
Baltagi, Badi H.; Egger, Peter H.; Kesina, Michaela

Working Paper

Contagious Exporting and Foreign Ownership: Evidence
from Firms in Shanghai Using a Bayesian Spatial Bivariate
Probit Model

CESifo Working Paper, No. 6993

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Baltagi, Badi H.; Egger, Peter H.; Kesina, Michaela (2018) : Contagious Exporting
and Foreign Ownership: Evidence from Firms in Shanghai Using a Bayesian Spatial Bivariate Probit
Model, CESifo Working Paper, No. 6993, Center for Economic Studies and ifo Institute (CESifo),
Munich

This Version is available at:
https://hdl.handle.net/10419/180255

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/180255
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

6993 
2018 

April 2018 

 

Contagious Exporting and For-
eign Ownership: Evidence 
from Firms in Shanghai Using 
a Bayesian Spatial Bivariate 
Probit Model 
Badi H. Baltagi, Peter H. Egger, Michaela Kesina 



 
Impressum: 
 

CESifo Working Papers 
ISSN 2364‐1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research ‐ CESifo 
GmbH 
The international platform of Ludwigs‐Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180‐2740, Telefax +49 (0)89 2180‐17845, email office@cesifo.de 
Editors: Clemens Fuest, Oliver Falck, Jasmin Gröschl 
www.cesifo‐group.org/wp 
  
An electronic version of the paper may be downloaded  
∙ from the SSRN website:           www.SSRN.com 
∙ from the RePEc website:          www.RePEc.org 
∙ from the CESifo website:         www.CESifo‐group.org/wp 
 
 
 

 
 

  
  

 



CESifo Working Paper No. 6993 
Category 8: Trade Policy 

 
 
 

Contagious Exporting and Foreign Ownership: 
Evidence from Firms in Shanghai Using a 
Bayesian Spatial Bivariate Probit Model 

 
 

Abstract 
 
Whether a firm is able to attract foreign capital and whether it may participate at the export 
market depends on whether the fixed costs associated with doing so are at least covered by the 
incremental operating profits. This paper provides evidence that success for some firms in 
attracting foreign investors and in exporting appears to reduce the associated fixed costs with 
exporting or foreign ownership in other firms. Using data on 8,959 firms located in Shanghai, 
we find that contagion and spillovers in exporting and in foreign ownership decisions within an 
area of 10 miles in the city of Shanghai amplify fixed-cost reductions for both exporting as well 
as foreign ownership of neighboring firms. Contagion among exporters and among foreign-
owned firms, respectively, amplify shocks to the profitability of these activities to a large extent. 
These findings are established through the estimation of a spatial bivariate probit model. 
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1 Introduction

Models of the new trade theory suggest that whether firms export or are part of a multi-

national network depends – apart from market size, product quality, productivity, factor

costs, and trade costs – on the incremental fixed costs associated with such activity.2

The majority of both theoretical and empirical contributions in this literature assume

that exporting and foreign ownership decisions are carried out independently across

firms. This is the case in spite of the theoretical proof of relevant local cross-firm network

effects towards global market participation in Krautheim (2012) and to broad evidence of

interdependence in exports and foreign direct investment at the aggregate (country-pair)

level.3

This paper illustrates at the micro level that exporting and foreign ownership deci-

sions are affected by the decisions of other firms in a certain geographical neighborhood.

In addition, the exporting and foreign ownership decisions are correlated through de-

pendence not only on the same fundamentals but also through the stochastic shocks.

The paper provides empirical evidence of local contagion, network, or spillover effects

in determining export and foreign ownership decisions based on firm-level census-type

data from the city of Shanghai – one of the most open regions in terms of exporting

and foreign ownership in one of the most prosperous exporting nations on the globe,

China. We use cross-sectional data for the year 2002, which is particularly interesting

2There is broad theoretical support for these generic arguments. For instance, Melitz (2003) and

Helpman, Melitz, and Rubinstein (2008) provide models where firms will enter the export market, if the

incremental operating profits from exporting exceed the incremental increase in the fixed costs related

to it. Markusen (2002), Helpman, Melitz, and Yeaple (2004), and Barba Navaretti and Venables (2006)

provide models of vertically- and horizontally-organized multinational firms where foreign ownership

emerges, if the incremental profits from a foreign-owned afiliate exceed the incremental increase in the

corresponding fixed costs. Earlier research provided evidence that the fixed costs of multinational firm

operation (foreign ownership) first-order dominate those of exporting (see Girma, Görg, and Strobl,

2004).
3See Behrens, Ertur, and Koch (2012) and Egger and Pfaffermayr (2016) for evidence of interdepen-

dence in aggregate bilateral exports. See Baltagi, Egger, and Pfaffermayr (2007) or Blonigen, Davies,

Waddell, and Naughton (2007) for evidence of interdependence in aggregate bilateral foreign direct

investments.
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since many firms started exporting and attracted foreign capital around that year after

China’s participation in the World Trade Organization in 2001.

For the purpose of identification and estimation, the paper proposes a novel Bayesian

model of contagion with multiple binary dependent variables that are determined jointly

by specific latent processes which depend stochastically on each other. The resulting

empirical model for the question at stake is a spatial bivariate probit model for exporting

and foreign ownership. Estimation by Markov Chain Monte Carlo simulation of the

model is shown to perform well in finite samples in a simulation study. One advantage

of this estimation procedure relative to standard binary choice models is that it can

handle processes with cross-sectionally dependent latent variables (such as the latent

profitability of exporting and the latent profitability of foreign ownership). Another

advantage relative to single-equation spatial binary choice models is that the approach

can handle a process with cross-equation interdependence in the stochastic terms.

The empirical model specification is guided by economic theory and permits a quasi-

structural interpretation of the estimated parameters. Economic theory suggests that

the (latent) profitability of exporting as well as foreign ownership with heterogeneous

firms depends on the attainable profit margin, firm-level productivity, factor costs per

efficiency unit, trade costs, fixed costs, and demand. The latent profitability is a log-

additive function of the aforementioned arguments in a large class of new trade theory

models (see Chaney, 2008; Helpman, Melitz, and Rubinstein, 2008).

The results for firm-level data in Shanghai suggest that contagion among exporters

and contagion among foreign-owned firms leads to a significant reduction in the fixed

costs of exporting as well as of foreign ownership.

Possible channels of these intra-city, contagious fixed-cost-depressing effects are spillovers

which may root in an information dissipation across firms, in an explicit learning induced

by cross-firm factor flows (of workers and intermediate goods), and in equilibrium ef-

fects (e.g., on the prices of goods and factors). Hence, an increase in the profitability

of exporting or foreign ownership (e.g., through policy stimuli such as research funding)

in conjunction with the contagion of firms is potentially at least as important for the

selection of firms into specific types of activity as a proportional direct reduction of the
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fixed costs associated with the activity.

The remainder of the paper is organized as follows. Section 2 proposes a stylized

theoretical model to motivate the empirical analysis. Section 3 outlines the estimation

procedure and presents the performance of the estimator with simulated data. Section

4 describes the data and estimation results, and the last section concludes.

2 Theoretical considerations

A large concurrent literature in international economics assumes that revenues, profits,

and fixed costs are linearly separable between exporting and domestic sales on the one

hand and between affiliates belonging to a multinational firm on the other hand (see,

e.g., Chaney, 2008; Helpman, Melitz, and Rubinstein, 2008, for exporting, and Egger and

Seidel, 2013, for multinational plants). The reason why some firms export while others

do not are productivity-related operating profits that cover or exceed the fixed costs of

running an exporting firm. The reason why some firms belong to a multinational firm

while others do not are productivity-related operating profits at the level of the affiliate

that cover or exceed the fixed costs associated with foreign ownership. Let us denote

type-h firms, with h = {e, f} where e stands for exporting and f for foreign ownership.

Then, yhi denotes a binary indicator variable taking the value 1 if firm i is of type h and

zero otherwise. Determinants of the decision to export and the decision to invest in a

foreign firm depend on the type-h-specific operating profits for firm i, Φhi , as well as

the type-h-specific fixed costs for firm i, Ξhi. The profitability of firm i associated with

assuming type h is then reflected in the latent variable Y ∗hi = Φhi
Ξhi

, which generates the

binary variable yhi

yhi = 1

(
Φhi

Ξhi
> Uhi

)
, (1)

where 1(.) is an indicator function which takes the value 1 if the condition is satisfied, and

zero otherwise. Uhi is a non-negative random variable with mean one. Using lower-case

letters for logs of {Y ∗hi,Φhi,Ξhi, Uhi}, we may write the log-transformed latent process as

y∗hi = φhi − ξhi, with yhi = 1(φhi − ξhi > uhi), (2)

where uhi is a random variable with mean zero and infinite support.
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Generic models of firms of this kind all have in common that neither y∗hi nor uhi

is observed, and they often have the following underlying structure. First, log operat-

ing profits, φhi, depend upon market power (mark-ups), on efficiency (productivity), on

sector-specific or firm-specific factor costs in efficiency units, and on market potential

(trade costs and local versus foreign market size). Second, log fixed costs, ξhi, depend

on the factor requirements (e.g., the necessary assets) to set up a firm of type h (see

Markusen, 2002). We argue that, apart from sector-specific characteristics determining

fixed costs, the profitability of running a firm of type h depends on other firms’ profitabil-

ity from doing so, denoted by y∗hi. The latter is a weighted average of the profitability

of those firms whose leniency towards becoming a type-h firm affects the profitability of

firm i. In the literature this type of interdependence is framed as a network effect and

established, e.g., in Krautheim (2012).

Collecting the fundamental drivers of a decision to become an h-type firm into the

vector zhi, we can write the latent process as

y∗hi = zhiδh + uhi = λhy
∗
hi + xhiβh + uhi, (3)

where zhi = [y∗hi, xhi], with y∗hi being a scalar and xhi being a vector and δh = [λh, β
′
h]′,

with λh being a scalar and βh being a conformable vector. Notice that the coefficient λh

measures the strength of interdependence and the potential impact of learning of firms

in deciding to become a type-h unit. Given a negative shock on fixed costs, λh > 0

would suggest that fixed costs would decline by more than the negative direct shock

due to spillovers from other firms about activity h, while the opposite would be true

if λh < 0. Ceteris paribus, the larger λh, the larger are the spillovers from other firms

about activity h.

3 Econometric model

The previous section argued that the fixed costs of adopting strategy h are potentially

affected by the latent profitability of other firms with regard to activity h. With such

decisions being interdependent across firms, we need to account for contagion or interde-

pendence in the stochastic model. With the interdependence of firms being geographi-
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cally (or otherwise) bound, we may formulate a spatial stochastic model. With exporting

and foreign ownership not being mutually exclusive but interdependent, such a stochas-

tic model should feature interdependence across units as well as interdependence across

latent processes per unit which generate the binary decisions of becoming an exporter or

not and attracting foreign capital or not. This is accomplished in the subsequent spatial

bivariate probit model.

3.1 Model and notation

Let us denote the export decision of firm i = 1, ..., n by yei and the foreign ownership

decision by yfi, again using h ∈ {e, f}. We observe these two binary variables as

yhi = 1(y∗hi > 0), y∗hi = λhy
∗
hi + xhiβh + uhi, y∗hi =

n∑
j=1

wijy
∗
hj , (4)

where λhy
∗
hi for h ∈ {e, f} summarizes the effect of i’s neighboring h-type firms on i’s

latent profitability associated with strategy h. wij is a normalized weight describing the

strength of the relationship between units i and j, conditional on their location.4 wij is

positive if two distinct units i and j are neighbors and zero otherwise; it is always zero

for i = j. Neighborliness can be defined along several lines. In our application we rely on

geographical neighborliness between two firms. λh denotes the spatial autocorrelation,

contagion, interdependence, or spillover parameter for firms of type h, and it will be

essential to determine the relative importance of spillovers in the fixed costs associated

with activity h.

In general, the vector of covariates xhi is indexed by h, since decisions about exporting

and foreign ownership only partly depend on the same exogenous fundamental variables,

according to economic theory (see Markusen and Venables, 1998, 2000; Markusen, 2002).

Since the decisions about strategies h ∈ {e, f} depend on an overlapping set of

observable fundamentals in xhi, it appears plausible to allow them to be correlated also

4It is customary in empirical international economics to take the location of production units as given,

while considering their type of activity (here dubbed h) as endogenous (see, e.g., Eaton, Kortum, and

Kramarz, 2011; Arkolakis, Ganapati, and Muendler, 2014).
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with regard to stochastic shocks. We assume those to be multivariate normaluei
ufi

 ∼ N
0

0

 ,

1 ρ

ρ 1

 , (5)

where ρ denotes the tetrachoric correlation between uei and ufi, and the variances of

the errors are normalized to unity (see, for instance, Greene, 2003, for a treatment of

the bivariate probit model without accounting for any form of spatial correlation).

Writing the model for all units i and latent outcome h in vector form yields

y∗h = λhy
∗
h + xhβh + uh, (6)

where y∗h ≡ Wy∗h, W = (wij) is a row-sum-normalized n × n matrix reflecting the

neighborhood structure.5 The matrix xh is n × kh where kh is the number of variables

in xh. uh is a column vector with n rows.

Stacking the two equations results iny∗e
y∗f

 =

λe 0

0 λf

⊗ In
W 0

0 W

y∗e
y∗f

+

xe 0

0 xf

βe
βf

+

ue
uf

 , (7)

where In denotes an identity matrix of dimension n× n.6

3.2 Estimation procedure

Several methods exist to estimate univariate or multivariate binary choice models with

conditionally independent data. Among those, maximum likelihood is the most promi-

nent one. The inclusion of the latent profitability associated with strategy h for other

firms, y∗h, as a determinant of the own latent profitability of strategy h, y∗h, induces

two complications compared to empirical models for independent data: the likelihood

function involves an n-dimensional integral, and the reduced form of the latent process

is nonlinear. The former relates to computational issues, while the latter relates to the

consistency of the model. Ignoring relevant spillovers from y∗h on y∗h leads to inconsistent

5It is customary to normalize W so that a sufficient condition for model stability and an equilibrium

is that |λh| < 1.
6In principle, W could be specific to activity h.
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estimates of the parameters βh and the corresponding total effects of fundamentals on

the probability of adopting strategy h.

For this reason, unless the data-set is manageably small, the standard maximum-

likelihood estimator is not feasible with data featuring cross-unit spillovers and interde-

pendence. In fact, for binary choice problems with interdependence by way of inclusion

of a weighted average of the dependent latent variable (y∗h) on the right-hand side of

the empirical model, the following procedures are most commonly used: expectation-

maximization methods (see McMillen, 1992); simulated-maximum-likelihood methods

through recursive-importance-sampling or integration by simulation using the Geweke-

Hajivassiliou-Keane simulator (see Beron and Vijverberg, 2004); generalized-method-of-

moments estimation (see Klier and McMillen, 2008); maximum-score estimation (see Lei,

2013); or Markov Chain Monte Carlo (MCMC) simulation (see LeSage, 2000, LeSage

and Pace, 2009). These methods have hitherto mostly been applied to univariate (single-

equation) problems.

In this paper, we formulate a bivariate binary choice model with spatial dependence,

using MCMC techniques to analyze the empirical choice of exporting and foreign owner-

ship for firms. With multiple spatially dependent latent variables and correlation of the

stochastic terms across equations, the standard maximum likelihood estimator would

be even more difficult to apply. Clearly, any one of the aforementioned methods being

able to tackle single-equation binary choice problems with interdependent data would be

suitable to analyze multivariate binary choice problems as well. In any case, we are not

aware of work that extends the above methods to the multivariate binary choice model

with spatial dependence, which is at the heart of this paper’s interest.

Latent variable treatment and generic posterior distribution

According to Albert and Chib (1993), who investigated a nonspatial probit model,

p(β|y∗) = p(β|y∗, y). The distribution of the parameters conditional on both y∗ and

y is the same as the one that only conditions on y∗. In a Bayesian framework, working

with latent variables has two nice features: one can sample them, and conditioning on

them yields simpler distributions.
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In the model of interest here, we may subsume all parameters of interest in θ which

contains ρ as well as the elements of y∗h, βh, and λh for all h ∈ {e, f}. Moreover, we may

refer to all the data by D, which contains all unique elements of X =

xe 0

0 xf

, W ,

and yh for all h ∈ {e, f}. Applying Bayes’ rule and reformulating yields the following

joint posterior distribution

p(θ|D) ∝ p(D|θ) · p(θ)

∝ p(ye, yf |θ,X,W )p(y∗e , y
∗
f |βe, βf , λe, λf , ρ,X,W )

p(βe)p(βf )p(λe)p(λf )p(ρ),

where we assume independence of the priors in the last line. Since the joint posterior dis-

tribution turns out to be intractable, we follow Gelfand and Smith (1990) and calculate

the conditional distribution of each parameter θ` conditional on all the other parameters,

θ−` and the data, D. Since we condition on the data throughout, we suppress D among

the conditioning arguments in most of what follows for notational simplicity.

Priors

Under independence of the priors of all parameters, the prior distributions may be as-

sumed to be

βh ∼ N(β
h
, V h) where β

h
= 0k×1 and V h = Ik · 1e12,

λh ∼ U(−1, 1),

ρ ∼ U(−1, 1).

These priors are relatively uninformative, reflecting a large degree of uncertainty about

the parameters. Intuitively, in calculating the posterior distribution less weight is placed

on the prior and more on the data as a consequence.

Likelihood

It will turn out useful to define Lg = In − λgW as well as L̃g = L−1
g . The likelihood

is stated in terms of the latent variables y∗h for h ∈ {e, f}, and the joint distribution of
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(y∗e , y
∗
f ) is given byy∗e

y∗f

 ∼ N
 L̃exeβe

L̃fxfβf

 ,

L̃e 0

0 L̃f

1 ρ

ρ 1

⊗ In
L̃e 0

0 L̃f

′ .

This yields the likelihood

p(y∗e , y
∗
f |βe, βf , λe, λf , ρ,X,W ) =

1

2πn
|Le||Lf ||Σ|−n/2exp

[
−1

2
trace

(
RΣ−1

)]
,

where, under the present assumptions, Σ =

1 ρ

ρ 1

 and R =

ree ref

rfe rff

 is a 2×2 matrix

containing the elements rgh = (Lgy
∗
g − xgβg)′(Lhy∗h − xhβh) with g, h ∈ {e, f}.

Conditional distribution of y∗e and y∗f

The posterior distributions for the latent variables are calculated using the joint distri-

bution of (y∗e , y
∗
f ). Using g, h ∈ {e, f} for g 6= h, the conditional distribution of y∗g given

the other parameters is given by7

y∗g |θ−y∗g ∼ N
(
L̃gxgβg + ρL̃gLh

(
y∗h − L̃hxhβh

)
, (1− ρ2)L̃gL̃

′
g

)
.

When taking draws of y∗e and y∗f , we sample them by applying the method of Geweke

(1991),8 accounting for the state of the observed binary variables ye and yf , respectively:

we take draws from a right-truncated normal (if the observed binary variable is 0) or

from a left-truncated normal (if the observed binary variable is 1). As outlined in

LeSage and Pace (2009), every element of the vector y∗g is drawn separately, taking the

interdependence of the units i in the system into account.9

Conditional distribution of βe and βf

Using {g, h} ∈ {e, f} for g 6= h, the conditional distribution of βg given the other

parameters is given by

βg|θ−βg ∝ N(βg, V g),

7Consistent with the earlier notation, we refer to the distribution of y∗g conditional on all parameters

except y∗g as y∗g |θ−y∗
g
, here.

8In a spatial context, the procedure is outlined in LeSage and Pace (2009).
9I.e., when drawing y∗gi, we condition on all parameters other than y∗gi in the system – namely also

on all elements of y∗g except for y∗gi.
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where

βg =
(
V −1g + 1/(1− ρ2)(x′gxg)

)−1 [
V −1g β

g
+ 1/(1− ρ2)x′g

(
Lgy

∗
g − ρ(Lhy

∗
h − xhβh)

)]
V g =

(
V −1g + 1/(1− ρ2)(x′gxg)

)−1
.

and β
g

and V g are the values of the corresponding prior. Gibbs sampling is applied for

drawing βg.

Conditional distribution of λe and λf

Using h ∈ {e, f}, the conditional distribution of λh is given by

λh|θ−λh ∝ |In − λhW |exp
[
−1

2
trace

(
RΣ−1

)]
. (8)

Since this distribution takes an unknown form, we apply a Metropolis-Hastings proce-

dure for simulating it, where we draw a new proposal candidate λ′h and evaluate the

conditional distribution in (8) at both the previous λh and the new λ′h (see LeSage and

Pace, 2009).

Conditional distribution of ρ

The conditional distribution of ρ is given by

ρ|θ−ρ ∝

∣∣∣∣∣∣ 1 ρ

ρ 1

∣∣∣∣∣∣
−n/2

exp

[
−1

2
trace

(
RΣ−1

)]
, (9)

which we also sample by a Metropolis-Hastings approach, since the conditional distri-

bution has an unknown form.

MCMC procedure

With the conditional distributions at hand, we apply a Markov Chain Monte Carlo pro-

cedure. After choosing some starting values for the parameters, we draw each parameter

from its conditional distribution. Using h ∈ {e, f} and D to denote the data, for each

draw, we perform the following steps:
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1. Update βh using Gibbs sampling from its conditional multivariate normal distri-

bution: βh|θ−βh , D.

2. Update ρ using the Metropolis-Hastings procedure.

3. Update λh using the Metropolis-Hastings procedure.

4. Update y∗hi using Gibbs sampling from its conditional truncated normal distribu-

tion: y∗hi|θ−y∗hi , D.

These steps are repeated until convergence is achieved. Convergence is assessed by

means of the Geweke (1992) test and the Raftery and Lewis (1992) I-statistic. The

I-statistic should be smaller than 5 and the Geweke statistic should not reject the null

hypothesis that the posterior mean of the first 20 percent and the last 50 percent of the

draws in the chain are equal.

Monte Carlo simulation study

To illustrate the performance of the bivariate probit model with triangular data, we

perform Monte Carlo experiments on a spatial bivariate probit model as it underlies the

empirical application in this paper.

In all designs and experiments, we consider two exogenous variables

xki ∼ N(0, 1) for k = 2, 3

and a constant x1i = 1. The three explanatory variables are collected in the vector

xi = [xi1, xi2, xi3] which is the same for the generic latent variables, y∗1 and y∗2 (which

we use in place of the earlier y∗e and y∗f ). We assume that the true parameter vectors

on the stacked regressors x are β1 = (1,−2, 1.25)′ and β2 = (1,−1, 0.5)′ for y∗1 and y∗2,

respectively. Without loss of generality, we assume that all units i are located on a circle

for the present design. In particular, the vectors y∗1 and y∗2 involve a spatial weights

matrix which we assume to exhibit a 10-before-10-behind neighborhood structure. Such

a neighborhood structure means that unit 1 in equation 1 depends upon an equally-

weighted average of y∗1 of units 2 to 11 as well as of units n − 9 to n but it will be
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independent of all other units. The terms y∗1 and y∗2 will be based on the row-sum-

normalized matrix W . With a 10-before-10-behind neighborhood structure, the entries

of W are 1/20 for neighbors so that each neighbor to any unit receives a weight of

0.05. The corresponding true parameters on y∗1 and y∗2, λ1 and λ2, respectively, will be

specified below. Finally, the stochastic terms (u1, u2) are generated as bivariate normal

with cross-equation correlation coefficient ρ and unitary variances.

We consider four designs with regard to the configuration of {λ1, λ2, ρ}: {λ1 =

0.4, λ2 = 0.7, ρ = 0.5} (Design 1); {λ1 = 0.2, λ2 = 0.3, ρ = 0.5} (Design 2); {λ1 =

0, λ2 = 0.7, ρ = 0.5} (Design 3); {λ1 = 0.4, λ2 = 0.7, ρ = 0} (Design 4).

For notational convenience, we denote the vector of parameters of interest by θ =

(β1, β2, λ1, λ2, ρ). The latent variables are generated according to the following reduced

form:

y∗h = L̃hxβh + L̃huh, h ∈ {1, 2}

Using these latent variables, we obtain the observable binary variables yh = 1(y∗h > 0).

We consider two different sample sizes of n = {1, 000; 2, 000}. It will become clear below

why even a modest number of eight configurations (two sample sizes and four designs

with regard to {λ1, λ2, ρ}) as considered here is computationally intensive.

Each experiment or configuration is based on 1,000 independent bivariate draws for

(u1, u2) and, hence, y∗1 and y∗2 as well as y1 and y2. For each replication, we apply

the MCMC procedure described in the previous section based on 20,000 draws for the

parameter values θ. Hence, with two sample sizes and four designs for {λ1, λ2, ρ}, 1,000

draws of (u1, u2), and 20,000 MCMC draws each, there are 160,000,000 draws. The

convergence of the chains is assessed by the Raftery and Lewis (1992) I-statistic and the

Geweke (1992) test. In every replication, the first 4,000 MCMC draws were discarded as

burn-ins. Due to the presence of high autocorrelation in the draws, we thinned the chain

of draws and only kept every 10th draw. After discarding the burn-ins and relying only

on the thinned chain of parameters, the remaining 1,600 draws were used to calculate

the posterior means of the parameters, θ, for every one of the 1,000 replications in

each experiment. This yields 1,000 posterior means of the parameter vectors for each

12



experiment. Based on those posterior means, we calculated the summary statistics

presented in Tables 1-4 for Designs 1-4, respectively.

– Tables 1-4 about here –

The upper panels of Tables 1-4 contain the results for n = 1, 000 and the lower panels

the results for n = 2, 000. For all parameters and designs we report the mean, standard

deviation, the average bias, and the root mean squared error (RMSE). Furthermore,

we report some convergence diagnostics for the individual Markov chains, where we

concentrate on the I-statistic proposed by Raftery and Lewis (1992) and the p-values

of the Geweke (1992) test. The Monte Carlo analysis is particularly informative with

regard to the performance of the estimation procedure given 20,000 draws, 4,000 burn-

ins, and a thinning ratio of 1/10. However, we could demonstrate that even using only

half of the draws (i.e., 10,000 instead of 20,000) would obtain similar results. This is

assuring for the empirical analysis in Section 4, where we will adopt exactly the same

approach but with a bigger data-set.

The results in Tables 1-4 suggest that all parameters are estimated well even in mod-

est samples of n = 1, 000 and n = 2, 000. The numbers indicate that the small-sample

bias is smaller with the larger samples, as expected. But even for n = 1, 000, the av-

erage bias is in the range of less than one percent. The RMSE is only slightly larger

than two percent of the true parameter value, but it drops by one-half on average when

doubling the sample size. What is most important to us is that the bias and precision of

the spillover parameters {λ1, λ2} and the cross-equation correlation parameter ρ are as

small as those of the other parameters. This makes us confident that the proposed proce-

dure can be fruitfully adopted with multi-equation problems involving cross-sectionally

interrelated, binary dependent variables even in moderately-sized samples.
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4 Empirical application

4.1 Data set

All data utilized in this study are provided by the National Bureau of Statistics of China

(NBS). The data provide information on balance sheets, exports, foreign ownership,

and a firm’s location for all units with an annual turnover of more than five million

Yuan (about 700,000 USD). We focus on manufacturing firms in Shanghai in the year

2002. Shanghai is interesting for the question at stake of the importance of spillovers for

becoming an exporter or part of a multinational company because it is one of the biggest

cities in China – the biggest exporting country in the world with a lot of foreign direct

investment.10 We consider firms as foreign-owned, if the NBS reports a registration

code of 200 or larger for them, so that they are fully- or partly-owned foreign-owned

enterprises by mainland-Chinese citizens or other owners abroad or by foreign owners

(who may be citizens or entities of Hong Kong, Macao, or Taiwan) or they receive any

foreign direct investment from elsewhere than mainland China.

Furthermore, the port of Shanghai is one of the biggest container ports on the globe

and has an important role for world market access of China’s and, in particular, Shang-

hai’s manufacturers. Indeed, 99% of all goods entering or exiting Shanghai are trans-

ferred via the port. Approximately 20% of the foreign trade volume of regions at the

Chinese coast are transferred via Shanghai’s port.11

10In this paper, we ignore the potential selection of firms into the considered area itself. Eventually,

when not doing so, one might encounter a problem of missing data and of a scale which would go beyond

conventional computing capabilities. In some sense, by doing so, our analysis focuses on the short to

medium run, where location decisions as such are given, while the nature of firm activity (exporting or

not; foreign ownership or not) is in the focus. Moreover, we assume that contagion among firms inside

and outside of Shanghai is negligible (otherwise, one would have to consider such contagion even with

firms outside of China). Finally, we assume that the focus on the firms with the aforementioned turnover

is justified and an associated selection in turnover can be ignored. In the latter regard, we might add

that the firms included in the NBS data altogether account for about 95% of China’s overall value added

in manufacturing between the years 1996 and 2013 (see National Bureau of Statistics of China, 2013).
11For more information on the port of Shanghai, see http://www.shanghaiport.gov.cn/English/

introduction/info_001.html.
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Shanghai is a directly-controlled municipality and has the same status as a province.

China has a different administrative structure and definition of cities than other coun-

tries.12 In our study, we use manufacturing firms that are located in the main city

district of Shanghai (Puxi), firms that are located in the inner suburbs and in the outer

suburbs, as well as firms in the rural areas (Shanghai’s belt). Table 5 shows the distri-

bution of firms across 26 sectors, and Table 6 illustrates how many firms are exporters

versus non-exporters and foreign- versus domestically-owned in the different areas of

Shanghai. Table 7 puts the firm numbers for the two states – exporting versus non-

exporting and foreign- versus not-foreign-owned in a matrix when pooling all covered

sectors and regions of Shanghai.

– Table 5-7 and Figure 1 about here –

Approximately one-third of all firms in the sample are exporters, while about 40% are

foreign-owned, with 59% of the foreign-owned units exporting. More than half of all firms

are located in inner suburbs, while about one-quarter are located in the outer suburbs.

The main city district hosts a lower number of firms than the outer suburbs. The rural

area, which consists of the island Chongming, hosts the lowest number of firms among

the considered areas of Shanghai. This pattern would be expected, since the center of

Shanghai on the one hand benefits from good infrastructure, but on the other hand is

characterized by high real estate prices and rents such that setting up plants in this area

is expensive. A close proximity to the main city center appears desirable to firms as is

obvious from the high number of firms in the inner suburbs surrounding the city center.

Among the inner suburbs, Pudong is the biggest host of firms. Specifically, there are

more firms in Pudong than in the whole outer suburbs. However, this should not be

surprising, since the port of Shanghai is located in this district. The pattern is similar

for the two firm types. About 51% of the exporters and and 56% of the foreign-owned

firms are located in the inner suburbs. Among those, the probabilities of exporting or

being foreign-owned are highest in Pudong.

Figure 1 illustrates the location of exporters and foreign-owned units, respectively,

12See Chan (2007) on the definition of cities in China.
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in the Shanghai area. By and large, the figure shows a similar pattern of location for the

four considered types of firms: foreign-owned exporters, domestically-owned exporters,

foreign-owned non-exporters, and domestically-owned non-exporters. There appears to

be some general clustering of the firms, but the clustering of exporting firms appears par-

ticularly strong within the wider Shanghai area, in particular, when considering foreign-

owned exporters.

4.2 Specification

We use the model specification as outlined in Subsection 3.1 for both exporting and

foreign ownership. The latent variables for the two activities correspond to their unob-

served profitabilities. For the construction of the unnormalized spatial weights matrix,

we determine the inverse bilateral haversine distances between all 8, 959 firms in the

data.13 This leads to an 8, 959× 8, 959 matrix which is symmetric and exhibits zero di-

agonal entries. We consider spillovers between firms being geographically bound within

a radius of 10 miles (we employ alternative specifications of this threshold in the robust-

ness analysis, and the results there suggest that the 10-mile cutoff is selected based on

the deviance information criterion). Notice that this is a large radius in view of the fact

that (i) the density of firms is high and (ii) bicycles and public transportation are the

main means of transport in Shanghai. Moreover, we assume that Chongming is a spatial

island where the entries of W between firms in Chongming and other parts of Shanghai

are set to zero in spite of their actual distance to each other.

For reasons of interpretation, we row-sum-normalize the weights matrix to obtain the

normalized 8, 959 × 8, 959 matrix W and the associated weighted unobserved spillover

terms y∗e = Wy∗e and y∗f = Wy∗f .14

13The haversine formula is particularly suited for calculating great circle distances between two points

i and j on the globe, if two points of location are very close to each other. Denote the haversine function

of an argument ` by h(`) = 0.5(1 − cos(`)), and use φi, φj , and ∆λij to refer to the latitude of i, the

latitude of j, and the difference in longitudes between i and j which are all measured in radians. Then,

the haversine distance between i and j is defined as dij = D · arcsin(H
1/2
ij ), where D is the diameter of

the globe (e.g., measured in miles) and Hij = h(φi − φj) + cos(φi) cos(φj)h(∆λij).
14Notice that y∗e and y∗f are latent and unobservable. However, we may compute the observable
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For a quasi-structural interpretation of the models of y∗e and y∗f , the specification of

the covariates is key. In line with economic theory, this matrix contains firm-specific and

sector-specific covariates besides the constant. At the firm level, we include Employment,

which is the log of the size of the work force, capturing firm size. Productivity is measured

as the log of the ratio of total sales to employment. Intangible asset ratio is the ratio

of intangible assets to total assets and is used as a proxy for knowledge intensity. A

larger value of these three variables should raise the profitability and the probability of

exporting as well as foreign ownership.15

Moreover, we include firm-specific variables to account for geographical factors re-

lated to market access and agglomeration. Distance to port measures the log haversine

distance of a firm to the port of Shanghai, which is important for exporting for several

reasons. The most obvious one is Shanghai’s geographical location at the coast of China

and the importance of the port for global trade. One might in principle consider other

modes of transport – such as railroads or motorways. However, those are less important

for China’s coastal regions, in particular, when it comes to serving customers abroad. As

a second geographical covariate, we include Distance to city center, which measures the

log haversine distance of a firm to the main city center district Huangpu. A closer dis-

tance to the center potentially reflects access to better infrastructure, access to specific

production factors, access to finance, etc.

Earlier results by Head, Ries, and Swenson (1995), Swenson (2008), Fontagné, Koenig,

Mayneris, and Poncet, (2013), and Lovely, Liu, and Ondrich, (2010, 2013) suggest that

the agglomeration of firms in regions affects decisions of both exporters and multinational

firms. We pay attention to this fact by letting the export and foreign ownership decision

ye = Wye and yf = Wyf for illustrative purposes. In particular, we may consider the correlation

coefficients (so-called Moran I statistics) between ye and ye and yf and yf , respectively. It turns out

that those are 0.232 and 0.325, respectively, suggesting somewhat stronger clustering of foreign-owned

than exporting units. Notice that this pattern is consistent with the insights gained from Figure 1.
15In customary theoretical models in trade, these variables are drawn by firms (productivity and assets)

or predetermined by exogenous factors that they stand for in a compact way (employment); see, e.g.,

Melitz (2003) or Helpman, Melitz, and Rubinstein (2004). Clearly, one could think of these variables

as endogenous in different frameworks. However, we refrain from doing so here, as this would further

complicate the analysis and raise the demand for data.
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in Shanghai depend on the location density of all units in a firm’s neighborhood (within

10 miles). The latter is reflected in two covariates. As one measure, the Average distance

to all firms in the neighborhood (based on log haversine distances) within a radius of 10

miles captures the relative centrality of a firm relative to others, reflecting cheap access

to intermediate goods and services from other firms in general (not only exporters or

foreign firms). As the other measure, the Number of other firms in the neighborhood

within a radius of 10 miles captures the relative density of economic activity of firms of

any type (domestic sellers versus exporters and domestically-owned versus foreign-owned

firms). In general, higher values of distance variables of the aforementioned types reflect

bigger distances to the port, the city center, and other firms, respectively, and a bigger

number of firms reflects a higher density of economic activity which is not exactly the

same as a smaller inverse distance to the average other firm in the neighborhood.

Finally, we include a set of industry-specific covariates. The variable Sales to profits

ratio (in logs) reflects the profitability or price-cost markup ratio in an industry. We

include the variable in a linear and a squared fashion to account for the log-nonlinear

impact of the price-cost markups on firm profits in, e.g., monopolistic competition mod-

els of heterogeneous firms (see Melitz, 2003).16 Moreover, we account for the fixed costs

associated with exporting and foreign ownership. Specifically, we include the log aver-

age total assets of all (other) exporters or foreign-owned firms in the lowest percentile of

the respective distribution for each industry. These two variables – Total assets small-

est exporters and Total assets smallest foreign firms – approximate the extent of fixed

costs of the marginal firm of either type. The profitability of exporting and/or foreign

ownership and, hence, the latent variables y∗e and y∗f , depend crucially (and negatively)

on these fixed costs, according to economic theory (see Melitz, 2003; Helpman, Melitz,

and Yeaple, 2004). All of the considered regressors are exogenous determinants of an

individual firm’s choice about exporting (see Melitz, 2003; Krautheim, 2012) or foreign

ownership (see Helpman, Melitz, and Yeaple, 2004). In order to mitigate a potential bias

of these variables associated with the choices of firms, we measure Total assets smallest

16In fact, the zero-profit conditions for the marginal exporting firm and the marginal foreign-owned

firm are nonlinear in the markup in such models.
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exporters and Total assets smallest foreign firms for each firm i from the distribution of

firms which are located outside of a radius of 10 miles of that firm.

– Tables 8 and 9 about here –

Tables 8 and 9 report some descriptive statistics on the covariates for the total sample

and for exporting and foreign-owned firms, respectively. First, Table 8 indicates that the

average distance of exporters (foreign-owned and domestically-owned) to other firms of

their type is smaller than that of non-exporters. Moreover, domestically-owned exporters

tend to be situated more closely than foreign-owned ones.

According to Table 9, on average, exporters and foreign-owned firms are bigger in

terms of employment than the average firm. This fact is well documented in several

studies (see, e.g., Lu, 2010; Ma, Tang, and Zhang, 2012; or Huang, Ju, and Yue, 2013).

The productivity of exporters is lower than on average (see Lu, 2010).17 Foreign-owned

firms have a higher productivity than the average firm and also a higher productivity

than exporting firms on average. Unlike domestically-owned firms, foreign-owned firms

have direct access to technology, knowledge and/or management skills of other units

in the same company, which are located abroad. Thus they have an advantage over

domestic firms that lack such access. The pattern that foreign-owned firms are more

productive than exporting firms is in line with Helpman, Melitz, and Yeaple (2004).

Exporters and foreign-owned firms have a higher intangible asset ratio than the average

firm.

Somewhat surprisingly, the average distance to the port is slightly higher for export-

ing and foreign-owned firms than for others. However, it is slightly lower for exporters

than for foreign-owned firms. In general, this seems to reflect the trade-off between being

closer to the city center and to other firms for factor and technology access versus closer

to the port for customer market access. The average sales-to-profit ratio is slightly higher

for exporters and for foreign-owned firms compared to other firms. Hence, these firms

face tougher competition from their participation at global markets. The smallest ex-

17Due to China’s strong comparative advantage in labor-intensive sectors compared to developed

countries, even less productive firms are competitive on international markets.
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porters appear to be somewhat less fixed-cost intensive than the smallest foreign-owned

firms in the average manufacturing sector.

4.3 Results

Table 10 presents the main estimation results. In addition to the spatial bivariate probit

model, we report nonspatial bivariate probit model results to show the difference in the

point estimates (of course, this does not reflect a difference in marginal effects).18 For

both models, we report the parameter estimates and the standard errors in parentheses.

For the spatial bivariate probit, we additionally include two convergence diagnostics

which we also report with the Monte Carlo simulations, namely Raftery and Lewis’

(1992) I-statistic and the p-value of Geweke’s (1992) convergence test.19 For the spatial

bivariate probit, we ran 20,000 simulations of which 4,000 were considered as burn-ins.

Due to the high presence of autocorrelation, we keep only every 10th iteration. After

discarding the respective draws, the MCMC estimates are based on 1,600 draws.

– Table 10 about here –

The results can be summarized as follows. First, the parameter estimates of ρ are

0.611 and 0.309 for the nonspatial and the spatial bivariate probit, respectively. This in-

dicates an interrelation of the exporting and foreign ownership decisions and thus refutes

a separate estimation strategy for the two equations by means of an ordinary nonspatial

or a single-equation spatial probit model.20 Disregarding spillovers among firms of the

same type results in an upward bias of the cross-equation correlation coefficient.

Second, for the spatial bivariate probit model, Raftery and Lewis’ (1992) I-statistic

and the p-values of Geweke’s (1992) test point to convergence of the Markov chains.

18Recall that ignoring a relevant spatially lagged latent dependent variable results in an omitted

variables bias.
19Recall that the I-statistic should be smaller than 5 and the Geweke test should not reject the null

hypothesis.
20Ignoring the cross-equation dependence in the disturbances by estimating two separate probit models

for exporting and foreign ownership leads to an efficiency loss. We present the results for separate

nonspatial and spatial univariate probit models of that kind in Table 17 in Appendix C.
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Third, the parameters of the spatially lagged dependent variables are positive and highly

significant. Hence, there are cross-firm spillovers in both equations for firms of the same

type. Based on these results, the simple, nonspatial bivariate probit model is rejected. In

light of the arguments in Section 2, the results point to a statistically significant reduction

in the fixed costs of exporting and foreign ownership accruing to spillovers from other

firms of the same type. Overall, the economic effect of contagion and spillovers appears

to be large.

Fourth, higher Employment and higher Productivity increase the probability of ex-

porting as well as the probability of foreign ownership. The positive effect of Productivity

is more pronounced in the foreign ownership equation. To attract foreign capital, firms

need to be more productive than for exporting. This is in line with the theoretical argu-

ments of Helpman, Melitz, and Yeaple (2004) and with the evidence on cherry-picking

of multinational firms with regard to their foreign investment decisions (see Blonigen,

Fontagné, Sly, and Toubal, 2014). A higher Intangible asset ratio exhibits a positive

impact on both exporting and foreign ownership.

Distance to port does not have a statistically significant impact in either equation

of the spatial bivariate probit. In contrast, the nonspatial model does point to a sta-

tistically significant impact of this variable. Notice that the reduced form of the latent

processes leads to a model which includes spatially weighted explanatory variables. We

conjecture that the spatial lag of distance to the port is collinear with distance to the

port itself, which explains this difference in the parameter estimates between the spatial

and nonspatial bivariate probit models. Distance to city center is positive and statis-

tically significant only in the foreign ownership equation. Hence, foreign-owned firms

prefer taking ownership of units which are located at some distance of the city center

(where real estate prices are relatively high), while this is less the case for exporting

firms. A higher Average distance to other firms in the neighborhood reduces the proba-

bility of exporting and foreign ownership. Proximity to other firms exhibits a positive

impact on the probability of exporting and foreign ownership which is in line with the

positive estimates of the spatial autocorrelation parameter. Finally, in line with earlier

aforementioned work, a greater local density of firms captured by Number of other firms
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in the neighborhood raises the export propensity. It also raises the propensity of being

foreign owned of the average unit.

The Sales to profits ratio in the industry has (hump-shaped) non-linear effects on

the linear index underlying the latent profitability of exporting or foreign ownership (the

coefficient on the linear term is positive and the one on the squared term is negative).21

Higher fixed costs, which are measured by Total assets smallest exporters and Total

assets smallest foreign firms in the same industry, exhibit a negative impact on the

probability of being an exporter and foreign owned. The decision to export is negatively

affected by higher minimum export fixed costs, and the probability of foreign ownership

is negatively affected by higher minimum fixed costs of foreign ownership. This is in line

with economic theory (see Markusen, 2002; Markusen and Maskus, 2002; Markusen and

Venables, 1998, 2000; Helpman, Melitz, and Yeaple, 2004).

A quantitative comparison of the estimates between the spatial and nonspatial mod-

els is not possible on the basis of Table 10, but we will relegate it to where we discuss

the marginal effects on latent and binary outcomes (see Section 4.5).

4.4 Robustness

In this subsection, we assess the robustness of the findings presented above along two

lines. First of all, we check whether state ownership plays a role for the decision to

export and for the attractiveness of firms to foreign investors. We do so by adding an

indicator variable which is unity whenever a firm is at least partly state-owned.22 This

is important, since state-owned firms in China tend to be less productive than others

(see Baltagi, Egger, and Kesina, 2016) which should reduce export market success and

their attractiveness to foreign investors. On the other hand, state ownership might relax

21Clearly, the direct effect of that variable on the probability of adopting a particular strategy is

nonlinear for three reasons: the polynomial form in the linear index; the nonlinear form of the reduced

form of the bivariate model accruing to the spillover terms y∗e and y∗f ; and the nonlinear functional form

of the cumulative normal distribution underlying the probit model.
22The NBS reports the state-owned capital for each firm. We classify a firm as to be state-owned here,

if the share of total assets accruing to state ownership is larger than zero. State ownership and foreign

ownership may overlap in a firm.
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financial constraints and the need to cover fixed costs of exporting or foreign ownership

which would have the opposite effect. The results in Table 11 suggest that, on net, state

ownership reduces the propensity to export as well as that of foreign ownership, at least

in the sample at hand. However, the other results are qualitatively insensitive to the

inclusion of the binary indicator variable State-owned.

– Table 11 about here –

Second, we check the robustness of our results by changing the geographical reach of

spillovers in the decisions of interest. In the previous subsection, we allowed spillovers

to occur within 10 miles. There, all elements of W where the distance was bigger than

10 miles were set to zero. In the robustness checks, we vary this cutoff determining the

geographical reach of spillovers by considering alternative values of 12, 8, and 5 miles,

respectively.

Table 12 contains the results for the spatial bivariate probit model. The columns

involve weights matrices that are based on positive cell entries wij if firms i and j are

closer than 12 miles (W12), 8 miles (W8), or 5 miles (W5), respectively.

– Table 12 about here –

The results may be summarized as follows. First, the estimated tetrachoric cor-

relation parameter between the exporting and foreign ownership equation is 0.309 for

spillovers within 12, 8, and 5 miles, respectively. These values are virtually identical to

the benchmark value reported in Table 10. Second, the spatial autocorrelation parame-

ters vary with the different thresholds. Notice, that W -matrices with a lower threshold

have more zero elements than ones based on a bigger threshold. It will generally be

the case that the unnormalized weights have the property
∑N

j=1w
0
5,ij ≤

∑N
j=1w

0
8,ij ≤∑N

j=1w
0
12,ij . Therefore, with row-sum normalization the positive individual cells of the

respective normalized matrices have the property w12,ij ≤ w8,ij ≤ w5,ij ≤ 1. Compared

to our results using W10, we find that the spatial autocorrelation parameters are higher

(lower) when allowing for a bigger (smaller) geographical reach of spillovers. As in Table

10, we generally find that λf > λe.
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Notice that the deviance information criterion takes on values of {43, 490; 43, 457; 43, 446; 43, 462}

when using the spatial weights matrices {W5;W8;W10;W12}. Hence, among the choices

given, we would select the process in Table 10 which is based on a matrix of W10.

4.5 Effect estimates

Clearly, the results in Tables 10-12 are indicative about the qualitative effects of the

fundamentals on the response probabilities regarding exporting and foreign ownership.

However, the nonlinear nature of the probit model together with the nonlinear structure

of the reduced form of the underlying latent processes do not permit a quantitative as-

sessment. Therefore, we devote this subsection to a discussion of estimates of the effects

of a change in the k-th covariate on outcome. For this, it will be useful to introduce

the one-standard-deviation change in covariate k in equation h, which is scaled by the

corresponding parameter estimate, β̂h,k, as ∆̂h,k. The later serves to facilitate a com-

parison of the regressors in terms of their relative importance for latent outcomes (i.e.,

the respective profitabilities) and choice probabilities regarding exporting and foreign

ownership.

Regarding effect estimates on the latent profitabilities of exporting and foreign own-

ership let us define for h ∈ {e, f} the vectors

• of direct effects: d̂dh,k = vecdiag(L̃h)∆̂h,k

• of effects on others, d̂oh,k = (L̃hιN )∆̂h,k − d̂dh,k

• of effects from others, d̂fh,k = (L̃′hιN )∆̂h,k − d̂dh,k

• of total effects, d̂th,k = d̂dh,k + d̂fh,k

where Lh = (IN − λ̂hW ) and L̃h = L−1
h , as above.

While the estimates of d̂`h,k with ` ∈ {d, o, f, t} allude to the relative importance of

regressors for latent profitabilities, they do not permit immediate conclusions regarding

associated changes in choice probabilities due to the nonlinear mapping of the former into

the latter. With regard to moments of the effects on choice probabilities for equation h ∈

{e, f}, we can use the draws ŷ∗h and the above estimates d̂`h,k. Then, counterfactual latent
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outcomes can be calculated as ỹ∗`h,k = ŷ∗h + d̂`h,k and the corresponding counterfactual

binary outcomes are ỹ`h,k = (ỹ∗`h,k > 0). The latter then permits the computation of

changes in marginal probabilities as

∆P `h,k = E(ỹ`h,k)− E(yh) (10)

and in joint probabilities as

∆P `rs,k = E(ỹ`e,k = r, ỹ`f,k = s)− E(ye = r, yf = s) for r, s ∈ {0, 1}. (11)

Clearly, all of the above is defined and could be done for ` ∈ {d, o, f, t}. However,

we focus on estimates of total effects with ` = t here for the sake of brevity. Table

13 summarizes the corresponding estimates regarding effects on the continuous latent

exporting and foreign ownership profitabilities, d̂th,k, with the data at hand when using

the parameters in Table 10. Since the spatial model entails effects which vary across

the units of observation i due to spatial multiplier effects, we report moments of the

distribution of the effects for the covariates in that model, while we only report average

effects (and their standard errors) for the nonspatial bivariate probit model, where, due

to the absence of spillovers, average effects do not vary with the location of firms. For

the sake of brevity, let us mostly focus on the average effects which are reported at the

bottom of each panel in the table.

– Tables 13-15 about here –

The results in Table 13 suggest the following conclusions. Among the considered

regressors, firm size (Employment), efficiency (Productivity), and the degree of local

competition (Sales to profit ratio) stand out as drivers of both the gains from export-

ing and foreign ownership in the spatial model. The fixed costs of exporting (Total

assets of smallest exporters) and of foreign ownership (Total assets of smallest foreign

firms) are important obstacles to exporting and foreign ownership, respectively, with

the corresponding scaled effects on latent outcomes being among the highest across the

regressors in absolute value. The reported moments of effects across the observations i

suggest that there is a large degree of heterogeneity in the responses to homogeneous
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shocks, which accrues to spillovers and the geographical location of firms. In general,

the average effects are much smaller in the nonspatial bivariate probit model than in

its spatial counterpart, suggesting that the omitted-variables bias associated with an

ignorance of the spatially lagged latent variables in the model is of large magnitude.

Table 14 reports on the changes in marginal choice probabilities of exporting and

foreign ownership associated with the changes in latent outcomes in Table 13, and Table

15 does the same for the joint choice probabilities. The scaled increase in firm size

(Employment) raises the propensity of exporting by about 54 percentage points and the

one of foreign ownership by more than 41 percentage points for the average firm in the

data, when using the spatial model. The scaled change in efficiency (Productivity) is also

very large with 21 and 50 percentage points on the same marginal choices, respectively,

in the spatial model. The scaled increase in exporter fixed costs (Total assets of smallest

exporters) reduces the propensity of exporting by about 23 percentage points, and the

scaled increase in foreign ownership fixed costs (Total assets of smallest foreign firms)

reduces the propensity of foreign ownership by about 15 percentage points. Most of the

estimates on the marginal and joint response probabilities are estimated at relatively

high statistical precision, when considering customary thresholds. Across the board, in

the nonspatial model the corresponding response-probability changes are much smaller

than in the spatial model.

The results in Table 15 suggest that, e.g., an increase in fixed exporting costs reduces

the probability of exporting through foreign-owned firms by about 15 percentage points

and the one through domestically-owned firms by about 8 percentage points. Moreover,

an increase in fixed foreign ownership costs reduces the probability of foreign ownership

of both exporting and non-exporting firms by about 8 percentage points. As with the

marginal response probabilities, the corresponding effects on the joint response proba-

bilities are much smaller in absolute value with the nonspatial bivariate probit model.
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5 Conclusion

This paper focuses on the role of fixed costs for exporting and foreign ownership. The

trade literature suggests that whether a firm is able to attract foreign capital and whether

it may participate at the export market depends on whether the fixed costs associated

with doing so are at least covered by the incremental operating profits. The majority

of theoretical and empirical contributions to this literature assume that exporting and

foreign ownership decisions are made independently across firms. This paper illustrates

that this is not the case, but decisions are interdependent or contagious within a certain

geographical neighborhood, and that they are interdependent between exporting and

foreign ownership.

For estimation, the paper proposes a Bayesian model of contagion with multiple

binary variables that are determined jointly by specific latent processes which depend

stochastically on each other. An advantage of this estimation procedure relative to

standard binary choice models is that it can handle processes with cross-sectionally de-

pendent latent variables. An advantage relative to single-equation spatial binary choice

models is that the approach can handle a process with cross-equation dependence in the

stochastic terms and, eventually, even in the dependent variables.

We apply a bivariate probit model to the ability to export and/or attract foreign

capital in a sample of 8,959 firms in Shanghai. The results suggest that likely export

success for some firms and likely success in attracting foreign investors appears to reduce

the associated fixed costs with exporting or foreign ownership in other firms. Contagion

in exporting and in foreign ownership within an area of 10 miles in Shanghai leads to an

amplification of a reduction in direct fixed costs of firms. A negative direct shock on all

firms’ fixed costs are inflated due to spillovers and lead to increases in fixed costs which

are larger than the direct shocks, which affect firms’ globalization strategies.
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Figures

Figure 1: Location of different firm types in Shanghai

(a) Foreign-owned exporters (b) Domestically-owned exporters

(c) Foreign-owned non-exporters

(d) Domestically-owned non-exporters



Tables

Table 1: Monte Carlo Results: Design 1

β11 β12 β13 β21 β22 β23 λ1 λ2 ρ

True 1 −2 1.25 1 −1 0.5 0.4 0.7 0.5

n=1,000

Mean 1.011 −2.039 1.272 1.021 −1.022 0.511 0.381 0.693 0.494

Std.dev. 0.197 0.130 0.095 0.152 0.068 0.055 0.062 0.041 0.068

Avg. bias 0.010 −0.037 0.020 0.019 −0.020 0.011 −0.020 −0.008 −0.007

RMSE 0.025 0.009 0.007 0.016 0.005 0.005 0.009 0.003 0.007

I-statistic 1.097 2.121 1.452 1.028 1.129 1.043 2.202 1.153 2.132

P-value 0.546 0.532 0.516 0.473 0.512 0.522 0.527 0.525 0.535

n=2,000

Mean 1.009 −2.023 1.261 1.022 −1.018 0.507 0.390 0.694 0.499

Std.dev. 0.137 0.09 0.067 0.106 0.048 0.039 0.044 0.029 0.048

Avg. bias 0.008 −0.021 0.01 0.021 −0.017 0.007 −0.011 −0.007 −0.002

RMSE 0.013 0.005 0.004 0.009 0.003 0.003 0.004 0.002 0.004

I-statistic 1.094 2.013 1.45 1.029 1.119 1.046 2.002 1.149 2.133

P-value 0.502 0.577 0.537 0.499 0.467 0.500 0.546 0.537 0.518

Notes: The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the p-value of the Geweke (1992) test. The I-statistic
and the p-value of the Geweke test are convergence diagnostics of the parameter estimates. The former should be smaller than 5 and the latter
should ideally be as large as possible in the interval (0.1, 1] when using customary confidence intervals.

Table 2: Monte Carlo Results: Design 2

β11 β12 β13 β21 β22 β23 λ1 λ2 ρ

True 1 −2 1.25 1 −1 0.5 0.2 0.3 0.5

n=1,000

Mean 1.002 −2.032 1.266 1.014 −1.009 0.502 0.162 0.254 0.494

Std. dev. 0.203 0.125 0.088 0.146 0.063 0.050 0.095 0.105 0.065

Avg. bias 0.002 −0.032 0.016 0.014 −0.009 0.002 −0.038 −0.046 −0.006

RMSE 0.033 0.020 0.015 0.024 0.010 0.007 0.015 0.018 0.010

I-statistic 1.140 2.027 1.382 1.038 1.115 1.042 2.560 1.426 2.029

P-value 0.471 0.470 0.452 0.496 0.480 0.483 0.445 0.479 0.454

n=2,000

Mean 1.007 −2.017 1.258 1.009 −1.009 0.504 0.188 0.283 0.497

Std. dev. 0.138 0.089 0.066 0.106 0.045 0.038 0.058 0.067 0.045

Avg. bias 0.007 −0.017 0.008 0.009 −0.009 0.004 −0.012 −0.017 −0.003

RMSE 0.023 0.015 0.010 0.017 0.007 0.006 0.009 0.012 0.006

I-statistic 1.102 2.107 1.460 1.035 1.116 1.051 2.263 1.330 2.025

P-value 0.476 0.437 0.441 0.501 0.501 0.470 0.458 0.475 0.443

Notes: The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the p-value of the Geweke (1992) test. The I-statistic
and the p-value of the Geweke test are convergence diagnostics of the parameter estimates. The former should be smaller than 5 and the latter
should ideally be as large as possible in the interval (0.1, 1] when using customary confidence intervals.



Table 3: Monte Carlo Results: Design 3

β11 β12 β13 β21 β22 β23 λ1 λ2 ρ

True 1 −2 1.25 1 −1 0.5 0 0.7 0.5

n=1,000

Mean 0.965 −2.032 1.268 1.031 −1.025 0.510 −0.111 0.687 0.511

Std. dev. 0.207 0.124 0.087 0.151 0.068 0.052 0.131 0.043 0.067

Avg. bias −0.035 −0.032 0.018 0.031 −0.025 0.010 −0.111 −0.013 0.011

RMSE 0.032 0.019 0.013 0.026 0.014 0.008 0.038 0.006 0.013

I-statistic 1.186 2.039 1.402 1.044 1.162 1.052 3.133 1.173 2.264

P-value 0.453 0.473 0.465 0.496 0.489 0.491 0.442 0.488 0.451

n=2,000

Mean 0.978 −2.013 1.257 1.021 −1.022 0.512 −0.061 0.695 0.514

Std. dev. 0.140 0.088 0.065 0.110 0.048 0.040 0.080 0.028 0.047

Avg. bias −0.022 −0.013 0.007 0.021 −0.022 0.012 −0.061 −0.005 0.014

RMSE 0.021 0.012 0.010 0.015 0.008 0.006 0.021 0.004 0.008

I-statistic 1.127 2.117 1.454 1.038 1.146 1.058 2.729 1.162 2.232

P-value 0.478 0.437 0.446 0.500 0.501 0.470 0.447 0.482 0.462

Notes: The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the p-value of the Geweke (1992) test. The I-statistic
and the p-value of the Geweke test are convergence diagnostics of the parameter estimates. The former should be smaller than 5 and the latter
should ideally be as large as possible in the interval (0.1, 1] when using customary confidence intervals.

Table 4: Monte Carlo Results: Design 4

β11 β12 β13 β21 β22 β23 λ1 λ2 ρ

True 1 −2 1.25 1 −1 0.5 0.4 0.7 0

n=1,000

Mean 1.006 −2.035 1.268 1.015 −1.011 0.504 0.376 0.689 −0.003

Std. dev. 0.206 0.131 0.092 0.152 0.068 0.052 0.069 0.043 0.085

Avg. bias 0.006 −0.035 0.018 0.015 −0.011 0.004 −0.024 −0.011 −0.003

RMSE 0.033 0.020 0.014 0.023 0.012 0.009 0.012 0.007 0.012

I-statistic 1.092 1.784 1.280 1.032 1.068 1.036 1.874 1.125 1.864

P-value 0.474 0.466 0.467 0.486 0.474 0.474 0.468 0.476 0.459

n=2,000

Mean 1.004 −2.018 1.260 1.005 −1.006 0.503 0.391 0.694 0.000

Std. dev. 0.141 0.094 0.068 0.110 0.048 0.040 0.042 0.029 0.060

Avg. bias 0.004 −0.018 0.010 0.005 −0.006 0.003 −0.009 −0.006 0.000

RMSE 0.022 0.016 0.010 0.016 0.008 0.006 0.007 0.005 0.010

I-statistic 1.071 1.822 1.339 1.031 1.066 1.036 1.660 1.108 1.842

P-value 0.473 0.443 0.450 0.496 0.490 0.483 0.475 0.498 0.461

Notes: The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the p-value of the Geweke (1992) test. The I-statistic
and the p-value of the Geweke test are convergence diagnostics of the parameter estimates. The former should be smaller than 5 and the latter
should ideally be as large as possible in the interval (0.1, 1] when using customary confidence intervals.



Table 5: Frequency of firms per industry

Industry Number of firms Frequency in %

Food production 212 2.37

Beverage production 53 0.59

Textile industry 647 7.22

Garments and other fiber products 816 9.11

Leather, fur, feathers and related products 153 1.71

Timber processing 116 1.29

Furniture manufacturing 120 1.34

Papermaking and paper products 192 2.14

Printing and record medium production 239 2.67

Cultural, educational and sports goods 263 2.94

Petroleum refining and coking 35 0.39

Raw chemical materials and products 711 7.94

Medical and pharmaceutical products 163 1.82

Chemical fiber products 52 0.58

Rubber products 139 1.55

Plastic products 574 6.41

Nonmetal mineral products 383 4.28

Smelting and pressing of ferrous metals 107 1.19

Smelting and pressing of nonferrous metals 124 1.38

Metal products 854 9.53

Ordinary machinery 779 8.70

Special purpose equipment 436 4.87

Transport equipment 475 5.30

Electronic and telecommunications equipment 736 8.22

Instruments and meters 405 4.52

Artifacts and other manufacturing n.e.c. 175 1.95

Total 8,959 100.00



Table 6: Number of firms in Shanghai

Region Total Exporters Foreign

All areas 8,959 3,064 3,577

Shanghai city district 1,582 573 528

Inner suburbs 4,981 1,557 2,016

Baoshan district 593 143 161

Jiading district 998 271 450

Minhang district 1,175 472 661

Pudong district 2,215 671 744

Outer suburbs 2,199 881 1,005

Fengxian district 521 129 173

Jinshan district 366 156 137

Qingpu district 654 245 320

Songjiang district 658 351 375

Rural area

Chongming county 197 53 28

Table 7: Frequency of different firm types

Foreign

No Yes Total

Exporter No 4,420 1,475 5,895

Yes 962 2,102 3,064

Total 5,382 3,577 8,959

Table 8: Average distance among different firm types (in miles and logs)

Firm type Average Std.dev Maximum

All firms 1.8204 0.0929 2.0209

Domestically-owned exporters 1.8133 0.0941 2.0209

Foreign-owned non-exporters 1.8233 0.0826 2.0209

Foreign-owned exporters 1.8192 0.0868 2.0209

Domestically-owned non-exporters 1.8215 0.0986 2.0209



Table 9: Descriptive statistics covariates

Total Exporters Foreign firms

Mean Std.dev. Mean Std.dev. Mean Std.dev.

Employment (in logs) 4.695 1.048 5.194 1.086 4.847 1.066

Productivity (in logs) 5.311 0.982 5.306 0.988 5.560 0.986

Intangible asset ratio 0.017 0.046 0.023 0.048 0.022 0.043

Distance to port (in logs) 2.853 0.595 2.906 0.582 2.923 0.558

Distance to city center (in logs) 2.370 0.752 2.365 0.769 2.393 0.679

Average distance to other firms in the neighborhood (in logs) 1.820 0.093 1.817 0.089 1.821 0.085

Number of other firms in the neighborhood (in logs) 7.310 0.859 7.330 0.844 7.393 0.737

Sales to profit ratio 3.011 0.481 3.081 0.455 3.050 0.459

Total assets of smallest exporters (in logs) 7.969 0.763 7.814 0.642 7.918 0.654

Total assets of smallest foreign firms (in logs) 7.967 0.519 7.893 0.454 7.934 0.458



Table 10: Nonspatial and spatial bivariate probit

Nonspatial model Spatial model

(1) I-statistic P-value (2) I-statistic P-value

Dependent variable: exporting indicator (yei )

Employment 0.499∗∗∗ 1.001 0.934 0.500∗∗∗ 1.112 0.298
(0.016) (0.016)

Productivity 0.182∗∗∗ 1.112 0.221 0.179∗∗∗ 1.056 0.811
(0.016) (0.017)

Intangible assets ratio 2.151∗∗∗ 0.953 0.853 2.002∗∗∗ 1.059 0.620
(0.292) (0.307)

Distance to port 0.239∗∗∗ 0.953 0.263 0.036 0.950 0.586
(0.032) (0.028)

Distance to city center 0.029 1.001 0.211 0.028 0.953 0.415
(0.039) (0.035)

Average distance to other firms in the neighborhood −0.746∗∗∗ 1.056 0.140 −0.314∗ 0.958 0.357
(0.186) (0.164)

Number of other firms in the neighborhood 0.145∗∗∗ 0.953 0.455 0.061∗∗ 0.953 0.502
(0.033) (0.029)

Sales to profit ratio 2.177∗∗∗ 0.953 0.403 2.097∗∗∗ 1.056 0.292
(0.244) (0.258)

Sales to profit ratio squared −0.287∗∗∗ 1.056 0.383 −0.275∗∗∗ 0.952 0.378
(0.037) (0.039)

Total assets of smallest exporters −0.344∗∗∗ 1.056 0.494 −0.355∗∗∗ 0.953 0.471
(0.023) (0.024)

Constant −5.430∗∗∗ 1.001 0.800 −4.438∗∗∗ 1.112 0.707
(0.577) (0.567)

Dependent variable: foreign ownership indicator (yfi )

Employment 0.247∗∗∗ 1.001 0.356 0.242∗∗∗ 1.003 0.421
(0.014) (0.015)

Productivity 0.362∗∗∗ 1.030 0.375 0.353∗∗∗ 0.953 0.501
(0.016) (0.017)

Intangible assets ratio 1.980∗∗∗ 1.056 0.762 1.787∗∗∗ 0.953 0.221
(0.294) (0.289)

Distance to port 0.323∗∗∗ 1.001 0.424 0.037 0.953 0.269
(0.031) (0.028)

Distance to city center 0.426∗∗∗ 1.001 0.541 0.134∗∗∗ 1.112 0.534
(0.038) (0.036)

Average distance to other firms in the neighborhood −1.431∗∗∗ 0.953 0.603 −0.484∗∗∗ 1.001 0.824
(0.181) (0.167)

Number of other firms in the neighborhood 0.544∗∗∗ 0.953 0.320 0.124∗∗∗ 0.953 0.673
(0.033) (0.033)

Sales to profit ratio 1.922∗∗∗ 0.953 0.535 1.843∗∗∗ 0.952 0.667
(0.233) (0.231)

Sales to profit ratio squared −0.265∗∗∗ 0.952 0.645 −0.253∗∗∗ 1.056 0.617
(0.035) (0.035)

Total assets of smallest foreign firms −0.192∗∗∗ 1.056 0.651 −0.187∗∗∗ 1.112 0.409
(0.029) (0.030)

Constant −8.503∗∗∗ 1.001 0.417 −5.272∗∗∗ 1.001 0.617
(0.586) (0.595)

λe 0.733∗∗∗ 1.793 0.296
(0.035)

λf 0.810∗∗∗ 1.171 0.156
(0.034)

ρ 0.610∗∗∗ 1.606 0.923 0.309∗∗∗ 1.001 0.610
(0.014) (0.013)

n 8,959 8,959

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. Column (1) reports estimates of the nonspatial bivariate probit model.
Column (2) reports estimates of the spatial bivariate probit model. The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the
p-value of the Geweke (1992) test. λe and λf denote the parameter estimates of the spatial lags of the dependent variables, and ρ the tetrachoric correlation.

We did 20,000 simulations, of which 4,000 are considered as burn-in. We additionally apply thinning and keep every 10th observation. Thus the estimates are
based on 1,600 draws. The significance levels in the table are based on approximations when assuming normally distributed parameter estimates in conjunction
with the mean and the standard deviation of each parameter chain. For the parameters based on the Metropolis-Hastings procedure we additionally report
the posterior credible 90% intervals here. In the nonspatial model the interval for ρ is ρ̂ ∈ [0.586; 0.632]. The acceptance rate for ρ is 0.595. In the spatial

model for the parameters {λe, λf , ρ}, the posterior credible intervals are: λ̂e ∈ [0.674, 0.789]; λ̂f ∈ [0.754, 0.865]; ρ̂ ∈ [0.287, 0.331]. The acceptance rates for

the same three parameters are 0.472, 0.574, and 0.568, respectively.



Table 11: Robustness: Accounting for state ownership

Nonspatial model Spatial model

(1) I-statistic P-value (2) I-statistic P-value

Dependent variable: exporting indicator (yei )

Employment 0.502∗∗∗ 1.056 0.025 0.502∗∗∗ 1.056 0.975
(0.016) (0.016)

Productivity 0.182∗∗∗ 1.001 0.911 0.177∗∗∗ 0.953 0.682
(0.017) (0.017)

Intangible assets ratio 2.151∗∗∗ 0.953 0.359 2.026∗∗∗ 0.953 0.212
(0.298) (0.312)

State-owned −0.133∗∗ 1.001 0.411 −0.157∗∗ 0.953 0.131
(0.057) (0.061)

Distance to port 0.236∗∗∗ 0.953 0.461 0.034 1.001 0.514
(0.032) (0.029)

Distance to city center 0.022 0.953 0.963 0.021 0.932 0.582
(0.040) (0.035)

Average distance to other firms in the neighborhood −0.745∗∗∗ 0.953 0.284 −0.317∗ 1.112 0.414
(0.178) (0.168)

Number of other firms in the neighborhood 0.143∗∗∗ 0.953 0.531 0.059∗∗ 0.953 0.254
(0.033) (0.029)

Total assets of smallest exporters 2.158∗∗∗ 1.001 0.284 2.052∗∗∗ 1.001 0.532
(0.247) (0.249)

Sales to profit ratio −0.285∗∗∗ 0.953 0.268 −0.269∗∗∗ 1.056 0.519
(0.038) (0.038)

Sales to profit ratio squared −0.340∗∗∗ 0.953 0.920 −0.352∗∗∗ 1.056 0.354
(0.023) (0.025)

Constant −5.391∗∗∗ 0.953 0.161 −4.334∗∗∗ 1.056 0.638
(0.585) (0.569)

Dependent variable: foreign ownership indicator (yfi )

Employment 0.248∗∗∗ 1.001 0.868 0.244∗∗∗ 0.953 0.868
(0.014) (0.015)

Productivity 0.362∗∗∗ 1.001 0.995 0.353∗∗∗ 1.056 0.565
(0.015) (0.016)

Intangible assets ratio −0.072 0.952 0.620 1.818∗∗∗ 1.001 0.244
(0.057) (0.299)

State-owned 1.994∗∗∗ 1.001 0.607 −0.102∗ 1.001 0.225
(0.299) (0.060)

Distance to port 0.323∗∗∗ 1.001 0.596 0.036 1.001 0.639
(0.030) (0.028)

Distance to city center 0.423∗∗∗ 0.953 0.659 0.129∗∗∗ 0.953 0.735
(0.039) (0.037)

Average distance to other firms in the neighborhood −1.436∗∗∗ 0.953 0.452 −0.481∗∗∗ 1.056 0.848
(0.176) (0.164)

Number of other firms in the neighborhood 0.543∗∗∗ 0.953 0.948 0.123∗∗∗ 1.059 0.735
(0.033) (0.033)

Sales to profit ratio 1.906∗∗∗ 1.001 0.295 1.829∗∗∗ 1.001 0.720
(0.224) (0.232)

Sales to profit ratio squared −0.263∗∗∗ 1.001 0.261 −0.251∗∗∗ 0.952 0.803
(0.034) (0.035)

Total assets of smallest foreign firms −0.190∗∗∗ 1.056 0.612 −0.185∗∗∗ 0.953 0.782
(0.029) (0.030)

Constant −8.470∗∗∗ 1.234 0.824 −5.244∗∗∗ 1.001 0.909
(0.594) (0.593)

λe 0.740∗∗∗ 1.443 0.649
(0.036)

λf 0.812∗∗∗ 1.234 0.117
(0.033)

ρ 0.610∗∗∗ 1.443 0.911 0.308∗∗∗ 1.112 0.249
(0.014) (0.013)

n 8,959 8,959

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. Column (1) reports estimates of the nonspatial bivariate probit model.
Column (2) reports estimates of the spatial bivariate probit model. The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the
p-value of the Geweke (1992) test. λe and λf denote the parameter estimates of the spatial lags of the dependent variables, and ρ the tetrachoric correlation.

We did 20,000 simulations, of which 4,000 are considered as burn-in. We additionally apply thinning and keep every 10th observation. Thus the estimates are
based on 1,600 draws. The significance levels in the table are based on approximations when assuming normally distributed parameter estimates in conjunction
with the mean and the standard deviation of each parameter chain. For the parameters based on the Metropolis-Hastings procedure we additionally report
the posterior credible 90% intervals here. In the nonspatial model the interval for ρ is ρ̂ ∈ [0.588, 0.632]. The acceptance rate for ρ is 0.506. In the spatial

model for the parameters {λe, λf , ρ}, the posterior credible intervals are: λ̂e ∈ [0.674, 0.789]; λ̂f ∈ [0.754, 0.865]; ρ̂ ∈ [0.287, 0.331]. The acceptance rates for

the same three parameters are 0.472, 0.574, and 0.568, respectively.



Table 12: Robustness: Spatial bivariate probit

W12 W8 W5

(1) I-statistic P-value (2) I-statistic P-value (3) I-statistic P-value

Dependent variable: exporting indicator (yei )

Employment 0.499∗∗∗ 0.979 0.522 0.500∗∗∗ 1.056 0.326 0.498∗∗∗ 1.056 0.337
(0.016) (0.016) (0.016)

Productivity 0.180∗∗∗ 1.001 0.574 0.178∗∗∗ 1.056 0.768 0.180∗∗∗ 1.056 0.772
(0.017) (0.017) (0.017)

Intangible assets ratio 2.008∗∗∗ 1.057 0.750 1.990∗∗∗ 1.059 0.556 1.998∗∗∗ 1.059 0.540
(0.311) (0.308) (0.308)

Distance to port 0.026 1.056 0.215 0.040 0.953 0.981 0.055∗∗ 1.001 0.855
(0.028) (0.028) (0.028)

Distance to city center 0.032 1.001 0.545 0.027 0.953 0.588 0.024 1.056 0.957
(0.037) (0.034) (0.032)

Average distance to other firms in the neighborhood −0.380∗ 1.001 0.445 −0.095 1.056 0.256 0.006 0.953 0.134
(0.205) (0.133) (0.073)

Number of other firms in the neighborhood 0.062∗∗ 0.953 0.713 0.060∗∗ 0.953 0.547 0.053∗∗ 1.001 0.770
(0.029) (0.029) (0.026)

Sales to profit ratio 2.070∗∗∗ 0.932 0.905 2.172∗∗∗ 1.056 0.279 2.290∗∗∗ 1.056 0.295
(0.247) (0.257) (0.256)

Sales to profit ratio squared −0.272∗∗∗ 0.953 0.950 −0.286∗∗∗ 0.953 0.367 −0.302∗∗∗ 0.953 0.372
(0.038) (0.039) (0.039)

Total assets of smallest exporters −0.349∗∗∗ 1.056 0.156 −0.350∗∗∗ 0.953 0.443 −0.351∗∗∗ 0.953 0.372
(0.024) (0.024) (0.024)

Constant −4.213∗∗∗ 0.953 0.669 −5.029∗∗∗ 1.112 0.546 −5.361∗∗∗ 1.112 0.621
(0.590) (0.552) (0.534)

Dependent variable: foreign ownership indicator (yfi
)

Employment 0.242∗∗∗ 1.001 0.599 0.242∗∗∗ 1.003 0.415 0.243∗∗∗ 1.003 0.388
(0.015) (0.015) (0.015)

Productivity 0.354∗∗∗ 1.001 0.130 0.354∗∗∗ 0.953 0.518 0.356∗∗∗ 0.953 0.539
(0.016) (0.017) (0.017)

Intangible assets ratio 1.790∗∗∗ 1.112 0.763 1.809∗∗∗ 0.951 0.211 1.816∗∗∗ 0.953 0.209
(0.304) (0.289) (0.289)

Distance to port 0.026 1.001 0.421 0.042 0.953 0.283 0.070∗∗∗ 0.953 0.187
(0.028) (0.027) (0.027)

Distance to city center 0.161∗∗∗ 1.112 0.367 0.131∗∗∗ 0.952 0.263 0.140∗∗∗ 0.953 0.323
(0.038) (0.035) (0.033)

Average distance to other firms in the neighborhood −0.873∗∗∗ 1.056 0.251 −0.320∗∗ 1.056 0.612 0.003 0.953 0.708
(0.203) (0.135) (0.070)

Number of other firms in the neighborhood 0.131∗∗∗ 1.056 0.695 0.123∗∗∗ 1.055 0.686 0.128∗∗∗ 1.056 0.870
(0.031) (0.033) (0.030)

Sales to profit ratio 1.895∗∗∗ 0.953 0.559 1.833∗∗∗ 0.952 0.640 1.736∗∗∗ 0.952 0.664
(0.235) (0.230) (0.233)

Sales to profit ratio squared −0.261∗∗∗ 1.001 0.566 −0.251∗∗∗ 1.056 0.592 −0.237∗∗∗ 1.056 0.619
(0.035) (0.035) (0.035)

Total assets of smallest foreign firms −0.181∗∗∗ 1.056 0.585 −0.208∗∗∗ 1.112 0.296 −0.217∗∗∗ 1.112 0.393
(0.030) (0.031) (0.032)

Constant −4.627∗∗∗ 0.953 0.339 −5.449∗∗∗ 1.112 0.920 −5.777∗∗∗ 1.056 0.906
(0.597) (0.587) (0.588)

λe 0.785∗∗∗ 1.443 0.398 0.694∗∗∗ 1.522 0.851 0.619∗∗∗ 1.443 0.937
(0.037) (0.034) (0.030)

λf 0.869∗∗∗ 1.171 0.656 0.768∗∗∗ 1.171 0.565 0.692∗∗∗ 1.001 0.359
(0.034) (0.033) (0.029)

ρ 0.309∗∗∗ 1.056 0.342 0.309∗∗∗ 1.112 0.448 0.309∗∗∗ 1.171 0.495
(0.014) (0.013) (0.013)

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. Column (1), (2), and (3) report the results of the spatial bivariate probit
model using the weights matrix W12, W8, and W5, respectively. The other columns report the I-statistic (Raftery and Lewis, 1992) and the p-value of the
Geweke (1992) test. λe and λf report the parameter estimates of the spatial lags of the dependent variables, and ρ the tetrachoric correlation. We did 20,000

simulations, of which 4,000 are considered as burn-in. We additionally apply thinning and keep every 10th observation. Thus all estimates are based on 1,600
draws. The significance levels in the table are based on approximations when assuming normally distributed parameter estimates in conjunction with the mean
and the standard deviation of each parameter chain. For the parameters based on the Metropolis-Hastings procedure we additionally report the posterior credible

90% intervals here. Using W12, for the parameters {λe, λf , ρ}, these are: λ̂e ∈ [0.722, 0.843]; λ̂f ∈ [0.812, 0.923]; ρ̂ ∈ [0.285, 0.330]. The acceptance rates for

the same three parameters in the Metropolis-Hastings procedure are 0.478, 0.492, and 0.476, respectively. Using W8, the confidence intervals for {λe, λf , ρ} are:

λ̂e ∈ [0.637, 0.747]; λ̂f ∈ [0.713, 0.821]; ρ̂ ∈ [0.288, 0.330]. The acceptance rates for the same three parameters are 0.519, 0.418, and 0.559, respectively. Using

W5, the confidence intervals for {λe, λf , ρ} are: λ̂e ∈ [0.570, 0.667]; λ̂f ∈ [0.646, 0.739]; ρ̂ ∈ [0.288, 0.331]. The acceptance rates for the same three parameters

are 0.484, 0.526, and 0.476, respectively.



Table 13: Effect estimates of a one std.dev. increase in explanatory variables on latent export
profitability and foreign ownership profitability

Nonspatial model Spatial model

d̂te d̂tf d̂te d̂tf
Employment Min Mean 0.812 0.459

Std.err. 0.052 0.046
p25 Mean 1.772 1.182

Std.err. 0.225 0.209
p50 Mean 1.983 1.358

Std.err. 0.271 0.259
p75 Mean 2.296 1.615

Std.err. 0.350 0.324
Max Mean 2.894 2.152

Std.err. 0.492 0.498
Avg Mean 0.523 0.259 2.000 1.379

Std.err. 0.016 0.015 0.279 0.266
Productivity Min Mean 0.272 0.627

Std.err. 0.029 0.060
p25 Mean 0.592 1.615

Std.err. 0.089 0.287
p50 Mean 0.663 1.856

Std.err. 0.105 0.356
p75 Mean 0.767 2.209

Std.err. 0.132 0.445
Max Mean 0.967 2.943

Std.err. 0.181 0.687
Avg Mean 0.179 0.355 0.669 1.885

Std.err. 0.016 0.016 0.108 0.366
Intangible assets ratio Min Mean 0.141 0.148

Std.err. 0.023 0.028
p25 Mean 0.308 0.381

Std.err. 0.060 0.093
p50 Mean 0.345 0.438

Std.err. 0.069 0.111
p75 Mean 0.400 0.521

Std.err. 0.084 0.137
Max Mean 0.504 0.694

Std.err. 0.113 0.201
Avg Mean 0.098 0.090 0.348 0.445

Std.err. 0.013 0.013 0.070 0.114

Distance to port Min Mean 0.029 0.034
Std.err. 0.036 0.044

p25 Mean 0.070 0.097
Std.err. 0.056 0.073

p50 Mean 0.079 0.112
Std.err. 0.061 0.080

p75 Mean 0.092 0.134
Std.err. 0.068 0.093

Max Mean 0.117 0.180
Std.err. 0.081 0.117

Avg Mean 0.142 0.192 0.079 0.114
Std.err. 0.019 0.018 0.061 0.082

Distance to city center Min Mean 0.022 0.181
Std.err. 0.064 0.046

p25 Mean 0.069 0.463
Std.err. 0.094 0.127

p50 Mean 0.080 0.532
Std.err. 0.100 0.149

p75 Mean 0.096 0.632
Std.err. 0.112 0.181

Max Mean 0.128 0.840
Std.err. 0.131 0.253

Avg Mean 0.021 0.320 0.081 0.540
Std.err. 0.029 0.029 0.101 0.152

Continued on next page



Table 13: Effect estimates of a one std.dev. increase in explanatory variables on latent export
profitability and foreign ownership profitability

Nonspatial model Spatial model

d̂te d̂tf d̂te d̂tf
Average distance to other firms in Min Mean -0.160 -0.376
the neighborhood Std.err. 0.085 0.142

p25 Mean -0.127 -0.283
Std.err. 0.068 0.103

p50 Mean -0.110 -0.238
Std.err. 0.059 0.086

p75 Mean -0.098 -0.207
Std.err. 0.053 0.074

Max Mean -0.044 -0.081
Std.err. 0.026 0.027

Avg Mean -0.069 -0.133 -0.111 -0.242
Std.err. 0.017 0.017 0.059 0.087

Number of other firms in Min Mean 0.080 0.191
the neighborhood Std.err. 0.040 0.045

p25 Mean 0.176 0.487
Std.err. 0.085 0.115

p50 Mean 0.197 0.558
Std.err. 0.095 0.134

p75 Mean 0.227 0.664
Std.err. 0.110 0.161

Max Mean 0.287 0.881
Std.err. 0.139 0.223

Avg Mean 0.125 0.467 0.198 0.567
Std.err. 0.028 0.028 0.096 0.136

Sales to profit ratio Min Mean 0.328 0.280
Std.err. 0.034 0.040

p25 Mean 0.714 0.722
Std.err. 0.108 0.150

p50 Mean 0.799 0.829
Std.err. 0.128 0.182

p75 Mean 0.925 0.987
Std.err. 0.160 0.225

Max Mean 1.166 1.315
Std.err. 0.221 0.338

Avg Mean 0.216 0.158 0.806 0.842
Std.err. 0.018 0.018 0.131 0.187

Total assets of smallest exporters Min Mean -1.495
Std.err. 0.270

p25 Mean -1.186
Std.err. 0.194

p50 Mean -1.025
Std.err. 0.153

p75 Mean -0.915
Std.err. 0.129

Max Mean -0.420
Std.err. 0.037

Avg Mean -0.262 -1.033
Std.err. 0.018 0.157

Total assets of smallest foreign firms Min Mean -0.826
Std.err. 0.229

p25 Mean -0.620
Std.err. 0.156

p50 Mean -0.521
Std.err. 0.127

p75 Mean -0.453
Std.err. 0.106

Max Mean -0.176
Std.err. 0.032

Avg Mean -0.099 -0.529
Std.err. 0.015 0.130

Notes: We report the total effects, d̂te and d̂tf , of one-standard-deviation changes of the regressors on the exporting e and foreign

ownership f profitability, respectively. For the nonspatial model, there is only an average effect, while for the spatial model we report
the minimum, 25th, 50th, and 75th percentile, maximum, and average for each effect and the corresponding standard error.



Table 14: Effect estimates of a one std.dev. increase in explanatory variables on the marginal
probabilities of exporting and foreign ownership

Nonspatial model Spatial model

∆P̂ t
e ∆P̂ t

f ∆P̂ t
e ∆P̂ t

f

Employment Mean 0.172 0.090 0.540 0.412
Std.err. 0.006 0.006 0.040 0.054

Productivity Mean 0.057 0.124 0.209 0.500
Std.err. 0.006 0.007 0.035 0.045

Intangible asset ratio Mean 0.031 0.031 0.106 0.146
Std.err. 0.005 0.005 0.023 0.038

Distance to port Mean 0.045 0.067 0.023 0.037
Std.err. 0.006 0.007 0.018 0.027

Distance to city center Mean 0.007 0.112 0.024 0.177
Std.err. 0.009 0.011 0.030 0.050

Average distance to other firms in the Mean -0.021 -0.045 -0.031 -0.074
neighborhood Std.err. 0.005 0.006 0.016 0.026

Number of other firms in the neighborhood Mean 0.040 0.163 0.060 0.186
Std.err. 0.009 0.010 0.030 0.045

Sales to profit ratio Mean 0.069 0.055 0.252 0.272
Std.err. 0.007 0.007 0.041 0.055

Total assets of smallest exporters Mean -0.077 -0.231
Std.err. 0.006 0.023

Total assets of smallest foreign firms Mean -0.034 -0.154
Std.err. 0.005 0.033

Notes: We report means and standard errors of changes in the marginal probabilities of exporting e and foreign ownership
f resulting from total effects of one-standard-deviation changes of the regressors.

Table 15: Effect estimates of a one std.dev. increase in explanatory variables on the joint
probabilities of exporting and foreign ownership

Nonspatial model Spatial model

∆P̂ t
ef ∆P̂ t

e0
∆P̂ t

0f ∆P̂ t
ef ∆P̂ t

e0
∆P̂ t

0f

Employment Mean 0.125 0.047 -0.035 0.499 0.041 -0.087
Std.err. 0.006 0.005 0.004 0.055 0.045 0.029

Productivity Mean 0.077 -0.020 0.047 0.285 -0.076 0.216
Std.err. 0.005 0.003 0.005 0.036 0.016 0.040

Intangible asset ratio Mean 0.028 0.003 0.004 0.091 0.015 0.055
Std.err. 0.004 0.003 0.003 0.018 0.016 0.026

Distance to port Mean 0.049 -0.004 0.018 0.019 0.004 0.018
Std.err. 0.005 0.004 0.005 0.013 0.012 0.019

Distance to city center Mean 0.041 -0.035 0.071 0.056 -0.032 0.121
Std.err. 0.008 0.004 0.008 0.023 0.016 0.039

Average distance to other firms in the Mean -0.027 0.006 -0.018 -0.052 0.021 -0.023
neighborhood Std.err. 0.004 0.003 0.004 0.016 0.013 0.015

Number of other firms in the neighborhood Mean 0.078 -0.039 0.085 0.079 -0.020 0.107
Std.err. 0.008 0.004 0.008 0.023 0.017 0.034

Sales to profit ratio Mean 0.057 0.012 -0.002 0.222 0.030 0.050
Std.err. 0.005 0.004 0.005 0.038 0.029 0.036

Total assets of smallest exporters Mean -0.042 -0.035 0.042 -0.150 -0.081 0.150
Std.err. 0.003 0.003 0.003 0.016 0.007 0.016

Total assets of smallest foreign firms Mean -0.013 0.013 -0.021 -0.078 0.078 -0.076
Std.err. 0.002 0.002 0.003 0.018 0.018 0.015

Notes: We report means and standard errors of changes in the joint probabilities of exporting e and foreign ownership f , e.g. ef , e0, and 0f ,
resulting from total effects of one-standard-deviation changes of the regressors.



Table 16: A more general spatial bivariate probit

(1) I-statistic P-value

Dependent variable: exporting indicator (yei )

Employment 0.493∗∗∗ 1.062 0.921
(0.016)

Productivity 0.173∗∗∗ 1.062 0.459
(0.018)

Intangible assets ratio 1.941∗∗∗ 1.063 0.608
(0.301)

Distance to port 0.029 1.060 0.371
(0.029)

Distance to city center 0.025 1.238 0.183
(0.046)

Average distance to other firms in the neighborhood −0.279∗ 0.985 0.858
(0.168)

Number of other firms in the neighborhood 0.053 1.445 0.193
(0.046)

Sales to profit ratio 2.107∗∗∗ 1.062 0.535
(0.246)

Sales to profit ratio squared −0.278∗∗∗ 1.062 0.524
(0.037)

Total assets of smallest exporters −0.336∗∗∗ 1.147 0.321
(0.023)

Constant −4.473∗∗∗ 1.062 0.592
(0.616)

Dependent variable: foreign ownership indicator (yfi )

Employment 0.238∗∗∗ 0.985 0.180
(0.015)

Productivity 0.350∗∗∗ 0.985 0.997
(0.016)

Intangible assets ratio 1.764∗∗∗ 1.062 0.371
(0.302)

Distance to port 0.022 1.238 0.180
(0.029)

Distance to city center 0.155∗∗∗ 1.337 0.158
(0.043)

Average distance to other firms in the neighborhood −0.490∗∗∗ 0.985 0.704
(0.164)

Number of other firms in the neighborhood 0.140∗∗∗ 1.337 0.280
(0.041)

Sales to profit ratio 1.832∗∗∗ 0.985 0.286
(0.229)

Sales to profit ratio squared −0.252∗∗∗ 0.985 0.373
(0.035)

Total assets of smallest foreign firms −0.177∗∗∗ 0.985 0.254
(0.029)

Constant −5.349∗∗∗ 1.062 0.591
(0.600)

λee 0.760∗∗∗ 3.932 0.112
(0.071)

λef 0.013 1.147 0.164
(0.078)

λfe 0.129 2.739 0.142
(0.081)

λff 0.752∗∗∗ 2.177 0.288
(0.067)

ρ 0.593∗∗∗ 1.337 0.537
(0.015)

n 8,959

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. Column (1) reports
estimates of the more general spatial bivariate probit model. The I-statistic is calculated following Raftery
and Lewis (1992). P-value denotes the p-value of the Geweke (1992) test. λee, λef , λfe, and λff denote the

parameter estimates of the spatial lags of the dependent variables, and ρ the tetrachoric correlation. We did
20,000 simulations, of which 7,500 are considered as burn-in. We additionally apply thinning and keep every
12th observation. The significance levels in the table are based on approximations when assuming normally
distributed parameter estimates in conjunction with the mean and the standard deviation of each parameter
chain. For the parameters based on the Metropolis-Hastings procedure we additionally report the posterior

credible 90% intervals here. For the parameters {λee, λef , λfe, λff , ρ}, these are: λ̂ee ∈ [0.633, 0.865];

λ̂ef ∈ [−0.102, 0.157]; λ̂fe ∈ [−0.020, 0.259]; λ̂ff ∈ [0.644, 0.868]; ρ̂ ∈ [0.568, 0.616]. The acceptance

rates for the same parameters in the Metropolis-Hastings procedure are 0.465,0.440,0.473,0.448, and 0.584,
respectively.



Table 17: Nonspatial and spatial univariate probit

Nonspatial model Spatial model

(1) I-statistic P-value (2) I-statistic P-value

Dependent variable: exporting indicator (yei )

Employment 0.499∗∗∗ 0.953 0.684 0.493∗∗∗ 1.112 0.192
(0.016) (0.016)

Productivity 0.169∗∗∗ 0.953 0.438 0.179∗∗∗ 1.001 0.630
(0.016) (0.017)

Intangible assets ratio 2.010∗∗∗ 1.112 0.685 1.983∗∗∗ 1.001 0.234
(0.301) (0.302)

Distance to port 0.254∗∗∗ 1.056 0.255 0.028 1.001 0.966
(0.031) (0.029)

Distance to city center 0.007 1.001 0.557 0.028 1.056 0.154
(0.039) (0.034)

Average distance to other firms in the neighborhood −0.682∗∗∗ 1.112 0.404 −0.299∗ 0.953 0.563
(0.178) (0.167)

Number of other firms in the neighborhood 0.146∗∗∗ 1.001 0.336 0.058∗∗ 1.171 0.845
(0.032) (0.028)

Sales to profit ratio 2.117∗∗∗ 0.953 0.577 2.036∗∗∗ 0.953 0.670
(0.241) (0.248)

Sales to profit ratio squared −0.277∗∗∗ 1.001 0.613 −0.265∗∗∗ 0.953 0.614
(0.037) (0.037)

Total assets of smallest exporters −0.384∗∗∗ 1.001 0.978 −0.363∗∗∗ 1.056 0.380
(0.033) (0.025)

Constant −5.066∗∗∗ 1.001 0.860 −4.223∗∗∗ 0.953 0.687
(0.619) (0.564)

λe 0.751 2.008 0.237
(0.039)

Dependent variable: foreign ownership indicator (yfi )

Employment 0.249∗∗∗ 0.953 0.637 0.241∗∗∗ 1.056 0.965
(0.015) (0.015)

Productivity 0.362∗∗∗ 1.001 0.672 0.347∗∗∗ 1.056 0.404
(0.016) (0.017)

Intangible assets ratio 1.935∗∗∗ 1.171 0.705 1.751∗∗∗ 0.932 0.476
(0.292) (0.286)

Distance to port 0.320∗∗∗ 0.953 0.113 0.032 1.056 0.169
(0.031) (0.029)

Distance to city center 0.429∗∗∗ 1.001 0.479 0.129∗∗∗ 1.056 0.410
(0.039) (0.035)

Average distance to other firms in the neighborhood −1.435∗∗∗ 1.112 0.491 −0.457∗∗∗ 1.056 0.479
(0.174) (0.162)

Number of other firms in the neighborhood 0.545∗∗∗ 0.953 0.336 0.117∗∗∗ 1.112 0.353
(0.032) (0.032)

Sales to profit ratio 1.887∗∗∗ 1.001 0.695 1.810∗∗∗ 1.001 0.593
(0.222) (0.231)

Sales to profit ratio squared −0.259∗∗∗ 1.001 0.712 −0.248∗∗∗ 1.001 0.448
(0.034) (0.035)

Total assets of smallest foreign firms −0.201∗∗∗ 0.953 0.842 −0.187∗∗∗ 1.003 0.382
(0.030) (0.031)

Constant −8.391∗∗∗ 1.001 0.985 −5.159∗∗∗ 1.001 0.784
(0.595) (0.578)

λf 0.823∗∗∗ 1.443 0.571
(0.033)

n 8,959 8,959

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. Column (1) reports estimates of the nonspatial probit model. Column
(2) reports estimates of the spatial probit model. The I-statistic is calculated following Raftery and Lewis (1992). P-value denotes the p-value of the Geweke
(1992) test. λe and λf denote the parameter estimates of the spatial lags of the dependent variables. We did 10,000 simulations, of which 2,000 are considered

as burn-in. We additionally apply thinning and keep every 5th observation. The significance levels in the table are based on approximations when assuming
normally distributed parameter estimates in conjunction with the mean and the standard deviation of each parameter chain. For the parameters based on the

Metropolis-Hastings procedure we additionally report the posterior credible 90% intervals. For the parameters {λe, λf}, these are: λ̂e ∈ [0.685, 0.813] and

λ̂f ∈ [0.768, 0.878]. The acceptance rates for the same parameters in the Metropolis-Hastings procedure are 0.465 and 0.441, respectively.



Appendix

Appendix A: A more general spatial bivariate probit model

In this Appendix, we discuss a natural extension of the model, where the vector of latent

outcomes y∗h does not only depend on its own spatial lag, y∗h, but also the one of the

other outcome, y∗g with g 6= h. The correspondingly modified model could be written as

y∗h = λhhy
∗
h + λhgy

∗
g + xhβh + uh, (12)

After defining Λ =

λee λef

λfe λff

, whose typical element we will refer to as λhg, we can

write the stacked counterpart to equation (7) for both equations together asy∗e
y∗f

 = (Λ⊗W )

y∗e
y∗f

+

xe 0

0 xf

βe
βf

+

ue
uf

 , (13)

where the error process is assumed to be the same as in the main text.

Priors

Using the same priors as before and assuming

λhg ∼ U(−1, 1)

for all {hg}, it is straightforward to extend the more restrictive set-up in the main text

when using the likelihood function below.

Likelihood

When introducing the notation of

y∗ = (y∗′e , y
∗′
f )′

L = (I2n − Λ⊗W ) = (Lgh),

L̃ = L−1 = (L̃gh),

X = diagh∈{e,f}(xh)

β = (β′e, β
′
f )′

u = (u′e, u
′
f )′,
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the reduced form of the latent process can be written as

y∗ = L̃Xβ + L̃u. (14)

Then, we can write the likelihood of the joint distribution of (y∗e , y
∗
f ) as

p(y∗|β,Λ, ρ,X,W ) =
1

2πn|Σ|n/2
|Lff ||Lee − LefL−1

ff Lfe|exp
[
−1

2
trace

(
RΣ−1

)]
,

where, under the present assumptions, Σ is the same as in the main text and R =ree ref

rfe rff

 is a 2× 2 matrix containing the elements

ree = (Leey
∗
e + Lefy

∗
f − xeβe)′(Leey∗e + Lefy

∗
f − xeβe) (15)

ref = (Leey
∗
e + Lefy

∗
f − xeβe)′(Lfey∗e + Lffy

∗
f − xfβf ) (16)

rfe = (Lfey
∗
e + Lffy

∗
f − xfβf )′(Leey∗e + Lefy

∗
f − xeβe) (17)

rff = (Lfey
∗
e + Lffy

∗
f − xfβf )′(Lfey

∗
e + Lffy

∗
f − xfβf ). (18)

The joint distribution of y∗ is

y∗ ∼ N(L̃Xβ, L̃(Σ⊗ In)L̃′).

Define the precision matrix H, which is the inverse of the variance of y∗,

H = (L̃ΨL̃′)−1 = L′(Σ−1 ⊗ In)L =

Hee Hef

Hfe Hff

 .

Then, the conditional distributions of y∗e and y∗f can be formulated using the variance of

y∗ or the precision matrix H (see Geweke, 2005) as

y∗e |θ−y∗e ∼ N

(
L̃eexeβe + L̃efxfβf − H−1

ee Hef (yf − L̃fexeβe − L̃ffxfβf ), H−1
ee

)
,

y∗f |θ−y∗f ∼ N

(
L̃fexeβe + L̃ffxfβf − H−1

ff Hfe(ye − L̃eexeβe − L̃efxfβf ), H−1
ff

)
.

The conditional distribution of β = (β′e, β
′
f )′ is

β|θ−β ∝ N(β, V β),
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where

β = V β
(
X ′
(
Σ−1 ⊗ In

)
Ly∗ + V −1δ

)
,

V β =
(
X ′
(
Σ−1 ⊗ In

)
X + V −1

)−1
.

Notice that we consider drawing the elements of β jointly, here. In the main text, we

outlined the procedure for drawing them separately for both equations. Either approach

is applicable.

The conditional distributions of λee,λef ,λfe, and λff are

λee|θ−λee ∝ |Lee − LefL−1
ff Lfe|exp

[
−1

2
trace

(
RΣ−1

)]
(19)

λef |θ−λef ∝ |Lee − LefL−1
ff Lfe|exp

[
−1

2
trace

(
RΣ−1

)]
(20)

λfe|θ−λf e ∝ |Lee − LefL−1
ff Lfe|exp

[
−1

2
trace

(
RΣ−1

)]
(21)

λff |θ−λff ∝ |Lff ||Lee − LefL−1
ff Lfe|exp

[
−1

2
trace

(
RΣ−1

)]
(22)

The conditional distribution of ρ reads exactly as in equation (9), except that the

definition of R is different here from the one in the main text.

Modified application

We estimate the model outlined above on the data for Shanghai as used in the main

text. While a single draw of the Monte Carlo chain (of which there were 20,000) took

approximately 1.7 seconds in the baseline specification in the main text on average, a

draw with the more complex model outlined in Appendix A takes approximately 5.9

seconds. The results are summarized in Table 16, and they suggest that the data do not

support spillovers of the profitability of foreign ownership on exporting and vice versa

(this can be seen from the statistically insignificant parameters (λ̂ef , λ̂fe) in the table).

Given this, we refrain from an in-depth discussion of the corresponding results.

– Table 16 about here –
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Appendix B: Further extensions and computational issues

In principal, it is possible to take the model proposed in this paper to problems beyond

two structural equations. Such a multivariate probit model would be relatively straight-

forward to analyze as long as the spatial-lag-parameter-matrix Λ as introduced in the

Appendix is diagonal, which was the case in the main text. For non-diagonal Λ, we saw

that the computational burden was already significant with only two equations. Hence,

higher-dimensional and more general model versions would call for fast approximation

algorithms of determinants and inverses to be applicably with large data-sets as the one

used in this paper.

Appendix C: Results for univariate spatial and nonspatial

probit models

In Table 17, we present the results of nonspatial and spatial univariate probit models.

These models correspond to the ones estimated in Table 10, except that ρ = 0.

– Table 17 about here –

The numbers in Table 17 suggest that there are smaller differences between the

point estimates and the standard errors between the equations in Table 17 and their

counterparts in Table 10. In any case, ignoring that ρ 6= 0 appears to entail less of

a problem with the data at hand than when ignoring the spatial lags of the latent

dependent variables in the model specification.
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