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Abstract 
 
Assumptions about explanatory variables and errors are central in regression analysis.  For 
example, the well-known method of ordinary least squares yields consistent and efficient 
estimators if the underlying error terms are independently, identically, and normally distributed. 
Additionally, the conditional distribution of the dependent variable is symmetric.  The modern 
obesity epidemic is a well-known health dilemma where the BMI distribution was initially 
positively skewed but has become more symmetric, which may affect inferences about health 
and public resource allocation.  This study applies partially adaptive estimation methods with 
flexible error distributions to account for possible skewness and leptokurtosis in the distribution 
of BMI. 
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I. Introduction 

Few areas in health, statistics, and applied social sciences have attracted as much 

attention as the modern obesity epidemic.  Obesity is generally measured according to the body 

mass index (BMI), which is weight in kilograms divided by height in meters squared, and the 

obesity epidemic is illustrated by the BMI distribution becoming less positively skewed.  This 

flattening out of the BMI distribution is a public health concern because excess body weight—

obesity—has negative health outcomes, which strains public resources and increases the cost of 

providing health.  Regression analysis is one technique used to measure factors associated with 

increasing BMIs, and least squares (OLS) is the standard upon which numerous inferences are 

based.  While not minimizing the conclusions derived from traditional least squares, use of the 

method is conditional on the properties of the error distribution.  Least squares estimates are 

unbiased and have minimum variance among all linear estimates when the errors are 

independently and identically distributed and when the errors are orthogonal to the regressors, 

however is inefficient when errors are not distributed normally.  When regression model errors 

are assumed to be from the normal distribution, the mean and variance summarize the 

distribution but this assumption is not valid for data which are skewed or have thick tails.  In 

such cases, adaptive methods that assume greater flexibility may be appropriate. 

Body mass index values reflect current net nutrition, and increasing BMIs causes 

concerns among health practitioners and public policy makers because high BMIs and obesity 

are related to a host of negative health outcomes (Atlas, 2011, pp. 103-107).  While not naturally 

overweight and obese, over the past 25 years, populations in developed economies have 

experienced increased BMIs and obesity (Must and Evans, 2011, p. 13; Calle et al. 1999; Carson, 
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2016).  In modern populations, Waaler (1984) finds an inverted U-shaped relationship between 

BMIs and mortality.  Relative mortality risk is high for populations with BMIs less than 18.5, is 

low and stable for values between 18.5 and 27, but is high for individuals with BMIs over 27 

(Allebeck and Berg, 1992; Andres, Elahis, Tobin, Mueller, and Bryant, 1985; Fogel, 1993; 

Fogel, 1994; Fogel and Costa, 1997; Koch, 2011; Stevens et al. 1998; McLannahan and Clifton, 

2008, p. 17).  For BMIs less than 18.5, infectious diseases are common (Calle et al. 1999, p. 

1001; Jee et al 2006, p. 783), and for BMIs over 27, higher rates of diabetes, heart disease, high 

blood pressure, stroke, and certain cancers are common (Atlas, 2011, p. 104; Eckel et al. 2005, 

pp. 1417-1421; Popkin, 2009, p. 113).  Costa (1993, p. 442) and Henderson (2005, p. 346) show 

this relationship is stable overtime, and Jee et al (2006) show the relationship is stable across 

ethnic groups.  The explicit costs of obesity are also prohibitive with considerable social 

implications.  In the early 2000s, the annual cost of obesity on the US health care system was 

around $150 billion per annum (Cawley, 2011, p. 1) and was responsible for 9.1 percent of 

annual medical spending (Finkelstein and Yang, 2011, p. 497).  The cost to government provided 

health services is similarly affected.  In 2004, the average tax payer was responsible for around 

$175 per person to cover obesity related medical expenditures (Finkelstein et al. 2003; 

Finkelstein et al. 2004), and Medicaid and Medicare spending would have been between 8.5 and 

11.8 percent lower in the absence of obesity (Finkelstein and Yang, 2011, p. 498). 

It is against this backdrop that this study considers two questions regarding the shape of 

the BMI distribution and appropriate regression models used in obesity research.  First, during 

the mid-1980s and early 2000s when BMIs increased markedly, what is the appropriate 

assumption regarding regression model error terms?  Using a linked data set from the National 

Longitudinal Survey, the Skewed Generalized t error performs better than other partially 
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adaptive models when assessed with loglikelihood functions, and more flexible models with 

additional parameters outperform more restrictive models.  Second, assuming a Skewed 

Generalized t error distribution, how do BMIs vary with respect to height, demographics, family 

size, marital status, and early life conditions?  There is an inverse relationship between BMI and 

height, and after accounting for height, women have lower BMIs than men.  Nonetheless, women 

have higher obesity rates, indicating that women have lower body mass, yet because of shorter 

statures, they are more likely to be classified as obese.  During the modern obesity epidemic, 

high BMIs were associated with larger families during their youth; nevertheless, this family size 

effect was not significant by middle age. 

 

II. Partially Adaptive Regression Estimation 

Partially adaptive estimation allows the errors in a standard regression model to be 

distributed more flexibly than in a classical normal linear regression model where errors are 

assumed to be independently, identically, and normally distributed.  The standard form of a 

regression model is 

    (1) 

where  is the thi   observed value of the of dependent variable, is a 1xk vector of the 

explanatory variables, β  is a kx1 vector of unknown coefficients, and  is the error term.  

Various robust estimation methods are proposed as alternatives to least squares that are less 

sensitive to the assumptions regarding the error terms.   

iii XY εβ +=

iY iX

iε
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 M-estimation is one robust estimation technique that minimizes an assumed function of 

errors, , in the parameter β. 

  (2) 

where ρ is a differentiable function of ε.  The corresponding influence function is    

     (3) 

which measures the influence of errors with different magnitudes have on the estimator. M-

estimators include many estimation methods as special cases.  For example, Lp estimators are a 

special case of the M-estimator, defined by 

1

ˆ arg min
p

N
p

L i i
i

Y Xββ β
=

= −∑    (4) 

with OLS and least absolute deviations (LAD) estimators corresponding to p=2 and 1, 

respectively.  The influence functions corresponding to OLS and LAD are depicted in Figure 1.  

  

( )ερ

( )∑=
=

−
N

i
ii XYM 1

minargˆ βρββ

( )
ε
ρεψ
∂
∂

=
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Figure 1 1985 OLS and Laplace Influence Functions 

 

Figure 1 shows that OLS estimators are sensitive to outliers; whereas, LAD is not.  Tails 

of the error distribution are thicker than the normal distribution when p is less than 2, and Lp 

estimators are applications of the more robust M-estimation technique (Butler et al. 1990, p. 

321). 
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In this study, we use partially adaptive estimation where a more flexible distribution for 

equation 1’s error terms is assumed, which is particularly suitable in BMI studies where the 

distribution can be skewed.   

  (5) 

where denotes the probability density function (pdf) of the error term, and θ is vector of 

distributional parameters.  Partially adaptive estimators are maximum likelihood estimators if 

is the correct pdf (Davidson and Mackinnon, 2004, p. 399).  This approach allows the 

influence to adjust to accommodate diverse data characteristics.  If  is a flexible pdf, the 

corresponding estimators of β can have more desirable properties compared to least squares.   

In this paper, we consider the possible advantages of selecting  to be a flexible 5-

parameter distribution, the Skewed Generalized t (SGT) distribution, defined by Theodossiou 

(1998).  The SGT includes many other distributions, including the Generalized t (GT, McDonald 

and Newey, 1988), the Skewed Generalized Error Distribution (SGED, Theodossiou, 2015), the 

Generalized Error Distribution (GED), the Laplace Distribution, Normal, and Student-t 

distribution.  How these distributions are related is visualized in Figure 2.   

( )( )∑
=

−−=
N

i
iiPAE XYf

1
, ;lnminargˆ θββ θβ

()f

()f

()f

()f
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Figure 2 Skewed Generalized T distribution tree 

 The distributions considered in this study are nested in the SGT.   As a generalized 

distribution, the SGT and subsequent restricted distributions are used in regression models 

applied in the same format as outlined above.  Partially adaptive procedures based on the SGT 

distribution simultaneously estimate the vector of regression coefficients, β, and the parameters 

λ, φ , p, and q by maximizing the log-likelihood function corresponding to the pdf defined by 

 (6) 

 

where B(.,.) is the beta function.  m is the mode of y.  The parameter λ  measures the 

degree of skewness.  The distribution is symmetric when λ=0 and is positively or negatively 

skewed depending on whether λ  is positive or negative.  The parameter ϕ is a positive scale 

parameter.  Parameters p and q control the height and tails of the distribution (Hansen et al. 2010, 

p. 157).   

( )
[ ] ( )( )( ) 
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As the parameter , the SGT approaches the Skewed Generalized Error 

Distribution (SGED, Theodossiou, 2015). 

   (7) 

 

where is a gamma function, p controls the height and tails of the distribution, while λ 

continues to determine the degree of skewness.  

 For 0λ = , the SGT simplifies to the Generalized T distribution (McDonald and Newey, 

1988). 

( )
( )( )

11
; , ,

12 , 1 /
pqp pp

pGT y p q
q B q y qp

φ
φ φ

+
=
 +  

   (8) 

 

where φ   is a positive scale parameter, and p and q continue to control the shape of the 

distribution.  As p and q  increase, the distribution has thinner tails, and as they decrease the 

distribution has thicker tails.   

The Skewed Generalized T distribution nests other important distributions.  When p = 2, 

the SGT is the Skewed T distribution (ST, Hansen, 1994). 
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( )
( ) [ ] ( )( )1/2

1
2 22

; , ,
12 , 1 / 12
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  (9) 

 

Further limiting cases of the SGT exist.  For example, when , the SGED is the 

Skewed Laplace distribution (SLaplace); when λ=0, the SGED is the Generalized Error 

Distribution (GED); when , the SGED is a Skewed Normal distribution (SNormal).  

When , the Generalized T approaches the Generalized Error distribution, GED.  The GT 

includes the Student’s T distribution when p = 2.  The Skewed T is a Skewed Normal 

distribution when .  The ST is the Student T when  and a Skewed Cauchy 

distribution when . 

Each distribution has a corresponding influence function, which measures an error’s 

influence in estimation and is more adaptive the greater the number of parameters.  This allows 

adjusting the assumed error distribution to reflect tail behavior and how errors influence the 

estimation process.  The Skewed Generalized T, Generalized T, Generalized Error and normal 

distribution’s influence functions are 

( ) ( ) ( ) ( )( )( )1, , , , 1 / 1
pp pp

SGT p d pq sign q signψ ε λ φ ε ε φ λ ε ε−  = + + +  
  (10) 

( ) ( ) ( ) ( )1, , , 1 /p pp
GT p q pq sign qψ ε φ ε ε φ ε−= + +     (11) 

( ) ( )1, , /p p
GED p p signψ ε φ ε ε φ−=        (12) 

∞<<∞− y

1=p

∞→q

∞→q

∞→q 0→λ
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( ) 2

2,Normal
εψ ε φ
φ

=          (13) 

The shapes of the GT and SGT influence functions corresponding to respective 

distributions in this analysis are presented in Figure 3. 

 

Figure 3 1985 Generalized t and Skewed Generalized t Influence Functions 
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Whereas OLS gives greater weight to outliers, and LAD gives the same weight to errors. 

The GT and SGT influence functions initially give greater weight to errors as they vary to 

accommodate the shape of the error terms.  The influence functions of the GT and SGT increase 

over a range and then descend, consequently discounting large outliers with data determining 

where the discounting begins.     

III. National Labor Survey 

 Data to analyze the dynamic relationships between body mass, early life conditions, 

marital status, and family size requires a comprehensive modern BMI data set.  The 1979 

National Longitudinal Survey of Youth (NLSY79) is one such data set collected for the purpose 

of analyzing the changing American labor market and is an on-going nationally representative 

sample of African-Americans, Hispanics, and Non-black/non-Hispanics—primarily whites of 

European descent.  Along with several variables related to labor market outcomes, the NLSY79 

survey designers linked weight and height from which BMIs are constructed.  Individuals in the 

NLSY79 were interviewed every two years between 1979 and 2012, and their various 

characteristics were updated every other year.  In 1979, the Bureau of Labor Statistics randomly 

identified 12,686 young males and females ages 14 to 22 that were born between 1957 and 1964.  

In 2012, these respondents were between ages 45 and 54.  Of the 12,686 individuals in the initial 

survey, 6,403 are males and 6,283 are females.  There are 3,174 African-Americans, 2,002 

Hispanic/Latino, and 7,510 mostly white, non-black/non-Hispanics.  With few exceptions, all 

members within each cross-section are available to be interviewed across multiple follow up 
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surveys; however, in no year after 1979 are all individuals available, and successful linkages 

decrease over time.   

Although the purpose of the NLSY79 is to monitor the behavior and event history of the 

dynamic US labor market in the late 20th and early 21st centuries, the content of the sample is 

broader.  For example, annual update questions include demographic variables, educational 

attainment, training updates, job and residential status, and various health conditions.  For the 

purpose of this study, height was recorded in 1985 and 2012.  Because stature growth still 

occurred after 1979, we focus our analysis on observations in 1985 and 2012, when individuals 

reached their adult terminal stature.  Additional variables related to BMI values included in this 

study are age, gender, marital status, family size, urbanization, and ethnic status.   
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 Table 1, 1985 and 2012 BMIs, Family Size, and Urbanization 

 1985  2012  
BMI     
  Mean 23.77  29.23  
  S.D. 4.15  6.04  
  Skewness 1.51  1.05  
  Kurtosis 7.31  4.77  
Centimeters     
  Mean 170.40  170.47  
  S.D. 10.44  10.42  
  Skewness .040  .091  
  Kurtosis 2.61  2.55  
Family Size     
  Mean 3.24  2.61  
  S.D. 1.95  1.42  
  Skewness 1.26  1.18  
  Kurtosis 5.52  6.10  
Age     
  Mean 23.60  51.32  
  S.D. 2.26  2.24  
  Skewness 5.12  .145  
  Kurtosis .082  1.93  
   Percent  Percent  
Underweight 4.22  .578  
Normal 62.48  21.19  
Overweight  24.42  36.50  
Obese 8.00  40.73  
 N Percent N Percent 
Gender     
   Female 5,464 50.53 3,551 51.32 
Ethnic 
Status 

    

   Black 2,822 26.10 2,156 31.16 
   Hispanic 1,794 16.59 1,328 19.19 
   Non-Black,   
   Non-     
Hispanic   

6,198 57.31 3,436 49.65 

Marital Status     
   Married 3,888 35.95 3,765 54.41 
Residence     
   Urban 7,664 70.87 5,354 77.37 
Total 10,814 100.00 6,920 100.00 

Source:  National Survey of Youth, 1979. 
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This longitudinal sample allows for detailed comparison across time and space (Table 1).  

Blacks and Hispanics were smaller portions of the population; however, their composition of the 

sample increased overtime.  For this randomly collected sample, average BMI’s increased by 23 

percent.  Consistent with national BMI studies over the same period, the percent in the 

overweight and obese categories increased significantly over time that is unexplained by changes 

in age, demographics, and economic factors (Calle et al. 1999).  The percent in the underweight 

category decreased by 86%; whereas, the percent in the overweight and obese categories 

increased by 49.0 and 409 percent, respectively.   In both 1985 and 2012, there were slightly 

more females than males, and while non-black, non-Hispanic—primarily whites—are a larger 

share of the samples, the share of African-Americans and Hispanics increased over time.  The 

percent of the sample that was married increased over time, and like the general population, the 

share of urban residents increased by around 10 percent.  Average height and skewness are 

similar between 1985 and 2012, while average age increased by 117.5 percent, and average 

family size decreased by 19.5 percent (Haines, 2000, pp. 307 and 358; Easterlin, 2000).   

Average age in the 1985 sample was 23.60, while average age in the 2012 sample is 51.32.  

The body mass index is the primary means of assessing whether a person is obese, and 

the World Health Organization has established thresholds to classify obesity status.1  Ideally 

obesity would be classified with percent body fat; however, evaluating obesity with advanced 

techniques is expensive and difficult to acquire, subsequently, this information is non-existent for 

                                                 
1 Underweight is classified as a BMI under 18.5.  Normal weight is a BMI greater or equal to 18.5 but less than 24.9.  

Overweight is a BMI of 24.9 and less than 29.9.  Obesity is a BMI over 29.9.  A BMI is classified as morbidly obese 

if it is over 40.   
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most populations.  As a result, BMI is the standard means to classify obesity because it only 

requires weight and height.  Nonetheless, as a measure, BMI is not without criticism.  For 

example, BMI overestimates weight and obesity for individuals with greater muscular builds, 

and African-Americans tend to have greater protein and percent muscle mass than white and 

Asian populations (Schutte et al. 1984; Barondess et al. 1997; Wagner and Heyward, 2000; Aloi 

et al. 1997).  Black BMIs, are subsequently, over-stated using modern WHO standards 

(Burkhauser and Cawley, 2008, pp. 519-520).  Nonetheless, when other means of classifying 

obesity are unavailable, BMIs provide a reasonable approximation for obese and overweight 

status. 

The shape of the BMI distribution indicates much about a population’s current net 

nutrition.  BMIs increase with age; however, the percent of individuals that are obese have 

increased more rapidly than is accounted for by increases in age.  In sum, the BMI distribution 

has shifted right, become more symmetric, and the increase in obesity exceeds that which is 

explained by only the increase in age and demographic characteristics. 
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Figure 4, 1985 and 2012 US BMI Distributions 

Source:  See Table 1 

Notes:  BMIs are an aggregation of Black, Hispanic, and non-Black, non-Hispanic males and females. 

 

Obesity as a health dilemma is a recent phenomenon, and historical US populations were 

in the normal BMI category (Carson, 2009; Carson, 2012; Carson, 2016).  Figure 4 illustrates 

that average BMIs increased for individuals in their teens and early 20s in 1985 from 23.77 to 

29.23 for the same cohort in 2012 (Flegal et al. 2010; Hales et al. 2018).  The World Health 

Organization had classified BMI categories into four model groups for underweight, normal 

weight, overweight, and obese.  At an average age of 23.6 in 1985, 4.22 percent were 

underweight, 64.52 percent were in normal weight category, 23.87 percent were overweight, and 

8.00 percent were obese.  Among the same cohort in 2012 at an average age of 51.32 only .578 
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percent were underweight, 21.19 percent were in the normal category, 36.50 percent were 

overweight, and 40.73 percent were obese.  Subsequently, among a randomly select-set of 

individuals in their teens and early 20s in the 1980s, there was an increase of 23 percent for age 

BMI, and increases of 49.5 (36.5/24.42-1=49.5) and 409 (40.73/8.00-1=4.09) percent increases 

in the overweight and obese categories.    

IV. Partially Adaptive BMI Regression Application 

Partially adaptive estimation is now used to evaluate BMIs and the appropriate model for 

the modern obesity epidemic.  Two periods are considered:  the mid-1980s when individuals 

were in their late teens and early 20s, and 2012 when the linked subset is evaluated in their mid-

50s.   

 

2
85 2 85 85 85 8585 85i M i Urban i U i O iFS

Family Size Married Urban Underweight Obeseθ θ θ θ θ+ + + + +  

85 85 85
BF i i HF i i iBlack Female Hispanic Femaleθ θ e+ × + × +  (14) 

and  

 

2
12 2 12 12 12 1285 85i M i Urban i U i O iFS

Family Size Married Urban Underweight Obeseθ θ θ θ θ+ + + + +  

12 12 12
BF i i HF i i iBlack Female Hispanic Femaleθ θ e+ × + × +  (15) 

Stature in centimeters is included to assess the relationship between BMI and height.  A 

gender dummy variable is included to assess the relationship between BMI and gender.  BMIs 

iFSiHiBiAiFic SizeFamilyHispanicBlackAgeFemalesCentimeterBMI 85858585858585
085 θθθθθθθ ++++++=

iFSiHiBiAiFic SizeFamilyHispanicBlackAgeFemalesCentimeterBMI 12121212121212
012 θθθθθθθ ++++++=
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vary by ethnic status, and dummy variables are included to assess how individuals of African and 

Mexican decent compare to non-black, non-Hispanics, mostly whites.  Although the causal 

relationship between BMI and marriage is not clear, married individuals have greater BMIs than 

their non-married counterparts, and a married dummy variable is included to assess the 

relationship between BMI and marital status (Komlos and Carson, 2017).  Family size and 

family size squared variables are included to account for the relationship between BMI and the 

number of persons in a household (Carson, 2014).  An urban dummy variable is added to account 

for the relationship between BMI and urban residence.  To account for the relationship between 

early life conditions and BMI and genetics, 1985 underweight and obese dummy variables are 

included in equations (14) and (15) (McLannahan and Clifton, 2008, pp. 120-121).  We now 

compare and contrast the estimated relationships obtained using the different methods outlined 

earlier.   

The main results of estimating equations (14) and (15), using the partially adaptive 

procedures corresponding to the alternative error distributions discussed earlier, are reported in 

Tables 2 and 3.  In particular, the coefficient estimators and their standard errors corresponding 

to a normal (OLS), Laplace (LAD), GED, Student’s t, GT, SGED, ST, and SGT error 

distribution along with their loglikelihood values ( )l   are reported for the 1985 and 2012 

specifications. The first five columns are based on an assumed symmetric error distribution; 

whereas, the last three columns allow for but don’t impose skewness.  The estimated 

distributional parameters for the different years and distributions are reported in Table 4. 

Comparisons of coefficient estimators across distributional specifications is insightful.  The 

coefficient estimates based on the assumption of a symmetric error distribution are often similar, 

but frequently differ from estimates obtained using an asymmetric partially adaptive estimation 
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procedure which are in rather close agreement with each other.  For example, the estimated 

coefficients for “female” obtained using a symmetric distribution for 2012 are around 1.0; 

whereas, the corresponding estimated coefficients are approximately 1.7 when asymmetry is 

taken account of in the estimation procedure.  From Table 4, the estimated skewness coefficient 

( )λ  is seen to be approximately .6 and .4 in 1985 and 2012, respectively.  Thus, skewness is 

significant in both time periods and decreasing over time.  This raises the question as which 

estimates or specification are most appropriate.  If the errors are independently and identically 

normal, OLS will be most efficient, having smaller variances than an over specified model such 

as the SGT. However, if the error distribution is SGT and differs from the normal, then the 

standard errors of the SGT-based estimators will be smaller than those obtained using OLS.  The 

relative size of the standard errors observed in Tables 2 and 3 are consistent with this 

observation.  For example, the reported standard errors for the “female” coefficient in (15) is 

about .229 for OLS and .194 for the SGT specification.  A Monte Carlo simulation would 

provide better evidence of the magnitude of this difference by comparing the distributions of the 

alternative estimators (McDonald and White, 1993).    
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Note:  *** significant at .01; ** significant at .05; significant at .10. 

  

1985 DATA OLS LAD GED  T GT SGED ST SGT 
Intercept 25.364*** 25.030*** 25.310*** 25.221*** 25.155*** 25.698*** 23.792*** 25.692*** 

  (0.701) (0.706) (0.698) (0.690) (0.675) (0.535) (0.544) (0.525) 
Height         
Centimeters -0.021*** -0.200*** -0.021*** -0.020*** -0.019*** -0.018*** -0.018*** -0.018*** 

  (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) 
Gender (Male-Reference)       

Female -1.656*** -1.920*** -1.733*** -1.735*** -1.607*** -1.415*** -1.454*** -1.373*** 
  (0.087) (0.088) (0.087) (0.086) (0.086) (0.069) (0.068) (0.069) 

Age 0.072*** 0.075*** 0.073*** 0.074*** 0.070*** 0.048*** 0.050*** 0.045*** 
  (0.012) (0.012) (0.012) (0.011) (0.011) (0.009) (0.009) (0.009) 

Ethnicity (Non-Black, Non-Hispanic 
Reference)       

Black 0.050 0.045 0.072 0.068 0.033 0.083 0.092 0.078 
  (0.087) (0.087) (0.086) (0.084) (0.083) (0.067) (0.068) (0.068) 

Hispanic 0.397*** 0.400*** 0.435*** 0.434*** 0.372*** 0.150* 0.158** 0.184** 
  (0.104) (0.104) (0.104) (0.102) (0.098) (0.078) (0.079) (0.077) 

Family Size         
Family Size 0.123*** 0.136*** 0.120*** 0.115*** 0.105*** 0.009 0.011 0.010 

  (0.039) (0.039) (0.039) (0.038) (0.036) (0.028) (0.028) (0.028) 
Family Size 

Squared -0.012*** -0.014*** -0.012*** -0.011*** -0.011*** -0.003 -0.004 -0.003 

  (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) 
Marital Status (Non-married Reference)      

Married 0.191*** 0.215*** 0.217*** 0.219*** 0.174*** 0.083** 0.087** 0.085** 
  (0.058) (0.059) (0.058) (0.057) (0.056) (0.043) (0.043) (0.042) 

Urbanization (Rural Reference)       
Urban -0.151*** -0.195*** -0.153*** -0.144** -0.127** -0.089** -0.094** -0.085** 

  (0.057) (0.058) (0.057) (0.056) (0.055) (0.043) (0.043) (0.042) 
Obesity Status (Overweight Reference)     

Under -4.893*** -4.320*** -4.734*** -4.774*** -5.150*** -3.497*** -3.516*** -3.634*** 
  (0.129) (0.130) (0.114) (0.117) (0.202) (0.111) (0.109) (0.135) 

Obese 10.443*** 9.620*** 10.176*** 10.006*** 10.084*** 10.247*** 10.180*** 10.257*** 
  (0.095) (0.095) (0.102) (0.099) (0.091) (0.069) (0.069) (0.069) 

Interactions   
      

Black and 
Female 0.946*** 0.874*** 0.931*** 0.926*** 0.894*** 0.531*** 0.535*** 0.523*** 

  (0.121) (0.122) (0.121) (0.119) (0.116) (0.092) (0.092) (0.091) 
Hispanic 

and Female 0.142 0.142 0.114 0.116 0.151 0.125 0.128 0.095 

  (0.142) (0.143) (0.143) (0.141) (0.134) (0.104) (0.106) (0.103) 
Log-

Likelihood -25875.4 -26166.1 -25839.6 -25762.1 -25696.9 -25160.6 -25151.1 -25127.5 
AIC 51778.7 52334.3 51709.2 51554.2 51425.8 50353.2 50334.3 50289.0 
BIC 51880.8 52341.6 51818.5 51663.5 51542.4 50469.8 50450.9 50412.9 

Table 2, 1985 Body Mass Index Values by Demographics, Family Size, and Urbanization 
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Note:  *** significant at .01; ** significant at .05; significant at .10. 

  

2012 DATA OLS LAD GED  T GT SGED ST SGT 
Intercept 39.391*** 37.070*** 38.150*** 38.161*** 38.238*** 37.306*** 36.081*** 37.532*** 

  (2.207) (2.210) (2.155) (2.114) (2.101) (1.917) (1.867) (1.903) 
Height         

Centimeters -0.038*** -0.030*** -0.034*** -0.034*** -0.034*** -0.030*** -0.032*** -0.031*** 
  (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) 

Gender (Male-Reference)        
Female -0.910*** -1.020*** -0.973*** -1.077*** -1.104*** -1.709*** -1.707*** -1.712*** 

  (0.229) (0.229) (0.220) (0.217) (0.216) (0.196) (0.194) (0.195) 
Age -0.092*** -0.083 -0.086 -0.087 -0.087 -0.071 -0.076 -0.073 

  (0.029) (0.029) (0.028) (0.027) (0.027) (0.025) (0.024) (0.025) 
Ethnicity (White-Reference)       

Black 0.847*** 1.010*** 0.946*** 0.903*** 0.880*** 0.695*** 0.690*** 0.696*** 
  (0.213) (0.213) (0.203) (0.197) (0.197) (0.176) (0.181) (0.179) 

Hispanic 0.632*** 0.777*** 0.683*** 0.731*** 0.752*** 0.822*** 0.812*** 0.822*** 
  (0.253) (0.253) (0.236) (0.234) (0.236) (0.216) (0.216) (0.215) 

Family Size         
Family Size 0.027 0.031 -0.021 0.013 0.023 0.097 0.127 0.108 

  (0.138) (0.138) (0.145) (0.137) (0.133) (0.133) (0.129) (0.133) 
Family Size 

Squared 0.000 0.000 0.005 0.001 0.000 -0.015 -0.019 -0.016 

  (0.017) (5.2E-5) (0.019) (0.018) (0.017) (0.018) (0.017) 0.0178 
Marital Status (Non-married Reference)       

Married 0.334** 0.359** 0.371** 0.384** 0.388** 0.554*** 0.515*** 0.540*** 
  (0.158) (0.158) (0.157) (0.152) (0.150) (0.136) (0.137) (0.137) 

Urbanization (Rural Reference)       
Urban -0.096 -0.231 -0.186 -0.169 -0.160 -0.120 -0.134 -0.124 

  (0.156) (0.157) (0.150) (0.148) (0.148) (0.134) (0.133) (0.134) 
Obesity Status (Overweight Reference)       

Under -5.356*** -4.900*** -5.151*** -5.042*** -5.000*** -4.007*** -4.035*** -4.016*** 
  (0.341) (0.342) (0.288) (0.302) (0.309) (0.283) (0.286) (0.283) 

Obese 8.671*** 8.200*** 8.445*** 8.342*** 8.323*** 7.199*** 7.211*** 7.204*** 
  0.23111 (0.231) (0.240) (0.247) (0.247) (0.221) (0.218) (0.218) 

Interactions         
Black and 

Female 2.009*** 1.930*** 1.931*** 1.996*** 2.019*** 2.154*** 2.128*** 2.144*** 

  (0.293) (0.293) (0.286) (0.280) (0.280) (0.250) (0.251) (0.251) 
Hispanic and 

Female 0.400 0.340 0.461 0.449 0.423 0.480 0.452 0.470 

  (0.343) (0.343) (0.333) (0.324) (0.324) (0.295) (0.294) (0.294) 
Log-Likelihood -21347.1 -21383.6 -21264.9 -21241.2 -21239.2 -20974.8 -20977.0 -20973.9 

AIC 42722.2 42774.9 42559.9 42512.5 42510.4 41981.6 41985.9 41981.9 
BIC 42818.0 42768.0 42662.5 42615.1 42619.8 42091.1 42095.4 42098.2 

         

Table 3, 2012 Body Mass Index Values by Demographics, Family Size, and Urbanization 
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Table 4.  Estimated Distributional Parameters 

 1985 DATA OLS LAD GED T GT SGED ST SGT 
Sigma 2.6481   2.64744 2.63299 2.62765 2.684803 2.6879 2.65969 
  0.018   0.01967 0.02045 0.01992 0.020495 0.0214 0.02086 
Lambda        0.619816 0.6052 0.62112 
         0.014613 0.0143 0.01557 
P     1.69327   3.7444 2.009123  2.66855 
      0.03393   0.24112 0.043441  0.1187 
Q        6.76838  1.57156    22.1867 4.86893 
         0.66348  0.18626    5.89686 0.86806 

 

 

2012 DATA OLS LAD GED T GT SGED ST SGT 
Sigma 5.29045   5.29181 5.31836 5.34256 5.31077 5.32602 5.31557 
  0.04497   0.05381 0.06279 0.06989 0.05625 0.06182 0.05818 
Lambda           0.41658 0.42403 0.41867 
            0.01608 0.01686 0.01655 
P     1.4576   2.30289 1.56392   1.69562 
      0.03586   0.16327 0.03893   0.11298 
Q       3.51709 2.35046   5.12921 15.9563 
        0.29489 0.44904   0.60721 13.04 

 

 

We have observed differences in the estimators and now turn to ways that these 

alternative specifications can be compared.    For nested models, such the SGED and SGT, a 

likelihood ratio test can be employed to test for statistically significant improvements of the more 

general model to the restricted model.  The likelihood ratio test is defined by ( )2 *LR = −l l  

where l  and l * denote the optimized loglikelihood values for the unrestricted and restricted 

models, respectively.  Under fairly general conditions the LR test statistic has an asymptotic chi-

square distribution with degrees of freedom equal to the difference in the number of parameters 

of the two models being compared.  For example, to test the hypothesis that the Normal and 

GED specifications are equivalent in 2012 the corresponding LR test statistic is equal to
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2( ) 2(21347.1 21264.9) 164.4GED NormalLR = − = − =l l , which is distributed as a chi-square with one 

degree of freedom and is statistically significant.  Table 5 reports the LR values corresponding to 

various hypotheses for 1985 and 2012.  For 1985, the SGT is seen to yield a statistically 

significant improvement relative to the other specifications considered.  The Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC), reported in Tables 2 and 3, are 

frequently used to compare different model specifications which need not be nested.  Both of 

these criteria reward goodness of fit as measured by the optimized value of the loglikelihood 

function and impose a penalty for model complexity as measured by the number of parameters 

(k) in the estimated model and are defined by 2( )AIC k= − l  and ( )log 2BIC k n= − l  .  Based 

on either the AIC or BIC, the SGT is selected for the year 1985.  For 2012, the SGED, ST, and 

SGT yield similar results which dominate the results for the symmetric specifications.    

 

Table 5, Partially Adaptive Likelihood Ratio Tests 

Hypotheses:  1985 2012 
SGT=ST  47.3 6.1 
SGT=SGED 530.5 66.2 
SGT=GT 1138.8 530.6 
SGT=t 1269.2 534.6 
SGT=GED 1424.2 581.9 
SGT=Laplace 819.3 2077.3 
SGT=Normal 746.3 1495.7 
Source: See Tables 2 and 3. 
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Because of the strong overall performance of the SGT, we focus attention on SGT 

partially adaptive BMI results and the corresponding parameter estimates.  BMIs are inversely 

related to historical height; however, with the modern obesity epidemic, it is not clear what the 

relationship is between modern BMI and height (Carson, 2009; Carson, 2012).  For both youths 

and adults, BMIs are inversely related to height in the modern obesity epidemic.  Taller statures 

allow weight to be distributed over greater physical dimensions.  Taller heights are also related to 

higher metabolisms, and more calories are required for taller individuals resulting in lower body 

mass (Schneider, 2017; Gluckman et al 2008).  Regardless of the assumed error distribution, 

once height is accounted for, women have lower BMIs than men; however, this difference is less 

pronounced over time.  Women are shorter than men, and after controlling for height, women are 

more likely to be obese even though they have lower BMIs, especially, African-American 

women (McLannahan and Clifton, 2008, p. 25-26; Komlos and Brabec, 2010; Komlos and 

Brabec, 2011; Matorell et al. 2000).  Nevertheless, women are also physically less active than 

men, have less muscle tissue, and muscle is heavier than fat (Ferraro et al 1992; Arciero et al 

1993).  Nevertheless, women are shorter and after controlling for height, women are more likely 

to be obese even though they have lower BMIs, especially, black women (McLannahan and 

Clifton, 2008, p. 25-26; Komlos and Brabec, 2010; Komlos and Brabec, 2011).  For both the GT 

and SGT models, BMIs increase with age during youth (Table 4), yet because physical activity 

and basal metabolic rates decrease with age, BMIs in the mid-50s decrease due to a loss in lean 

muscle tissue (Table 5; McLannahan and Clifton, 2008, p. 42; Piasecki et al. 2015).   

In historical studies, individuals with darker complexions have greater BMIs than 

individuals with fairer complexions, and independent of gender, modern Hispanic populations 
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have greater weights than non-Black, non-Hispanic populations (Schutte et al. 1984; Carson, 

2016). Alternatively, Komlos and Brabec (2010, 2011) demonstrate that black and white male 

US populations have comparable BMIs; however, black females have significantly higher BMIs 

than men and non-black females (Tables 4 and 5).  Multiple explanations account for this 

pattern.  Individuals with darker complexions are on average shorter than individuals with fairer 

complexions, and BMI is inversely related to height.  Individuals with darker complexions may 

also have greater BMIs because they have greater protein in muscle tissue per unit tissue mass, 

and muscle is heavier than fat (Schutte et al. 1984; Aloi et al. 1997; Barondess et al. 1997; 

Heyward and Wagner, 2000).  In the mid-1980s, individuals in larger households had greater 

BMIs, and youth BMIs increased in family size at a decreasing rate (Table 4).   However, by 

adulthood in 2012, there was no relationship between BMIs and household size (Table 5).  

Marital status is similar.  Young married individuals have greater BMIs than married adults; 

however, the marital status difference is insignificant by middle age.  The relationship between 

BMI and urban residence in a developed economy also illustrates an age specific result, and 

young individuals in urban areas consistently have lower BMIs than their rural counterparts.  

However, the difference is insignificant by middle age.  In modern populations, there is little 

evidence to indicate a pronounced relationship between BMI and urban residence (Martonell et 

al. 2000).  BMI status was also significantly related to early-life BMI classification, and 

individuals classified as underweight or obese in 1985 were likely to retain that status when 

observed in 2012 (Parsons et al. 1999; Baird et al. 2005, p. 930).   Consequently, in both modern 

and historical populations, BMIs are directly related to darker complexions; however, across 

various error distributions, the effect of family size, marital status, and urban residence are no 

longer significant by middle age.  
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V. Conclusion 

Over the last 10 years, few areas in medicine and the social sciences have attracted as 

much attention as the increase in modern BMI values.  Traditional least squares estimation has 

minimum variance of all linearly unbiased estimates if regression model errors are independently 

and identically distributed.  Least squares is also efficient when the errors are normally 

distributed but need not be efficient when they follow some other distribution.  Using precision 

equations and likelihood ratio tests, this study shows that the errors associated with 1982 and 

2012 US BMI regression models are better modeled with the more flexible Skewed Generalized t 

distribution, indicating partially adaptive estimation provides useful insight into the modern 

obesity epidemic.  BMIs changed considerably between 1985 and 2012, yet some patterns are 

robust.  There is an inverse relationship between BMI and height, and after accounting for 

height, women have lower BMIs than men.  Nonetheless, women have higher rates of obesity, 

indicating that women have lower body mass, yet because of shorter statures, women are more 

likely to be classified as obese.  During the modern obesity epidemic, BMIs were associated with 

larger families during their youth; nevertheless, this size effect was insignificant by middle age. 

Various alternative estimation techniques to least squares are now available.  Partially 

adaptive estimation presented here is based on very flexible assumptions regarding how 

regression model errors are distributed.  The Skewed Generalized t is a very flexible distribution 

and performs better than least squares indicating that estimator precision can be improved by 

using a more flexible error distribution that adjusts to changing characteristics encountered 

during the modern obesity epidemic.  
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