)
dimensional matrices β and α, respectively (see, e.g., Lütkepohl (2005, Chapter 9) for

details). If the cointegration rank r is zero, the orthogonal complements matrices are

simply replaced by (K×K) identity matrices so that the long-run effects matrix becomes

Ξ =

(
IK −

p−1∑
i=1

Γi

)−1
. (4)

In each case the corresponding long-run effects of the structural shocks are given by ΞB.

Since α and β have rank r if the cointegration rank is r, their orthogonal complements

have rank (K − r). Hence, Ξ also has rank (K − r) and the same holds for ΞB because

B is of full rank K. As a consequence, there can only be at most r shocks without any

long-run effects because there can be at most r columns of zeros in ΞB. Generally, for a

given Ξ matrix, restricting the product ΞB implies restrictions for B and, hence can help

identify the structural shocks. Identification of the structural shocks in this framework is

discussed by King et al. (1991) and an introductory account is given in Lütkepohl (2005,

Chapter 9). Therefore we do not provide a full discussion here but just mention two

specific issues for later reference that have to be taken into account: (1) Shocks without

any long-run effect at all (with corresponding zero column in ΞB) need to be identified

by other restrictions such as zero restrictions on the impact effects. Of course, if there is

just one such shock, there is no need for further restrictions to identify that shock. (2)

Since the rank of ΞB is (K − r), it is in general not sufficient to identify all shocks by

K(K − 1)/2 restrictions on the matrix of long-run effects.

Because the case of a cointegration rank of zero is of specific interest, it may be worth

discussing that situation in a little more detail here. As mentioned before, for r = 0

the matrix of long-run effects ΞB is of full rank K and, hence, there cannot be shocks

with no long-run effects at all, that is, there cannot be zero columns in ΞB. Thus, all K

structural shocks have some long-run effects and it turns out that they can be identified

via K(K − 1)/2 suitable restrictions on ΞB. For example, restricting this matrix to be

triangular is sufficient. Of course, if the cointegrating rank is zero, the VEC model (2)

reduces to a VAR model in first differences,

∆yt = ν + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ut,
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for which the accumulated long-run effects on the ∆yt are known to be (IK−
∑p−1

i=1 Γi)
−1B.

The accumulated effects on the first differences are just the long-run effects on the levels

yt. Considering the accumulated effects of a stationary system is of particular interest in

this context because in a number of applied studies the restrictions and shocks are set

up such that the accumulated long-run effects matrix is triangular. This case was first

considered by Blanchard and Quah (1989) and in that case estimation of the structural

parameters, i.e., the B matrix, is particularly easy (e.g., Lütkepohl (2005, Chapter 9)).

We see another example in Section 4.

There is a large body of literature on long-run restrictions for identifying structural

shocks in VARs. For example, there are proposals by Gonzalo and Ng (2001), Fisher,

Huh and Summers (2000), and Pagan and Pesaran (2008). Fisher and Huh (2014) review

that literature and discuss the relations between the various approaches. In the present

context it is not important which approach is used for imposing long-run restrictions.

They can all be combined with the identification procedures derived from time varying

volatility discussed in the next section.

3 SVAR Models with Changes in Volatility

3.1 General Setup

So far we have discussed restrictions on the short- and long-run effects of shocks, that

is, restrictions on B directly or via the restrictions on ΞB to make B unique for a given

reduced form error covariance matrix Σu. Another way of getting a unique B matrix is

available if there are two different covariance matrices, say Σ1 and Σ2, for example, if

E(utu
′
t) = Σ1 in the first part of the sample, say for t = 1, . . . , T1, and E(utu

′
t) = Σ2 in

the second part of the sample (t > T1). Then it is known from matrix algebra (see, e.g.,

Lütkepohl (1996, Sec. 6.1.2 (10))) that there exists a matrix B and a diagonal matrix

Λ = diag(λ1, . . . , λK) such that

Σ1 = BB′ and Σ2 = BΛB′. (5)

Using this B matrix to obtain structural shocks from the reduced form errors as εt =

B−1ut, gives

E(εtε
′
t) =

{
IK , t = 1, . . . , T1,

Λ, t > T1.

These shocks satisfy the basic requirement of being instantaneously uncorrelated because

Λ is diagonal. In fact, the matrix B is unique apart from changes in the signs and
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permutations of the columns if the diagonal elements of Λ are all distinct (Lanne et al.

(2010)). In other words, if the latter condition holds, unique shocks are obtained by just

imposing the basic requirement that they have to be instantaneously uncorrelated.

Note, however, that using the same transformation matrix B for the whole sample

period, that is, for both volatility states, implies that the impact effects of the shocks

are time-invariant and only the variances differ across states. All other requirements for

uniqueness of the joint decomposition of the two covariance matrices do not affect the

shocks substantively. The possibility for changing the sign of a column just means that

we may consider negative instead of positive shocks and vice versa. Moreover, permuting

columns of the B matrix just changes the ordering of the shocks and that can be chosen

freely, as usual in SVAR analysis. Thus, fixing some ordering of the shocks and their sign

is not restrictive.

Of course, the unique shocks obtained in this way may not be shocks of economic in-

terest because no economics has been used in constructing them. However, if our minimal

assumptions lead to unique shocks, then any further restrictions become over-identifying

and, hence, testable. For example, if economic considerations suggest restrictions on the

long-run effects of the shocks, these restrictions become testable in our framework even

if they are just-identifying in a conventional setting and this is what makes it attrac-

tive to use changes in volatility in this context. Moreover, if unique shocks are obtained

via identification through heteroskedasticity, then they may be recognizable as plausi-

ble economic shocks by the characteristics of the corresponding impulse responses. For

example, the shape and sign of certain impulse responses may suggest a specific shock.

However, labelling the shocks properly typically requires reference to considerations based

on economic theory.

Of course, there may be more than two volatility regimes. If there are M > 2 regimes

with corresponding covariance matrices Σ1, . . . ,ΣM , the decomposition

Σ1 = BB′, Σm = BΛmB
′, m = 2, . . . ,M, (6)

with diagonal matrices Λm = diag(λm1, . . . , λmK) (m = 2, . . . ,M) may not exist. Hence,

the decomposition (6) imposes testable restrictions on the covariance matrices. There-

fore it can be checked with a statistical test whether the data are compatible with the

decomposition and, hence, we can use B to transform the reduced form residuals into

structural errors with time-invariant impact effects. Uniqueness of B (apart from or-

dering and sign) in this case follows if for any two subscripts k, l ∈ {1, . . . , K}, k 6= l,

there is a j ∈ {2, . . . ,M} such that λjk 6= λjl (Lanne et al. (2010, Proposition 1)). This

identification condition has the advantage of being testable because, if there are M dis-

tinct volatility regimes, then the diagonal elements of the Λm matrices are identified and,

6



hence, can be estimated consistently with a proper asymptotic distribution under common

assumptions.

So far we have just considered finitely many volatility states. If conditional het-

eroskedasticity is generated by a GARCH process, then there is a continuum of condi-

tional covariance matrices Σt|t−1. We discuss this case in more detail below and therefore

just mention here that it can also be used for identifying shocks in SVAR models in

much the same way as for finitely many covariance matrices. It should be clear by now

that having two different covariance matrices is crucial for getting unique shocks. Having

more covariance matrices is an advantage but not required for identification via changes

in volatility.

3.2 Specific Models for Changes in Residual Volatility

Three main assumptions regarding the changes in volatility have been used in the SVAR

literature: (1) exogenous changes in the unconditional residual covariance matrices in

given time periods, (2) changes in the residual volatility generated by a Markov regime

switching mechanism, and (3) volatility changes generated by a vector generalized autore-

gressive conditional heteroskedasticity (MGARCH) process. These three approaches will

be presented formally in the following.

Assuming M exogenously determined volatility regimes, the reduced form residual

covariance matrix in time period t can be represented as

E(utu
′
t) = Σt = Σm if t ∈ Tm, (7)

where Tm = {Tm−1 +1, . . . , Tm} (m = 1, . . . ,M) are M given volatility regimes. Here it is

assumed that T0 = 0 and TM = T . The volatility change points Tm, for m > 0, are usually

assumed known to the econometrician or they are determined with some preliminary

statistical procedure. Rigobon (2003) considers this type of model of changes in the

unconditional residual variance in his original article on identifying structural shocks in

SVARs through heteroskedasticity. He also considers the possibility of misspecifying the

change points. This type of model is also used in applications by Rigobon and Sack (2004),

Lanne and Lütkepohl (2008a, 2008b) and Ehrmann, Fratzscher and Rigobon (2011).

If the reduced form error term is normally distributed, ut ∼ N (0,Σt), the model

can be estimated by maximum likelihood (ML) (see, e.g., Lütkepohl (2005, Chapter 17)

for details). If the errors are not normal, maximizing the Gaussian log-likelihood can

be justified as a quasi ML estimation procedure or a GLS procedure may be used (see

Lütkepohl (2013a)). In any case, if the VEC form of the VAR model is used, estimating the

cointegration relations first from a reduced form VEC model and then keeping them fixed
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in the structural estimation may be helpful. The estimators have standard asymptotic

properties under common assumptions that can be used for inference in these models.

Another approach assumes that the volatility changes are generated endogenously

within the model by a Markov regime switching (MS) mechanism. More precisely, the

reduced form error term ut is assumed to depend on a discrete, first order Markov process

st (t = 0,±1,±2, . . . ) with M states, that is, st ∈ {1, . . . ,M} and transition probabilities

pij = Pr(st = j|st−1 = i), i, j = 1, . . . ,M . This model was first considered in the present

context by Lanne et al. (2010) who also propose a ML estimation procedure based on

conditionally normally distributed ut,

ut|st ∼ N (0,Σst). (8)

If the transition probabilities p1j = · · · = pKj = Pr(st = j), the state associated with pe-

riod t is independent of the states of previous periods and we get a model with mixed nor-

mal residuals. In the present context such models are considered by Lanne and Lütkepohl

(2010).

The MS model is in some sense rather restrictive because it does not allow the VAR co-

efficients to vary over time. Thus, it is more restrictive than the related models considered

by Rubio-Ramirez, Waggoner and Zha (2005), Sims and Zha (2006) and Sims, Waggoner

and Zha (2008), for example. The latter authors do not use the changes in volatility for

identification of shocks, however, and, as we have discussed in Section 3.1, to use that

device requires at least some time-invariance of the VAR coefficients. The M different

covariance matrices corresponding to the different states of the Markov process are used

for the identification of the shocks just as explained in Section 3.1. Notice that the model

assumes conditional heteroskedasticity of the residuals. Moreover, it does not require the

residuals to be in a particular state in each sample period but allows for the possibility

that a particular period is in-between states by assigning a weighted sum of the states to

it. Thus, the model can capture quite general forms of conditional heteroskedasticity as

it is sometimes assumed to be present in financial time series.

ML estimation of these models is rather difficult, especially if there are many variables,

lags and/or Markov process regimes. Herwartz and Lütkepohl (2011) discuss the related

problems and present an EM algorithm for estimation based on Krolzig (1997). In practice

the number of states for a suitable representation of the data is unknown. Psaradakis and

Spagnolo (2003, 2006) consider standard model selection criteria for selecting the number

of Markov states and find that they work reasonably well. In contrast, standard testing

procedures suffer from the problem that some parameters in the alternative model are

not identified if the null hypothesis imposes a reduced number of states. Hence, the usual

tests have nonstandard properties (e.g., Hansen (1992), Garcia (1998)).
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The model has been used in a number of applications. Examples are Lütkepohl and

Netšunajev (2014), Herwartz and Lütkepohl (2011), Netšunajev (2013) and Velinov (2013)

(see Lütkepohl (2013a) for a summary of some of that work). Moreover, Lanne and

Lütkepohl (2010) apply their special case model with mixed normal residuals.

As mentioned earlier, the MS model can capture quite general forms of conditional

heteroskedasticity. It may still be attractive in some situations to consider standard

MGARCH models as alternatives if conditional heteroskedasticity is diagnosed. Nor-

mandin and Phaneuf (2004) propose these kinds of models for the SVAR context.

In their approach the reduced form errors ut are assumed to be generated by an

MGARCH process of the form

Σu,t|t−1 = E(utu
′
t|ut−1, . . . ) = BΣε,t|t−1B

′, (9)

where Σε,t|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1) is a diagonal matrix with

σ2
k,t|t−1 = γk0 +

q∑
j=1

γkjε
2
k,t−j +

s∑
j=1

gkjσ
2
k,t−j|t−j−1, k = 1, . . . , K. (10)

In this setup the structural shocks, εt, are assumed to be instantaneously uncorrelated

and have a diagonal MGARCH(q, s) structure. This type of model is sometimes called a

generalized orthogonal GARCH (GO-GARCH) model and was proposed earlier by van der

Weide (2002) and a closely related version is due to Vrontos, Dellaportas and Politis

(2003). The standard model in the GARCH literature is actually an MGARCH(1,1)

model and this is also the model considered by Normandin and Phaneuf (2004).

General identification conditions for this type of model are given by Sentana and

Fiorentini (2001). They show that the structural shocks are identified (apart from sign

changes and permutations) if the matrix Γ′Γ is invertible, where Γ′ is a matrix with

kth row (σ2
k,1|0, . . . , σ

2
k,T |T−1). Invertibility of Γ′Γ means that the changes in volatility

have to be sufficiently heterogeneous. For instance, at most one component can have

constant conditional variances. If the identification conditions are satisfied and we choose

εt = B−1ut with the B matrix from (9), then the structural shocks are unique and the

impulse responses, including the impact effects, are time-invariant.

Normandin and Phaneuf (2004) propose a two-step procedure for parameter estimation

that fits a reduced form VAR(p) process in the first step and then estimates the GARCH

and structural parameters by maximizing the corresponding Gaussian log-likelihood. Ob-

viously, the estimation problem is a highly nonlinear optimization task that may pose

a computational challenge for higher dimensional systems. Applications of the GARCH

setup in SVAR analysis are reported by Normandin and Phaneuf (2004) and Bouakez and
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Normandin (2010). Although many authors focus on SVAR models for monetary policy

analysis that are identified via short-run restrictions, long-run identifying restrictions have

also been used in monetary models where GARCH residuals may be of interest. For ex-

ample, Bjørnland and Leitemo (2009) consider a monetary model with financial variables

where a structural shock is identified via a long-run restriction. Clearly, GARCH models

are often used for financial variables and may therefore be relevant in this context.

In principle it is also possible to consider different types of MGARCH models instead

of the GO-GARCH. For example, Weber (2010) and Strohsal and Weber (2012) consider

a so-called SCCC MGARCH model. It does not ensure uncorrelated structural errors

and may hence be regarded as problematic from a standard structural modelling point of

view. The advantage of such alternative MGARCH models in the present context is not

clear. Therefore we do not discuss them in more detail here.

4 Models for Stock Price Fundamentals

This section illustrates how the identification through heteroskedasticity technique can

be used in practice. In particular, popular multivariate time series models dealing with

stock price fundamentals are considered and their structural identification restrictions are

tested so as to determine whether or not they are supported by the data. The empirical

analysis in this section draws from the work of Velinov (2013) and extends it by examining

impulse responses obtained from the structural models.

The topic of investigation is to what extent stock prices reflect their underlying eco-

nomic fundamentals. This issue has naturally received a lot of attention in the empirical

time series literature. In particular, many SVAR and SVEC models investigating this topic

are based on the dividend discount model (DDM). The DDM claims that an asset’s price

is the sum of its expected future discounted pay-offs (such as dividends). These pay-offs

are necessarily linked to real economic activity such as real GDP, industrial production,

company earnings and so on. Hence, such proxies of real economic activity are considered

as being fundamental for stock prices (see also the discussion in Laopodis (2009)). An

alternative view is that stock prices are to a large extent driven by speculation and, hence,

their dependence on fundamentals is limited.

For illustrative purposes two of the models from Velinov (2013) are considered here.

Both are trivariate models that have been used widely in the literature. The first model,

called Model I in the following, consists of real GDP (Yt), real interest rates (rt) and real

stock prices (st) ordered in that fashion. The second model, Model II, consists of real

corporate earnings (Et) instead of real GDP and the other variables are the same. In
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other words, for Model I, yt = (Yt, rt, st)
′, while for Model II, yt = (Et, rt, st)

′.

Both models are related to the DDM and differ only in the proxy they use for real

economic activity. They are both popular models. For instance, Model I is used in Lee

(1995), Rapach (2001)1, Binswanger (2004), Lanne and Lütkepohl (2010) and Jean and

Eldomiaty (2010), while Model II is used in Binswanger (2004) and Jean and Eldomiaty

(2010). They are also relatively simple models, consisting of only three variables, and will

hence serve as a good illustration of the testing approach considered here.

The structural parameters in these models are identified by means of restrictions on

the long-run effects matrix, denoted as ΞB as in Section 2. In particular, ΞB is always

restricted to be lower triangular. In other words, the last shock has no long-run effects

on real economic activity and the interest rate. Hence, many of the papers mentioned

classify this as a non-fundamental shock. In contrast, only the first shock is allowed to have

permanent effects on all the variables and in particular on the real GDP or real earnings

variable and, hence, it is classified as being fundamental. The second shock is restricted

to have no long-run impact on real GDP or earnings but is otherwise unrestricted. Hence,

it is not a fundamental shock. It reflects all other shocks that are not fundamental but

may, for instance, have a long-run effect on the real interest rate. Thus, it is not non-

fundamental in the sense of having a long-run impact on the stock market only. In the

following we just refer to it as ‘second shock’ because we do not attach a specific economic

interpretation to it.

As was discussed in Section 2, the relevant (long-run) restrictions depend on the model

used, i.e. whether it is in VEC or VAR form. Hence, before formally stating the relevant

identification schemes to be considered, a brief note on the data and some basic diagnostic

tests is in order to justify the model type.

4.1 Data and Model Specification

We use the same data as Velinov (2013). In other words, data on U.S. GDP, interest rates,

stock prices and CPI are from the Federal Reserve Economic Database (FRED) whereas

earnings data are from Robert Schiller’s webpage.2 The data is quarterly and ranges from

1947:I - 2012:III for Model I and until 2012:I for Model II, the slightly shorter range for

Model II being due to missing observations on earnings for the last quarters of 2012. All

variables are in real terms and in logs (except for the real interest rate series). The series

are deflated by using the CPI inflation rate.

Standard unit root tests indicate that all variables can be treated as I(1). This is true

even for the real interest rate series. Therefore, we use the first differences of this and the

other variables in our model. Note that Binswanger (2004), Laopodis (2009) and Jean
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and Eldomiaty (2010) among others, also use the first differences of interest rates in their

structural models. Johansen (1995) trace tests are used to check for cointegration. There

is substantial evidence of cointegration only for Model II, with a cointegration rank of

one. Hence, Model I is set up as VAR in first differences, as in (1), while Model II is a

VEC of the form (2) with r = 1.

Of course, one would expect that earnings and stock prices are driven by a common

trend if stock prices are determined by fundamentals. Hence, finding cointegration in

Model II is quite plausible. Also Lee (1996) finds evidence of cointegration among earn-

ings, dividends and stock prices and argues that these variables are governed by a common

stochastic trend. Our normalized estimated cointegration vector is

β = [1,−0.052 (−2.25),−0.565 (−7.64)]′

where t-ratios are given in parentheses. Thus, there is clear cointegration between the first

and the third variable in our system (corporate earnings and stock prices). The t-ratio

of the stock price coefficient is obviously much larger in absolute value than that of the

interest rate coefficient although even that indicates a coefficient significantly different

from zero. In any case, based on the cointegration analysis, corporate earnings and stock

prices appear to be strongly related, as expected.

The traditional structural restrictions for identifying the shocks can be summarized

as

ΞBSV AR =


? 0 0

? ? 0

? ? ?

 and ΞBSV EC =


? 0 0

? ? 0

? ? 0

 , (11)

for the SVAR, ΞBSV AR, and the SVEC, ΞBSV EC , case respectively. Here ? denotes an

unrestricted element. Note that the SVEC model has one more zero for its long-run effects

matrix. This is because the rank of ΞBSV EC in the VEC model is K − r, which is 2 in

our case, hence a full column of zeros represents only 2 restrictions. Both identification

schemes therefore give three independent restrictions. These just-identify the structural

parameters in the traditional setup where volatility changes are ignored or at least not

used for identification. Thus, in the traditional setup the restrictions cannot be checked

with statistical tests. In the following it is shown how changes in volatility can be used

for checking the restrictions.
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4.2 Checking Traditional Identification Restrictions via Changes

in Volatility

In both models changes in volatility are modelled via Markov processes with three states

and the same VAR orders as in Velinov (2013), that is, Model I is a MS(3)-VAR(2) and

Model II is a MS(3)-VEC model with two lagged differences of ∆yt in (2). Modelling

changes in volatility by MS models makes sense here because these models are quite

flexible by allowing a number of different states and also mixtures of states. So they can

capture conditional heteroskedasticity of quite general form. The three-state models have

some support from standard model selection criteria and tests.

The variance estimates (the diagonal elements of the covariance matrices) tend to

increase for each state, in particular for Model II. This means that each state captures

slightly more volatile periods. Hence, the states can be classified as capturing periods

of increasing volatility. It is worth noting that in both models the third state captures

the period of high volatility after the collapse of Lehman Brothers in 2008. Given the

differences in volatility across the states, it makes sense to use the heteroskedasticity for

identification purposes.

Since our approach relies on the covariance decomposition (6), the first question is

whether such a decomposition is in line with the data. Using the likelihood ratio test

from Lanne et al. (2010) for checking the null hypothesis

H0 : Σ1 = BB′, Σ2 = BΛ2B
′, Σ3 = BΛ3B

′ (12)

versus the alternative that the three state covariances cannot be decomposed in this way

we do not reject at a significance level of 5% for both models. Hence, we proceed by

assuming that the data do not object to the decomposition in either of the two models

and work with the covariance decomposition in the following. The next step is to check

whether the decomposition can be used for identification of structural shocks.

To see whether the covariance decomposition in (12) is unique, we have to check the

diagonal elements of the Λm matrices, that is, the relative variances, relative to State 1, for

sufficient heterogeneity. The estimates are presented in Table 1. Even when accounting for

the estimation uncertainty reflected in the standard errors, the estimated λmk are indeed

quite heterogeneous. Hence, testing the identification conditions formally is plausible.

As noted in Section 3.1, uniqueness of the B matrix in (6) up to sign is ensured if all

pairwise diagonal elements, λm,k,m = 2, . . . ,M, k = 1, . . . , K, are distinct in at least one

Λm,m = 2, . . . ,M , matrix for a given pair. In other words, for our specific three-state

models we have to check the null hypotheses given in Table 2. This can be done by a

simple Wald test. Under standard assumptions the test distribution is asymptotically χ2
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Table 1: Estimates and Standard Errors of Relative Variances of MS-VAR Models

Model I: yt = (Yt, rt, st)
′ II: yt = (Et, rt, st)

′

Parameter estimate standard error estimate standard error

λ21 0.267 0.094 5.702 1.251

λ22 0.277 0.089 5.925 1.311

λ23 3.564 1.051 2.215 0.518

λ31 0.845 0.252 1050.264 620.878

λ32 3.777 1.004 48.731 36.057

λ33 14.878 4.117 1.778 1.150

with the number of degrees of freedom equal to the number of joint hypotheses tested.

The relevant null hypotheses along with p-values of Wald tests are given in Table 2. They

are all found to be rejected for Model I at conventional significance levels. For Model II the

first null hypothesis cannot be rejected at conventional levels, however. In other words,

the B matrix obtained from the covariance decomposition may not be unique and, hence,

the shocks are not identified purely by using the heteroskedasticity in the residuals. Given

that two of the three identification tests clearly reject their respective null hypotheses,

there is, however, some additional identifying information in the covariance decomposition

that can be used to check the traditional identification restrictions given in (11). We will

return to this issue shortly.

Table 2: p-values of Wald Tests of Identification Conditions

H0 Model I Model II

λ21 = λ22, λ31 = λ32 0.011 0.263

λ21 = λ23, λ31 = λ33 0.000 0.014

λ22 = λ23, λ32 = λ33 0.001 0.016

If the B matrix in (6) is unique up to sign, the restrictions in (11) can be tested by

standard tests. Hence, let us for the moment ignore the possible uniqueness problem for

Model II and use a likelihood ratio (LR) test for the restrictions in (11). The test has an

asymptotic χ2 distribution with 3 degrees of freedom since in each case there are 3 inde-

pendent restrictions if B is unique. The p-values of the tests based on χ2(3) distributions

are given in Table 3. Using standard significance levels, Model I cannot be rejected given

a p-value of roughly 20%. On the other hand, Model II is clearly rejected at conventional
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significance levels. The latter result rests on the assumption of an identified B matrix.

Taking into account that B may not be uniquely determined by heteroskedasticity there

is still sufficient curvature in the likelihood function to provide a large value of the LR

statistic. Hence, even without full identification of B via heteroskedasticity there is ev-

idence against the identification scheme of Model II. Thus, using the heteroskedasticity

device, we find evidence against the identification scheme for Model II and some support

for Model I.

Table 3: p-values of LR Tests for the Restrictions in (11)

Model I Model II

0.207 1.045×10−7

To summarize, so far we have tested the two structural identification schemes and have

found that the one for Model I is supported, while the one for Model II is rejected. This

means that the data do not object to the structural shocks for Model I which, hence, can

be classified as in the literature as being fundamental and non-fundamental. In contrast,

such shocks for Model II are rejected by the data. In the next subsection we investigate

the implications of ignoring the data evidence and labelling the first shock as fundamental

and the third shock as non-fundamental. These shocks will be used in an impulse response

analysis.

Before proceeding to impulse response analysis, it may be worth reporting on some

robustness analysis that we have done. In particular, we have estimated models for

a shorter sample period using only data up to 2007:III. Thereby the very volatile crisis

period is excluded. We have fitted models with two and three Markov states to the reduced

sample. For all the models based on the shorter sample the identification conditions for the

relative variances (the λim) cannot be confirmed. That result illustrates nicely the point

that identification via heteroskedasticity requires sufficient heterogeneity in the volatility

changes. For our series that is not obtained without including the crisis period in the

sample.

4.3 Impulse Response Analysis

In this section we discuss the impulse responses obtained from a conventional analysis

of the models presented in the foregoing. In other words, we now consider VAR and

VEC models without MS in the residual covariances. As usual, we determine confidence

intervals around the impulse responses to assess the sampling uncertainty associated with
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these quantities. To account for changes in volatility, we use a fixed design wild bootstrap

technique as proposed by Goncalves and Kilian (2004) to construct confidence intervals

for our impulse responses. More precisely, the series are bootstrapped as

y∗t = ν̂ + Â1yt−1 + · · ·+ Âpyt−p + u∗t , (13)

where u∗t = ψtût and ψt is a random variable, independent of yt. It follows a distribution

that is either 1 or −1 with a 50% probability. The VEC model is bootstrapped in a similar

way, keeping lagged endogenous variables as in the original series. This technique usually

generates slightly larger confidence bands than conventional bootstrapping techniques,

however, it preserves the heteroskedastic properties of the residuals. The hats in (13)

denote estimated coefficients.

Impulse responses for Models I and II are depicted in Figure 1. Note that the impulse

responses are computed using the conventional identifying restrictions in (11) although

some evidence is found against such restrictions for Model II in our previous analysis.

The purpose of the impulse response analysis is, however, to illustrate the implications of

imposing questionable identifying restrictions. Confidence bands show the 95% and 68%

individual bootstrap confidence intervals around the impulse responses. As was noted,

for convenience, the shocks in both models are labelled in the same way, even though the

identification scheme is rejected for Model II. Since the investigation is focused on stock

price fundamentals we are particularly interested in the response of stock prices to the

fundamental shocks.

[Insert Figure 1 here]

For Model I, the fundamental shock has a positive and permanent impact on stock

prices. Even the 95% confidence intervals are well away from the zero line so that a

significant impact of the fundamental shock on stock prices is diagnosed. For Model II,

the impulse response function of stock prices to the fundamental shock is still positive.

Now the zero line is within the confidence band when a 95% level is used and it is at

the lower bound when the 68% level is considered. It should be noted that this result is

not merely due to using the fixed design wild bootstrap method. In fact, if the series is

bootstrapped in a conventional way, the response is still not significantly away from zero

at the 95% level.3 Moreover, in Figure 1 it is seen that the second shock does not have a

significant impact in Model II even if a 68% confidence level is used. Hence, if Model II is

used for investigating the impact of fundamental shocks on stock prices, one may be led

to conclude that fundamental shocks have little impact and that stock prices are mainly

driven by speculation.
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Thus, Models I and II lead to opposite conclusions and in a conventional analysis

there is no statistical procedure to discriminate between them. In contrast, using the

additional information from the changes in volatility allows us to discriminate between

the two models. Clearly, Model II is rejected by the data and, hence, we have a basis for

deciding between the two models. This illustrates the virtue of using heteroskedasticity

for testing identifying restrictions.

5 Conclusions and Extensions

In this study we have considered long-run restrictions for identifying structural shocks in

a VAR model. We have reviewed different approaches for checking restrictions that are

just-identifying in a conventional setting by utilizing heteroskedasticity in the residuals,

with special emphasis on the case where integrated and cointegrated variables are in-

cluded in the models. The three main approaches for modelling changes in volatility that

have been used in this context are exogenously generated changes in volatility, endoge-

nous changes driven by a Markov process and volatility changes generated by MGARCH

processes. We have briefly discussed the related techniques for identifying the shocks and,

in particular, we have discussed how the additional identifying information obtained from

heteroskedasticity can be used in a structural analysis.

To illustrate the identification through heteroskedasticity technique, two models in-

vestigating stock price fundamentals are considered. Both are trivarite models, based on

the dividend discount model (DDM) and have been used widely in the empirical time

series literature. The models labelled as I and II have different proxies of real economic

activity. Model I uses real GDP, while Model II uses real corporate earnings, the other

variables being real interest rates and real stock prices ordered in that way. It is shown

how the changes in volatility found in these models can be used for testing conventional

identifying restrictions. Since the conventional restrictions are just-identifying, they can-

not be formally tested in a standard setup and it turns out that the two models lead to

quite different conclusions regarding the impact of fundamental shocks on stock prices.

Model I indicates that they may have an important impact even in the long-run while

no significant effect is found in Model II. Using the changes in volatility allows us to

discriminate between the two models and it is shown that Model II is rejected by the data

whereas support is found for Model I. In other words, support is found for the conclusion

that stock prices are at least to some extent driven by fundamental shocks.

In this study we have focussed on the case where heteroskedasticity can lead to fully

identified shocks because all other VAR parameters are assumed to be time-invariant.
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In practice, the latter condition may not be satisfied and it is important to note that

heteroskedasticity can also be helpful for identification if other parameters are also varying.

That case is considered, for example, by Bacchiocchi and Fanelli (2012) and Bacchiocchi,

Castelnuovo and Fanelli (2013).

Notes

1In the case of Rapach (2001), Model I is a subset of a larger model. However, the identifying

restrictions are analogous.
2Found at http://www.econ.yale.edu/ shiller/data.htm.
3As mentioned earlier, the impulse responses are identified only up to sign. Therefore in the bootstrap

we have normalized the signs such that the i-th shock has a positive initial impact on the i-th variable.

In particular, the fundamental shock has a positive impact effect on GDP or earnings and the non-

fundamental shock has a positive immediate effect on stock prices. This normalization is plausible also

in a conventional SVAR analysis. We have not explored the possibility to reduce the confidence bands by

reduction techniques as discussed by Lütkepohl (2013b) because we are interested in the results obtained

with the standard approach.
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Figure 1: Impulse responses for Models I and II with 95 and 68 percentile confidence

intervals according to the fixed design wild bootstrap method.
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