
Dieterle, Steven G.; Bartalotti, Otávio; Brummet, Quentin

Working Paper

Revisiting the Effects of Unemployment Insurance
Extensions on Unemployment: A Measurement Error-
Corrected Regression Discontinuity Approach

IZA Discussion Papers, No. 11496

Provided in Cooperation with:
IZA – Institute of Labor Economics

Suggested Citation: Dieterle, Steven G.; Bartalotti, Otávio; Brummet, Quentin (2018) : Revisiting the
Effects of Unemployment Insurance Extensions on Unemployment: A Measurement Error-Corrected
Regression Discontinuity Approach, IZA Discussion Papers, No. 11496, Institute of Labor Economics
(IZA), Bonn

This Version is available at:
https://hdl.handle.net/10419/180514

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/180514
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


DISCUSSION PAPER SERIES

IZA DP No. 11496

Steven Dieterle
Otávio Bartalotti
Quentin Brummet

Revisiting the Effects of Unemployment 
Insurance Extensions on Unemployment: 
A Measurement Error-Corrected Regression 
Discontinuity Approach

APRIL 2018



Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may 
include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA 
Guiding Principles of Research Integrity.
The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics 
and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the 
world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our 
time. Our key objective is to build bridges between academic research, policymakers and society.
IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper 
should account for its provisional character. A revised version may be available directly from the author.

Schaumburg-Lippe-Straße 5–9
53113 Bonn, Germany

Phone: +49-228-3894-0
Email: publications@iza.org www.iza.org

IZA – Institute of Labor Economics

DISCUSSION PAPER SERIES

IZA DP No. 11496

Revisiting the Effects of Unemployment 
Insurance Extensions on Unemployment: 
A Measurement Error-Corrected Regression 
Discontinuity Approach

APRIL 2018

Steven Dieterle
University of Edinburgh

Otávio Bartalotti
Iowa State University and IZA

Quentin Brummet
NORC at the University of Chicago



ABSTRACT

IZA DP No. 11496 APRIL 2018

Revisiting the Effects of Unemployment 
Insurance Extensions on Unemployment: 
A Measurement Error-Corrected Regression 
Discontinuity Approach*

We document two potential biases in recent analyses of UI benefit extensions using 

boundary-based identification: from using county-level aggregates and from across-border 

policy spillovers. To examine the first bias, we use a regression discontinuity (RD) approach 

that accounts for measurement error in county-level aggregates. Our results suggest much 

smaller effects than previous studies, casting doubt on the applicability of border-based 

designs. We then document substantial spillover effects of UI benefit duration in the form 

of across-border work patterns that are consistent with increased tightness in high benefit 

states, providing evidence against a dominant vacancy reduction response to UI extensions. 

JEL Classification: J61, J65

Keywords: unemployment insurance, great recession, geographic 
regression discontinuity, policy spillover

Corresponding author:
Otávio Bartalotti
Department of Economics
Iowa State University 
479 Heady Hall 
Ames, IA 50011
USA

E-mail: bartalot@iastate.edu

* We would like to thank Mike Elsby, Keith Finlay, Ben Harris, Philipp Kircher, Mark Kutzbach, Gary Solon, and Ludo 

Visschers for helpful comments. We also thank the editor, Matthew Shapiro, and four anonymous referees for their 

helpful comments. This paper is released to inform interested parties of research and to encourage discussion. The 

views expressed are those of the authors and not necessarily those of the U.S. Census Bureau.



1 Introduction

While the extension of Unemployment Insurance (UI) benefit duration from 26

weeks to as many as 99 weeks represents one of the key policy responses to

rising unemployment in the U.S. during the Great Recession, the total effect

of these UI benefit extensions is theoretically ambiguous. UI benefit extensions

may impact labor markets through a host of labor supply and demand channels,

and the labor demand effects may either reinforce or offset the supply response.

Therefore, the net effect of UI extensions is an empirical question. Moreover,

while there is a long history of studies on the labor supply effect of reduced

search effort in response to such extensions (Solon, 1979; Moffitt, 1985; Katz

and Meyer, 1990; Meyer, 1990; Rothstein, 2011), there is a sparser, more recent

literature that estimates the total, or macro, effect of extensions inclusive of the

labor demand response (Hagedorn et al., 2015; Hagedorn, Manovskii, and Mit-

man, 2016; Lalive, Landais, and Zweimüller, 2015; Marinescu, 2014; Coglianese,

2015; Chodorow-Reich and Karabarbounis, 2016; Boone et al., 2017; Johnston

and Mas, 2015).

The recent literature estimating the total effect of UI extensions on labor

market conditions across the U.S. during the Great Recession provides mixed

results. An influential paper by Hagedorn, Karahan, Manovskii, and Mitman

(2015) (henceforth HKMM) finds large negative effects,1 while others find much

smaller total effects (Chodorow-Reich and Karabarbounis, 2016; Coglianese,

2015; Boone et al., 2017). The papers differ along several dimensions, in par-

ticular the choice of identification strategy and how labor market outcomes

are measured. HKMM use a boundary-based approach exploiting differences

at state boundaries separating different UI regimes.2 Boone et al. (2017) use

1The large results found by HKMM have led to a great deal of academic and media attention.
See Hall’s (2013) comment on an earlier version of HKMM and coverage in the Wall Street Journal
(Wall Street Journal, 2013) and Washington Post (Plumer, 2014).

2Differences in policy environments at state boundaries have also been used in other literatures.
For examples, see Holmes (1998), Dube, Lester, and Reich (2010), or Dube, Lester, and Reich
(2016).
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a modified boundary design while others take advantage of differences in UI

due to sampling error in the measures used to determine state UI benefit levels

(Chodorow-Reich and Karabarbounis, 2016; Coglianese, 2015). The divergent

results may stem from a number of issues including bias in the different es-

timation approaches — an issue being debated in the literature (Hall, 2013;

Coglianese, 2015; Hagedorn, Manovskii, and Mitman, 2016).

We re-examine the state boundary-based evidence by documenting the fun-

damental tradeoff between two sources of bias when using such approaches.

Boundary-based approaches require that the areas being compared on either

side of the border would experience similar labor market conditions in the ab-

sence of a difference in UI duration. Effectively, this requires similar industry

structure, labor productivity, and agglomeration effects on either side of the

border. In the current context, it also means that the economic shocks that

triggered UI extensions in one state must evolve over space in such a way

that areas on either side of the border are affected similarly. Border-based ap-

proaches also require that the effect of the policy is concentrated on one side of

the border. If these two conditions hold, then differences in outcomes at state

boundaries can be attributed to the the longer UI available in one state and

not the other. However, there may be a tension between the two conditions

since the same factors that make one side of the border an appealing control

group for the other— a degree of similarity and labor market connectedness—

may also make policy spillovers more likely.

Conceptually, the first requirement that we compare very similar areas is

more likely to hold when we focus on a very narrow area around state borders

separating different UI regimes. Note, however, that the county-level labor mar-

ket data available and used in prior work may not satisfy this requirement—

counties at state borders may be too large to ensure that the measured out-

comes would be on average the same across border counties without the policy.

This could lead to a discontinuous jump in county-level aggregate outcomes at

boundaries even when there are no differences for smaller areas closer to the
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border. Ideally, we would use data at a smaller level of aggregation to better

approximate the thought experiment behind the identification approach. Lack-

ing reliable sub-county level data, we propose a measurement error corrected

Regression Discontinuity (RD) approach that can approximate the results from

a hypothetical regression using more granular data by controlling for the mo-

ments of the within-county population distribution relative to the border.

Ignoring aggregation issues and comparing county-level outcomes at bound-

aries, we estimate large negative effects of the UI extensions on unemployment.

These uncorrected estimates suggest that a permanent extension of UI benefits

to 99 weeks would raise unemployment from a baseline of 5 percent to 9.9 per-

cent, closely matching the results from HKMM. However, correcting for the use

of county level aggregates, we find much smaller effects. For example, control-

ling for a linear function of distance to the border, we find that permanently

extending UI benefits to 99 weeks would raise unemployment from a baseline

of 5 to 5.5 percent. We also find suggestive, but imprecise, evidence that wages

and earnings did not change discontinuously at state boundaries.

While focusing attention on smaller areas closer to the border helps match

the experimental ideal of comparing similar areas facing different UI duration,

that proximity may also increase the possibility that the policy affects outcomes

on both sides of the border, violating the second requirement for identifying pol-

icy effects at boundaries. In a small area with a connected labor market, the

effect of UI extensions may spillover the border since workers and firms have

easy access to potential employment matches in the other state. By analyzing

patterns in cross-border employment by individuals, we find new evidence that

workers who live near the border respond to changes in benefits in the neigh-

boring state by shifting employment, not necessarily residence, from the low- to

the high-benefit state. This response is strongest close to the border— within

a few kilometers— and fades as you look farther from the border becoming

negligible roughly twenty-five kilometers away.

Combining the two sets of results highlights the tension between the two
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sources of bias— while focusing on areas closer to state borders will likely reduce

the upward endogeneity bias from the shocks that triggered UI extensions, it

will simultaneously increase the importance of the attenuation bias from the

treatment spillovers. As both of these effects go in the same direction— toward

smaller point estimates when considering areas closer to the border— it is

impossible to disentangle the two without imposing strong assumptions on how

they differentially evolve over space. Together this tradeoff suggests that the

boundary-based estimation strategies are ill-suited for directly identifying the

macro effects of UI extensions on unemployment rates.

Despite casting doubt on the applicability of border-based identification

approaches in this setting, the observed employment spillovers do have impli-

cations for the macro response to UI extensions. In particular, the increase in

the proportion of workers employed on the high-benefit side of state borders is

consistent with a relative increase in labor market tightness in the high benefit

state. Such an increase runs counter to the main mechanism for a large macro

effect through reduced vacancies in a standard search model (Pissarides, 2000;

Hagedorn et al., 2015). Instead, it is more consistent with the Job Rationing

model of Michaillat (2012) which would predict a macro effect that is smaller

than the micro effect (Landais, Michaillat, and Saez, 2016).

Finally, our measurement error-corrected RD approach provides an alter-

native to other boundary-based approaches when using aggregate data. It is

particularly useful in cases where the main threat to validity is contempora-

neous factors driving policy adoption that are likely to evolve through space,

rather than more systematic differences across regions.

The paper proceeds as follows: Section 2 discusses the literature on UI ben-

efits, provides a background on the institutional details of UI extensions in the

Great Recession and discusses the implications for boundary-based approaches;

Section 3 provides a brief description of the data sources; Section 4 presents the

measurement error-corrected RD approach and the results; Section 5 provides

evidence of treatment spillovers at the border and discusses the implications
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for the macro effect of UI extensions; and Section 6 concludes.

2 Background and RD Motivation

In the absence of any extensions, UI benefits are typically available for a maxi-

mum of 26 weeks in most states.3 The Great Recession brought about a series

of UI benefit extensions that were in many ways unprecedented in the United

States.4 In particular, UI extensions were implemented through two separate

programs: Extended Benefits (EB) and Emergency Unemployment Compensa-

tion (EUC). Prior to the Great Recession, the EB program provided either 13 or

20 additional weeks and was voluntary for states with only partial funding from

the federal government. In 2009, the federal government provided full funding,

which led many states to take up the EB program. The EUC program was in-

troduced in 2008 and provides 13 to 53 additional weeks of benefits. Altogether,

the EB and EUC programs led to an extension of UI benefit duration from 26

to as many as 99 weeks. Importantly for the identification strategies discussed

here, the realized levels of EB and EUC benefits were determined by state-

level labor market indicators passing pre-specified trigger levels. This implies

that the key endogeneity concern stems from the contemporaneous, transitory

shocks that triggered a UI extension for a state at a particular point in time,

rather than systematic social, economic, or political factors. Importantly, such

contemporaneous factors would not be captured by including fixed effects in a

regression.

The potential negative effects of increased UI generosity through reduced

search effort has been well established in the literature (see Mortensen (1976);

Solon (1979); Moffitt (1985); Katz and Meyer (1990); Meyer (1990)). Here we

3Note that following states have a standard duration different from 26 weeks:
Massachusetts, Montana, Arkansas, Michigan, South Carolina, Missouri, Kansas,
Florida, Georgia, and North Carolina (see http://www.cbpp.org/research/economy/

policy-basics-how-many-weeks-of-unemployment-compensation-are-available).
4The following discussion on the institutional details of UI extensions during the Great Recession

follows closely from the more detailed description found in Rothstein (2011).
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will focus on the directly related literature studying the total effect of EB and

EUC extensions during the Great Recession. A key challenge in estimating

the total effect is accounting for the potential endogeneity of the UI extensions.

Given that the UI extensions were triggered by negative economic shocks to each

state, these extensions will be correlated by construction with the adverse labor

market effects of those same shocks. When comparing labor market outcomes

across states with different UI regimes during the Great Recession, we risk

attributing the deteriorated labor market conditions to UI differences, rather

than the economic shocks that triggered them. The result will be an upward

bias in the estimated magnitude of UI effects.

HKMM address the endogeneity concern by adapting the Boundary Pair

Fixed Effects (BPFE) approach used by Holmes (1998) and Dube, Lester, and

Reich (2010, 2016). The BPFE approach focuses on contiguous counties at

state borders that, due to being in different states, are subject to different UI

regimes. As implemented, the BPFE approach tries to control for two types

of confounding factors. First to control for contemporaneous shocks that may

affect both counties in a pair at a given time— including those that triggered the

UI extensions— HKMM regress the difference in labor market outcomes across

contiguous county pairs at state borders in a given quarter on the difference in

UI benefit duration for each pair. Further differences between county pairs are

then controlled for using the interactive effects framework from Bai (2009). See

Online Appendix A for a detailed discussion of the prior estimation strategy.

Identification is based on the assumption that unobserved factors driving

labor market outcomes, including the economic shocks that triggered UI ex-

tensions, are on average the same within county pairs. Conditional on these

pair-level factors, the UI benefit effect is then identified off of differences in un-

employment between states with different UI benefit durations. Intuitively, the

BPFE approach attempts to approximate the experimental ideal of comparing

outcomes for two areas that are identical in terms of the factors influencing

labor market outcomes, but happen to operate under different UI regimes by
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chance. Using this approach, HKMM find that the total effect of UI benefit

duration is quite large. Their estimates suggest that permanently increasing

benefits to 99 weeks would increase unemployment from 5 to 10.5 percent, an

effect that would account for all of the rise in unemployment during the Great

Recession.5

The practical implementation of the BPFE approach using county-level

measures of outcomes rather than data from smaller areas raises concerns that

the unobservable factors driving labor market outcomes may in fact differ across

border pairs given the substantial heterogeneity in county size and economic

makeup. For instance, if the population centers of the two counties in a pair are

far from the border, then a comparison of county-level measures of labor market

outcomes may not reflect outcomes based on areas with similar fundamental

factors and responses to the shocks that triggered the UI extensions. In this

sense, our concern is that within-county differences may generate differences in

the measured outcome across county pairs when no difference exists for smaller,

more comparable, areas closer to the border.

Given this concern, we propose using an alternative identification strategy

based on the same thought experiment. Specifically, we wish to use the UI

policy discontinuity at state boundaries within a geographic RD framework

to identify the jump in unemployment at state boundaries with different UI

availability.6 Rather than directly compare county pairs at a border, the RD

approach controls for distance to the border to compare the average difference

in outcomes precisely at the border.

5In a replication study, Amaral and Ice (2014) rely on the same identification approach, but
differ in the sample used. Amaral and Ice (2014) exclude counties with unemployment rates above
10 percent and extend the sample to include years without large UI extensions. Doing so leads
to smaller estimates, but they are still larger than comparable estimates in the literature. We
focus on the original HKMM results and sample since we prefer not to remove counties with high
levels of unemployment and because our identification approach will be based only on periods with
differences in UI benefits.

6Lalive (2008) uses a geographic RD to study a substantial regional UI extension from 30 to
209 weeks for workers over the age of 50 in Austria in the early 1990s. He finds large labor supply
responses for this age group. Our analysis is not only for a different setting- extensions in the US
for all age groups during the Great Recession- but it also differs in the focus on the total response
through labor supply and demand.
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While switching to an RD setting allows us to use comparison groups close

to the border, it does introduce other differences relative to the border-pair

approach. The BPFE approach explicitly allows for different unobservables at

different points along a border segment- i.e. different county pairs may have

different fixed effects along the same state border reflecting different industries,

agglomeration, or transportation effects. It is important to note that an RD

approach will implicitly account for these same factors. RD in this setting is

based on the estimated jump at state boundaries in the conditional expectation

of labor market outcomes— where the conditioning is on distance to the bor-

der. By averaging across areas at the same distance, it does not require that

unobservables are evolving in the exact same way along the entire border seg-

ment. Any factors that are particular to areas along the border segment that

affect both sides- for instance factors captured by county-pair fixed effects- will

contribute similarly to the conditional expectations on both sides of the border

and will cancel out in the RD estimate.

To highlight the potential problem of using comparisons in county-level mea-

sures across borders without controlling for distance in an RD setting, Figure

2.1 plots the county-level log unemployment rate by the population-weighted

mean distance to the border in kilometers for several sets of border counties

where the marker size is proportional to county population. We weight by

county population and use the population weighted mean distance to match

our main analysis discussed in Section 4.1. In each case, we plot the data for

the low-benefit state to the left of zero and present the length of available UI in

each state. The average log unemployment rate among border counties in each

state is depicted by the gray dashed line. In each case, the difference in this

average across borders is large and consistent with increased unemployment in

the high UI state. However, fitting a linear trend in distance to the border

weighting by county population— the solid black line— on either side of the

boundary leads to a much smaller gap in every case.
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Figure 2.1: Log Unemployment at State Borders: Examples
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Data Sources: BLS LAUS, TIGER geographic shapefiles, EUC and EB trigger reports

The key point in Figure 2.1 is that the average difference across state bound-
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aries among border counties—reflecting a major source of the identifying varia-

tion used by the BPFE approach on county aggregates— can be quite large, but

the labor market conditions seem to converge near the border— reflecting the

identifying variation used by the measurement error corrected RD approach.

While Figure 2.1 pertains only to a few sets of border counties that were

chosen to illustrate the potential issues, it suggests that it may be important

to test the robustness of the large effect of UI benefits on unemployment using

the alternative RD identification approach. Importantly, our empirical analysis

will not be based only on a handful of cases, but will pool together over 600

such episodes. By pooling across so many separate RD designs, we avoid issues

that would surface when relying on any one case, including small samples,

over- or under-fitting the specification of the running variable, or idiosyncratic

factors that happen to impact particular counties at particular points in time.

Indeed, such factors would be expected to average out across the many cases

considered. Appendix C provides evidence based on placebo tests supporting

this possibility.

3 Data

In order to highlight the importance of our methodological approach, we match

the data sources in prior work as closely as possible. we consider the period

from 2005 to the end of 2011. The data for the unemployment rate come

from the Local Area Unemployment Statistics (LAUS) compiled by the Bureau

of Labor Statistics (BLS). The LAUS provide estimates of county-by-month

unemployment counts.7 We aggregate this data to the quarterly level to match

the prior work as well. When comparing to past work using quasi-differenced

7Note that the LAUS based measures are derived, in part, by using state-level unemployment
to help overcome sampling issues at such a low level of aggregation thereby introducing error in
the measures, an issue discussed in Hall (2013) and Hagedorn et al. (2015). Once again, we choose
to use the LAUS data to maintain comparability with past work. The placebo tests presented in
Appendix C provide evidence that using these measures does not generate an artificial jump in
measured labor market conditions at boundaries. We use LAUS data from before the 2015 redesign
to maintain comparability to past work (Boone et al., 2017).
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log unemployment, we use the monthly separation rate from the BLS’s Job

Openings and Labor Turnover Survey (JOLTS).

We also consider employment, earnings, and wage outcomes from the U.S.

Census’s Quarterly Workforce Indicators (QWI) and the BLS’s Quarterly Cen-

sus of Employment and Wages (QCEW). For earnings, we use the average

monthly earnings for all jobs in a county recorded at the beginning of the sub-

sequent quarter. For wages, we use the average weekly wage from the QCEW.

We rely on two sources for the UI benefit duration variables. First, we use

the data compiled by Rothstein (2011) for the period from 2005-2010, and we

code the final year from the trigger reports for both the EUC and EB programs

available online.8 Together this yields weekly data for each state on the number

of weeks of UI insurance currently available. We again aggregate this data to

the quarterly level, weighting by the number of days a particular duration was

in effect.

To implement our measurement error-corrected RD estimation, we require

data on the geographic population distributions within counties. We use pop-

ulation counts by census block from the 2010 Census found in the TIGER

geographic shapefiles. The TIGER shapefiles provide precise location data for

the census block borders allowing us to calculate the distance from the center

of each census block to the state boundary. The very small geographic scope of

census blocks allows us to approximate a continuous measure of distance to the

border. Finally, we also use the county-level 2010 Census population counts as

the weights for our weighted regressions.

8See http://ows.doleta.gov/unemploy/trigger/ and http://ows.doleta.gov/unemploy/

euc_trigger/.

12



4 Regression Discontinuity: Controlling for En-

dogeneity of UI Extensions

A key issue in the current setting is that measures of labor market outcomes are

available (or reliable) only at an aggregate level, making direct implementation

of the RD approach difficult. In order to highlight the implications of using

aggregate measures and our methodological approach to dealing with these

issues, we start with an ideal RD setting with hypothetical disaggregate data

and show how it relates to the feasible estimation using aggregate data. Note

that the BPFE approach effectively assumes any aggregation issues are similar

in paired counties by removing only the unobservable factors common to both

counties in the pair. By confronting the aggregation issues we are relaxing this

restriction.

4.1 Measurement Error Corrected Geographic RD

To start, consider the basic RD setup where we are interested in estimating the

average treatment effect (τ) of a program or policy where treatment is deter-

mined by a continuous “running variable” crossing a particular cutoff. Denote

the outcome of interest by y, the running variable by x and without loss of gen-

erality assume the cutoff occurs at x = 0. If the unobservable factors influencing

the outcome evolve continuously at the cutoff then the average treatment effect

at the boundary is identified nonparametrically by comparing the conditional

expectation of y on either side of the cutoff:

τ = lim
h↓0

E [yi|xi = h]− lim
h↑0

E [yi|xi = h] . (4.1)

In our setting we would like to use distance to the state border separating

UI regimes as the running variable in an RD setup to capture how the unob-

servable factors evolve on average as we approach the boundary. However, this

is complicated by the fact that the available data is aggregated at the county
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level. To help illustrate the problems posed by using aggregate measures, we

begin by considering an ideal, but hypothetical, data setting that would allow

for straightforward estimation by RD.

For simplicity, consider a single state boundary shared by two states in a

single quarter. Denote our hypothetical, ideal sub-county-level observations by:

yi,c,s = ln(ui,c,s) :log unemployment rate

xi,c,s : distance to the border

where

i indexes subregions within a county at a given distance with population = ni

c indexes the county within the state

s = 0, 1 indexes the state with 0 the low-benefit state

First note that our hypothetical units of observation, denoted by i, are geo-

graphic subregions within a county that are at a given distance to the border.

Also note that we have observations on multiple counties within each state.

Each of these subregions has their own unemployment rate. If we had data on

these subregions, we could estimate E[y|x, s] for each state separately and ob-

tain the estimated Average Treatment Effect (ATE) at the boundary nonpara-

metrically as the difference across the border in the mean log unemployment

rate for economic subregions right at the boundary as in Equation (4.1).

4.1.1 Measurement Error in the Running Variable

We now consider what can be estimated when we move from our ideal RD

set-up with county sub-regions to one using county-level data. The first issue

that arises is that county-level aggregates allow for only one distance measure

per county, so that the observed running variable will take on one value for all

subregions in a county. The resulting discrete measure of distance implies we

must move from nonparametric to parametric RD estimation (Lee and Card,
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2008). For state s, assume that among the set of border counties we can

approximate the conditional expectation of y by:

E[y|x, s] = ms(x) (4.2)

where ms(x) is a polynomial of order J

For ease of exposition, let J = 2 so that we can write our subregion-level

regression equation for state s as

yi,c,s = b0,s + b1,sxi,c,s + b2,sx
2
i,c,s + εi,c,s (4.3)

The parametric ATE estimate with our hypothetical, disaggregated data will

simply be τ̂ = b̂0,1 − b̂0,0.

One way to move from the subregion-level regression to one based on county-

level data is to use the fact that when data has a grouped structure, OLS

on the individual data yields identical estimates to an appropriately weighted

regression on the group mean data. This leads to the following group-mean level

regression estimated with weights proportional to the number of sub-groups

within a county:9

yc,s = b0,s + b1,sxc,s + b2,sx2c,s + νc,s (4.4)

Here, yc,s is the mean of yi,c,s within a county and xrc,s is effectively the rth

uncentered moment of the distance to the border over the population distribu-

tion for each county. Most importantly, these county-level distance moments

do not need to come from the same data set as the information on the outcomes

of interest. Note that controlling for these moments differs from the common

9Note, how we define our subregions will determine the appropriate weights. Here, a reasonable
choice would be to consider each subregion to have the same population, ni = n ∀i, so that the
appropriate weights will be proportional to county-level population (more populous counties have
more n sized regions). This corresponds to using sub-county areas with the same population as the
relevant unit of observation in the hypothetical regression.
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practice of using the distance from the geographic centroid of an area as the

running variable (Chen et al., 2013; Dachis, Duranton, and Turner, 2011; Dell,

2010; Falk, Gold, and Heblich, 2014; Lalive, 2008; Rathelot and Sillard, 2008).

This corresponds to a special case of the procedure in Bartalotti, Brummet, and

Dieterle (2018), who show that using the moments will eliminate the asymptotic

bias present when using the centroid based distance.

4.1.2 Aggregation-Induced Error in the Outcome Variable

Given the nonlinearity in the log unemployment measure, we do not actually

observe yc,s, the average log unemployment rate across the subregions in a

county. Instead we observe yc,s, the log unemployment rate for the county as

a whole, where generally yc,s 6= yc,s due to the nonlinearity in yi,c,s. The fact

that the two aggregate outcome measures differ is important because it could

generate bias in our estimates by introducing a wedge between what we can

estimate with available county-level data and what we would estimate with

access to the ideal, but hypothetical, subregion-level data. Note that this is

also a potential problem for the BPFE approach as it is directly linked to our

motivating concern of within county heterogeneity in outcomes relative to the

border being linked to the shocks that triggered UI extensions.

We choose to cast this as a measurement error problem and write yc,s =

yc,s + εc,s, where εc,s is the measurement error from aggregating the dependent

variable. Plugging into Equation (4.4), our estimating equation becomes:

yc,s − εc,s = b0,s + b1,sxc + b2,sx2c + νc,s

yc,s = b0,s + εc,s + b1,sxc + b2,sx2c + νc,s (4.5)

Equation (4.5) is now based on county-level observations of variables we actually

observe in the data. Our estimate of the intercept will identify:

b̂0,s = b0,s + E[ε̃c,s]
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where ε̃c,s is the residual from the linear projection of the measurement error

on the distance moments. Finally, this yields the following, potentially biased,

estimate of the treatment effect:

τ̂ = τ + E[ε̃c,1]− E[ε̃c,0] (4.6)

Our ability to uncover the average treatment effect at the boundary depends on

the difference in the average residual aggregation error across the border. More

generally, it depends on whether the average aggregation error is systematically

different for high and low-benefit states.

In Appendix A.1 we show that the aggregation error for a county can be

approximated by:

εc ≈
σ2
U,c

2U
2

c

−
σ2
L,c

2L
2

c

(4.7)

where σ2
U,c and σ2

L are the variances of unemployed and labor force counts across

the subregions within a county and U c and Lc are the mean unemployed and

labor force counts for the subregions within a county. From Equation (4.7), it

is clear that the measurement error is larger when there is more within-county

variation in labor market outcomes across subregions and when this variation

differs between unemployment and labor force counts.

Using auxiliary data from a restricted-use version of the American Com-

munity Survey (ACS), we provide suggestive evidence in Appendix A.1 that

this approximation error is not systematically related to UI extensions. Across

specifications, the implied bias in our estimates varies from 0.0104 to 0.0833

(in absolute value), which is only 2 to 16 percent of the baseline estimates in

Section 4.2 and suggests that this error is not a major source of bias in this

setting. Once again, this is important because it suggests that by controlling

for the distance moments we have some confidence that we are approximating

the ideal, but infeasible, RD in Equation (4.3).
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4.2 Main Specifications

Our application differs from the basic RD setup in that we have a separate

geographic RD for each state-boundary in each quarter when the two states

have different UI benefits.10 We pool these separate RDs together, and include

boundary-by-quarter fixed effects in order to account for the mean differences

across these separate RD designs. By pooling across many— over 600— sepa-

rate cases, idiosyncratic factors particular to any given boundary at a point in

time will average out.11 We also estimate the effect of a continuous treatment

variable, weeks of available UI, rather than a binary high versus low UI treat-

ment as in Section 4.1. Moving from the binary treatment setting to estimating

the effect of the duration of UI benefits in weeks simply requires rescaling the

treatment effect by the difference in UI benefits across a border at a particular

time.

In our baseline RD setup in Equation (4.8) we do not control for distance

to a border:

yc,s,g,t = π + γbs,g,t + δg,t + ρc,s,g,t (4.8)

where c indexes counties, s indexes states,

g indexes state boundaries, and t indexes quarters

bs,g,t is the log benefit duration

δg,t are boundary-by-quarter fixed effects

In Appendix B we discuss in detail how this approach relates to the BPFE

regressions. Intuitively, not controlling for distance in the RD is akin to not

allowing for within county heterogeneity in the BPFE approach as both assume

that the county-level aggregate is an appropriate measure of the labor market

10See Keele and Titiunik (2014) and Cattaneo et al. (2016) for a discussion on interpreting the
estimates with heterogeneous responses.

11In Appendix C, we provide placebo tests using data from boundaries in quarters where there
was no difference in UI benefits to help illustrate this point. Across different ways of generating
placebo treatment variables, we find no evidence of a discontinuity at the border.
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conditions at the border.

We then estimate regressions controlling for distance to the border using

the measurement error correction from Section 4.1:

yc,s,g,t =π + γbs,g,t + δg,t (4.9)

+ Dg,t

(1− Ts,g,t)

R0,g,t∑
r=1

θ0g,tx
r
c

+ (Ts,g,t)

R1,g,t∑
r=1

θ1g,tx
r
c

+ uc,s,g,t

where

Dg,t is a vector of indicators for each boundary-by-quarter

Ts,g,t = 1 [bs,g,t > b−s,g,t] are indicators for being on the high-benefits side

xrc is the rth uncentered moment of the distance to the border distribution

RT,g,t is the order of the polynomial in distance for group T

The expression in square brackets allows for different polynomial orders and

for the effect of distance to differ across state-boundary-quarter groups. In

practice, we consider separate linear functions in distance for each side of the

border in each quarter. In other specifications, we allow for different polynomial

orders for each side of the border in each quarter. We obtain xrc from census

block-level population counts from the 2010 U.S. Census. We first calculate the

distance from the center of that census block to the nearest state boundary.12

Note that for counties close to several state borders, not all census blocks in

the county share the same nearest neighbor state. Fortunately, this affects less

than 7 percent of census blocks within border counties. We therefore deter-

mine the modal nearest state boundary among the census blocks within each

county and use the distance to that modal boundary for all census blocks in

the county. Once we have the census block-level distances, we can easily cal-

12We use the -nearstat- package in Stata to calculate the distances (Jeanty, 2010). We alter the
ado file slightly to generate distances using Stata’s “double” precision storage type. Given the small
size of census blocks, less precise storage types lead to problematic rounding errors in identifying
the center of a census block.
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culate the necessary population-weighted uncentered distance moments. Note

that census blocks are very small levels of aggregation, allowing us to approx-

imate a continuous distance measure. For instance, the fifteen counties at the

Texas-Louisiana border contain over 49,000 census blocks.

4.3 RD Results

4.3.1 Unemployment Rate

Table 4.1 displays our main RD results for unemployment using the same set of

border counties as was used in the previous literature to estimate the effects by

BPFE. We present results weighting by county population. Following HKMM,

we also present calculations based on the estimates for the implied unemploy-

ment rate starting from a base rate of 5 percent under two counterfactuals:

one based on the average increase in benefits and one assuming a change to

the maximum benefit duration. We cluster standard errors at the state-by-

boundary level as this is the level at which treatment varies— accounting for

both contemporaneous spatial correlation and serial correlation over time.

In Column (1) of Table 4.1 we present RD results not controlling for dis-

tance. The implied unemployment rates from the policy counterfactuals— 9.1

percent for change to the average benefit duration and 9.9 percent for a change

to the maximum duration— are quite close to the corresponding BPFE esti-

mates from HKMM of 8.6 percent and 10.5 percent. Controlling for a linear

function in distance in Column (2) (captured here by including the population-

weighted mean distance from the border for a county) produces considerably

smaller estimates that are no longer statistically significant. The implied un-

employment rate starting from a baseline of 5 percent for the two policy coun-

terfactuals drops to 5.5 percent.

We also estimate the difference in labor market outcomes using higher-

order polynomials in distance. Following Lee and Lemieux (2010), we use a

cross-validation procedure to choose the length of the polynomial, opting for

20



Table 4.1

RD Estimates: Log Unemployment
(1) (2) (3)

RD Polynomial Order
Dependent Variable 0 1 AICc

Log Unemployment Rate 0.5100 0.0765 0.0333
(0.1003) (0.1574) (0.1685)

Implied Unemployment Rate from Base of 5%
Average Benefits 9.0% 5.5% 5.2%

[7.0%, 11.1%] [3.5%, 7.4%] [3.2%, 7.2%]
Max Benefits 9.9% 5.5% 5.2%

[7.3%, 12.5%] [3.3%, 7.8%] [2.9%, 7.5%]
Observations 8,435 8,435 8,435

Standard errors clustered at the state-by-boundary level in parentheses. 95% Confidence Intervals
in square brackets. RD Polynomial Order indicates either no control for distance (Polynomial
order 0), a linear distance control (Polynomial order 1), or higher order polynomial in distance
with the order chosen for each state boundary-by-quarter using a small sample corrected version of
the Akaike Information Criteria (Polynomial order AICc).
Data Sources: BLS LAUS, TIGER geographic shapefiles, EUC and EB trigger reports.

the small sample-corrected version of the Akaike Information Criteria (AICc).

For each state-by-boundary-by-quarter we progressively add higher-order terms

(quadratic, then cubic, and so on) until the AICc no longer suggests an im-

provement in fit. Across all state-boundary-by-states-by-quarters, the largest

polynomial suggested by this procedure is a cubic. Allowing for different poly-

nomials across quarters for the same state-by-boundary accounts for the possi-

bility that different shocks will propagate through space in different ways. Using

the AICc-selected polynomials, the magnitude of the estimate in Column (3)

falls slightly and now implies an unemployment rate of 5.2 percent for the two

policy counterfactuals. Note that even with the AICc-chosen polynomial the

estimates are still precise. The baseline estimate in Column (1) is statistically

different from that in Column (3) with a p-value of 0.0134.
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4.3.2 Employment, Earnings, and Wages

We also use our measurement error-corrected RD approach to estimate the

change in the employment to population ratio, earnings, and wages at state

boundaries. Unfortunately, the estimates are not very precise, leading to large

confidence intervals and suggesting caution in interpreting the results. The first

row of Table 4.2 presents results for the employment to population ratio. Not

controlling for distance, we see a fairly large negative elasticity in response to

extended benefits. Controlling for distance reduces the estimate substantially,

however the new RD estimates are fairly imprecise. Table 4.2 displays results

using log earnings from the QWI and the log of weekly wages from the QCEW

as the outcome of interest. For both measures we estimate negative elasticities

when not controlling for distance that become positive, but very imprecise when

including a linear function in distance to the border. Finally, when allowing

for a higher order polynomial, both estimates are smaller in magnitude, but

still imprecisely estimated. Despite the imprecision, the pattern of estimates is

consistent with our motivating story of estimates using county level measures

being biased by the negative shocks triggering the UI extensions.

4.4 Comparison to Past Work

Taken at face value, the results above suggest much smaller effects of UI ex-

tensions on unemployment during the Great Recession than found in HKMM.

Nevertheless, these results differ from HKMM in two important ways. First

our choice of using a measurement error-corrected RD instead of the BPFE

approach. In addition, we use the log unemployment rate as our main out-

come of interest whereas HKMM develop and use the “quasi-differenced” log

unemployment rate as an alternative measure of unemployment. Here we will

check the sensitivity of our results to using the quasi-differenced unemployment

measure and applying the BPFE methodology. See Online Appendix A for a

detailed replication of the original HKMM results.
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Table 4.2

RD Estimates: Employment, Earnings, and Wages
(1) (2) (3)

RD Polynomial Order
Dependent Variable 0 1 AICc

Log Emp/Pop: QWI -0.3065 0.0023 -0.0867
(0.1227) (0.3803) (0.3988)

Observations 8,379 8,379 8,379

Log Earnings: QWI -0.0291 0.1004 0.0030
(0.1153) (0.1515) (0.1648)

Observations 8,380 8,380 8,380

Log Weekly Wages: QCEW -0.0567 0.1456 -0.0359
(0.1156) (0.1471) (0.1583)

Observations 8,444 8,444 8,444

Standard errors clustered at the state-by-boundary level in parentheses. RD Polynomial Order
indicates either no control for distance (Polynomial order 0), a linear distance control (Polynomial
order 1), or higher order polynomial in distance with the order chosen for each state boundary-
by-quarter using a small sample corrected version of the Akaike Information Criteria (Polynomial
order AICc).
Data Sources: QWI, QCEW, TIGER geographic shapefiles, EUC and EB trigger reports.

HKMM note that regressing log unemployment on UI benefits may not iden-

tify the contemporaneous effect of UI benefits. Rather, such an approach will

identify the combined effect of current benefits and expectations over future

benefits— an effect that is difficult to interpret. Intuitively, today’s undiffer-

enced unemployment rate may reflect changes in vacancy creation decisions by

firms due to expectations over future UI benefit duration. Since future benefits

determine the reservation wage of workers and, in turn, expected future profits

to the firm from a current job match, they directly affect the value of that filled

job today. HKMM show that under some assumptions the quasi-differencing

will cancel out the portion due to future benefits leaving just the portion due

to current benefit duration.

In Table 4.3 we present results using the quasi-differenced measure and the

BPFE estimation approach, as well as applying our measurement error cor-

rected RD approach using the quasi-differenced outcome measure. The BPFE

results are estimated from the following equation after creating a county-pair
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level data set from our baseline county-level panel:

∆yp,t = α∆bp,t + ψp + φt + vp,t (4.10)

where p indexes county pairs

t indexes quarters

where ∆yp,t is the difference between two border counties in a given quarter

in the quasi-differenced log unemployment rate and ∆bp,t is the corresponding

difference in log unemployment benefit duration. The quasi-differencing is given

by the following:

yt = log(ut)− β(1− dt) log(ut+1)

where

ut is the unemployment rate

β is the discount rate

d is the job separation rate

The BPFE estimates in Column (1) are quite close to the original HKMM

estimate. Since the quasi-differenced measure takes account of expectations

over future benefits, we now need to account for both the size of the benefit

extension and the duration for which the extension is in effect when calculating

the counterfactual unemployment rates. The implied counterfactual unemploy-

ment rates in Column (1) are very close to the BPFE estimates from HKMM

of 8.6 percent and 10.5 percent. Importantly, when we switch from the BPFE

estimation to the RD estimation not controlling for distance to the border in

Column (2) we also find similar estimates. However, just as with our main

specification, the estimates fall and become small and statistically insignificant

when we add controls for distance in Columns (2) and (3). This suggests that

our divergent results are due to the choice of methods rather than our choice
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of dependent variable.

Table 4.3

BPFE versus RD Estimates: Quasi-Differenced Log Unemployment
(1) (2) (3) (4)

BPFE RD Polynomial Order
Population Weighted 0 1 AICc

Coefficient 0.0604 0.0660 0.0238 -0.0107
(0.009) (0.0113) (0.0202) (0.0227)

Implied Unemployment Rate from Base of 5%
Actual Duration and Benefits 8.6% 9.0% 6.1% 4.5%

[7.2%, 9.9%] [7.2%, 10.8%] [4.0%, 8.4%] [2.7%, 6.4%]
Permanent and Max Benefits 10.5% 11.2% 6.7% 4.4%

[8.2%, 12.7%] [8.2%, 14.3%] [3.4%, 9.9%] [2.0%, 6.8%]
Observations 32,972 8,446 8,446 8,446

Standard errors clustered at the state-by-boundary level for RD and pair level for BPFE in parentheses.
95% Confidence Intervals in square brackets. BPFE indicates Boundary Pair Fixed Effects estimates. RD
Polynomial Order indicates either no control for distance (Polynomial order 0), a linear distance control
(Polynomial order 1), or higher order polynomial in distance with the order chosen for each state boundary-
by-quarter using a small sample corrected version of the Akaike Information Criteria (Polynomial order AICc).
Data Sources: BLS LAUS, TIGER geographic shapefiles, EUC and EB trigger reports.

These patterns highlight the concerns with using county-level aggregates in

this setting. Specifically, the fact that the estimates of large labor market effects

disappear once we control for distance to the border is consistent with the story

that the negative shocks that triggered UI extensions disproportionately affect

areas in the high benefit states— even when considering only border counties.

5 Policy Spillover Evidence

We now turn our attention to the second potential source of bias when using

boundary-based identification approaches – across border policy spillovers. In

particular, when people face low costs of working or searching in either state at

a boundary, changes to UI benefits in one state may affect workers and firms in

both states. This will bias the resulting estimates towards zero, and this bias

is expected to be more important closer to the border where labor markets are

more integrated. Given the importance of both the distance to the border and

the potential problems from using highly aggregated data uncovered by our
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RD approach, we look for evidence of policy spillovers close to state borders

within small geographic areas in border counties. HKMM look for evidence of

across border spillovers by considering subsample sensitivity checks— focusing

on counties within 30 miles of a border or only considering border pairs within

the same Core Based Statistical Area— and by looking for evidence of out-of-

state search using the county-level ACS commuting data available for counties

with population greater than 100,000. Across these sensitivity checks and ad-

ditional analyses, HKMM find no statistically significant differences from their

main estimates or any evidence of changes in across border search.

We explore the possibility of workers in one state altering their job search

patterns in response to UI benefits in neighboring states using data from the

Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Em-

ployment Statistics (LODES). The LODES provide annual counts of employed

workers for pairs of census blocks with one census block indicating the location

of residence and one indicating where they work.13 This very precise location

information allows us to identify changes in the number of people working across

the state border in response to differences in UI benefits.14

5.1 Event History Approach

To test the worker search response to UI differences across borders in a clean

manner, we consider an event history approach based on a subsample of state

boundaries. We first identify 57 of the 106 state boundaries where there is a

difference between the two states in UI benefit duration, such that one state is

13For our application, we use the count of all jobs presented in the JT00 LODES files.
14As a caveat, producing the LODES requires the Census Bureau to multiply impute data in

the case of missing information and to protect confidentiality in small areas through use of noise
infusion and synthetic data methods. See Graham, Kutzbach, and McKenzie (2014) for a discussion
of the imputation process. Importantly, even before imputation 97 percent of jobs are located with
sub-county-level precision and 96 percent of worker residences have at least county-level precision.
The imputation ensures, at least, census tract level precision for all residences. The method used for
protecting workers’ residence is based on census tract level residence distributions for 90 percent of
home-to-work flows, with only long distance commutes based on more aggregate geography. For our
purposes, this helps ensure that we have properly identified the state of employment and captured
the distance to the border at a fairly small disaggregated level.
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always the high-benefit state and one is always the low-benefit state— allowing

the states to have the same benefit duration in some quarters.15 This sample

selection creates two clear “treatment” groups, avoiding difficulties in modeling

the dynamic changes in job search and vacancy creation behavior as the relative

generosity of benefits between the states changes over time. In particular, if

UI benefit differences are most important when searching for a job or if search

frictions result in the measured fraction working across the border to respond

slowly, then we might suspect that current employment outcomes depend on

past UI differences. In our restricted sample, workers and firms have more time

to respond to the UI differences and the responses in one period will not be

offset by responses in other periods when the relative ranking of UI benefit

duration at a boundary is switched. Importantly, this choice of sample includes

a fairly representative group of boundaries, as shown in Appendix Table E.1.

Figure 5.1 depicts the mean UI differences over time for our high- and low-

benefit states. Since the LODES employment data we use are based on records

from the beginning of the second quarter in each year, we label the axis at

April of each year. The vertical dashed lines mark the beginning of April 2008

and the beginning of April 2009. Note that prior to April 2008, there were

no benefit differences for the previous four years in this subsample. However,

between April 2008 and April 2009, we see a steady increase in average benefit

differences that corresponds to the introduction and subsequent expansion of

the EUC program. By April 2009, we see an average difference between the

high- and low-benefit states of over 10 weeks. For the most part, this difference

in mean benefit duration persists until April 2011.

We now consider how the fraction of individuals working across the border

evolves over time for our high-benefit and low-benefit subsamples. We calculate

the fraction of employed individuals who work in the neighboring state by home

census block. Table 5.1 provides summary statistics for the fraction and number

15Generally, not all states have data available in all years in the LODES; however, each state in
this subsample is present in all years used.
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Figure 5.1
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Source: EB and EUC trigger reports. Average difference in available benefits between states
identified as always high and always low-benefit states at a given boundary by week.

of workers employed across the border along with the total number employed

for the high- and low-benefit event history samples, focusing on census blocks

within five kilometers of a state border in the final pre-policy period, 2008.

In Panel (a) of Figure 5.2 we display trends in the average fraction working

across the border by year for census blocks within 5km of the state border in our

two groups— similar results are found when using 1km and 10km bandwidths.

We normalize the fraction to be zero in 2008 for both groups to focus attention

on the before/after comparison. Again we mark the transition period between

April 2008 and April 2009 with vertical dotted lines. We see a relatively flat

profile for the fraction working across the border before 2009 for both the high
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Table 5.1

Summary Statistics: Event History Sample Census Blocks within Five km in 2008
Low-Benefit High-Benefit

Mean Std. Dev. Mean Std. Dev.

Fraction Working Across Border 0.15 0.24 0.20 0.26
Number Working Across Border 2.45 8.30 3.62 11.29
Total Employed 18.64 37.96 17.59 35.65

Observations 82,508 68,223

Data Source: LODES

and low-benefit states when there were no differences in UI benefits. However,

by April of 2010, after over one year of sustained mean benefit differences, we

see a decline in the proportion working across the border for those living in

high-benefit states and an increase for those living in low-benefit states. This

is consistent with workers targeting their job search in high-benefit states in

connected border area labor markets. Given a base rate of 14.8 percent in the

low-benefit states in 2008, the nearly three percentage point increase in the

employed population working across the border is substantial.

In Panel (b) of Figure 5.2, we show the difference between the two lines

in Panel (a), yielding difference-in-differences estimates, along with ninety-five

percent confidence intervals using standard errors clustered at the state-by-

border level as in our main analysis. Note that these confidence intervals are

likely to be conservative as they allow for arbitrary correlation between census

blocks along the border both contemporaneously and over time. For instance,

we are allowing for correlation in the error term for a census block on the

western edge of a state border in 2004 with a census block on the eastern edge

in 2011. While the ninety-five percent confidence intervals overlap zero for both

the 2010 and 2011 differences, the joint test of whether the difference between

the high- and low-benefit states was the same in 2010 and 2011 compared to

2008 is rejected with a p-value of 0.0408. As a point of comparison, the joint

test for the two years prior— 2005 and 2006— does not reject the null with

a p-value of 0.7985. This suggests that census blocks within five kilometers of
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state borders in the high- and low-benefit states experienced different trends

in the proportion working across the border once benefits differed between the

two groups.

We also show the evolution of the number of workers employed across the

border in Panels (c) and (d) and the total number employed in either state

within the census block in Panels (e) and (f)— reflecting the numerator and de-

nominator of the proportion variable used in Panels (a) and (b). In terms of the

level of across-border employment, we see a slight increase for the high-benefit

states but a much larger increase for the low-benefit states. The difference-in-

differences estimate suggests nearly one fewer worker working across the border

for the high-benefit states. Given mean employment across the border of 2.45

workers for high-benefit states in 2008, this is a large response. However, the

estimates in levels are less precise, likely due to increased residual variation in

levels of across border employment compared to the fraction. Finally we see

that for both sets of states, the total number of residents per census block who

were employed in either state was increasing after 2009, likely reflecting the

economic recovery.
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Figure 5.2
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Data Source: LODES and TIGER Geographic Shape Files. Average proportion working across the

state border relative to 2008 for census blocks within 5km of a state boundary for states identified

as always high and always low-benefit at a given boundary.
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We next consider how this response to benefit changes varies at different

distances to the border. Given the stark difference between 2007-08 and 2010-

11 for the sample of census blocks within five kilometers shown in Figure 5.2,

we calculate the average proportion working across the border in 2010-11 and

subtract the average from 2007-08 for each census block in a border county.

Figure 5.3 displays a nonparametric regression of this difference in the propor-

tion working across the border on the distance to the border separately for the

sample of low and high-benefit states. Consistent with the previous results,

we see an increase in the fraction working across the border from low-benefit

states and a decrease for those in high-benefit states very close to state bor-

ders. Importantly, this difference falls as one moves farther from the border.

For those in low-benefit states, the difference falls to near zero by around 25

kilometers from the border. For the high-benefit states, it approaches zero by

10 kilometers to the border, but shows some small variation up to 50 kilometers.
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Figure 5.3
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Data Source: LODES and TIGER Geographic Shape Files. Local polynomial smoothing regression

of the change in proportion working across the border by distance to the border.

5.2 Implications for Boundary-based Identification Ap-

proaches

The pattern in Figure 5.3 is consistent with the spillover effects falling as one

moves further away from the border. Of course, focusing on areas thirty or forty

kilometers from the border may reduce concerns over the associated attenuation

bias, but at the same time it will raise concerns over the endogeneity bias from

the shocks that triggered UI extensions. This highlights the fundamental issue

for boundary-based identification approaches, such as BPFE or geographic RD:
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these approaches trade off between two sources of bias and there is no clear or

straightforward way to distinguish between the two. Note that among the set of

border counties used here, the population weighted mean distance to the border

has an average of 23 kilometers and a maximum of 261 kilometers, implying

that the BPFE approach using county-level aggregates will be affected by a mix

of these two biases. The geographic scope of the spillovers presented in Figure

5.3 is also consistent with the fact that HKMM find no statistically significant

differences when limiting the sample to counties within 30 miles (approximately

48km) since the spillovers appear to die out within this window around state

borders

5.3 Full Sample: Census Block Fixed Effects

Here, we expand our sample to include all state boundaries in order to check

whether the previous results were driven by the choice of our clean event history

sample. We use the full sample of census blocks by year that are within 5km

of the border and estimate the following:

fi,s,g,t = α+ β∆bs,g,t + δi + φt + εi,s,g,t (5.1)

where i, s, g, t index census blocks, states, boundaries, and years

f is the fraction of workers employed in the neighboring state

∆bs,g,t = bs,g,t − b−s,g,t is the yearly average difference in benefit weeks

δi are census block fixed effects

φt are year fixed effects

Table 5.2 presents the estimates of Equation (5.1) with standard errors clus-

tered at the county level to allow for arbitrary spatial and serial correlation.

Consistent with the story above, we estimate a negative relationship between

the relative generosity of UI benefits in your home state and the fraction work-

ing in the other state. That is, as the UI benefits in your state of residence
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increase relative to those across the border, workers are less likely to work in

the neighboring state. Likewise, as the benefits in their home state fall further

behind those across the border, workers are more likely to work in the neigh-

boring state. To provide a sense of scale, the estimates suggest that having

benefits 15 weeks longer in your state of residence, roughly the mean benefit

difference in periods with a difference, would lower the fraction working across

the border by 3.0 percentage points. This is 19 percent of the mean fraction

working across the border for census blocks within 5km.

While the census block fixed effects help control for time constant hetero-

geneity related to both the propensity for individuals to work in the neigh-

boring state and the UI benefits differences, it does require a strict exogeneity

assumption that E[εi,s,g,t|∆bs,g,1, ...,∆bs,g,T , δi] = 0, t = 1, ..., T . We might be

concerned that the fraction working across the border in one year may be the

result of job matches made in previous years when the relative generosity of

UI benefits differed. One way to account for this potential feedback and viola-

tion of strict exogeneity is to directly control for lagged values of the UI benefit

difference. In Table 5.2, we see that the controlling for the lagged benefit differ-

ence or up to three years of lagged differences has little effect on the estimated

contemporaneous effect. In addition, the effects of previous benefit differences

become smaller as we look at further and further lags.

5.4 Implications for Macro Effects of UI Extensions

The evidence above suggests that residents of one state may respond to UI

benefit changes in the neighboring state. This analysis by itself cannot be used

to directly evaluate the the effect of UI extensions more generally. For instance,

it tells us nothing of the aggregate importance of shifting job creation or em-

ployment between areas facing different UI regimes. However, the particular

nature of the spillovers presented here does provide insight into the equilibrium

response to UI extensions. To that end, we consider the observed flows in light

of the job rationing model of Michaillat (2012) to help understand why workers
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Table 5.2

Effect of Relative UI Benefit Duration on the Fraction
Working Across the Border: Census Block Fixed Effects

Relative UI Difference -0.0020 -0.0017 -0.0019
(0.0012) (0.0010) (0.0010)

Lagged UI Diff -0.0008 -0.0007
(0.0005) (0.0005)

Second Lag UI Diff -0.0009
(0.0004)

Third Lag Diff 0.0003
(0.0010)

Observations 2,631,856 2,122,461 1,404,106
R2 0.0044 0.0063 0.0095

Standard errors clustered at the county level reported in parenthesis.
Data Source: LODES and TIGER Geographic Shape Files.

might shift their search to the high benefit state following the extension of UI

benefits.

To start, we consider the response to an increase in UI in the model, ignoring

for the moment the workers who are not eligible for the extended benefits offered

in the high benefit state. Following the discussion in Landais, Michaillat, and

Saez (2016), we will consider the response in terms of employment and labor

market tightness (θ)— the ratio of vacancies to the number of searchers. On

the labor supply side, employment is increasing in tightness— as the number of

vacancies goes up relative to searchers the probability of finding a match goes

up resulting in higher employment. In a simplified version of the model, pro-

duction is characterized by a concave production function and wages are fixed

(Landais, Michaillat, and Saez, 2016). Labor demand is therefore downward

sloping in employment-tightness space reflecting the diminishing marginal prod-

uct of labor at a fixed wage. The equilibrium employment and market tightness

before a change in UI is depicted in Panel (a) of Figure 5.4 by the intersection

of LS1 and LD1 at point A.

The increase in UI reduces search effort by unemployed workers, thereby
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shifting labor supply from LS1 to LS2 in the figure. Holding all else fixed,

this results in a reduction in employment from point A to B. This reduction in

employment due to reduced search effort is referred to as the micro-elasticity of

employment to UI (Landais, Michaillat, and Saez, 2016). Since wages are fixed

in this model, labor demand does not shift in response to increased UI benefits.

In the figure, we simply move along the new, upward sloping labor supply

curve— increasing tightness and employment— until it intersects the original

labor demand curve. Here, the macro— or total— effect of the UI increase

(from A to C) is smaller than the micro effect (from A to B). Importantly, this

runs counter to the motivation for large macro effects of UI in HKMM.

The presence of out-of-state searchers complicates the model. First we need

to distinguish between unemployed searchers whose previous job was in the

high benefit state who are, therefore, eligible for the extended UI and those

from the low benefit state who are not eligible— regardless of their state of

residence. Here we will consider out-of-state searchers to be those with access

to the lower benefits and consider how they affect the outcome in the high-

benefit state. We must assume that firms in the high-benefit state are more

affected by the change in UI benefits so that the effects highlighted in Figure 5.4

are stronger in the high benefit state. For instance, if unemployed workers are

more likely to search in their home state— or the state of their last job— then

firms in the high benefit state would be more likely to be matched with a high

UI eligible worker. As simple evidence in support of there being some friction at

state boundaries, even within one-tenth of a kilometer of state borders only 22.7

percent of workers are seen working across the border in the LODES data in the

period before any UI differences. Further, the fact that we observe any change

in work locations in response to UI differences at state boundaries suggests that

the policy impacts the two sides differently.
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Figure 5.4: Response to UI Increase in Job Rationing Model (Michaillat, 2012)
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Since out-of state searchers are not eligible for the higher benefits, they will

not reduce their search effort. However, the change in tightness that may occur

in the high benefit state may alter their choice of which state to search in.

Given the fixed wage, the job rationing model would predict that the increase

in tightness in the high benefit state will make the high benefit state more

desirable since it would generate a wedge in the probability of making a match

between the two states. Therefore, we would expect more people to search

in the high benefit state. In terms of the figure, labor supply in the high-

benefit state would shift to LS3 in Panel (b), moving along the labor demand

curve (from point C to D). Since these new searchers may be residents of either

state— but happen to have previously worked in the low-benefit state— this

would increase the proportion from the low benefit state working across the

border while reducing the proportion from the high benefit state working in

the low-benefit state. This is precisely what we found in Section 4.3.2 and is

an unambiguous implication of the job rationing model in this setting.

In addition to predicting a smaller macro response to extending UI, the
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job rationing model has implications for the optimal UI policy as outlined in

Landais, Michaillat, and Saez (2016, 2015). In particular, if tightness rises in re-

sponse to more generous UI benefits, then Landais, Michaillat, and Saez (2016)

provide an argument for the efficient UI policy to be counter-cyclical— namely

that UI should be more generous when unemployment rises. Our spillover re-

sults provide some suggestive support for the key mechanism underlying this op-

timal UI response, thereby complementing other recent work (Landais, Michail-

lat, and Saez, 2016; Lalive, Landais, and Zweimüller, 2015).

Note that the observed pattern of across border employment could also be

consistent with a more standard matching model with bargaining over wages as

in Pissarides (2000). Unlike the job rationing model, the model predicts that

tightness would fall in response to an increase in UI and that the macro response

to an increase in UI is larger than the micro response (Hagedorn et al., 2015;

Landais, Michaillat, and Saez, 2016) However, such a model would require a

substantial increase in wages in response to the UI increase in the high benefit

state to offset the fall in tightness in order to explain the observed change in

across border employment (see Appendix D). The fact that we find no strong

evidence of an increase in earnings in section 4.3.2 provides some suggestive

evidence against such a response. Fully distinguishing between the two models

is an important area of further research.

The observed flows of employment location from the low- to the high-benefit

states are also potentially consistent with an aggregate demand response to UI

extensions if the increase in product demand is concentrated in the high benefit

state. Since residents of the high-benefit state are more likely to be eligible for

the higher benefits, then if consumers are more likely to make purchases in

their state of residence we might expect the aggregate demand channel to show

up more in the high-benefit state. Like the job rationing model, the aggregate

demand story would suggest a smaller macro effect of UI extensions.
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6 Conclusion

In this paper, we reanalyze the boundary-based approach to identifying the

effect of UI extensions on the labor market. We raise two main issues. The

first is partially a data issue— the available county-level labor market measures

used may be aggregated at too high level to ensure a clean quasi-experimental

comparison across border counties. The second is a conceptual issue— the

same factors that make an area a good control group for a neighbor across the

border may make it more likely that the policy effect spills over the border

contaminating the quasi-experimental control group.

To address the first issue, we develop an RD approach that accounts for

this aggregation measurement error by controlling for moments of the under-

lying population distribution within counties. Using this measurement error-

corrected RD produces significantly smaller estimates than either the previously

used boundary approach or a comparable RD approach that relies on similar

assumptions by omitting controls for distance. These results help to reconcile

prior work on the labor market effects of UI benefits, which has focused on two

sources of identifying variation: differences in UI benefits at state boundaries

and differences due to sampling error in the real time unemployment measures

used to trigger the UI extensions. The two sets of papers find mixed results,

with the some of the boundary-based results being large and negative, while the

sampling-error based approaches find smaller but imprecise effects. We show

that results from boundary-based methods are much more similar to those

from sampling-error approaches when controlling for distance in an RD setup.

Our results also complement those in Boone et al. (2017), who use a modified

boundary-based approach on a subset of border counties and find similar small

effects.

We also document treatment spillovers at state boundaries with workers

close to state boundaries targeting their employment search in the high-benefit

states. These findings are compatible with an increase in labor market tightness
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in high benefit states associated with the extension of UI benefits. This also

highlights our concern with the policy’s effect showing up on both sides of the

border, invaldiating the border based approach in this setting. These spillover

results complement other recent work on the effect of UI extensions on ineligible

searchers (Lalive, Landais, and Zweimüller, 2015; Crépon et al., 2013). On the

whole, our results provide evidence against a large vacancy reduction effect

of UI extensions and suggest caution in using boundary-based approaches to

identify the causal effects of EB and EUC extensions.

Our measurement error-corrected RD also serves as an attractive alterna-

tive to the BPFE approach. It highlights the potential for bias from the more

common geographic RD approach of calculating distance to the border using

geographic centroids,16 and is particularly useful in the case with the UI ex-

tensions during the Great Recession, when policy adoption is drive by contem-

poraneous factors, rather than more systematic differences between the regions

being studied.

16The precise characterization of the bias is derived and explored in detail in Bartalotti, Brummet,
and Dieterle (2018).
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A Approximating the Aggregation Error in the

Dependent Variable

To investigate the importance of the aggregation-induced measurement error

in our dependent variable, first denote the unemployment and labor force

counts in the county as a whole by Uc,s,t and Lc,s,t, then note that these are

the sum of the counts in each of our hypothetical subregions (i.e., Uc,s,t =∑Nc

i=1 Ui,c,s,t and Lc,s,t =
∑Nc

i=1 Li,c,s,t). Plugging these into the the expression

for the observed county-level log unemployment rate, we have:

yc,s,t = ln

(
Uc,s,t

Lc,s,t

)
= ln

(
U c,s,t

)
− ln

(
Lc,s,t

)
(A.1)

Where U c,s,t and Lc,s,t are the mean unemployment and labor force counts

across our hypothetical subregions within a county in period t. Now we can

examine how this expression differs from yc,s,t, the mean log unemployment

rate in the county that we would need to implement the ideal RD.

Using the unemployment and labor force counts within our subregions,

Ui,c,s,t and Li,c,s,t, we can write the mean of the subregion log unemployment

rates at the county-level as follows:

yc,s,t = ln (U)c,s,t − ln (L)c,s,t (A.2)

Comparing Equations (A.1) and (A.2), it becomes clear that we need to char-

acterize the difference between the average of a log and the log of the average.

Using a Taylor Series approximation we can approximate yc,s,t as

yc,s,t ≈

[
ln
(
U c,s,t

)
−
σ2
U,c,s,t

2U
2

c,s,t

]
−

[
ln
(
Lc,s,t

)
−
σ2
L,c,s,t

2L
2

c,s,t

]
(A.3)
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Plugging this into our expression for the aggregation error yields:

εc,s,t = yc,s,t − yc,s,t ≈
σ2
U,c,s,t

2U
2

c,s,t

−
σ2
L,c,s,t

2L
2

c,s,t

(A.4)

Recall the bias term for our simplified case with only two states in one time

period in Equation (4.6) was given by E[ε̃c,1] − E[ε̃c,0]. Therefore, we need

to know how the average aggregation error differs for high-benefit and low-

benefit states. Intuitively, the size of the aggregation error for any given county

depends on how variable employment outcomes are across our hypothetical

subregions within counties. On one extreme, if every subregion has the same

unemployment and labor force counts— and therefore, the same unemployment

rates, then the county wide measure provides an error-free measure for the

subregions at any distance from the border. In terms of the aggregation error,

the variance terms σ2
U and σ2

L would be zero in this case and the aggregation

error would disappear. On the other extreme, if the labor market outcomes

are highly variable within counties, then the variance terms will be large and

our county-level log unemployment rate may be a poor measure of the actual

variable.

With this bias approximation in hand, we can use auxiliary data to obtain

evidence on the magnitude of this aggregation bias. Obviously, due to the same

data limitations that led us to use county-level data, this issue is difficult to

directly assess. Therefore, in order to have reliable subcounty-level unemploy-

ment and labor force counts needed to calculate the means and variances in the

aggregation error, we need to pool over a longer time period than the quarterly

data used in our main analysis. To do this, we utilize restricted use, annual

2005-2011 American Community Survey (ACS) microdata aggregated at the

census tract level.17 We readily note that this yearly data may deviate from

the quarterly data used in our analysis and that using census tract-level data

17For more detailed information on the ACS methodology, see the ACS Design &
Methodology Report at http://www.census.gov/programs-surveys/acs/methodology/

design-and-methodology.html.
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may yield noisy measures of unemployment and labor force counts. The fact

that census tracts have different populations will introduce additional variation

across subregions relative to our hypothetical data setting. However, as is typ-

ical of RD designs, these factors will be less of a concern for our RD estimates

if they evolve continuously across state boundaries.

Using this ACS data, we first calculate the variances and means of the

unemployment and labor force counts across census tracts for each county-year

in order to calculate the annual version of Equation (A.4). Once again, this

aggregation error must be systematically different for counties in high- versus

low-benefit states to be a concern for our RD estimates. When estimating the

effect of UI benefit duration, a continuous measure, the bias will take a classic

omitted variables form. Ignoring other controls, the probability limit of our

estimate will differ from the true effect by η = Cov(b, ε)/V ar(b). That is, the

extent of the problem depends on the strength of the relationship between the

aggregation error and UI duration. Note that η is simply the probability limit

of the OLS estimate from a regression of ε on b. Therefore, to provide some

evidence on the extent of the problem, we repeat our main estimation strategy,

discussed in Section 4.2, replacing the county-level log unemployment rate with

the aggregation error as the dependent variable:

εc,s,g,t = α+ ηbs,g,t + ψg,t + uc,s,g,t

where c indexes counties, s indexes states,

g indexes state boundaries, and t indexes quarters

bs,g,t is the log benefit duration

The results of this exercise are shown in Table A.1. Across specifications

with different controls for distance the estimated bias ranges from -0.0104 to

0.0833. Following the same counterfactual exercise as in Section 4.4, if the

estimated bias were the only difference across borders, these point estimates

would be associated with an implied unemployment rate of 4.9 to 5.4 percent
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Table A.1

RD Estimates: Aggregation Bias
RD Polynomial Order

0 1 AICc

Population Weighted -0.0104 0.0833 0.0631
(0.0177) (0.0478) (0.0422)

Source: American Community Survey Census Tract Level Data. For
more information, visit census.gov/acs.

Coefficients reported from separate regressions of the approximated ag-
gregation error on UI benefit duration with either no control for dis-
tance (Polynomial order 0), a linear distance control (Polynomial order
1), or higher order polynomial in distance with the order chosen for
each state boundary-by-quarter using a small sample corrected version
of the Akaike Information Criteria (Polynomial order AICc). Standard
errors clustered at the State-Boundary level in parentheses.

starting from a base rate of 5 percent. As this is considerably smaller than the

baseline estimates, it suggests that aggregation error in the dependent variable

is not a major concern in this setting.

B From Border Pair-FE to Regression Discon-

tinuity

It is instructive to carefully follow the steps that allow us to compare the esti-

mation strategies based on a border-pair FE estimation to those from an RD

setup. First, instead of having the unit of observation be a county pair, RD

necessitates units to be each individual county. Note again that ∆yp,t is the dif-

ference within county pair in each quarter. If each county had only one partner,

then this would be identical to using the county-level observations and includ-

ing pair-by-quarter FE. In reality, some counties show up in multiple pairs so

the equivalence breaks down. Next, since the treatment effect is only identified

when there is a difference in treatment status across the border, we drop all

county-quarters where the UI benefits are the same across the border. We ef-

fectively have a different geographic RD anytime a state-boundary-by-quarter

has a difference in UI benefits across the states. We pool these together, re-
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placing the pair-by-quarter FE with state-boundary-by-quarter FE. Replacing

pair-by-quarter FE with state-boundary-by-quarter FE does not affect the es-

timates substantially. This final change gives our baseline RD expression when

not controlling for distance found in Equation (4.8).

C Placebo Tests

In this section, we check the robustness of our RD procedure by conducting a

set of placebo tests. We first consider whether idiosyncratic factors are likely to

generate estimated discontinuities in the absence of UI differences. To do so, we

use data from state boundaries in quarters when there was no difference in UI

benefits and assign states to two separate placebo treatment and control groups.

For the first placebo treatment, we randomly select one state at a boundary

to be the treated state in each quarter. Using this placebo treatment indicator

as the variable of interest in our regressions lets us test whether idiosyncratic

factors at state boundaries are likely to lead to biased estimates when we pool

across many boundary-by-quarter RDs. For the second placebo treatment, we

determine which state was more often the high-benefit state at a particular

boundary and set the treatment indicator equal to one for that state with ties

broken at random. This second check helps test whether the same idiosyncratic

factors at state boundaries are systematically related to areas more or less likely

to see UI extensions.

Table C.1 displays the results for these two placebo checks using the quar-

ters with no difference in UI benefits and replacing the available UI duration

with the two placebo treatment indicators. Once again, we present the implied

unemployment rate starting from a base rate of 5 percent. Across both placebo

treatments the estimated treatment effect is never statistically different from

zero. Based on the implied unemployment rates, the magnitude of the effect is

not economically significant, either. This suggests that idiosyncratic factors—

including those that may be related to UI extensions— do not generate arti-
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ficial jumps or non-smoothness at state boundaries when pooling across many

separate RD cases.

The placebo tests also provide evidence that the measurement issues regard-

ing the LAUS unemployment numbers do not generate bias in our estimates.

In particular, if the LAUS unemployment measure for a border county partially

reflects unemployment in other areas of the state, it could lead to a measured

jump in unemployment at state boundaries even if there was no real difference

at the border. Again, the lack an estimated discontinuity with our placebo

treatments suggests that this is not a first order concern in our setting.

Note that the placebo estimates when not controlling for distance to the

border (Polynomial Order 0) are also very close to zero. This is again consistent

with the idea that the key endogoneity concern stems from the contemporaneous

shocks that triggered UI extensions rather than fixed differences away from state

borders. With both of our first two placebo treatments, any misspecification

bias from not controlling for distance appears to balance on average across

borders when there are no differences in UI and no systematic differences due

to the associated shocks. However, when there are real differences in available

UI due to shocks in our main analysis, we estimate large effects when not

controlling for distance. In this case the misspecification from not controlling for

distance is directly related to the negative shocks that triggered the extensions.

Building on this point, we conduct a final placebo check that is similar

to one found in Hagedorn, Manovskii, and Mitman (2016). Here, we select

a sample of state borders in periods when neither state had an UI extension.

Using the data on state level unemployment complied by Chodorow-Reich and

Karabarbounis (2016), we then mimic the actual policy by creating placebo

treatment indicators when the three month average state level unemployment

passed a level not associated with an actual policy trigger. We choose artificial

triggers of four or five percent since these are not associated with real triggers

and yield reasonable sample sizes for the set of counties with differences in our

placebo treatment at state boundaries. Note that this placebo treatment is
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systematically related to state level unemployment, as is the actual policy. In

both cases, we estimate positive, and statistically significant increases in unem-

ployment when not controlling for distance. Just as in our main analysis, the

estimates become much smaller and statistically insignificant once we control

for distance. This suggests that our procedure does a better job of balancing

the effect of state-level unemployment shocks at state borders than those that

do not account for distance.

D Employment Spillovers in Standard Match-

ing Model

The standard matching model (Pissarides, 2000) differs from the job rationing

model on the labor demand side. For the standard model, production is as-

sumed to be linear in employment implying a constant marginal product of

labor. Wages are no longer fixed, but are instead determined by Nash bargain-

ing over the total surplus from making a match for a worker and a firm. In

this model, wages are increasing in the generosity of UI benefits as it represents

the outside option for the unemployed worker when bargaining over wages. On

the other hand, the value to the firm of a filled job falls with an increase in

wages. Importantly, labor demand is perfectly elastic with respect to tightness

due to the assumption of constant returns to scale in production. The equilib-

rium employment and market tightness in the standard matching model before

a change in UI is depicted in Panel (a) of Figure D.1 by the intersection of LS1

and LD1.

As before, the increase in UI reduces search effort by unemployed workers

thereby shifting labor supply in— from LS1 to LS2 in the figure. Holding labor

demand fixed, this results in a reduction in employment from point A to B. The

increase in UI, and the associated increase in wages, also shifts the labor demand

down— from LD1 to LD2 in the figure. This shift in demand moves along the
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new labor supply curve further reducing employment and lowering tightness—

the movement from point B to C. It also reflects a reduction in vacancies in

response to the UI increase and further reinforces the unemployment effects of

UI. Unlike the job rationing model, the total reduction in employment— or the

macro-elasticity (from point A to C)— is larger than the micro-elasticity (from

point A to B).

For the standard matching model, the effect of out-of-state searchers is less

clear since the response in the high benefit state lowers tightness but raises

wages. The lower tightness— and therefore lower probability of being matched

to an open vacancy— would make the high-benefit state less attractive for

searchers while the higher wage would make it more attractive. Hence, whether

unemployed workers with access to the lower benefits would search more in the

high-benefit or low-benefit state depends on their preferences and the relative

magnitudes of the changes in wages and tightness. In terms of the figure, either

fewer people will search in the high benefit state— if the tightness change

dominates— shifting labor supply in further to LS3, or more will search in

the high benefit state— if the change in the wage dominates— shifting it to

LS3′. Therefore, for the standard model to be consistent with the observed

across-border employment patterns, the increase in wages in response to the

extended UI benefit duration must be sufficiently large to offset the fall in

tightness. However, our investigation of earnings at state boundaries in Section

4.3.2 found no evidence of differences associated with extended UI benefits.
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Figure D.1: Response to UI Increase in Standard Matching Model (Pissarides, 2000)
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Table C.1

RD Estimates: Placebo Treatments
(1) (2) (3)

RD Polynomial Order
0 1 AICc

Random Treatment -0.0110 -0.0378 -0.0259
(0.0084) (0.0178) (0.0232)

Implied Unemployment Rate from Base of 5%
4.9% 4.8% 4.9%

[4.9%, 5.0%] [4.6%, 5.0%] [4.7%, 5.1%]
Observations 18,475 18,475 18,475

UI Difference Treatment 0.0344 -0.0336 -0.0766
(0.0235) (0.0523) (0.0485)

Implied Unemployment Rate from Base of 5%
5.2% 4.8% 4.6%

[4.9%, 5.4%] [4.3%, 5.3%] [4.2%, 5.1%]
Observations 17,635 17.635 17,635

Unemployment 4% Trigger 0.2174 0.1301 0.0577
(0.0370) (0.0573) (0.0426)

Implied Unemployment Rate from Base of 5%
6.2% 5.7% 5.3%

[5.8%, 6.7%] [5.1%, 6.3%] [4.9%, 5.7%]
Observations 4,841 4,841 4,841

Unemployment 5% Trigger 0.1372 0.0739 0.0465
(0.0264) (0.0507) (0.0528)

Implied Unemployment Rate from Base of 5%
5.7% 5.4% 5.2%

[5.4%, 6.0%] [4.8%, 5.9%] [4.7%, 5.8%]
Observations 5,743 5,743 5,743

Standard errors clustered at the state-by-boundary level in parentheses. 95% Confidence Intervals in square
brackets. RD Polynomial Order indicates either no control for distance (Polynomial order 0), a linear distance
control (Polynomial order 1), or higher order polynomial in distance with the order chosen for each state
boundary-by-quarter using a small sample corrected version of the Akaike Information Criteria (Polynomial
order AICc).
Data Sources: BLS LAUS, TIGER geographic shapefiles, EUC and EB trigger reports.
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Table E.1

Event History Sample: Included and Excluded State Borders
Included: 57 Borders Excluded: 49 Borders

Alabama-Georgia Kentucky-Missouri Alabama-Florida Louisiana-Mississippi
Alabama-Tennessee Kentucky-Tennessee Alabama-Mississippi Louisiana-Texas
Arizona-California Kentucky-West Virginia Arizona-New Mexico Maine-New Hampshire
Arizona-Nevada Maryland-Pennsylvania Arkansas-Louisiana Maryland-Virginia
Arizona-Utah Maryland-West Virginia Arkansas-Mississippi Massachusetts-New Hampshire
Arkansas-Oklahoma Massachusetts-New York Arkansas-Missouri Massachusetts-Vermont
California-Oregon Massachusetts-Rhode Island Arkansas-Tennessee Michigan-Ohio
Colorado-Nebraska Michigan-Wisconsin Arkansas-Texas Minnesota-Wisconsin
Colorado-Utah Minnesota-North Dakota California-Nevada Missouri-Tennessee
Colorado-Wyoming Minnesota-South Dakota Colorado-Kansas Nebraska-South Dakota
Connecticut-Rhode Island Mississippi-Tennessee Colorado-New Mexico Nevada-Oregon
Delaware-Maryland Missouri-Nebraska Colorado-Oklahoma New Hampshire-Vermont
DC-Maryland Missouri-Oklahoma Connecticut-Massachusetts New Jersey-Pennsylvania
Florida-Georgia Montana-North Dakota Connecticut-New York New Mexico-Texas
Georgia-North Carolina Montana-South Dakota Delaware-New Jersey New York-Pennsylvania
Georgia-Tennessee Montana-Wyoming Delaware-Pennsylvania New York-Vermont
Idaho-Oregon Nebraska-Wyoming DC-Virginia North Dakota-South Dakota
Idaho-Utah Nevada-Utah Georgia-South Carolina Ohio-Pennsylvania
Idaho-Washington New Jersey-New York Idaho-Montana Tennessee-Virginia
Idaho-Wyoming North Carolina-South Carolina Idaho-Nevada Virginia-West Virginia
Illinois-Iowa North Carolina-Tennessee Illinois-Indiana
Indiana-Michigan North Carolina-Virginia Illinois-Kentucky
Iowa-Minnesota Ohio-West Virginia Illinois-Missouri
Iowa-Missouri Oklahoma-Texas Illinois-Wisconsin
Iowa-Nebraska Oregon-Washington Indiana-Kentucky
Iowa-South Dakota Pennsylvania-West Virginia Indiana-Ohio
Iowa-Wisconsin South Dakota-Wyoming Kansas-Missouri
Kansas-Nebraska Utah-Wyoming Kentucky-Ohio
Kansas-Oklahoma Kentucky-Virginia

57




