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ABSTRACT

IZA DP No. 11560 MAY 2018

Regression Discontinuity and 
Heteroskedasticity Robust Standard 
Errors: Evidence from a Fixed-Bandwidth 
Approximation*

In regression discontinuity design (RD), for a given bandwidth, researchers can estimate 

standard errors based on different variance formulas obtained under different asymptotic 

frameworks. In the traditional approach the bandwidth shrinks to zero as sample size 

increases; alternatively, the bandwidth could be treated as fixed. The main theoretical 

results for RD rely on the former, while most applications in the literature treat the 

estimates as parametric, implementing the usual heteroskedasticity-robust standard 

errors. This paper develops the “fixed-bandwidth” alternative asymptotic theory for 

RD designs, which sheds light on the connection between both approaches. I provide 

alternative formulas (approximations) for the bias and variance of common RD estimators, 

and conditions under which both approximations are equivalent. Simulations document 

the improvements in test coverage that fixed-bandwidth approximations achieve relative 

to traditional approximations, especially when there is local heteroskedasticity. Feasible 

estimators of fixed-bandwidth standard errors are easy to implement and are akin to 

treating RD estimators as locally parametric, validating the common empirical practice of 

using heteroskedasticity-robust standard errors in RD settings. Bias mitigation approaches 

are discussed and a novel, bootstrap higher-order bias correction procedure based on the 

fixed bandwidth asymptotics is suggested.
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1 Introduction

Regression discontinuity (RD) designs have been propelled to the spotlight of economic analysis in recent

years,1 especially the policy and treatment evaluation literatures, as a form of estimating treatment effects in

a non-experimental setting. In this design, treatment is assigned based on values of an observed characteristic,

with the probability of receiving treatment jumping discontinuously at a known threshold. RD’s appeal stems

from the relatively weak assumptions necessary for the nonparametric identification of treatment effects,

specifically smoothness of the conditional expectation of outcome for treated and untreated individuals at

the cutoff. This paper examines the effect of the additional assumptions that are explicitly and implicitly

made to justify estimation and inference and shows that those assumptions can be weakened by using a

heteroskedasticity-robust variance estimator, which is a common approach in empirical research but has not

been supported by previous theoretical research.

Local polynomial estimators are the most common choice in empirical and theoretical work due to ease

of implementation and flexibility. These kernel-based estimators rely on fitting a polynomial function to

a range of the data, the size of which is determined by a bandwidth, h, just around the threshold. To

perform inference in this setting, additional assumptions are usually imposed. In particular, asymptotic

approximations assume smoothness of the conditional variance of the outcome, σ2(x). That assumption is

somewhat restrictive and not necessary as it will be discussed below. Implementation of the local polynomial

estimators depends on the choice of the bandwidth, which can be benchmarked against several bandwidth

selectors available in the literature.

The traditional nonparametric asymptotic approximations (“small-h”) provide formulas for the variance

of such estimators as the bandwidth shrinks towards zero asymptotically. Those formulas reflect the fact

that the distribution of the kernel based estimator is asymptotically equivalent to the distribution with

homoskedastic data when the smoothing parameter shrinks, which may have led researchers to overlook

the need to develop robust inference in small samples. A similar point has been recently made by Kim,

Sun and Yang (2017) when discussing time series dependence. Moreover, in practice variance estimators

that rely on homoskedasticity are discouraged even though they are supported by the theory. Hence, most

researchers often use a different “pre-asymptotics” variance formula to compute standard errors, based on

the White-Huber-Eicker robust standard errors or some nearest neighbor alternative.2 This paper provides

an analysis of when and why the common practice of using White-Huber-Eicker robust standard errors in

the RD context is appropriate.

I focus on presenting an alternative asymptotic approximation for the standard RD treatment effects

estimator using a fixed bandwidth that relaxes the smoothness conditions imposed on σ2(x). This “fixed-h”

1Lee and Lemieux (2009), in a broad review of the RD literature, presented a list of more than 60 papers that have applied

RD design to many different contexts.
2The use of such variance estimators in RD designs have been suggested based on intuitive arguments or using “pre-

asymptotics” expressions that did not follow directly from the “small-h” theoretical asymptotic approximations—see, for ex-

ample, Lee and Lemieux (2009) and Calonico et al. (2014).
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approximation provides expressions for the estimator’s asymptotic variance that incorporate the bandwidth

used by the researcher, and lead naturally to the standard error formulas used in the applied literature,

clarifying the assumptions behind its use. The results show that the heteroskedasticity robust standard

errors continue to provide valid inference under these relaxed assumptions. Furthermore, these standard

errors are appropriate for any specific bandwidth chosen.

This paper shows that this form of the variance estimator is valid both under an asymptotic nesting

where the bandwidth parameter, h, is fixed, and as under conventional RD asymptotics where h → 0.

However, the traditional asymptotic variance estimator is not consistent for fixed bandwidths. Consequently

the common empirical strategy of using robust standard errors in RD studies is appropriate especially when

heteroskedasticity is a concern.

While I focus on a setting where the bias is “small” and does not affect the asymptotic distribution of the

RD estimator, an alternative approximation for the estimator’s asymptotic bias that differs from the usual

approximations in the literature is presented and provides additional intuition on the robustness-precision

trade-off facing the researcher in RD designs. A discussion on how to address bias in practice is presented.

We first consider the procedure proposed by Calonico et al (2014) implement an analytical bias correction

reduction based on a first order expansion of the bias, reducing the order of the leading bias term. The

framework proposed here is compatible with such bias reduction procedures. Furthermore, I explore a novel

approach to bias mitigation based on a higher order correction inspired by the fixed bandwidth asymptotic

bias approximations. That strategy is easily implemented by modifying the wild bootstrap RD procedure in

Bartalotti, Calhoun and He (2017). Simulation exercises attest that such approach can significantly improve

test performance relative to first order based corrections.

This work contributes to the emerging literature on inference for treatment effects in the context of RD

designs. Hahn et al. (1999, 2001) and Lee (2008) presented the conditions for identification and estimation in

RD designs. Porter (2003) provided results on the asymptotic properties of the estimators for the treatment

effect of interest, obtaining limiting distributions for estimators based on local polynomial regression and

partially linear estimation. Calonico et al. (2014) studied asymptotic approximations for the bias-corrected

local polynomial RD estimator as described above. Other studies about estimation, inference, and bandwidth

choice in RD designs include Imbens and Kalyanaraman (2012), Cattaneo et al. (2015), Calonico et al.

(Forthcoming), Bartalotti and Brummet (2017) among others. McCrary (2008) studied specification testing.

Finally, a broad review of the theoretical and applied literature, with emphasis on the identification of the

parameter of interest and its potential interpretations, can be found in Imbens and Lemieux (2008) and Lee

and Lemieux (2009).

The asymptotic framework using fixed bandwidths follows a growing literature that recognizes the poten-

tial for practical improvements in inference procedures in nonparametric methods. Notably, Neave (1970),

in the context of spectral density estimation, obtained more accurate approximations to the variance of

nonparametric spectral estimates. Neave’s work was later extended by Hashimzade and Vogelsang (2008).
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Similarly, Fan (1998) provided an alternative approximation for goodness-of-fit tests for density function

estimates, obtaining improved approximations to the asymptotic behavior of the test and critical values for

inference. More recent studies, on the context of time-series or spatial dependence, analyze and justify the

use asymptotic variance formulas based on fixed-bandwidth approximations when pursuing heteroskedas-

ticity and autocorrelation and spatial dependence robust inference (Chen, Liao and Sun, 2014; Sun, 2014;

Bester et al. (2016); Kim, Sun and Yang, 2017). This paper contributes to that literature in the context of

local polynomial estimators and RD designs.

Section 5 provides simulation evidence that standard errors used by practitioners work well relative to

the ones based in formulas suggested by the traditional approach (h→ 0). The robust standard errors based

on the fixed bandwidth formulas perform well for larger bandwidths, especially when heteroskedasticity is

present. The intuition is that, for larger bandwidths, the homoskedasticity condition becomes less likely to

hold as it would need to be valid over a larger support of the data. Finally, I provide an empirical application

using Lee (2008), exemplifying with actual data the improvements obtained.

2 Model and Estimator

The interest lies in estimating the average treatment effect, τ , of a certain policy affecting part of a population

of interest.3 There are two types of RD designs: sharp and fuzzy. They differ in regard to the assignment of

treatment and to the impact of the discontinuity on the assignment process. The main body of the paper

focuses on sharp RD designs. The discussion and extensions for the fuzzy design are presented below.

In the sharp design, the treatment status, d, is a deterministic function of a so-called “running” variable,

x, such that,

di =

 1 if xi ≥ x

0 if xi < x,


where x is the known cut-off point. Then let Y1 and Y0 be the potential outcomes corresponding to the two

possible treatment assignments. As usual, we cannot observe both potential outcomes, having access only to

Y = dY1 + (1− d)Y0. As described by Hahn et al. (2001) and Porter (2003), under some weak smoothness

assumptions, the average treatment effect can be estimated by comparing points just above and just below the

discontinuity. If the running variable is continuous, as well as the conditional expectations of Y0 and Y1, the

discontinuity in treatment assignment at x provides the opportunity to identify the average treatment effect

at the cutoff without any additional parametric functional form restrictions on the conditional expectations

3As discussed in Porter (2003), Imbens and Lemieux (2008), Lee and Lemieux (2009), and Cattaneo et al. (2015), RD designs

are closely associated with the treatment effect literature. Angrist and Pischke (2009) have provided a simple introduction to

the intuition of regression discontinuity.
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of the outcome variable. The average causal effect of the treatment at the discontinuity is

τ ≡ E [Y1 − Y0 | X = x]

= lim
x↓x

E [Y | X = x]− lim
x↑x

E [Y | X = x] .

The sharp RD design uses the discontinuity in the conditional expectation of Y given X to uncover the

average treatment effect at the cutoff. For a comprehensive review of RD designs and their applications and

interpretation, see Lee and Lemieux (2009).

I focus on estimates of τ obtained using local polynomial estimation, which is the most common in

applied work. The order p local polynomial estimator is defined as follows. In the sharp design case,

given data (yi, xi)i=1,2,...,n, let di = 1[xi ≥ x], k(·) be a kernel function, and h denote a bandwidth that

controls the size of the local neighborhood to be averaged over. Also, define the p + 1 × 1 vector Z(x) =(
1,
(
x−x
h

)
,
(
x−x
h

)2
, ...,

(
x−x
h

)p)′
and let

(
α̂p+, β̂p+

)′
be the solution to the minimization problem:

min
a,b1,...,bp

1

n

n∑
i=1

1

h
k

(
xi − x
h

)
di

[
yi − a− b1

(
xi − x
h

)
− ...− bp

(
xi − x
h

)p]2
,

while, similarly,
(
α̂p−, β̂p−

)
minimizes the same objective function, but with 1 − di replacing di. The

estimator of the parameter of interest is given by

τ̂ ≡ α̂p = α̂p+ − α̂p−.

In the fuzzy design the probability of receiving treatment still changes discontinuously at the threshold,

but is not required to go from 0 to 1,

lim
x↓x

Pr(d | X = x) 6= lim
x↑x

Pr(d | X = x)

This framework allows for a greater range of applications since it includes cases in which the incentives to

receive treatment change discontinuously at the threshold, but are not strong enough to induce all individuals

above it to be treated. The average treatment effect at the cutoff can be identified by the ratio of the change in

the conditional expectation for the outcome variable to the change in the conditional probability of receiving

treatment (Imbens and Lemieux, 2008):

τF ≡
limx↓xE [Y | X = x]− limx↑xE [Y | X = x]

limx↓xE [d | X = x]− limx↑xE [d | X = x]

The estimator of the parameter of interest is given by the ratio

τ̂F =
α̂p

θ̂p

where α̂p is the estimator described above, and θ̂ is the estimator for the change in the probability of being in

the treated group at the cutoff which is obtained by using the same estimators with the treatment assignment

variable, Di, as the dependent variable.
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In practice, the implementation of RD designs is not without challenges, even in simple cases, that require

implicit assumptions or choices by the researcher not fully reflected in this basic set up. Importantly for the

aims of this paper, is that several of these situations can be better understood by relying on an alternative

asymptotic approximation based on a fixed bandwidth. That not only sheds light on the assumptions and

issues dealt implicitly by the practitioners, but also naturally allows for the careful use tools in parametric

analysis to approach these challenges.

To develop this framework, I consider the following assumptions, which are more flexible than the ones

used in the literature on RD designs, e.g., Hahn et al. (2001), Porter (2003), etc. Let Fo(x) denote the density

of x, m(x) = E [y | x], and x is the cutoff that determines treatment. Finally, define ε = y−E [y | X = x] =

y −m(x) and σ2(x) = E
[
ε2 | X = x

]
., Importantly, we allow for the conditional variance, σ2(x), to be not

continuous and non-smooth in a region around the cutoff.

Assumption 1 k(·) is a symmetric, bounded, Lipschitz function, zero outside a bounded set;
∫
k(u)du = 1.

Assumption 2 Suppose the data (yi, xi)i=1,2,...,n is i.i.d. and α is defined by

α = lim
x↓x

E [y | X = x]− lim
x↑x

E [y | X = x] .

For the compact interval ℵ̇, defined as [x−h, x+h], (a) Fo(x+h)−Fo(h) and Fo(x)−Fo(x−h) are bounded

away from zero; (b) m(x) is lm times continuously differentiable for x ∈ ℵ�{x}, and m is continuous at x

with finite right- and left-hand derivatives to order lm; and (c) the running variable, x, has enough variation

within ℵ̇ that we can identify
(
α̂p+, β̂p+

)′
and

(
α̂p−, β̂p−

)′
.

Assumption 3 (a) σ2(x) = E
[
ε2 | X = x

]
exists and is well defined on ℵ̇.

(b) For some ζ > 0, E
[
|ε|2+ζ | X = x

]
is uniformly bounded on ℵ.

Assumption 1 is very standard in the RD literature and does not restricts the support of the kernel

being used in estimation significantly for most applications. Assumptions 2 and 3 relax some of the usual

smoothness conditions present in the literature. A relevant feature of the analysis performed in the next

section is that fixed bandwidth asymptotics will allow the researcher to directly incorporate heteroskedasticity

into the asymptotic distribution of the estimates of interest, including more complex dependence problems

that are generally intractable in a shrinking bandwidth framework, e.g., clustering (Bartalotti and Brummet,

2017). A similar point has been made by Kim, Sun and Yang (2017) in the time series context. Most

importantly, the conditional variance is allowed to not be continuous within the bandwidth around the

cutoff. Hence, the framework developed here can be used to analyze cases in which the running variable

might exhibit discreteness, which could be due to the nature of the running variable, as described by Lee and

Card (2008), heaping (Barreca, Lindo and Waddell, 2016), measurement error (Dong, 2015 and Bartalotti,

Brummet and Dieterle, 2017) or some other characteristic of the application at hand.
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3 Asymptotic Distributions

To derive the asymptotic properties of the estimator for τ , the usual regularity and smoothness conditions

in the literature are sufficient for both the traditional and fixed-h approximations, e.g., Hahn et al. (2001),

Porter (2003), etc. As discussed in Section 2, we are able to relax some of the smoothness conditions by

using a fixed bandwidth approach, which is particularly useful when dealing with scenarios in which the usual

nonparametric approach is not feasible. In the following, let Fo(x) denote the density of x and m(x) denote

the conditional expectation of y given x, i.e., m(x) = E [y | x], and x is the value of the running variable in

which the discontinuity occurs. Finally, define ε = y−E [y | X = x] = y−m(x) and σ2(x) = E
[
ε2 | X = x

]
.

Using the traditional nonparametric asymptotic approximations, small-h, Hahn et al. (2001), Porter

(2003), Imbens and Lemieux (2008) among others obtain the following asymptotic variance formula for the

(scaled) τ̂ ,

Vsmall−h =
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1 (1)

where e′1Γ−1∆Γ−1e1 is a constant scalar which depends only on the order of the local polynomial, p, and

the kernel used.4 Crucially for practical purposes, it does not depend on the bandwidth (h) by construction.

That is natural since the approximation is based on a shrinking bandwidth around the cutoff. However,

that does not capture heteroskedasticity or changes in the values for the density of x in the range of data

actually used in practice. That issue has been recognized in the literature, e.g. Imbens and Lemieux (2008)

and Calonico et al. (2014) and by practitioners who commonly implement the usual heteroskedasticity

robust White-Huber-Eicker standard errors (or weighted analogues depending on the choice of kernel) when

implementing RD based on intuitive or “pre-asymptotics” arguments.

Interestingly these heteroskedasticity robust standard errors can also be justified by an approximation

under the asymptotic nesting where the bandwidth parameter, h, is fixed. The fixed-h asymptotic approxi-

mation can be summarized in the following result.

Theorem 1 Suppose assumptions 1, 3 and 2 hold. If h is fixed, positive, as n→∞, then

Avar
[√

nh(α̂p − α)
]
p→ Vfixed−h,

where

Vfixed−h = e′1

[(
Γ∗+
)−1

∆∗+
(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆∗−
(
Γ∗−
)−1]

e1

Additionally, if Bias
[√

nh(α̂p − α)
]

= op(1),then

√
nh(α̂p − α)

d→ N (0, Vfixed−h) (2)

where Γ∗+(−), ∆∗+(−), e1, γ+j , γ−j , δ+j , and δ−j are defined in the appendix.

4See appendix for the definition of e′1Γ−1∆Γ−1e1.
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The fixed-h asymptotic variance formula is given by Vfixed−h, and depends directly on the behavior of

σ2(x), fo(x) inside the bandwidth around the cutoff, p, and the kernel function through
(
Γ∗+
)−1

∆∗+
(
Γ∗+
)−1

and
(
Γ∗−
)−1

∆∗−
(
Γ∗−
)−1

. Hence, it captures the impact of h on the asymptotic variance accounting for

potential local heteroskedasticity. This asymptotic approximation provides a natural and intuitive way to

understand the sources of improvement in inference observed in practice when using these standard errors,

as discussed below.

There are two noteworthy cases in which the formulas for the fixed-h asymptotic variance (and bias)

simplify to the small-h formulas. First, if in the bandwidth around the cutoff, fo(x), σ2(x) and m(x) are

continuous, then when h→ 0, 5

lim
h→0

Vfixed−h = Vsmall−h.

Hence, if h is small, fixed-h and small-h provide similar approximations to the asymptotic behavior of α̂p.

This is intuitive since the fixed bandwidth approximation is valid for any value of h, and the difference

between the formulas arising from the behavior of σ2(x), fo(x) inside the bandwidth will likely be small as

the support of the running variable on which they are being evaluated becomes smaller.

Second, if fo(x) and σ2(x) are constant around the cutoff, the fixed-h asymptotic variance formula

simplifies to the small-h formula, i.e., Vfixed−h = Vsmall−h.6 This fact makes clear that the differences

between the fixed bandwidth and traditional approximations are due to incorporating the behavior of fo(x)

and σ2(x) in the ranges around the cutoff in the first case, while considering only its values at the cutoff,

fo(x) and σ2(x) in the second.

3.1 Addressing the Asymptotic Bias

The asymptotic normality described in Theorem 1 holds even if the bias is non-negligible in the sense that
√
nh(α̂p − E[α̂p])

d→ N (0, Vfixed−h) similarly to the results presented by Pagan and Ullah (1999). Even

though not used directly in the asymptotic variance discussion which is the focus of this paper, an ancillary

result is the asymptotic bias formula under the fixed bandwidth asymptotic nesting (see appendix),

Bias
[√

nh(α̂p − α)
]

= e′1


(
Γ∗+
)−1 [∫∞

0
k (u)Z(x+ uh)m(x+ uh)dFo(x+ uh)

]
−

−
(
Γ∗−
)−1 [∫∞

0
k (u)Z(x− uh)m(x− uh)dFo(x− uh)

]
 . (3)

A more familiar representation of the asymptotic bias term can be obtained if we are willing to assume

differentiability of m(x) and fo(x) up to order (p+2) in the local support ℵ̇ and approximate it by polynomial

of order p+ 2. Then one can rewrite the asymptotic bias term above using a (cruder) approximation as

5Corollary 1, in the appendix, follows the sequential asymptotics literature usually implemented in the context of series

estimators (e.g., Stock and Yogo 2005).
6See Corollary 2 in the appendix.
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Bsmall−h =
hp+1

(p+ 1)!

[
m(p+1)+(x)− (−1)p+1m(p+1)−(x)

]
e′1Γ−1


γp+1

...

γ2p+1

+
hp+2

(p+ 2)!

[
m(p+2)+(x)− (−1)p+2m(p+2)−(x)

]
e′1Γ−1


γp+2

...

γ2p+2

+op(h
p+2)

(4)

which are the formulas obtained in the traditional nesting where h → 0. (Porter, 2003; Calonico et al.,

2014)7

Both equations provide some intuition for conditions under which the condition of negligible asymptotic

bias, Bias
[√

nh(α̂p − α)
]

= op(1), in Theorem 1 holds.

Under the more general conditions discussed in Section 2 with fixed bandwidth, the bias will be asymp-

totically negligible if the local polynomial of order p correctly captures the relevant features of m(x) in the

neighborhood of the cutoff. That could be because the model is correctly specified (which is often implicitly

assumed by practitioners when implementing RD) and, hence the bias vanishes asymptotically as n → ∞.

More interestingly, that condition will hold with h fixed if the researcher treats p as embedded in an increas-

ing sequence as n increases as in a series estimator at the cost of imposing additional smoothness conditions

on m(x) in the neighborhood around the cutoff. Details on these conditions could be found on Pagan and

Ullah (1999) section 3.9 and Andrews (1991). It is important to notice that in the RD case, the restrictions

on m(x) need only to hold in the smaller support ℵ̇ since our focus is to improve the polynomial fit only on

this neighborhood, hence maintaining a substantial amount of the flexibility afforded by the RDD.

In the case where the running variable is continuous and the usual smoothness conditions hold, the

asymptotic bias described above will be negligible if nh2p+3 → 0 (Hahn, Todd and van der Klaauw, 2001;

Porter, 2003). As Calonico et al. (2014) points out, in that case the usual MSE-optimal bandwidths

proposed by Imbens and Kalyanaraman (2012) are too“large” because they do not satisfy this condition.

They proposed an analytical bias correction by estimating the first term in Equation 4, reducing the order

of the remaining asymptotic bias. Therefore, if such bias correction procedure were to be implemented ,

the condition Bias
[√

nh(α̂p − α)
]

= op(1) would hold if nh2p+5 → 0. This bias correction procedure has

become standard in the literature and is readily available in STATA and R in the package rdrobust (Calonico

et al., 2017).

As is well known, unless the true specification of the population model is known, the local polynomial

estimator is inconsistent. Even though the treatment effect is nonparametrically identified, in practice

the local polynomial estimator of the RD design will potentially provide a biased estimate of the average

treatment effect, unless the polynomial used correctly specifies the conditional expectation of Y in the

bandwidth around the cutoff. Nevertheless, the formulas for Bfixed−h provide important additional intuition

relative to Bsmall−h. While the latter depends on a first-order (or second-order) approximation of the bias

7Note that to recover exactly the same notation as used in Porter (2003), one needs to multiply Bsmall−h by the scaling

term
√
nh. Then, the first term in Bsmall−h converges to Ca

(p+1)!
, as in Porter (2003).
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term, the former directly captures the effect of the bandwidth used and its impacts on the approximation

provided by the a local polynomial of order p in the whole support within the bandwidth.

It is worth noting that both fixed-h and small-h asymptotic approximations are based on the same

estimator for α̂. For a given bandwidth used in practice, the initial bias present in the estimate is given.

Using the small-h approximation for standard errors does nothing to eliminate potential bias in practice and

any potential bias should be treated as a separate empirical issue. When implementing RD, the researcher

can consider some potential bias mitigation strategies. The analytical bias correction procedures proposed

by Calonico et al. (2014) and its bootstrap equivalent in Bartalotti, Calhoun and He (2017) could be used,

and rely on first order approximations and have performance dependent on the curvature of m(x) and the

bandwidth used. Both adjustments require an additional adjustment to the standard errors due to the

estimation of the first-order bias adjustment.

The key insight obtained by the fixed bandwidth asymptotic bias presented above is that using a first-order

bias adjustment might not be sufficient to capture the complexity of m(x). Especially for larger bandwidths,

one would expect that approach to become less reliable in controlling the asymptotic bias. Hence, the fixed

bandwidth asymptotic framework suggests two related empirical strategies of bias mitigation.

As described above, one could implement a series estimator within the fixed bandwidth such that the

complexity of the polynomial fitted locally (its order p) increases as more data is accumulated around the

cutoff.

Second, the wild bootstrap procedure in Bartalotti, Calhoun and He (2017) can be easily be adjusted to

provide higher order bias correction and inference, by estimating a higher order local polynomial, e.g. (p+2),

in step 1 of Algorithm 1 in Bartalotti, Calhoun and He (2017, p. 431). Simulations comparing coverage

rates obtained by the usual analytical first-order bias mitigation (Calonico et al, 2014) and the higher order

bootstrap approach are presented in the Appendix Section 8.1.

Intuitively, the potential bias is due to the potential local model misspecification since the local polynomial

used might not be able to correctly capture m(x)’s features within the bandwidth. To that point, it is

interesting to draw a parallel between Bfixed−h with the issue of model misspecification in parametric

models (White 1982, 1996). The problem of estimating the average treatment effect at the cutoff can be seen

as one of correctly estimating E [Y | X] on both sides of the cutoff. By using a relatively small bandwidth,

we fit the conditional expectation on a restricted support, and hence expect a polynomial of order p to

produce a better fit than if we were trying to fit E [Y | X] globally. This better fit is the benefit associated

with a local approach, since it allows the conditional expectation to be unrestricted outside the bandwidth.

3.2 Fuzzy Regression Discontinuity

The Fuzzy RD case follows the delta method applied to τ̂F =
α̂p

θ̂p
(Porter, 2003),

Avar
[√

nh (τ̂F − τF )
]
p→ VFRD−fixed−h =

1

θ2
Vα − 2

α

θ3
Cαθ +

α2

θ4
Vθ,
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where Vα and Vθ are the same asymptotic variances presented in Theorem 1 with the outcome and treatment

status as the variable of interest. If, additionally Bias
[√

nh (τ̂F − τF )
]

= op(1), and a multivariate CLT

holds for

 √nh(α̂− α)
√
nh(θ̂ − θ)

 (Pagan and Ullah, 1999) then

√
nh (τ̂F − τF )

d→ N (0, VFRD−fixed−h) (5)

The proof follows directly from the delta method and is omitted.

All the terms that appear in the asymptotic distribution above, except for Cαθ, can be obtained from

theorem 1.

Theorem 2 Let σεη(x) = E [εη | X = x]. If α̂ and θ̂ are the local polynomial estimators and the conditions

of theorem 1 hold for both estimators, then

Cαθ = e′1

[(
Γ∗+
)−1

∆ρ
+

(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆ρ
−
(
Γ∗−
)−1]

e1

where ∆ρ
+(−) =


ρ
+(−)
0 · · · ρ

+(−)
p

...
. . .

...

ρ
+(−)
p · · · ρ

+(−)
2p

,

ρ+j =
∫∞
0
k2 (u)ujσεη(x+ uh)dFo(x+ uh),

ρ−j = (−1)j
∫∞
0
k2 (u)ujσεη(x− uh)dFo(x− uh), Γ∗+ and Γ∗− are defined as in previous results.

The proof is presented in the Appendix. Similarly to the results for the Sharp RD, the asymptotic

covariance formula converges to the small-h asymptotic covariance both as h → 0, or for fixed-h if in the

bandwidth around the cutoff, fo(x) and σεη(x) are constant.8

4 Variance Estimators

To perform inference about α, appropriate estimates for the asymptotic variance formulas from theorem 1

are necessary. The components of Vfixed−h, ∆∗+ and Γ∗+, have typical elements given by

γ+j =

∫ ∞
0

k (u)ujdFo(x+ uh) = E

[
h−1k

(
x− x
h

)(
x− x
h

)j
d

]

δ+j =

∫ ∞
0

k2 (u)ujσ2(x+ uh)dFo(x+ uh) = E

[
h−1k

(
x− x
h

)2(
x− x
h

)j
dε2

]

8See Corollary 4 and 3 in the appendix.
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and similarly for γ−j and δ−j . A natural estimator for the asymptotic variance is given by their sample

analogues, using the estimated residuals ε̂ = y − m̂(x),

γ̂+j = (nh)
−1

n∑
i=1

k

(
x− xi
h

)(
x− xi
h

)j
di

δ̂+j = (nh)
−1

n∑
i=1

k

(
x− xi
h

)2(
x− xi
h

)j
diε̂

2
i ,

which are consistent by standard arguments in both asymptotic frameworks.

Then, the natural plug-in estimator of the fixed-h variance-covariance matrix is given by[(
Γ̂∗+

)−1
∆̂∗+

(
Γ̂∗+

)−1
+
(

Γ̂∗−

)−1
∆̂∗−

(
Γ̂∗−

)−1]
. (6)

These are simple averages of the data and kernel weights, and they have the familiar “sandwich form”

(Fan and Gijbels 1996). This estimator is analogous to the usual heteroskedasticity robust standard er-

rors in a general weighted least squares framework, and it comes naturally from the fixed-h framework

developed above. The fixed-h approach provides a framework that justifies the use of such estimators by

practitioners. Intuitively, the variance estimators are “robust to the choice of bandwidths,” since they

are valid for any finite h, take into consideration the impact of higher order polynomials on the esti-

mator’s variance and are flexible regarding the conditional variance and density of X around the cutoff.

Note that,

[(
Γ̂∗+

)−1
∆̂∗+

(
Γ̂∗+

)−1
+
(

Γ̂∗−

)−1
∆̂∗−

(
Γ̂∗−

)−1] p→
[(

Γ∗+
)−1

∆∗+
(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆∗−
(
Γ∗−
)−1]

=

Vfixed−h.

In the rectangular kernel case, the variance estimator in equation (6) simplifies to the usual heteroskedastic

robust variance estimator when using the data just above and below the cutoff.

Variance estimators based on small-h asymptotic variance formulas, as proposed by Porter (2003) and Lee

and Lemieux (2009), are not fully robust to local heteroskedasticity. For example, Porter (2003) suggested

an estimator for the variance of α̂ based on the small-h approximation that requires only the estimation of

the density of x and conditional variance of the errors at the cutoff. Let

σ̂2+(x) =
(nh)

−1∑n
i=1 k

(
x−xi
h

)
diε̂

2
i

1
2 f̂o(x)

, (7)

σ̂2−(x) =
(nh)

−1∑n
i=1 k

(
x−xi
h

)
(1− di) ε̂2i

1
2 f̂o(x)

, (8)

f̂o(x) = (nh)
−1

n∑
i=1

k

(
x− xi
h

)
, (9)

and

σ̂2+(x) + σ̂2−(x)

f̂o(x)
e′1Γ−1∆Γ−1e1 (10)

is the estimator for the traditional asymptotic variance matrix. The matrix Γ−1∆Γ−1 can be calculated

directly because it is a deterministic function of the kernel and local polynomial order.
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An additional drawback of the variance estimator in formula (10) is the need to estimate fo(x), which

is sidestepped if formula (6) is used. To obtain f̂o(x), we need to choose a kernel and a bandwidth for the

density estimator, increasing the number of tuning parameters to be chosen.9

5 Simulations

This section presents simulation evidence displaying the empirical coverage of a standard t-statistic used to

perform inference about the treatment effect of interest. The objective of the simulations is to determine

the extent to which the heteroskedasticity robust variance estimator discussed in Section 4 improves on the

small-h, homoskedastic variance estimator when the bias introduced by local misspecification is small. As

shown previously, it is expected that both approaches yield similar test performance when the bandwidths

are small, and differences in empirical coverage should be of greater importance when local heteroskedasticity

is present around the cutoff.

To evaluate the relative performance of tests based on the fixed-h and small-h asymptotic variance

approximations and their respective estimators, in this section I present evidence from two data generating

processes for which the local polynomial estimator has negligible or mild asymptotic bias (in the sense

that the bias does not overwhelm inference completely), in line with the condition imposed on Theorem 1.

Obviously, if the bias in the local linear estimator is important, the inference on both approaches would

suffer equally, since they use the same estimator.

Evidence from the simulations presented below indicates that, both in the theoretical (unfeasible) and

feasible cases, inference using the heteroskedasticity robust standard errors performs well, especially for

larger bandwidths and when local heteroskedasticity is present.

The simulations are based on a sharp RD design and consist of 2,000 replications with sample size n equal

to 1,000 observations; the effective sample size included depends on the bandwidth used.10 For the DGPs

used the running variable is drawn from X ∼ 2Beta(2, 4) − 1, and σ(x) = 0.1295 for the homoskedastic

case, σ(x) = 0.1295 + (x)2 for the first (mild) heteroskedastic case, and σ(x) = 0.1295 + (5x)2 for the second

(acute) case. DGP 1 is linear in X and will serve as a benchmark of the refinements offered by the robust

asymptotic approximation developed in Section 3. DGP 2 follows Calonico et al. (2014) and is based on

an empirical RD problem, corresponding to the regression function fitted to Lee’s (2008) data both above

and below the cutoff. Since this DGP introduces bias for some bandwidths, it will allow us to compare the

respective coverage obtained by both approaches in the presence of some bias.

The bandwidths used range from 0.1 to 1. While bandwidth selection algorithms have been proposed in

the literature, in practice implementation requires the researcher to use a particular set of bandwidths. For

9Imbens and Lemieux (2008) propose a plug-in estimator for
σ2+(x)+σ2−(x)

fo(x)
and obtain their estimate for the asymptotic

variance of the local linear estimator by scaling it by e′1Γ−1∆Γ−1e1. This estimator suffers from the same drawbacks as the

one proposed by Porter (2003).
10When there are no observations inside the bandwidth for all choices of h considered the sample is dropped.
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example, for discrete running variables, a discretely positive bandwidth is necessary. Even with a continuous

running variable, sample sizes often are small enough that concerns about precision impel researchers to

use a relatively large bandwidth. As pointed out by Calonico et al. (2014), bandwidth selectors in the

literature “typically lead to bandwidth choices that are too large for the usual distributional assumptions

to be valid.” Furthermore, as pointed out in several recent studies, these optimal bandwidth selectors could

change significantly from setting to setting in a way not captured by the bandwidth selection algorithm (see

Calonico, Cattaneo and Farrell (2017) or Bartalotti and Brummet (2017) for cluster cases). Hence, most

researchers use data-driven bandwidth selectors to benchmark their results while reporting results for a set

of chosen ad hoc bandwidths, which is adequate. The simulations presented here cover a wide range of

fixed bandwidth values including those suggested by the selectors, being representative of the practice in the

applied literature, highlighting the robustness of the fixed bandwidth approximation regardless of bandwidth

choice.

In Appendix 8.1 I present two additional DGPs which have high bias and compare two potential bias

mitigation approaches, one based on small-h bias approximation in equation 4 (Calonico et al., 2014) and

a novel approach inspired by the fixed-h bias approximation in equation 3, which is based on a modified

version of the bias correction bootstrap described in Bartalotti, Calhoun and He (2017).

The empirical coverages presented are the fraction of rejections in the 2,000 repetitions for a two-sided

test of nominal size 5%. More specifically, the DGPs are:

• DGP 1: yi = 0.48 + 1.27xi + ui if x < 0,

0.52 + 0.84xi + ui if x ≥ 0.

• DGP 2: yi = 0.48 + 1.27xi + 7.18x2i + 20.21x3i + 21.54x4i + 7.33x5i + ui if x < 0,

0.52 + 0.84xi − 3.00x2i + 7.99x3i − 9.01x4i + 3.56x5i + ui if x ≥ 0.

The simulations use the local linear estimator (p = 1), since it is the preferred choice in applied

work.11 The next subsection compares the test coverages obtained by the theoretical fixed-h and

small-h asymptotic distributions derived in Section 3. Subsection 5.2 compares the empirical coverages

obtained with (feasible) estimated standard errors.

5.1 Simulations for Infeasible Inference

This subsection documents the differences in test coverages based on the theoretical fixed-h and small-h

asymptotic variance formulas. The tests are infeasible since they depend on knowledge of fo(x) and σ2(x)

around the cutoff, and are intended to highlight the improvements achieved by the fixed-h asymptotic

variance approximation in describing the behavior of the estimators of interest.

11Even though the results apply to any choice of kernel, the rectangular kernel is the main focus so that the estimation

procedure simplifies to the application of OLS on the data just above and below the cutoff, emphasizing the validity of standard

heteroskedastic-robust standard errors.
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These comparisons illustrate how conventional small-h approximations, while valid for small bandwidths,

becomes unreliable as we move away from the cutoff, even in the absence of bias. That finding is natural,

since the small-h asymptotic approximation’s derivation is based on the boundary variance and density and

should not be expected to adequately describe the estimator’s behavior away from the threshold.

The empirical coverages for DGP 1 in the cases studied are presented on Panel A on Table 1. For smaller

bandwidths, both asymptotic variances generate similar empirical coverages as expected, but there is a

significant decrease in the small-h coverage as the bandwidth increases, while fixed-h inference increasingly

outperforms the standard approximation.

DGP 2, based on data in Lee (2008), presents qualitatively similar results, as can be seen on Panel B in

Table 1. Note that the coverage varies severely depending on the bandwidth used due to the bias implied

by each choice. Nevertheless, the bias is small enough in this case not to overwhelm the tests completely,

and it is clear that tests based on fixed-h asymptotic variance produce more adequate coverage even in the

presence of bias. Furthermore, the improvements increase with bandwidth sizes, as predicted.

As described in Section 3, the refinements obtained by the fixed-h approach are due to considering the

behavior of fo(x) and σ2(x) inside the bandwidth. Hence, in the presence of heteroskedasticity those should

be even more important.
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Table 1: Infeasible Inference - Empirical coverage of t-test (%) - nominal test size:5%

Panel A: DGP 1 (Linear)

Homoskedastic Heteroskedastic 1 Heteroskedastic 2

Bandwidth Fixed-h Small-h Fixed-h Small-h Fixed-h Small-h

0.1 94.4 94.2 94.3 94.0 94.7 84.9

0.2 94.6 94.5 94.5 93.4 95.0 50.4

0.3 95.2 94.8 95.3 92.0 94.3 26.0

0.4 95.5 94.8 95.0 89.2 95.1 15.4

0.5 95.5 94.3 95.3 84.2 94.5 10.3

0.6 95.3 93.3 95.3 77.8 94.5 7.4

0.7 94.6 92.2 95.2 70.0 94.0 5.0

0.8 94.9 91.1 94.8 62.2 95.2 4.3

0.9 95.0 89.7 94.3 57.3 94.0 4.1

1.0 95.2 87.9 94.0 52.5 94.0 3.5

Panel B: DGP 2 (Lee (2008))

Homoskedastic Heteroskedastic 1 Heteroskedastic 2

Bandwidth Fixed-h Small-h Fixed-h Small-h Fixed-h Small-h

0.1 93.8 93.8 93.8 93.4 93.8 83.5

0.2 83.2 82.8 84.0 81.4 92.1 49.5

0.3 62.3 60.9 67.7 59.7 94.2 27.1

0.4 53.2 51.2 64.9 49.9 94.8 15.8

0.5 66.6 63.0 79.7 59.5 94.9 10.7

0.6 84.1 80.8 89.5 69.3 94.8 7.4

0.7 91.8 88.3 94.1 68.2 95.8 5.0

0.8 87.8 81.7 93.3 59.7 95.0 3.9

0.9 56.1 42.4 86.2 43.5 94.3 2.9

1.0 22.7 13.4 77.8 27.2 95.8 2.8

The coverages for the (mild) heteroskedastic case, and the second (acute) heteroskedastic cases are pre-

sented in the last four columns of Table 1. The (infeasible) tests based on fixed-h asymptotics behave well

in all cases, highlighting the robustness of the approach. In the first case, the small-h asymptotic approx-

imation presents a more pronounced pattern of decreasing coverage as the bandwidths increase, compared

to the homoskedastic case; as expected. In contrast, for the acute heteroskedasticity case, the small-h based
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test has a steep decline in coverage as the bandwidth increases, since it is not able to properly capture the

effect of the heteroskedasticity for larger bandwidths.

The heteroskedasticity described in this simulation is a “worst case scenario” for small-h asymptotics since

the conditional variance of the error at the cutoff, σ2(x), is at the extreme of the range of values assumed

by σ2(x) in any given bandwidth. As can be seen from formula (1), the small-h and fixed-h asymptotic

variances will be more similar if σ2(x) is close to the “weighted average” of σ2(x) inside the bandwidth.

Some points are worth emphasizing. First, the general pattern is that the empirical coverages obtained

using fixed-h results from theorem 1 outperform those from the small-h approximations, especially for larger

bandwidths. Second, for smaller bandwidths, small-h asymptotics provide similar coverages to the fixed-h

approach, making it clear that the core difference is due to the suitability of the restrictions imposed on fo(x)

and σ2(x) as the bandwidth increases (corollary 2). Naturally, those restrictions tend to be less realistic for

larger bandwidths. Third, in the presence of heteroskedasticity, the small-h approximation can have poor

performance, while the fixed-h asymptotic variance still provides a reliable approximation for the estimator’s

behavior.

5.2 Simulations for Feasible Inference

This subsection presents simulations for the empirical coverage of the tests using two different estimated

standard errors. The first is based on the fixed-h asymptotic variance and is given by formula (6), which

is akin to treating the estimates as locally parametric as discussed above. The second is analogous to the

ones proposed by Porter (2003) and Imbens and Lemieux (2008), and described by formula (10). Even

though it is nowadays common practice to implement variance estimators that are similar to the usual

heteroskedasticity robust standard errors in RD applications these exercises are helpful. They provide

evidence of the shortcomings in relying on standard error formulas based on small-h asymptotics.

For locally homoskedastic errors, the heteroskedasticity robust standard errors’ estimator incorporates

the gains of improved inference as described in the theory and infeasible simulations. These results are

seen in the first two columns of Table 2. Perhaps surprisingly, tests obtained using small-h standard error

estimators behave very similarly to those of fixed-h even at relatively larger bandwidths, for which one would

expect a significantly smaller coverage considering the evidence in subsection 5.1. Essentially, the small-h

variance estimators benefit from the fact that, by using data on xi and ε̂i in practice, the estimator for the

standard errors partially captures the behavior of fo(x) and σ2(x) in the range around the cutoff - even

though the theoretical small-h asymptotic approximation ignores it.

17



Table 2: Feasible Inference - Empirical coverage of t-test (%) - nominal test size:5%

Panel A: DGP 1 (Linear)

Homoskedastic Heteroskedastic 1 Heteroskedastic 2

Bandwidth Fixed-h Small-h Fixed-h Small-h Fixed-h Small-h

0.1 94.0 93.8 94.2 94.0 94.3 98.0

0.2 94.3 94.3 94.3 95.5 94.2 99.4

0.3 94.8 94.2 94.9 97.0 94.2 99.5

0.4 95.1 94.8 95.0 97.8 94.6 99.7

0.5 95.8 94.3 95.1 98.8 94.9 99.7

0.6 94.8 93.8 94.6 98.8 94.5 99.2

0.7 94.5 93.0 94.8 99.0 94.2 99.4

0.8 94.4 92.3 94.2 99.2 94.3 99.5

0.9 94.5 91.6 93.9 99.4 93.5 99.4

1.0 94.3 91.8 93.4 99.2 93.3 99.4

Panel B: DGP 2 (Lee (2008))

Homoskedastic Heteroskedastic 1 Heteroskedastic 2

Bandwidth Fixed-h Small-h Fixed-h Small-h Fixed-h Small-h

0.1 93.2 93.1 93.5 93.5 93.7 98.0

0.2 82.8 82.5 84.0 85.7 92.0 99.0

0.3 61.7 60.2 67.6 74.5 94.0 99.1

0.4 52.8 50.8 63.9 76.0 94.2 99.5

0.5 66.5 63.7 78.8 90.3 94.7 99.7

0.6 84.6 81.5 89.0 96.5 94.0 99.5

0.7 92.0 89.5 93.5 98.8 94.6 99.6

0.8 87.9 83.9 92.7 98.2 93.9 99.1

0.9 55.9 50.0 85.5 97.0 93.5 99.5

1.0 23.2 20.1 76.5 94.0 94.5 99.7

To see this point, note that the researcher is not able to exactly estimate fo(x) and σ2(x) from a given

dataset, as would have been suggested by the theoretical small-h’s asymptotic variance formula. By being

“forced” to estimate the variance and the density within the bandwidth, the small-h variance estimator is

able to partially capture the local behavior of those terms.

In the heteroskedastic cases, the fixed-h variance estimator produces tests with coverage very close to the
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test’s nominal size for DGP 1, while the coverage for small-h rapidly increases towards 1 as the bandwidth

increases. Note that the empirical coverage shows under-rejection in this case since, first, σ2(x) increases

away from the cutoff and, second, σ̂2+ and σ̂2− will significantly overestimate the true weighted average of

the conditional variance within the bandwidth.

Hence, there is evidence that heteroskedasticity can be accurately captured by tests based on fixed-h ap-

proximations; small-h based standard errors can produce tests with significant size distortion. Furthermore,

the distortion on coverage encountered on this particular DGP for heteroskedasticity is not even in the same

direction that the unfeasible (theoretical) tests would predict!

Therefore, it seems the heteroskedasticity robust standard errors are a “safer choice” for practitioners

since it is based on an asymptotic approximation that is “robust to bandwidth choice” and its computation

is very easy once a kernel and bandwidth are chosen. Furthermore, the robust variance estimator has the

advantage of not requiring the estimation of fo(x). That estimation would entail the choice of a (potentially

different) kernel and bandwidth for f̂o(x). These two tuning parameters might significantly alter the empirical

size of the tests and depend on the discretion of the researcher.

To the empirical researcher, a useful conclusion can be drawn from these simulations. By performing

inference using fixed-h based standard errors, which is akin to treating the estimates as locally parametric

and simplifies to the standard heteroskedastic robust standard errors for rectangular kernels, one can feel

confident about the standard errors for any bandwidth used.

The researcher can then focus his attention on choosing a bandwidth to deal with the bias at hand.12 As

pointed out in Section 3 and the simulations above, this issue similarly affects the empirical test coverage

ragardless of the standard errors used. However, the fixed-h approximation has the benefit of clarifying

that, even under the validity of the RD design, local misspecification can be an important factor. Taking

advantage of RD to estimate a treatment effect of interest is the exercise of estimating the conditional

expectation of the outcome variable inside the bandwidth. Naturally, for larger bandwidths, one would

expect that the likelihood of misspecification increases, requiring higher-order bias corrections. I discuss

potential approaches to address the bias on Section 3.1. Appendix 15 presents simulation evidence that

higher-orders bias mitigation procedures motivated by the fixed-h asymptotics provide improved coverage

performance relative to first-order bias correction based on the small-h asymptotics, especially for larger

bandwidths.

12For a detailed discussion on bias correction in RD designs and the inference adjustments needed when performing such

correction, see Calonico et al. (2014).
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6 Empirical Example

To illustrate the potential differences in the small-h and fixed-h approximations discussed above, this section

uses data from Lee’s (2008) study of the electoral advantage of incumbency in the United States.13 Lee

(2008) argues that the U.S. Congressional electoral system has a “built-in” RD design. That is, being the

incumbent party in a congressional district is a deterministic function of the candidate-party’s vote share in

the district during the last electoral cycle. This feature can be described in the following model:

vi2 = αwi1 + βvi1 + γdi2 + ei2

di2 = 1

[
vi1 ≥

1

2

]
,

where vit is the democratic candidate’s vote share in congressional district i in election year t, wit is a vector

of characteristics or agents’ choices (potentially unobserved) as of election day on period t, and dit indicates

if the Democratic party is the incumbent in district i at election period t. We also assume that fi1 (v | w),

the density of vi1 conditional on wi1, is continuous in v. The main issue in the analysis, as discussed in detail

by Lee (2008), is that wit is potentially unobserved and would likely be correlated with being incumbent in a

certain district. For example, wi1 would include party resources, demographic characteristics, and political

leaning of districts, all of which could affect both the vote share in periods 1 and 2, thus biasing the estimates

for the causal effect of incumbency.

The thought experiment to find the causal effect of incumbency would be to randomly allocate incumbency

in districts to Democrats and Republicans while keeping all other characteristics constant. This clearly cannot

be done, but by looking at closely contested elections, we can consider that the incumbents in those districts,

whether Democrats or Republicans, were decided randomly, given the inherent uncertainty regarding the

outcome of such events.14 This can provide reasonable estimates of the causal effect of incumbency in closely

contested elections.

The data includes U.S. congressional election returns from 1946 to 1998, excluding the years ending in

‘0’ and ‘2’ due to the decennial redistricting which characterizes the U.S. congressional electoral system.

The running variable is defined as the difference in vote share between the Democratic candidate and the

strongest opponent. Hence, the Democrat wins the election when this variable crosses the 0 threshold - i.e.,

there is a positive difference in vote share, indicating that the Democrat has received more votes.

Table 1 shows the estimated advantage of incumbency and the estimated standard errors given by for-

mulas based on a fixed bandwidth approximation (6), which in the rectangular kernel case is the usual

heteroskedasticity robust s.e., and a small-h approximation (10), respectively.

13The dataset used in this section have been downloaded from the ”Mostly Harmless Econometrics Data Archive” website.

(http://economics.mit.edu/faculty/angrist/data1/mhe)
14For a discussion on the assumptions necessary for the validity of RD design in this example, see Lee (2008).
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Table 3: Incumbency Effects and Estimated Standard Errors - Lee (2008)

Dependent Variable: Democrat Vote Share - Election t+ 1

Panel A: Nadaraya-Watson Estimator (p = 0)

All |Margin| ≤ 0.5 |Margin| ≤ 0.05

Estimated Effect 0.351 0.257 0.096

(Fixed-h Standard Errors) (0.0041) (0.0038) (0.0090)

[Small-h Standard Errors] [0.0041] [0.0038] [0.0090]

Difference (%) 1.6% 0.5% 0.1%

Panel B: Local Linear Estimator (p = 1)

Estimated Effect 0.118 0.090 0.048

(Fixed-h Standard Errors) (0.0056) (0.0062) (0.0159)

[Small-h Standard Errors] [0.0068] [0.0071] [0.0180]

Difference (%) 21.4% 14.5% 13.2%

Panel C: Local Polynomial Estimator (p = 4)

Estimated Effect 0.077 0.066 0.105

(Fixed-h Standard Errors) (0.0113) (0.0144) (0.0312)

[Small-h Standard Errors] [0.0167] [0.0179] [0.0447]

Difference (%) 46.5% 24.3% 42.4%

Observations 6558 4900 610

Panel A presents estimates of the Nadaraya–Watson estimator (p = 0) for different bandwidths. Column

1 uses all the data available, column 2 looks only at elections for which the margin of victory in period t− 1

was within 50% of the total votes, and column 3 uses only elections with margins lower than 5%. Panel

B presents similar estimates and standard errors obtained by a local linear estimator (p = 1), which is the

preferred specification in several RD applications in the literature and is expected to significantly reduce

bias in the estimates of the incumbency advantage effect.

Panel C presents the results Lee (2008) called the “parametric fit” in the first column, which uses a

polynomial of order 4 to fit the whole data. The other two columns use smaller bandwidths to emphasize

how the order of the polynomial chosen to fit the data can significantly impact estimates and standard errors,

especially in small samples, by over-fitting the data.

The point estimates are exactly the same as presented by Lee (2008) for panel A and the first column in

panel C. The remaining estimates are new. The results indicate a significant incumbent advantage in U.S.

congressional races, even when comparing districts that had close elections in the previous electoral cycle for

which the determination of incumbent status can be considered “as good as randomized.”15 See Table 2 in

the online appendix for similar results that include the pre-determined variables that Lee (2008) uses and the

15See Caughey and Sekhon (2011) for a discussion on that claim.
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comparisons for fixed-h and small-h standard errors. The observed differences in pre-determined variables

between incumbents and challengers vanish as we compare districts that previously had competitive races,

lending credibility to the RD as an identification strategy for the incumbency effect. More relevant to this

paper are the differences between the competing standard error estimates.

The estimated standard errors, shown in Table 1, differ significantly, with the fixed-h standard errors

being smaller in most of the cases—as one would expect, given the simulations in Section 5. Also as

expected, using smaller bandwidths comes at a large cost in terms of precision of the estimates due to the

smaller amount of data available, negatively affecting both standard error estimators. The two last columns

in all three panels show an increase of the estimated standard errors when the data is restricted to districts

that had victory margins smaller than 5% in the previous election.

Interestingly, it is usual for the relative gap between the two standard errors estimates to decline as the

bandwidth shrinks, as predicted in Section 3. For panels A and B and for the first two columns of panel C,

this pattern is confirmed as we compare the percent difference between the standard errors within panels.16

For the third entry in panel C, note that both standard errors become larger than those for the wider

bandwidth in column 2, but the relative gap increases. That can be due to the fact that the fixed-h standard

error estimate requires the calculation of 4(2p + 1) terms (see equation 6). Hence, it is more susceptible

to the combination of large polynomial orders and small sample sizes induced by the smaller bandwidth.

Nevertheless, it still provides tighter confidence intervals than the small-h estimated standard error.

Finally, note that the differences between standard errors increase as the order of the polynomial used

to fit the data increases for the same bandwidth. This is due to the fact that the small-h standard error

estimator is based on a fixed scaling term for a given kernel and polynomial order choice, e′1Γ−1∆Γ−1e1.

Intuitively, as the polynomial order increases, the greater the distortion is likely to be between using this

approximation and the more refined formula implied by the fixed-h approach.

7 Conclusion

This paper focuses on presenting an alternative asymptotic approximation for the standard RD treatment

effects estimator using a fixed bandwidth. This approximation provides expressions for the estimator’s

asymptotic variance that incorporate the bandwidth used by the researcher, and leads naturally to the

standard error formulas used in the applied literature, i.e., White-Huber-Eicker robust standard errors when

a rectangular kernel is implemented.

The proposed approximation is valid under an asymptotic nesting where the bandwidth parameter, h,

is fixed, as well as under conventional RD asymptotics where h → 0, while the traditional asymptotic

approximations based on a shrinking bandwidth suggested, for example, in Porter (2003) and Imbens and

Lemieux (2008) are not adequate for relatively larger bandwidths used in practice, especially in the presence

16A similar pattern emerges from table 2 in the online appendix.
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of heteroskedasticity. Furthermore, the approximations provided in this study relax the assumption of

continuity of the conditional variance of the outcome at the cutoff, providing a theoretical framework for

that case. The common empirical strategy of using robust standard errors in RD studies is appropriate when

the misspecification is small and heteroskedasticity is a concern.

Simulations document the theoretical refinements provided by relying on asymptotic variances based on

fixed bandwidth asymptotics, and illustrate that tests using heteroskedasticity robust standard errors pro-

duces significantly more reliable test coverage than its counterparts using standard errors based on asymptotic

approximations where h→ 0.

Furthermore, an alternative, fixed-h, approximation for the estimator’s potential asymptotic bias is ob-

tained and provides additional intuition on the robustness-precision trade-off facing the researcher in RD

designs. I investigate two alternatives to address the bias in practice. The first is the widely used analytical

approach based on the traditional asymptotics suggested by Calonico et al. (2014). The second follows

more naturally from the fixed bandwidth asymptotics developed here and is based on a iterative boot-

strap approach that provides higher order bias mitigation by building upon the wild bootstrap algorithm in

Bartalotti, Calhoun and He (2017).
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8 Appendix

8.1 Simulations for Bias Control

Below we present simulation evidence of the small sample performance for the first order bias correction

proposed by Calonico et al. (2014) as implemented in the rdrobust package in R and the modified Bartalotti,

Calhoun and He (2017) wild bootstrap procedure which easily allows for higher order bias mitigation, as

discussed on Section 3. To emphasize the bias mitigation aspect the DGPs in this exercise are chosen to

exhibit moderate to severe bias. Specifically, we implement the DGPs described in Calonico el al. (2014)

and used by Bartalotti, Calhoun and He (2017).

The first DGP is the same as described in Section 5 as DGP 2

• DGP Bias 1: yi = 0.48 + 1.27xi + 7.18x2i + 20.21x3i + 21.54x4i + 7.33x5i + ui if x < 0,

0.52 + 0.84xi − 3.00x2i + 7.99x3i − 9.01x4i + 3.56x5i + ui if x ≥ 0.

The population ATE for this DGP is 0.04(= 0.52− 0.48).
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The second DGP is based on Ludwig and Miller’s (2007) analysis of the Head Start program. In this

case, eligibility to grant-writing assistance was determined at the county level using historical poverty rate,

with a sharp threshold that determines the provision of services.

• DGP Bias 2: yi = 3.71 + 2.30xi + 3.28x2i + 1.45x3i + 0.23x4i + 0.03x5i + ui if x < 0,

0.26 + 18.49xi − 54.81x2i + 74.30x3i − 45.02x4i + 9.83x5i + ui if x ≥ 0.

and the population ATE is −3.45(= 0.26− 3.71).

Finally, for the third DGP, we use CCT’s modification of the first DGP, given by

• DGP Bias 3: yi = 0.48 + 1.27xi + 3.59x2i + 14.147x3i + 23.694x4i + x5i + ui if x < 0,

0.52 + 0.84xi − 0.30x2i + 2.397x3i − 0.901x4i + x5i + ui if x ≥ 0.

and the population ATE is again 0.04. CCT introduce this DGP because it has high curvature and local

linear models are likely to exhibit high bias.

As the focus of this set of simulations is comparing the bias mitigation achieved by the first order bias

correction (Calonico et al. 2014) inspired by the usual shrinking bandwidth asymptotics, and the higher

order bias correction using the modified bootstrap procedure prompted by the fixed bandwidth approach, all

reported results are based on std. errors compatible with the fixed bandwidth asymptotic nesting described

on Section 3.

I follow a similar approach to the simulations as described in Bartalotti, Calhoun and He (2017). I

simulate 5000 samples from each of the three DGPs and calculate nominal 95% two-sided confidence intervals.

We use 999 bootstrap replications to calculate the asymptotic distribution of the bias corrected estimator,

and each of those replications uses an additional 500 replications to estimate the bias. The bandwidths are

set equal to h and are fixed within each Monte Carlo replication, in line with the fixed-h thought experiment.

As it can be seem in Table 4 below, the bias mitigation obtained by the first order bias correction becomes

less capable of capturing the bias distortion as the bandwidth moves away from zero. This is in line with the

discussion in Section 3.1, since for larger bandwidths the bias being captured by the expansion in equation 4

becomes a less reliable approximation of the bias in the local support ℵ̇. It is important to note that in the

exercise described below I used the correct polynomial order (p = 5) for the bias estimation in the modified

bootstrap, so it reflects a best case scenario in terms of approximating the bias in the local support of the

running variable.
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Table 4: Bias Corrected Inference - Empirical coverage of t-test (%) - nominal test size:5%

DGP Bias 1 DGP Bias 2 DGP Bias 3

Homosk. Heterosk. Homosk. Heterosk. Homosk. Heterosk.

h Boot CCT Boot CCT Boot CCT Boot CCT Boot CCT Boot CCT

0.1 95.7 92.1 96.1 92.5 95.7 94.0 93.1 94.2 95.7 92.0 95.9 92.8

0.2 95.2 93.5 94.4 92.2 95.2 93.6 91.8 93.5 95.2 93.7 94.6 92.6

0.3 93.8 92.5 94.8 93.0 93.8 81.2 92.1 79.7 93.8 94.3 95.0 94.1

0.4 95.3 87.2 94.4 90.0 95.3 36.2 92.2 25.1 95.3 92.8 94.7 94.0

0.5 93.7 79.2 94.5 81.7 93.7 2.1 93.2 1.2 93.7 93.2 95.2 94.2

0.6 95.2 72.0 95.5 77.3 95.2 0.1 93.2 0.0 95.2 87.3 96.9 93.2

0.7 95.0 73.1 94.9 80.2 95.0 0.0 93.8 0.0 95.0 66.5 96.4 92.8

0.8 94.8 87.2 95.6 88.3 94.8 0.0 94.2 0.0 94.8 27.9 96.7 92.7

0.9 94.3 93.3 95.8 93.5 94.3 0.0 95.0 0.0 94.3 9.6 96.8 92.5

1.0 95.1 90.9 95.8 93.1 95.1 0.0 94.6 0.0 95.1 4.3 96.4 92.0

These simulations reinforce the main point of this paper that the fixed-h asymptotic framework provides a

robust and reliable alternative to the usual asymptotic approximations that rely on shrinking the bandwidth

when dealing with practical implementation of RD designs. Furthermore, these approximations provide

insight on the properties of the estimator that can lead to improved empirical practices, as exemplified by

the modified wild bootstrap bias mitigation suggested in this section.
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8.3 Technical Details

8.3.1 Additional Notation

In this appendix, all integrals are defined as Stieltjes integrals to accommodate potentially discrete and

hybrid running variables (Ramanathan, 1993). In the results presented in the main text, the following

notation is employed.

Let, Γ∗+(−) =


γ
+(−)
0 · · · γ

+(−)
p

...
. . .

...

γ
+(−)
p · · · γ

+(−)
2p

 , ∆∗+(−) =


δ
+(−)
0 · · · δ

+(−)
p

...
. . .

...

δ
+(−)
p · · · δ

+(−)
2p

, e1 =
[
1 0 · · · 0

]′
; γ+j =

∫∞
0
k (u)ujdFo(x + uh); γ−j = (−1)j

∫∞
0
k (u)ujdFo(x − uh); δ+j =

∫∞
0
k2 (u)ujσ2(x + uh)dFo(x + uh);

δ−j = (−1)j
∫∞
0
k2 (u)ujσ2(x− uh)dFo(x− uh).

Also, for the results when nh → ∞, h → 0, Γ =


γ0 · · · γp
...

. . .
...

γp · · · γ2p

, ∆ =


δ0 · · · δp
...

. . .
...

δp · · · δ2p

, γj =

∫∞
0
k (u)ujdu, δj =

∫∞
0
k2 (u)ujdu.

8.3.2 Main Results

The proofs presented below follow closely from the insights and work in Porter (2003).

Proof of Theorem 1. The local polynomial estimator is given by

α̂p = α̂p+ − α̂p−

note that,

α̂p+ = e′1

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiZ

′
i

]−1 [
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi

]

= e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi

]

where Dn+ =
[

1
nh

∑n
i=1 k

(
xi−x
h

)
diZiZ

′
i

]−1
. Similarly, for Dn− =

[
1
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)ZiZ ′i

]−1
α̂p− = e′1Dn−

[
1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziyi

]
Then,

α̂p+ = e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZi [m(xi) + αdi + εi]

]

= e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi) +

1

nh

n∑
i=1

k

(
xi − x
h

)
diZiα+

1

nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

]
note that Zi = ZiZ

′
ie1, e′1e1 = 1 then

α̂p+ − α = e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

]
+ e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

]
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and similarly for α̂p−.Then

√
nh(α̂p − α) =

√
nh(α̂p+ − α− α̂p−)

= e′1Dn+

{
√
nh

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

]
+

[
1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

]}
−

− e′1Dn−


√
nh
[

1
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)Zim(xi)

]
+

+
[

1√
nh

∑n
i=1 k

(
xi−x
h

)
(1− di)Ziεi

]


For the denominator terms Dn+ and Dn−,

D−1n+ =
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiZ

′
i

and each element of this matrix is given by

[
D−1n+

]
l,j

=
1

nh

n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2

which has asymptotic variance converging to zero since

V ar
([
D−1n+

]
j,l

)
=

1

(nh)
2V ar

(
n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2)

=
1

nh2
V ar

(
k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2)

≤ 1

nh

∫ x+h

x

1

h
k2
(
x− x
h

)(
x− x
h

)2(j+l−2)

dFo(x)

Note that the terms in the integral and the integral itself areO(1) and 1
nh = o(1). Hence, V ar

([
D−1n+

]
l,j

)
→

0. Now, using the usual transformation u = x−x
h

[
D−1n+

]
l,j

= E
{[
D−1n+

]
l,j

}
+ op(1)

=
1

nh
E

[
n∑
i=1

k

(
xi − x
h

)
di

(
xi − x
h

)j+l−2]
+ op(1)

=

∫ ∞
0

k (u)uj+l−2dFo(x+ uh) + op(1)

Let, γ+j =
∫∞
0
k (u)ujdFo(x + uh) and Γ∗+ is the (p + 1) × (p + 1) matrix with (j, l) element γ+j+l−2 for

j, l = 1, ..., p+ 1. Then, Dn+
p→
(
Γ∗+
)−1

and Dn−
p→
(
Γ∗−
)−1

, where Γ∗− is the (p+ 1)× (p+ 1) matrix with

(j, l) element γ−j+l−2 for j, l = 1, ..., p+ 1, and γ−j = (−1)j
∫∞
0
k (u)ujdFo(x− uh).

Now we will derive the asymptotic distribution of 1√
nh

∑n
i=1 k

(
xi−x
h

)
diZiεi. Following Porter (2003) I
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use the Cramer-Wold device to derive the asymptotic distribution. Let λ be a nonzero, finite vector. Then,

E

∣∣∣∣∣ 1√
nh

n∑
i=1

k

(
xi − x
h

)
diλ
′Ziεi

∣∣∣∣∣
2+ζ


=

(
1

nh

) ζ
2 1

h
E

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ d

∣∣∣∣∣
p∑
l=1

λl

(
x− x
h

)l∣∣∣∣∣
2+ζ

E
[
|ε|2+ζ | X = x

]
≤
(

1

nh

) ζ
2 1

h
sup
x∈ℵ

{
E
[
|ε|2+ζ | X = x

]}
E

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ d p∑

l=1

∣∣∣∣∣λl
(
x− x
h

)l∣∣∣∣∣
2+ζ


=

(
1

nh

) ζ
2 1

h
sup
x∈ℵ

{
E
[
|ε|2+ζ | X = x

]} x+h∫
x

∣∣∣∣k(x− xh
)∣∣∣∣2+ζ p∑

l=1

∣∣∣∣∣λl
(
x− x
h

)l∣∣∣∣∣
2+ζ

dFo(x)

=

(
1

nh

) ζ
2

O(1)O(1) = o(1)

then, 1√
nh

∑n
i=1 k

(
xi−x
h

)
diZiεi follows a CLT. Note that,

E

[
1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

]
= 0

and

V ar

[
1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

]

=
1

h
E

[
k2
(
xi − x
h

)
diZiZ

′
iε

2
i

]
=

∫ x+h

x

1

h
k2
(
x− x
h

)
ZZ ′σ2(x)dFo(x)

It helps to remember that ZiZ
′
i is a function of the x,

ZiZ
′
i =


1

(
xi−x
h

)
· · ·

(
xi−x
h

)p(
xi−x
h

) (
xi−x
h

)2 · · ·
(
xi−x
h

)p+1

...
...

. . .
...(

xi−x
h

)p (
xi−x
h

)p+1 · · ·
(
xi−x
h

)2p


Let δ+j =

∫ x+h
x

1
hk

2
(
x−x
h

) (
x−x
h

)j
σ2(x)dFo(x) =

∫∞
0
k2 (u)ujσ2(x + uh)dFo(x + uh)du and ∆∗+ is the (p +

1)× (p+ 1) matrix with (j, l) element δ+j+l−2 for j, l = 1, ..., p+ 1. Then,

1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

p→ N(0,∆∗+)

Similarly we can show that

1√
nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziεi

p→ N(0,∆∗−)
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where ∆∗− is the (p + 1) × (p + 1) matrix with (j, l) element δ−j+l−2 for j, l = 1, ..., p + 1, and δ−j =∫ x
x−h

1
hk

2
(
x−x
h

) (
x−x
h

)j
σ2(x)dFo(x) = (−1)j

∫∞
0
k2 (u)ujσ2(x− uh)dFo(x− uh).

The bias term is given by

√
nhe′1

{
Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

]
−Dn−

[
1

nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Zim(xi)

]}

Note that,

E

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZim(xi)

]
= E

[
1

h
k

(
xi − x
h

)
diZim(xi)

]
=

∫ ∞
0

k (u)Z(x+ uh)m(x+ uh)dFo(x+ uh)

and similarly, below the cutoff. Hence, the bias term can be approximated by,

e′1


(
Γ∗+
)−1 [∫∞

0
k (u)Z(x+ uh)m(x+ uh)dFo(x+ uh)

]
−

−
(
Γ∗−
)−1 [∫∞

0
k (u)Z(x− uh)m(x− uh)dFo(x− uh)

]


There are two noteworthy cases in which the formulas for the fixed-h asymptotic variance and bias

simplify to those of the small-h approximation. First, when h→ 0, the fixed-h formulas for the asymptotic

variance and bias approach the small-h approximation formulas.

Corollary 1 If, in the bandwidth around the cutoff, fo(x), σ2(x) and m(x) are continuous, then

lim
h→0

Vfixed−h = Vsmall−h

lim
h→0

Bfixed−h = Bsmall−h

Proof of Corollary 1. First, note that, if h→ 0,

γ+j = lim
h→0

∫ ∞
0

k (u)ujofo(x+ uh)du = fo(x)

∫ ∞
0

k (u)ujdu = fo(x)γj (11)

and

δ+j = lim
h→0

∫ ∞
0

k2 (u)ujσ2(x+ uh)fo(x+ uh)du = σ2+(x)fo(x)

∫ ∞
0

k2 (u)ujdu = σ2+(x)fo(x)δj (12)

and similarly for γ−j and δ−j . Then, for the variance,

lim
h→0

(
Γ∗+
)−1

∆∗+
(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆∗−
(
Γ∗−
)−1

=
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1

For the bias, if we approximate m(x+ uh) = m(x) just above m(x) :

m(x) = m(x) +m′+(x) (x− x) + ...+
1

p!
m(p)+(x) (x− x)

p
+

1

(p+ 1)!
m(p+1)+(x) (x− x)

p+1
+ o

(
hp+1

)
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and similarly for approximating m(x) just below the cutoff. When we evaluate the linear projection of m(x)

on Z(x) at x, we get the intercept m(x) and the ”residual” as described above. A helpful fact is that, by

the definition of Z(x),

∫ ∞
0

k (u)Z(x+ uh)up+1du =


γp+1

...

γ2p+1

 (13)

∫ ∞
0

k (u)Z(x− uh)up+1du =


γp+1

...

(−1)pγ2p+1

 (14)

Note that Γ−1


γp+1

...

γ2p+1

 is equal both above and below the cutoff. The bias formula in theorem 1 is given by

e′1


(
Γ∗+
)−1 [∫∞

0
k (u)Z(x+ uh)m(x+ uh)fo(x+ uh)du

]
−

−
(
Γ∗−
)−1 [∫∞

0
k (u)Z(x− uh)m(x− uh)fo(x− uh)du

]
 (15)

as discussed in Section 3 in the main text the main term is just the difference between the intercepts of the

linear projections of k (u)m(x) on k (u)Z(x) in the bandwidth above below the cutoff, which is equal to the

linear projections evaluated at x. Hence, plugging the bias formula for the linear projection, formula (15)

can be written as

e′1


[(

Γ∗+
)−1 ∫∞

0
k (u)Z(x+ uh)

(
1

(p+1)!m
(p+1)+(x) (uh)

p+1
+ o

(
hp+1

))
fo(x+ uh)du

]
−
[(

Γ∗−
)−1 ∫∞

0
k (u)Z(x− uh)

(
(−1)p+1

(p+1)! m
(p+1)−(x) (uh)

p+1
+ o

(
hp+1

))
fo(x− uh)du

]


=
hp+1

(p+ 1)!
e′1


 m(p+1)+(x)

[(
Γ∗+
)−1 ∫∞

0
k (u)Z(x+ uh)up+1fo(x+ uh)du

]
− (−1)

p+1
m(p+1)−(x)

[(
Γ∗−
)−1 ∫∞

0
k (u)Z(x− uh)up+1fo(x− uh)du

]
+ o (1)


If h→ 0, using the equalities in equations (11), (12), (13) and (14),

=
limh→0

(
hp+1

)
(p+ 1)!

[
m(p+1)+(x)− (−1)

p+1
m(p+1)−(x)

]
e′1Γ−1


γp+1

...

γ2p+1


which is the same limit of the bias term in the small-h approximation.

Hence, if h is small, fixed-h and small-h provide similar approximations to the asymptotic behavior of α̂.

Secondly, if fo(x) and σ2(x) are constant around the cutoff and m(x) can be exactly approximated by a

polynomial of order p+ 1, the fixed-h asymptotic variance and bias approximations simplify to the small-h

asymptotic formulas.
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Corollary 2 If, in the bandwidth around the cutoff, fo(x), σ2(x) are constant and m(x) can be exactly

approximated by an expansion of order p+1, then the asymptotic variance and bias of
√
nh(α̂p−α) obtained

by fixed-h (theorem 1) and small-h (Porter 2003) are the same.

Vfixed−h = Vsmall−h

Bfixed−h = Bsmall−h

Proof of Corollary 2. First, note that, if h > 0 and, in the bandwidth around the cutoff, fo(x) = fo(x),

σ2(x) = σ2(x) and

m(x) = m(x) +m′+(x) (x− x) + ...+
1

p!
m(p)+(x) (x− x)

p
+

1

(p+ 1)!
m(p+1)+(x) (x− x)

p+1

then,

γ+j =

∫ ∞
0

k (u)ujfo(x+ uh)du = fo(x)

∫ ∞
0

k (u)ujdu = fo(x)γj (16)

and

δ+j =

∫ ∞
0

k2 (u)ujσ2(x+ uh)fo(x+ uh)du = σ2+(x)fo(x)

∫ ∞
0

k2 (u)ujdu = σ2+(x)fo(x)δj (17)

and similarly for γ−j and δ−j . Then, for the variance,

(
Γ∗+
)−1

∆∗+
(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆∗−
(
Γ∗−
)−1

=
σ2+(x) + σ2−(x)

fo(x)
e′1Γ−1∆Γ−1e1

For the bias, the strategy is basically the same as in the proof of corollary 1:

m(x) = m(x) +m′+(x) (x− x) + ...+
1

p!
m(p)+(x) (x− x)

p
+

1

(p+ 1)!
m(p+1)+(x) (x− x)

p+1

Once again the bias formula in theorem 1 is given by

e′1


(
Γ∗+
)−1 [∫∞

0
k (u)Z(x+ uh)m(x+ uh)fo(x+ uh)du

]
−

−
(
Γ∗−
)−1 [∫∞

0
k (u)Z(x− uh)m(x− uh)fo(x− uh)du

]


Plugging the bias formula for the linear projection:

e′1


[(

Γ∗+
)−1 ∫∞

0
k (u)Z(x+ uh)

(
1

(p+1)!m
(p+1)+(x) (uh)

p+1
)
fo(x+ uh)du

]
−
[(

Γ∗−
)−1 ∫∞

0
k (u)Z(x− uh)

(
(−1)p+1

(p+1)! m
(p+1)−(x) (uh)

p+1
)
fo(x− uh)du

]


=
hp+1

(p+ 1)!
e′1


[(

Γ∗+
)−1 ∫∞

0
k (u)Z(x+ uh)m(p+1)+(x)up+1fo(x+ uh)du

]
−
[(

Γ∗−
)−1 ∫∞

0
k (u)Z(x− uh)

(
(−1)

p+1
m(p+1)−(x)up+1

)
fo(x− uh)du

]


=
hp+1

(p+ 1)!
e′1

 m(p+1)+(x)
[(

Γ∗+
)−1 ∫∞

0
k (u)Z(x+ uh)up+1fo(x+ uh)du

]
− (−1)

p+1
m(p+1)−(x)

[(
Γ∗−
)−1 ∫∞

0
k (u)Z(x− uh)up+1fo(x− uh)du

]

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Using fo(x) = fo(x) and the equalities in formulas (16), (17), (13) and (14),

=
hp+1

(p+ 1)!

[
m(p+1)+(x)− (−1)

p+1
m(p+1)−(x)

]
e′1Γ−1


γp+1

...

γ2p+1



8.3.3 Fuzzy Regression Discontinuity Design

Proof of Theorem 2. The covariance between the estimators for the outcome of interest and the treatment

probability will be given by two independent terms, one for each side of the threshold. The upper side is

given by

E

{
e′1Dn+

[
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiyi

][
1

nh

n∑
i=1

k

(
xi − x
h

)
diZiti

]
Dn+e1

}
Where ti is the dummy variable indicating that the observation has received treatment. In obtaining the

asymptotic covariance, the bias term of the estimator can be ignored, hence

E

[
e′1Dn+

(
1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiεi

)(
1√
nh

n∑
i=1

k

(
xi − x
h

)
diZiηi

)′
Dn+e1

]

= E

[
e′1Dn+

(
1

nh

n∑
i=1

k

(
xi − x
h

)2

diZiZ
′
iE [εiηi | X = x]

)
Dn+e1

]

= e′1Dn+

[∫ x+h

x

1

h
k

(
x− x
h

)2

ZZ ′σεη(x)dFo(x)

]
Dn+e1

where I used the assumption that E [εiηj | X = x] = 0 for j 6= i.

Similarly for the second term,

E

[
e′1Dn−

(
1√
nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziεi

)(
1√
nh

n∑
i=1

k

(
xi − x
h

)
(1− di)Ziηi

)′
Dn−e1

]

= e′1Dn−

[∫ x

x−h

1

h
k

(
x− x
h

)2

ZZ ′σεη(x)dFo(x)

]
Dn−e1

Let ρ+j =
∫ x+h
x

1
hk

2
(
x−x
h

) (
x−x
h

)j
σεη(x)dFo(x) =

∫∞
0
k2 (u)ujσεη(x+ uh)dFo(x+ uh), ∆ρ

+ is the (p+ 1)×

(p + 1) matrix with (j, l) element ρ+j+l−2 for j, l = 1, ..., p + 1, ρ−j =
∫ x
x−h

1
hk

2
(
x−x
h

) (
x−x
h

)j
σεη(x)dFo(x) =

(−1)j
∫∞
0
k2 (u)ujσεη(x− uh)dFo(x− uh) and ∆ρ

− is the (p+ 1)× (p+ 1) matrix with (j, l) element ρ−j+l−2

for j, l = 1, ..., p+ 1 Then the asymptotic covariance is given by

Cαθ = e′1

[(
Γ∗+
)−1

∆ρ
+

(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆ρ
−
(
Γ∗−
)−1]

e1

Similarly to the result in corollary 1, as h→ 0, the fixed-h covariance formulas converges to the small-h

asymptotic covariance.

35



Corollary 3 If, in the bandwidth around the cutoff, σεη(x) is continuous and h −→ 0, then the asymptotic

covariance, Cαθ, obtained by fixed-h (theorem 2) and small-h (Porter 2003) are the same:

lim
h−→0

Cαθ =
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1

Proof of Corollary 3. Using the results in equation 11 and noting that, if h→ 0

ρ+j = lim
h→0

∫ ∞
0

k2 (u)ujσεη(x+ uh)fo(x+ uh)du = σ+
εη(x)fo(x)δj

and similarly for ρ−j . Then,

lim
h→0

e′1

[(
Γ∗+
)−1

∆ρ
+

(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆ρ
−
(
Γ∗−
)−1]

e1

= e′1

[
(fo(x)Γ)

−1
σ+
εη(x)fo(x)∆ (fo(x)Γ)

−1
+ (fo(x)Γ)

−1
σ−εη(x)fo(x)∆ (fo(x)Γ)

−1
]
e1

=
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1

Also, a result similar to the corollary 2 is readily available.

Corollary 4 If in the bandwidth around the cutoff, fo(x) and σεη(x) are constant, then the asymptotic

covariance, Cαθ, obtained by fixed-h (theorem 2) and small-h (Porter 2003) are the same.

Cαθ =
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1

Proof of Corollary 4. The proof follows very closely corollary 3. Using the results in equation 11 and

noting that, if h > 0 and fo(x) = fo(x) and σεη(x) = σεη(x) for any x in the range around the cutoff

ρ+j =

∫ ∞
0

k2 (u)ujσεη(x+ uh)fo(x+ uh)du = σ+
εη(x)fo(x)δj

and similarly for ρ−j . Then,

e′1

[(
Γ∗+
)−1

∆ρ
+

(
Γ∗+
)−1

+
(
Γ∗−
)−1

∆ρ
−
(
Γ∗−
)−1]

e1

= e′1

[
(fo(x)Γ)

−1
σ+
εη(x)fo(x)∆ (fo(x)Γ)

−1
+ (fo(x)Γ)

−1
σ−εη(x)fo(x)∆ (fo(x)Γ)

−1
]
e1

=
σ+
εη(x) + σ−εη(x)

fo(x)
e′1Γ−1∆Γ−1e1
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