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Abstract

We assess the impact of the sovereign risk spill-overs onto corporate cost of borrowing in

selected euro area countries. We utilize a novel nonparametric dependence filtering frame-

work to remove the effects of sovereign risk in the interest rate pass-through context. The

main findings confirm the heterogeneity in sovereign risk spill-overs. We also find divergence

in sovereign risk transmission between core and peripheral Member States during financial

and sovereign debt crises. We discover that the standard linear models may underestimate

the underlying pass-through distortions, suggesting the existence of nonlinear sovereign risk

effects.
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1 Introduction

The purpose of the paper is to evaluate to what extent the sovereign risk distorted the pass-through

channel in the euro area (EA). To this end we utilize a novel fully nonparametric framework to

construct a counterfactual scenarios with no sovereign risk distortions. Nonparametric methods

have been proved to deliver substantial precision gains under possible model misspecification

(Rothe, 2010) or irregularities of the underlying data processes (Diks and Wolski, 2016), which we

aim to pass on to our empirical findings.

The counterfactual framework has its starting point in hypothesis testing literature (Hiemstra

and Jones, 1994; Diks and Panchenko, 2006; Diks and Wolski, 2016), and further capitalizes on

data sharpening methods proposed by Choi and Hall (1999) and Hall and Minnotte (2002). The

goal of the procedure is to provide a sample from counterfactual distribution which is independent

from the effects of a given set of covariates. The method can be viewed as a dependence filtering

procedure.

To provide liquidity to the troubled EA banking sector and to alleviate the supply-side credit

constraints, the European Central Bank (ECB) started a series of interest rates cuts in October

2008. The effects on the retail funding costs heavily differed across the member states revealing

the heterogeneity in the ECB monetary policy transmission mechanism and the segmentation of

the Euro Area (EA) banking system (EIB, 2016).

A sizeable part of cross-country transmission asymmetries can be attributed to the differences

in sovereign risk (Arnold and van Ewijk, 2014). Elevated risk levels raise the borrowing costs of

the sovereign, which often serve as a benchmark market rate for loan pricing. Additionally, weak

fiscal positions reduce the ability of a sovereign to support financial sector in times of distress.

Disturbances to this implicit sovereign backstop can be perceived as an untight safety net, putting

an upward pressure on the required rate of return and increasing consequently the lending rates.

We focus on three EA countries, i.e. France, Italy and Spain, for which we filter out the

sovereign risk effect on the retail costs of borrowing. Our main findings confirm the pass-through

heterogeneity across three EA Member States. During the sovereign debt crisis, the funding costs

were substantially more distorted in Spain and Italy, compared to France, although the latter also

observed non-negligible sovereign risk pass-through in that period. The sovereign distortions were

also less pronounced in the pricing of the short-term loans, which provides some degree of comfort

for smaller corporates. We also confirm that the standard linear models may underestimate the

underlying pass-through effects, suggesting an existence of nonlinear sovereign risk spill-overs.

The paper is organized as follows. Section 2 outlines the filtering framework. We provide

the estimation techniques for independent counterfactual distributions and we derive its basic

in-sample properties. For brevity reasons, numerical verification of the procedure is given in the

Appendix. We apply the methodology to filter out the sovereign risk effects on corporate borrowing

costs in Section 3. Finally, Section 4 concludes.
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2 Methodology

Counterfactual distributions have become an important tool for policy practicioners to evaluate

the performance of proposed strategies, decompose specific policy outcomes, select the most effi-

cient implementation mechanisms, and tailor-make policy instruments. In the context of impact

assessment, Gertler et al. (2011) point out that counterfactual scenarios constitute an industry

benchmark for evidence-driven policy making.

In general terms, one can think of a counterfactual distribution, denoted by Y ′, as representing

the behaviour of distribution Y in the context of information spill-overs from a given set of covari-

ates X. Chernozhukov et al. (2013) point out that distribution Y ′ can reflect the effects of changes

in a covariate distribution X onto the outcome distribution Y , or it can echo a relationship change

between X and Y .

Despite the wide array of applications, the vast majority of counterfactual scenarios are user-

designed, suffering from a natural over-simplification and potential model misspecification bi-

ases. Nevertheless, the recent advances in counterfactual distributions aim at providing possibly

assumption-free inference techniques. Chernozhukov et al. (2013) offer a complete toolkit to study

counterfactual distributions through a prism of regression methods. Rothe (2010) extends the

approach to a fully nonparametric setup and demonstrates that nonparametric estimation has su-

perior Mean Squared Error (MSE) performance in the case of (functional) model misspecification.

Rothe (2012) further extends the nonparametric aproach to cover partial distributional effects.

In those techniques, the identification of counterfactual distribution Y ′ reflects a change in

the covariate distribution from X to, say, X ′, both of which need to be known to the end user.

Additionally, for Y ′ to be well-defined, the support of X ′ needs to be included in the support of

X, X ′ ⊆ X. In this paper we propose a different identification strategy, which follows from the

independence and conditional independence principles between random variables.

For a formal introduction of the method, let us consider a random real-valued outcome variable

Y , which is potentially influenced by a dX -dimensional vector of random real-valued covariates

X = {X1, ..., XdX}. Let us further assume that both Y and X have smooth and well-defined

Probability Density Functions (PDFs) over their domains, denoted by fY (y) and fX(x), respec-

tively.1 There also exist joint PDF, denoted by fY,X(y,x). For clarity of exposition and without

loss of generality let us imagine that the outcome variable and covariates are not independent,

i.e. fY,X(y,x) 6= fY (y)fX(x) for some y ∈ R and x ∈ RdX .2 In principle, if the variables of

interest are mutually independent, the following reasoning still holds, and the filtering map is an

identity transformation.

Assume that we have a sample {(Yi,Xi) : i = 1, ..., n}, consisting of independent and identically

distributed (i.i.d.) draws from (Y,X) with properties described above. By filtering out the effects

of X onto Y we mean finding a counterfactual distribution of a random variable Y ′, characterized

1The Cumulative Distribution Functions (CDFs) are given by FY (y) and FX(x), respectively.
2PDF-representation of the condition proved to be computationally more attractive and has been widely used

in hypothesis testing (Hiemstra and Jones, 1994; Diks and Panchenko, 2006; Diks and Wolski, 2016). Although our

main results can be also derived from the CDF functionals, the PDF approach allows to link the methodology to

the testing environment explicitly.
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by a sample {Y ′i : i = 1..n}, which is independent from X. By design, counterfactual distribution

Y ′ is defined over the subset of the support of Y , Y ′ ⊆ Y . In terms of PDFs, one can write the

independence condition as

fY ′,X(y,x) = fY (y)fX(x) (1)

for all y and x. Note that in this setup the independence is obtained by adjusting the joint

probability space rather than the respective unconditional distributions. We motivate this by the

information theory. In case of dependent random variables, variables X provide extra information

about variable Y . Consequently, the conditional distribution of Y given X is not equal to the

unconditional distribution of Y . Filtering this extra information should be then naturally defined

over the conditional rather than unconditional distribution of Y , which is reflected in Eq. (1).

Additionally, such a setting builds an easy link to the literature on counterfactual analysis (see,

for instance, Chernozhukov et al. (2013)).

The sample from a counterfactual distribution Y ′ is obtained by solving Eq. (1) for sample

realizations {Y ′i : i = 1, ..., n}. Using the data sharpening framework, one can show that sample

{Y ′i } is a function of {Yi} for given realizations {Xi} for each i = 1, ..., n, i.e. Y ′i = φ(Yi|Xi = xi),

where φ is a sharpening function. The main result is summarized in Theorem 1.

Theorem 1. Suppose that we have an i.i.d. sample {(Yi,Xi) : i = 1, ..., n} from a continuous

distribution with well-defined and sufficiently smooth PDFs. Then, the counterfactual distribution

Y ′, satisfying the independence condition given in Eq. (1), follows asymptotically

FY (y′) = FY |X(y|x), (2)

where FY |X is the conditional distribution function of Y given X = x, for any y and x in the

support of (Y,X).

Proof of Theorem 1 is built upon kernel and data-sharpening methods (see Wand and Jones

(1995); Silverman (1998); Hall and Minnotte (2002)), and can be found in Appendix A.1. Data

sharpening changes, or perturbs, the points along given marginals to meet user-defined conditions.

Since it closely follows the narrative of the proposed idea, it is a preferred line of arguments in

the proof of Theorem 1, where the points along marginal Y are shifted until the independence

condition in Eq. (1) is satisfied. Nonetheless, a similar conclusion can be reached by decomposing

the copula of the joint distribution of (Y,X).

Theorem 1 complements and extends the growing body of literature on counterfactual dis-

tributions (Chernozhukov et al., 2013; Rothe, 2010, 2012). There are two main novelties in the

proposed framework. Firstly, the setup does not require a counterfactual covariate distribution

X ′. It makes the procedure an attractive alternative for practical applications, where such distri-

butions are often unknown or unobservable. Secondly, since the RHS of Eq. (2) is identified by

the data, and under an additional assumption that FY is strictly increasing, Theorem 1 is also

identified for any point in the support of (Y,X).

2.1 Estimation

We propose a coherent, and fully nonparametric, framework to estimate the counterfactual distri-

bution Y ′. To generalize the notation from the beginning of Section 2, let us consider a multivariate
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random variable W , with a corresponding sample satisfying Assumption 1.

Assumption 1. Data {W i : i = 1, ..., n}, where W i = {W1i, ...,WdW i}, are i.i.d. as a dW -variate

smooth continuous distribution FW (w) with well-defined PDF fW (w) and respective derivatives,

up to a finite order r, which are finite, continuous and uniformly bounded on the support.

Following Wand and Jones (1995), the kernel PDF estimator, around point w, is given by

f̂W (w) = n−1
n∑
i=1

KH (w −Wi) , (3)

where H is a symmetric positive definite dW × dW bandwidth matrix. To simplify the presen-

tation and without the loss of generality, let us further impose that H is diagonal with elements

diag(h2
1, ..., h

2
dW

). Expression

KH(w) = (detH)−1/2K(H−1/2w), (4)

is the scaled kernel with ‘det’ denoting the determinant and K being a dW -variate kernel function

satisfying Assumption 2.

Assumption 2. Kernel function K : RdW → R behaves as∫
K(w)dw = 1,∫

K(w)wcdw = 0 for c = 1, ..., r − 1,∫
K(w)wcdw = κrIdW <∞ for c = r,

(5)

and K(w) is r-times differentiable, where IdW is a dW × dW identity matrix.

Assumption 2 provides a set of regularity conditions on the smoothing function, commonly

used in nonparametric setups. More specifically, they require that the kernel function integrates

to 1 and that it is of order r > 1, which can be specified by the end-user. The latter condition

determines the point-wise rate of convergence of the kernel estimator to the true density (Wand

and Jones, 1995), which turns out to fully determine the asymptotic properties discussed later.

The corresponding CDF kernel estimator is given by integrating the kernel function

F̂W (w) = n−1
n∑
i=1

K̄H0
(w −Wi) , (6)

where K̄H0
(w) =

∫w

−∞K(H
−1/2
0 u)du. We introduce here a convention that bandwidth subscript

0 corresponds to CDF estimates.

To estimate of the conditional CDF, corresponding to the RHS of Eq. (2), let us introduce

variable V for which the joint i.i.d. sample is given by {(Vi,W i) : i = 1, ..., n}, satisfying Assump-

tion 1. Following Li and Racine (2013), the conditional CDF can be estimated as

F̂V |W (v|w) =
n−1

∑n
i=1 K̄H0

(v − Vi)KH (w −Wi)

f̂W (w)
, (7)
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where H0 = h2
0 describes the bandwidth behaviour over CDF marginal V . Throughout the paper

we take that bandwidth subscript 0 refers to the CDF marginal, whereas subscripts 1, ..., dW refer

to PDF marginals. Consequently, the bandwidth matrix for conditional CDF estimates can be

written as

HV |W =

[
H0 0

0 H

]
=


h2

0 0 . . . 0

0 h2
1 0

... 0
. . . 0

0 0 h2
dW

 . (8)

For consistency of the estimates we require that all bandwidths decrease sufficiently slowly

with the sample size, as required by Assumption 3.

Assumption 3. As n→∞,

(i) n1/2h0/(log n)1/2 + n1/2hr0 → 0,

(ii) n1/2 detH1/2/ log n+ n1/2 maxHr/2 → 0.

To guarantee uniform convergence of estimates, we require moderately more restrictive band-

width behaviour than for the point-wise convergence. Assumption 3 suggests that along the CDF

marginal the sequence of bandwidths of the form h0 = c0n
−γ , with c0 > 0, should converge at the

rate γ ∈ ((2r)−1, 1). For the PDF marginals, by symmetry, setting h1 = c1n
−β , ..., hdW = cdW n−β ,

with c1, ..., cdW > 0, we have that β ∈ ((2r)−1, (2dW )−1). It follows that for conditional estimates

of V |W = w we need r > dW , which is satisfied for the simplest example with a second-order

kernel and dW = 1. Clearly, for multivariate applications, the kernel smoothing would require a

higher-order kernel, to reduce the bias of the estimates, and create a non-empty set of possible β

values.

Assumption 3 guarantees that CDF bandwidths do not converge slower than PDF ones as

n→∞. In fact, the dominant terms in the MSE rates of convergence of the smoothed conditional

estimators are of the same order of convergence as in the unsmoothed equivalents, as suggested

by Theorem 2.2 of Li and Racine (2008). Since the convergence in MSE implies convergence in

probability (Li and Racine, 2007), the corresponding uniform rates of convergence should also be

similar in their dominant terms. This argument is built along the lines suggested by the uniform

rates of convergence for conditional PDFs, as demonstrated by Ferraty et al. (2010), and it opens

a door for smooth, instead of step-wise, CDF estimators in the setup.

In practice, Eq. (7) is often expressed as a weighted unconditional CDF of V , with weights

determined by

θH(w,Wi) =
KH (w −Wi)

f̂W (w)
. (9)

This, in fact, reduces computetional complexity of the estimators (Rothe, 2010).

Estimation of independent counterfactuals It follows that the plug-in representation of

Theorem 1 requires two CDF estimates with two separate bandwidth matrices. To standardize

the notation, let us denote the corresponding bandwidth matrices by superscripts referring to the
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specific distribution. Consequently, we estimate the draw from the independent counterfactual

distribution by solving

n∑
i=1

K̄HY0
(y′ − Yi) =

n∑
i=1

K̄
H
Y |X
0

(y − Yi)θHY |X (x,Xi). (10)

We will also use the bandwidth block matrix notation, highlighted by corresponding subscripts,

i.e. we have that HY = HY
0 and, after Eq. (8), HY |X consists of blocks H

Y |X
0 and HY |X .

A counterfactual sample is obtained by solving Eq. (10) for y′. In this respect, following Jones

(1992), Eq. (10) is equivalent to the plug-in representation of Eq. (2), where one can use a smooth

empirical quantile function F̂−1
Y = Q̂Y .3

The method can be flexibly readjusted to match more complex setups, as we demonstrate in

Section 2.3. Nevertheless, a close attention should be paid to the increased dimensionality and

corresponding convergence properties of the (conditional) estimates.

2.2 Asymptotic properties

The (smooth) filtering framework described above can be directly linked to the literature on empir-

ical processes and their convergence. Let us denote the estimator of the independent counterfactual

distribution in terms of the quantile transformation as

Ŷ ′ ≡ Ŷ ′(y,x) = F̂−1
Y (F̂Y |X(y|x)). (11)

There are two main difficulties in deriving convergence properties of Ŷ ′. Firstly, the quantile

estimator is evaluated at a random element F̂Y |X , adding an extra noise to the process. To

guarantee consistency of the procedure, this extra stochasticity needs to be contained by the

uniform convergence of the estimates (see Assumption 3). Secondly, the convergence takes place

in a smooth probability space. Although, under extra assumptions, smooth empirical processes

have been shown to converge in distribution, they require special care. Consequently, we firstly

derive convergence properties for the standard, i.e. stepwise, estimator of the empirical process

characterized in Eq. (11), and then, following Giné and Nickl (2008), we extend the results to

smooth estimators. For the Reader’s convenience, the main findings are presented jointly below.

Convergence of empirical processes requires certain additional regularity conditions which are

outlined as Assumptions 4. In particular, we need to impose bounds on the quantile function as

otherwise the process would be non-convergent in the tails.

Assumption 4. We assume that (i) distribution functions FY and FY |X are Hadamard differen-

tiable, (ii) F−1
Y is uniformly Lipschitz and bounded by [a, b] ∈ R, (iii) Y is supported by a compact

interval on J ∈ R for which FY |X(y|x) is uniformly bounded by [p1, p2] ∈ (0, 1).

The assumption on Hadamard differentiability allows to linearize the estimate functionals in

converging sequences by the functional delta method (van der Vaart, 2000). As a result, the

estimates can be shown to converge to a Gaussian process, as demonstrated by Theorem 2.

3Because of better computational performance, in this paper we rely on numerical methods rather than on a

quantile function transformation. Jones (1992) shows that both methods are MSE-equivalent.
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Theorem 2. Suppose that Assumptions 1-4 hold. Then

√
n
(
Ŷ ′ − Y ′

)
d−→N(0, σ2), (12)

conditional on the data, where σ2 is given by

σ2 =
FY (y)(1− FY (y)) + FY |X(y|x)(1− FY |X(y|x))

fY
(
F−1
Y (FY |X(y|x))

) . (13)

The proof of Theorem 2 is given in Appendix A.2. This result supports the use of standard

inference techniques on Ŷ ′ estimates, as the distribution of the difference Ŷ ′ − Y ′ contains all the

information necessary to assess the precision of Ŷ ′. Following Theorem 2, under the assumption

that σ2 is estimated consistently, the sequence (Ŷ ′−Y ′)/σ̂ tends to a standard Gaussian curve. It is

then straightforward to calculate the confidence bounds on standard normal quantiles zα = QN (α),

as [Ŷ ′ + zα/2σ̂, Ŷ
′ + z1−α/2σ̂], where α is the statistical significance level.

In practical applications it may be difficult to estimate σ̂2 consistently, however. Therefore, we

follow the approach of Chernozhukov et al. (2013) and Rothe (2010), a propose a naive bootstrap

method as an alternative to approximate the true distribution of Ŷ ′ − Y ′. Let us generate a

random sample by re-sampling (i.e. sampling with replacement) from the original distribution

{(Yi,Xi) : i = 1, ..., n}. For the specific realization i under the bootstrap draw b = 1, ..., B,

we then estimate the {Ŷ ′i,b} on the sample {(Yi,b,Xi,b) : i = 1, ..., n} according to Theorem 2.

This gives the bootstrap distribution {Ŷ ′b } = {(Ŷ ′i,b) : i = 1, ..., n}. Theorem 3 verifies that the

bootstrap procedure is asymptotically valid, i.e. the distribution of the filtered realizations under

the bootstrap {Ŷ ′b } mimics well the distribution of filtered values under the true measure Y ′ as

n→∞.

Theorem 3. Suppose that Assumptions 1-4 hold. Then

√
n
(
Ŷ ′b − Ŷ ′

)
d−→N(0, σ2), (14)

conditional on the data, where σ2 is the same as in Theorem 2 but taken over the bootstrap sample.

Proof of Theorem 3 is given in Appendix A.3. Lemma 23.3 of van der Vaart (2000) implies

that under Theorems 2 and 3, bootstrap confidence intervals, given by [Ŷ ′+ ζ̂α/2σ̂, Ŷ
′+ ζ̂1−α/2σ̂],

are asymptotically consistent at the 1−α level, where ζα is taken as α-quantile from the bootstrap

distribution. Formally, confidence bounds for the counterfactual realization around any point y

and x can be expressed as

lim
n→∞

inf
ζ̂α/2,ζ̂1−α/2

Pb

(
Ŷ ′(y,x) + ζ̂α/2σ̂ ≤ Y ′(y,x) ≤ Ŷ ′(y,x) + ζ̂1−α/2σ̂

)
≥ 1− α. (15)

In practice, the unknown quantities ζ̂ and σ̂2 can be obtained from the bootstrap distribution

directly, simplifying the derivations (see, for instance, the percentile confidence interval method

proposed by Efron and Tibshirani (1993)).

2.3 Conditionally independent counterfactuals

The setup described above can be extended to account for partial dependence between the vari-

ables, corresponding to Rothe (2012). Conditionally independent counterfactual distributions offer
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even a more flexible framework, removing the dependence against some of the covariates while

preserving it for others, being particularly interesting for practical applications.

We again begin with the hypothesis testing framework. Hiemstra and Jones (1994) provide

a coherent framework to test for conditional independence.4 Extending the setup developed in

Section 2, let us introduce an extra variable, denoted by Q, corresponding to a dQ-dimensional

set of covariates for which the dependence against Y is to be preserved. After Hiemstra and Jones

(1994), any additional information about the conditional distribution Y |Q = q which is contained

in variable X can be reflected as a distance between the respective conditional distributions. It

follows that the conditional independence condition can be written as

fY ′′|Q,X(y|q,x) = fY |Q(y|q), (16)

where by Y ′′ we distinguish the conditionally, from unconditionally, independent counterfactuals.

Following closely the steps described in Section 2, we can apply the data sharpening technique

to derive the closed-form solution for the counterfactual distribution of Y ′′. Theorem 4 summarizes

the findings.

Theorem 4. Suppose that we have an i.i.d. sample {(Yi,Qi,Xi) : i = 1, ..., n} from a continuous

distribution with well-defined and sufficiently smooth PDFs. Then, the counterfactual distribution

Y ′′, satisfying the conditional independence condition given in Eq. (16), follows asymptotically

FY |Q(y′′|q) = FY |Q,X(y|q,x). (17)

The proof of Theorem 4 follows directly from the steps outlined in Appendix A.1, by noting

that the sharpened estimate of the joint density should be equal to fY |Q(y|q)fX(x). Theorem 4

suggests also that the conditionally independent counterfactual distribution is identified by data

at any point, by design. Having pointed this out, the exogeneity condition ensures efficiency of

the filtering procedure, in the same way as argued in Section 2.

To derive asymptotic properties of the estimates of Y ′′, one needs to extend the set of As-

sumptions 4 to cover the extra set of covariates Q. Assumption 5 replaces necessary conditions

on Hadamard differentiability of FY |Q and FY |Q,X .

Assumption 5. We assume that (i) conditional distribution functions FY |Q and FY |Q,X are

Hadamard differentiable, (ii) F−1
Y |Q is uniformly Lipschitz and bounded by [a, b] ∈ R, (iii) Y is

supported by a compact interval on J ∈ R for which FY |Q,X(y|q,x) is uniformly bounded by

[p1, p2] ∈ (0, 1).

Let us denote the estimates of Y ′′ by Ŷ ′′. They can be directly retrieved through the conditional

quantile functionals as

Ŷ ′′ ≡ Ŷ ′′(y, q,x) = F̂−1
Y |Q(F̂Y |Q,X(y|q,x)|q), (18)

4Diks and Panchenko (2006) show that the test statistic developed by Hiemstra and Jones (1994) is misspecified

and propose a weighted test statistic as an alternative. Nevertheless, here we are not interested in the asymptotic

properties of the test but we use it merely as a starting point to describe the point-wise dependence between

variables, which is the same for Hiemstra and Jones (1994) and Diks and Panchenko (2006).
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where, following Li and Racine (2007), we define a conditional quantile function as F−1
Y |Q(e|q) =

inf{u : FY |Q(u|q) ≥ e}.
The only major difficulty, compared with the unconditionally independent counterfactual dis-

tributions, lies in the need to estimate conditional CDFs for both sides of the baseline condition

given by Theorem 4. The consistency of the conditional quantile estimates holds by the same

asymptotic principles as suggested by Jones (1992). Consequently, we can extend the arguments

of the smooth estimation strategy described in detail in Sections 2.1 and 2.2 to conditionally

independent counterfactuals. Theorem 5 summarizes this reasoning.

Theorem 5. Suppose that Assumptions 1-3 and 5 hold. Then

√
n
(
Ŷ ′′ − Y ′′

)
d−→N(0, σ2), (19)

conditional on the data, where σ2 is given by

σ2 =
FY |Q(y|q)(1− FY |Q(y|q)) + FY |Q,X(y|q, x)(1− FY |Q,X(y|q, x))

fY |Q

(
F−1
Y |Q(FY |Q,X(y|q, x))

) . (20)

To prove Theorem 5, one can follow the steps in Appendix A.2, by noting that the order of

the uniform convergence of the conditional quantile function is the same as for the conditional

distribution functions.

Since, in the practical applications, the extra conditioning variable Q can make the estimates

of σ2 even more cumbersome, we propose a naive bootstrap. We generate a random sample by

re-sampling from the original distribution {(Yi,Qi,Xi) : i = 1, ..., n}. For the specific realization

i under the bootstrap draw b = 1, ..., B, we then estimate Ŷ ′′i,b on the sample {(Yi,b,Qi,b,Xi,b) :

i = 1, ..., n} according to Theorem 4. Theorem 6 verifies that the bootstrap distribution Ŷ ′′b is

asymptotically valid.

Theorem 6. Suppose that Assumptions 1-3 and 5 hold. Then

√
n
(
Ŷ ′′b − Ŷ ′′

)
d−→N(0, σ2), (21)

conditional on the data, where σ2 is the same as in Theorem 5 but taken over the bootstrap sample.

The proof again is a direct implication of the delta method for bootstrap (van der Vaart, 2000)

and the result of Theorem 5.

We provide a numerical verification of the methodology, together with a comparison between

smooth and non-smooth kernels, on an example of a stylized ARCH process in Appendix B.

3 Empirical application

To show a practical application of the filtering procedure we choose the interest rate environment

in the EA. In normal times, the changes in the bank funding rates are well represented in the retail

lending rates, and are passed on to the corporate costs of borrowing. In abnormal times, as a result

of heterogeneous risk components, pricing differentials and market segmentation, the changes in

bank lending conditions do not have to correspond to the changes in the market funding rates. In
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the largely banking-dependent EA this can have a detrimental influence on the real economy as

the ECB rate cuts have not been fully passed to the bank lending rates in several member states

and regions, where accommodative monetary policy would be particularly welcomed.

The recent financial crisis and the subsequent sovereign debt crisis decompressed the levels

of risk perceived on the sovereign accounts, and their possible non-linear transmission within the

financial system (Darracq Paries et al., 2014). Despite the fact that standard (linear) pass-through

models can account for the former (Kok and Werner, 2006), they can underestimate the latter

effects, offering an incomplete picture of the heterogeneity in sovereign risk transmission.

There is vast international evidence in favour of nonlinear dependencies in the interest rate

transmission mechanisms. Apergis and Cooray (2015) estimate a Nonlinear Auto-Regressive Dis-

tributed Lag (NARDL) model and confirm asymmetric interest rate pass-through in the U.S., the

U.K. and Australia. In particular, they observe that the lending rates responded more strongly

to the hikes in policy rates, rather than to the falls. Using a time-varying parameter state space

approach Arnold and van Ewijk (2014) find that heterogeneity in credit risk had a negligible effect

on retail lending rates in the EA, in contrast to the sovereign risk. Additionally, they report that

the sovereign distortions affect deposit rates to a greater extent than the lending rates. On the

example of Japan, Kitamura et al. (2016) find that banks with high shares of relationship lending

appear to be more restrained in pass-through of policy rate hikes, compared to the falls. This is

somehow in line with a more general finding of Huang et al. (2010) and He and Krishnamurthy

(2012) who suggest that banking risk is a nonlinear function of asset exposure.

In this study we focus to what extent the interest rate pass-through was distorted by country-

specific sovereign characteristics. We choose three large EA economies, i.e. France, Italy and Spain.

The sovereign costs are benchmarked against the German equivalent. The sample is representative

of the EA’s dynamics during the financial and sovereign debt crises. In particular, it has been

observed that two latter countries suffered more during the crisis and consequently the monetary

policy transmission channel was there less effective, than in the core EA countries (Darracq Paries

et al., 2014).

We consider the Error Correction Model (ECM), which has been widely applied to evaluate the

interest rate pass-through dynamics (see Darracq Paries et al. (2014)). We adapt the framework to

match the filtering procedure described in Sections 2 and 2.3. In particular, the goal of the exercise

is to provide counterfactual realizations of country-specific corporate costs of borrowing as if there

was no distortions from sovereign risk. By comparing counterfactuals with actual realizations one

can approximate by how much sovereign risk escalated, or alleviated, the pass-through rigidities

in a given country.

3.1 Estimation strategy

We begin by adjusting the parametric setup to match the procedure to estimate the conditionally

independent counterfactuals. The standard pass-through model, comprising the sovereign risk

factors, can be written as

∆Ct =

lR∑
k=0

βkR∆Rt−k +

lC∑
j=1

βjC∆Ct−k +

lS∑
m=1

βmS∆St−m + ανt−1 + εt, (22)

11



where Ct is a corporate cost of borrowing, Rt is the monetary policy reference rate, St is the

sovereign risk component, νt is the error correction factor and εt is the standard error term. In

such a specification coefficients β reflect the short-run pass-through effects, whereas α represents

the speed of adjustment to the long-run equilibrium path given by

Ct = µ0 + µRRt + µSSt + νt, (23)

with µR and µS reflecting the long-run elasticity of corporate funding costs to the reference rate

and sovereign risk factors, respectively. Finally, subscript t = 1, ..., T denotes the time dimension

and ∆ is the first difference operator.

To match the notation described in Sections 2 and 2.3, let RlRt describe a (lR+ 1)-dimensional

vector of lags given by RlRt = {Rt−lR, ..., Rt}, and similarly ClCt = {Ct−lC , ..., Ct} and SlSt =

{St−lS , ..., St}. The data sample is given by {(ClCt , RlRt , S
lS
t ) : t = 1, ..., T}. Let us denote the

conditionally independent counterfactual distribution of ∆C by ∆C ′′. In this case, the counter-

factual describes the dynamics of ∆C under no spillovers from the sovereign risk variables. For

each realization t, the corresponding conditional independence condition is given by5

f∆C′′|.
(
∆Ct|∆RlRt ,∆ClCt−1,∆S

lS
t−1, νt−1

)
= f∆C|.

(
∆Ct|∆RlRt ,∆ClCt−1, ξt−1

)
, (24)

where ξt is the the error correction term of the model without a sovereign risk component.

Finally, by Theorem 4, the realizations {∆C ′′t } of a conditionally independent distribution can

be estimated by solving for each t

F̂∆C|.
(
∆C ′′t |∆RlRt ,∆ClCt−1, Rt−1, Ct−1

)
= F̂∆C|.

(
∆Ct|∆RlRt ,∆ClCt−1,∆S

lS
t−1, Rt−1, Ct−1, St−1

)
,

(25)

where we nest the long-run equilibrium dynamics, as commonly done in practice (Darracq Paries

et al., 2014). This, in fact, allows us to account for short- and long-term effects of sovereign risk

on the costs of borrowing explicitly. For easier interpretation of the results, we reconstruct the

levels of counterfactual dynamics, instead of first differences.

In line with the numerical examples, we utilize leave-one-out kernel estimates. We choose the

Gaussian kernels of the order necessary to meet the uniform convergence criteria under the given

dimensionality. We also evaluate statistical significance of each counterfactual estimate at the

customary 5% level.

3.2 Data description and results

As the variable of interest we focus on the composite indicator of the cost of borrowing for non-

financial corporations, as reported by the ECB in the monthly reports on the interest rates devel-

opments across the EA. The variable takes into account interest rates on bank loans and overdrafts

in the SMEs across the EA. As argued by ECB (2013), the composite indicator is more representa-

tive of corporate borrowing situation as merely interest rates on loans, as in some of the countries,

like Italy, the proportion of overdrafts may be substantial. The variable is annualised and covers

new businesses.

5The notation subscripts are shortened for transparency.
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Under the baseline specification we look at the average cost of borrowing across maturities.6

As the reference policy rate we take 3-month EURIBOR rate as being the most liquid benchmark.

Both time series come from the ECB. As a proxy for the sovereign risk we take average 10-year

sovereign yield spread against the German sovereign in the same period. The time series come

from Bloomberg.

The data sample is at a monthly frequency and covers the period from January 2003 until

May 2017. The basic summary statistics, together with the stationarity results, are depicted in

Table 1.

Table 1: Summary statistics.

France

Obs. Mean St. dev. Min Max ADF ADF (∆)

Corporate borrowing cost 173 3.051 1.118 1.450 5.820 0.678 0.000

Sovereign risk 173 0.321 0.298 -0.007 1.450 0.530 0.000

EURIBOR (3 month) 173 1.570 1.542 -0.330 5.113 0.403 0.000

Italy

Obs. Mean St. dev. Min Max ADF ADF (∆)

Corporate borrowing cost 173 3.945 1.085 1.850 6.390 0.728 0.000

Sovereign risk 173 1.256 1.163 0.098 4.833 0.645 0.000

EURIBOR (3 month) 173 1.570 1.542 -0.330 5.113 0.403 0.000

Spain

Obs. Mean St. dev. Min Max ADF ADF (∆)

Corporate borrowing cost 173 3.528 0.952 1.900 5.960 0.818 0.000

Sovereign risk 173 1.195 1.307 -0.021 5.512 0.899 0.000

EURIBOR (3 month) 173 1.570 1.542 -0.330 5.113 0.403 0.000

Notes: Time span covers January 2003 - May 2017. Corporate borrowing cost is taken as the composite

indicator of the cost of borrowing for non-financial corporations across maturities. Sovereign risk is taken

as 10-year sovereign yield spread against German equivalent. ADF and ADF (∆) denote the p-values

from the Augmented Dickey-Fuller test on levels and first differences, respectively. Sources: ECB and

Bloomberg.

It can be readily observed that the average corporate borrowing costs were the highest in Italy,

followed by Spain and France. Interestingly, the volatility of the borrowing costs has been the

highest in France, followed by Italy and Spain. After the interest rate cuts in 2008 and further

non-conventional monetary measures introduced by the ECB, the borrowing costs in the France

adjusted much faster than in the other two countries. In fact, only recently the corporate funding

costs in Italy and Spain started converging to the levels observed in France. This, in fact, builds

an avenue which we aim at exploring in the empirical setup, i.e. to what extent the sluggishness

in these adjustments was driven by elevated sovereign risk.

6The results for the short-term costs are presented in Appendix C.
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The sovereign risk in France was at negligible levels. To the contrary, the risk in Italy and Spain

was nearly four times higher, on average, suggesting substantial tensions in respective sovereign

sectors.

Verifying the nonparametric methodological assumptions, we test the stationarity of the time

series with the Augmented Dickey-Fuller test (Fuller, 1995). The results suggest that all time

series are I(1). The first differences are, however, all stationary at conventional significance levels.

We also find evidence for co-integration of all the variables in France and Italy. Although the

error correction framework is a customary estimation strategy in the pass-through models, there

is little evidence in our data that the Spanish time series are co-integrated. In fact, Johansen

co-integration tests (both trace and maximum eigenvalue) doesn’t deliver statistically significant

results on co-integration between corporate borrowing costs, sovereign yield spread and reference

rates in that country. We therefore re-estimate the model without the error correction component

in Spain, i.e. we run the standard Auto-Regressive Distributed Lag (ARDL) model. Since the

estimation results are parallel to the ones discussed below our focus is on the commonly applied

error correction specification.

In the estimation of conditionally independent counterfactual distributions we use the multi-

variate Gaussian kernel of order 8, which allows us to jointly include up to 7 variables. We choose

a simple specification with the lag order equal to 1 for all variables to maximize the explanatory

power of our relatively short time frame. We apply the smooth estimators with normal-reference

bandwidths with rates of convergence being in the middle of the allowed interval. We estimate the

counterfactual differences in the corporate costs of borrowing and then remap the filtered estimates

into levels. The effects of the sovereign risk factors on the corporate cost of borrowing is taken as

a difference between the observed and counterfactual values, which we plot in the bottom panels.

To test for the statistical significance of the sovereign risk pass-through distortions, we calculate

standard confidence intervals as implied by Theorem 2.7 We additionally compare the sovereign

risk contributions with their linear equivalents, calculated from Eq. (22), as being the literature

benchmark on the pass-through transmission effects.8 The results are presented in Figs 1-3.

Several interesting features can be readily observed from the results. Firstly, the sovereign

risk substantially disturbed the interest rate pass-through in Spain, compared to France and Italy.

On average, the corporate borrowing costs would have been lower by 38 bp in France, by 27bp

in Italy, and by 65bp in Spain, if we remove the sovereign risk transmission effects. Looking at

period after 2011 only, the difference would amount to 43bp in France, 55bp in Italy and 157bp

in Spain. One may observe that France record relatively less significant sovereign pass-through

transmission after 2009. To the contrary, both Italy and Spain observe statistically significant

sovereign distortions in the months during the financial and sovereign debt crises. This is in fact

a confirmation of asymmetric interest rate transmission in various EA jurisdictions (Arnold and

van Ewijk, 2014; Darracq Paries et al., 2014).

Secondly, we observe a change in sovereign risk contributions around the period of the global

7Because of relatively small sample size, the bootstrap procedure gave relatively weak approximation of the

underlying distribution with very wide confidence bounds.
8The linear model is estimated on the same set of variables as its nonparametric equivalent, without demeaning

the variables. For brevity, the estimation results are reported in Appendix C.
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Figure 1: Sovereign risk transmission onto corporate cost of borrowing in France.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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Figure 2: Sovereign risk transmission onto corporate cost of borrowing in Italy.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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Figure 3: Sovereign risk transmission onto corporate cost of borrowing in Spain.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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financial crisis and sovereign debt crisis between the countries. The majority of sovereign risk

distortions in France was present before 2009, around the period of the global financial crisis.

To the contrary, in Spain and Italy we observe highly significant effects in the period after 2009,

largely corresponding to the sovereign debt crisis. These findings are in line with EIB (2016).

Interestingly, the counterfactual exercise reveals that the levels of sovereign risk distortions are

still elevated in more recent years in all the countries. It suggests that despite the reduction in

sovereign yields, there are still non-negligible transmissions to the corporate costs of borrowing.

Thirdly, one can clearly observe a difference between the dependence filtering approach and

linear specification. The latter appears to substantially underestimate the sovereign risk trans-

mission mechanisms for France and Spain, with Italy being more aligned, on average. It suggests

that, since the counterfactual approach does not assume any underlying model parametrization,

the sovereign risk transmission may be highly nonlinear in nature.

4 Conclusions

This study proposes a novel dependence filtering framework. Under mild regularity conditions,

and without assuming any specific parametric structure, we derive counterfactual distributions

which are either independent or conditionally independent from the effects of given covariates.

We show that the methodology has desired asymptotic properties and can be easily applied in a

multivariate setting. We provide bootstrap confidence intervals and we additionally confirm the

accuracy of the method numerically, on an example of a stylized nonlinear process with volatility

spillovers between variables.

In an empirical application, we demonstrate that the proposed framework can be easily adjusted

to match standard parametric regressions. In particular, we look at the interest rate pass-through

model, widely used by central bankers (Darracq Paries et al., 2014), and we demonstrate that

the (conditionally) independent counterfactual distributions can be used to estimate the degree of

sovereign risk distortions onto corporate borrowing costs.

The main findings confirm the heterogeneity in the ECB interest rate pass-through between

France, Italy and Spain. Interestingly, we find that the standard linear models can underestimate

the sovereign risk distortions, especially for the more recent periods. One can speculate that the

elevated risk levels of France can coincide with the implicit fiscal backstop role it plays in the

EU, together with Germany. We additionally find that the sovereign risk contagion was less of a

problem on the short end.

The results build an interesting avenue for policy makers and practitioners. With non-responsive

retail rates the standard monetary policy actions are largely ineffective. The fact that the ECB

operates near to the zero-lower bound environment makes the bank lending only more difficult to

stimulate as the conventional tools run out of scope. Strategies which could improve the effective-

ness of the transmission channels should gain more attention. These could include policies aiming

at restoring market confidence, cross-border risk-sharing and fostering financial integration in the

EA.

To get a better understanding of the influence of risk factors on bank-specific characteristics
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and lending, further research is therefore desired. In particular, one could extrapolate the filtering

methodology to a panel framework or fit the pass-through model to a different set of risk proxies,

controlling for, for instance, macroeconomic and financial risks.
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A Proofs

A.1 Theorem 1

Proof. Let us write that the filtered sample {Y ′i } is defined as a function of {Yi} conditional on

realization of {Xi}, for each i = 1, ..., n, such that Y ′i = φ(Yi|Xi = xi) ≡ φ(Yi). Let us further

assume that φ is invertible around point y. Transformation φ : R → R might be viewed as

a perturbation, or following Choi and Hall (1999) and Hall and Minnotte (2002), a sharpening

function. Consequently, the plug-in estimator of the Left-Hand Side (LHS) of Eq. (1), which is

defined over Y ′ marginal, can be rewritten as

f̂Y ′,X(y,x) = n−1
n∑
i=1

KH (y − φ(Yi),x−Xi) , (A.1.1)

where H is a (1+dX)×(1+dX) bandwidth matrix and KH is a scaled multivariate kernel function

satisfying the standard regularity conditions (see Assumption 2 or Wand and Jones (1995)). For

presentation, in notation we explicitly distinguish between variables Y and X as sharpening is

defined over the Y marginal only. Consequently, let us assume that bandwidth matrix consists of

two blocks: one for marginal Y and one for X.

By taking the expected value of the estimator from Eq. (A.1.1) with respect to the continuous

joint distribution of (Y,X), and substituting into Eq. (1) we get∫
KH (y − φ(Y ),x−X) dF (Y,X) = fY (y)fX(x), (A.1.2)

as the sample size n→∞. By substituting V = φ(Y )∫
KH (y − V,x−X) dF (φ−1(V ),X) = fY (y)fX(x). (A.1.3)

Changing variables we observe that∫
K (u, z) g

(
y −H

1/2
Y u

∣∣∣x−H
1/2
X z

)
dzdu = fY (y)fX(x). (A.1.4)

where HY and HX are the block matrices associated with marginals Y and X, respectively. We

also defined g = ∂G/∂a where

G(a|b) =

∫ a

−∞
fY,X(φ−1(u), b)du. (A.1.5)

Assuming g is sufficiently smooth, the LHS of Eq. (A.1.4) is equal g(y|x) + o(tr(H)). By

substituting it back into Eq. (A.1.4) and integrating, we conclude that G+ o(tr(H)) = D where

D(y|x) = FY (y)fX(x). (A.1.6)

Combining it with Eq. (A.1.5), up to the order of o(tr(H)), we get∫ y

−∞
fY,X(φ−1(u),x)du = D(y|x). (A.1.7)
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Denote LHS of Eq. (A.1.7) as J(φ−1(y)) for any point X = x. Consequently, one finds that

φ(y) = D−1(J(y)|x) or

φ(y) = D−1

(∫ y

−∞
fY,X(u,x)du

)
= F−1

Y

(∫ y
−∞ fY,X(u,x)du)

fX(x)

)
,

(A.1.8)

or alternatively, by substituting y′ ≡ φ(y),

FY (y′) = FY |X(y|x). (A.1.9)

A.2 Theorem 2

Proof. To derive the asymptotic properties of the process indexed by Eq. (11), let us introduce the

basic concepts from the (smooth) empirical process literature. Therefore, let Z1, ..., Zn be an i.i.d.

random elements in a measurable space (Z,A) with law (distribution) P , and for a measurable

function g : Z → R let the expectation, the empirical measure and empirical process at g be

denoted by

Pg =

∫
gdP, Png =

1

n

n∑
i=1

g(Zi), Gng =
√
n(Pn − P )g. (A.2.1)

A.2.1 Empirical measures

Let us firstly consider empirical measures, i.e. not smoothed, of FY and FY |X . Consequently, in

the notation in this section we treat the estimators as defined over non-convoluted probability

space. Let us write
√
n(Ŷ ′ − Y ′) =

√
n(F̂−1

Y ◦ F̂Y |X − F−1
Y ◦ FY |X). (A.2.2)

We observe that F̂Y |X can be viewed as a pseudo-observation, i.e. an estimate rather than a point

realization. After van der Vaart and Wellner (2007), we note that F−1
Y ◦ FY |X is Donsker under

Assumption 3, and we can decompose Eq. (A.2.2) as

√
n(F̂−1

Y ◦ F̂Y |X − F−1
Y ◦ FY |X) = Gn(F−1

Y ◦ F̂Y |X − F−1
Y ◦ FY |X) + GnF−1

Y ◦ FY |X
+
√
nP (F−1

Y ◦ F̂Y |X − F−1
Y ◦ FY |X)

= A1 +A2 +A3.

(A.2.3)

Before handling Eq. (A.2.3) it is useful to remind that under Assumptions 1-4, both empirical

quantile function and empirical conditional distribution functions are uniformly consistent, i.e.

sup
y∈R

sup
x∈Rd

∣∣∣F̂Y |X(y|x)− FY |X(y|x)
∣∣∣ = OP

((
log n

nhdX

)1/2

+ hr

)
, (A.2.4)

sup
w∈J

∣∣∣F̂−1
Y (w)− F−1

Y (w)
∣∣∣ = OP

((
log n

n

)1/2
)
, (A.2.5)
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where J is a compact subset of R (Li and Racine, 2007).

To deal with term A1 we observe that, by Assumption 4 (ii), if F−1
Y is uniformly bounded by

[a, b] = [F−1
Y (p1)−ε, F−1

Y (p2)+ε] for some ε > 0 where 0 < p1 < p2 < 1, and that F−1
Y is uniformly

Lipschitz, i.e. ∣∣F−1
Y (r1)− F−1

Y (r2)
∣∣ ≤ C |r1 − r2| , (A.2.6)

for every pair of points r1, r2 ∈ [p1, p2] and a constant C > 0. Following van der Vaart and

Wellner (1996) (page 157), functional F−1
Y has finite uniform entropy integral and by Theorem 3.1

of van der Vaart and Wellner (2007)

sup
y∈J

∣∣∣Gn (F−1
Y

(
F̂Y |X

)
− F−1

Y

(
FY |X

))∣∣∣ p−→ 0, (A.2.7)

in `∞(J,R) where J ⊂ R for which FY |X is uniformly bounded by [p1, p2].

To handle terms A2 and A3 we note that the quantile function is defined over distribution FY ,

i.e. for ΓY ≡ F−1
Y , the empirical quantile function is given by

ΓY (F̂Y (τ)) = inf{y : F̂Y (y) ≥ τ}, (A.2.8)

with ΓY : D[a, b] → `∞[p1, p2] where D[a, b] is the set of cadlag functions on [a, b]. Term A2 is

the usual empirical process for i.i.d. one-dimensional transformation of a random variable, given

by FY |X(Y1|x), ..., FY |X(Yn|x), and it converges weakly by Eq. (A.2.5). Since, by Assumption 4,

ΓY is Hadamard differentiable at FY tangentially to S[a, b], where S[a, b] is the set of continuous

functions on [a, b], by the distributive property of considered functions, functional delta method

and continuous mapping theorem, respectively, we have that

GnF−1
Y ◦ FY |X =

√
n(F̂−1

Y − F−1
Y ) ◦ FY |X

=
√
n(ΓY (F̂Y )− ΓY (FY )) ◦ FY |X

= Γ′Y (
√
n(F̂Y − FY )) ◦ FY |X + oP (1)

= Γ′Y (Gn,FY ) ◦ FY |X + oP (1)

d−→Γ′Y (GFY ) ◦ FY |X ,

(A.2.9)

where GFY is the FY -Brownian bridge, defined as GFY = Gλ ◦ FY , where Gλ is the standard

Brownian bridge process, and convergence is in `∞(J). As a result we have that

A2
d−→N

(
0,

FY (1− FY )

f2
Y (F−1

Y (FY |X))

)
, (A.2.10)

and convergence is in `∞(J,R).

Following similar reasoning for the term A3, we have

√
nP (F−1

Y (F̂Y |X)− F−1
Y (FY |X)) = P

[√
n
(

ΓY

(
FY (F̂Y |X)

)
− ΓY

(
FY (FY |X)

))]
= P

[
−Γ′Y

(√
n(F̂Y |X − FY |X)

)]
+ oP (1)

= P
[
−Γ′Y

(
Gn,FY |X

)]
+ oP (1)

(A.2.11)
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where we exploited the fact that d/dFY |XΓY (FY ) = −Γ′Y . We further build an argument along the

lines of Corollaries 5.1 and 5.3 of van der Vaart and Wellner (2007). By Hadamard differentiability

assumption we remind that

P
[
−Γ′Y

(
GFY |X

)]
= L(

√
n(ηn − η)), (A.2.12)

where L is continuous and linear map and

ηn − η ≡ ηn(y,x)− η(y,x) =
1

n

n∑
i=1

(
I{Yi ≤ y}θ̂H(x,Xi)− FY |X(y|x)

)
. (A.2.13)

In line with Lemma 4.2 from van der Vaart and Wellner (2007), we have that

L(
√
n(ηn − η)) =

1√
n

n∑
i=1

L
(
I{Yi ≤ y}θ̂H(x,Xi)− FY |X(y|x)

)
=

1√
n

n∑
i=1

L
(
I{Yi ≤ y}θ̂H(x,Xi)

)
−
√
nL(η)

= GηL
(
I{Yi ≤ y}θ̂H(x,Xi)

)
(A.2.14)

Substituting back to the original notation, and expanding function Γ′Y , we receive

P
[
−Γ′Y

(
GFY |X

)]
=

GFY |X
fY

(
F−1
Y

(
E
[
I{Y ≤ y}θ̂H(x,X)

]))
=

GFY |X
fY
(
F−1
Y

(
FY |X

)) + o(tr(H)),

(A.2.15)

and convergence is in `∞(J,R). By the properties of a Brownian bridge it follows that

A3
d−→N

(
0,
FY |X(1− FY |X)

f2
Y (F−1

Y (FY |X))

)
. (A.2.16)

Putting the results together we find that
√
n(Ŷ ′ − Y ) is asymptotically tight for the empirical

(non-smoothed) estimators.

A.2.2 Smooth empirical measures

To extend the results to the convoluted probability spaces, let us firstly remind that, in the current

setup, the probability law P has a density with respect to the Lebesgue measure. The smooth

empirical measure and smooth empirical process indexed at g can be written as

P̃ng = Pn ∗ µn(g), G̃µng =
√
n(Pn − P ) ∗ µn(g), (A.2.17)

where µn is a sequence of probability measures converging weakly to zero. Following van der Vaart

(1994), in our setup µn is random and satisfies dµn(w) = KH(w)dw. Since convoluted estimates

converge in MSE, conditions in Eqs. (A.2.4) and (A.2.5) are also satisfied for smooth estimates.

(In this section all the estimates are taken as smooth.)

It is useful to restate the uniform convergence rates for the smooth empirical measures, as

sup
y∈R

sup
x∈Rd

∣∣∣F̂Y |X(y|x)− FY |X(y|x)
∣∣∣ = OP

((
log n

nhdX

)1/2

+ hr + hr0

)
, (A.2.18)
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sup
w∈J

∣∣∣F̂−1
Y (w)− F−1

Y (w)
∣∣∣ = OP

((
log n

n

)1/2

+ hr0

)
. (A.2.19)

Following the argument under Theorem 1 proposed by Rothe (2010), we observe that the

classes of functions F1 and F2, given by F1 = {FY (y) : y ∈ R} and F2 = {FY |X(y, .) : y ∈ R}
are r-times differentiable by Assumption 1. Hence, F1 ∈ Cr(J) and F2 ∈ Cr(J,R) with bounded

derivatives up to order r. Class F is Donsker by definition since dY = 1 in our setting, and class

F2 is Donsker for r > (dX)/2, which is satisfied as Assumption 3 implies that r > dX , as H0

vanishes faster than H. In fact, this condition allows for application of the usual second order

Kernels in the bi-variate settings with dY = dX = 1.

Since the function F−1
Y ◦FY |X is Donsker, and together with Assumptions 1-3, by Theorem 5 of

Giné and Nickl (2008) we have that G̃µnFY converges in probability in `∞(J) to the FY -Brownian

bridge, and G̃µnFY |X converges in probability in `∞(J,R) to the FY |X -Brownian bridge. As

a consequence, all the implications from Eqs. (A.2.7), (A.2.9) and (A.2.15) hold for convoluted

probability spaces. In particular we have for the term A3 we have

P
[
−Γ′Y

(
G̃FY |X

)]
=

GFY |X
fY

(
F−1
Y

(
E
[
K̄H0(y − Y )θ̂H(x,X)

]))
=

GFY |X
fY
(
F−1
Y

(
FY |X

)) + o(H0 + tr(H)),

(A.2.20)

As a result, we confirm that also for smooth estimates
√
n(Ŷ ′ − Y ) converges in distribution

to a zero-mean Gaussian variable with variance as stated in Theorem 2.

A.3 Theorem 3

Proof. Proof follows directly from the delta method for bootstrap. We observe that both F−1
Y

and FY |X are Donsker and that F̂−1
Y and F̂Y |X converge uniformly to the true functionals. Then

in line with Theorem 23.5 of van der Vaart (2000), the proof follows the stages outlined for

Theorem 2.
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B Numerical results

B.1 Independent counterfactuals

The goal of the numerical exercise is to verify the performance of the procedure and to assess

the advantages of smoothing techniques in constructing independent counterfactual distributions.

Below we investigate the non-smooth against smooth rule-of-thumb bandwidth selectors, however,

an extensive numerical investigation covering process and data-driven bandwidths are available

upon request. We also verify whether the independence between Y ′ and X holds in the hypothesis

testing framework.

Let us consider a time-series setting with a bivariate ARCH process given by

Xi ∼ N (0, 1) ,

Yi ∼ N
(
0, d+ aX2

i

)
.

(B.1.1)

The process is set up such that {Xi} is affecting the second moment of {Yi} and it is similar to the

one considered by Diks and Wolski (2016). To satisfy the criteria set by Assumption 1, we require

that d > 0 and 0 < a < 1. The setting builds an interesting testing environment as it allows for

nonlinear effects, which standard linear models may find difficult to capture. For the simulations

we choose d = 1 and a = 0.4.

In line with Li and Racine (2013), we test the accuracy of Ŷ ′ against true values obtained

using numerical integration directly from Eq. (B.1.1). The sample MSE is therefore given by

MSE(Ŷ ′) = n−1
n∑
i=1

(
F̂−1
Y (F̂−iY |X(y|x))− F−1

Y (FY |X(y|x))
)2

. (B.1.2)

In the filtering procedure, as well as to calculate the MSE estimates, we use leave-one-out kernel

estimators given by F̂−iW (wi) = (n − 1)−1
∑
i6=j K̄H(wi − wj) for PDFs and by F̂−iV |W (vi|wi) =

(n− 1)−1
∑
i 6=j K̄H0

(vi − vj)KH(wi −wj)/f̂−iW (wi) for conditional CDFs. We apply the standard

Gaussian kernel of order r = 2. In line with Assumption 4, we restrict the support of Y ′ to

fall within [−3.7σ̂y, 3.7σ̂y]. When a filtered realization ŷ′ cannot be found numerically for some

i = 1, ..., n, we set ŷ′i ≡ yi.
We compare two reference estimators. Firstly, we use the empirical CDF and conditional CDF

functions, with smoothing only along X marginal. As demonstrated in the proof of Theorem 1, it

is a first-line testing benchmark, which relates to the estimators used by Rothe (2010).

Secondly, we test a normal-reference bandwidth selector. After Silverman (1998), a simple

rule of thumb, which assumes normality and mean-dependence of the underlying data generating

processes and normal kernel, suggests that along marginals Y one should use c
Y |X
0 = cY0 = 1.59σ̂y,

for the unconditional and conditional distributions, respectively. At the same time, along X

marginal we have c1 = 1.06σ̂x, where σ̂y and σ̂x correspond to empirical dispersion measures of Y

and X, respectively.

We run 1000 Monte Carlo replications of process in Eq. (B.1.1) for different sample sizes.

True filtered realizations y′ are calculated using numerical methods. The medians and standard

deviation intervals, aggregated over all the runs, are presented in Tables B1 and B2.
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Table B1: Median MSE estimates of independent counterfactual distributions.

Bandwidth selector n=50 n=100 n=200 n=500 n=1000

no smoothing 0.584 0.406 0.274 0.169 0.107

smoothing 0.292 0.232 0.178 0.116 0.080

Notes: Medians taken over 1000 Monte Carlo results of Eq. (B.1.2) for the ARCH process given in

Eq. (B.1.1). Bandwidth selectors are chosen as: ‘no smoothing’ takes h
Y |X
1 = 1.06σ̂xn

−1/3, ‘smoothing’

takes hY
0 = 1.59σ̂yn

−1/3, h
Y |X
0 = 1.59σ̂yn

−1/3 and h
Y |X
1 = 1.06σ̂xn

−1/3.

Table B2: MSE dispersion of estimates of independent counterfactual distributions.

Bandwidth selector n=50 n=100 n=200 n=500 n=1000

no smoothing 0.236 0.134 0.076 0.039 0.023

smoothing 0.142 0.092 0.052 0.026 0.015

Notes: Standard deviations taken over 1000 Monte Carlo results of Eq. (B.1.2) for the ARCH process given

in Eq. (B.1.1). Bandwidth selectors are chosen as: ‘no smoothing’ takes h
Y |X
1 = 1.06σ̂xn

−1/3, ‘smoothing’

takes hY
0 = 1.59σ̂yn

−1/3, h
Y |X
0 = 1.59σ̂yn

−1/3 and h
Y |X
1 = 1.06σ̂xn

−1/3.

One observes that smooth estimates deliver MSE improvement, both in terms of accuracy and

dispersion. The gains are particularly visible for smaller samples, and they narrow as the sample

size increases. This finding is, in fact, common for nonparametric estimation (Li and Racine,

2007). The efficiency gains come from the fact that empirical CDF provides only a step-wise

representation of a true distribution, which can be possibly smooth. Importantly, both estimators

converge as the sample size increases.

B.2 Conditionally independent counterfactuals

Last but not least, we complement the methodology by a multivariate simulation study, capital-

izing on the results presented in Appendix B.1. To verify the MSE performance of conditionally

independent counterfactual distributions, we need a 3-variate process

Xi ∼ N (0, 1) ,

Qi ∼ N (0, 1) ,

Yi ∼ N
(
0, d+ aX2

i + aQ2
i

)
.

(B.2.1)

The process is set up such that {Xi} and {Qi} are influencing the second moment of {Yi}. On

purpose, we make the dependence structure symmetric, to simplify the derivations for the MSE-

optimal process-driven bandwidths. We set d = 1 and a = 0.4.

Conditionally independent counterfactuals should remove dependence on {Xi} while preserving

it for {Qi}. The baseline estimation identity for each index j = 1, ..., n, from which we get the
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counterfactual draws, is given by

n∑
i 6=j

K̄
H
Y |Q
0

(y′ − Yi) θHY |Q(Qj ,Qi) =

n∑
i 6=j

K̄
H
Y |Q,X
0

(Yj − Yi)θHY |Q,X ((Qj ,Xj), (Qi,Xi)) . (B.2.2)

We exploit two separate block bandwidth matrices, i.e. HY |Q and HY |Q,X . However, we need

to account for an increased dimensionality in the estimation. It can be verified that the estimates

F̂Y |Q satisfy the uniform convergence rate for h
Y |Q
0 , h

Y |Q
1 ∼ n−1/3 and second-order kernel, in

the same spirit as h
Y |X
0 and h

Y |X
1 discussed in Section B. For consistency of F̂Y |Q,X we need

slower convergence of bandwidth, which can only be obtained with higher-order kernels. There-

fore, we employ the fourth-order Gaussian kernels, allowing the bandwidths to converge at rates

h
Y |Q,X
0 , h

Y |Q,X
1 , h

Y |Q,X
2 ∼ n−1/5.

We study the same bandwidth constants selectors as described in Section 2.1. The constants

for stepwise and smooth (rule of thumb) estimators correspond in magnitude to the ones used for

independent counterfactuals. The MSE results for Ŷ ′′ are depicted in Tables B3 and B4.

Table B3: Median MSE estimates of conditionally independent counterfactual distributions.

Bandwidth selector n=50 n=100 n=200 n=500 n=1000

no smoothing 0.794 0.657 0.545 0.423 0.346

smoothing 0.58 0.53 0.433 0.253 0.142

Notes: Medians taken over 1000 Monte Carlo results of Eq. (B.1.2) for the ARCH process given in

Eq. (B.2.1). Bandwidth selectors are chosen as: ‘no smoothing’ takes h
Y |Q
1 = 1.06σ̂qn

−1/3, h
Y |Q,X
1 =

1.06σ̂qn
−1/5 and h

Y |Q,X
2 = 1.06σ̂xn

−1/5, ‘smoothing’ takes h
Y |Q
0 = 1.59σ̂yn

−1/3, h
Y |Q
1 = 1.06σ̂qn

−1/5,

h
Y |Q,X
0 = 1.59σ̂yn

−1/5, h
Y |Q,X
1 = 1.06σ̂qn

−1/5 and h
Y |Q,X
2 = 1.06σ̂xn

−1/5.

Table B4: MSE dispersion of estimates of conditionally independent counterfactual distributions.

Bandwidth selector n=50 n=100 n=200 n=500 n=1000

no smoothing 0.322 0.2 0.125 0.068 0.045

smoothing 0.273 0.183 0.12 0.075 0.048

Notes: Standard deviations taken over 1000 Monte Carlo results of Eq. (B.1.2) for the ARCH process given

in Eq. (B.2.1). Bandwidth selectors are chosen as: ‘no smoothing’ takes h
Y |Q
1 = 1.06σ̂qn

−1/3, h
Y |Q,X
1 =

1.06σ̂qn
−1/5 and h

Y |Q,X
2 = 1.06σ̂xn

−1/5, ‘smoothing’ takes h
Y |Q
0 = 1.59σ̂yn

−1/3, h
Y |Q
1 = 1.06σ̂qn

−1/5,

h
Y |Q,X
0 = 1.59σ̂yn

−1/5, h
Y |Q,X
1 = 1.06σ̂qn

−1/5 and h
Y |Q,X
2 = 1.06σ̂xn

−1/5.

There are two main results from the exercise, which complement the ones derived in Sec-

tion B. Firstly, in both setups, increased dimensionality of conditionally independent counterfac-

tuals comes at a cost of lower efficiency of the estimates, both in terms of accuracy and dispersion.

The efficiency gains from smoothing, in terms of median MSE of the estimates, are still sub-

stantial. The average MSE difference between ‘no smoothing’ and ‘smoothing’ bandwidth selectors

amount to nearly 0.17. It is consistent with the bi-variate numerical results depicted in Section B.
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Secondly, it seems that the smooth estimates’ dispersion converges at a slower rate than in the

step-wise case. The differences are, however, marginal and vanish with the sample size.

C Additional empirical results

C.1 Linear pass-through estimates

Table C5: Standard (linear) pass-through results.

France Italy Spain

EURIBOR (∆) 0.624*** 0.486*** 0.615***

(0.049) (0.058) (0.084)

EURIBOR (∆, lag) - 0.187** 0.342***

- (0.076) (0.097)

Corporate borrowing cost (∆, lag) -0.112* 0.002 -0.28***

(0.058) (0.073) (0.072)

Sovereign risk (∆, lag) -0.143* 0.051* 0.01

(0.075) (0.031) (0.046)

ECM (lag) -0.337*** -0.048*** -0.098***

(0.05) (0.017) (0.031)

R2 0.66 0.62 0.53

Adj. R2 0.65 0.61 0.51

DF 167 166 166

Notes: Estimation results of the model in Eq. (22) and (23). First-difference and lags operators are

marked by ∆ and ‘lag’, respectively. Lags are selected according to the Bayesian Information Criterion.

DF describes the residual degrees of freedom. Standard errors in parentheses. Significance codes: *** for

0.01, ** for 0.05 and * for 0.1 levels.

C.2 Costs of short-term corporate funding

We extend the setup to a set of short-term indicators on the cost of borrowing. Usually short-term

funding is concentrated in smaller enterprises which, due to lower transparency and higher credit

risk, cannot afford to pay the term premium. Nevertheless, SMEs are a backbone of European

economy (EIB, 2016), representing 99.8% of EU companies, nearly 60% of EU-wide GDP, and

almost 70% of employment (Asdrubali and Signore, 2015). We therefore re-estimate the pass-

through model proposed above on a set of corporate borrowing costs on funding up to 12 months.
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The results are given in Figs C1-C3.

Interestingly, we observe that the sovereign distortions affect short-term loans to a lower extent

than the corporate loans overall. Overall, the result doesn’t seem surprising taking into account

the maturity mismatch between the variables. In France, the sovereign stability alleviated some

of the short-term corporate borrowing constraints, and actually decreased the borrowing costs by

32pp, on average. In Italy, they elevated the borrowing costs by around 27bp, and in Spain by

43bp, on average. The statistical significance of the sovereign spillovers is largely preserved.

Analysis of the short-term borrowing costs demonstrates an interesting difference between two

south-European countries. Whereas the contagion of sovereign risk has been contained in Spain

from mid-2015, it has still been elevated in Italy throughout the period.
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Figure C1: Sovereign risk transmission onto short-term corporate cost of borrowing in France.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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Figure C2: Sovereign risk transmission onto short-term corporate cost of borrowing in Italy.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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Figure C3: Sovereign risk transmission onto short-term corporate cost of borrowing in Spain.

Notes: Top figure plots the realized and the counterfactual costs of borrowing, estimated by nonparamet-

ric and linear frameworks. Middle figure shows periods when the difference between the observed and

nonparametric counterfactuals was statistically significant at 5% level according to the standard confidence

intervals. Bottom figure shows the sovereign risk contributions derived as a difference between the observed

and counterfactual rates.
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