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1 Introduction

We find many examples from day-to-day life in which individuals or groups
contribute simultaneously to more than one pure public good. The voluntary
contributions of individuals are simultaneously made to several charitable
trusts or non-governmental organization (NGOs). Families simultaneously
make voluntary contributions to multiple household public goods, such as
caring for the old, children, and the sick, housework, and gardening. It can
also be the case at the macro level whereby national governments choose to
allocate their budgets toward provision of several national public goods, such
as public healthcare, infrastructure, as well as several international public
goods, including global pollution abatement, military alliances, and foreign
aid.

Nevertheless, there are few explicit analyses of voluntary contribution
models with many public goods. Notable exceptions are Kemp (1984),
Bergstrom, Blume, and Varian (1986), Cornes and Schweinberger (1996),
and Cornes and Itaya (2010). Kemp (1984) establishes a neutrality propo-
sition on the assumption that all players are priori positive contributors to
every public good. Bergstrom, Blume, and Varian (1986) note that this
assumption is problematic. They establish equilibrium existence in the pres-
ence of many public goods, and present a neutrality proposition. Cornes and
Schweinberger (1996) simultaneously develop several extensions of the multi-
ple public provision model, making it difficult to pinpoint the implications of
assuming many public goods. Cornes and Itaya (2010) have also shown that
in the multiple public provision model, voluntary contribution equilibrium
typically generates, not only a level of public good provision that is too low,
but also the wrong mix of public goods in such a way that variations of the
existing combination of public goods lead to Pareto improvement.

In this study, we are interested in a more fundamental question: when
there is more than one public good, under what condition is a Nash equi-
librium unique? We first provide a sufficient condition for a unique equi-
librium in the presence of many heterogeneous potential contributors and
many public goods under specific preferences. In the standard voluntary
provision model with a single public good, several researchers have explored
the conditions under which a Nash equilibrium is unique. In particular, the
existence of a Nash equilibrium is invariably established with the assistance
of Brower’s fixed-point theorem, and its uniqueness is proved using vari-
ous transformations of the best response functions of individual contributors
(e.g., Bergstrom et al., 1986; Bergstrom, Blume, and Varian, 1992; Fraser,
1992; Glazer and Konrad, 1993; Nett and Wolfgang, 1993; Andreoni and
Bergstrom, 1996). Furthermore, Cornes, Hartley, and Sandler (1999) employ
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the concept of contraction mapping, and shown that if private and public
goods are both normal goods, the existence and uniqueness of equilibrium
are simultaneously guaranteed. More recently, Cornes and Hartley (2005,
2007) exploit the aggregative structure of the public good provision model
together with the replacement function approach to prove the existence of
a unique Nash equilibrium. By conditioning every player’s behavior on a
common aggregate, rather than conditioning each player’s behavior on that
of all others, their study avoids many dimensions that are associated with
the use of many best-reaction functions associated with many heterogeneous
players involved in that game. The use of a single aggregate for multiple-
player games provides a transparent representation of Nash equilibrium in
terms of a function from the real line to the real line, compared with the
multi-dimensional best-reaction functions employed in the standard litera-
ture mentioned above, lending itself to a simple graphical treatment.

Although the replacement function is very useful and powerful (e.g.,
Cornes and Hartley, 2005, 2007, 2012; Kotchen, 2007), this approach is no
longer valid in the presence of multiple public goods. This is mainly because
the contribution function of each individual to public goods might not be
point-valued so that it might become a correspondence rather than a func-
tion, which ends up preventing application of the replacement function ap-
proach of Cornes and Hartley (2005, 2007, 2012) as well as the intermediate
value theorem to prove the existence of a unique Nash equilibrium in the
non-cooperative voluntary provision game with multiple public goods. Al-
though it would be possible still to prove the only equilibrium existence using
Kakutani’s fixed-point theorem, even under such a replacement correspon-
dence (more precisely, an upper-hemi continuous correspondence), the use of
the replacement correspondence does not in general guarantee uniqueness,
thereby losing the graphical transparency in demonstrating the existence of
a unique Nash equilibrium as well as predictive power of comparative statics
analysis (see Cornes and Hartley, 2005, 2007, 2012).

The novelty of this study is that it identifies a sufficient condition to
ensure the uniqueness of a Nash equilibrium in multiple public good provi-
sion games with Cobb–Douglas preferences using graph theory. Although the
results might be limited because of the use of specific utility functions, we
find not only that the normality assumption is not sufficient to ensure the
uniqueness of a Nash equilibrium in multiple public good provision models,
but also that the non-unique Nash equilibrium is not generic, at least under
Cobb–Douglas preferences, in the sense that this non-unique property van-
ishes when perturbing just slightly the parameters of preferences or wealth.
More importantly, the sufficient condition for uniqueness we find transforms
the mapping from the space of public goods to each individual’s contribution
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to a function (which is called a replacement function) under heterogeneous
Cobb–Douglas preferences across individuals. This transformation enables
us to use the replacement function approach in single voluntarily provided
public good models that has a variety of potential applications (see Cornes
and Hartley, 2005, 2007, 2012). The replacement function approach allows us
not only to provide an alternative proof for the uniqueness of a Nash equilib-
rium, but also to conduct a comparative static analysis even in the multiple
public good provision model with arbitrary finite numbers of individuals. In
this study, we focus on how to identify free riders in multiple public goods
models. Bergstrom et al. (1986), Andreoni and McGuire (1993), Shrestha
and Cheong (2007), and Yildirim (2014) develop an algorithm that can iden-
tify who is a non-contributor (i.e., free rider) or a contributor in a Nash
equilibrium of the voluntary provision model given knowledge of the incomes
and preferences of all individuals. These authors’ algorithms are valid only
in the model of a single voluntarily supplied public good. By contrast, with
the help of the replacement function coupled with the sufficient condition for
uniqueness, we can provide an alternative algorithm that makes it possible
to identify free riders in multiple public goods models with heterogeneous
Cobb–Douglas preferences.

The reminder of the paper is organized as follows. Section 2 outlines the
model. Section 3 proves the existence of a Nash equilibrium and provides a
a sufficient condition for the uniqueness of equilibrium. Section 4 provides
an algorithm for identifying free riders and provides an alternative proof for
the existence of a unique Nash equilibrium. Section 5 concludes and provides
possible extensions of the model. Mathematical details are relegated to the
appendix.

2 The model

Consider a model in which there are two types of pure public goods, one
private good, and n individuals. Individual i consumes the private good and
voluntarily supplies the public goods. The total supply of these two types of
public goods, denoted by G and H, is the sum of voluntary contributions, gi
and hi, respectively, provided by individual i. Individual i’s preferences are
represented by the Cobb–Douglas utility function:

Ui (xi, G,H) ≡ xαi
i GβiHγi , i = 1, 2, ..., n, (1)

where xi ≥ 0 is individual i’s consumption of the private good. We assume
that (αi, βi, γi) > 0 and αi + βi + γi = 1.
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Individual i’s budget constraint is expressed by

xi + pigi + qihi = wi, (2)

where wi > 0 is the exogenously given income of individual i, and pi > 0 and
qi > 0 stand for the relative prices (unit costs of production) of the public
goods G and H, respectively, relative to the (numeraire) private good. Under
a linear production frontier, as in Bergstrom et al. (1986), low (high) pi and
qi reflect high (low) marginal costs in producing the public goods or taxes.

For later reference, it is convenient to define the sum of supply provided
by all individuals except i by

G−i ≡
∑
j ̸=i

gj = G− gi, (3)

H−i ≡
∑
j ̸=i

hj = H − hi. (4)

When individual i contributes to neither of the two public goods, that is,
gi = hi = 0, he or she is called a non-contributor. When he or she makes
a positive contribution to either (or both) of the public goods, he or she
is called a contributor. Accordingly, each contributor belongs to one of the
following three sets of individuals:

CG ≡ { i | gi > 0, hi = 0}
CH ≡ { i | gi = 0, hi > 0} , and

CBoth ≡ { i | gi > 0, hi > 0} .
(5)

Denote CN as the set of non-contributors. Note that these four sets CN , CG,
CH , and CBoth are mutually exclusive.

Individual i maximizes (1) by his or her choice of xi, gi and hi subject
to budget constraint (2) and the non-negativity constraints xi ≥ 0, gi ≥ 0
and hi ≥ 0, given the contributions G−i and H−i of the others, with the
assumption that they will be unaffected by their own choices. Hence, a Nash
equilibrium of the corresponding contribution game played by n individuals
is defined as follows.

Definition 1 A Nash equilibrium in this model is a collection of strategies
{(gi, hi) | i = 1, 2, ..., n} such that (gi, hi) is a solution for the following prob-
lem for all i:

max
xi,gi,hi

Ui (wi − pigi − qihi, gi +G−i, hi +H−i)

s.t. xi ≥ 0, gi ≥ 0, hi ≥ 0.
(6)
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Note that the budget constraint (2) always holds with equality for a
solution by virtue of a strictly increasing function of utility with respect to
every element; in addition, there is no corner solution for private consumption
(i.e., xi = wi − pigi − pigi > 0) owing to Cobb–Douglas preferences (1).1

3 Individual i’s Optimal Choice

The strategy of proofs for the existence and uniqueness of a Nash equilibrium
in the multiple public goods model is as follows. In Section 3, we focus on an
economy with two individuals and two public goods for illustrative purposes.
Then, we construct a map from (G, H) to (g1, g2, h1, h2) as well as an inverse
map under the preferences (1) defined in the previous section. In Subsection
4.1 we prove the existence of the fixed point (G1, G2, ..., Gm) ∈ Rm

+ and of a
Nash equilibrium (g11, g

1
2, ..., g

1
n, g

2
1, g

2
2, ..., g

2
n, ..., g

m
1 , g

m
2 , ..., g

m
n ) ∈ Rn×m

+ in an
economy with n potential contributors and m public goods under the gen-
eralized Cobb–Douglas utility function (30). In Subsection 4.2, we provide
a sufficient condition for the replacement correspondence to be a one-to-
one mapping (i.e., a replacement function) from (G1, G2, ..., Gm) ∈ Rm

+ to
(g11, g

1
2, ..., g

1
n, g

2
1, g

2
2, ..., g

2
n, ..., g

m
1 , g

m
2 , ..., g

m
n ) ∈ Rn×m

+ , and then the unique-
ness of the profile (G1, G2, ..., Gm) ∈ Rm

+ , which together imply the unique-
ness of a Nash equilibrium.

To solve the problem (6), we construct the Lagrangian expression associ-
ated with (6):

L (gi, hi, ξi, ζi) ≡ Ui (wi − pigi − qihi, gi +G−i, hi +H−i) + ξigi+ζihi. (7)

The Lagrangian multipliers (ξi, ζi) satisfy the following Kuhn–Tucker condi-
tion:

gi ≥ 0, ξigi = 0, ξi ≥ 0, hi ≥ 0, ζihi = 0, ζi ≥ 0, (8)

∂Ui (gi, hi, G−i, H−i)

∂gi
+ ξi = 0,

∂Ui (gi, hi, G−i, H−i)

∂hi

+ ζi = 0. (9)

1The assumption of Cobb–Douglas preferences rules out the possibility that the two
individuals’ expansion paths for the contribution function g and h intersect. Consequently,
the results we obtain here are valid over the whole (G,H) space. In addition, Cobb–
Douglas utility functions are weakly separable. Consequently, individual i’s indifference
map in (G,H) space can be drawn independently of the precise realized value of xi and
is homothetic. These features greatly simplify the subsequent analysis without making
preferences unusual or idiosyncratic in any relevant respect.
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Using (1), (9) can be rewritten as

−piαix
αi−1
i GβiHγi + βix

αi
i Gβi−1Hγi + ξi = 0, (10)

−qiαix
αi−1
i GβiHγi + γix

αi
i GβiHγi−1 + ζi = 0. (11)

Next, we divide (10) and (11) by βix
αi−1
i Gβi−1Hγi and γix

αi−1
i GβiHγi−1, re-

spectively, to yield

−piαi

βi

G+ xi +
ξi

βix
αi−1
i Gβi−1Hγi

= 0, (12)

−qiαi

γi
H + xi +

ζi

γix
αi−1
i GβiHγi−1

= 0. (13)

By substituting (12) and (13) into xi in the budget constraint (2) and denot-
ing λ1

i ≡ ξi/βix
αi−1
i Gβi−1Hγi and λ2

i ≡ ζi/γix
αi−1
i GβiHγi−1, we finally arrive

at the following Kuhn–Tucker conditions (8) and (9):

gi ≥ 0, λ1
i gi = 0, λ1

i ≥ 0, (14)

hi ≥ 0, λ2
ihi = 0, λ2

i ≥ 0, (15)

pigi + qihi − λ1
i = wi −

αi

βi

piG, (16)

pigi + qihi − λ2
i = wi −

αi

γi
qiH. (17)

To construct a correspondence from (G, H) to (gi, hi) using (14)–(17),
we first consider the given values of G and H that satisfy

0 ≤ G <
βiwi

αipi
, (18)

H

G
>

piγi
qiβi

(≡ πi) . (19)

To facilitate the exposition, the right-hand side of (19) is often denoted by
πi.

2

Using (16), (18), and (19), we can show that the following inequalities
hold:

pigi + qihi − λ1
i

pi
=

wi

pi
− αi

βi

G > 0, (20)

wi

pi
− αi

βi

G >
wi

pi
− αiqi

γipi
H. (21)

2The ratio πi can be interpreted as individual i’s marginal rate of substitution between
the two public goods weighted by their prices.
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Inequalities (20) and (21) together imply gi > 0 and hi = 0. The reason for
hi = 0 is as follows. Suppose that hi > 0, which implies that complementarity
condition (15) leads to λ2

i = 0. Since λ2
i = 0, combining (16) with (17) yields

wi −
αi

γi
qiH − λ1

i = wi −
αi

βi

piG.

Recall λ1
i ≥ 0, the above expression can be rewritten as

wi

pi
− αi

βi

G ≤ wi

pi
− αiqi

γipi
H,

which clearly contradicts (21).
Next, consider the values of G and H satisfying

0 ≤ G <
βiwi

αipi
and

H

G
=

piγi
qiβi

.

The latter condition implies that the right-hand sides of (16) and (17) co-
incide. Then, either λ1

i = λ2
i = 0 or λ1

i = λ2
i > 0 holds in (16) and (17).

However, if λ1
i = λ2

i > 0, gi = hi = 0 owing to (14) and (15). This result
violates the positivity of the right-hand side of (16) by virtue of the hypoth-
esis G < βiwi/αipi. Hence, λ1

i = λ2
i = 0 and so gi ≥ 0 and hi ≥ 0, but

gi = hi = 0 never occurs simultaneously.
Finally, consider the last case:

0 ≤ G <
βiwi

αipi
and

H

G
<

piγi
qiβi

.

Similarly, we can demonstrate that gi = 0 and hi > 0.
Taken together, we can illustrate these conditions as four regions in the

(G,H)-plane of Fig.1. Depending on given values of (G,H), the contribution
profile of individual i, (gi, hi), is characterized as follows:3

Region I 0 ≤ G < βiwi

αipi
and H = γipi

βiqi
G = πiG, that is, λ1

i = λ2
i = 0. As a

result,

pigi + qihi = wi −
αi

βi

piG = wi −
αi

γi
qiH > 0, i ∈ CBoth. (22)

3The equality ∂Ui/∂H
∂Ui/∂G

= qi
pi

may hold even when individual i contributes to only one

of the goods, because the coincidence between the tangency between the indifference curve
and the slope of the budget line occurs at the point where the quantity of the other good
is zero.
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Region II 0 ≤ G < βiwi

αipi
and H > πiG, that is, λ1

i = 0, λ2
i ≥ 0. As a result,

gi =
wi

pi
− αi

βi

G > 0, hi = 0, i ∈ CG. (23)

Region III 0 ≤ H < γiwi

αiqi
and H < πiG, that is, λ1

i ≥ 0, λ2
i = 0. As a

result,

gi = 0, hi =
wi

qi
− αi

γi
H > 0, i ∈ CH . (24)

Region IV (G,H) ≥ (βiwi/αipi, γiwi/αiqi), that is, λ1
i > 0, λ2

i > 0. As a
result,

gi = hi = 0, i ∈ CN . (25)

As illustrated in Fig.1, the (G,H)-plain is divided into Regions II, III,
and IV for each i, while the segment OMi with a thick line indicates Region
I, where an individual may simultaneously make positive contributions to
both public goods. The location of point Mi = (βiwi/αipi, γiwi/αiqi) re-
veals a potential tendency for which type of contributor individual i would
be, depending on the location of given values of G and H in Fig.1. When
individual i’s wealth wi is small, when his or her preferences for private con-
sumption relative to the public goods are stronger (i.e., αi becomes larger),
or when their productivity (1/pi,1/qi) of public goods production is lower,
individual i is induced to be a non-contributor. Graphically, the closer the
point Mi gets to the origin, the wider is the area where individual i becomes
a non-contributor (i.e., Region V), as illustrated in Fig.2. On the other hand,
with preference for public good H (i.e., larger γi), or the more expensive the
price of public good G is (i.e., pi rises), the more likely the individual is to
stop contributing to public good G. This makes Region III smaller, because
the slope of πi becomes steeper, as illustrated in Fig.3.

The most noteworthy point is that Fig.1 generally illustrates the one-to-
one mapping (i.e., a function) of individual i from any given pair of (G,H)
to a pair of (gi, hi) owing to the strict quasi-concavity of Cobb–Douglas
preferences. However, this feature does not necessarily imply the uniqueness
of a Nash equilibrium profile {g1, g2, h1, h2}. This result can be explained
as follows. Suppose that individuals 1 and 2 have the same slope of the
segments Mi, i = 1, 2 (i.e., (γipi/βiqi) = (γjpj/βjqj)). Although the first-
order conditions (22) are given by

γi
αi

(
wi

qi
− pi

qi
gi − hi

)
=

γi
βi

pi
qi
G, i = 1, 2, (26)

βi

αi

(
wi

pi
− gi −

qi
pi
hi

)
=

βi

γi

qi
pi
H, i = 1, 2, (27)
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the right-hand sides of (26) for i = 1, 2 (and (27) for i = 1, 2) coincide
with each other because of the hypothesis (γ1p1/β1q1) = (γ2p2/β2q2). Con-
sequently, the four equations in (26) and (27) are reduced to

γ1
α1

(
w1

q1
− p1

q1
g1 − h1

)
=

γ2
α2

(
w2

q2
− p2

q2
g2 − h2

)
, (28)

β1

α1

(
w1

p1
− g1 −

q1
p1
h1

)
=

β2

α2

(
w2

p2

− g2 −
q2
p2
h2

)
. (29)

Inspection of (28) and (29) immediately reveals that the configurations of
two individuals’ contributions are indeterminate, because the number of un-
known variables {g1, g2, h1, h2} is greater than the number of the equations
(i.e., (28) and (29)). Consequently, a Nash equilibrium profile {g1, g2, h1, h2}
is no longer unique. This case corresponds to the so-called indeterminate
case of Cornes and Itaya (2010). Note, however, that these authors find that
this indeterminate case occurs only when individual preferences are iden-
tical, whereas in our model, the case occurs even if individual preferences
are not identical, because we introduce different prices of public goods. It
is also important to note that this case remains exceptionally unusual ; in
other words, this case is non-generic in the sense that it vanishes when there
are slightly perturbing parameter values of preferences or wealth. In sum-
mary, to guarantee the uniqueness of the profile of individual contributions
associated with given values of the total provisions of G and H, we have
to assume (γ1p1/β1q1) ̸= (γ2p2/β2q2). Moreover, to ensure the uniqueness
of a Nash equilibrium (if it exists), we have to prove the uniqueness of the
profile of the total provisions as well. We show in the following sections that
the abovementioned assumption is sufficient to guarantee the uniqueness of
individual contributions’ profile as well as of the total provision profile of all
public goods in the multiple public good provision model with an arbitrary
number of individuals and more than two public goods.

4 Existence and Uniqueness of a Nash Equi-

librium

In this section, we prove the existence and uniqueness of a Nash equilibrium
in a voluntary provision model with more than two public goods and more
than two potential contributors. To this end, we consider an economy in
which there are n individuals indexed by i = 1, 2, ..., n, a single private good,
and m public goods indexed by k = 1, 2, ...,m. We denote individuals i’s
contribution to public good j by gji , the total supply of public good j by

9



Figure 1: Individual i’s contributions are determined according to Regions

I, II, III and IV of (G,H)-plane

Figure 2: The Effect of an Increase in Income ωi
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Figure 3: The Effect of an Increase in β
i

uct

∏
m

i=1
(xi, g

1

i
, g

2

i
, ..., g

m

i
) ∈ R

(1+m)n

+
. Given G

j

−i
, j = 1, 2, ..,m, individual i

now solves the following problem:

Max

{xi,g
1

i
,g

2

i
,...,g

m

i
}

Ui(xi, G
1
, G

2
, ..., G

m

) = (xi)
α
0

i

m∏

k=1

(G
k

)
α
k

i , (30)

subject to xi +

m∑

j=1

p
j

i
g
j

i
= ωi and xi ≥ 0, g

j

i
≥ 0, j = 1, 2, ..,m, (31)

The first-order conditions for individual i’s utility maximization are given

by:

m∑

j=1

p
j

i
g
j

i
= wi − β

k

i
p
k

i
G

k

+ λ
k

i
, k = 1, . . . ,m,

g
k

i
λ
k

i
= 0 k = 1, . . . ,m,

where β
k

i
≡ α

0

i
/α

k

i
. As in the previous section, we can rewrite those condi-

tions as follows:

wi −

,mm
∑

j=1

p
j

i
g
j

i
= β

k

i
p
k

i
G

k

, if g
k

i
> 0, (32)

wi −

m∑

j=1

p
j

i
g
j

i
≤ β

k

i
p
k

i
G

k

, if g
k

i
= 0. (33)

11

Figure 3: Effect of an Increase in βi

Gj ≡
∑n

i=1 g
j
i , and the profile of resource allocation by the Cartesian product∏n

i=1(xi, g
1
i , g

2
i , ..., g

m
i ) ∈ R

(1+m)n
+ . Given G1

−i, G
2
−i, . . . , G

m
−i, individual i now

solves the following problem:

max
{xi,g1i ,g

2
i ,...,g

m
i }

Ui(xi, G
1, G2, ..., Gm) = (xi)

α0
i

m∏
k=1

(Gk)α
k
i , (30)

s.t. xi +
m∑
j=1

pjig
j
i = ωi (31)

xi ≥ 0, gji ≥ 0, j = 1, 2, ..,m.

The first-order conditions for individual i’s utility maximization are given
by

m∑
j=1

pjig
j
i = wi − βk

i p
k
iG

k + λk
i , k = 1, . . . ,m,

gki λ
k
i = 0, k = 1, . . . ,m,

where βk
i ≡ α0

i /α
k
i . As in the previous section, we can rewrite those condi-
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tions as follows:

wi −
m∑
j=1

pjig
j
i = βk

i p
k
iG

k, if gki > 0, (32)

wi −
m∑
j=1

pjig
j
i ≤ βk

i p
k
iG

k, if gki = 0. (33)

Since the left-hand sides of (32) and (33) are common for all k = 1, . . . ,m,
the following conditions hold for all k, h ∈ {1, 2, ..,m} in equilibrium:

βk
i p

k
iG

k = βh
i p

h
i G

h if gki > 0 and ghi > 0, (34)

βk
i p

k
iG

k ≤ βh
i p

h
i G

h if gki > 0 and ghi = 0. (35)

By making use of (34) and (35), we prove the existence and uniqueness of
a Nash equilibrium in an economy with n individuals and m voluntarily
provided public goods in the following subsections.

4.1 Existence of Equilibrium

Under the assumptions made, we can easily show by adapting the standard
existence proof used in the model of a single public good that a Nash equi-
librium exists in a multiple public good economy. Suppose that the profile
of the total provisions G = (G1, . . . , Gm) is given. The following procedure
enables us to identify which public good individual i is willing to provide.

Step 1 Find γi(G) ≡ min{βj
i p

j
iG

j | j = 1, . . . ,m}.

Step 2 If wi ≤ γi(G), then individual i does not provide any public good;
consequently, individual i is a free rider.

Step 3 Otherwise, define the set of indexes Ji ≡ {k | βk
i p

k
iG

k = γi(G)}. Indi-
vidual i provides a non-negative amount of public good k ∈ Ji.

The system of equations (32) can be rewritten as∑
j∈Ji

pjig
j
i = wi − βk

i p
k
iG

k, k ∈ Ji. (36)

Since βk
i p

k
iG

k = γi(G) for k ∈ Ji holds, the system of equations (36) boils
down to the following single equation:∑

j∈Ji

pjig
j
i = bi(G), (37)
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where bi(G) ≡ wi − γi(G). As a result, if the cardinality of set Ji is one, say
Ji = {k}, equation (37) uniquely determines the amount of provision of the
public good k as a function of G =(G1, G2, ..., Gm) as follows:

gki =
bi(G)

pki
.

However, if the number of elements in the finite set Ji, denoted by #Ji, is
strictly greater than one, then we have an infinite number of solutions gki for
equations (37).

Proposition 1 A Nash equilibrium exists.

Proof. We denote the set of total provisions G ∈ Rm
+ by XG:

XG ≜
{
G = (G1, . . . , Gm)

∣∣∣∣ Gj =
∑n

i g
j
i ,

∑
j∈Ji p

j
ig

j
i = bi(G), gji ≥ 0

i = 1, 2, ..., n; j = 1, 2, ...,m.

}
.

Recalling the definition of bi(G), it turns out that XG is a compact and
non-empty convex set.

Define a vector-valued mapping φi : ℜm
+ → 2ℜ

m
+ , i = 1, . . . , n.

φi(G) ≜
{
(g1i , . . . , g

m
i )

∣∣∣∣∣ ∑
j∈Ji

pjig
j
i = bi(G), gji ≥ 0

}
.

Note also that if #Ji ≥ 2, φi(G) becomes a set-value mapping (i.e., a
correspondence). For any G ∈ XG, φi(G) is convex valued. From φi(G)
(i = 1, . . . , n), the correspondence Φ(G) : XG → 2XG is constructed as

Φ(G) ≜
{
G = (G1, . . . , Gm)

∣∣∣∣ Gj =
∑n

i g
j
i j = 1, . . . ,m,

(g11, . . . , g
m
n ) ∈ φ1(G)× · · · × φn(G)

}
.

By its construction, Φ(G) is closed convex valued for each G ∈ XG, and
thus, is upper-hemi continuous. Therefore, by applying Kakutani’s fixed-
point theorem, a fixed point exists that is a Nash equilibrium.

Note, however, that since Φ(G) is a correspondence, the existence of a
fixed point (i.e., a Nash equilibrium point) does not in general imply the
uniqueness of a Nash equilibrium.
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4.2 Sufficient Condition for a Unique Equilibrium

It is well documented in the literature that under the normality assumption,
a Nash equilibrium is unique in a model with a single public good. By con-
trast, in light of the results presented in the previous section, the normality
assumption does not suffice to ensure the uniqueness of a Nash equilibrium
in the multiple public goods model in general. Then, what is a sufficient con-
dition to achieve a unique equilibrium of the multiple public good provision
model under Cobb–Douglas preferences?

Let us define the linear system that all positive provisions (gki > 0) should
satisfy. Denoting the index set for non-free riders by C, we have

∑
j∈Ji

pjig
j
i = bi(G), i ∈ C,∑

i∈Ck

gki = Gk, k = 1, 2, ...,m,
(38)

where Ck is an index set of individuals who provide public good k. Given
the parameters of preferences as well as wealth of individuals, the system of
equations (38) contains #C +m equations and

∑
i∈I #Ji variables.

Now, the problem of finding a condition that guarantees the uniqueness
of a Nash equilibrium is split into two steps. The first is to find a condition
under which the linear system of equations (38) has a unique solution. In
general, it is not guaranteed that (38) has a unique solution. To find the
condition, we need to introduce the following notations. Take any integer L
from {2, . . . , n} without duplication and make sequence sL = (j1, . . . , jL, j1)
where jk takes an arbitrary integer from {1, . . . ,m}. Define πk(sL) as

πk(sL) =


β
jk+1

ik
p
jk+1

ik

βjk
ik
pjkik

for k < L,

βj1
iL
pj1iL

βjL
iL
pjLiL

for k = L.

Assumption 1 For all L ∈ {2, . . . , n}, any sequence sL = (j1, . . . , jL, j1),
constructed from any number jk ∈ {1, . . . ,m}, satisfies the following:

π1(sL)× π2(sL)× · · · × πL(sL) ̸= 1. (39)

To understand the meaning of Assumption 1, we provide the following
illustrative examples. Table 1(a) is an example for some pattern of individual
contributions that satisfies Assumption 1, while the contribution pattern
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displayed in Table 1 (b) does not. The bipartite graphs in Figs. 4 and 5
illustrate the pattern of individual contributions illustrated by Table 1 (a)
and 1(b), respectively. The graph in Fig.4 contains no cycle (or sequence of
links that leads from one node back to itself, as described in more details in
Jackson, 2008), displaying a tree structure, while the graph in Fig.5 has a
cycle, indicated by the thick lines. Indeed, along these thick lines in Fig.5,
individual 1 provides the public goods 1 and 2:

β1
1p

1
1G

1 = β2
1p

2
1G

2,

individual 3 provides the public goods 2 and 5:

β2
3p

2
3G

2 = β5
3p

5
3G

5,

and individual 5 provides the public goods 5 and 1:

β5
5p

5
5G

5 = β1
5p

1
5G

1.

By sequential substitution, we obtain

β1
1p

1
1G

1 = β2
1p

2
1

β5
3p

5
3

β2
3p

2
3

β1
5p

1
5

β5
5p

5
5

G1,

which amounts to

1 =
β2
1p

2
1

β1
1p

1
1

β5
3p

5
3

β2
3p

2
3

β1
5p

1
5

β5
5p

5
5

≡ π1((1, 2, 5, 1))× π2((1, 2, 5, 1))× π5((1, 2, 5, 1)),

thereby violating Assumption 1.

Public good
Individual 1 2 3 4 5

1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓
5 ✓
6 ✓
7

Public good
Individual 1 2 3 4 5

1 ✓ ✓ ✓
2 ✓ ✓
3 ✓ ✓
4 ✓
5 ✓ ✓
6 ✓
7

(a) Possible pattern (b) Impossible pattern

Table 1: A check mark (✓) indicates a positive amount of individual’s con-
tribution

We are now ready to prove our main proposition of this study; namely,
the uniqueness of a Nash equilibrium {(g1i , g2i , .., gmi )| i = 1, 2, ..., n} ∈ Rm×n

+ .
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Figure 4: Profile of individual contributions displayed in Table 1(a)

321

432 5 6 71

4 5

321

432 5 6 71

4 5

Individuals

Public goods

321

432 5 6 71

4 5

Individuals

Public goods

Figure 5: Profile of individual contributions displayed in Table 1(b)
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Proposition 2 If the utility function (30) satisfies Assumption 1, then there
is a unique Nash equilibrium.

The proof of Proposition 2 is relegated to the appendix. As stated before,
we split the proof of the appendix into two parts. The first demonstrates that
the contribution function of each individual is a point-value mapping (i.e., a
function) under Assumption 1, while the second part demonstrates that there
is a unique profile of the total provisions of the public goods under the same
assumption. These steps together imply that the Nash equilibrium is unique.
The novelty of our proof is to use graph theory to prove the uniqueness of
a Nash equilibrium. To the best of our knowledge, we are the first to use
graph theory to prove the uniqueness of a Nash equilibrium in multiple public
goods models.

In a single public good provision model, a sufficient condition for unique-
ness is the only normality assumption (see also Bergstrom et al., 1986, 1992;
Fraser, 1992; Glazer and Konrad, 1993; Nett and Wolfgang, 1993; Andreoni
and Bergstrom, 1996; Cornes, Hartley, and Sandler, 1999). By contrast, our
result indicates that this assumption does not suffice to ensure the unique-
ness of a Nash equilibrium in multiple public good provision models, even if
all individuals have Cobb–Douglas preferences.

5 Application of replacement function: Algo-

rithm for Identifying Free Riders

Recognizing the significance of identifying free riders, several authors, such as
Bergstrom et al. (1986), Andreoni and McGuire (1993), Shrestha and Cheong
(2007), and Yildirim (2014), provide algorithms for identifying free riders.
Miyakoshi and Suzuki (2012) use Cornes and Hartley’s (2007) replacement
function to construct an algorithm for identifying the contributors to a single
public good. We here extend their algorithm to the model of two public goods
with an arbitrary number of individuals. To identify free riders in multiple
public good provision models, we first find CN , CG, CH , and CBoth, and
then, a Nash equilibrium allocation (G,H) , by using the algorithm based on
the replacement function of Cornes and Hartley (2007), provided Assumption
1 holds.

From the argument in Section 3, we know that at most one individual,
say k, may provide both public goods if πk = (pkγk/qkβk) = H/G, provided
Assumption 1 holds. Hence, we classify two possible cases as follows:

Case 1: When CBoth = ∅, all contributors are members of only one CG or
CH and the equilibrium is reduced to the structure similar to a single public
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good model. We can straightforwardly obtain the aggregate replacement
functions for the respective public goods by summing (23) and (24):

G =
∑
j∈CG

[
wj

pj
− αi

βi

G

]
and H =

∑
j∈CH

[
wj

qj
− αi

γi
H

]
. (40)

It is immediately observed from (40) that the right-hand sides of both ex-
pressions are decreasing in G and H, respectively. Hence, the straightforward
application of the replacement function approach allows us to ensure the ex-
istence of a unique Nash equilibrium (see Cornes and Hartley, 2007).

Case 2: We consider the case in which only one individual supplies both
public goods, say CBoth = {k}. Then, by using (22)–(24), the contribution
made by each individual is written as

gi =
wi

pi
− αi

βi

G, i ∈ CG, (41)

hi =
wi

qi
− αi

γi
H, i ∈ CH , (42)

gk +
qk
pk

hk =
wk

pk
− αk

βk

G and H = πkG, k ∈ CBoth, (43)

while the equilibrium values of G and H are given by

G =
∑
i∈CG

gi + gk and H =
∑
i∈CH

hi + hk. (44)

respectively. Although it follows from (41) and (42) that
∑

i∈CG gi and∑
i∈CH hi in (44) are decreasing in G and H, respectively, the right-hand

sides of (44) may not be decreasing in the respective public good. Hence, we
cannot directly apply the replacement function approach to demonstrate the
existence of a unique Nash equilibrium. Instead, multiplying the first and
second equalities in (44) by pk and qk and summing the resultant expressions
yields

pkG+ qkH = pkG−k + qkH−k + pkgk + qkhk.

Inserting H = πkG, G−k =
∑

i∈CG gi, and H−k =
∑

i∈CH hi into the above
expression yields

pkG+ qkπkG = pk
∑
i∈CG

gi + qk
∑
i∈CH

hi + wk −
αk

βk

pkG. (45)

It is easy to observe that the left-hand side of (45) is increasing in G, whereas
the right-hand side is decreasing in G (recall that

∑
i∈CG gi and

∑
i∈CH hi
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in (44) are decreasing in G and H). These two loci are illustrated by Fig.6.
Inspection of Fig.6 reveals that the intersection of both loci is unique, thereby
yielding a unique value of G∗. From H = πkG, we also obtain a unique value
of H∗. The uniqueness of the pair (G∗, H∗) in conjunction with the unique
property of the replacement function of each individual for G and H imply
the uniqueness of the Nash equilibrium.

Now, we are ready to identify the free riders underAssumption 1. Then,
we can find CN , CG, CH , and CBoth by using the algorithm stated below.
We split the procedure for identifying free riders into five steps as follows.

Step 0: Define the dropout point of individual i as Mi ≡ (ŵi, w̃i), where

ŵi =
βiwi

αipi
, w̃i =

γiwi

αiqi
.

Define πi ≡ w̃i/ŵi = piγi/qiβi. Then, we arrange indexes of πi in
ascending order:

π1 < π2 < · · · < πn.

Note that, under Assumption 1, for any (i, j), i ̸= j, it holds that
πi ̸= πj.

Set δ = π1 and CN = CG = CH = CBoth = ∅.

Step 1: In this step, we have δ = πk, which implies that individual i =
1, 2, . . . , k − 1 is a potential provider of public good H, individual i =
k+1, k+2, . . . , n is a potential provider of public goodG, and individual
k is a potential provider of both G and h.

Step 2: Define the dropout value of individual i as ŵi ≡ (βiwi/αipi), which
is obtained by setting gi = 0 in (41) and solving the resultant equation
for G. Then, we arrange those dropout values of all individuals for
public good G in ascending order:

ŵ1 ≥ ŵ2 ≥ · · · ≥ ŵi ≥ ŵi+1 ≥ · · · ≥ ŵn

Step 3: Start from i = 1. Consider first the interval G ∈ [ŵ1, ŵ2]. Compute
the aggregate replacement function R(G) such that R(G) = g1(G).
Since ŵ1 > g1(G) always holds, individual 1, who most prefers public
good G, is willing to provide public good G. Next, if ŵ2 < g1(G),
individual 2 is a free rider; moreover, all other individuals i > 2 are
free riders. Hence, we cease our search for identifying free riders. On
the contrary, if ŵ2 > g1(G), individual 2 is not a free rider, and we have
to continue our search.
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Step 4: For i ≥ 2, consider the interval [ŵi, ŵi+1]. Compute R(G) such that
R(G) ≡

∑i
j=1 gj(G) whose right-hand side is obtained from summing

up the replacement function of every individual up to i. Stop the
algorithm for searching for free riders when ŵi < R(G), because it
turns out that not only individual i but also all other individuals j > i
are free riders. However, so long as ŵi > R(G), set i = i+1 iteratively
and repeat Step 2 until ŵi < R(G); in other words, once ŵi < R(G),
the search is terminated so that all individuals j ≥ i are free riders.

Step 5: Repeat Steps 0–2 for public good H.

In order to explain this procedure more intuitively, we consider a game of
three individuals, ŵ1 ≥ ŵ2 ≥ ŵ3, for public good G using a simple graphical
apparatus frequently adopted by Cornes and Hartley. As seen in Fig.6, the
algorithm starts by choosing individual i = 1, and looking at the interval
G ∈ [ŵ1, ŵ2]. Within this interval, it is immediately observed that only
individual 1 makes a positive contribution. The linearity of the aggregate
replacement function R(G) within this interval makes it easy to observe that
there is no value of G within this interval at which ŵ1 > R(G), as illustrated
in Fig.6. Then, we do not need to move to the next interval [ŵ2, ŵ3], since
ŵ2 < R(G). We stop within the former interval. We know that only player
1 makes a positive contribution to public good G. This G∗ is the sought
equilibrium such that G∗ = R(G∗) (see Cornes and Hartley, 2007) and then
only 1 out of these three players makes a strictly positive contribution. On
the other hand, when we apply the same algorithm to each interval of public
good H (i.e., H ∈ [w̃i, w̃i+1] where w̃i ≡ (γiwi/αiqi)), we find that individual
2 is a contributor only to public good H, as Fig.7 shows. Thus, the resulting
pair of total provisions (G∗, H∗) such that G∗ = R(G∗) and H∗ = R(H∗)
in Figs. 6 and 7 stands for an equilibrium point and the configuration of
individual contributors corresponding to this allocation is given by 1 ∈ CG,
2 ∈ CH ,∅ ∈ CB and 3 ∈ CN .

Several remarks are in order. First, note that if there is an individual (say
k) who simultaneously provides two public goods (i.e., Case 2), the above
algorithm must be slightly modified as follows. We first need to find Nash
equilibrium values of G∗ (and thus H∗ = πkG

∗) using Fig.6. Substituting
these values into the (43), respectively, yields

gk =
wk

pk
− αk

βk

G∗ − qk
pk

hk, k ∈ CBoth,

hk =
wk

qk
− αk

βk

H∗ − pk
qk
gk, k ∈ CBoth.
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Figure 6: Uniqueness of a Nash equilibrium in Case 2

21

Figure 6: Uniqueness of a Nash equilibrium in Case 2

By setting the above contribution functions gk and hk equal to zero, we can
obtain the dropout values for an individual k. The rest of the procedure is
the same as in Case 1. Second, it should be stressed that the uniqueness
(point-valued) property of the mapping from the total provisions of G and H
to individual contributions plays a critical role in employing the replacement
function approach of Cornes and Hartley (2005, 2007, 2012). The straight-
forward application of the replacement function enables us to identify free
riders in the multiple public goods model in a way similar to Miyakoshi and
Suzuki (2012), who use the replacement function to identify free riders in a
single public good model. Third, as long as Assumption 1 is imposed, the
above algorithm for identifying free riders need not to be restricted to the
case of two public goods, which can be straightforwardly generalized to the
case of an arbitrary number of public goods.
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Figure 7: Algorithm for Finding a Marginal Contributor to Public Good G

in Case 1

Figure 8: Algorithm for Finding a Marginal Contributor to Public Good H

in Case 1
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Figure 7: Algorithm for Finding a Marginal Contributor to Public Good G
in Case 1
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Figure 7: Algorithm for Finding a Marginal Contributor to Public Good G

in Case 1

Figure 8: Algorithm for Finding a Marginal Contributor to Public Good H

in Case 1
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Figure 8: Algorithm for Finding a Marginal Contributor to Public Good H
in Case 1
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6 Concluding Remarks

Although several studies have formally incorporated the possibility of many
public goods, little attention has been paid to the uniqueness of equilibrium
in a world of many public goods. In the voluntary provision model with
many public goods, replacement mapping from the space of public goods to
individual’s contributions to the respective public goods may by potentially
multi-valued. Under this circumstance, we can prove the existence of a Nash
equilibrium by applying Kakutani’s fixed-point theorem rather than Brower’s
fixed-point theorem. Nevertheless, this multi-valuedness prevents us from
directly applying the replacement function approach of Cornes and Hartley
(2005, 2007, 2012) not only to prove the uniqueness of a Nash equilibrium
in multiple public goods models, but also to perform comparative statics
analysis. In this study, we have identified a sufficient condition to ensure a
unique Nash equilibrium as well as a replacement function that is a point-
to-point mapping from a profile of total public goods to each individual’s
contribution profile. Moreover, by inspection of the sufficient condition we
found reveals that the non-uniqueness property is non-generic so long as
Cobb–Douglas preferences are assumed. This finding implies, first, that so
long as heterogeneous Cobb–Douglas preferences coupled with Assumption
1 are assumed, the replacement function approach remains quite robust in
multiple public goods models, and second, that we can utilize a variety of
results obtained from the application of the replacement function approach
in a single public good provision model, such as for identifying a marginal
contributor and demonstrate the existence of a unique Nash equilibrium.

Finally, we briefly discuss two directions in which our results may be ex-
tended. The most important extension is to address more general preferences,
for instance, constant elasticity of substitution (CES) utility functions. We
believe that our method of proof remains valid for CES utility functions, be-
cause (38) holds for CES utility functions as well; however, there remains an
open question about the utility functions that do not satisfy (38). Second,
Cornes and Hartley (2007) open up wide applicability of the replacement
function approach in static Nash provision games that have an aggregative
game structure, such as rent-seeking games, team’s joint production games,
Cournot oligopoly models, and so on. However, these applications should
have been restricted only on one aggregate, such as a single product or a
single prize. Hence, the present study opens up new possibilities of applying
the replacement function approach to investigate the model with multiple
aggregates, such as Cournot’s oligopoly model with multiple products or the
Tullock-type rent-seeing competition model with multiple prizes. In light
of the results of this study, we need to assume specific objective functions
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coupled with appropriate conditions that ensure a single-valued replacement
function from the space of multiple aggregates to the profiles of individual’s
or firm’s choice functions.

Appendix: Proof of Proposition 2

Define the set of nodes, U = {u1, . . . , un}, each element of which represents
individual i ∈ {1, . . . , n}, and the set of nodes, V = {v1, . . . , vm}, each ele-
ment of which represents public good j ∈ {1, . . . ,m}, respectively. Denoting
an edge between ui ∈ U and vj ∈ V as eij if gji > 0, we construct an undi-
rected bipartite graph G = (U, V,E), where E is a set of edges (see, e.g.,
Jackson, 2008 for more details).

Lemma 1 Under Assumption 1, G is acyclic.

Proof. Suppose G has a cycle consisting of 2L edges. Changing an index
number, if necessary, the cycle is expressed as

u1, e11, v1, e12, u2, e22, v2, . . . , vL, eL1, u1,

where eij ∈ E is an edge connecting the nodes ui and vj.
Without loss of generality, we suppose that ui = i and vj = j. On the

cycle, as individual 2 provides the public goods 1 and 2:

β1
2p

1
2G

1 = β2
2p

2
2G

2,

while individual 3 provides the public goods 2 and 3:

β2
3p

2
3G

2 = β3
3p

3
3G

3.

Combining these equalities yields

β1
2p

1
2G

1 = β2
2p

2
2

β3
3p

3
3

β2
3p

2
3

G3.

Repeating the above process, we obtain

1 =
β2
2p

2
2

β1
2p

1
2

β3
3p

3
3

β2
3p

2
3

· · · β
1
Lp

1
L

βL
Lp

L
L

.

This contradicts Assumption 1; hence, G cannot have a cycle.

Lemma 2 Under Assumption 1, G has a unique solution.
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Proof. Lemma 1 assures that under Assumption 1, G is a tree. The upper
part of system (38) corresponds to the condition that node ui (i = 1, . . . , n)
should satisfy and the lower part corresponds to the condition for node vj
(j = 1, . . . ,m). Inspection of G immediately reveals that by traversing the
tree from leafs to the root, we can uniquely determine values of gji for ∀i ∈
{1, . . . , n} and ∀j ∈ {1, . . . ,m}.

So far, we have proven that given the equilibrium profile of total provisions
G = (G1, . . . , Gm), the contributing patterns for all individuals are uniquely
determined according to system (37). Nevertheless, the uniqueness of the
total provision profile of multiple public goods remains to be proved.

Proposition 3 The Nash equilibrium allocation of public goods G = (G1, . . . , Gm)
is unique.

Proof. Suppose, contrary to the proposition, that two distinctive Equi-
libria exist, say E1 and E2. As a result, there are two profiles of total provisions
of public goods, such as Ĝ = (Ĝ1, . . . , Ĝm) and G̃ = (G̃1, . . . , G̃m) which cor-
respond to E1 and E2, respectively. Without loss of generality, we suppose
Ĝj > G̃j for some j ∈ J . As a result, we observe changes in the contributing
pattern of individuals when the economy moves from E1 to E2. Without loss
of generality, we can assume that individual i, who is not a provider of public
good j in E1, may start to provide public good j in E2. On the other hand,
individual i′, who is a non-provider of good k in E1, may become a supplier
of public good k in E2. We formally describe this change of provision in the
following manner:

i /∈ Îj → i ∈ Ĩj i is an incoming individual to public good j,

i′ ∈ Îj and i′ /∈ Ĩk → i′ ∈ Ĩk i′ is an outgoing individual from public good j,
(A.1)

where Îj and Ĩk represent the index sets of individuals who provide public
goods j in E1 and k in E2, respectively.

First, we want to show that there is a public good that has no outgoing
individual under Assumption 1. We call such a good “an absorbing public
good”. To demonstrate this assertion, suppose, on the contrary, that there
is no absorbing public good. This assumption implies that all public goods
should possess both incoming and outgoing individuals. Then, it follows that
we can find a cycle created by the incoming and outgoing individuals such
that

[j1]
i1−→ [j2]

i2−→ [j3]
i3−→ · · · iM−1−→ [jM ]

iM−→ [j1], (A.2)

where M is the number of individuals involved in the cycle and [jk]
ik−→ [jk+1]

means that individual ik is an outgoing individual to public good jk and an
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incoming individual to public good jk+1. By using the first-order condition,

the relation [jk]
ik−→ [jk+1] can be expressed by

βjk
ik
pjkik Ĝ

jk ≤ β
jk+1

ik
p
jk+1

ik
Ĝjk+1 ,

βjk
ik
pjkik G̃

jk ≥ β
jk+1

ik
p
jk+1

ik
G̃jk+1 .

(A.3)

Combining the above inequalities yields

Ĝjk

G̃jk
≤ Ĝjk+1

G̃jk+1

. (A.4)

Repeating this process in a similar manner, it follows that the cycle (A.2)
entails the following relation:

Ĝj1

G̃j1
≤ Ĝj2

G̃j2
≤ · · · ≤ ĜjM

G̃jM
≤ Ĝj1

G̃j1
,

which is reduced to
Ĝj1

G̃j1
=

Ĝj2

G̃j2
= · · · = ĜjM

G̃jM
. (A.5)

As a result, inequalities (A.3) lead to

β
jk+1

ik
p
jk+1

iik

βjk
ik
pjkik

=
Ĝjk+1

Ĝjk
=

G̃jk+1

G̃jk
. (A.6)

It follows from (A.5) and (A.6) that

βj2
i1
pj2i1

βj1
i1
pj1i1

βj3
i2
pj3i2

βj2
i2
pj2i2

· · ·
βj1
iM
pj1iM

βjM
iM

pjMjM
=

Ĝj2

G̃
j1

Ĝj3

G̃
j2
· · · Ĝ

j1

G̃jM
= 1. (A.7)

This contradicts Assumption 1 and thus, our assertion is proven.
We divide the rest of the proof into three steps.

Step 1. We show that for absorbing public good j∗, Ĝ
j∗ > G̃j∗ holds. To show

this, take arbitrary j such that Ĝj > G̃j. If public good j is absorbing,
it is done. Otherwise, we can find outgoing individual i who newly
provides a public good in E2. Since there is no cycle under Assumption
1, we eventually reach absorbing public good j∗. When we observe

[jk]
ik−→ [j∗], inequality (A.3) holds. Therefore, by assumption (i.e.,

Ĝj > G̃j), we have Ĝjk > G̃jk , which implies Ĝj∗ > G̃j∗ .
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Step 2. Consider a case in which Îj∗ does not include an individual who simul-
taneously provides multiple public goods. In other words, individual
i ∈ Ĩj∗ provides the only public good j∗. Because j∗ is absorbing,
Îj∗ ⊂ Ĩj∗ . For each i ∈ Ĩj∗ , we have

m∑
j∈Ĵi

pji ĝ
j
i = wi − βj∗

i pj∗i Ĝ
j∗ at E1,

pki g̃
k
i = wi − βj∗

i pj∗i G̃
j∗ at E2.

(A.8)

Since Ĝj∗ > G̃j∗ (recall Step 1), ĝj∗i < ĝj∗i must hold. Then

Ĝj∗ =
∑
i∈Îj∗

ĝj∗i <
∑
i∈Îj∗

g̃j∗i ≤
∑
i∈Ĩj∗

g̃j∗i = G̃j∗ .

This is a contradiction, which shows that the hypothesis is false when
individual i ∈ Îj∗ provides the only public good j∗.

Step 3. Finally, consider the case in which Îj∗ may include an individual who
simultaneously provides multiple public goods. Even in this case, Îj∗ ⊂
Ĩj∗ is still valid, although (A.3) is replaced by

m∑
j∈Ĵi

pji ĝ
j
i = wi − βj∗

i pj∗i Ĝ
j∗ at E1,

m∑
j∈J̃i

pji g̃
j
i = wi − βj∗

i pj∗i G̃
j∗ at E2.

(A.9)

In spite of (A.9), we cannot claim that when Ĝj∗
i > G̃j∗

i , ĝ
j∗
i < g̃j∗i .

If individual i ∈ Îj∗ is the one who simultaneously provides multiple
public goods, then indexes j∗ and h are included in J̃i. Hence, it follows
that h ∈ Ĩj∗ ; otherwise public good j∗ is not absorbing. Since j∗ and
h ∈ J̃i,

βj∗
i pj∗i Ĝ

j∗ = βh
i p

h
i Ĝ

h,

βj∗
i pj∗i G̃

j∗ = βh
i p

h
i G̃

h.
(A.10)

Next, we show that public good h is also absorbing in addition to j∗. To
prove this, suppose, on the contrary, that public good h has outgoing

individual i′. Then, we can find [h]
i′−→ [l], leading to

βh
i′p

h
i′Ĝ

h ≤ βl
i′p

l
i′Ĝ

l,

βh
i′p

h
i′G̃

h ≥ βl
i′p

l
i′G̃

l.
(A.11)
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It follows from (A.10) and (A.11) that

βj∗
i′ p

j∗
i′ Ĝ

j∗ ≤ βl
i′p

l
i′Ĝ

l,

βj∗
i′ p

j∗
i′ G̃

j∗ ≥ βl
i′p

l
i′G̃

l,

thereby violating the fact that public good j∗ is absorbing. Hence, it
follows that at least one of the inequalities ĝj∗i < g̃j∗i and ĝhi < g̃hi
must hold. Without loss of generality, we can say that public good
j∗ ∈ Ĩj∗ always exists satisfying ĝj∗i < g̃j∗i (if necessary, set h = j∗). As
a result, we can once again apply the same logic outlined in Step 2
to derive a contradiction. Taken together, these contradictions stem
from the hypothesis that there are two distinct equilibria, which end
up establishing the uniqueness of the profile of the total provisions
G = (G1, . . . , Gm). On the other hand, if Ĩj∗ includes an individual
who simultaneously provides multiple public goods other than i, it
does not affect the above claim, because of the acyclic property of the
individual’s contributing pattern.
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